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Path Planning for Cellular-Connected UAV: A DRL
Solution with Quantum-Inspired Experience Replay

Yuanjian Li, Student Member, IEEE, A. Hamid Aghvami, Life Fellow, IEEE and Daoyi Dong Senior
Member, IEEE

Abstract—In cellular-connected unmanned aerial vehicle
(UAV) network, a minimization problem on the weighted sum
of time cost and expected outage duration is considered. Taking
advantage of UAV’s adjustable mobility, a UAV navigation ap-
proach is formulated to achieve the aforementioned optimization
goal. Conventional offline optimization techniques suffer from
inefficiency in accomplishing the formulated UAV navigation task
due to the practical consideration of local building distribution
and directional antenna radiation pattern. Alternatively, after
mapping the navigation task into a Markov decision process
(MDP), a deep reinforcement learning (DRL)-aided solution is
proposed to help the UAV find the optimal flying direction within
each time slot, and thus the designed trajectory towards the
destination can be generated. To help the DRL agent commit
a better trade-off between sampling priority and diversity, a
novel quantum-inspired experience replay (QiER) framework
is proposed, via relating experienced transition’s importance
to its associated quantum bit (qubit) and applying Grover
iteration based amplitude amplification technique. Compared to
several representative DRL-related and non-learning baselines,
the effectiveness and supremacy of the proposed DRL-QiER
solution are demonstrated and validated in numerical results.

Index Terms—Drone, trajectory design, deep reinforcement
learning, quantum-inspired experience replay.

I. INTRODUCTION

W Ith flexible mobility, low cost and on-demand deploy-
ment, unmanned aerial vehicles (UAVs) have been

widely used in civilian scenarios, e.g., building safety in-
spections, disaster management, material transport and aerial
photography [2]–[4]. In practice, simple point-to-point (P2P)
wireless links over unlicensed spectrum are commonly utilized
to support the communications between UAVs and ground
nodes, leading to constrained communication performance
[4]. To further enhance wireless transmission qualities be-
tween UAVs and ground transceivers, cellular-connected UAV
technique is deemed as a promising solution, via adopting
widely-existing terrestrial base stations (BSs) to help estab-
lish high-quality ground-to-air (G2A) transmission links [5]–
[7]. With the help of today’s mature cellular networks and
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authentication mechanisms, cellular-connected UAV can help
achieve better reliability, security and transmission throughput
for G2A communications. Besides, cellular-connected UAV
solution is significantly cost-effective because no dedicated in-
frastructures for supporting G2A communications are needed
to construct and worldwide cellular BSs can be reused to aid
G2A transmissions.

Current cellular networks are genuinely established for
serving user equipments on the ground, via downtilting the
main lobe of BS’s antenna towards the earth. This charac-
teristic can enhance cellular coverage facing the ground but
the quality of cellular-aided G2A transmissions cannot be
guaranteed in general [5]. To investigate wireless coverage
support of current cellular network for UAVs, Lyu et al. [8]
proposed a novel analytical framework for characterizing G2A
uplink/downlink transmissions, where downtilted vertically-
directional radiation pattern of BS’s antenna is taken into
account. Besides, more severe inter-cell interferences (ICIs)
introduced by line-of-sight (LoS)-dominated G2A links can
further deteriorate the aerial coverage issue, compared to
terrestrial communication scenario where non line-of-sight
(NLoS) channels are most likely experienced [9]. Fortunately,
the controllable mobility feature of UAV makes it possible
to tackle the aforementioned aerial coverage obstacles via
UAV trajectory planning, either by on-board algorithms or
remote pilots. The UAV navigation approach takes advantage
of an extra degree of freedom, i.e., UAV’s mobility, to realize
aerial coverage enhancement and thus poses less or even
no requirements on reconstruction of existing cellular infras-
tructures. Zhang et al. [7] studied cellular-connected UAV’s
mission completion time minimization problem via invoking
graph theory and convex optimization to design the optimal
flying trajectory from an initial location to a destination,
subject to connectivity constraint of the G2A link. Zhan et
al. [10] maximized data uploading throughput for cellular-
connected UAV under constraints of energy cost and minimum
transmission rate threshold, via path planning with the help of
successive convex approximation (SCA) technique. Bulut et
al. [11] proposed a dynamic programming solution to help
cellular-connected UAV find the best travelling path, subject
to a continuous disconnection duration restriction. Other than
UAV trajectory design for cellular-connected UAV network,
Hu et al. investigated joint optimization problems on energy
consumption and path planning for scenarios of UAV-aided
legitimate monitoring [12] and covert UAV-on-UAV video
tracking and surveillance [13], where the specific optimization
goals are both solved via convex optimization techniques.
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However, standard off-line optimization approaches solving
trajectory design problem suffer from inefficiency due to non-
convex nature of the formulated optimization objective and the
corresponding constraints, even under impractical assumptions
where perfect knowledge of wireless environment is available,
e.g., G2A channel model and BS antenna model. Fortunately,
reinforcement learning (RL) serves as a good complement to
traditional off-line optimization solutions, which is famous for
the favourable ability of learning unknown environment in
a trial-and-error manner [14]. Up to date, RL-related tech-
niques have been widely applied to help solve performance
optimization problems for UAV-mounted networks, e.g., radio
resource allocation, interference mitigation and path planning.
Cui et al. [15] investigated a real-time design on resource
allocation for multiple-UAV network, in which multi-agent
reinforcement learning (MARL) framework was proposed to
realize optimal user selection, power allocation and sub-
channel association. Zeng et al. [5] investigated an optimal
UAV trajectory planning problem on minimizing the weighted
sum of mission completion time and expected transmission
outage duration, via deep reinforcement learning (DRL)-aided
approaches. Meanwhile, quantum theory has been proven to
pose a positive impact on improving learning efficiency for
artificial intelligence algorithms in general, and RL-related
approaches in particular. Dong et al. [16] combined quan-
tum parallelism into conventional RL frameworks (termed
as quantum RL (QRL)), in which higher learning efficiency
and better trade-off between exploration and exploitation were
showcased. Furthermore, Dong et al. [17] proposed quantum-
inspired reinforcement learning (QiRL) to solve intelligent
navigation problem for autonomous mobile robots, where
probabilistic action selection method and novel reinforcement
approach inspired by quantum phenomenon were integrated
into standard RL frameworks. Paparo et al. [18] showed that
quadratic speed-up is achievable for intelligent agents, with
the help of quantum mechanics. Dunjko et al. [19] extended
traditional agent-environment framework into quantum region,
while Saggio et al. [20] demonstrated the first experimental re-
sult of QRL. In [21], Li et al. compared QRL with several RL
frameworks in human decision-making scenarios, suggesting
that value-based decision-making can be illustrated by QRL at
both the behavioural and neural levels. In the field of wireless
communications, Li et al. [22] investigated an optimal path
planning problem for UAV-mounted networks, in which QiRL
solution was demonstrated to offer better learning performance
than conventional RL methods with ϵ-greedy or Boltzmann
action selection policy.

