
A stabilized multidomain partition of unity approach to
solving incompressible viscous flow

Maximilian Balmusa,∗, Johan Hoffmanb, André Massingc, David A. Nordslettena,d

aDepartment of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering,
King’s College London, King’s Health Partners, London SE1 7EH, United Kingdom

bDivision of Computational Science and Technology, KTH Royal Institute of Technology, SE-10044,
Stockholm, Sweden

cDepartment of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491
Trondheim, Norway

dDepartment of Biomedical Engineering and Cardiac Surgery, University of Michigan, NCRC B20,
2800 Plymouth Rd, Ann Arbor, 4810, USA

Abstract

In this work we propose a new stabilized approach for solving the incompressible Navier-
Stokes equations on fixed overlapping grids. This new approach is based on the partition
of unity finite element method, which defines the solution fields as weighted sums of
local fields, supported by the different grids. Here, the discrete weak formulation of the
problem is re-set in cG(1)cG(1) stabilized form, which has the dual benefit of lowering
grid resolution requirements for convection dominated flows and allowing for the use of
velocity and pressure discretizations which do not satisfy the inf-sup condition. Addition-
ally, we provide an outline of our implementation within an existing distributed parallel
application and identify four key options to improve the code efficiency namely: the use
of cache to store mapped quadrature points and basis function gradients, the intersection
volume splitting algorithm, the use of lower order quadrature schemes, and tuning the
partition weight associated with the interface elements. The new method is shown to
have comparable accuracy to the single mesh boundary-fitted version of the same stabi-
lized solver based on three transient flow tests including both 2D and 3D settings, as well
as low and moderate Reynolds number flow conditions. Moreover, we demonstrate how
the four implementation options have a synergistic effect lowering the residual assembly
time by an order of magnitude compared to a naive implementation, and showing good
load balancing properties.

Keywords: Finite element methods, Fluid-structure interaction, Overlapping domains,
Partition of unity, Stabilized flow

∗Corresponding author
Email addresses: maximilian.balmus@kcl.ac.uk (Maximilian Balmus), jhoffman@kth.se (Johan

Hoffman), andre.massing@ntnu.no (André Massing), david.nordsletten@kcl.ac.uk
(David A. Nordsletten)

Preprint submitted to Computer Methods in Applied Mechanics and Engineering January 19, 2022

1. Introduction1

The construction of high quality boundary-fitted meshes for flow simulations can be2

a challenging endeavour in the context of complex immersed bodies. When movement3

and/or contact are also included, such issues are compounded by the need to maintain4

mesh quality, which can necessitate either adapting the grid’s connectivity matrix and/or5

local or global re-meshing.6

For many practical applications, it is generally desirable to avoid such issues alto-7

gether. The most common approach to achieving this is through interface-capturing8

class techniques. These methods employ unfitted fluid grids which are typically (but9

not necessarily) kept fixed, and thus avoid mesh distortion altogether. Classic exam-10

ples include the finite difference-based immersed boundary method [1], its finite element11

counterparts [2, 3, 4], as well as fictitious domain methods [5, 6] based on Lagrange12

multiplier coupling schemes. However, while non-conformity precludes some of the main13

issues of boundary-fitted solvers, it can also introduces a series of limitations, depend-14

ing on the approach, such as the: inability to represent pressure jumps across the fluid15

solid interface, loss of the boundary layer element setup, artificial solid viscosity and16

incompressibility [7]. To address some of these limitations a number of different solu-17

tions have been proposed in the form local mesh adaptations [8], divergence-conforming18

discretizations [9] and XFEM enrichment [10, 11, 12, 13, 14, 15].19

An alternative option, overlapping domain techniques, can be seen as hybrid of the20

non-conforming/immersed methods and boundary fitted ones [16, 17, 18, 19]. In its21

basic form the technique is based on a three grid setup, one for the solid and two for22

representing the fluid solution. One of the fluid grids is boundary fitted to the solid grid23

with which it is coupled using an interface tracking approach. The role of the boundary24

fitted fluid grid is to represent the solution in the vicinity of the interface, it can be25

refined appropriately to capture crucial flow features such as boundary layers, and it can26

be employed either an Eulerian or ALE reference frame. This grid is then embedded into27

the background fluid grid and the two are coupled by means of interface-capturing. While28

initial implementations focused on the goal of simplifying mesh generation by gluing29

together simpler fixed components [20, 21, 22], in recent years multiple avenues for ALE30

and FSI applications have also been explored, including the XFEM-based mixed/hybrid31

Lagrange introduced by Wall, Shahmiri and colleagues [7, 18] and the Nitsche-based32

Cut-FEM approach, see Massing et al. [17] and Schott et al [19]. In [23], we proposed33

an alternative technique based on the partition of unity finite element method, where34

global velocity and pressure solution fields are constructed as weighted sums of locally35

defined fields supported by low-order mixed element discretizations. This setup avoids36

both the calculation of additional fields (e.g. Lagrange multiplier field) and user-defined37

stabilization parameters.38

In many real life applications, where moderate to high Reynolds number flow regimes39

are observed, the use of low-order finite standard Galerkin formulations is not practical40

due to the presence of non-physical spurious oscillations observed in the solution. To41

avoid such phenomena, restrictive and computational expensive spatial and temporal42

refinement are required. Hence, in practice this is generally avoided through alterna-43

tive discretization methods such as spectral/hp [24, 25] and stabilization methods. The44

former represents a type of Galerkin approach which combines both spatial refinement45

and the use of high order polynomial functions to achieve exponential convergence rates46

2

provided sufficient solution regularity. Alternatively, spurious oscillations can be avoided47

through modification of the weak form by adding specific terms, such as weighted residual48

terms, as in the case of Steamline Upwind Petrov-Galerkin [26, 27, 28] and Residual-based49

Variational Multiscale methods [29, 30, 31], or penalty terms [32, 33, 34]. An added ben-50

efit is that these approaches can also be used to circumvent the LBB stability condition51

and to employ equal order discretizations for the velocity and pressure. Through its52

construction, the PUFEM overlapping domain technique is theoretically amenable to53

stabilization, though this has not been verified up to now.54

In this work we introduce a stabilized, fixed-grid, version of the PUFEM solver,55

SPUFEM, based on the cG(1)cG(1) scheme proposed by Hoffman et al. for incompress-56

ible flows [28], a variant of the widely known SUPG/PSPG scheme [26, 27]. Further-57

more, we provide an outline of our parallel implementation, including efficient interface58

grid generation using functionalities provided by the SUPERMESH library [35], allowing59

for the extension of the SPUFEM solver to complex 3D flow settings. We also iden-60

tify a series of implementation options and algorithms which can improve the code’s61

efficiency, particularly in terms of the residual assembly time and load balancing: (1)62

the inclusion of a memory cache for storing mapped quadrature rules, (2) the use of63

the Sutherland-Hodgman-based intersection clipping and volume meshing algorithm to64

reduce the number of interface elements, (3) the use of lower order quadrature schemes65

and (4) the tuning of the interface element partition weight to better account for cost66

discrepancies between the standard FEM element contributions, on one side, and local67

partition of unity contributions, on the other. Using three benchmark problems, covering68

both 2D and 3D flows, as well as low and moderate Reynolds number flow regimes, we69

demonstrate SPUFEM to have comparable accuracy to the single mesh, boundary fitted70

version of the solver, using the same stabilization scheme. Furthermore, we prove that71

significant efficiency gains can be achieved through a careful choice in our implementation72

options.73

The rest of the paper follows this structure. We start by introducing the Navier-74

Stokes equations in Section 2.1 and recalling the classic mixed finite element method in75

Section 2.2. Furthermore, Section 2.3 provides the outline for the single mesh cG(1)cG(1)76

method. In the follow up Section 2.4, we present the mixed element partition of unity77

approach for a two mesh setup and using the cG(1)cG(1) formulation, we define the78

new stabilized version of the PUFEM solver (SPUFEM). In Section 3 we discuss the79

implementation of partition of unity in general, allowing for the extension of the method80

to handle complex 3D cases. In Section 4, we present both 2D and 3D benchmark results,81

showing that the SPUFEM and analogous single mesh solver have comparable accuracy.82

Finally, we present our concluding remarks and future research directions in Section 5.83

2. Methods84

This section introduces the main concepts behind the SPUFEM approach. In Sec-85

tion 2.1, the relevant flow problem based on the non-conservative and incompressible form86

of the Navier-Stokes equation is defined. Subsequently, we briefly review the standard87

FEM formulation in Section 2.2 and the cG(1)cG(1) stabilized formulation (SFEM) in88

Section 2.3. Finally, the standard PUFEM and cG(1)cG(1)-based SPUFEM formulations89

are described analogously in Section 2.4.90

3

2.1. The Navier-Stokes flow problem91

Let Ω ∈ Rd, for d ∈ {2, 3}, represent the problem domain bounded by a surface
Γ. The boundary can be split into two non-overlapping patches ΓD and ΓN , where Γ =
ΓD∪ΓN . Here, ΓD and ΓN represent the regions of the boundary associated with Dirichlet
and Neumann boundary conditions, respectively. In anticipation of the PUFEM and
SPUFEM problems, let us distinguish Γo ⊂ ΓD, a portion of the boundary corresponding
to the surface of a submerged obstacle, where no-slip conditions are generally applied,
see Fig. 1. We also introduce a finite time interval I = [0, T] over which the flow is
observed. Thus, the NSE-based problem may be presented as follows: find the unknown
velocity and pressure fields (v, p) which satisfy

ρ
∂v

∂t
+ ρv · ∇v−∇ · σ(v, p) = 0 in Ω× I, (1a)

∇ · v = 0 in Ω× I, (1b)

v(·, 0) = u0 in Ω, (1c)

v = uD on ΓD × I, (1d)

