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Abstract

Reconfigurable parallel mechanisms have legs or end-effectors with additional degrees of freedom or with
the ability to change their mobility. This allows them to reconfigure into a variety of conventional parallel
mechanisms. One type of reconfigurable parallel mechanism can be obtained by replacing the end-effector
with a closed-loop linkage. The parts of this linkage that are connected to the legs may be considered as
the end-effectors, having their own mobility relative to the base and a coupled mobility with each other.
Classical methods for mobility analysis cannot be directly applied to this type of mechanism. This article
presents a general method to calculate and represent the coupled mobility of the multiple end-effectors using
nullspace operations on a matrix of mobility. The nullspace approach provides an efficient way to calculate
the mobility in a closed-loop chain while the matrix of mobility allows for calculating the multiple end-
effectors mobility interaction. The general method can be performed analytically to obtain insights on the
mechanism in any configuration, or algorithmically to obtain numerical values of the mobility in a particular
configuration. Two illustrative examples showcasing the method are presented.

Keywords: Parallel mechanisms, reconfigurable mechanisms, mobility analysis.

1. Introduction

Parallel mechanisms are made of a base link and an end-effector link connected in parallel by several
kinematic chains. Their closed-loop architectures form the backbone structure of parallel robots and allow
for a full control of the mechanism while only a subset of the mechanism joints is actuated. Due to their
combination of low inertia and high stiffness, they are widely used in several applications, ranging from flight
simulators to high-speed pick-and-place and haptic devices.

Parallel mechanisms with reconfigurable end-effectors are a different type of structure in which the end-
effector is replaced by a closed-loop linkage. This linkage can be made of one or multiple closed-loops and
some segments in this linkage are connected to the base by parallel kinematic chains that are called ‘legs’.
For a single closed-loop reconfigurable end-effector, the end-effector linkage is usually called a ‘platform’.
One advantage of parallel mechanisms with reconfigurable end-effectors is that the internal mobility of the
end-effector allows for interaction with the environment from multiple contact points.

To the best of our knowledge, the first manipulator that was based on this structure is [23], which
presented a planar version that used the reconfigurable end-effector as a gripper. Another early application
was the modification of a Delta robot with a reconfigurable end-effector to provide rotational capability in [18]
and later in [19]. The concept of parallel robots with reconfigurable end-effectors also has found applications
in haptics [14] as a means to provide grasping capabilities. The concept has also been extended to more than
two end-effectors in [5, 4]. A first attempt at the generalisation of the concept can be found in [17], where
generic forms of parallel mechanisms with configurable platforms are presented. The article also included a
method to calculate the Jacobian of those manipulators given that the mobility of the mechanism is already
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known and the mechanism is not overconstrained. Jacobian analysis was also described further in [13] along
with statics, while some singularity analyses were presented in [15]. Recently, synthesis of some classes of
parallel mechanisms with configurable platform has been investigated in [10, 21].

The kinematic methods presented above assume that the mobility of the mechanism is already known.
Mobility analysis of parallel mechanisms usually refers to the instantaneous mobility of the end-effector at
a given pose. When numerical values are used to describe the pose of the mechanism, a numerical matrix
representing the screw system of mobility is obtained for this pose. If analytical vectors are used to describe
the general pose of the mechanism, an analytical screw system of the mobility can be obtained for the set of
all the poses of the mechanism. Various analytical methods have been proposed to calculate the mobility of
conventional parallel mechanisms using constraint screw theory [9, 2, 6, 1, 22, 7]. Those different methods
successfully take into account overconstraints in mechanisms, i.e constraints that create self-stresses when a
kinematic loop is closed, to describe the mobility for a general pose. The methods generally use the sum of
the constraint systems of all legs and then calculate its reciprocal system to obtain the mobility.

However, those methods cannot be directly applied to the mobility analysis of parallel mechanisms with
reconfigurable end-effectors because of the coupled mobility between each end-effectors. This kinematic
coupling has been recently addressed in [8], where a method was proposed to obtain the mobility of a
particular link on a reconfigurable end-effector made of a single closed-loop linkage. The method uses the
sum of the constraint systems of all legs through all paths on the reconfigurable platform that can be formed
from the base to the platform effector. The method can therefore give a single screw system describing the
mobility for each link on the platform relative to the base, but does not address how those mobilities are
coupled nor the total number of Degrees of Freedom (DOF) of the mechanism.

In this article, we present a method to calculate the mobility of any of the end-effectors in a general
reconfigurable end-effector relative to the base and its coupling to the mobility of the other end-effectors.
The method is based on the representation of the coupled mobility via a matrix of mobility, which combines
the screw systems of all legs into a single vector space, to which a nullspace approach to the internal mobility
of closed-loops is applied successively for each independent closed-loop created by the reconfigurable end-
effector until all DOF of the mechanism and their coupling are revealed. First, we will present in the
next section an overview of the mobility analysis rules for various conventional mechanisms based on their
topology. We will then explain why those rules are not suitable for parallel mechanisms with reconfigurable
end-effectors and present the fundamentals of our method based on nullspace operations on a matrix of
mobility. We will finally present two illustrative examples in which this method can be applied.

2. Instantaneous Mobility and Overconstraints in General Mechanisms

This section provides a unified framework for the calculation of the mobility and constraints in a general
overconstrained mechanism based on Graph Theory and Screw Theory. The results presented in this section
may be considered general knowledge but the framework in which they are presented is original and provides
the necessary background for the rest of the article.

A general mechanism comprises a set of rigid links connected by a set of joints. The two main types of
1-DOF joints are revolute joints and prismatic joints. Multi-DOF joints, such as cylinder joints and spherical
joints are also used, but since they can be represented as a series of 1-DOF joints, one can consider only
1-DOF joints without loss of generality. The topology of a mechanism describes which links are connected
to each other, regardless of the type of joint or its geometrical position on the link. While each link may
possess several joints, each joint in a mechanism strictly connects only two links. Since Graph Theory uses
graphs to model pairwise relations between a set of objects, it is an appropriate tool to study the topology
of mechanisms [16]. Using this representation, each vertex in the graph can be associated with a link while
each edge is associated with a joint. 1 shows the topology graphs using the Graph Theory representation for
a serial and a parallel mechanism, as well as the graphs for the well-known Delta mechanism and a hybrid
robot made of a parallel mechanism connected to a serial chain.

Each joint imposes relative constraints between two links. The mobility and constraints imposed by
a joint can be described by its twist space T , and its reciprocal wrench space W , respectively. Both are
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Figure 1: Examples of topological graphs using the Graph Theory representation for several types of mechanisms. The base (B)
and the end-effector (EE) are connected via a set of links (vertices) and joints (edges). a) A 5 DOF serial arm. b) A 3 DOF
three-legged parallel robot. c) A 3 DOF Delta robot. d) A 6 DOF hybrid robot made of a parallel mechanism connected to a
serial chain.

expressed as screw systems. Starting from a topological graph, as those presented in 1, one can find the
mobility and constraint systems between the end-effector (EE) and the base (B) using the rules of serial and
parallel reductions. We will also explain later how those graph reduction rules can also be used to reveal
the local mobilities and overconstraints in the mechanism.

In a serial reduction, a vertex (link) and its two connected edges (joints) are replaced by a single new
edge. The mobility of the resulting edge corresponds to the sum of the mobility of the original two edges,
T = T1 + T2, and its constraints correspond to the intersection of the constraints W = W1 ∩W2 = T r.
In a parallel reduction, two edges connecting the same vertices are replaced by a single new edge. The
mobility of the resulting edge is obtained by a dual set of rules and corresponds to the intersection of the
mobility of the original two edges, T = T1 ∩ T2, and its constraints correspond to the sum of the constraints
W = W1 + W2 = T r. Serial and parallel reduction rules are summarised in 2. The twist space and the
wrench space attached to an edge are reciprocal to each other such that T = W r and W = T r. Since the
sum of screw systems and the calculation of their reciprocals is easier to perform than the calculation of
their intersection, it is generally advisable to calculate screw systems intersection as the reciprocal of the
sum of the reciprocals of the original systems, such as

T1 ∩ T2 = (T r1 + T r2 )r W1 ∩W2 = (W r
1 +W r

2 )r . (1)

In each of the examples of 1, serial and parallel reductions can be successively used until only one edge
is left connecting the base and the end-effector vertices. The twist space of this edge corresponds to the
mobility of the end-effector relative to the base. For example, in a conventional parallel mechanism with p
legs and q joints per leg, where Tij is the twist space of joint j in leg i, the mobility T of the end-effector is
calculated as

T =

 p∑
i=1

 q∑
j=1

(Tij)

rr

(2)

Two other dual concepts, which do not influence the final end-effector mobility, can also be revealed by
performing those graph reductions. The first one concerns the intersection of twists in a serial reduction.
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Figure 2: Graph reductions that can be used successively to determine the final twist T and its reciprocal wrench W between
the base and the end-effector in a general mechanism. Each edge represents a joint for which a twist space T and a wrench
space W are associated (a) a serial reduction (b) a parallel reduction.