In this paper, we integrate several ideas in quantum me-
chanics and DRL techniques to solve intelligent trajectory
planning problem for cellular-connected UAV networks. The
main contributions of this paper are summarized as follows.

• Different from the vast majority of existing literature,
more practical G2A pathloss model based on one real-
ization of local building distribution and directional an-
tenna with fixed 3-dimensional (3D) radiation pattern are
considered in this paper. Then, a cellular-connected UAV
trajectory planning problem is formulated to minimize the

weighted sum of flight time cost and the corresponding
expected outage duration. Without prior knowledge of the
wireless environment, the focused path planning problem
is challenging to be tackled via conventional optimiza-
tion techniques. Alternatively, the proposed optimization
problem is mapped into Markov decision process (MDP)
and solved by the proposed DRL solution with novel
quantum-inspired experience replay (QiER).

• A novel QiER framework is coined to help the learn-
ing agent achieve better training performance, via a
three-phase quantum-inspired process. Specifically, the
quantum initialization phase allocates initial priority for
the newly-recorded experiences, the quantum preparation
phase generates the updated priority for the sampled
transitions with the help of Grover iteration, and the quan-
tum measurement phase outputs distribution of sampling
probabilities to help accomplish the mini-batch training
procedure.

• To demonstrate advantages offered by the proposed DRL-
QiER solution, performance comparison against represen-
tative baselines is performed. Compared to DRL approach
with standard experience relay (DRL-ER) [23] or prior-
itized ER (DRL-PER) [24], deep curriculum reinforce-
ment learning (DCRL) method [25] and simultaneous
navigation and radio mapping (SNARM) strategy [5],
simulation results demonstrate that the proposed DRL-
QiER solution can achieve more efficient and steady
learning performance. Moreover, the proposed DRL-
QiER does not include extra neural networks like SN-
ARM approach, and requires much less hyper-parameter
tuning like DCRL or DRL-PER method, which means
that it is easier and more robust for implementation.

Although this paper and [5] both focus on designing a DRL-
aided solution for intelligently navigating cellular-connected
UAV, the main differences are: 1) detailed antenna gain model
and pathloss model are provided in this paper, which makes
the formulated UAV navigation problem more specific; 2) to
overcome the bias issue and relieve the heavy computation
burden induced by the extra neural network of SNARM
approach [5], i.e., the model-learning component termed as
radio map, a light but reliable DRL-QiER solution is proposed,
which is model-free and contains only one online training
neural network; and 3) quantum mechanism is introduced to
aid experience replay efficiency for DRL agent, enabling the
proposed DRL-QiER solution have the potential to perform
outstandingly than conventional DRL methods. Moreover,
with the help of Grover iteration in quantum computation,
we extend the QiER method in [26] from 2-dimensional
(2D) discrete rotation to its 3D continuous alternative, which
introduces fewer additional hyper-parameters and thus makes
the QiER technique more flexible and reliable. Last but not
least, compared to our prior work [22], we extend the quantum
aid from enhancing action selection quality for RL frame-
work to improving experience replay performance for DRL
counterpart, breaking the curse of dimensionality and enabling
the agent to practically solve problems with continuous state
space.
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Organization: Section II presents the system model. Sec-
tion III gives a brief overview on DRL. Section IV briefly
introduces quantum state and quantum amplitude amplifica-
tion. Section V presents the proposed DRL-QiER solution.
Simulation results are given in Section VI, while conclusions
are drawn in Section VII.