σ · n̂ = tN on ΓN × I, (1e)

where ρ is the density parameter, σ = µ(∇v + ∇vT) − pId denotes the Cauchy stress92

tensor, and µ is the dynamic viscosity. Furthermore, fields u0, uD and tN are used to93

impose the initial condition as well as the Dirichlet and Neumman boundary conditions,94

respectively.95

2.2. The standard FEM formulation96

In anticipation of the outline for the standard FEM formulation, we first introduce:97

Ωh, see Fig. 1, a discrete representation of the domain, Γh = ΓhD ∪ ΓhN , the boundary of98

Ωh, and T h = {en}Nn=1, the set of all non-overlapping simplex elements comprising the99

FEM grid. Similarly, we define a discretization of the time interval defined by Nt + 1100

equidistant time points, denoted as 0 = t0 < t1 < . . . < tNt = T .101

To satisfy the discrete LBB-stability condition, we chose to construct the finite ele-
ment solution using simplex-based P2−P1 Taylor-Hood elements. [36] Thus, the resulting
discrete velocity and pressure function space can be written as

Vh =
[
S2(T h)

]d
and Wh = S1(T h),

respectively, where Sk(T h) is used to denote the function space comprised of piece-wise102

polynomial functions of order k supported by the element set T h:103

Sk(T h) =
{
f : Ωh → R | f ∈ C0(Ωh) and f |e ∈ Pk(e) ∀e ∈ T h

}
. (2)

Incorporating Dirichlet homogeneous boundary conditions, we obtain the velocity test
and trial function spaces

Vh
D =

{
v ∈ Vh | v = πh(uD) on ΓhD

}
, (3)

Vh
0 =

{
v ∈ Vh | v = 0 on ΓhD

}
, (4)

4

where πh(uD) is an appropriate discrete representation of the Dirichlet condition field.104

Finally, using the implicit θ-step discretization scheme [37], the discrete weak problem
for a given time step n may be written as follows: find (vn+1

h , pn+1
h) ∈ Vh

D × Wh such

that, for all (wh, qq) ∈ Vh
0 ×Wh, we satisfy:

R(vn+1
h ; pn+1

h ;wh; qh) :=

∫
Ωh

ρ

[
vn+1
h − vnh

∆t
+ vn+θh · ∇vn+θh

]
·wh dV

+

∫
Ωh

σ(vn+θh , pn+1
h) : ∇wh + qh∇ · vn+θh dV

−
∫
ΓN,h

tN,h ·wh dA = 0. (5)

Here, θ = 0.5 is used to denote a fractional time step, such that vn+θ = θvn+1+(1−θ)vn.105

2.3. The boundary fitted cG(1)cG(1) formulation (SFEM)106

Here, we consider the case of the single mesh approach, SFEM, and base the solution107

discretization on equal order P1 − P1 elements. In accordance to this, we redefine the108

discrete velocity space as:109

Ṽh
=

[
S1(T h)

]d
.

Furthermore, through analogy to Eq. 3 and 4, we use Ṽh

D and Ṽh

0 to denote the sub-110

spaces of Ṽh
which incorporate the inhomogeneous and homogeneous Dirichlet boundary111

conditions, respectively.112

Using the same time discretization scheme as in Section 2.2, the discrete weak formu-113

lation of the flow problem for a given time step n becomes: find (vn+1
h , pn+1

h) ∈ Ṽh

D×Wh
114

such that for all (wh, qh) ∈ Ṽh

0 ×Wh:115

R̃(vn+1
h ; pn+1

h ;wh; qh) := R(vn+1
h ; pn+1

h ;wh; qh) + SDδ(v
n+1
h ; pn+1

h ;wh; qh) = 0, (6)

where R denotes the non-stabilized residual operator introduced in Eq. 5, and SDδ

represents the set of stabilization terms used to augment the residual as given in [28]:

SDδ(v
n+1
h ; pn+1

h ;wh; qh) =

∫
Ωh

δ1(v
n+θ
h · ∇vn+θh) · (vn+θh · ∇wh +∇qh) dV

+

∫
Ωh

δ2(∇ · vn+θh)(∇ ·wh) dV

+

∫
Ωh

δ3∇pn+1
h · (vn+θh · ∇wh +∇qh) dV. (7)

Here, the first and last term of the equation, when added, are equivalent to the sum-116

mation of the well-known SUPG and PSPG stabilization [26, 27], with the viscous term117

assumed to be zero due to the linear representation of the velocity field and time deriva-118

tive considered to be negligible. Furthermore, the second term represents a least-square119

stabilization of the incompressibility constraint [38], also known as grad-div stabiliza-120

tion [39]. The stabilization parameters used to scale these terms are defined as:121

δ1 =
ρh

vmax
, δ2 = ρhvmax, and δ3 =

h

vmax
, (8)

5

where vmax is user-defined, representing the maximum expected velocity, and h is a122

discontinuous piece-wise constant function measuring the size of the local element.123

2.4. The standard PUFEM and SPUFEM formulations124

Standard PUFEM formulation: Following the problem setup introduced by us125

in [23], we now pose the Navier-Stokes flow problem in the PUFEM weak form based126

on inf-sup stable elements. To do so, we first represent the discrete domain Ωh using127

the overlapping sub-domains, Ωhb and Ωhe , which we shall refer to as the background and128

embedded sub-domains. Associate with these, we also introduce the T h
b and T h

e , the sets129

of non-overlapping simplex elements used to represent their respective grids. These grids130

are built to satisfy the following requirements: (1) Ωh ⊂ Ωhb , such that any immersed131

surface or volume-occupying body is contained within Ωhb , and (2) Ωhe ⊂ Ωh, enveloping132

the immersed obstacle, see Fig. 1. The latter domain also presents two boundary regions:133

one being Γho ⊂ ΓhD, the surface of the obstacle, and the other being Γhff , the non-134

conforming interface between the two fluid grids.135

In the case of problems set in Eulerian reference frames, the PUFEM weak formulation
does not differ significantly from the standard FEM one, with the important exception
of the solution spaces. The global solution spaces are defined as weighted sums of local
solution spaces, with the latter resembling the classic FEM examples. Thus, let V h and
Wh denote the PUFEM counterparts of Vh and Wh, respectively, and which can be
written as:

V h = (1− ψh)V h
b + ψhV h

e , (9)

Wh = (1− ψh)Wh
b + ψhWh

e , (10)

where the local spaces are built using P2 − P1 elements such that:

V h
e =

[
S2(T h

e)
]d
, V h

b =
[
S2(T h

b)
]d
, Wh

e = S1(T h
e), Wh

b = S1(T h
b).

Here, the discrete weighting field, ψh ∈ Wh
e , ψ

h : Ωhe → [0, 1], is built a priori with the
condition that ψh = 0 on Γhff . To simplify notation, we assume that both ψh and the

other embedded fields have their support limited to Ωhe , but can be artificially extended
in Ωh\Ωhe by setting their values to null. Here, the polynomial representation of ψh

is limited to piecewise linear in order to reduce the cost of PUFEM field integration.
Furthermore, while the function can take any shape in theory, in practice this is limited
to a transition from 0 to 1 within one layer of embedded elements. This has the effect
of a quick transition from a solution dominated by the background component to one
dominated by the embedded which in turn limits to a minimum the area of the problem
domain were PUFEM integration is necessary, leading to further cuts in computational
costs. We shall refer to the transition and constant areas of the embedded grid as

Ωhe,ψ =
{
x ∈ Ωhe : ∇ψh(x) ̸= 0

}
and Ωhe,1 =

{
x ∈ Ωhe : ψ(x) = 1

}
,

respectively, see Fig. 2. Associated with each sub-domain, we have two element subsets136

T h
e,ψ and T h

e,1, such that T h
e = T h

e,ψ ∪ T h
e,1 and T h

e,ψ ∩ T h
e,1 = ∅. Distinguishing between137

the two types of embedded elements can be achieved by exploiting the fact that ψh is138

6

supported by a piecewise linear field, evaluating the field at the centroid of each element139

and comparing this value to a threshold tolerance.140

To guarantee solution uniqueness, it is crucial to recognise that some of the back-
ground grid’s degrees of freedom do not impact the fluid solution on Ωh and hence can
take any value. For that to be the case, it is sufficient to show that the DOF’s associated
shape function (ϕ) satisfies the following:

supp(ϕ) ⊆ Ωhe,1 ∪ (Ωhb \Ωh), (11)

i.e. the support of the shape function is found completely within the area covered by the
solid or the area where the weight function is zero. Hence, to avoid this ambiguity, such
degrees of freedom are deactivated, i.e. by being set to equal zero. In addition, for the
specific case of nodal basis functions, if a background element is entirely covered by the
overlapping domain, Ωhe , then all its DOFs will be fixed such that:

(vn+1
b,h − vn+1

e,h)|x = 0 for vn+1
b,h ∈ V h

b and vn+1
e,h ∈ V h

e , (12a)

(pn+1
b,h − pn+1

e,h)|x = 0 for pn+1
b,h ∈Wh

b and pn+1
e,h ∈Wh

e , (12b)

where x denotes the nodal coordinate, vn+1
b,h and pn+1

b,h represent the background compo-

nents of the velocity and pressure fields, and vn+1
e,h and pn+1

e,h denote the corresponding
embedded components. A more detailed presentation of the method for selection for
deactivated and fixed nodes is presented in Section 3. Similarly to the single mesh
formulation, V h

D and V h
0 are used to denote sub-spaces of V h which incorporate inho-

mogeneous and homogeneous Dirichlet boundary conditions, respectively. Consequently,
the standard PUFEM formulation of the problem may be expressed as follows: find
(vn+1
h ,pn+1

h) ∈ V h
D ×Wh

0 such that for all (wh, qh) ∈ V h
0 ×Wh

0 we satisfy

R(vn+1
h ; pn+1

h ;wh; qh) = 0, (13)

subject to node fixing and node deactivation as described above. Here, R is the same141