If T1 and T2 in a serial reduction are not fully independent, i.e. T1 ∩ T2 6= {0}, a local mobility system
R = T1 ∩ T2, i.e. a mobility that is independent of the motion of the two end vertices, exists. In this case,
some mobilities in the serial chain are possible even when the two ends of the chain do not move relative
to each other. This also means that the resulting DOF in this serial reduction will be smaller than the
sum of the DOF of each edge such that dim (T1 + T2) = dim (T1) + dim (T2)− dim (R). This local mobility
in serial robots is usually called ‘redundancy’ and corresponds to the mobility left when the end-effector is
motionless relative to the base. This also means that those mobility correspond to the mobility inside the
single closed-loop formed when the effector is rigidly attached to the base. Each serial reduction may create
its own distinct local mobility screw system Ri. The total number of redundant DOF for the local mobilities
for a general serial open-loop chain with n joints, or equivalently the total mobility of a single closed-loop
chain with n joints, is given by

n∑
i=2

dim (Ri) =
n∑
i=2

dim

Ti ∩ i−1∑
j=1

Tj

 , (3)

with Ri = Ti ∩
∑i−1

j=1 Tj . Since serial reductions can be performed in any arbitrary order, the order in
which the joints are labelled for j = 1...n is unimportant and will lead to different but equivalent results.
Equation 3 is particularly useful as it allows to calculate the number of DOF in a single closed-loop. A dual
concept concerning overconstraints also occurs during parallel reductions. In this case, constraints that are
applied by both parallel edges are revealed as C = W1 ∩W2. In a dual way to the local mobilities in a serial
chain that does not create any movement on the end-effector, those constraints produce self-stresses in a
closed-loop chain that do not create any resulting forces on the links. Thus, similarly, for n edges in parallel,
the total number of overconstraints is given as

n∑
i=2

dim (Ci) =
n∑
i=2

dim

Wi ∩
i−1∑
j=1

Wj

 . (4)

Using those notations, a modified Chebyshev–Grübler–Kutzbach mobility criterion for any general mech-
anism with m links and n fi-DOF joints, including the mechanisms presented in 1, corresponds to

dim (T ) +
∑

dim (R) = 6 (m− 1− n) +

n∑
i=1

fi +
∑

dim (C) , (5)

where the left part of the equation is the sum of the mobility of the end-effector and all local mobilities. On
the right side of the equation, each of the (n+ 1−m) mechanical closed-loop removes 6 DOF from the total
DOF of the joints, and each overconstraint adds a DOF since those constraints are redundant. For a planar
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Figure 3: A parallel mechanism with a reconfigurable platform. Four legs are connected to the base (B) and to a rigid link
(Ei) of the platform. The platform is made of eight revolute joints in a single closed-loop. (a) Schematic representation of the
mechanism (b) The topology graph of the mechanism in which each vertex represents a link and each edge represents a joint.
(c) The topology graph after graph reductions.

mechanism, either removing 3 DOF per closed-loop or removing 6 DOF per closed-loop but considering 3
planar overconstraints for each will lead to the same result. While 5 is valid for any mechanism, it does
not provide the twist space of the motion, and the dimensions of

∑
dim (R) and

∑
dim (C) depend on the

geometrical arrangement of the joints. It can be used however to validate the total number of DOF obtained
from the graph reduction framework, for example when calculating the twist space of a parallel mechanism
using 2.

In the next section, we will see how this general framework cannot be directly applied to parallel mech-
anisms with reconfigurable end-effectors.

3. Coupled Mobility in Parallel Mechanisms with Reconfigurable End-Effectors

In this section, we show the limitations of the general framework presented in the previous section
when applied to parallel mechanisms with reconfigurable end-effectors. We then propose a solution to this
problem based on an extension of the nullspace approach for single closed-loop mechanisms when applied
to the concept of a matrix of mobility. The resulting method can be applied to any parallel mechanisms
with reconfigurable end-effectors, including reconfigurable platforms and constitutes a direct method i.e it
does not involve any numerical analysis and therefore symbolic manipulations can be used. This can lead to
analytical results that are valid for any configuration of the mechanism when using a vector notation as input.
Also, the method does not require any a priori insight on the mechanism and can therefore be automated
directly into an algorithm to produce numerical results for a particular configuration when numerical values
for the screw systems of each leg and end-effector segments are used as inputs.

3.1. Limitations of the General Mobility Analysis Method for Parallel Mechanisms with Reconfigurable End-
Effectors

The graph reduction method described in the previous section covers all mechanisms that are represented
by a series-parallel graph. However, the serial and parallel graph reductions, by definition, can not be used
to reduce a non series-parallel graph to a single mobility system T and its reciprocal constraint system
W between the base and the end-effector. Figure 3 shows an example of a parallel mechanism with a
reconfigurable platform and its associated graph. The mechanism has a base link (B) and four identical legs
L1 to L4 made of three revolute joints with parallel axes. The reconfigurable platform is made of a single
planar closed-loop linkage comprising 8 revolute joints with parallel axes. Each leg is connected to a link of
the platform separated by two platform joints to the adjacent legs. This mechanism will be explored further
in Section 4 as the first example for illustrating the general method.
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Figure 4: Four single closed-loops formed by two legs L1 and L2 connected in parallel with a rigid platform P1 and reconfigurable
platforms P2, P3, and P4

We can assign a vertex to each link and an edge to each joint to create the topology graph of the
mechanism, as shown in Figure 3 b). When using the serial and parallel reductions on which classical
methods for the calculation of mobility are based, we can reduce any series-parallel mechanism to a single
edge and its corresponding twist space. However, due to the presence of the reconfigurable platform, it is
not possible in this case to reduce the graph to a single edge between the base and a single effector using
the serial and parallel reductions presented in the previous section. The final graph of parallel mechanisms
with reconfigurable platforms after graph reductions is called a wheel graph, as shown in Figure 3 c). The
centre of the wheel represents the base, the spokes of the wheel are the legs of the mechanism, and the outer
rim represents the reconfigurable platform. Beside the base vertex, the only remaining vertices are the links
that are part of both the platform and the legs. Those links are considered the multiple end-effectors of the
mechanisms because they cannot be simplified with serial and parallel reductions.

We now see that the mobilities of a mechanism with a reconfigurable platform cannot be described using
a single screw system. Indeed, each end-effector has a specific mobility relative to the base, and this mobility
may be coupled with the mobility of the remaining end-effectors. To address this problem, a method to
calculate the mobility of each end-effector relative to the base was recently presented in [8]. This method is
based on the sum of the constraints of all legs for all possible paths on the reconfigurable platform to reach
one of the end-effectors. Although the reciprocal system of the resulting wrench gives the proper mobility
for a specific end-effector, the coupled mobility between the multiple end-effectors, and therefore the total
number of DOF, is not addressed by this method. In this article, we combine a modification of a recent
method developed in [20] using the twist space intersection approach for the calculation of the instantaneous
mobility of conventional parallel mechanisms with the concept of the matrix of mobility to solve the problem
of the coupled mobility between the end-effectors.

3.2. Application of the Nullspace Approach to a Single-Loop Chain

To introduce the method of coupled mobility, let us first consider a simple case of two legs in 2 dimensions.
4 shows four examples of a system of two legs, L1 and L2, each connecting a base B to end-effectors E1

and E2. L1 is composed of a single vertical translation while L2 allows for both vertical and horizontal
translations. The screw systems of L1 and L2 are denoted SL1 and SL2 respectively. Before the connection
of the platform segment P , the total number of DOF of the mechanism is dim (SL1) + dim (SL2) = 3. When
a platform Pi is connected between the legs, a single closed-loop is formed. If it is a rigid platform, as with
P1, the mobilities of E1 and E2 relative to the base become identical and are given by T = SL1 ∩ SL2, which
is a normal parallel reduction and corresponds to the vertical translation in this case.