II. SYSTEM MODEL

A downlink transmission scenario inside cellular-connected
UAV network is considered, where a set U of U UAVs
is served by a set B of B BSs within cellular coverage.
These UAVs are supposed to reach a common destination
from their respective initial locations, for accomplishing their
own missions.1 Intuitively, each UAV should be navigated
with a feasible trajectory, alongside which the correspond-
ing time consumption should be the shortest and wireless
transmission quality provided by the cellular network should
be maintained satisfactorily.2 Without loss of generality, an
arbitrary UAV (denoted as u hereafter) out of these U drones
are concentrated for investigating the navigation task.3 For
clarity, the UAV’s exploration environment is defined as a
cubic subregion A : [xlo, xup] × [ylo, yup] × [zlo, zup], where
the subscripts "lo" and "up" represent the lower and upper
boundaries of this 3D airspace, respectively. Furthermore, the
coordinate of the focused UAV at time t should locate in
the range of q⃗lo ⪯ q⃗u(t) ⪯ q⃗up, where q⃗lo = (xlo, ylo, zlo),
q⃗up = (xup, yup, zup) and ⪯ denotes the element-wise in-
equality. The initial location and the destination are given by
q⃗u(I) ∈ R1∗3 and q⃗u(D) ∈ R1∗3, respectively. Therefore, the
overall trajectory of this UAV’s flight can be fully traced by
q⃗u(t) = (xu(t), yu(t), zu(t)), starting from q⃗u(I) and ending
at q⃗u(D). Besides, the location of arbitrary BS b ∈ B is
indicated as q⃗b = (xb, yb, zb), where q⃗lo ⪯ q⃗b ⪯ q⃗up.

A. Antenna Model

Terrestrial transmission usually assumes that the distance
between transceivers is much greater than the height difference
of their antennas. In this regard, antenna modelling for ter-
restrial communications mainly concerns 2D antenna gain on
the horizontal domain. Unfortunately, 2D antenna modelling
is not sufficiently feasible for G2A transmissions, where high-
altitude UAVs are involved.

In compliance with BS’s antenna modelling of current
cellular networks, directional antenna with fixed 3D radiation
pattern is assumed to be equipped at each BS. Following
standard sectorization, each BS is portioned to cover three
sectors. Therefore, there are 3B sectors in total within the

1For example, one typical UAV application case is parcel collection. Various
UAVs are launched from different costumers’ properties carrying parcels to the
local distribution centre of delivery firm. Besides, collision avoidance during
UAVs’ flights needs to be guaranteed, via separating UAV’s operation spaces
and keeping their flying altitudes higher than the tallest building.

2This paper concentrates on UAV navigation task within coverage of
cellular networks, while global positioning system (GPS)-supported UAV
navigation is beyond the scope of this paper and left as one of future research
directions.

3These UAVs share the same airspace and common location-dependent
database, which means that the trained DRL model can be downloaded by
the remaining UAVs, helping them accomplish their navigation tasks.
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Figure 1: Demonstration of ULA’s coordinate system and
vertical radiation pattern

interested airspace A. Specifically, it is assumed that three
vertically-placed M -element uniform linear arrays (ULAs)
are equipped by each BS with boresights directed to their
corresponding sectors covered by this BS, subject to the
3GPP specification on cellular BS’s antenna model [27]. In
individual and independent coordinate system of each ULA
(e.g., Fig. 1(a)), antenna element’s placing location is denoted
as (0, 0, zm), where m = {1, 2, . . . ,M}.

Then, the wave factor of ULA can be given by

k⃗=
2π

λ
(sin θULA cosϕULA, sin θULA sinϕULA, cos θULA) , (1)

where λ = c/fc represents the wavelength, c denotes the light
speed and fc indicates the carrier frequency. Furthermore, the
steering vector can be derived as

s⃗v=
[
exp
(
−jk⃗(0, 0, z1)T

)
, . . . ,exp

(
−jk⃗(0, 0, zM )T

)]T
. (2)

Suggested by 3GPP, vertical and horizontal radiation patterns
in dB of each ULA are given by

AV (θULA,ϕULA=0◦)=−min

{
12

(
θULA−90◦

Θ3dB

)2

, 30dB

}
, (3)

AH (θULA=90◦, ϕULA)=−min

{
12

(
ϕULA

Φ3dB

)2

, 30dB

}
, (4)

respectively. Then, each ULA’s 3D element pattern in dB can
be calculated as

A (θULA, ϕULA) = −min {− [AV (θULA, ϕULA = 0◦)+

AH (θULA = 90◦, ϕULA)] , 30dB} . (5)

Note that each antenna element of a ULA is directional,
specified by half-power beamwidths Θ3dB and Φ3dB for the
vertical and horizontal dimensions, respectively. To suppress
ICIs in cellular networks, the main lobe of ULA’s radiation
pattern should be electrically steered by θetilt ∈ [0◦, 180◦],
where θetilt = 90◦ means perpendicular to the ULA. To
achieve the steering angle θetilt, fixed phase shift for each
antenna element of ULA can be executed, for which the
complex coefficient of the m-th antenna element is given by

ωm =
1

M
exp

[
−j 2π

λ
(m− 1)dv cos θetilt

]
, (6)
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where dv indicates the vertical elements’ spacing distance.
Furthermore, the array factor can be formulated as

AF =

M∑
m=1

ωm exp
(
−jk⃗(0, 0, zm)T

)
= ω⃗s⃗v, (7)

where ω⃗ = (ω1, . . . , ωM )∗ is the weight vector and the
superscript ∗ indicates the complex conjugate. In the end, the
3D antenna gain of each ULA in dB can be calculated as

G (θULA, ϕULA) = 10 lg

(
|
√

10
A(θULA,ϕULA)

10 AF |2
)
. (8)

Fig. 1(b) illustrates an example for θetilt = 100◦, under
parameter setting Θ3dB = Φ3dB = 65◦, dv = λ/2 and M = 8.
It is straightforward to observe that the main lobe is downtilted
towards the ground for serving terrestrial communications,
and the upper side lobes can be utilized to support G2A
transmissions. Denote i ∈ {1, . . . , 3B} as the label of sectors
in the considered region. Then, the transmit antenna gain from
arbitrary sector to the UAV can be explicitly determined by
UAV’s location, denoted as Gi [q⃗u(t)] = G (θiu, ϕiu), where
θiu and ϕiu can be obtained via taking q⃗u(t), the location
of ULA for sector i and the ULA’s boresight direction into
account.4

B. Pathloss Model

Different from terrestrial transmissions, G2A links are more
likely to experience LoS pathloss. In this subsection, the
adopted G2A channel model will be interpreted.