NSE residual operator used in Eq. 5.142

Stabilized formulation: In order to arrive at the stabilized PUFEM (SPUFEM)
formulation, we adapt the cG(1)cG(1) scheme reviewed in Section 2.3 to the partition of
unity framework. To do so, we start by redefining the velocity functions space using a
piecewise linear representation:

Ṽ
h
= (1− ψh)Ṽ

h

b + ψhṼ
h

e ,

where Ṽ
h

e =
[
S1(T h

e)
]
and Ṽ

h

b =
[
S1(T h

b)
]
. We also extend the concept of node143

deactivation (based on the criterion defined in Eq. 11) and node fixing given as:144

(vn+1
b,h − vn+1

e,h)|x = 0 for vn+1
b,h ∈ Ṽ

h

b and vn+1
e,h ∈ Ṽ

h

e , (14)

for x corresponding to the set of nodes belonging to background elements which are145

fully overlapped and which also intersect with Ωhe,ψ. Furthermore, using the definition146

of Ṽ
h
, corresponding spaces incorporating the Dirichlet and homogeneous boundary are147

introduced and are referred to as Ṽ
h

D and Ṽ
h

0 , respectively.148

7

As the original cG(1)cG(1) stabilization parameters, see Eq. 8, are dependent on the149

grid size, a heuristic approach is taken in order to replicate this process in the two-grid150

system introduced by PUFEM. Thus, considering hb : Ω
h
b → R+ and he : Ω

h
e → R+, two151

discontinuous piecewise constant fields equal to the size of the local element, we introduce152

a unified element measure, ĥ : Ωhb → R+, defined as follows:153

ĥ =

hb on Ωhb \Ωhe
he on Ωhe,1
max(he, hb) on Ωhe,ψ.

(15)

Subsequently, the SPUFEM parameters are re-evaluated based on Eq. 8, using ĥ instead154

of h, and denoted as δ̂ to distinguish them from the SFEM case. The argument be-155

hind this definition is to allow the SPUFEM weak form to revert to the classic SFEM156

formulation outside of Ωhe,ψ.157

Having redefined the velocity space and the element size function, the SPUFEM weak

form problem reads: find (vn+1
h ,pn+1

h) ∈ Ṽ
h

D ×Wh such that

R(vn+1
h ; pn+1h ;wh; qh) + SDδ̂(v

n+1
h ; pn+1

h ;wh; qh) = 0 ∀(w, q) ∈ Ṽ
h

0 ×Wh, (16)

and subject to pre-defined deactivation and fixing of background grid nodes.158

3. PUFEM/SPUFEM implementation159

While the (S)PUFEM1 formulation does not change the abstract weak form equation,160

instead modifying the solution and test function spaces, its main implementation chal-161

lenge arises from the need to be able to: (a) compute weak form contributions combining162

fields supported by non-conforming grids, (b) compute mixed (S)FEM and (S)PUFEM163

contributions over background elements which intersect Γhff (which we shall refer to164

as cut background elements) and (c) identify the sets of background nodes which are165

needed to be fixed and the corresponding embedded elements required to perform this166

procedure. Here, by cut-background elements (or cut-elements) we mean elements which167

intersect the overlap area, but are not completely immersed, and hence according to our168

earlier definitions, have both standard and (S)PUFEM weak form contributions. Such169

challenges are not unique to our approach, but have been encountered and addressed in170

a number of other applications including XFEM, CutFEM and Galerkin projections over171

non-conforming grids [11, 40, 35].172

In this section, we review the (S)PUFEM problem assembly procedure in general and173

we use this to identify the key required geometric computations. Further, we discuss the174

integration of the SUPERMESH library [35] functions to perform these computations175

efficiently and to expand the application of the method to 3D fixed grid problems.176

1Here, (S)PUFEM is used to denote both PUFEM and SPUFEM approaches as all of the implemen-
tation topics apply to both version of the solver. However, it should be noted that all subsequent testing
of their impact on run time focuses exclusively on the latter.

8

3.1. (S)PUFEM assembly177

The general (S)PUFEM problem can be broken down into three sub-problems with
distinct assembly loops: two standard (S)FEM flow sub-problems computed on portions
of the embedded and background grids and a third (S)PUFEM coupling sub-problem,
which requires a non-standard implementation. Here, by (S)FEM sub-problem, we refer
to a region of the domain for which the assembly is by all means identical to the standard
scheme, whether FEM or SFEM. To illustrate these, let us consider the task of computing
the inner product of the functions vh,wh ∈ V h:

⟨vh,wh⟩ =
∫
Ωh

vh ·whdΩ

=

∫
Ωh

[
(1− ψh)vhb + ψhvhe

]
·
[
(1− ψh)wh

b + ψhwh
e

]
dΩ. (17)

By using our knowledge on the behaviour of ψh and its relation to the problem’s sub-
domains, we can rewrite this operation as a sum of three terms:

⟨vh,wh⟩ =
∫
Ωh\Ωhe

vhb ·wh
b dΩ+

∫
Ωhe,1

vhe ·wh
edΩ+

+

∫
Ωhe,ψ

[
(1− ψh)vhb + ψhvhe

]
·
[
(1− ψh)wh

b + ψhwh
e

]
dΩ. (18)

We can identify now the first of the standard sub-problem, namely the assembly as-178

sociated with the second term of Eq. 18 which can be completed by looping over T h
e,1179

and which only requires access to fields represented on the embedded grid. In contrast,180

the first term requires access only to the background grid but cannot be assembled us-181

ing standard (S)FEM procedures due to the need to integrate over cut-elements in the182

background grid. The third term on the hand requires access to both background and183

embedded fields.184

In order to explain the computations involving the background field, it is useful to
split T h

b into four non-intersecting sub-sets, see Fig. 4, encompassing elements which are
(1) completely outside of the overlap (T h

b,b), (2) partially overlapped (T h
b,c), (3) completely

overlapped but not weighted-out (T h
b,d), and (4) completely weighted out and crossing

into the area of the immersed solid (T h
b,e):

T h
b,b =

{
τ ∈ T h

b | τ ∩ Ωhe = ∅
}
, (19)

T h
b,c =

{
τ ∈ T h

b | τ ∩ Ωhe ̸= ∅ and τ ̸⊂ Ωhe
}
, (20)

T h
b,d =

{
τ ∈ T h

b | τ ⊂ Ωhe and τ ̸⊂ Ωhe,1
}
, (21)

T h
b,e =

{
τ ∈ T h

b | τ ⊂ (Ωhe,1 ∪ Ωhb \Ωh)
}
. (22)

To these sets we associate sub-domains of Ωhb , referred to using the notation Ωhb,k, for185

k ∈ {b, . . . , e}.186

Using these definitions, we first note that elements belonging T h
b,e and T h

b,d can be187

skipped from any Galerkin-type assembly procedure. This is true for the latter because188

all of its elements are weighted out and for the later because it coincides with the set189

9

of elements assigned to have its degrees of freedom fixed, and hence any weak form190

contribution would be overwritten in the process. Furthermore, we can partially complete191

the process of assembling the first term in Eq. 18 by introducing the second standard192

(S)FEM sub-problem, looping over T h
b,d and computing the weak form over Ωhb,b, which193

is a sub-domain of Ωh\Ωhe . At this stage, we are left with two challenges: (1) computing194

the contribution over the area/volume covered by the cut background elements (outside195

of the overlap) and (2) computing the contributions over Ωhe,ψ, neither of which can be196

done using standard (S)FEM procedures. A common strategy applied in literature to197

handle (1) is to compute the weak form directly over polygon/polyhedron resulting from198

subtracting the area/volume found inside the overlap from the cut-element [11, 41, 10,199

40]. Instead, here we opt to first compute a standard weak form over T h
b,c, effectively200

adding the sub-set to the second (S)FEM sub-problem, and subsequently subtracting the201

redundant contribution from the area/volume inside the overlap. We chose this approach202

as it can be done at the same time as the (S)PUFEM contribution over Ωhe,ψ is added203

in and it avoids the need to compute contributions directly over complex, potentially204

non-convex sub-elements.205

To address this dual challenge, we employ the SUPERMESH library to construct an206

interface grid, see Fig. 4. This tertiary topology itself can be split into two components207

depending on the computations which are required of it, either adding the (S)PUFEM208

contribution or subtracting the redundant cut-element contribution or both. The first of209

these, marked with red in Fig. 4, we denote as T h
i,1 and define as:210

T h
i,1 =

{
τi | ∃τe ∈ T h

e,ψ and τb ∈ T h
b , τi ⊂ τe and τi ⊂ τb

}
. (23)

Thus, T h
i,1 is a re-triangulation of Ωhe,ψ which is conforming to both background and211

embedded grids. Using appropriate mapping procedure, this sub-set of the interface grid212

if sufficient to complete the assembly of the third term of Eq. 18. However, this set is213

generally insufficient to complete the process of subtracting the redundant contribution214

over the cut background elements. This is for example the case when there are elements215

in T h
b,c which intersect with Ωhe,1. To account for this, we introduce a second sub-set of216

the intersection grid marked with green in Fig. 4 and denoted T h
i,2:217

T h
i,2 =

{
τi | ∃τb ∈ T h

b,c and τe ∈ T h
e,1, τi ⊂ τb and τi ⊂ τe

}
. (24)