Let us now consider the platform P2, which has a joint allowing for horizontal translation. Unlike P1,
this platform allows relative motion between E1 and E2. One can see that E2 can move horizontally and
vertically. However, the horizontal movement occurs without affecting E1, while the vertical displacement
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is coupled. Even though all the joints are allowed to move, the total number of DOF for the system is 2
because of this coupled mobility. When considering platform P3, we can notice that the platform constraints
the horizontal displacement of E2 but allow for E1 and E2 to move vertically independently and each end-
effector counts for 1 DOF each, even if their DOF are in the same direction. Therefore, this mechanism also
has 2 DOF. Lastly, if platform P4 is connected, both joints in L2 conserve their mobility, but their velocities
become coupled by a ratio that depends on the angle of joint P4. This last mechanism also has 2 DOF in
total when we include the vertical translation.

For each of those examples, the total mobilities can be described using two distinct screw systems. The
first one is the common mobility between the legs and is given by R1 = SL1∩SL2. The second one represents
the intersection of the mobility of the platform with the relative mobility between the legs and is given by
R2 = SP ∩ (SL1 + SL2). This is in accordance with the mobility of a single closed-loop described in (3) by
the screw systems Ri.

As mentioned in the previous section and illustrated by (1), the intersection of screw systems is generally
performed by calculating the reciprocal of the sum of the reciprocals of the screw systems to be intersected.
However, in this article, we will use the nullspace-associated approach recently presented in [20] to calculate
the intersections. We will show later how an extension of this approach can be applied to the concept of the
matrix of mobility.

So far we have discussed twist spaces in the general concept of vector spaces. In practice, notably for
vector space operations in an algorithm, vector spaces must be expressed in the form of a vector basis for
which the vector space comprises all vectors that can be obtained from all linear combinations of the vector
basis. By definition, this basis is not unique and there is an infinity of valid screw bases that can be used
to define a single screw system. For the rest of this article, we will make the distinction between a screw
system S, and its basis expressed in a matrix form S, where each column in S represents a basis vector of
the system S, noted S = {S}. It is an important distinction as operators such as the sum and intersection
have different meanings when applied to vector spaces or matrices. In addition, since a unique screw system
S1 has an infinite number of valid bases Si, the sign ”≡” will be used to show the equivalence between two
matrix bases with different elements representing the same screw system, such as in S = {S1} = {S2}, with
S1 ≡ S2.

In the original nullspace approach, the screw system Sint representing the intersection of two screw
systems S1 = {S1} and S2 = {S2} is calculated as

Sint = S1 ∩ S2 = {S1K1} = {S2K2} where K =

[
K1

K2

]
= Null

([
S1 −S2

])
, (6)

with Ki having the same number of rows as the number of columns in Si. This can be understood as the
nullspace of

[
S1 −S2

]
represents the allowed velocity of each joint when S1 and S2 form a closed-loop, i.e.

are connected in parallel. The allowed velocity of either chain, therefore, corresponds to their intersection,
as is the case with a parallel reduction. The nullspace matrix K also represents a basis for its own vector
space and any linear operation on its columns will produce a valid basis. The approach presented in [20] was
also extended to the intersection of three or more kinematic chains for calculating the mobility of classical
parallel mechanisms. In our case, we extend this approach to calculate the multiple screw systems created
in a single closed-loop. Since K in Equation 6 represents the allowed velocity of each screw basis in a
closed-loop, the allowed screw velocity in a loop formed by three chains with mobility SL1, SL2, and SP as
in Figure 4 is

K ′ =

KL1

KL2

KP

 = Null
([
SL1 −SL2 SP

])
, (7)

assuming that the velocity for the platform segment Pi is for E2 relative to E1. The total number of DOF
in a single loop corresponds to the number of columns in K ′. While it was possible to express the mobility
in (6) with a single screw system, we now need two distinct screw systems when connecting three chains.
To obtain a basis for those screw systems, we need to separate the matrix K ′ into two sets of columns. The
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first set of columns, in which the elements of Kp are zero, represents the common mobility between legs,
while the second set of columns represents the relative mobility. The general method for the common and
relative mobilities of two end-effectors in a single closed-loop made of chains with mobilities SL1, SL2, and
SP is

SL1 ∩ SL2 = {SL1KL11} = {SL2KL21}

SPi ∩ (SL1 + SL2) = {SPKP2}
where K ′ =

KL11 KL12

KL21 KL22

0 KP2

 = Null
([
SL1 −SL2 SP

])
. (8)

Applying Equations (8) to the four examples of Figure 4, we obtain the following:

SL1 =

[
0
ŷ

]
SL2 =

[
0 0
x̂ ŷ

]
SP1 =

[
0
0

]
SP2 =

[
0
x̂

]
SP3 =

[
0
ŷ

]
SP4 =

[
0

λ1x̂ + λ2ŷ

]

K ′1 =


1 0
0 0
1 0
0 1

 K ′2 =


1 0
0 1
1 0
0 1

 K ′3 =


1 0
0 0
1 1
0 1

 K ′4 =


1 0
0 λ1
1 λ2
0 1



SL1 ∩ SL2 =

{[
0
ŷ

]} SP1 ∩ (SL1 + SL2) =

{[
0
0

]}
SP2 ∩ (SL1 + SL2) =

{[
0
x̂

]}

SP3 ∩ (SL1 + SL3) =

{[
0
ŷ

]}
SP4 ∩ (SL1 + SL3) =

{[
0

λ1x̂ + λ2ŷ

]}

, (9)

where x̂ corresponds to a unit vector in the horizontal direction, ŷ corresponds to a unit vector in the
vertical direction, and the values of λ1 and λ2 depend on the angle of the prismatic joint in P4. K

′
i is the

nullspace obtained with platform Pi. We have shown how the nullspace approach for the calculation of the
intersection of screw systems can be extended to a single closed-loop. For example, Eq. 8 can be applied
to any single closed-loop made of 3 serial chains that do not themself contain local mobilities to find all the
mobilities inside the loop. Generalising this equation to a single loop formed by n serial chains, we obtain
the n− 1 screw systems describing all the DOF in a general single loop.

S2 ∩ S1 = {S2K21}

S3 ∩ (S1 + S2) = {S3K32}

...

Sn ∩
∑n−1

i=1 Si =
{
SnKn,(n−1)

}
where K ′ =



K11 K12 . . . K1,(n−1)
K21 K22 . . . K2,(n−1)
0 K32 . . . K3,(n−1)
... 0 . . . K4,(n−1)
...

...
. . .

...
0 0 . . . Kn,(n−1)


= Null

([
S1 . . . Sn

])
. (10)

However, if we want to extend this procedure to a whole parallel mechanism with a reconfigurable end-
effector, one needs to keep track of the influence of the connections of the previous end-effector segments on
the mobility of the legs when connecting a new end-effector segment. This can be achieved with a matrix of
mobility.

3.3. Nullspace Approach Applied on a Matrix of Mobility

While it is possible to describe the mobilities in a single loop with a set of independent screw systems as
shown in (8), it is not the case anymore for the screw systems describing a mechanism with reconfigurable
end-effectors as the effect on every closed-loop must be taken into account for each end-effector and its
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relative mobility with the rest of the end-effectors and the base. To keep track of the effect of each closed-
loop on the global system, we will combine the screw systems of all n end-effectors, for which the row
space dimension is 6, into a single vector space with a row dimension of 6n. A similar type of matrix was
introduced in [3], where it was used to describe the statics and overconstraints in a triple Koenigs joint. This
matrix notation was also briefly introduced in [12, 11] to represent mobility, but without using the nullspace
approach. This matrix notation allows for the representation of the coupling between multiple screw systems
and is adapted here in this article to the mobility of parallel mechanisms with reconfigurable end-effectors
while using the nullspace approach applied to multiple closed-loops. For a general parallel mechanism with
n reconfigurable end-effectors and m DOF, the matrix of mobility T takes the general form

T(6n×m) =

$11 . . . $1m
...

. . .
...

