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Wearable
Photoplethysmography for
Cardiovascular Monitoring
This article summarizes the key literature on wearable photoplethysmography and
points to future directions in this field.

By PETER H. CHARLTON , PANICOS A. KYRIACOU , Senior Member IEEE, JONATHAN MANT ,
VAIDOTAS MAROZAS , Member IEEE, PHIL CHOWIENCZYK , AND JORDI ALASTRUEY

ABSTRACT | Smart wearables provide an opportunity to mon-

itor health in daily life and are emerging as potential tools

for detecting cardiovascular disease (CVD). Wearables such as

fitness bands and smartwatches routinely monitor the photo-

plethysmogram signal, an optical measure of the arterial pulse

wave that is strongly influenced by the heart and blood vessels.
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In this survey, we summarize the fundamentals of wearable

photoplethysmography and its analysis, identify its potential

clinical applications, and outline pressing directions for future

research in order to realize its full potential for tackling CVD.

KEYWORDS | Cardiovascular (CV); photoplethysmogram (PPG);

pulse wave; sensor; signal processing; smartwatch.

I. I N T R O D U C T I O N
Cardiovascular disease (CVD) is a major burden on indi-
viduals and societies worldwide. In 2015, there were an
estimated 422 million cases of CVD and 18 million deaths
due to CVD [1]. Several effective strategies have been iden-
tified to reduce cardiovascular (CV) risk, including drugs,
such as antihypertensives, lipid-lowering agents, and anti-
coagulants, and lifestyle changes, such as regular exercise,
improved diet, and weight control [2]. Approaches to
identify individuals at risk of CVD could prompt these
interventions and help reduce CVD-associated mortality
and morbidity.

The proliferation of smart wearables equipped with
photoplethysmography sensors provides an opportunity to
monitor CV health in daily life. Photoplethysmography has
already had a profound impact on clinical care through
its use in pulse oximeters, which are routinely used to
assess blood oxygen saturation in a wide range of clin-
ical settings. The photoplethysmogram (PPG) signal is a
measure of arterial blood volume, which fluctuates with
each heartbeat and is used by many wearables to monitor
heart rate (HR). The PPG also contains information on
the cardiac, vascular, respiratory, and autonomic nervous
systems. Consequently, signal processing techniques have
been developed to extract additional physiological parame-
ters from the PPG. If these techniques could be refined and
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Table 1 Further Reading on Photoplethysmography

validated for use in daily life, then potentially wearables
could be used for CV monitoring and to inform clinical
decisions.

Current trends indicate that, in the future, smart wear-
ables may be even more widely used. The number of peo-
ple using wearables is growing rapidly [3]: it is estimated
that there will be over one billion wearable devices in
2022, rising from 526 million in 2017 [4]. Furthermore, it
is predicted that global spending on wearables will exceed
$80 billion in 2021 [5]. Notwithstanding the potential
barrier of cost, it is envisaged that wearables could be used
for widespread CV monitoring, benefiting both individuals
and society.

This survey presents a review of wearable photoplethys-
mography. It is a narrative review, summarizing key lit-
erature on the topic. The review is structured as follows.
Section II provides an introduction to photoplethysmog-
raphy. Section III presents an overview of PPG signal
processing. Section IV details potential clinical applications
of wearable PPG-based devices. Section V describes direc-
tions for future research. Section VI lists resources avail-
able to aid researchers in the field. Recommended further
reading is provided in Table 1, including key review papers
by Allen (written before wearable photoplethysmography
devices were available) [6] and Sun and Thakor (which
focused on noncontact photoplethysmography) [7].

II. P H O T O P L E T H Y S M O G R A P H Y
This section introduces photoplethysmography, a noninva-
sive, optical technique for measuring the PPG [6].

A. Photoplethysmography in Clinical Practice

Photoplethysmography was first developed in the
1930s [6]. Its potential applications in CV monitoring
were quickly realized, as it was soon proposed that it
could be used to identify differences in arterial elasticity
between healthy and diseased subjects [34]. It was not
until almost half a century later, in the 1980s, that pho-
toplethysmography entered widespread clinical use in the
form of pulse oximeters [35]. Pulse oximeters have had
a profound impact on clinical care, initially enabling con-
tinuous oxygen saturation monitoring during anesthesia,
which had “almost never been done before” [36]. They
are now used in a wide range of clinical settings [37].
In intensive care, pulse oximeters are often used for HR
monitoring in newborn babies [38] and can help avoid
exposing premature infants to dangerous levels of sup-
plementary oxygen, which can lead to blindness [39]. In
hospital wards, pulse oximeters are used to obtain HR and
oxygen saturation measurements in acutely ill patients,
which can be used to identify early signs of clinical dete-
rioration [40]. In primary care, they are used to assess
respiratory diseases [41]. The role of pulse oximeters con-
tinues to grow, as they have recently been recommended
for remote management of COVID-19 in the home [42].
There are many more potential clinical applications of
photoplethysmography besides pulse oximetry, which are
in various stages of development (see Section IV).

B. PPG Signal

1) Acquisition: The PPG is a signal comprising infor-
mation on arterial blood volume. It is obtained by mea-
suring the light either reflected from, or transmitted
through, a tissue bed. These two approaches are known,
respectively, as reflectance and transmission mode photo-
plethysmography. Pulse oximeters often use transmission
mode, whereas wearables often use reflectance mode. For
instance, smartwatches and fitness bands acquire the PPG
in the reflectance mode by illuminating the skin at the wrist
using an LED and measuring the amount of reflected light
using a photodetector [see Fig. 1(a)]. Smart rings use a
similar approach at the finger [see Fig. 1(c)]. The PPG
can also be measured using a camera, either in contact
with the skin (such as by placing a finger on a smartphone
camera) or from a distance [7]. The range of inexpensive
options for acquiring the PPG signal makes it an attractive
technology for health monitoring.

2) Origins: The PPG signal is produced through the
complex interaction of light with multiple tissue compo-
nents [47]. As shown in Fig. 1(d), it consists of a baseline
component and a pulsatile portion. The pulsatile portion of
the PPG is primarily determined by the volume of arterial
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Fig. 1. Acquiring PPG signals. (a)–(c) Cross sections of the wrist and finger showing Typical configurations for acquiring PPG signals.

(b) Wearable PPG sensors. (d) Physiological Origins of the PPG signal, showing attenuation of light due to pulsatile arterial blood, venous

blood, and other tissues. (e) Comparison of PPG recordings (left) and their frequency spectra (right) with electrocardiogram (ECG)

measurements during different activities, acquired using infrared reflectance photoplethysmography at the finger. (f)–(h) Key features of a

PPG pulse wave and how they change with age and exercise. See the Supplementary Material for additional details and images. Sources:

(a) and (c) are adapted from [43] (public domain), (b) is adapted from https://freesvg.org/vector-drawing-of-outline-of-a-raised-hand (public

domain), (d) is adapted from [44] under CC BY 4.0, (e)–(h) data from the Vortal dataset, acquired at the finger [45], and (f) is adapted

from [46] under CC BY 4.0.
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blood in the tissue bed, which increases and decreases with
each heartbeat. Fluctuations in venous blood volume also
affect the signal.

Other factors that influence the PPG include the temper-
ature [48], [49], the use of reflected or transmitted light,
and the anatomical measurement site [50]. The wave-
length of light also affects the PPG measurement [18] since
green light penetrates less deeply than red and infrared
light [51]. Breathing also influences the PPG signal at sub-
cardiac frequencies in three ways (see the Supplementary
Material): amplitude modulation, frequency modulation,
and baseline wander [24]. The PPG signal is suscepti-
ble to motion artifact, as shown in Fig. 1(e), and good
skin contact is required to obtain high-quality signals [7].
Peripheral vasoconstriction can also result in low-quality
signals [52]. Finally, the PPG can be affected by changes
in the height of measurement relative to the heart [53].
These factors should be taken into account when designing
sensors to obtain CV measurements.

The shape of PPG pulse waves contains much physi-
ological information. The shape of a PPG pulse wave is
determined primarily by the heart and blood vessels. Major
features of the pulse wave are shown in Fig. 1(f). Exem-
plary changes in its shape with age and during recovery
from exercise are shown in Fig. 1(g) and (h), respectively.
The shape is influenced not only by the incident wave
transmitted through the arteries from the heart but also
by reflected waves from a range of arterial sites [6].
While there are similarities between PPG and arterial
blood pressure (BP) pulse waves, their shapes differ [54]
because the signals are produced by different physiological
mechanisms. The mechanisms underlying the PPG pulse
wave shape are not yet fully understood [6].