Based on these definitions, the (S)PUFEM assembly process can be summarized using218

the following steps:219

• a standard FEM loop over T h
b,b ∪ T h

b,c220

• a second FEM loop over T h
e,1 to compute the so-called embedded problem221

• a third, non-standard, loop over T h
i,1 ∪ T h

i,2 with a dual purpose:222

– compute the partition of unity inner product over Ωhe,ψ if the embedded grid223

parent of the intersection element is in T h
e,ψ224

– subtract the excess
∫
Ωhb,c

vhb ·wh
b dΩ if the background grid parent of the inter-225

section element is in T h
b,c.226

10

3.2. (S)PUFEM interface generation227

The process of generating the interface grid for fixed meshes is carried out prior to228

the main simulation and it involves two main procedures: (1) background and embedded229

element collision detection and (2) the triangulation of the overlapping area for each230

background-embedded overlapping element pair.231

Collision detection: The confirmation of the intersection detection between two232

simplexes by computing the intersection polygon/polyhedron is an expensive process.233

Furthermore, using a naive collision search approach where each background and embed-234

ded pair of elements is tested individually for intersection is impractical for large mesh235

sets, as it scales like O(|T h
b | · |T h

e |). To avoid prohibitive costs for large mesh sets, we236

instead make use of the quad- (2D) and oct-tree (3D) search routines provided in the237

SUPERMESH library [35]. These routines use the background grid to generate a hier-238

archical bounding box tree. Looping through the list of embedded elements, a surrogate239

cheaper collision test is performed by comparing the element’s bounding box with those240

on a given level of the tree, allowing for a quick traversal. The output is a separate list241

for each embedded element providing the background element ID’s of all potential colli-242

sion candidates in the background grid, thus limiting the number of actual intersection243

verification tests that need to be carried out. In comparison to the naive approach, the244

cost of running the quad/oct-tree scales as (|T h
b |+ |T h

e)| log(|T h
b |).245

Intersection construction: The SUPERMESH library is also used in computing246

the intersection of two simplexes and the generation of local interface triangulations. The247

library provides two distinct approaches for carrying out these calculations: one based248

on the Southerland-Hodgman (SH) clipping algorithm for the 2D case and one based249

on Eberley’s approach (EA) for the 3D case, illustrated in Fig. 3. The main distinctive250

characteristic is that while SH first computes the intersection and then generates a tri-251

angulation, EA performs the two tasks concomitantly. In EA, like in SH, simplex A is252

clipped using the faces of simplex B. However, while SH completes this process and then253

generates a mesh, EA triangulates the resulting polytope after each clipping, a process254

which is applied recursively. The main drawback of EA is that it tends to generate more255

intersection elements. To investigate how this might impact the 3D simulation run-time,256

we implemented an appropriate extension of the SH algorithm. Here, once the convex257

polytope is generated, the implementation uses an ad hoc triangulation based on the258

ear-clipping algorithm:259

1. we select one node to represent the common apex of all tetrahedrons;260

2. the faces opposing this node, which are also convex, are meshed using ear-clipping;261

3. edges are drawn between the apex node and the face triangles to complete the262

triangulation process.263

In our implementation both collision detection and interface construction play a role264

in the identification of topology subsets as described in Section 3.1. Hence, to generate265

T h
i,1, we loop through the elements of The,ψ plus their lists of background element collision266

candidates and perform the intersection computations described above. Next, to generate267

T h
i,2, we loop through The,1, but limit the intersection construction to background elements268

which have already been shown to intersect Ωhe,ψ, i.e. T h
b,c ∪ T h

b,d. To cut grid generation269

costs, both T h
i,1 and T h

i,2 are discontinuous by construction, i.e. all the nodes associated270

with an element are unique to it. We can then distinguish between T h
b,c and T h

b,d by271

11

comparing the elements’ volume with the total occupied by its ”children”. The elements272

of T h
b,e can be identified by satisfying the condition that all its vertices are found within273

Ωhe,1. To add the background elements found within the submerged obstacle into T h
b,e,274

in this work we used an ad hoc process of creating a volume grid for the obstacle and275

temporarily adding these new elements into the embedded grid. Once the intersection276

grid is generated, the obstacle grid is discarded.277

3.3. Sub-element weak form integration278

By avoiding the need to perform integrations directly over the cut elements, (S)PUFEM279

computations can be performed using standard quadrature schemes, which are mapped280

on to the interface grids. However, the accuracy required to compute standard element281

contributions over T h
b,b and T h

e,ψ is different than that of weighted-sum contributions over282

T h
i,1. For comparison, a standard FEM implementation of NSE based on P2 − P1 ele-283

ments, requires a quadrature scheme that is accurate for up to fifth order polynomials.284

Furthermore, an SFEM implementation based on P1 − P1 elements can avoid numerical285

integrations almost entirely by levaraging the invariance of the element mass matrix and286

the fact that the field gradients are piece-wise constants.287

In the case of (S)PUFEM, the polynomial order of a partition of unity field is equal to288

that of the local field plus that of the weighting field. Assuming a linear representation of289

the weighting field, this raises accuracy requirements to order eight, in the case P2 − P1
290

PUFEM, and six in the case of P1 − P1 SPUFEM, hence further raising the cost of291

computing the contribution of a partition of unity (intersection) sub-element.292

With the goal of reducing this effect, we will also investigate the use of sub-optimal293

schemes for the running of the SPUFEM implementation, i.e. schemes of accuracy order294

less than six. The rationale behind this is based on the following observations:295

1. The background and embedded solution fields are not independent of each other,296

hence the second order behaviour of these functions may be much smaller in scale297

than the linear.298

2. When integrating over a SPUFEM sub-element, all fields are only evaluated over299

a subsection of their parent element, meaning that a linear approximation of their300

local behavior may be sufficiently accurate in practice.301

3.4. CHeart implementation and parallelization302

The stabilized method described above has been integrated into CHeart [42], our303

in-house multiphysics computational modelling software, coded as a parallel application304

using the MPI framework.305

Load balancing: To achieve good load balancing and minimize communication306

overhead, CHeart’s topology decomposition strategy is based on an optimal graph par-307

titioning strategy [43]. Briefly, the algorithm associates with each element a node. The308

nodes are linked by a set of edges if the associated elements belong to the same topology309

and are adjacent, or if the elements are related through an interface mapping, in the case310

of different topologies. The algorithm seeks to split the graph into N partitions, N being311

the number of processors, while minimizing the number of edge cuts. However, in order312

to account for variations in cost per element between topologies, as seen in multiphysics313

problems, each node also has an associated weight, based on the cost of assembling the314

element mass matrix.315

12

In the case of a (S)PUFEM based system, the graph node set is generated based on the316

elements in T h
b , T h

e and T h
i = T h

i,1 ∪ T h
i,2. The graph edge set is formed of intra-topology317

edges (generated based on the element adjacency in the T h
b and T h

e) and inter-topology318

edges (where every element of T h
i is linked with one background and one embedded par-319

ent). When considering the element cost associated with partitioning, we remark that T h
i320

only acts as an interface and hence has no problem-driven requirement for a specific basis321

function setup. Hence, we generally associate with it a nominal linear basis function set.322

In the case of an (S)PUFEM problem, the resulting default ratio between the weighting323

associated with the intersection sub-elements and the standard background/embedded324

elements is thus given by the ratio between the number of quadrature nodes employed325

by each type. Note however, that this cost model does not account for differences related326

to: (1) a more costly evaluation of solution fields in the case of SPUFEM, and (2) the327

ability of the standard SFEM implementation to practically avoid the need of numerical328

integration. This issue will be further investigated in the Numerical Results section,329

where an additional cost scaling parameter is introduced to provide a tuning option.330

Interface mapping cache: To enable the transfer of information from one grid331

to another, the original CHeart implementation permanently stored only a minimum332

amount of information, limited only to the mapping of nested element’s nodes onto the333

master element space of the host element. In practice, this meant that each assembly loop334

based on a nested topology (i.e. T h
i) would require an on the fly mapping of the basis335

functions and their derivatives for all host topologies involved in the respective problem336

(i.e. T h
b and T h

e). Hence, in order to speed up (S)PUFEM sub-problem assemblies, we337

implemented a new interface cache list type, which allows for the option to store these338

mappings for quick access.339

3.5. Solver strategy340

In CHeart, the non-linear systems represented by Eq. 7 and 16 are solved using the341

Shamanskii-Newton-Raphson method [44, 37]. This approach allows for the reuse of the342

Jacobian matrix and its inverse for multiple fixed-point iterations, as long as the norm of343

the residual decreases by a desired amount, resulting in a decrease of the computational344

cost. Furthermore, the matrix inverse and solution updates are computed using the345

direct solver MUMPS [45].346

4. Numerical Results347

The numerical results presented in this section focus on two primary goals: (1) eval-348

uating the solution accuracy of new SPUFEM flow solver, comparing it with the more349

standard SFEM approach, and (2) the assessment of its efficiency in terms of run-time350

for different implementation and problem setup options defined in Section 3. In partic-351

ular, we present three transient flow test cases: two examples in 2D, one with viscous352

dominated regime and the other for moderately high Reynolds numbers, and a viscous353

dominated 3D benchmark problem. (Furthermore, in Appendix Appendix A, these re-354

sults are complemented with an analysis of the impact of the embedded mesh size in the355

case of a 2D benchmark problem.) These tests where carried on two clusters: ORCA for356

the 2D simulations and TOM for 3D, see Tab. 1.357

13

4.1. 2D Unsteady Turek test358

To compare the accuracy of both SPUFEM and boundary fitted SFEM implemen-359

tations, we first considered the classic Schäfer and Turek benchmark [46], specifically,360

the 2D-2 transient test for Re = 100. The numerical experiment was run on 5 levels of361

refinement, where an increase in level is equivalent to the halving of the average element362

size. For each level, we constructed three grids (i.e. boundary fitted, background and363

embedded) of comparable quasi-homogeneous resolution in order to allow for an easier364

comparison. See Fig. 5 for a visual representation of the grid setup and Tab. 2 for a break365

down of the mesh statistics and number of cores applied in each level. The simulations366

were run for a total of 10 in-simulation non-dimensional time units, split into 1000 time367

steps of 0.01 time unit duration. The average inflow velocity was increased linearly in368

the first 20 time steps, after which it was kept fixed in time. For the integration over the369

interface element, we used as a sixth order accurate Lyness triangle quadrature scheme.370