$n1 . . . $nm

 (11)

where $ij is a (6× 1) single screw representing the motion of end-effector i associated with DOF j. The
total mobility of end-effector i is obtain by the screw system spanned by the basis screws Si = {[$i1 . . . $im]}.
The screws $ij may not be independent and therefore dim (Si) might be smaller than m. Each column
represents a single DOF for the whole mechanism and therefore the total number of DOF for the mechanism
corresponds the number of columns m. Each DOF j = 1 . . .m only creates motion in an end-effector i
if $ij 6= 0. The columns of T represent a vector basis spanning a subspace of dimension m of a larger
vector space of dimension 6n and any linear operation can be performed on the columns of T to obtain
an equivalent vector basis. Finally, the relative mobility between two end-effectors can be obtained by the
subtraction of the corresponding rows. For example, the relative mobility between end-effector i and k is
given as Si−k = {[($i1 − $k1) . . . ($im − $km)]}.

The first step in expressing the examples of Figure 4 in the framework of the matrix of mobility is to
start with an initial matrix of mobility T0, in which end-effector segments Pi are not already connected.
Each column corresponds to a DOF of the total system, and each set of 6 rows corresponds to the mobility
of a leg relative to the base. In our examples in Figure 4 , before the connection of the end-effector segment
Pi, we have

T0 =

[
SL1 0
0 SL2

]
=


[
0
ŷ

]
0(6×1) 0(6×1)

0(6×1)

[
0
x̂

] [
0
ŷ

]
 . (12)

Each matrix SL1 and SL2 represents a set of basis screws. In addition, each column in T now represents a
basis for a larger system that comprises both legs, and in which the vectors are now of dimension 12 instead
of the 6 dimensions of a regular screw system. As with the case of any vector space basis, this set is not
unique and any linear operations on the columns of the matrix T0 can be performed to obtain a new valid
basis, including linear operations on columns affecting different legs.

The relative mobility between legs L1 and L2 can be obtained by the subtraction of the corresponding
rows in matrix T . For example, in equation 12, the individual DOF of the relative mobility T0,(1−2) between
end-effector 1 and 2 are given by

T0,(1−2) =

[[
0
ŷ

]
0 0

]
−
[
0

[
0
x̂

] [
0
ŷ

]]
=

[[
0
ŷ

]
−
[
0
x̂

]
−
[
0
ŷ

]]
, (13)

which is a screw system of dimension 2 with 3 independent DOF. Now that we want to close the loop
with an end-effector segment Pi, we extend this row with SPi, a basis of SPi, as in Equation (7), to obtain
K ′i = Null

([
T0,(1−2) SPi

])
, which are numerically described in Equation (9) for each example. A new

matrix iT is obtained by multiplying T0 with a new matrix Ki, the part of the matrix K ′i that is affecting
the legs. The whole procedure can be summarised as

9



K ′i =

[
Ki

KPi

]
= Null

([
T0,(1−2) SPi

])
iT = T0Ki , (14)

where the row dimension of Ki is the same as the column dimension of T0. Equation (14) is the core
step of the proposed method and can be used successively to connect all end-effector segments in a parallel
mechanism with a reconfigurable end-effector. It is derived from our adaptation of the nullspace approach to
single closed-loops presented in Equation (8) applied the whole matrix of mobility. Using the initial matrix
T0 in Equation (12) and the numerical values obtained in Equation (9) for each K ′i, we obtain a matrix of
mobility iT representing the coupled mobility for each of the examples i shown in Figure 4 by multiplying
T0 with the first three rows of K ′i, i.e., the rows that correspond to the legs and not the platform.

1T =


[
0
ŷ

]
[
0
ŷ

]
 2T =


[
0
ŷ

]
0[

0
ŷ

] [
0
x̂

]


3T =


[
0
ŷ

]
0[

0
ŷ

] [
0
ŷ

]
 ≡


[
0
ŷ

]
0

0

[
0
ŷ

]
 4T =


[
0
ŷ

]
0[

0
ŷ

]
λ1

[
0
x̂

]
+ λ2

[
0
ŷ

]
 ≡


[
0
ŷ

]
−λ2

[
0
ŷ

]
[
0
ŷ

]
λ1

[
0
x̂

]

. (15)

Matrix equivalence ”≡” is shown in 3T and 4T to illustrate that any linear column operations can still be
performed on a matrix of mobility to obtain a valid representation. Those results are still equivalent to those
described by Equations (8) and (9). However, now the whole single loop is represented in a single vector
space of dimension 12. The procedure can then be extended for a parallel mechanism with a reconfigurable
end-effector with n legs to obtain a total matrix of mobility with 6n rows. When we connect an end-effector
segment Pi between leg j and k, Equation (14) can be used to modify the whole matrix T(i−1) to obtain Ti
using Ti,(j−k) and SPi. When connecting the following end-effector segment, the interaction of the previous
segments will have already been taken into account on the whole mechanism since the matrix of mobility
combines all legs in a single vector space.

We will now describe mathematically the procedure for a general parallel mechanism with a reconfigurable
end-effector. Let us define SLi as matrices with column vectors corresponding to a basis of the screw system
SLi of leg i. Each set of 6 rows in Ti corresponds to the mobility of an end-effector relative to the base.
Similarly, SPi represents the screw system of the platform segment i connecting the end-effectors j and
k. The relative mobility between end-effectors j and k is given by Ti,(j−k), which is a matrix with 6 rows
obtained when subtracting the rows of leg k from the rows of leg j in the matrix Ti. The whole procedure
for calculating the coupled mobility of a n-legged parallel mechanism with a reconfigurable end-effector can
then be summarised as

T0 =


SL1 0 . . . 0
0 SL2 . . . 0
...

...
. . . 0

0 0 0 SLn


K ′i =

[
Ki

KPi

]
= Null

([
T(i−1),j−k SPi

])
Ti = T(i−1)Ki T = (· · · ((T0K1)K2) · · ·Kn)

. (16)

In this procedure, the nullspace approach proposed in Equation (8) provides a direct method to determine
K ′, representing which DOF are allowed in a single closed-loop. We can then multiply the part of K ′ affecting
only the end-effectors mobilities relatively to the base, i.e. K, with a matrix of mobility Ti that comprises
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Figure 5: Graph representations of a) a system of n independent legs described by the matrix T0, b) a parallel mechanism
with a reconfigurable platform with n legs and n end-effector segments, c) a 4-legged parallel mechanism with a multi-loop
reconfigurable end-effector using 6 end-effector segments

the mobility of all n end-effectors into a single vector space of dimension 6n. This allows us to keep track of
the global effects that the connection of each end-effector segment has on the mobility of the end-effectors.
It is important to note that matrices Ki must be calculated successively, i.e the relative mobility in the
nullspace calculation of K ′i is T(i−1),j−k, thus not T0,j−k, to takes into account the end-effector segments
already connected.

The method can be applied to any general multi-loop linkage used as a reconfigurable end-effector, as
long as each kinematic chain, i.e each end-effector segment, connects only two legs. The starting matrix of
mobility T0 always corresponds to a star graph where each edge of the star represents the mobility of a leg.
For each end-effector segment i connecting leg j and k, equation 16 can be used to calculate the matrix Ki

and the effects of this connection on all the legs of the mechanism. Figure 5 a) shows the graph for a general
starting matrix T0 in a parallel mechanism with n legs. Figure 5 b) shows a reconfigurable platform with n
end-effector segments used as the reconfigurable end-effector. Figure 5 c) shows the graph representation of
a 4-legged parallel mechanism with a multi-loop reconfigurable end-effector made of 6 end-effector segments.

3.4. Practicality of the Proposed Method

The proposed method can be directly implemented using either analytical vectors as inputs or numerical
values as inputs. Each way presents some advantages and challenges.

On one hand, using analytical vectors which may include variables that depend on the configuration of
the mechanism leads to an analytical solution that is valid in any configuration and can also provide insights
on the nature of the mechanism, revealing conditions for which the mobility changes as it occurs in singular
configurations for example. The main challenge in the analytical method is that the nullspace must be
calculated by inspection. The method can be applied to fairly complex mechanisms. However, it can be that
some mechanisms generate matrices for which the nullspace might be difficult to calculate analytically by
inspection. In any case, this process using analytical notation would be difficult to automate as it requires
some interpretation.