According to 3GPP urban-macro (UMa) pathloss model
[28], the G2A pathloss in dB from sector i to the UAV at
time t is given by

PLi[q⃗u(t)]=


28.0+22 log10(diu)+20 log10(fc),LoS

−17.5 + 20 log10

(
40πfc

3

)
+

[46− 7 log10 (zu(t))] log10 (diu), NLoS

, (9)

where diu = ||q⃗u(t) − q⃗i||2 outputs the Euclidean distance
between the UAV and the location of ULA for sector i.

To practically trace the type of G2A pathlosses, building
distribution in the interested airspace A should be taken into
consideration. Fig. 2 illustrates an example of local building
distribution, including their horizontal locations on the ground
and heights (Fig. 2(a)), as well as the corresponding 3D view
(Fig. 2(b)). With given building distribution, the type of large-
scale pathloss of G2A channels for UAV at arbitrary location
q⃗u(t), i.e., LoS or NLoS in (9), can be accurately determined
via checking the potential blockages between the UAV and
sectors.5

4Note that the location of ULA for sector i is assumed to be the same as
its associated BS, which is a reasonable consideration because the distance
among ULAs on the BS is much smaller than that between the UAV and the
BS.

5Note that our method generating G2A pathloss is more practical than the
widely-used probabilistic G2A channel model in current literature because
the later can only characterize the average G2A pathloss rather than its real
counterpart.
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Figure 2: The building distribution under consideration

C. SINR at UAV
With the aforementioned antenna and pathloss models, the

received signal of the focused UAV u at arbitrary location q⃗u
over time t can be formulated as

yu(t)=

3B∑
i=1

√
10

Gi[q⃗u(t)]−PLi[q⃗u(t)]
10 hiuxi(t) + nu(t), (10)

where xi(t) ∼ CN (0, Pi) is the emitted message from
sector i to the UAV with average transmit power Pi, hiu

represents the corresponding small-scale fading channel6 and
nu(t) ∼ CN (0, σ2) denotes the received additive complex
Gaussian noise (AWGN) at the UAV. Note that the explicit
type of pathloss, i.e., LoS or NLoS, can be determined
via checking possible blockages according to one realization
of local building distribution as mentioned in Section II-B.
Assume that the UAV is associated with sector î at time t, the
instantaneous signal-to-interference-plus-noise ratio (SINR) at
the UAV can be derived as

Γu(t) =
Pî10

Gî[q⃗u(t)]−PLî[q⃗u(t)]
10 |hîu|2

Iu(t) + σ2
, (11)

where Iu(t) =
∑

i ̸=î Pi10
Gi[q⃗u(t)]−PLi[q⃗u(t)]

10 |hiu|2 means the
ICIs from un-associated sectors.7

6This paper aims to develop a UAV navigation method for arbitrary small-
scale channel model. Hence, we do not specify the type of small-scale fading
here, e.g., Rayleigh [29]–[33], Rician [34], [35] or Nakagami-m [36].

7This paper focuses on the worst case where universal frequency reuse is
assumed, which means that all the non-associated co-channel sectors will be
taken into account as the sources of ICIs.
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D. Problem Formulation

The received SINR (11) is a random variable because
of the randomness introduced by small-scale fadings, with
given UAV coordinate q⃗u(t) and cell association î(t). There-
fore, the corresponding transmission outage probability (TOP)
can be formulated as a function of q⃗u(t) and î(t), i.e.,
TOPu{q⃗u(t), î(t)} = Pr [Γu(t) < Γth], where Pr outputs the
probability calculated with respect to (w.r.t.) the aforemen-
tioned small-scale fadings. Then, the ergodic outage duration
(EOD) of the UAV u travelling with trajectory q⃗u(t),∀t ∈
[0, Tu] from q⃗u(I) to q⃗u(D) can be expressed as

EODu{q⃗u(t), î(t)} =
∫ Tu

0

TOPu{q⃗u(t), î(t)}dt. (12)

According to (12), the UAV has more freedom to adjust
its flying trajectory for visiting stronger wireless coverage
areas (say, regions with lower TOP) if longer flight time
budget Tu is achievable. However, Tu is commonly expected
to be as short as possible, for the consideration of energy
consumption and time cost for accomplishing the correspond-
ing mission. Therefore, a dilemma of minimizing both Tu

and EODu exists inevitably. To balance this, we focus on
minimizing the weighted sum of Tu and EODu{q⃗u(t), î(t)}
via designing q⃗u(t) and î(t). Unfortunately, continuous time
t implies infinite amount of velocity constraints and location
possibilities, leading the UAV path planning task too sophis-
ticated to be handled. Alternatively, the flight period Tu is
uniformly divided into N time slots, making the navigation
task practically trackable. The duration of each time slot
∆t = Tu/N is controlled to be sufficiently small so that
the distance, pathloss and antenna gain from each sector
towards the UAV can be considered as approximately static
within arbitrary time slot.8 Besides, sector assignment is
commonly dependent on pathloss to avoid non-stop handover
in practice, and thus the associated sector within each time slot
is assumed unchanged. Therefore, (12) can be approximated
as EODu{q⃗u(t), î(t)} ≈

∑N
n=1 ∆tTOPu{q⃗u(n), î(n)}. With

given q⃗u(n) and î(n) for each time slot, TOPu{q⃗u(n), î(n)}
can be obtained via numerical signal measurement at the
UAV.9 In this regard, we have

TOPu{q⃗u(n), î(n)}≃
1

L

L∑
ι=1

ITOP{q⃗u(n), î(n)|h(ι)}, (13)

where h(ι) indicates one realization of the involved small-scale
fading components, L represents the amount of signal mea-
surements, the TOP indicator ITOP{q⃗u(n), î(n)|h(ι)} = 1 if

8In the case of ∆t → 0, the discrete flight trajectory can accurately
approach its continuous counterpart, resulting in extremely heavy computation
burden. Therefore, the length of time slot ∆t should be delicately chosen to
achieve satisfactory balance of approximation accuracy and computational
complexity.