Furthermore, the interface cache storing was not applied.371

Four parameters were computed to help quantify solutions accuracy: the coefficients
of drag (cD) and lift (cL), the pressure drop across the cylinder (∆p) and the Strouhal
number (St). The estimations are based on the following parameter definitions:

cD =
2Fx
ρv̄2A

, cL =
2Fy
ρv̄2A

, St =
fA

v̄
,

∆p = p(0.15, 0.2)− p(0.25, 0.2), (25)

where Fx and Fy are the net forces drag and lift acting on the obstacle, v̄ is the av-372

erage inflow velocity, A is the obstacle’s cross sectional area perpendicular to the main373

flow direction (here A coincides with the diameter) and f is the wake shedding frequency374

(here computed as the inverse of the cL oscillation period). The compilation of estimated375

values of cD, cL and ∆p can be found in Tables 3 and 4. The parameter estimations are376

generally comparable, particularly in the case of higher resolutions where the absolute377

error between approaches is smaller than 1%. Furthermore, these values appear to con-378

verge to the literature values [46, 47], although the rate appears to be arguably slower379

for cL. For level 2 through 5, both methods estimated the Strouhal number at 0.2941,380

slightly below the literature interval of 0.2950 to 0.3050, but acceptable given the relative381

coarseness of temporal discretization. Conversely, in the case of level 1 mesh refinement,382

neither approach displayed vortex shedding. A good agreement between the two meth-383

ods can also be observed qualitatively, see Fig. 6. The SPUFEM solution appears to be384

smooth, with no artifacts in the coupling region, and the main characteristics of the flow,385

such as the recirculation area and the wake, display similar features for comparable grid386

resolutions.387

The total simulation run times for the two approaches are compiled in Table 4. The388

results indicate that while the SPUFEM approach can be relatively expensive to run for389

coarse mesh levels, showing an approx. 97% higher run time for the coarsest level, the390

discrepancies between the two diminishes with refinement. The most probable expla-391

nation for this phenomenon is that as the refinement level increases the proportion of392

interface elements decreases, see Tab. 2, thus making the relative cost of the SPUFEM393

sub-problem smaller.394

14

4.2. 2D high Reynolds number flow around obstacle test395

To extend the comparison between the SFEM and SPUFEM approaches for more396

practical flow regimes, we adapt the benchmark problem presented in Section 4.1 as397

follows. The lateral wall boundary conditions are changed from no-slip to a zero normal398

component only. At the inflow, we impose a constant profile which increases linearly in399

the first 0.2 seconds of in-simulation time from null to [30; 0] m/s. From this point, the400

simulation continues for another 0.3 seconds with constant inflow conditions such that401

a periodic steady state wake shedding pattern is achieved. With density and viscosity402

parameters set to 1.0 kg/m
3
and 10−3 Pa · s, and an obstacle size of 0.1 m, we obtain403

an approximate Re = 3000 flow regime. To run the simulations, we consider the same404

grids as Section 4.1, but limit the refinement level to two and above due to the relative405

coarseness of the first level. Furthermore, a constant time step size of 10−4 seconds was406

employed in all simulations.407

In Figure 7, we display the solution fields obtained using both SPUFEM and SFEM408

approaches, at time points enumerated in Table 5. Note, at this higher Reynolds number409

regime, we were able to capture more complex flow features, specifically the fact that410

the wake bends periodically towards one wall or the other. However, we weren’t able to411

match this behaviour with any specific feature in the transient behaviour of either cD and412

cL, shown in Figure 8 for the time interval [4.0, 5.0] seconds. For this reason, the frames413

in Figure 7 where chosen on the basis that at the corresponding in-simulation time point414

the measured cL is a local maximum and that wake is bent towards the right wall. In415

both Figures 7 and 8, we can see that the relative comparability of the two methods (for416

similar grid resolution) shows no significant deterioration as a result of changing the flow417

regime. The phase shift in the latter, can largely be explained by the fact that the onset418

of vertex shedding is not identical for the two method, with some delay observed in the419

case of SPUFEM.420

4.3. 3D Unsteady Turek test421

In this section, we extended the accuracy comparison between the SFEM and SPUFEM422

methods to transient 3D flow. Here, the numerical experiment takes the form of the423

3D-3Z benchmark problem developed by Schäfer and Turek [46], and shares a similar424

characteristics to the simulations in Section 4.1. The domain consists of a rectangular425

channel of dimensions 2.5 m × 0.41 m × 0.41 m, with a cylindrical end-to-end obstacle426

of diameter D = 0.1 m placed along the (x, y) = (0.5 m, 0.2 m) axis, near the inflow427

surface. The inflow boundary condition is described by the function:428

vinflow(y, z, t) = 16Vmaxyz(H − y)(H − z) sin(πt/8)/H2, (26)

where H = 0.41 m and Vmax = 2.25 m/s. The flow is observed over the I = [0, 8] seconds429

time interval, the equivalent of one pulse. Furthermore, the viscosity and density are set430

to 10−3 Pa · s and 1 kg/m
3
, resulting in a Reynolds number varying between 0 and 100.431

For the two methods, we consider two equivalent levels of spatio-temporal discretiza-432

tion, see Tab. 6 for the statistics and number of cores used and Fig. 5 for an illustration433

of the mesh setup. To try to minimize the effect of geometric errors on the computation434

of the coefficient of lift, the grids were built such that they are quasi-symmetric with435

respect to the z = 0.2 plane, where the top half is slightly stretched above the obstacle436

to reach the appropriate height. In the case of SPUFEM, the intersection grids were437

15

generated using the Sutherland-Hodgman approach. The numerical integrations are per-438

formed using the Keast quadrature scheme for integrations accurate for polynomials up439

to order 6.440

In Fig. 9, we show that the numerical solutions obtained using the two methods are441

comparable for both velocity and pressure. In order to obtain a qualitative assessment,442

we again computed the coefficients of drag and lift as defined in Eq. 25, adjusting the443

cross sectional area to A = DH. In Figure 10, we plot the evolution in time of the two444

parameters. In the case of the coefficient of drag, the discrepancy between the methods445

are relatively small, with a relative difference of peak cD estimations of 1.8% for Level446

1 and 0.8% for Level 2. With respect to the benchmark values, the relative errors of447

the SPUFEM estimates were 14.7% and 2.5%. In the case of the coefficient of lift, the448

inter-method errors and the errors with respect to the benchmark are generally higher449

than 10%. We believe that the main reason for this is the fact that cD >> cL, meaning450

that the refinement errors are more likely to impact accuracy. However, despite these451

errors, some of the features of the cL curve are retained in all simulations.452

4.4. 3D Unsteady Turek: Efficiency and problem setup tests453

In this section we examine the impact on the code efficiency of the different imple-454

mentation and problem options described in Section 3. Briefly, these are:455

1. the use/absence of an interface mapping cache, denoted as U.C. and N.C., respec-456

tively457

2. the interface triangulation algorithm, i.e. either Eberley’s (E.) or Sutherland-458

Hodgman approaches (S.H.)459

3. the lower order quadrature scheme, and460

4. the partition weighting of the PUFEM sub-problem elements.461

Here, we focus on the impact on the residual assembly time and MPI waiting time,462

two important metrics of solver efficiency, and also the primary targets of the options463

listed above. For reference, we also report the total run time, which includes the time464

used by the direct solver. However, the efficiency of the matrix solver is only partly465

influenced by the element weighting and not at all by the other options. Thus, reducing466

its associated cost is a separate question that does not fall under the scope of this study.467

The options are tested in two stages, with the first stage focusing on options 1.468

(N.C. or U.C.) and 2. (E. or S.H.), using a quadrature scheme accurate for the469

integration of sixth order polynomials and a default intersection element weighting of470

one. Table 7 compiles the results for both 3D refinement levels using three different471

option permutations, namely: N.C.+E., U.C.+E. and U.C.+S.H., with the SFEM472

results added for reference. Comparing the N.C.+E. and U.C.+E., we see significant473

benefits from using the cache, with marked time drops observed across almost all five474

metrics. These improvements are particularly noticeable in the case of the first level of475

refinement, where the total and average residual assembly times are almost halved, and476

the maximum MPI wait times and MPI wait time ratio are cut to almost a quarter of the477

original value. Here, the MPI wait time ratio denotes the ratio between the maximum and478

minimum times reported by the cores. The slight discrepancy between refinement levels,479

may be partially explained by the originally higher MPI ratio reported by the first level480

in the N.C.+E. case. Assuming the U.C. is always beneficial, we compare U.C.+E.481

16

and U.C. + S.H. Looking at the direct outputs of the approaches, i.e. the intersection482

grids, we notice a significant decrease in the number of elements: from 1.12M to 0.44M483

for the first level, and from 3.12M to 1.20M. Thus, while in the case of E. the interface484

grid represents approximately three quarters of the total number of elements, the ratio485

drops to almost a half for S.H.. In practice, this translates to a further reduction of the486

residual and MPI time by 2 to 4 times, in Tab. 7. In general, we see that these options487

have a significantly lower impact on the total run time observed for level 2 refinement.488

The principal explanation for this is that as the system size decreases, the higher the489

running cost MUMPS becomes as proportion of the total. Hence any impact of the two490

options is lower.491

In the second stage of testing we compare the impact of different partition weights492

and integration schemes, with the results compiled in Table 8. Here the 3D Turek493

benchmark is run on the coarser grid set in 16 different configurations, resulting from the494

permutation of 4 interface element weighting factors and 4 numerical integration schemes.495