On the other hand, the process using numerical values as inputs can be automated in an algorithm.
It does not depend on the selected reference frame nor the screw basis used. The main limitation is that
it provides a solution only for a single configuration, and the robustness of its implementation as to be
considered as it requires the calculation of nullspaces, which are sensitive to numerical round-off errors.
However, several methods for the robust calculation for the rank of numerical matrices are readily available.
For example, the use of singular value decomposition and the use of a threshold to include singular vectors
related to very small singular values as also part of the nullspace.
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Figure 6: A 4-legged parallel mechanism with an 8R reconfigurable platform and its notation. Platform segment Pi has two
parallel revolute joints and connects legs Li and leg L(i+1). The links that are part of both the configurable platform and leg i
are the end-effectors Ei. The position of each joint j of leg i is noted as rLij and the position of each joint j of platform segment
i is noted as rPij.

In both scenarios, one might want to minimise the number of operations and the size of the matrices
involved in the calculation. To this effect, any column in Ti,(j−k) for which the values are all 0 can be
discarded from the calculation when connecting Pi, as those will produce their own vectors in the nullspace
Ki. Those vectors will have all their elements as 0 except for the column in question which will be 1. This
will leave those columns unchanged in Ti after the multiplication T(i−1)Ki. In the next section, we will
illustrate the method with two examples.

4. Examples

In this section, we apply the method described by Equation 16 to two examples. The first one has 4 legs
and is made of planar chains. We will describe its mobility in any configuration using the analytical method
and will also shown some singular configurations of the mechanism. We will then apply the algorithmic
method to confirm the results obtained analytically. The second example has 3 non-planar legs and a
spherical platform and we will calculate its mobility analytically.

4.1. Example 1

The first example used to illustrate the method is shown in Figure 6 with its notation. This is a 4-legged
parallel mechanism with an 8R reconfigurable platform. Platform segment Pi has two parallel revolute joints
and connects legs Li and L(i+1). The links that are part of both the configurable platform and leg i are
the end-effectors Ei. The position of each joint j of leg i is noted as rLij and the position of each joint j of
platform segment i is noted as rPij. This example will be used to show both the analytical method and its
implementation in an algorithm.

4.1.1. Analytical Method Using Vector Notation

Since the mechanism has four legs, the initial matrix of mobility is given by

T0 =


SL1 0 0 0
0 SL2 0 0
0 0 SL3 0
0 0 0 SL4

 . (17)

To find a valid basis for SL1 = {SL1}, we can directly assign a basis screw for each joint of leg L1.
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SL1 =

[
x̂ x̂ x̂

rL11 × x̂ rL12 × x̂ rL13 × x̂

]
, (18)

where rL1i is the vector position of joint i of leg L1. It is well known that the mobility of a serial chain
made of 3 parallel revolute joints corresponds to 2 translations in a plane and 1 rotation perpendicular to
that plane. Using linear combinations on the three basis screws, this basis can be rearranged in the more
convenient form

SL1 =

[
x̂ 0 0

rL11 × x̂ (rL12 − rL11)× x̂ (rL13 − rL11)× x̂

]
≡
[
x̂ 0 0
0 ŷ ẑ

]
. (19)

Indeed, second and third basis vectors in Equation (18) can have their top part, the vector x̂, cancelled
out by the first screw. Since their bottom part is perpendicular to x̂, it can be rearranged linearly in their
ŷ and ẑ components. Finally, the bottom part of the first screw can be cancelled out by the bottom part of
the two remaining screws. Those linear operations on the basis screws show that leg L1 can translate in the
Y Z plane and rotate around the x̂ axis at any point on that plane for any configuration. The screw system
bases for the remaining three legs are obtained similarly as:

SL2 =

[
ŷ 0 0
0 x̂ ẑ

]
SL3 =

[
x̂ 0 0
0 ŷ ẑ

]
SL4 =

[
ŷ 0 0
0 x̂ ẑ

]
. (20)

We can assign those values in T0 to obtain

T0 =



[
x̂
0

] [
0
ŷ

] [
0
ẑ

]
0 0 0 0 0 0 0 0 0

0 0 0

[
ŷ
0

] [
0
x̂

] [
0
ẑ

]
0 0 0 0 0 0

0 0 0 0 0 0

[
x̂
0

] [
0
ŷ

] [
0
ẑ

]
0 0 0

0 0 0 0 0 0 0 0 0

[
ŷ
0

] [
0
x̂

] [
0
ẑ

]


. (21)

Similarly, we can assign a screw basis to each joint of the platform segment Pi to obtain

SPi =

[
ẑ ẑ

rPi1 × ẑ rPi2 × ẑ

]
≡
[

ẑ 0
rPi2 × ẑ (rPi2 − rPi1)× ẑ

]
, (22)

where rPij is the position of the revolute joint j of platform segment Pi.
When connecting the first platform segment P1, we first calculate the nullspace K ′1. As mentioned in

3.4, we can omit the last 6 columns of T0 at this stage for simplicity as their relative mobility is zero and
they would remain unchanged by the nullspace multiplication even if they were considered. We have

K ′1 = Null
[
T0,(1−2) SP1

]
= Null

[
x̂ 0 0 −ŷ 0 0 ẑ 0
0 ŷ ẑ 0 −x̂ −ẑ rP11 × ẑ (rP12 − rP11)× ẑ

]
. (23)

To perform the nullspace calculation analytically, one can refer again to Equation (3) for the allowed
mobility in a single-loop. Following this equation, the set of independent vectors in K ′1 is obtained by
considering the intersection of each vector i in

[
T0,(1−2) SP1

]
with the sum of the i − 1 previous vectors.

The first vector with a non-null intersection is the ẑ translation of the column 6 with column 3. The second
one is the last column where the translation of the platform corresponds to a combination of columns 2 and
5. We therefore obtain

K ′1 =

[
0 0 1 0 0 1 0 0
0 λ1 0 0 −1 0 0 −ρ1

]T
K1 =

[
0 0 1 0 0 1
0 λ1 0 0 −1 0

]T
, (24)
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where the particular value of λ1 depends on the orientation of the vector (rP12 − rP11)× ẑ in the XY plane
and is the ratio of displacement in the ŷ direction to the displacement in the x̂ direction as in[

0
x̂

]
+ λ1

[
0
ŷ

]
= ρ1

[
0

(rP12 − rP11)× ẑ

]
. (25)

We can now multiply the first six columns of T0 with K1 to obtain

T0K1 = T1 =



[
0
ẑ

]
λ1

[
0
ŷ

]
0 0 0 0 0 0[

0
ẑ

]
−
[
0
x̂

]
0 0 0 0 0 0

0 0

[
x̂
0

] [
0
ŷ

] [
0
ẑ

]
0 0 0

0 0 0 0 0

[
ŷ
0

] [
0
x̂

] [
0
ẑ

]


. (26)

This is the matrix of mobility when the platform segment P1 is connected between leg L1 and L2. The
first column means that the translation in the ẑ direction is now the same in both legs, and the second
column means that a translation in ŷ in the leg L1 is coupled to a translation in x̂ in leg L2. Both effectors
E1 and E2 have now lost their ability to provide rotation since the corresponding screw bases were not part
of the nullspace.

We now repeat the same procedure for each platform segment. When connecting platform segment P2,
we can omit for now the last three columns of T1, which only include SL4, as those will produce columns of

value
[
0T 0T

]T
in T1,(2−3). We have

K ′2 = Null
[
T1,(2−3) SP2

]
= Null

[
0 0 −x̂ 0 0 ẑ 0
ẑ −x̂ 0 −ŷ −ẑ rP21 × ẑ (rP22 − rP21)× ẑ

]
, (27)

which gives us

K ′2 =

[
1 0 0 0 1 0 0
0 1 0 λ2 0 0 ρ2

]T
K2 =

[
1 0 0 0 1
0 1 0 λ2 0

]T
(28)

with [
0
x̂

]
+ λ2

[
0
ŷ

]
= ρ2

[
0

(rP12 − rP11)× ẑ

]
. (29)

We can now multiply the first 5 columns of T1 with K2 to obtain

T1K2 = T2 =



[
0
ẑ

]
λ1

[
0
ŷ

]
0 0 0[

0
ẑ

]
−
[
0
x̂

]
0 0 0[

0
ẑ

]
λ2

[
0
ŷ

]
0 0 0

0 0

[
ŷ
0

] [
0
x̂

] [
0
ẑ

]


. (30)

The same procedure is now repeated for platform segment P3. This time, all columns of T2 must be

considered since no
[
0T 0T

]T
column is formed in T2,(3−4). The whole procedure is shown below as
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K ′3 = Null
[
T2,(3−4) SP3