3) Measurement Units: There is no widely accepted mea-
surement unit for the PPG signal. PPG signals are often
reported as being unitless or in arbitrary units (as in this
article). PPG signals can also be expressed in Volts, as
the light intensity detected by PPG sensors is commonly
converted to a voltage through a photodiode. In this case,
the pulsatile component of the PPG can be of the order of
1 mV in amplitude [55] although lower amplitudes can be
caused by technical factors, such as inappropriate gain con-
trol, or physiological factors, such as vasoconstriction [9].

It could be beneficial to standardize PPG measurement
units to facilitate intersubject and intrasubject compar-
isons. Potential approaches include, first, expressing the
PPG signal as a fraction of the signal obtained without
attaching the device to the body. For instance, in the trans-
mission mode, a calibration reading could be obtained
without the finger being inserted into the probe and
subsequent measurements expressed as a proportion of
this initial reading. Second, a “decibels relative to full-
scale” approach could be used, expressing the amplitude
of the pulsatile component as a proportion of the sys-
tem’s operating range. Third, amplitudes of PPG features
could be normalized by the PPG’s baseline amplitude

(i.e., offset)—an approach already used to calculate the
perfusion index [56]. Any approach to apply measurement
units to the PPG should take into account that the mea-
sured light intensity can be affected by factors such as
ambient light intensity, transmitted light intensity (which
devices can vary dynamically), and sensor contact.

C. Wearable PPG Device Design

The design of wearable PPG devices must take into
account several considerations, such as signal quality, user
acceptability, cost, and power consumption. Key design
considerations are now summarized, and the reader is
referred to [11] for a more detailed treatment.

1) Measurement Site: The choice of PPG measurement
site influences both user acceptability and the usefulness
of PPG signals. Many consumer devices are worn on the
upper wrist, a site that is widely accepted [57]. How-
ever, the PPG measured at the upper wrist differs from
that at other sites. First, the pulse wave shape at the
upper wrist differs from that at the finger [58], [59].
This may be because the upper wrist PPG is dominated
by microvascular blood, whereas the finger PPG is more
strongly influenced by blood flow in the digital arteries
[see Fig. 1(a) and (c)]. Second, the signal amplitude at
the upper wrist is lower than that at other sites, such as
the underside of the wrist [55]. Alternative measurement
sites include the arm [60] (mounting the sensor in an
armband), the outer or inner ear [61], [62] (earbuds),
the chest (chestband or adhesive patch), or the face (smart
glasses). These alternative sites can have advantages over
the wrist, such as being less prone to motion artifact [63]
or vasoconstriction [62], and providing more accurate HR
measurements [64].

2) Sensor Configuration: The configuration of a PPG sen-
sor has a large impact on the PPG signal quality. The design
should maximize the proportion of light passing through
the tissue region of interest while minimizing the influence
of ambient light and the amount of light scattered from the
skin surface. Key considerations include [55] the geometry
of LED and photodiode positioning, since configurations
in which LEDs surround the photodiode result in higher
PPG signal amplitudes, the spacing between an LED and
the photodiode, since a shorter spacing results in higher
amplitudes, and the use of an optical barrier between
the LED(s) and photodiode, which can increase the signal
amplitude.

PPG signal quality can also be improved by acquiring
multiple PPG signals from a single sensor. Multiple PPG
signals can be obtained by either: 1) having multiple
sets of LEDs and photodiodes in different positions or
2) having multiple LEDs surrounding a single photodiode
and illuminating each sequentially to obtain PPGs with
different measurement paths. A composite PPG signal can
then be obtained by combining the individual signals by:
1) averaging with all signals weighted equally [65] or
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according to their quality [55] or 2) using decomposition
to extract significant feature components [66].

There are also benefits to acquiring other signals simul-
taneously with the PPG, such as the electrocardiogram
(ECG) (for pulse arrival time (PAT) measurement), and
an accelerometry, gyroscope, or second PPG signal (for
motion artifact removal—see Section III-A2).

3) Wavelength of Light: The wavelength of light emitted
by the LED(s) in a PPG sensor has an impact on the
resulting signal. Common wavelengths include green (the
shortest), red, and infrared (the longest). Longer wave-
lengths penetrate to deeper depths [47] and are, thus,
influenced by different levels of the vasculature. Conse-
quently, red and infrared wavelengths are typically used
for transmission mode photoplethysmography. In contrast,
green is often used in reflectance mode, resulting in higher
quality PPG signals [67], greater robustness to tempera-
ture changes [48], and more accurate HR monitoring [68].

4) Sensor Attachment: The way in which PPG sensors
are attached to the body influences the PPG signal. First, it
is important to maintain good contact with the skin. Flexi-
ble and adhesive sensors are emerging, which may improve
contact and, consequently, the signal quality [55], [69].
Second, the contact pressure resulting from the attachment
can influence pulse wave shape and timing, meaning that
it should ideally be kept constant or calibrated when
performing analyses using these signal characteristics [70].
Higher contact pressures have been found to increase the
accuracy of HR monitoring during exercise [71].

III. P P G S I G N A L P R O C E S S I N G
This section presents steps to preprocess PPG signals,
extract pulse wave features, estimate physiological para-
meters, and use machine learning to develop PPG signal
processing techniques.

A. Preprocessing

The following preprocessing steps are often taken prior
to analysis.

1) Digital Filtering: The PPG signal may be filtered
to eliminate irrelevant frequency content [74], such as
high-frequency noise or low-frequency baseline wander, as
shown in Fig. 2(a) and (b). The choice of filter technique
and filter order can affect PPG morphology [74]. There-
fore, filter cutoff frequencies should be chosen according
to the analysis. High-frequency noise can be eliminated
using a low-pass filter. A low-pass cutoff frequency as
low as 2.25 Hz may be suitable for HR estimation [75],
whereas higher cutoff frequencies are required for analyses
of pulse wave timing (such as 5 Hz for interbeat interval
(IBI) calculation [76]) and pulse wave shape (such as
20 Hz for feature extraction [77]) [11]. Low-frequency
baseline wander can be eliminated using a high-pass filter.
For HR estimation, the high-pass cutoff should be less
than the HR (e.g., 0.4 Hz [75], ensuring that even the

lowest plausible HR of 30 bpm is preserved). In contrast,
a much lower cutoff frequency is required for respiratory
rate (RR) estimation (e.g., 0.05 Hz [24], ensuring that the
lowest plausible RR of 4 bpm is preserved). Consequently,
different filtering strategies may be required to obtain
different parameters (such as HR, BP, and RR).

2) Motion Artifact Removal: Techniques for removing
motion artifacts from the PPG fall into two categories:
those which use a single PPG signal and those which
use a simultaneous reference motion signal alongside
the PPG signal. Motion artifacts can be removed from a
single PPG signal using techniques, such as a periodic
moving average filter [78], waveform synthesis through
stochastic modeling [79], adaptive filtering, and signal
decomposition [80]. Reference motion signals that can
be used include accelerometry [81], [82], the gyroscope
signal [83], or a PPG signal of a different wavelength (such
as using an infrared PPG to remove motion artifact from a
green PPG) [84]. For further details, see [13] and [85].
Motion artifact removal is particularly helpful for facilitat-
ing HR monitoring during exercise [13] although, in many
situations, it is preferable to only estimate parameters from
high-quality signals to increase accuracy.

3) Signal Quality Assessment: Signal quality assessment
can be used to identify periods in which parameters
cannot be reliably estimated, as shown in Fig. 2(c).
Several approaches have been proposed, including statis-
tical analysis of pulse wave shape [56], assessing the level
of perfusion through the perfusion index (the ratio of the
amplitude of the pulsatile component of the PPG to its
baseline) [56], assessing the similarity of successive pulse
wave shapes using template matching [86] or dynamic
time warping [87], and deep learning [88]. For further
details of techniques, see [10]. Typically, signal segments
are deemed to be either high or low quality through the use
of empirical thresholds. It is important to select a threshold
suitable for the intended application, as a very high-quality
signal might be required for analysis of pulse wave shape,
whereas a lower quality signal could be acceptable for HR
monitoring.

Wearables already assess PPG signal quality in order
to determine whether HR values are accurate [86]. Sim-
ilarly, novel techniques have been developed to determine
whether derived RRs are accurate [89]. Additional tech-
niques will be required to determine which pulse waves
can be used to obtain reliable CV parameters.