The cache and S.H. options are also employed in all cases to reduce cost. The use of496

lower order quadrature schemes is motivated by the fact that they introduce negligible497

errors, with the relative L2 errors over time ranging between 10−9 and 10−12. Fixing the498

weighting at 1, we see that changing the quadrature can result in lower residual times,499

from 5.7k at order 6 to 2.8k at order 2. Significantly, the MPI wait time appears to vary500

non-monotonously while the MPI ratio generally increases when lowering the quadrature501

order. Thus, lowering the quadrature on its own is only partially beneficial as it can502

result in poorer load balancing. Conversely, by increasing the partition weighting of the503

SPUFEM sub-problem elements, we see a significant improvement of overall efficiency504

and load balancing with: (1) a reduction of the residual assembly times by almost a half505

and (2) bringing the MPI maximum wait time and ratio values to orders similar to those506

reported in the SFEM case. Note however, that the optimum combination of parameters507

varies across the 5 time metrics. This indicates that in order to consistently improve508

problem run times, we will need to have a better understanding of how SPUFEM affects509

the communication time and the linear algebra solver.510

5. Conclusion511

A new stabilized SPUFEM solver for moderate and high Reynolds number flows was512

presented, combining the partition of unity framework for domain decomposition with513

the cG(1)cG(1) stabilized scheme. Furthermore, we outlined a practical implementation514

extension of the method to 3D, including a number of avenues to improve the process of515

residual assembly: the use of a memory cache, the splitting strategy, the lower quadrature516

schemes and the tuning of the partition weighting for interface elements.517

SPUFEM’s effectiveness is shown to be comparable to that of SFEM in the case of518

three example problems, including both 2D and 3D standard Schaefer-Turek benchmarks,519

as well as a Re = 3000 adapted version of the same benchmark. These similarities are520

shown both in qualitative terms, with certain flow features appearing in the flow solutions521

for approximately matching grid resolution, as well as quantitatively. Thus, for the 2D522

and 3D problems, the estimated system parameters, such as the coefficient of drag, are523

shown to converge to the values available from literature. Similarly, in the case of the524

Re = 3000, SPUFEM is shown to closely follow the estimations of cd and cf offered525

17

by SFEM, both in terms of range and average values, as well as in terms of transient526

behaviour.527

Adapting the 2D Turek benchmark, SPUFEM is shown in Appendix A to be robust528

to changes in the width of the embedded grid. In particular, the results indicate that529

reducing the thickness of the grid to three or four element layers has a very limited530

impact on the quality and accuracy of the solution, while decreasing the number of531

total elements involved in the computations, particularly in the intersection grid. If this532

result is proven to hold for more general 3D cases and for different ratio of element533

size between the background and embedded grid, this practice may simplify the mesh534

generation process due to the increased flexibility and may also prove an effective means535

of reducing the cost of the problem.536

Using the 3D benchmark problem as study case, the four implementation options are537

shown to have a significant impact on improving the solver’s efficiency both in terms538

of reducing the residual assembly time as well as as improving load balancing across539

cores. These options are shown to be beneficial on their own, with the cache and lower540

quadrature schemes reducing the cost per element, the Sutherland-Hodgman algorithm541

reducing the number of elements, and the weighting parameter being used to account542

for discrepancies not captured by the standard CHeart average cost model. However,543

more significantly, the combination of these options are shown to have a synergistic544

effect, lowering the residual assembly time by an order of magnitude and improving545

the load balancing to levels comparable to the more standard SFEM approach. While546

the runtime of SPUFEM is still about 3 times larger than that of the classical stabilized547

approach, this case is not necessarily illustrative of some of the advantages of our method.548

Primarily, we believe that this cost may be offset by the greater flexibility of SPUFEM549

in the context of large deformation FSI problems, in which the use of standard boundary550

fitted approaches is either challenging or impractical. Secondly, the additional cost of551

the SPUFEM problem is application specific and it depends on both the relative surface552

area of the embedded object and on the volume of the embedded domain. The latter,553

as seen in Appendix A, may be significantly reduced without impacting the method’s554

accuracy.555

To further improve the cost effectiveness of (S)PUFEM, future work will need to556

focus on ways to lower the cost of inverting the Jacobian matrix, as highlighted by557

the 3D simulation with level 2 refinement. Potential avenues to address this include558

adapting (S)PUFEM into: (1) pressure segregated schemes, accompanied by a switch559

from direct to preconditioned iterative solvers, and (2) semi-implicit/explicit coupling560

schemes. Another avenue for extending this work will be to study the robustness of561

the method for different ratios of background and embedded element sizes and how this562

may be impacted by the choice of ψ, particularly looking into increasing the width of the563

transition band and/or increasing its polynomial order. Moving to more complex moving564

domains and FSI applications, the current implementation will also need to be able to565

handle time dependent overlap configurations and to be able to generate intersection grids566

on the fly, a scenario where one can expect that the (S)PUFEM specific operations that567

we sought to optimize in this paper will be a more dominant part of the computational568

cost.569

18

Acknowledgements570

D.N. acknowledges funding from the Engineering and Physical Sciences Research571

Council, United Kingdom (EP/N011554/1 and EP/R003866/1). A.M. gratefully ac-572

knowledges financial support from the Swedish Research Council under Starting Grant573

2017-05038 and from the Wenner-Gren foundation, Sweden under travel grant SSh2017-574

0013. JH acknowledges the financial support of the Swedish Research Council under575

Grant 2018-04854. This work is funded by the King’s College London and Imperial Col-576

lege London EPSRC Centre for Doctoral Training in Medical Imaging (EP/L015226/1).577

This work is supported by the Wellcome EPSRC Centre for Medical Engineering at578

King’s College London (WT 203148/Z/16/Z) and by the National Institute for Health579

Research (NIHR) Biomedical Research Centre award to Guy and St Thomas’ NHS Foun-580

dation Trust in partnership with King’s College London. The views expressed are those581

of the authors and not necessarily those of the NHS, the NIHR or the Department of582

Health.583

References584

[1] C. S. Peskin, Flow patterns around heart valves: a numerical method, Journal of computational585

physics 10 (2) (1972) 252–271.586

[2] L. Zhang, A. Gerstenberger, X. Wang, W. K. Liu, Immersed finite element method, Computer587

Methods in Applied Mechanics and Engineering 193 (21-22) (2004) 2051–2067.588

[3] L. Zhang, M. Gay, Immersed finite element method for fluid-structure interactions, J. Fluids Struct.589

23 (6) (2007) 839–857.590

[4] D. Boffi, L. Gastaldi, A finite element approach for the immersed boundary method, Comput.591

Struct. 81 (8) (2003) 491–501.592

[5] R. Glowinski, T.-W. Pan, J. Periaux, A fictitious domain method for Dirichlet problem and appli-593

cations, Computer Methods in Applied Mechanics and Engineering 111 (3-4) (1994) 283–303.594

[6] R. Glowinski, T.-W. Pan, T. I. Hesla, D. D. Joseph, A distributed Lagrange multiplier/fictitious595

domain method for particulate flows, International Journal of Multiphase Flow 25 (5) (1999) 755–596

794.597

[7] W. A. Wall, P. Gamnitzer, A. Gerstenberger, Fluid–structure interaction approaches on fixed grids598

based on two different domain decomposition ideas, International Journal of Computational Fluid599

Dynamics 22 (6) (2008) 411–427.600

[8] R. Van Loon, P. D. Anderson, J. De Hart, F. P. Baaijens, A combined fictitious domain/adaptive601

meshing method for fluid–structure interaction in heart valves, International Journal for Numerical602

Methods in Fluids 46 (5) (2004) 533–544.603

[9] D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, T. J. Hughes, Immersogeometric604

cardiovascular fluid–structure interaction analysis with divergence-conforming B-splines, Computer605

methods in applied mechanics and engineering 314 (2017) 408–472.606

[10] A. Gerstenberger, W. A. Wall, An extended finite element method/Lagrange multiplier based ap-607

proach for fluid–structure interaction, Computer Methods in Applied Mechanics and Engineering608

197 (19-20) (2008) 1699–1714.609

[11] A. Massing, M. G. Larson, A. Logg, Efficient implementation of finite element methods on non-610

matching and overlapping meshes in three dimensions, SIAM Journal on Scientific Computing 35 (1)611

(2013) C23–C47.612

[12] F. Alauzet, B. Fabrèges, M. A. Fernández, M. Landajuela, Nitsche-XFEM for the coupling of an in-613

compressible fluid with immersed thin-walled structures, Computer Methods in Applied Mechanics614

and Engineering 301 (2016) 300–335.615

[13] B. Schott, Stabilized cut finite element methods for complex interface coupled flow problems, Ph.D.616

thesis, Technical University of Munich (2017).617

[14] A. Massing, B. Schott, W. Wall, A stabilized Nitsche cut finite element method for the Oseen618

problem, Comput. Methods Appl. Mech. Engrg. 328 (2018) 262–300.619

[15] E. Burman, S. Frei, A. Massing, Eulerian time-stepping schemes for the non-stationary stokes620

equations on time-dependent domains, arXiv preprint arXiv:1910.03054 (2019).621

19

[16] A. Verkaik, M. Hulsen, A. Bogaerds, F. van de Vosse, An overlapping domain technique coupling622

spectral and finite elements for fluid flow, Computers & Fluids 100 (2014) 336–346.623

[17] A. Massing, M. G. Larson, A. Logg, M. Rognes, A Nitsche-based cut finite element method for a624

fluid-structure interaction problem, Commun. Appl. Math. Comput. Sci. 10 (2) (2015) 97–120.625

[18] S. Shahmiri, A. Gerstenberger, W. A. Wall, An xfem-based embedding mesh technique for in-626

compressible viscous flows, International Journal for Numerical Methods in Fluids 65 (1-3) (2011)627

166–190.628

[19] B. Schott, C. Ager, W. A. Wall, Monolithic cut finite element–based approaches for fluid-structure629

interaction, International Journal for Numerical Methods in Engineering 119 (8) (2019) 757–796.630