9The closed-form expression of TOPu{q⃗u(n), î(n)} cannot be derived
because this paper aims to develop a UAV navigation framework for arbitrary
small-scale fading environment and the modelling of hiu, i ∈ {1, 2, · · · , 3B}
is not specified. Besides, ∆t (typically on the magnitude of second) is
relatively greater than the length of channel coherence block (on the
magnitude of millisecond) caused by the small-scale fading. Therefore,
TOPu{q⃗u(n), î(n)} can be practically evaluated by numerical measurements
on the raw received signals at the UAV.

Γu{q⃗u(n), î(n)|h(ι)} < Γth and ITOP{q⃗u(n), î(n)|h(ι)} =
0 otherwise. Note that L≫ 1 stands in practice, which means
that the approximation (13) is feasible to be treated as an
equation. Then, the corresponding optimization problem can
be stated as

(P1) :min
v⃗u(n)

τ∆t

L

N∑
n=1

L∑
ι=1

ITOP{q⃗u(n), î(n)|h(ι)}+N, (14a)

s.t. î(n) = argmin
i∈{1,2,··· ,3B}

PLi [q⃗u(n)] , (14b)

q⃗(n+ 1) = q⃗(n) + Vu∆tv⃗u(n), ∥v⃗u(n)∥ = 1, (14c)
q⃗lo⪯ q⃗u(n) ⪯ q⃗up, q⃗u(0)= q⃗u(I), q⃗u(N)= q⃗u(D), (14d)

where τ is the weight balancing the aforementioned minimiza-
tion dilemma, Vu represents the UAV’s flying velocity and
v⃗u(n) specifies the mobility direction. The constraint (14b)
holds because the sector association strategy is dependent
sorely on pathlosses from all the sectors within each time slot
and it is clear that the UAV should always pair with the sector
which can offer the least degree of pathloss.

It is straightforward to conclude that antenna gain and
LoS/NLoS condition from each sector to the UAV are de-
pendent on the UAV’s location with given building and BS
distribution, which further impacts the corresponding pathloss
and type of small-scale fading. This makes it extremely
sophisticated to solve problem (P1) via standard optimization
methods, if not impossible. To provide a better alternative
solving the proposed optimization problem (P1), a DRL-aided
solution with a novel QiER framework is proposed in this
paper.

III. DEEP REINFORCEMENT LEARNING

This section is established to give a brief introduction
to DRL basics, which is of importance for understanding
the proposed DRL-aided solution and the corresponding key
notations.

The training of RL agent is based on MDP consisting
of five components, listed in a tuple (S,A, T , r, γ). A state
st ∈ S denotes RL agent’s observation from the environment
at trial t. An action at ∈ A represents the agent’s choice
at trial t following an action selection policy π(st, at). The
policy π(st, at) : S × A → [0, 1] claims the probability
distribution of picking action at for state st, constrained
by
∑

at∈A π(st, at) = 1. After executing an action, state
transition function T =Pr(st+1|st, at) : S × A × S → [0, 1]
characterizes state transition st → st+1. An immediate reward
rt(st, at) acts as performance metric determining how good
the selected action at is, for state st. A scalar factor γ ∈ [0, 1]
is invoked to discount future rewards, which can help reduce
variance caused by the reward function and achieve the con-
vergence of RL algorithms.

While interacting with the environment, the RL agent
chooses an action at for observed state st at trial t following
current action selection policy π(st, at). After executing the
selected action, state transition st → st+1 occurs and a
scalar reward rt(st, at) will be generated. Then, the experience
expt = {st, at, rt, st+1} can be collected to train the RL
agent. The state-action value function Qπ(st, at) (i.e., Q
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function) derives the accumulated-rewards and reflects the
long-term return of acting at over st following action selection
policy π, given by

Qπ(st, at)=Eπ

[
Gt=

+∞∑
nt=0

γntrt+nt |st = s, at = a

]
, (15)

where Gt calculates the discounted accumulated-rewards. The
state-action value function Qπ(st, at) satisfies the Bellman
equation, shown as

Qπ(st, at) = Eπ

rt + γ
∑

st+1∈S
T (st+1|st, at)×

∑
at+1∈A

π(st+1, at+1)Qπ(st+1, at+1)

 . (16)

An important goal of RL agent is to find the optimal
Q function which follows Bellman optimality equation [37],
shown as

Q∗(st, at) = rt + γ
∑

st+1∈S
T (st+1|st, at)max

at+1∈A
Q∗(st+1,at+1).

(17)
Unfortunately, (17) is non-linear and admits no closed-form

solution, which can alternatively be solved through iterative
algorithms [38]. Specifically, (17) can be deduced recursively
to achieve the optimality Q∗(st, at) via temporal difference
(TD) learning, given by.