B. Identifying Individual Pulse Waves

Individual pulse waves must be identified in order to
obtain IBIs (the time between consecutive pulse waves)
and extract pulse wave features from individual waves.
Approaches to identify individual pulse waves in the PPG
seek to overcome two key challenges: 1) pulse waves
can exhibit two peaks, particularly in young subjects
[see Fig. 1(g)] and 2) artifacts can create spurious peaks
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Fig. 2. Preprocessing PPG signals. (a) Filtering to eliminate low-frequency content. (b) Filtering to eliminate high-frequency content.

(c) Assessing PPG signal quality: segment of PPG signal containing a period of low-quality signal (red) from which pulse wave features

cannot be reliably extracted. (d) Representing a PPG signal in phase space using symmetric projection attractor reconstruction. Sources:

(a) and (b) data from the Vortal dataset, acquired using infrared reflectance photoplethysmography at the finger [45], (c) data from the PPG

diary study [72], and (d) data from the Vortal dataset, acquired at the finger using a clinical monitor [73].

[see Fig. 1(e)]. Most approaches start by bandpass filtering
the PPG to attenuate noncardiac frequencies. The band-
width can be determined by the range of plausible HRs
(such as 0.4–2.25 Hz [75]) or an initial HR estimate, HRi

(such as 0.9HRi—2.5HRi [90]).
The following approaches have been used to identify

pulse waves.

1) Detect Maxima or Minima in the PPG: Maxima (or
minima) are detected as markers of candidate pulse waves

[75], [91]–[97]. Candidate pulse waves are only accepted
as true pulse waves if the maxima (or minima) exceed an
adaptive threshold [94], [95] or if the pulse waves have
reasonable amplitude and duration [75], [91], [97].

2) Compare Weakly and Strongly Filtered PPGs: Candi-
date regions containing pulse wave peaks are identified
as time periods of sufficient duration when a weakly
filtered PPG (with a higher low-pass cutoff) is above a
strongly filtered PPG (with a lower low-pass cutoff). The
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moving average schemes can be designed according to
the typical durations of the systolic peak and heartbeat,
respectively [98].

3) Identify Line Segments Indicating Systolic Upslopes:
Candidate systolic upslopes are identified as PPG segments
with a continuously positive gradient [99]–[101] [see the
systolic upslope in Fig. 3(a)]. Segments must be of suffi-
cient duration and acceptable amplitude to be accepted as
true upslopes [99]. The requirement that the gradient is
continuously positive has been relaxed to increase robust-
ness to noise [102].

4) Detect Maximum Upslopes Using the First Deriva-
tive: Candidate points indicating systolic upslopes are
detected from maxima in the first derivative of the PPG
[90], [103]–[106] [see the ms point in Fig. 3(a)]. Only
those above an adaptive threshold are accepted [107],
which can be time-varying [95].

5) Identify Systolic Upslopes Using the First Deriv-
ative: Systolic upslopes can be identified from pairs of
positive- and negative-gradient zero-crossings in the first
derivative, which satisfies adaptive amplitude and duration
thresholds [98].

6) Identify Systolic Upslopes Using a Slope Sum Function:
A slope sum function is designed to amplify upslopes and
attenuate the remainder of the signal, allowing systolic
upslopes to be identified with an adaptive threshold [98].

7) Identify Pulse Onsets Using a Wavelet Transform:
A wavelet transform is used to identify regions containing
pulse onsets [108].

8) Analyze the Local Maxima Scalogram: The local
maxima scalogram is analyzed to detect pulse peaks
[109], [110].

The reader is referred to [111] for further discussion on
approaches for identifying individual pulse waves. It is not
yet clear which approaches perform the best nor whether
a single approach can be used for all patient groups and
recording settings. Some approaches, such as analyzing the
local maxima scalogram, use minimal heuristic informa-
tion, which may make them more suitable for use across
settings, although heuristics may be useful for ensuring
high performance in particular settings. A comparison of
open-source beat detectors on polysomnography data is
presented in [112], and work is ongoing to assess their
performance across a range of settings, such as during
exercise and in the presence of arrhythmias.

C. Extracting Pulse Wave Features

1) Pulse Wave Analysis: Pulse wave analysis is commonly
used to analyze the PPG. Pulse wave features are extracted
in two steps.

First, fiducial points (points of interest) are identified on
the pulse wave or its derivatives, as shown in Fig. 3(a).
The feet and systolic peak are simply detected as the
minima and maximum, whereas reliable detection of the

dicrotic notch and diastolic peak requires the use of deriv-
atives [113]. The second derivative is commonly char-
acterized by five fiducial points, named a–e [9], [115],
[116], which span the time from early systole until the
dicrotic notch. Derivatives are typically derived from the
PPG after eliminating high-frequency noise, which can
otherwise greatly obscure the derivatives. This low-pass
filtering is a compromise between retaining the original
signal features and increasing robustness to noise [10].

Second, features are measured from timings and ampli-
tudes of fiducial points, as shown in Fig. 3(a). Features
measured from amplitudes are often normalized by either
the pulse wave amplitude or, for the second derivative,
the amplitude of a. Once pulse wave features have been
extracted, physiological parameters can be estimated from
them. It is important to only use high-quality signals for
pulse wave analysis, as pulse wave features can be dis-
torted in the presence of noise.

2) Analysis in Phase Space: An alternative approach is to
analyze the PPG in phase space, as illustrated in Fig. 2(d)
[117]–[119]. The figure shows a transformation of a PPG
signal into phase space using symmetric projection attrac-
tor reconstruction. The attractor is defined using the coor-
dinates v and w, which are calculated from three points
on the PPG signal, each separated by one-third of a heart
period [119]. The attractor’s shape is determined by the
shape of the pulse waves, and its density is determined by
variability in pulse wave shape [117], [118]. Techniques
are being developed to extract meaningful features from
the attractor, such as by analyzing its size, shape, rotation,
and density. It has been proposed that this technique may
have advantages over other techniques for quantifying
variability in physiological signals, as it uses the entire sig-
nal rather than solely IBIs (as is the case in HR variability
(HRV) analysis) [120]. Potential applications include the
detection of arrhythmias.

D. Estimating Physiological Parameters

Techniques for estimating key physiological parameters
from the PPG are now described.

1) Heart Rate: HR is already widely measured by wear-
able PPG devices. The HR is measured as the pulse rate
(PR)—the rate of pulse waves detected in the PPG. The
PR is commonly estimated by denoising the signal to
reduce motion artifact, identifying its fundamental fre-
quency [which corresponds to HR in high-quality PPG
signals, such as those acquired at rest in Fig. 1(e)] and
using a tracking algorithm to ensure that PR estimates do
not differ greatly from one window to the next [12]. PR
can also be calculated from IBIs (e.g., the time between
systolic peaks).

The performance of several wrist-worn devices for esti-
mating HR is reviewed in [14] and [121]. HRs have been
found to be acceptably accurate during rest [e.g., sum-
mary mean absolute error (MAE) of 2.15 beats per
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Fig. 3. Processing PPG signals. (a) Two steps in extracting features from PPG pulse waves and their derivatives: (left) identifying fiducial

points and (right) extracting feature measurements (extracting features from PPG pulse waves). (b) Typical process for detecting AF from

PPG signals by quantifying IBI variability using the spread of points on a Poincaré plot (lowest plots, labeled IV.) with ECG signals shown for

comparison—these plots all show data from the same subject with the left-hand plots showing data while in AF and the right-hand plots

showing data while in normal sinus rhythm. (c) Typical processes for developing models to analyze PPG signals using statistical modeling or

machine learning. Sources: (a) is adapted from [113] under CC BY 3.0 (DOI: 10.1088/1361-6579/aabe6a), (b) is adapted from [44] under CC

BY 4.0, and (c) is produced using data from the Vortal dataset acquired at the finger using a clinical monitor [73], data from the PWDB

Database [114], and C. Burnett’s Artificial neural network diagram (https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg)

under CC BY-SA 3.0.
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minute (bpm)] although they are less accurate during
exercise (e.g., MAE of 7.70 bpm during treadmill exer-
cise and 10.64 bpm during cycling) [14]. Furthermore,
different devices have different levels of accuracy [122].
Work is ongoing to improve HR estimation techniques
in the presence of motion [80] and contextualize HR
measurements according to the individual and time of day
[15], [123]. For instance, resting HR (HR during periods of
inactivity) and sleeping HR have been proposed as useful
markers of health [15], [31]. Future studies on the validity
of wearable HR devices will benefit from recent guidelines
for assessing and reporting performance [124].