]
= Null

[
0 0 −ŷ 0 0 ẑ 0
ẑ λ2ŷ 0 −x̂ −ẑ rP31 × ẑ (rP32 − rP31)× ẑ

]

K ′3 =

[
1 0 0 0 1 0 0
0 λ3/λ2 0 −1 0 0 −ρ3

]T
K3 =

[
1 0 0 0 1
0 λ3/λ2 0 −1 0

]T
[
0
x̂

]
+ λ3

[
0
ŷ

]
= ρ3

[
0

(rP12 − rP11)× ẑ

]

T3 = T2K3 =



[
0
ẑ

]
λ3λ1
λ2

[
0
ŷ

]
[
0
ẑ

]
−λ3
λ2

[
0
x̂

]
[
0
ẑ

]
λ3

[
0
ŷ

]
[
0
ẑ

]
−
[
0
x̂

]



. (31)

Finally, the last segment P4 is connected between leg L4 and L1. Since the first column for leg L4 and

L1 are both the ẑ translation, this leads to a
[
0T 0T

]T
column in in T3,(4−1). The nullspace approach gives

us

K ′4 = Null
[
T3,(4−1) SP4

]
= Null

[
0 0 ẑ 0

0 −x̂− λ3λ1
λ2

ŷ rP41 × ẑ (rP42 − rP41)× ẑ

]
. (32)

The first vector of K ′4 is indeed
[
1 0 0 0

]T
, corresponding to the 0 elements of the first column of

T3,(4−1). Columns 2 and 4 are in the same plane but they can only create a nullspace vector if they are
aligned, i.e if the following condition is respected:[

0
x̂

]
+
λ3λ1
λ2

[
0
ŷ

]
= ρ4

[
0

(rP42 − rP41)× ẑ

]
. (33)

As it was the case with the previous platform segments, we can define λ4 as the ratio of ŷ displacement
over x̂ displacement for P4, which leads to the following condition

λ4λ2 = λ3λ1 . (34)

If this condition is satisfied, the nullspace is given by

K ′4 =

[
1 0 0 0
0 1 0 1

]T
K4 =

[
1 0
0 1

]T
, (35)

which gives the unity matrix and leaves the matrix T3 unchanged. If the condition in Equation (35) is not

respected, the nullspace becomes K ′4 =
[
1 0 0 0

]T
and the configurable platform completely loses its

mobility, leaving only the common translation in ẑ. When the condition in Equation 34 is respected, the
final matrix of mobility is given by Equation 36. The individual mobility of end-effector i is described by the
screw system spanned by the screws of the set of rows i. The two columns of T4 mean that the mechanism
has 2 DOF as a whole. One DOF produces identical translations in the ẑ direction in each leg. The second
DOF produces either x̂ or ŷ translations in each leg for which the velocities are coupled by the various λi
terms. Following the simple mobility criterion of Equation 5, this 2-DOF mechanism has 4 closed-loops, 20
1-DOF joints, and therefore possess (6× 4)− 20 + 2 = 6 overconstraints.
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Figure 7: a) Top view of the mechanism. The reconfigurable platforms has 1 internal DOF and can also move as a whole in the
ẑ direction. E1 and E3 move in opposite directions with same velocity while E2 and E4 also move in opposite directions with
same velocity. b) The mechanism in a singular configuration of the platform. In this case, E2 and E4 becomes independent
while E1 and E3 lose their mobility. The mechanism gain 1-DOF as a whole, shown by the 3 columns of the matrix of mobility.
c) the mechanism in singular configuration of the legs. Effectors E2 and E4 can only translate in one direction, coupling the
motion in the ŷ and ẑ directions for leg E1 and E3

Let explore the conditions for which the mechanism conserves the platform DOF, represented by the
second column in T4 = T3K4 = T3. We can reorganise the basis of the matrix by multiplying this column
with a scalar λ2/ (λ3λ1) such that this DOF corresponds to a unit of velocity of E1 in the positive ŷ direction.

T4 =



[
0
ẑ

] [
0
ŷ

]
[
0
ẑ

]
− 1
λ1

[
0
x̂

]
[
0
ẑ

]
λ2
λ1

[
0
ŷ

]
[
0
ẑ

]
− λ2
λ1λ3

[
0
x̂

]


≡ T3 . (36)

Figure 7 a) shows a case in which the mobility of the platform is conserved. The matrix of mobility
not only provide the allowed DOF of each end-effector, but also the relative velocity of each end-effector
in a given configuration. A general case in which none of the gradient values λi in λ4λ2 = λ3λ1 have the
same value is also possible. We see in this example that one can use the method with analytical vector
notation when possible to describe the full cycle mobility and obtain insights on the mechanism mobility
for different platform segment length ratios. The method can also provide insights into the possible singular
configurations of the mechanism.

4.2. Singular Configurations

In this section, we will consider two cases in which the mechanism is in a singular configuration. The
first case corresponds to a platform singularity in which the mechanism gains 1 DOF. The second case is a
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leg singularity in which the mechanism loses 1 DOF.
First, Let consider that λ1 = λ2 = λ3 = λ4 = 0, which means that all platform segments are oriented

along the ŷ axis. In this configuration, represented in Figure 7 b), E1 and E3 reach their maximal distance
from the centre of the platform. In this case, the connection of the first two platform segments are similar
to the non-singular configuration and Equation (30) becomes

T2 =



[
0
ẑ

]
0 0 0 0[

0
ẑ

]
−
[
0
x̂

]
0 0 0[

0
ẑ

]
0 0 0 0

0 0

[
ŷ
0

] [
0
x̂

] [
0
ẑ

]


. (37)

However, the results of connecting the third platform segment P3 will be different due to the special
conditions on the λ coefficients. Instead of Equation (31), we obtain

K ′3 = Null
[
T2,(3−4) SP3

]
= Null

[
0 0 −ŷ 0 0 ẑ 0
ẑ 0 0 −x̂ −ẑ rP31 × ẑ x̂

]

K ′3 =

1 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 1

T K3 =

1 0 0 0 1
0 1 0 0 0
0 0 0 1 0

T

T3 = T2K3 =



[
0
ẑ

]
0 0[

0
ẑ

]
−
[
0
x̂

]
0[

0
ẑ

]
0 0[

0
ẑ

]
0

[
0
x̂

]



. (38)

Finally, connecting the fourth platform segment P4, we obtain

K ′4 = Null
[
T3,(4−1) SP4

]
= Null

[
0 0 0 ẑ 0
0 0 x̂ rP41 × ẑ x̂

]

K ′4 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 −1

T K3 =

1 0 0
0 1 0
0 0 1

T T4 = T3K4 = T3

. (39)

In this particular configuration, the distance between E1 and E3 in the platform reaches its maximum
as shown in Figure 7 b), and their mobility become null. However, E2 and E4 can still perform infinitesimal
motion in the x̂ direction. Moreover, the method proposed shows that the motion between E2 and E4

is now decoupled and the whole mechanism gains 1 DOF and has now a total of 3 DOF in this singular
configuration, represented by the 3 columns of T4 = T3. Since the mechanism gained 1 DOF, this means it
is a constraint singularity, i.e., a singularity in which some constraints become redundant, thus increasing
the mobility of the mechanism.