Q(st,at)← Q(st, at)+

αlr

[
rt + γ max

at+1∈A
Q(st+1, at+1)−Q(st, at)

]
, (18)

where δt = rt + γ max
at+1∈A

Q(st+1, at+1)−Q(st, at) represents

the TD error and αlr ∈ (0, 1] denotes the learning rate. It
is well-known that the optimum Q∗(st, at) can be achieved
when the state-action pairs are sufficiently experienced and
the learning rate is properly chosen [37].

To crack the nut rooted from high-dimensional state and/or
action spaces, instead of applying Q-table (e.g., tabular RL) to
store Q(st, at) for state-action pairs, function approximation
technique is used to approximate the Q function, e.g., artificial
neural networks (ANNs). Adopting DNN [39] (i.e., ANN
with deep hidden layers) to approximate Q function, e.g.,
deep Q network (DQN) [23], is a popular and practical
solution, i.e., Q(st, at) ≈ Q(st, at|θ), where parameter vector
θ corresponds to the weight coefficients and biases of all
links in the DNN. The parameter vector θ can be updated via
bootstrapping method to minimize the loss function, defined
as

L(θ)=
[
rt+γ max

at+1∈A
Q(st+1, at+1|θ−)−Q(st, at|θ)

]2
, (19)

where Q(st, at|θ−) with parameter vector θ− indicates the
target network, which is applied to enhance the stability of
learning process.

Standard DRL algorithms apply one-step information to
calculate the loss function (19) and train the online network,

which may not be adequate and thus lead to poor predictabil-
ity. To overcome the aforementioned shortcoming, multi-step
learning strategy [37] was proposed via taking Nms-step-
forward knowledge into account. Specifically, the Nms-step
discounted accumulated-reward from a given state st can be
rewritten as rt:t+Nms

=
∑Nms−1

nms=0 γnmsrt+nms+1. Based on
(19), the loss function for Nms-step learning can be derived
as

L(θ) = [rt:t+Nms
+

γNmsmax
a′∈A

Q(st+Nms , a
′|θ−)−Q(st, at|θ)

]2
. (20)

IV. QUANTUM STATE AND QUANTUM AMPLITUDE
AMPLIFICATION

In this section, several basic concepts in quantum com-
putation are briefly introduced, which is of essence to help
understand the proposed QiER framework.

A. Quantum State

In quantum mechanics, a quantum state of a closed quantum
system can be described by a unit vector in Hilbert space.
Specifically, a quantum state |Ψc⟩ (Dirac notation) comprised
of n̂ quantum bits (qubits10) can be expressed as

|Ψc⟩ = |Ψ1⟩ ⊗ |Ψ2⟩ ⊗ · · · ⊗ |Ψn̂⟩ =

n̂︷ ︸︸ ︷
11...1∑
p=00...0

hp |p⟩ , (21)

where |Ψe⟩ , e ∈ [1, n̂] represents the e-th qubit, hp means the
complex coefficient (i.e., probability amplitude) of eigenstate
|p⟩ subject to

∑11...1
p=00...0 |hp|2 = 1 and ⊗ denotes the tensor

product. The representation of n̂-qubit quantum state |Ψc⟩ fol-
lows the quantum phenomenon known as state superposition
principle. That is, the |Ψc⟩ can be regarded as the superposi-
tion of 2n̂ eigenstates, ranged from |00...0⟩ to |11...1⟩. As a
special case, a two-eigenstate quantum system (say, a single
qubit) can be described as an arbitrary superposition state of
eigenstates |0⟩ and |1⟩, given by

|Ψ⟩ = α |0⟩+ β |1⟩ , (22)

where the complex coefficients α = ⟨0|Ψ⟩ and β = ⟨1|Ψ⟩
denote the probability amplitudes for eigenstates |0⟩ and |1⟩,
respectively. Note that the single-qubit superposition |Ψ⟩ is
a unit vector (i.e., ⟨Ψ|Ψ⟩ = 1) in Hilbert space spanned by
orthogonal bases |0⟩ and |1⟩, subject to |α|2 + |β|2 = 1. Ac-
cording to quantum collapse phenomenon, after measurement
or observation of an external experimenter, |Ψ⟩ will collapse
from its superposition state onto one of its eigenstates |0⟩ and
|1⟩ with probabilities |α|2 and |β|2, respectively.

10A qubit can be realized by a two-state system, e.g., 1) a two-level atom,
in which |0⟩ denotes the ground state and |1⟩ indicates the excited state; 2) a
photon, where |0⟩ represents the horizontal polarization state and |1⟩ means
the vertical polarization state; or 3) a spin system, in which the states of spin
up and spin down are described by |0⟩ and |1⟩, respectively.
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B. Quantum Amplitude Amplification

For a two-eigenstate qubit |Ψ⟩, the probability amplitudes
of each eigenstate can be changed via a quantum operation
(e.g., Grover iteration [40]), gradually modifying the collapse
probability distribution. Two unitary reflections are applied to
achieve Grover iteration, given by

U |0⟩ = I − (1− ejϕ1) |0⟩ ⟨0| , (23)

U |Ψ⟩ = (1− ejϕ2) |Ψ⟩ ⟨Ψ| − I, (24)

where {ϕ1, ϕ2} ∈ [0, 2π], I indicates identity matrix, and ⟨0|
and ⟨Ψ| are Hermitian transposes of |0⟩ and |Ψ⟩, respectively.
Then, the Grover iterator can be formulated as G = U |Ψ⟩U |0⟩,
which remains unitary. After m times of acting G on |Ψ⟩,
the two-eigenstate qubit with updated probability amplitudes
can be given by |Ψ⟩ ← Gm |Ψ⟩ . Two updating approaches
can be used to accomplish quantum amplitude amplification
task: 1) m = 1 with dynamic parameters ϕ1 and ϕ2; and
2) dynamic m with fixed parameters ϕ1 and ϕ2 (e.g., π).
The latter updating method can only change the probability
amplitudes in a discrete manner, and thus the former solution
is chosen in this paper.