2) Pulse Rate Variability (PRV): PRV is the variability
of IBIs derived from a pulse wave signal. PRV and HRV
(the ECG-derived gold standard) can each be assessed by:
1) identifying individual heartbeats in the signals (see
Section III-B); 2) calculating IBIs; 3) eliminating outly-
ing IBIs (using an approach such as that proposed in
[125], which has been applied to the PPG in [126]); and
4) quantifying variability using a range of statistics [127].

Much research has investigated whether PRV can be
used as a surrogate for HRV [17], [128]. There is a
fundamental difference between HRV and PRV: HRV is
obtained from the timings of electrical impulses causing
ventricular contraction, whereas PRV is obtained from the
timings of pulse waves arriving at the periphery. The time
difference between the electrical impulses and pulse wave
arrival consists of the preejection period (the time between
the impulses and ejection of blood into the aorta) and
the pulse transit time (PPT) (the time taken for the pulse
wave to propagate from the heart to the measurement
site). Both of these components are variable, potentially
causing differences between HRV and PRV. Nonetheless,
reviews have concluded that PRV is a good surrogate of
HRV for certain applications at rest. However, it cannot yet
be considered to be a surrogate during exercise or stress
[17], [129]. Potential explanations for this include [17]:
1) motion artifact in the PPG rendering PPG-derived IBIs
less accurate; 2) a lack of motion artifact removal in PRV
studies; and 3) variability in preejection period and PPT
causing additional variability in PPG-derived IBIs.

There are several design considerations for PRV assess-
ment. First, the PPG sampling rate should be sufficiently
high (at least 25 Hz [130]). Second, the PPG can be
interpolated to increase performance [130], [131]. Third,
the choice of the fiducial point from which to obtain IBIs
impacts performance with the tangent intersection point
often giving the best performance [132]–[134].

3) Arterial Blood Oxygen Saturation (SpO2): SpO2can be
measured from two PPG signals acquired using different
wavelengths of light (λ1 and λ2, which are typically red
and infrared) using the expression [135]

Modulation ratio, R =
(AC/DC)λ1

(AC/DC)λ2

(1)

where AC and DC are the amplitudes of the pulsatile and
baseline components of the PPG signal, respectively, and
R is related to SpO2 through an empirically determined
calibration curve [136]. This approach is widely used in
clinical practice to measure SpO2 using pulse oximeters.
Performance can be improved by filtering the PPG to accen-
tuate the heart frequency [137]. An alternative approach
proposed in [138] has been found to provide greater
accuracy when using low-quality PPG signals, although at
greater computational cost [137].

SpO2 measurement is now being incorporated into
smart wearables [139], requiring two PPG signals at dif-
ferent wavelengths. There are several challenges to using
reflectance mode photoplethysmography to assess SpO2 :
1) it is difficult to estimate SpO2 during motion artifact
[140]; 2) it may be difficult to obtain PPG signals of
sufficiently large amplitude [141]; and 3) changes in posi-
tion, contact pressure, and venous blood flow can result
in inaccuracies [142]. More generally, SpO2 measurements
provided by conventional pulse oximeters are susceptible
to errors [143], and they have been found to be less
accurate and less reliable in black patients than white
patients [144]–[147], highlighting the need to improve the
technology.

4) Respiratory Rate: RR, the number of breaths taken
per minute, can be estimated from subtle respiratory mod-
ulations in the PPG [24]. The respiratory modulation of
the PPG can be modeled using three modulations (see
the Supplementary Material): baseline wanders (changes
in the offset), amplitude modulation (changes in pulse
wave amplitude), and frequency modulation (changes
in IBIs). Algorithms to estimate RR generally consist of
three steps [45]. First, respiratory signals are extracted.
These are signals dominated by respiration and are often
obtained by measuring the baseline, amplitude, or fre-
quency of each pulse wave. Second, RR is estimated from
each respiratory signal using either a time-domain tech-
nique (such as detecting individual peaks in the signal)
or a frequency-domain technique (such as identifying the
fundamental frequency of the signal). Third, multiple RRs
can be fused to produce a final estimate. Since respiration
has a much smaller influence on the PPG than the heart,
it is more difficult to obtain reliable RR estimates than HR
estimates. A key challenge is to make algorithms robust
to signal artifact and only output values associated with a
high degree of confidence [89], [148], particularly when
used with wearable data. Recent research has investigated
estimating other respiratory parameters from the PPG,
such as inspiratory time [149], with potential applications
in identifying breathing disorders.

5) Blood Pressure: BP has been estimated from the PPG
using the following inputs [26]: a single PPG [19]; a
proximal and a distal PPG to measure PPT [21], [22];
or a distal PPG signal and a signal indicating the time
of ventricular contraction (e.g., ECG, phonocardiogram)
to measure PAT [20], [21], [150]. Techniques that use
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a single PPG signal are based on analysis of pulse wave
shape using either extracted features [151]–[153] or the
whole pulse wave [154]. Often machine learning is used
to create a model relating pulse wave features to BP [23].
Techniques that use PTT or PAT require a second sig-
nal, such as ECG at the wrist [155] or a signal at the
chest. Several models relating BP to PTT or PAT have
been proposed [156], including models that incorporate
additional variables, such as HR [157]. Models that require
a single calibration cuff measurement are convenient but
potentially less accurate than those that use multiple mea-
surements to form a patient-specific calibration curve [20].
While frequent calibration may be necessary to accurately
estimate absolute BP values from a single PPG, less fre-
quent calibration may be required when estimating BP
from certain PAT measurements [158]. Furthermore, it
may be possible to identify changes in BP from a single
PPG without calibration [159], which could have utility in
detecting clinical deteriorations, such as sepsis.

The volume-clamp method is an alternative PPG-based
approach for measuring BP [160], [161]. This method
consists of: 1) applying an inflatable cuff around the finger;
2) using a PPG sensor to monitor blood volume in the
finger; and 3) continuously adjusting the cuff pressure to
maintain a constant blood volume. The cuff pressure can
then be assumed to be equal to arterial BP. This approach
is used in several clinical monitors [162], but it is less
suitable for use in wearable devices due to the need for
a cuff [19].

Wearables that use the PPG for BP monitoring are
widely available. Most devices are not validated [163]
although some have recently been certified for medical use
[164]–[166]. Studies are now assessing the accuracy and
potential clinical utility of such devices [167]. Standards
have been developed for the validation of wearable, cuf-
fless BP devices [168], [169] although further work is
required to refine validation standards to account for the
issues presented by PPG-based devices [170].

6) Arterial Stiffness: Arterial stiffness is an independent
predictor of CV morbidity and mortality [171]. Since it
is related to BP, it can be assessed using similar tech-
niques to those used to estimate BP. Most techniques use
pulse wave features. Over 30 features have been proposed
for assessing the stiffness of both the large and small
arteries from a single PPG, including those in Fig. 3(a)
[113], [172]. In addition, deep learning has recently been
used to develop a model for assessing arterial stiffness from
the PPG [173]. If arterial stiffness could be assessed from
smart wearables, then, potentially, this approach could be
used to monitor vascular age, the biological age of the
arteries.

7) Left Ventricular Ejection Time (LVET): LVET is the
duration of systole, the time for which blood is ejected
into the systemic circulation in a single heartbeat. It has
been proposed that this could be assessed from the PPG
pulse wave either from the time between pulse onset and

the dicrotic notch (e) [174] or from the PPG’s first deriva-
tive [175]. LVET could be useful for monitoring CVDs, such
as aortic valve disease and left ventricular failure.

8) Additional Parameters: Additional physiological para-
meters have been estimated from the PPG although these
techniques are relatively novel. Blood glucose level, widely
used for diabetes self-management, has been estimated
from PPG pulse wave shape [152], [176], and the pulse
wave has been used to classify patients as diabetic or
not [177]. Cardiac output, monitored in peri-operative and
critical care settings, has been estimated from pulse wave
shape and low-frequency PPG variations [6], [178]. Fitness
parameters, such as energy expenditure and maximal oxy-
gen consumption (V̇O2max), can be estimated from PPG-
derived HRs in combination with other wearable data [11].
The PPG has also been used to assess perfusion [179],
[180], hemoglobin concentration [181], and haemorheol-
ogy [182]. Further research will investigate whether these
can be reliably estimated from wearable PPG signals.