On the other hand, we will now consider a leg singularity, in which legs L2 and L4 are extended to their
maximum, as shown in 7 c). In this case the screw system of each leg becomes
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SL1 =

[
x̂ 0 0
0 ŷ ẑ

]
SL2 =

[
ŷ ŷ 0

rL21 × ŷ rL22 × ŷ (rL23 − rL21)× ŷ

]

SL3 =

[
x̂ 0 0
0 ŷ ẑ

]
SL4 =

[
ŷ ŷ 0

rL41 × ŷ rL42 × ŷ (rL43 − rL41)× ŷ

] , (40)

where the leg L2 and L4 lost their ability to translate in the (rLi3 − rLi1) direction. When we close the first
platform segment, equation 23 becomes

K ′1 = Null
[
T0,(1−2) SP1

]
=

Null

[
x̂ 0 0 −ŷ −ŷ 0 ẑ 0
0 ŷ ẑ −rL21 × ŷ −rL22 × ŷ − (rL23 − rL21)× ŷ rP11 × ẑ (rP12 − rP11)× ẑ

] (41)

Unlike the non-singular configuration, which had a nullspace of dimension 2, the nullspace in this case
is of dimension 1. We have

K ′1 =
[
0 λ1 ρ 0 0 1 0 λ2

]T
K1 =

[
0 λ1 ρ 0 0 1

]T (42)

where (rL23 − rL21)× ŷ = λ1ŷ + ρẑ + λ2 (rP12 − rP11)× ẑ. Then the matrix of mobility T1 of equation 26
becomes

T0K1 = T1 =



λ1

[
0
ŷ

]
+ ρ

[
0
ẑ

]
0 0 0 0 0 0[

0
(rL23 − rL21)× ŷ

]
0 0 0 0 0 0

0

[
x̂
0

] [
0
ŷ

] [
0
ẑ

]
0 0 0

0 0 0 0

[
ŷ
0

] [
ŷ

rL42 × ŷ

] [
0

(rL43 − rL41)× ŷ

]


. (43)

The same procedure using the method of Equation 16 is repeated for platform segment P2, P3, and P4.
Those steps will be omitted here since they are fairly similar to what is described in the non singular case,
except that the ẑ translation is now coupled with the mobility of the platform. A important point is that leg
L2 and L4 are symmetrical, thus producing the same translation in ρẑ for opposite but equal translations
in ŷ. The final matrix of mobility T4 is given as

T4 =



λ1

[
0
ŷ

]
+ ρ

[
0
ẑ

]
[

0
(rL23 − rL21)× ŷ

]
−λ1

[
0
ŷ

]
+ ρ

[
0
ẑ

]
−
[

0
(rL43 − rL41)× ŷ

]


. (44)

Since T4 has only one column, the mechanism has only 1 DOF in this configuration.
We have shown with this example how the method can be applied analytically to provide the relative

coupled velocity of all end-effectors in any configuration of the mechanism. The method also provides
insights on the mobility conditions of the mechanism as well as a description of its singularities. Although
the analytical method requires some inspection, the method does not require any a-priori intuition on the
mobility of the mechanism and can therefore be fully automated in an algorithm.
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4.3. Algorithm Method

The only inputs for the algorithm method are the numerical values describing the bases of the screw
systems of each leg and each end-effector segment, as well as the information about which legs are connected
by which end-effector segment. Let us consider the mechanism under the conditions shown in Figure 7 a)
with λ1 = λ3 = 1, and λ2 = λ4 = −1, which means all end-effector segments are at 45◦. Let also assume
that the distance in the XY plane of the middle of the platform segment to the reference frame is

√
2. The

numerical values for valid screw basis matrices for the platform segment in Equation (22) can therefore be
given as:

SP1 =



0 0
0 0
1 0
1 1
−1 1
0 0

 SP2 =



0 0
0 0
1 0
1 1
1 −1
0 0

 SP3 =



0 0
0 0
1 0
1 1
−1 1
0 0

 SP4 =



0 0
0 0
1 0
1 1
1 −1
0 0

 . (45)

Similarly, we can assign numerical values for the screw basis matrices SLi for the legs from Equations
(19) and (40).

SL1 =



0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0

 SL2 =



0 0 0
0 0 1
0 0 0
1 0 0
0 0 0
0 1 0

 SL3 =



0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0

 SL4 =



0 0 0
0 0 1
0 0 0
1 0 0
0 0 0
0 1 0

 . (46)

In appendix Appendix A, we provide a generic Matlab code based on the proposed method that can
numerically calculate the instantaneous mobility of any parallel mechanism with a configurable platform.
This algorithm can also be easily modified to calculate the mobility of any general reconfigurable end-effector
such as in Figure 5 c) since Equation 16 can be applied successively on any pair of leg j and k. The inputs of
the algorithm are the basis matrices of the legs and platforms and the output is the final matrix of mobility
T . The algorithm is a direct method and does not use any numerical analysis procedures to evaluate the
mobility of such mechanisms. It is assumed that the calculation of the rank of the matrices is robust and not
subject to round-off numerical errors, as this was the case in this example using a double-precision floating
point format. It should also be noted that the algorithm uses the whole matrix Ti in the multiplication

TiK(i+1) for each platform without discarding the
[
0T 0T

]T
elements in Ti,(j−k). Using the numerical

inputs from Equations (45) and (46) for a n = 4-legged mechanism in the function of Appendix A, we obtain
the following numerical results:
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T =



0 0
0 0
0 0
0 0

0.1119 −0.3354
−0.4743 −0.1582

0 0
0 0
0 0

−0.1119 0.3354
0 0

−0.4743 −0.1582
0 0
0 0
0 0
0 0

−0.1119 0.3354
−0.4743 −0.1582

0 0
0.000 0.000

0 0
0.1119 −0.3354

0 0
−0.4743 −0.1582



≡



0 0
0 0
0 0
0 0
0 1
1 0
0 0
0 0
0 0
0 −1
0 0
1 0
0 0
0 0
0 0
0 0
0 −1
1 0
0 0
0 0
0 0
0 1
0 0
1 0



=



[
0
ẑ

] [
0
ŷ

]
[
0
ẑ

]
−
[
0
x̂

]
[
0
ẑ

]
−
[
0
ŷ

]
[
0
ẑ

] [
0
x̂

]


. (47)

The equivalence ”≡” between the two vector bases in Equation (47) is obtained by linear operations on
the columns of T . Row 20 in the numerical basis resulted in 0.000 instead of 0, showing that numerical
round-off errors were introduced during the connection of the last platform segment, without affecting the
calculation of the matrix rank in this case. The final result corresponds to the case of Figure 7 a) with
λ1 = λ3 = 1 and λ2 = λ4 = −1, validating the analytical method proposed.

4.4. Example 2

In this second example, we will apply the method to the 3-legged parallel mechanism with multiple end-
effectors shown in Figure 8 with its notation. This mechanism has a 6R spherical reconfigurable platform.
Leg L1 has three revolute joints while leg L2 and L3 each have four revolute joints. The first two joints of
each leg are all oriented in the x̂ direction. The remaining joints of each leg are oriented towards the origin.
Each platform segment has two joints that are also oriented towards the origin.

To describe the coupled mobility of each end-effector and the total number of DOF of this mechanism,
we can apply directly the method presented in Equation 16. We will use the analytical vector representation
to obtain a representation of the mobility of the mechanism in any configuration.

Let first define the matrices containing the basis screws of each leg and each platform segment. We have

SL1 =

[
x̂ x̂ ŝL1

rL11 × x̂ rL12 × x̂ 0

]

SL2 =

[
x̂ x̂ ŝL21 ŝL22

rL21 × x̂ rL22 × x̂ 0 0

]
SL3 =

[
x̂ x̂ ŝL31 ŝL32

rL31 × x̂ rL32 × x̂ 0 0

]

SPi =

[
ŝPi1 ŝPi2

0 0

]
i = 1...3

. (48)
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Figure 8: A 3-legged parallel mechanism with an 6R spherical reconfigurable platform. Leg L1 has three joints while leg L2 and
L3 have four joints each. The first two joints of each leg are all oriented in the x̂ direction. The remaining joints of each leg are
oriented toward the origin. All joints in the platform are also oriented toward the origin. a) the notation for the platform. b)
the notation for the parallel joints in the legs. c) the topology graph of the mechanism.

where the vectors ŝ are all oriented toward the origin. ŝPij is the orientation vector of the platform joint j
of the platform segment i while ŝLij is the orientation vector of the joint j of the leg i.

We can now initiate the matrix of mobility T0 representing the legs before the connection of the platform
segments. Each set of two rows of 3D vectors represents a screw system for each leg.