Proposition 1: For Grover iteration with flexible parameters,
the overall effects of G on the superposition |Ψ⟩ can be
derived analytically as G |Ψ⟩ = (Q − ejϕ1)α |0⟩ + (Q −
1)β |1⟩, where Q = (1 − ejϕ2)

[
1− (1− ejϕ1)|α|2

]
and

|(Q− ejϕ1)|2|α|2 + |(Q− 1)|2|β|2 = 1.
Proof: The effects of U |0⟩ on |0⟩ and |1⟩ are expressed

as

U |0⟩ |0⟩ =
[
I − (1− ejϕ1) |0⟩ ⟨0|

]
|0⟩ = ejϕ1 |0⟩ , (25)

U |0⟩ |1⟩ =
[
I − (1− ejϕ1) |0⟩ ⟨0|

]
|1⟩ = |1⟩ , (26)

respectively. Then, we obtain

U |0⟩ |Ψ⟩=
[
I−(1−ejϕ1) |0⟩ ⟨0|

]
|Ψ⟩=ejϕ1α |0⟩+β |1⟩ , (27)

where U |0⟩ plays the role as a conditional phase shift operator.
Furthermore, we get

G |Ψ⟩ = U |Ψ⟩U |0⟩ |Ψ⟩ = (1− ejϕ2) [α |0⟩+ β |1⟩]×[
α† ⟨0|+ β† ⟨1|

]
U |0⟩ |Ψ⟩ −U |0⟩ |Ψ⟩

= (Q− ejϕ1)α |0⟩+ (Q− 1)β |1⟩ , (28)

where Q = (1 − ejϕ2)(ejϕ1 |α|2 + |β|2) = (1 −
ejϕ2)

[
1− (1− ejϕ1)|α|2

]
.

Because Grover operator G is unitary, the updated super-
position |Ψ⟩ ← G |Ψ⟩ still follows the normalization rule
of probability amplitudes, i.e., |(Q − ejϕ1)|2|α|2 + |(Q −
1)|2|β|2 = 1.

Corollary 1: The ratio between collapse probabilities of
|Ψ⟩ → |0⟩ before and after being impacted by G can be given
by |R|2= |(1−ejϕ1−ejϕ2)−(1−ejϕ1)(1−ejϕ2)|α|2|2, which
is symmetric w.r.t. ϕ1 = ϕ2 and ϕ1 = 2π − ϕ2. Then, the
updated collapse probabilities onto eigenstates |0⟩ and |1⟩ can
be given by |R|2|α|2 and 1− |R|2|α|2, respectively.

Proof: Based on (22) and (28), the ratio between the
probability amplitudes of |0⟩ after being acted by G and before
that can be derived as R = (1− ejϕ1 − ejϕ2)− (1− ejϕ1)(1−
ejϕ2)|α|2, which completes the proof.

Remark 1: The process of |Ψ⟩ ← G |Ψ⟩ can be depicted
geometrically on the Bloch sphere. In Fig. 3(a), |Ψ⟩ is recon-
structed in Polar coordinates, given by

|Ψ⟩=ejζ(cos
θ

2
|0⟩+ejφ sin

θ

2
|1⟩) ≃ cos

θ

2
|0⟩+ejφ sin

θ

2
|1⟩ ,
(29)

where ejζ poses no observable effects [21]. Then, the unit
vector |Ψ⟩ on the Bloch sphere is uniquely specified by angle
variables θ ∈ [0, π] and φ ∈ [0, 2π). The effect of U |0⟩ can be
regarded as a clockwise rotation around the z-axis by ϕ1 (the
red circle) on the Bloch sphere, leading to the rotation from
|Ψ⟩ to |Ψ′⟩. In a similar manner, when the basis is changed
from {|0⟩ , |1⟩} to {|Ψ⟩ ,

∣∣Ψ⊥⟩}, U |Ψ⟩ results in a clockwise
rotation around the new z-axis |Ψ⟩ by ϕ2 (the blue circle),
rotating |Ψ′⟩ to

∣∣Ψ(1)
⟩
. Hence, the overall impact of G on

|Ψ⟩ is a two-step process rotating the polar angle θ, on the
perspective of basis {|0⟩ , |1⟩}. With flexible ϕ1 and ϕ2, it is
possible to achieve arbitrary parametric rotation on the Bloch
sphere, which serves as the foundation for quantum amplitude
amplification task. The smaller θ is, the higher probability
|Ψ⟩ will collapse onto |0⟩ when it is observed by an external
examiner, and vice versa.

(a) Grover rotation on |Ψ⟩ (b) Grover rotation on |+⟩

Figure 3: Geometric explanation of the Grover rotation

V. DRL-QIER ALGORITHM

In this section, a DRL-QiER solution is developed to solve
optimization problem (P1).

A. The MDP Formulation

To solve the optimal trajectory planning problem (P1) via
DRL-aided technique, the first step is to map it into an MDP,
which can be described as follows.

• S: The state space consists of possible UAV locations q⃗u
under constraint q⃗lo ⪯ q⃗u ⪯ q⃗up, which means that the
state space is continuous.