E. Developing Models to Analyze PPG Signals

Statistical modeling and machine learning can be used
to develop models to analyze PPG signals [23]. Typical
processes for developing models are illustrated in Fig. 3(c).
Models either estimate a parameter (such as BP) or provide
a diagnostic classification (such as high or normal BP).
Machine learning and statistical models typically take
pulse wave features as inputs. Deep learning models can
also take a signal segment as an input either in its original
form or represented as an image. Convolutional and long
short-term memory neural networks are often used as deep
learning models although it is not yet clear what the best
neural network architectures are with which to analyze
PPG pulse waves. Deep learning approaches have the
following advantages over traditional feature extraction
approaches: 1) they are hypothesis-free, i.e., there is no
need to hypothesize the pulse wave features of interest
and 2) they do not require pulse wave analysis algorithms,
which can be difficult to design for good performance
across a wide range of conditions (such as different patient
states and different PPG acquisition methods). In the
future, it will be valuable to assess whether any particular
modeling approach provides better performance in a range
of clinical applications, and how the performance of such
approaches compares to traditional pulse wave analysis
techniques.

IV. C L I N I C A L A P P L I C AT I O N S
This section introduces those clinical applications of wear-
able PPG, which have received recent attention in the
literature. Additional applications are described in [11].
Most applications consist of identifying a pathology or
obtaining a physiological measurement that can contribute
to CV disease diagnosis or prognosis. The potential utility
of wearable PPG in these applications lies in its conve-
nience: existing clinical tests can be invasive and more
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time-consuming, are conducted at a specific time rather
than continuously in daily life, and often require a clinical
operator and more expensive equipment. In contrast, PPG-
based approaches could potentially be performed remotely
without direct patient contact and with minimal patient
training. However, they usually cannot be considered as
a replacement for clinical tests often due to their inferior
performance. Therefore, the potential role of PPG-based
approaches is likely to be in the early detection of CVD
and ubiquitous measurement of risk factors, which could
trigger a further clinical assessment.

A. Detecting Atrial Fibrillation

One of the most promising uses of smart wearables is
to detect atrial fibrillation (AF), which can be identified
from pulse wave signals due to the irregular heart rhythm
produced by AF [27]. AF is one of the most common
arrhythmias, diagnosed in 3% of U.K. people over the age
of 35 [183]. It is associated with 25%–33% of strokes
[184]–[187], and with increased stroke fatality and recur-
rence rates [186]. It is important to identify AF since
untreated AF is associated with up to a fivefold increase
in stroke risk [188], [189]. However, it can be difficult to
identify AF as it may not produce symptoms and may occur
only intermittently [190]. Consequently, it is often not
recognized in clinical practice [191], where gold-standard
ECG assessments may not be indicated due to a lack of
symptoms, and intermittent episodes of AF may be missed
as 12-lead ECG assessments are usually conducted at a
single time point in a clinic, rather than over several days
during daily life.

In AF, compared to sinus rhythm, the PPG signal exhibits
greater variability in both IBIs and the shape of the pulse
wave, as shown in Fig. 3(b). Several techniques have been
proposed to assess the irregularity of IBIs and the shape of
pulse waves in order to detect AF from the PPG [27], [28].
In addition, neural networks have been used to detect
AF from PPG signals and PPG-derived HRs [192]. The
performance of techniques for detecting AF from the PPG
has been assessed in several studies [76], [193]–[196]
although further work is required to determine which
approach is most suitable for clinical use [28].

The potential utility of wrist-worn PPG devices for
detecting possible AF has been assessed in recent studies
[197], [198]. In a community study [29], a smartwatch
was used to identify possible AF in 1-min PPG record-
ings by extracting IBIs, determining the irregularity of
IBIs using a Poincaré plot [see Fig. 3(b) IV.], and gen-
erating a notification of possible AF if five out of six
consecutive recordings were classified as irregular. The
positive predictive value (PPV) of notifications was found
to be 0.84, indicating that wearables may have utility for
identifying possible AF. Other aspects of the algorithm’s
performance (such as sensitivity and specificity) were not
assessed. Another study also found a high PPV for possible
AF episodes identified from 45- to 60-s PPG recordings

[30], [199], and further studies are ongoing [200]. Further
work is required to assess the effectiveness and clinical util-
ity of these approaches for opportunistic detection of AF
and for AF screening, as discussed in Sections V-D and V-E.
Indeed, studies are ongoing to assess the performance of
such approaches in a target setting and population [201].
It is most likely that, when used in clinical practice,
PPG-based devices could prompt ECG-based assessment
when possible AF is detected, rather than being used for
decision making on their own [202].

B. Identifying Obstructive Sleep Apnea

Wearables may also be useful for detecting obstructive
sleep apnea (OSA)—the repetitive cessation of breathing
during sleep that can occur due to airway collapse. It is
estimated that almost one billion people worldwide are
affected by OSA [203]. Untreated OSA is associated with
an increased risk of stroke, hypertension, and heart failure
(HF), among others [204]. However, it is thought that the
majority of patients with OSA are undiagnosed due, in
part, to the need for overnight tests in a sleep laboratory
for definitive diagnosis [205].

Three broad approaches have been proposed to identify
apnea events from the PPG. First, desaturations can be
detected from SpO2 values [206]; a desaturation of 4%
is often used as an (imperfect) indicator of apnea [207].
Second, reductions or cessations in breathing can be
detected from changes in PPG-derived respiratory modula-
tions [208], which can be obtained from several features of
the PPG, including pulse amplitudes, areas, and intervals
[209], [210]. Third, the apnea–hypopnea index that is
commonly used to diagnose OSA can be estimated from
the PPG [211]. The introduction of SpO2 monitoring in
wrist-worn wearables may make it feasible to perform
preliminary overnight OSA tests at scale [206]. In addi-
tion, techniques to assess respiratory activity, a marker of
disordered sleep, from wearable PPG may be useful for
identifying OSA [212].

Evidence is emerging demonstrating the potential utility
of wearables for OSA screening. First, a model has been
developed to identify OSA using data, which could be
obtained from a wearable user (pulse oximetry biomarkers
and demographic information) [206]. Second, the per-
formance of this model was found not to be impaired
when the reference sleep stages provided by screening
in clinical practice were unavailable [213]. A key step
now toward using wearables to screen for OSA is to
ensure that SpO2 monitoring in wearables is accurate (see
Section III-D3).

C. Monitoring the Spread of Infectious Diseases

Infectious diseases, such as influenza, have profound
impacts on population health [214]. At the time of writ-
ing, the coronavirus (COVID-19) disease pandemic is
accounting for widespread mortality, economic damage,
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and restrictions to daily life. Infectious disease surveil-
lance data can inform policy on issues such as healthcare
resource allocation and measures to control the spread
of disease. Traditional surveillance systems typically rely
on data acquired in healthcare settings, such as clinical
diagnoses, laboratory tests, health system usage, and mor-
tality records. These data have the advantages of being of
high quality and including specific clinical endpoints. How-
ever, they are subject to delays incurred by the reporting
processes and the time taken for an infection to result in
measured events, such as hospital admission or death.

It has been proposed that wearables could be used
for real-time surveillance of infectious diseases, enabling
earlier response to disease trends. A recent study demon-
strated that influenza surveillance can be improved by
incorporating resting HR and sleep durations measured
by wearable PPG-based devices into prediction mod-
els [31]. Studies have demonstrated the potential utility
of smartwatch data for improving detection of COVID-19
beyond that provided by symptom data alone [215] and
for presymptomatic detection of COVID-19 [216]. In the
future, wearable data could be integrated into surveillance
models, gaining all the advantages of the different data
sources, to inform population-level decisions [217]. The
inclusion of a wide set of variables, including HR, step
count, and temperature, as well as novel parameters,
such as SpO2 , RR, and BP, may enhance performance
(with SpO2 being particularly helpful for detecting hypoxia
associated with COVID-19 [42]). If disease detection is
accurate enough, then wearable data could also inform
individual-level decisions, such as prompting individuals to
self-isolate or be tested. In addition, the ability to measure
HR, RR, and temperature from a wrist-worn wearable may
aid remote diagnosis of community-acquired pneumonia
due to COVID-19 [218].

D. Sleep Monitoring

It has been proposed that smart wearables could be used
for sleep monitoring. It is estimated that approximately
one-third of adults suffer from sleep disturbance [219].
Insufficient sleep is associated with the development
of CV risk factors (such as obesity) and CVD (such
as hypertension and heart disease) [220]. Sleep dis-
orders are currently diagnosed through polysomnogra-
phy, a laboratory-based sleep study involving multiple
sensors placed at several points on the body. However,
polysomnography is expensive and time-consuming, and
uses several, potentially uncomfortable sensors. An alter-
native is to use a smart wearable in daily life, which could
provide earlier detection of disorders and reduce the need
for polysomnography.