[20] J. Benek, J. Steger, F. C. Dougherty, A flexible grid embedding technique with application to the631

Euler equations, in: 6th Computational Fluid Dynamics Conference Danvers, 1983, p. 1944.632

[21] J. Steger, F. Dougherty, J. Benek, A Chimera grid scheme, in: Advances in Grid Generation, Vol.633

ASME FED-5, 1983, pp. 59–69.634

[22] J. L. Steger, J. A. Benek, On the use of composite grid schemes in computational aerodynamics,635

Computer Methods in Applied Mechanics and Engineering 64 (1-3) (1987) 301–320.636

[23] M. Balmus, A. Massing, J. Hoffman, R. Razavi, D. A. Nordsletten, A partition of unity approach637

to fluid mechanics and fluid–structure interaction, Computer Methods in Applied Mechanics and638

Engineering 362 (2020) 112842.639

[24] G. Karniadakis, S. Sherwin, Spectral/hp element methods for computational fluid dynamics, Oxford640

University Press, 2013.641

[25] H. Xu, C. D. Cantwell, C. Monteserin, C. Eskilsson, A. P. Engsig-Karup, S. J. Sherwin, Spectral/hp642

element methods: Recent developments, applications, and perspectives, Journal of Hydrodynamics643

30 (1) (2018) 1–22.644

[26] A. N. Brooks, T. J. Hughes, Streamline upwind/petrov-galerkin formulations for convection dom-645

inated flows with particular emphasis on the incompressible navier-stokes equations, Computer646

methods in applied mechanics and engineering 32 (1-3) (1982) 199–259.647

[27] T. J. Hughes, T. Tezduyar, Finite element methods for first-order hyperbolic systems with partic-648

ular emphasis on the compressible euler equations, Computer methods in applied mechanics and649

engineering 45 (1-3) (1984) 217–284.650

[28] J. Hoffman, C. Johnson, A new approach to computational turbulence modeling, Computer Methods651

in Applied Mechanics and Engineering 195 (23-24) (2006) 2865–2880.652

[29] Y. Bazilevs, V. Calo, J. Cottrell, T. Hughes, A. Reali, G. Scovazzi, Variational multiscale residual-653

based turbulence modeling for large eddy simulation of incompressible flows, Computer methods in654

applied mechanics and engineering 197 (1-4) (2007) 173–201.655

[30] Y. Bazilevs, I. Akkerman, Large eddy simulation of turbulent taylor–couette flow using isogeometric656

analysis and the residual-based variational multiscale method, Journal of Computational Physics657

229 (9) (2010) 3402–3414.658

[31] T. J. Hughes, L. Mazzei, K. E. Jansen, Large eddy simulation and the variational multiscale method,659

Computing and visualization in science 3 (1) (2000) 47–59.660

[32] F. Brezzi, J. Pitkäranta, On the stabilization of finite element approximations of the stokes equa-661

tions, in: Efficient solutions of elliptic systems, Springer, 1984, pp. 11–19.662

[33] E. Burman, M. Fernández, P. Hansbo, Continuous interior penalty finite element method for Oseen’s663

equations, SIAM J. Numer. Anal. 44 (3) (2006) 1248–1274.664

[34] R. Codina, J. Blasco, Stabilized finite element method for the transient navier–stokes equations665

based on a pressure gradient projection, Computer Methods in Applied Mechanics and Engineering666

182 (3-4) (2000) 277–300.667

[35] P. Farrell, J. Maddison, Conservative interpolation between volume meshes by local Galerkin pro-668

jection, Computer Methods in Applied Mechanics and Engineering 200 (1-4) (2011) 89–100.669

[36] F. Brezzi, R. S. Falk, Stability of higher-order Hood–Taylor methods, SIAM Journal on Numerical670

Analysis 28 (3) (1991) 581–590.671

[37] A. Hessenthaler, O. Röhrle, D. Nordsletten, Validation of a non-conforming monolithic fluid-672

structure interaction method using phase-contrast MRI, International journal for numerical methods673

in biomedical engineering 33 (8) (2017) e2845.674

[38] T. E. Tezduyar, Y. Osawa, Finite element stabilization parameters computed from element matrices675

and vectors, Computer Methods in Applied Mechanics and Engineering 190 (3-4) (2000) 411–430.676

[39] M. Braack, E. Burman, V. John, G. Lube, Stabilized finite element methods for the generalized677

Oseen problem, Comput. Methods Appl. Mech. Engrg. 196 (4) (2007) 853–866.678

[40] U. M. Mayer, A. Gerstenberger, W. A. Wall, Interface handling for three-dimensional higher-order679

XFEM-computations in fluid–structure interaction, International Journal for Numerical Methods680

20

in Engineering 79 (7) (2009) 846–869.681

[41] Y. Sudhakar, W. A. Wall, Quadrature schemes for arbitrary convex/concave volumes and integra-682

tion of weak form in enriched partition of unity methods, Computer Methods in Applied Mechanics683

and Engineering 258 (2013) 39–54.684

[42] J. Lee, A. Cookson, I. Roy, E. Kerfoot, L. Asner, G. Vigueras, T. Sochi, S. Deparis, C. Michler,685

N. P. Smith, et al., Multiphysics computational modeling in CHeart, SIAM Journal on Scientific686

Computing 38 (3) (2016) C150–C178.687

[43] G. Karypis, V. Kumar, A parallel algorithm for multilevel graph partitioning and sparse matrix688

ordering, Journal of Parallel and Distributed Computing 48 (1) (1998) 71–95.689

[44] V. Shamanskii, A modification of Newton’s method, Ukrainian Mathematical Journal 19 (1) (1967)690

118–122.691

[45] P. R. Amestoy, I. S. Duff, J.-Y. L’excellent, Multifrontal parallel distributed symmetric and unsym-692

metric solvers, Computer methods in applied mechanics and engineering 184 (2-4) (2000) 501–520.693

[46] Schäfer, Michael and Turek, Stefan and Durst, Franz and Krause, Egon and Rannacher, Rolf, Bench-694

mark computations of laminar flow around a cylinder, in: Flow simulation with high-performance695

computers II, Springer, 1996, pp. 547–566.696

[47] FEATFLOW Finite Element Software for the Incompressible Navier-Stokes Equations.697

URL www.featflow.de698

21

www.featflow.de
www.featflow.de

Name Orca TOM

OS Ubuntu 16.04 SUSE SLES 11 SP1
CPUs 1x AMD Ryzen Threadripper 2990WX

3.0 GHz, 32 cores
76x Intel(R) Xeon(R) E7-8837, 2.66
GHz, 8 cores, Westmere EX

Memory per Node 128 GB 128 GB
Network - NUMAlink 5 Interconnect
Tot. processors 32 608

Table 1: The hardware and software specifications of the ORCA and TOM clusters.

Level 1 Level 2 Level 3 Level 4 Level 5

SFEM

No. elem 5348 21394 85368 342362 1369660
DOF 8445 32937 129744 516924 2061255
hmin 1.7E-2 7.9E-3 3.7E-3 1.9E-3 9.3E-4

Background

No. elem 5390 21560 86212 346044 1384168
DOF 8487 33141 130917 522258 2082636
hmin 1.9E-2 9.2E-3 4.4E-3 1.9E-3 9.2E-4

Embedded

No. elem 400 1608 6144 24140 94566
DOF 696 2604 9600 36978 143385
hmin 1.7E-2 8.5E-3 3.8E-3 1.9E-3 9.0E-4

Intersection

No. elem 870 1771 3577 7203 14349

No. cores 4 4 8 8 16

Table 2: Grid statistics and number of cores used in the 2D Turek benchmark test for the SFEM and
SPUFEM (for background, embedded, and intersection grids).

Level max cD min cD max cL min cL

SFEM SPUFEM SFEM SPUFEM SFEM SPUFEM SFEM SPUFEM

1 2.73360 2.83450 2.73360 2.82783 -0.03546 -0.01249 -0.03547 -0.01249
2 2.87240 2.86849 2.86928 2.86692 0.20725 0.18443 -0.23827 -0.21275
3 3.07853 3.07804 3.05751 3.05933 0.54898 0.53006 -0.57965 -0.56186
4 3.17065 3.16951 3.12973 3.12871 0.77593 0.77343 -0.81010 -0.80885
5 3.20663 3.20634 3.15424 3.15384 0.88760 0.89058 -0.92551 -0.92410

Ref. [46] 3.22-3.24 N.A. 0.99-1.01 N.A.
Ref. [47] 3.2271 3.1643 0.98658 -1.0213

Table 3: Maximum and minimum values of the coefficient of drag and lift for the 2D-2 benchmark
estimated using the SFEM and SPUFEM approaches.

Level ∆p Run time (seconds) Ratio (%)

SFEM SPUFEM SFEM SPUFEM

1 1.85557 1.86424 43.579 85.912 97.1
2 2.12844 2.12644 459.48 580.20 26.3
3 2.31546 2.31218 1333.8 1843.0 38.2
4 2.40304 2.40292 7671.6 9845.2 28.3
5 2.44578 2.44556 24862 28810 15.9

Ref. [46] 2.46 - 2.50

Table 4: 2D-2 benchmark pressure drop estimations, total run times and relative additional run time
used in SPUFEM compared to SFEM.

22

Level SFEM (sec.) SPUFEM (sec.)

2 4.798 4.887
3 4.865 4.889
4 4.327 4.039
5 4.813 4.917

Table 5: The time points corresponding to the frames in Figure 7. These were chosen based on the fact
that the value of cL is a local maximum and (where applicable) the wake is bent towards the right wall.