T0 =



x̂ x̂ ŝL1 0 0 0 0 0 0 0 0
rL11 × x̂ rL12 × x̂ 0 0 0 0 0 0 0 0 0

0 0 0 x̂ x̂ ŝL21 ŝL22 0 0 0 0
0 0 0 rL21 × x̂ rL22 × x̂ 0 0 0 0 0 0
0 0 0 0 0 0 0 x̂ x̂ ŝL31 ŝL32
0 0 0 0 0 0 0 rL31 × x̂ rL32 × x̂ 0 0

 .
(49)

Connecting the platform segment P1 between leg L1 and L2, we obtain

[
T0,(1−2) SP1

]
=

[
x̂ x̂ ŝL1 −x̂ −x̂ −ŝL21 −ŝL22 0 0 0 0 ŝP11 ŝP12

rL11 × x̂ rL12 × x̂ 0 −rL21 × x̂ −rL22 × x̂ 0 0 0 0 0 0 0 0

]
(50)

Since the first link of both legs have the same length and the same orientation, this means that rL11 −
rL12 = rL21 − rL22. Using this relation, we can deduce by inspection that the four revolute joints of leg L1

and L2 oriented in the same x̂ direction are not independent. The same is true for the set of the 5 remaining
joints since they are all oriented toward the same point. The nullspace of this matrix is therefore
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K ′1 = Null
([
T0,(1−2) SP1

])
=



1 −1 0 1 −1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 λ11 0 0 0 0 −λ12 −λ13
0 0 0 0 0 −1 λ21 0 0 0 0 −λ22 −λ23
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0



T

where ŝL1 = λ11ŝL22 + λ12ŝP11 + λ13ŝP12 and ŝL21 = λ21ŝL22 + λ22ŝP11 + λ23ŝP12

. (51)

The matrix K1 corresponds to the 11 first rows of K ′1, i.e, the rows corresponding to the legs. After
connection of the first platform segment, we obtain the matrix of mobility T1 as

T0K1 = T1 =



0 ŝL1 0 0 0 0 0
(rL11 − rL12)× x̂ 0 0 0 0 0 0

0 λ11ŝL22 (λ21ŝL22 − ŝL21) 0 0 0 0
(rL21 − rL22)× x̂ 0 0 0 0 0 0

0 0 0 x̂ x̂ ŝL31 ŝL32
0 0 0 rL31 × x̂ rL32 × x̂ 0 0

 . (52)

The next step is to compute the second closed-loop by connecting the platform segment P2 between Leg
L2 and L3. We have

[
T1,(2−3) SP2

]
=[

0 λ11ŝL22 (λ21ŝL22 − ŝL21) −x̂ −x̂ −ŝL31 −ŝL32 ŝP21 ŝP22

(rL21 − rL22)× x̂ 0 0 −rL31 × x̂ −rL32 × x̂ 0 0 0 0

]
(53)

Again, since the first link of Leg L3 is the same length and orientation as in leg L2, we can conclude
that rL21 − rL22 = rL31 − rL32. From the 6 screw vectors directly towards the origin, three of them must
be dependent. The nullspace of this matrix is

K ′2 = Null
([
T1,(2−3) SP2

])
=


1 0 0 1 −1 0 0 0 0
0 1 0 0 0 0 λ31 −λ32 −λ33
0 0 1 0 0 0 λ41 −λ42 −λ43
0 0 0 0 0 −1 λ51 −λ52 −λ53


T

λ11ŝL22 = λ31ŝL32 + λ32ŝP21 + λ33ŝP22

where (λ21ŝL22 − ŝL21) = λ41ŝL32 + λ42ŝP21 + λ43ŝP22

ŝL31 = λ51ŝL32 + λ52ŝP21 + λ53ŝP22

. (54)

The matrix K2 corresponds to the 7 first rows of K ′2. The new matrix of mobility T2, obtained after the
connection of the platform segment P2 is

T1K2 = T2 =



0 ŝL1 0 0
(rL11 − rL12)× x̂ 0 0 0

0 λ11ŝL22 (λ21ŝL22 − ŝL21) 0
(rL21 − rL22)× x̂ 0 0 0

0 λ31ŝL32 λ41ŝL32 (λ51ŝL32 − ŝL31)
(rL31 − rL32)× x̂ 0 0 0

 . (55)
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We are now left with 4 DOF in total before the connection of the platform segment P3. Keeping in mind
that rL11 − rL12 = rL31 − rL32, the close-loop created by the last platform segment is given as

[
T2,(3−1) SP3

]
=

[
0 (λ31ŝL32 − ŝL1) λ41ŝL32 (λ51ŝL32 − ŝL31) ŝP31 ŝP32

0 0 0 0 0 0

]
(56)

Since those screw vectors represent 5 rotation screws intersecting at the same point, at least two of them
are dependent on the others. The nullspace is given as

K ′3 = Null
([
T2,(3−1) SP3

])
=

1 0 0 0 0 0
0 1 0 −λ61 −λ62 −λ63
0 0 1 −λ71 −λ72 −λ73

T

where (λ31ŝL32 − ŝL1) = λ61 (λ51ŝL32 − ŝL31) + λ62ŝP31 + λ63ŝP32

λ41ŝL32 = λ71 (λ51ŝL32 − ŝL31) + λ72ŝP31 + λ73ŝP32

. (57)

Finally, using K3 as the first four rows of K ′3, we obtain the final matrix of mobility as

T2K3 = T3 =



0 ŝL1 0
(rL11 − rL12)× x̂ 0 0

0 λ11ŝL22 (λ21ŝL22 − ŝL21)
(rL11 − rL12)× x̂ 0 0

0 (λ61ŝL31 + (λ31 − λ61λ51) ŝL32) (λ71ŝL31 + (λ41 − λ71λ51) ŝL32)
(rL11 − rL12)× x̂ 0 0

 .
(58)

The 3 columns of the matrix of mobility T3 show that the mechanism of Figure 8 has 3 DOF in total,
which was also confirmed by modelling the mechanism in CAD. The first DOF corresponds to a translation
perpendicular to the first link of each leg. The direction of this translation will change with the configuration
of the mechanism as (rL11 − rL12) changes value. The second column is a rotation around the last joint of
leg L1 and the third column is a combination of rotations of the last two joints in leg L2. The screw vectors
for each of the 3 sets of 6 rows span the screw system for the mobility of an end-effector. While in the first
DOF, the translations are identical for each legs, the second DOF, for example, shows that a rotation of ŝL1
in leg L1 will create rotation around ŝL22 in Leg L2, and around both ŝL31 and ŝL32 in leg L3. The relative
velocity between the joints are given by the various λ factors. The choice of a rotation around ŝL1 as the
reference for the second DOF is somewhat arbitrary, since it depends on which bases were used to describe
the nullspaces. However, any linear operations on the columns of the matrix of mobility are still allowed to
create a different but equivalent basis representing the 3 DOF of this mechanism.

5. Conclusion

This article presented a general method allowing for the analytical and numerical calculations of the
mobility of overconstraint parallel mechanisms with reconfigurable end-effectors. By successively calculating
the mobility for each closed-loop using the nullspace approach and by tracking its effect on the other loops
using a matrix of mobility combining the mobility of all legs into a single vector space, the total number of
DOF and the twist spaces for the coupled mobility of each leg are revealed. The method can also be used
to analyse singular configurations. Two illustrative examples were presented to showcase how the method
can be applied.
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Appendix A. Matlab Script for Automated Mobility Calculation

In this appendix, we show the Matlab script used to numerically calculate the instantaneous mobility of
the mechanism shown in the example. The script assumes that round-off errors do not affect the calculation
of the rank of matrices. This script can be used for any parallel mechanism with reconfigurable platform
with n legs and n platform segments.

Matlab script:

function T = mobility(n,SL,SP)

%Inputs:
%n: number of legs = number of platform segments
%SL: cell array containing the basis matrices SLi of leg i. SL = {[SL1], [SL2], ... , [SLn]}
%SP: cell array containing the basis matrices SPi of platform i. SP = {[SP1], [SP2], ... , [SPn]}

%Output:
%T: Final matrix of mobility

Tdim(1) = 1;% Initialisation of the column dimension of T0;

%Building empty T0
for i = 1:n

SizeLegtemp = size(SL{i}); SizeLeg(i) = SizeLegtemp(2); %column dimension of SLi
Tdim(i+1) = Tdim(i)+SizeLeg(i); %starting column of SLi

end
T0 = zeros(6*n,Tdim(n+1)-1);

%Building T0
for i = 1:n

T0(6*(i-1)+1:6*i,Tdim(i):Tdim(i+1)-1) = SL{i};
end

T = T0; %initialisation of T

%closing (n-1) first platform segments
for i=1:(n-1)

SizeTtemp = size(T); SizeT = SizeTtemp(2);
Kp = null([T(6*(i-1)+1:6*i,:)-T(6*i+1:6*(i+1),:) SP{i}]);
K = Kp(1:SizeT,:);
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T = T*K;
end

%closing last platform segment
SizeTtemp = size(T); SizeT = SizeTtemp(2);
Kp = null([T(6*(3)+1:6*4,:)-T(1:6,:) SP{n}]);
K = Kp(1:SizeT,:);
T = T*K;
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