Several studies have proposed algorithms for classi-
fying sleep stages from the PPG. Algorithms have used
PPG-derived HR [221], PRV [222], [223], RR [222], pulse
wave morphology [223], and accelerometry in combina-
tion with PPG [222]. If sleep stage classification algorithms

performed sufficiently well, then smart wearables could
identify abnormal sleep patterns and prompt screening for
sleep disorders.

E. Assessing Mental Stress

Mental stress is associated with the development of
CVD, and CV morbidity and mortality [113], [224]. Long-
term social isolation and job strain are associated with
an increased risk of coronary heart disease [225]. Short-
term stressors, such as natural disasters and emergency
duties, are associated with an increased risk of cardiac
death [224], [226]. Stressors are also associated with
elevated BP [227], [228] and stroke [189]. However, it
is difficult to measure stress frequently in everyday life:
salivary cortisol swab tests are often used as a reference
marker of stress [229]. This provides an incentive for
using wearables to monitor stress and assist with stress
management.

Mental stress can be assessed from the PPG using PRV
and pulse wave shape features. The utility of PRV for
assessing stress has been investigated in several studies
[230]–[232], including a study of PRV metrics derived
from short recordings [233]. This approach is closely
related to that used to assess stress from ECG-derived HRV
metrics [234]. In addition, the utility of other pulse wave
features has been investigated [230]. While it has been
observed that stress tends to increase HR and increase
PRV [230], further research is required to determine how
reliably PPG features can be used to monitor stress in daily
life.

F. Assessing Vascular Age

The mechanical properties of the aorta change with
age: both stiffness and diameter increase with age. In
the clinical setting, these changes can be assessed from
aortic pulse wave velocity (PWV), the speed of pulse wave
propagation along the aorta, since PWV is influenced by
both arterial stiffness and diameter. Vascular age can be
defined as the apparent age of an individual’s arteries,
relative to the age of a healthy subject whose arteries
have the same mechanical properties as the individual in
question. Vascular age may have particular utility for CV
risk prediction since aortic PWV has been found to be
predictive of CV events and all-cause mortality [171].

It has been proposed that the PPG could be used to
assess vascular age [26], [32]. Several aging indices have
been proposed based on features of the second derivative
[see Fig. 3(a)]: d/a [235], (b−c−d−e)/a [236], (b−e)/a

[236], and (c + d)/b [237]. It is also hypothesized that the
stiffness and reflection indices (calculated from the timing
and amplitude of the systolic and diastolic peaks) are
indicative of vascular aging [235]. Some of these indices
have been found to be independent predictors of CV risk
and mortality [33], [238], demonstrating their potential
utility for risk prediction. If, in the future, wearable data
can be automatically entered into an electronic health
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record, then, potentially, it could be used to augment
existing risk predictions and identify patients who may
benefit from more detailed CV assessments.

G. Identifying Clinical Deteriorations

Smart wearables could also be used to identify deteri-
orations in chronic and acute illnesses since several para-
meters that are indicative of different organ systems can be
derived from the PPG. For instance, HR, RR, and SpO2 have
previously been derived from the PPG to identify deterio-
rations in health [239], including changes prior to cardiac
arrests [46]. If similar approaches could be implemented in
smart wearables, then they could provide early warning of
deterioration, facilitating earlier intervention. PPG-based
wearables can also facilitate remote physiological moni-
toring in the acute care setting, reducing the staff contact
required to monitor patients with infectious diseases, such
as COVID-19 [240].

H. Cardiovascular Risk Prediction

Smart wearables may also enable the identification of
individuals at risk of CVD. The stiffness index (SI) and the
d/a ratio calculated from the PPG’s second derivative may
be predictive of CV mortality [33], [241]–[243]. If indices
were measured by smart wearables, then they could facili-
tate the early identification of at-risk individuals. This is in
contrast to current practice, where CVD screening mostly
requires direct contact with patients.

I. Assessing Response to Exercise

The rate of HR recovery (HRR) after exercise has been
associated with CV events and mortality [244], and post-
operative morbidity [245]. A slower HRR rate is associated
with increased CV risk. Currently, HRR is only routinely
measured in exercise stress tests. It may be possible to
obtain similar measurements using smart wearables [246]
in everyday activities, such as stair climbing [247], or after
intense exercise [248].

J. Identifying Sepsis

Sepsis plays an important role in CVD, contributing to
approximately 24% of HF deaths [249], and increasing
the risk of CVD for years after infection [250]. Early
recognition of sepsis is important for timely administration
of antimicrobial therapy, particularly since approximately
70% of inpatients with sepsis acquire the infection in the
community [250]. Wearables may provide the opportunity
to recognize sepsis earlier by identifying changes in RR, BP,
HRV, and temperature, which can occur during the onset
of sepsis [251]–[253]. Outstanding research questions
include: 1) which markers change consistently during the
onset of sepsis; 2) what criteria should be used to identify
patients who should be assessed for possible sepsis; and
3) is this approach effective for identifying sepsis?

K. Identifying Heart Failure

HF is a major cause of CV mortality [254]. Approxi-
mately 900 000 people suffer from HF in the U.K., around
40% of whom will die within one year of diagnosis [255].
Early detection of the cardiac dysfunction leading to inci-
dent HF may be beneficial since several causes of the
dysfunction can be halted or reversed [256]. Alterations
in the heart’s response to ventricular preload in HF (the
Frank–Starling mechanism) result in measurable differ-
ences in PPG wave morphology, particularly in response
to standing [175].

If wearables are to be used to identify HF, then it is
important to establish thresholds for identifying patients
at risk of incident HF from PPG-derived metrics. Several
metrics indicative of HF can be calculated from the PPG.
First, the speed of HRR in response to standing is reduced
in HF and is predictive of mortality [257], [258]. Second,
LVET is an independent predictor of incident HF [259].
Furthermore, the reduction in LVET after standing is
smaller in HF patients [260]. Third, the increase in cardiac
contractility after a prolonged beat (due to an extrasystolic
beat or AF) is greater in HF patients [261]. Outstanding
research questions include: 1) which metrics are predictive
of incident HF and 2) what thresholds should be used to
identify patients who warrant screening for HF?

L. Identifying Preeclampsia

Preeclampsia is a complication occurring in 3%-5% of
pregnancies, which is characterized by high BP [262]. It is
important to detect it early, as it can result in maternal
and fetal morbidity and mortality. The PPG pulse wave
shape has been found to differ between pregnant women
with preeclampsia and those without [263]. Consequently,
it has been proposed that the PPG could be used to
identify possible preeclampsia, particularly in resource-
constrained settings [264]. Further work is required to
develop methods to detect preeclampsia from the PPG and
to determine whether they are a useful adjunct to current
clinical practice.

V. R E S E A R C H D I R E C T I O N S
We now describe directions for future research to realize
the potential of wearable PPG for CV monitoring.

A. Understanding the Determinants
of the PPG Pulse Wave

Research into techniques to assess CV state from the
PPG would be greatly aided by a fuller understanding of
how CV properties influence pulse wave shape. Ideally, the
influence of each property on the PPG would be studied
independently. This could be attempted in experiments
involving drug administration or physiological maneuvers
although it is difficult to ensure that only a single prop-
erty changes at once in such studies. A complementary
approach is to simulate the PPG using modeling. Novel
insights obtained using this approach are now presented.
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1) Methods: A computational model was used to sim-
ulate the PPG for healthy subjects aged 25–75 under a
range of CV conditions [114]. Two pulse wave indices that
have been found to be indicative of CV risk were extracted
from the pulse wave: the SI and the d/a index. The SI
is calculated from the time between systolic and diastolic
peaks (ΔT ), and d/a is the ratio of the amplitudes of d and
a points on the second derivative, as shown in Fig. 3(a).

2) Results: First, the ability of the model to reproduce
changes in a pulse wave shape with age was verified.
Fig. 4(a) shows how the SI and d/a changed with age
in the simulations. Both indices exhibited similar trends
to those observed in humans: the SI increased with age,
and d/a decreased with age. This indicates that the
modeling accurately captured changes in PPG features
with age.