Level Processors Mesh type No. elems. DOF. hmin ∆t

SFEM
1 32 437978 314960 0.0114 1/100
2 124 1153998 807644 0.0061 1/200

SPUFEM

1 32
Background 412978 296708 0.0119

1/100Embedded. 28406 22716 0.0137
Intersection 443521 - -

2 128
Background 1223462 861892 0.0059

1/200Embedded. 67080 53668 0.0056
Intersection 1199310 - -

Table 6: Mesh statistics, time steps sizes, and the number of processors used in the 3D Turek benchmark.
Here, the SPUFEM interface grid was generated using the Sutherland-Hodgman algorithm.

Level N.C.+E. U.C.+E. U.C.+S.H. SFEM N.C.+E. U.C.+E. U.C.+S.H. SFEM

Total run time (1000 s) Total residual assembly time (1000 s)

1 38.9 19.1 10.9 3.18 22.7 13.2 5.70 0.321
2 69.1 58.4 40.2 20.2 27.9 17.3 4.49 0.361

Average residual assembly time (s) Max. MPI wait time (1000 s)

1 5.50 2.05 0.865 0.071 19.7 5.28 4.18 0.143
2 3.61 2.37 0.613 0.057 30.8 23.8 10.6 1.36

MPI wait time max. ratio

1 104.8 26.5 25.2 2.7
2 24.6 34.9 15.7 2.8

Table 7: Run time statistics for the 3D Turek test computed using SPUFEM for three permutations of
implementation options 1 and 2. SFEM run time statistics for similar resolutions included as reference.

SPUFEM

Total run time (s) Total residual assembly time (s)

P.W.
O.Q.

2 3 4 5 2 3 4 5

1 9118.2 8588.2 9816.3 9439.2 3792.5 3909.2 4836.9 4377.7
2 8398.0 9092.6 8522.5 9333.5 3286.7 3615.3 3951.0 3849.1
3 8057.9 8832.5 9182.3 9258.3 3117.7 3320.4 3875.7 3655.1
4 7775.5 9442.6 10252 11092 2903.7 3432.8 3527.3 3928.0

Average residual assembly time (ms) Max. MPI wait time (s)

1 585.4 638.0 737.7 710.6 3646.8 3063.1 3358.4 3051.6
2 521.9 575.0 647.7 637.6 2162.2 1662.3 1247.7 1086.7
3 476.7 528.6 624.9 612.1 1364.5 473.47 242.30 254.24
4 466.6 539.8 587.4 633.9 684.93 342.01 1367.0 282.36

MPI wait time max. ratio

1 36.7 31.7 32.0 30.4
2 21.1 16.5 9.2 9.5
3 11.7 3.6 1.6 1.6
4 6.1 2.2 8.8 1.6

Table 8: Simulation run time statics as functions of PUFEM sub-element partition weighting (P.W.)
and the order of the quadrature used in the numerical integration (O.Q.). These results are based on
varying the two parameters in the case of the Level 1 refinement PUFEM simulation. The cells marked
in red indicate the minimum value achieved for a given quadrature scheme.

23

Figure 1: A) General representation of the domain for FEM setting with labels for the boundary regions.
B) Analogous representation of the PUFEM setting for the same problem, with additional labels for the
overlapping domains, obstacle boundary region and fluid-fluid boundary.

Figure 2: Example weighting field (left) and the resulting Ωhe,ψ and Ωhe,1 subdomains.

24

Figure 3: Illustrations of the Sutherlang-Hodgman and Eberley’s approaches to the clipping and meshing
of the overlap area between two triangles.

25

Figure 4: Illustration of sub-element generation and categorization for two grids. (Top) The background
(left) and embedded (centre) grids marked in black and blue edges, respectively, as well as the overlap
configuration. (Bottom-left) The weighting field in relation to the background grid. (Bottom-centre)
Background element categorization based on their relation to the embedded grid: yellow for T hb,b, purple
for T hb,c, orange for T hb,d and blue for T hb,e. (Bottom-right) The resulting intersection grid overlaid on

top of the background grid with color coding to distinguish the type: red for T hi,ψ , i.e. elements used to

both subtract unweighted contributions from cut background elements and PUFEM contributions, and
green for T hi,1, i.e. elements used in the subtraction process only.

26

Figure 5: (Top) Example mesh setup used the in 2D Turek benchmark for both SFEM and SPUFEM
approaches. (Bottom) Analogous setup for the 3D benchmark including the weighting field (ψ) as well.

27

Figure 6: Fluid velocity magnitude and pressure fields captured at maximum positive cL, using both
SFEM and SPUFEM approaches, for four levels of refinement.

28

Figure 7: Fluid velocity magnitude and pressure fields captured at local maximuma of cL (see Tab. ...)
for the Re = 3000 test. Solutions are computed with both SFEM and SPUFEM approaches, with four
out five levels of refinement being represented here. In the case of Levels 4 and 5, the wake also oscillates
from left to right.

29

Figure 8: Estimated values for the coefficients of drag and lift in the last 0.1 seconds of the 2D high
Reynolds number benchmark. Values were computed based on simulations using both boundary fitted
SFEM and SPUFEM stabilized implementations. The legend is used to indicate the grid’s resolution
level, see 2.

Figure 9: Solution fields for the 3D-3Z Turek benchmark computed with both boundary fitted and
PUFEM approaches using Level 1 grids.

30

Figure 10: The coefficients of drag and lift over time for the 3D-3Z as computed with the boundary
fitted and PUFEM methods. The reference literature values were obtained from [47].

31

Appendix:699

A stabilized multidomain partition of unity approach to solving700

imcompressible viscous flow701

Maximilian Balmusa,∗, Johan Hoffamnb, André Massingc, David Nordslettena,d702

aSchool of Biomedical Engineering and Imaging Sciences, King’s College London, 4th FL Rayne703

Institute, St Thomas Hospital, London, SE1 7EH, United Kingdom704

bDivision of Computational Science and Technology, KTH Royal Institute of Technology, SE-10044,705

Stockholm, Sweden706

cDepartment of Mathematical Sciences, Norwegian University of Science and Technology, NO-74921,707

Trondheim, Norway dDepartment of Biomedical Engineering and Cardiac Surgery, University of708

Michigan, NCRC B20, 2800 Plymouth Rd, Ann Arbor, 48109709

Appendix A. Impact of restricted overlap710

To examine the influence of the size of the overlap area on the accuracy of SPUFEM,711

we expand the Turek benchmark test by considering problems in which the embedded grid712

has a fixed number of elements over all levels of refinement. Specifically, we consider the713

cases where the embedded grid is formed of three and four elements across: 2 boundary714

layer elements (first being a quarter of the element size and the second a half) and715

one or two additional normal-shaped element layers, see Fig. A.1. As before the last of716

these layers, the one bordered by Γhff functions as transition band, i.e. Ωhψ. Similarly717

to the previous section, where the test was performed on embedded regions of constant718

thickness, i.e. 0.15, simulations were run for five levels of refinement, once for each719

embedded grid type. The number of grid elements for each level, both for the embedded720

and resulting intersection grid, are compiled in Tab. A.1.721

Figure A.1: Examples of two embedded meshes with restricted overlap area, i.e. three (left) and four
(center) element layers, as well as a reference constant thickness mesh (right) used in Section 4.1.

An example of the resulting magnitude fields can be seen in Figure A.2, where the new722

results are compared with SFEM and SPUFEM (with constant embedded grid thickness)723

for reference. As it can be seen the fields are generally very similar, with the results almost724

indistinguishable for higher levels of refinement, suggesting that restricting the region of725

the embedded area has little influence on the quality of the results. This is also confirmed726

quantitatively, when comparing the estimations of the coefficients of drag and lift, see727

32

Level Embedded Intersection

3 layers 4 layers 3 layers 4 layers

1 96 128 430 523
2 192 256 821 921
3 384 512 1735 1895
4 768 1024 4161 4399
5 1536 2048 11252 11771

Table A.1: Number of elements compiled for 3 and 4 layer embedded grids, as well as the resulting
intersection grid. Values listed for refinement levels 1 to 5.

Figure A.2: The velocity magnitude in the Turek benchmark obtained using SFEM, SPUFEM with
constant embedded are (i.e. Ref.), SPUFEM with embedded mesh of 3 layers, and 4 layers respectively.
All four simulations are using the fifth refinement level mesh set.

Tab. A.2, with both cases producing comparable estimations to our previous SPUFEM728

estimations and also converge to the reference values, see Tab. 3.729

Level min cD max cD min cL max cL

3 layers 4 layers 3 layers 4 layers 3 layers 4 layers 3 layers 4 layers

1 4.3417 3.2409 4.3453 3.2409 -0.4137 -0.2438 -0.3752 -0.2438
2 3.0330 3.0266 3.0344 3.0287 -0.4601 -0.3701 0.1426 -0.0173
3 3.0946 3.1612 3.1263 3.1925 -0.6961 -0.6963 0.5299 0.5698
4 3.1846 3.1729 3.2306 3.2180 -0.8540 -0.8580 0.8202 0.8222
5 3.1848 3.1919 3.2384 3.2485 -0.9473 -0.9445 0.9222 0.9319

Table A.2: Coefficients of drag and lift estimations using SPUFEM with embedded grid of 3 and 4 layers.

33

	1 Introduction
	2 Methods
	2.1 The Navier-Stokes flow problem
	2.2 The standard FEM formulation
	2.3 The boundary fitted cG(1)cG(1) formulation (SFEM)
	2.4 The standard PUFEM and SPUFEM formulations

	3 PUFEM/SPUFEM implementation
	3.1 (S)PUFEM assembly
	3.2 (S)PUFEM interface generation
	3.3 Sub-element weak form integration
	3.4 CHeart implementation and parallelization
	3.5 Solver strategy

	4 Numerical Results
	4.1 2D Unsteady Turek test
	4.2 2D high Reynolds number flow around obstacle test
	4.3 3D Unsteady Turek test
	4.4 3D Unsteady Turek: Efficiency and problem setup tests

	5 Conclusion
	Appendix A Impact of restricted overlap