Second, the CV determinants of the pulse wave indices
were assessed. In Fig. 4(b), several CV properties were
found to have similar effects on the pulse wave: changes in
arterial stiffness, mean BP, and peripheral compliance all
impacted the portion of the pulse wave between systolic
and diastolic peaks; HR and arterial diameter impacted
the height of the diastolic peak. The determinants of the
SI and d/a are shown in Fig. 4(c). Both indices were pre-
dominantly influenced by arterial properties: large artery
diameter, PWV, and peripheral vascular resistance. The SI
was also strongly influenced by stroke volume, whereas
d/a was influenced by HR. These findings are in keeping
with clinical observations: the SI and d/a are both influ-
enced by BP (which was altered by changing peripheral
vascular resistance in this model) [33], [235], and d/a is
influenced by HR [33]. This indicates that the potential
utility of the SI and d/a for assessing CV risk may be due
at least in part to them being influenced by other CV risk
factors, namely, BP and PWV. Additional results relating to
a wider range of PPG pulse wave features are presented in
the Supplementary Material.

3) Discussion: Individual features of the pulse wave can
be influenced by multiple CV properties. This highlights a
potential challenge to using the PPG pulse wave to monitor
CV health: algorithms for estimating parameters from the
pulse wave must be robust to simultaneous changes in
other parameters. For instance, algorithms to estimate BP
from the pulse wave must be carefully designed to remain
accurate in the presence of changes in arterial stiffness and
peripheral compliance, as these properties influenced pulse
wave shape similar to BP.

B. Developing Algorithms to Estimate
Physiological Parameters

Algorithms to estimate parameters from the PPG need to
perform sufficiently well if they are to be used for clinical
use. Algorithms should be able to measure the parameter
of interest in the presence of changes in other parameters,
despite PPG-derived indices being influenced by multiple

parameters. Algorithms may need to combine several pulse
wave features and should be tested under a range of
CV conditions. Initial development could be performed
using data from controlled experiments, including simu-
lated data. Indeed, models have recently been developed
to simulate the PPG during bradycardia and ventricular
tachycardia [266] and AF [267]. The latter has been
used for the initial assessment of an AF detector [268].
Controlled laboratory experiments then allow algorithm
performance to be assessed in ideal conditions [45].

Following initial development, algorithms need to be
made sufficiently robust to perform well in daily life and
any intended clinical settings. Algorithms need to be robust
to noise due to poor signal quality and motion artifact.
Algorithms may need to be able to identify when para-
meters cannot be accurately estimated due to insufficient
physiological signal content [89]. Algorithm development
is aided by datasets of PPG signals containing reference
parameters and benchmark algorithms for comparison, as
discussed in Section VI.

C. Acquiring PPG Data During Daily Living

Studies that acquire PPG data during daily living will
help identify potential challenges to PPG-based monitoring
in this setting and will help develop potential solutions.
Potential challenges include the following.

1) Assessing Parameter Repeatability: A prerequisite to
using parameters for clinical decision making is that
their measurement should be sufficiently repeatable. Most
investigations of the repeatability of PPG-derived parame-
ters have taken place in laboratory settings [269]. Further
work should investigate which parameters are sufficiently
repeatable when measured in daily life to be used for
clinical decision-making.

2) Contextualizing PPG Measurements According to Activ-
ities: The clinical significance of measurements is deter-
mined not only by their values (such as an HR > 100 bpm)
but also their context (such as whether this measurement
was obtained while asleep or shortly after intense exer-
cise). Techniques are required to contextualize measure-
ments according to activities, so they can inform clinical
decisions appropriately [123]. For instance, HRs can cur-
rently be contextualized according to whether a subject is
awake or asleep, and active or inactive (see Section III-D1).
If activities, such as stair climbing or intense exercise,
could also be identified, then that may provide an oppor-
tunity for automated CV risk assessments in daily life (see
Section IV-I).

3) Optimizing PPG Measurement Duration and Frequency:
The duration and frequency of PPG-based measurements
should be optimized to obtain measurements sufficiently
frequently to capture physiological changes (such as recov-
ery from exercise) and infrequent physiological events
(such as paroxysmal AF) while prolonging battery life.
For instance, the smartwatches in [29] used an adaptive
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Fig. 4. Determinants of PPG pulse wave features: Insights obtained using simulated PPG pulse waves. (a) Comparison of the changes in

two pulse wave indices with age observed in simulated and clinical data. (b) Wrist PPG Pulse waves representative of a healthy 25-year old

male in black and pulse waves under varying CV properties of ±1 standard deviation from the mean for a healthy individual in red and blue,

respectively. (c) Influence of CV properties on two pulse wave features, expressed as the relative sensitivity index: the percentage change in

a feature associated with a change in CV parameter of 1 standard deviation from baseline. Sources: data obtained from the PWDB database

[114] and analyzed using [265]. Clinical data in (a) obtained from [235].

sampling strategy based on physiology and activity. The
watch initially attempted to analyze a 1-min PPG signal
in a period free from movement every 2 h, and if an

abnormality was detected, then this was increased every
15 min [29]. Initial work indicates that PPG signal quality
is highest during sleep when movement and ambient light
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are minimal, supporting the approach of only acquiring
PPG signals during periods of low activity [29]. Other
approaches to reduce power consumption include: 1)
delaying the next measurement after one of low qual-
ity [86]; 2) using compressive sampling to reduce the
sampling frequency while still being able to accurately
obtain information from PPG pulse waves [270], [271];
and 3) using windowed sampling to only sample por-
tions of interest of the PPG pulse wave (such as systolic
peaks) [272].

4) Generating Clinical Notifications and Alerts: Algo-
rithms are needed to generate notifications and alerts from
wearable data. In [29], an irregular pulse notification was
generated if an irregular pulse was identified in at least
five out of six PPG recordings in a 48-h period [29]. Sim-
ilarly, in [46], algorithms to detect clinical deteriorations
in hospital patients generated an alert if at least 50% of
the data acquired within a 30-min period were outside of
normal ranges. Similar algorithms will be required for each
clinical application.

D. Assessing the Clinical Utility of PPG Monitoring

We now overview the steps required to assess the clinical
utility of PPG monitoring during daily living.

1) Validation of Physiological Measurements: It is impor-
tant to validate PPG-derived physiological measurements.
The first step is to assess algorithm performance. For
instance, the performance of algorithms to estimate RR
from the PPG has been assessed extensively with stud-
ies often assessing the accuracy (or bias) and precision
(or variability) of measurements [24]. Ideally, algorithm
validation studies would include PPG data from a range
of settings (such as different daily activities), acquired
using different devices, from different datasets (since
performance can differ greatly between datasets [46]).
Algorithm performance assessments are useful to device
designers for selecting the best algorithm for a device. The
second step is to assess the performance of measurements
provided by devices [273]. This can inform the choice of
device for clinical use and the level of confidence associ-
ated with measurements. In both steps, validation studies
require precise reference measurements of the parameter
of interest, such as reference HRs obtained from simul-
taneous ECG monitoring [81]. Validation studies provide
insight into the clinical applications in which PPG moni-
toring could be beneficial and allow for an appreciation
of the limitations of PPG monitoring. Studies to validate
wearable PPG-based devices should be designed to con-
tribute to regulatory approvals required for medical device
certification [274] and should follow standard validation
protocols where available [170].

2) Suitability for Clinical Decision Support: Wearable PPG
measurements can contribute clinically when they are
incorporated into a clinical decision support system to
prompt a possible diagnosis, such as a specific disease, or

more generally identify a parameter that indicates elevated
CV risk.

Research is required to determine whether wearable
data can add value to existing risk prediction models.
The performance of such systems can be assessed in
two steps. First, the system’s performance for classifying
patients according to whether they have the disease (or
risk factor) or not should be assessed. A system’s clas-
sification performance can be assessed by its sensitivity
and specificity [193]. At this stage, the system can be
assessed in a convenient sample of patients (for instance,
equal numbers of controls and patients with the disease).
Second, its real-world performance should be assessed
in the target population using statistics such as positive
and negative predictive values, which takes into account
disease prevalence. This is important as diagnoses, such
as AF, are present in a small minority of the population,
so even a system with high sensitivity and specificity
(e.g., 95% for each) can result in relatively low PPV
(50% in this example) when used in a population with
low disease prevalence (e.g., 5%): further details of these
calculations are provided in the Supplementary Material.
A low PPV indicates a high frequency of false alerts, at best
increasing healthcare resource utilization, and at worst
resulting in misinformed clinical decisions. Since a system’s
clinical utility is determined not only by its classification
performance but also by disease prevalence, it should be
evaluated in the context of the healthcare pathway for
which it is intended.

The use of wearables for clinical decision support must
be not only effective but “do more good than harm at a
reasonable cost” [275]. First, the benefits of using wear-
ables must outweigh the costs. It is important to consider
the costs of: 1) providing devices to patients who do not
have their own device; 2) training patients to wear and
use the device; 3) clinical review of data; and 4) subse-
quent clinical assessment and treatment resulting from any
new findings. Second, there is a need to understand the
potential harms caused by using wearables and minimize
them. For instance, false positives issued in a screening
program may cause distress, and the act of being screened
may cause anxiety.

E. Integration Into Clinical Pathways

The final step to realizing the full potential of wearable
PPG-based monitoring is to integrate it into clinical path-
ways. We now describe five possible models for integration
and summarize the key requirements for each model.

1) Screening Programs: PPG-based wearables may have
a role to play in screening programs for diseases such as
AF [276], [277]. The performance requirements depend
on the screening program design: a PPG-based device
could be used as an initial screening tool, prompting
further testing in those subjects exhibiting possible AF,
or potentially, it could be used as the sole device in a
screening program. Currently, a diagnosis of AF requires
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Table 2 Datasets of PPG Signals. Definitions: Resp—Respiratory Signal; PCG—Phonocardiogram; Accel—Acceleromertry; Gyro—Gyroscope; EDA—

Electrodermal Activity; EMG—Electromyogram; GSR—Galvanic Skin Response; and ICP—Intracranial Pressure

ECG verification, so the potential role of PPG-based devices
is limited to initial assessment. In this context, a PPG-based
system requires high sensitivity and moderate PPV so that

most patients with AF are identified, and the workload
associated with further testing is manageable. In contrast,
PPG-based devices would need both high sensitivity and
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Table 3 Selection of Devices That Have Been Used to Acquire PPG Signals Continuously From Ambulatory Subjects. Definitions: GSR—Galvanic Skin

Response; Temp—Temperature; Accel—Accelerometry; and BT—Bluetooth

high PPV in order to be considered as potential alternatives
to current ECG-based screening strategies. This is partic-
ularly important in the case of AF because subsequent
anticoagulant treatment has the side effect of increased
bleeding risk.

2) Patient-Led Measurements to Prompt Clinical Assess-
ment: PPG-based wearables could also be used by patients
to prompt clinical assessment. For instance, a patient’s
own device may notify them of a possible arrhythmia.
On reporting this to a physician, the physician may con-
duct further investigation in order to confirm or deny the
diagnosis, such as ECG-based monitoring. For this model,
PPG-based systems require moderate PPV to reduce unnec-
essary healthcare resource utilization. There are currently
significant issues with the widespread use of consumer
devices in this manner. First, even the best devices may
not perform sufficiently well to avoid excessive resource
utilization. Second, a wide range of consumer devices is
available with varying performance levels and no universal
standards. Third, this model is limited to patients who can
afford to use, and choose to use, a wearable device. Fourth,
further research is required to determine whether device-
detected asymptomatic disease confers the same risk as
that detected in clinical practice and whether it should be
treated in the same manner [276]. Nonetheless, patient-
led device use could confer substantial patient benefit in
the future as the performance and capability of devices
improve.

3) Supplementary Clinical Use in Specific Settings: PPG-
based devices could provide supplementary continuous
monitoring in settings where monitoring is, otherwise, lim-
ited to intermittent measurements (such as acute hospital
wards). This could reduce delays in detecting physiologi-
cal changes, which may prompt further investigation and
treatment. The key requirement is the high accuracy of
PPG-derived parameters, allowing changes in parameters
to be tracked. Sufficient accuracy minimizes the frequency
of false alerts, reducing excess demands on healthcare
staff. This model often supplements routine practice, rather
than replacing it, whereby PPG-derived measurements are

only used to prompt additional assessments rather than to
make treatment decisions.

4) Self-Directed CV Health Monitoring: PPG-based
devices may have utility for guiding the self-management
of CV health. For instance, device measurements relating
to fitness and mental stress could prompt users to
change their lifestyle by prompting additional exercise
or minimizing exposure to stressful situations. In this
model, the consequences of erroneous readings would
be less severe, as users would only be prompted to
undertake beneficial lifestyle changes. Therefore, device
requirements are less stringent. At present, there is little
evidence for the long-term health benefits of this approach.
Future research should investigate whether it can
effectively modify CV risk factors (such as BP or HRR after
exercise) and then whether they have long-term benefits.

5) Population-Level Infectious Disease Monitoring: The
use of wearables to track population-level physiologi-
cal changes associated with infectious diseases does not
require as accurate parameter estimates as other models
for two reasons. First, this model could analyze temporal
changes in parameters rather than absolute values, reduc-
ing the need for accurate parameter estimation (although
still requiring sufficient precision). Second, this model uses
data from many individuals to track geographical trends,
limiting the impact of individual errors.

VI. R E S E A R C H R E S O U R C E S
This section presents resources for conducting research
into wearable photoplethysmography: PPG datasets, PPG
analysis tools, and wearable PPG devices.

A. PPG Datasets

Table 2 presents a summary of datasets containing PPG
signals suitable for research. Several datasets were
acquired during routine clinical practice (e.g., MIMIC,
CapnoBase, and University of Queensland datasets),
where as others were recorded from volunteers. The table
provides details of the additional signals available in the
datasets and the recording conditions, indicating the types
of research questions that could be addressed using each
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dataset. Many datasets contain finger PPG signals, whereas
only a few contain wrist PPG signals: pulse wave morphol-
ogy may differ between these sites [58]. Furthermore, very
few datasets have been acquired in daily life conditions
(the PPG-DaLiA Dataset is a notable exception [295]),
making it difficult to compare wearable PPG analysis tech-
niques [28], [72].

B. PPG Analysis Tools

Several tools have been created to analyze beat-to-beat
interval data in order to assess HRV (summarized in [308,
Table 1]), including a benchmarked toolbox to extract
and analyze IBIs from PPG, ECG, and BP signals [308].
PulseAnalyse is a MATLAB tool for analyzing PPG and
BP pulse waves [114], [309]. It performs several steps:
1) beat detection; 2) signal quality assessment; 3) filter-
ing; 4) calculating an average pulse wave; 5) calculating
pulse wave derivatives; 6) identifying fiducial points; and
7) calculating pulse wave indices. This allows the nonex-
pert to analyze PPG signals for research.

C. Wearable Devices for Acquiring PPG Signals

Many wearables are equipped with a PPG sensor (see
[310, Table 1]). However, most do not provide access to
the PPG signal, limiting their utility in research. Table 3
lists a selection of wearable devices that can be used to
acquire and record PPG data. The performance of these
devices varies and can have a considerable impact on the
success of a study, influencing the proportion of time for
which data are captured, whether data capture is biased
toward particular subjects, and the quality of data in
different activities [72].

VII. C O N C L U S I O N
This review has demonstrated the exciting opportunity
afforded by wearable PPG devices to monitor CV health
in daily life and to potentially provide rich information to
aid clinical decision-making in the future. Key conclusions
arising from the review are given as follows.

1) Even though photoplethysmography has been used
clinically for 40 years in pulse oximeters, there is
still much opportunity to exploit the technology for
further benefit, aided by the widespread use of pho-
toplethysmography in wearable devices.

2) The PPG signal contains a wealth of information on
the CV system although there are several confounders
that can either obscure this information (such as
motion artifact) or alter it (such as contact pressure).

3) Key signal processing challenges include the estima-
tion of BP, RR, and arterial blood oxygen saturation
(using reflectance photoplethysmography), each of
which could be of great value clinically.

4) Several promising clinical applications for wearable
PPG devices have been identified. The detection of
an irregular pulse to prompt further assessment for
AF is, perhaps, nearest to being ready for clinical
use.

5) Care must be taken to ensure that wearable PPG
devices meet the standards required for clinical use.
The data provided by devices must be both accurate
and useful. This can be achieved by using quality
assessment to only output parameters when they are
accurate and using other sensors, such as accelerome-
try, to identify periods of standardized activities (such
as while resting or asleep).

6) There are several approaches to integrate wearable
PPG-based devices into clinical pathways, each of
which has different performance requirements.

7) Further development of the technology will be
aided by freely available datasets, particularly those
acquired in daily living with reference labels, and
open-source algorithms against which to compare
new signal processing techniques.
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