• A: The continuous action space involves all the feasible
flying directions v⃗u under constraint ∥v⃗u∥ = 1. To break
the curse of dimensionality caused by continuous state
and action spaces, the action space is discretized as A ={
[1, 0, 0], [0, 1, 0], [−1, 0, 0], [0,−1, 0], [

√
2/2,
√
2/2, 0],

[−
√
2/2,
√
2/2, 0], [

√
2/2,−

√
2/2, 0], [−

√
2/2,−

√
2/2,

0]}, corresponding to flying directions right, forward,
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left, backward, right-forward, left-forward, right-
backward and left-backward, respectively. Therefore, the
action space contains Nfd = 8 direction options.

• T : The state transition is deterministic and controlled by
the mobility constraint (14c).

• r: Our goal is to minimize the weighted sum of time
cost and EOD. Thus, we may design the reward func-
tion as r(q⃗u) = −1 − τ∆t

L

∑L
ι=1 ITOP{q⃗u|h(ι)}. The

formulation of r(q⃗u) can be interpreted as follows: 1)
for each time of state transition, the agent will receive
a movement penality 1, encouraging the UAV to use
less steps to generate the trajectory; and 2) on top of
the movement penality, the UAV will get a weighted
outage duration penality τ∆t

L

∑L
ι=1 ITOP{q⃗u|h(ι)} as

well, pushing the UAV to visit locations with stronger
wireless coverage quality. Besides, two special cases
are considered as follows: 1) once the UAV reaches
the predefined destination q⃗u(D), the training episode
terminates and a positive value rD will replace the reward
function; and 2) once the UAV crashes onto the boundary
of the considered airspace, the training episode terminates
and a negative value rob will replace the reward function
instead. In summary, the aforementioned design of reward
function aims to encourage the UAV to reach q⃗u(D) with
as fewer steps as possible, while avoiding hitting the
boundary and visiting areas with weak wireless coverage
strength.

• γ: To connect the objective function of (P1) and the dis-
counted accumulated-rewards over each learning episode,
the discount factor is chosen as γ = 1.

B. Quantum-Inspired Representation of Experience’s Priority
In the proposed DRL-QiER solution, the priority of experi-

enced transition expt is represented by the k-th qubit, where
the scalar index k indicates this transition’s location index in
the QiER buffer. Specifically, the quantum representation of
stored transition’s priority can be given by

|Ψk⟩ = αk |0⟩+ βk |1⟩ , (30)

where the complex-valued probability amplitudes αk and
βk follow the normalization constraint |αk|2 + |βk|2 = 1.
It is worth noting that the eigenstates |0⟩ and |1⟩ in (30)
mean accepting and denying this transition, respectively. After
quantum measurement, the superposition |Ψk⟩ will collapse
onto eigenstate |0⟩ with probability | ⟨0|Ψk⟩ |2 = |αk|2 or
eigenstate |1⟩ with probability | ⟨1|Ψk⟩ |2 = |βk|2. The com-
plex coefficients αk and βk are of importance and essence
in the QiER system, influencing the occurrence probability of
accepting or denying the corresponding transition when |Ψk⟩
is observed. The quantum representation |Ψk⟩ establishes a
bridge between quantum eigenstates and accepting or deny-
ing particular transition, which allows us to apply quantum
amplitude amplification to realize manipulation of quantum
collapse.

C. QiER Framework
The proposed QiER framework consists of the following

three phases.

1) Quantum Initialization Phase: When transition expt is
stored into the QiER buffer with finite capacity C, a label
k ∈ {1, . . . , C} will be assigned to expt, which specifies
the location of expt being recorded within the QiER buffer.11

Then, experience expt and the k-th qubit |Ψk⟩ together will
be stored into the QiER buffer, which can be regarded as a
collection of (expt, |Ψk⟩). When a new transition is recorded
into the QiER buffer and before being sampled out to feed the
training agent, its associated qubit |Ψk⟩ should be initialized
as eigenstate |0⟩, i.e., |Ψk⟩ ← |0⟩. The reason is that the
agent has never been trained with these un-sampled transitions
that may have unimaginable potentials to help the agent learn
the characteristics of environment with which the agent is
interacting. Thus, we set these newly-recorded transitions with
the highest priority, encouraging the agent to more likely learn
from them.

2) Quantum Preparation Phase: After an experience is
sampled from the QiER buffer to train the agent, the quantum
preparation phase should be performed on its associated qubit,
updating the corresponding priority. This is due to two reasons:
1) the TD error of this transition is updated; and 2) the
experience becomes older for the agent.

The uniform quantum state is defined as

|+⟩ =
√
2

2
(|0⟩+ |1⟩) , (31)

which can be understood as a unit vector on the x-axis of
Bloch sphere (Fig. 3(b)) with θ = π/2 and φ = 0. The
absolute value of TD error |δt| is chosen to reflect priority of
the corresponding transition expt. Once a recorded transition
is sampled, its associated qubit |Ψk⟩ should first be reset
to the uniform quantum state, i.e., |Ψk⟩ ← |+⟩. Then, to
map the updated priority of expt into |Ψk⟩, one time of
Grover iteration with flexible parameters will be applied on
the uniform quantum state, shown as

|Ψk⟩=U |+⟩U |0⟩ |+⟩
(a)
= (P − ejϕ1)

√
2

2
|0⟩+ (P − 1)

√
2

2
|1⟩ ,
(32)

where P = (1− ejϕ2)
[
1− 0.5(1− ejϕ1)

]
and the derivation

(a) is based on Proposition 1. According to Remark 1, the
transformation from |+⟩ to |Ψk⟩ can be depicted on the
Bloch sphere as Fig. 3(b). In this example, the phase shift
parameters are set as ϕ1 < π/2 and ϕ2 < π/2. It is
straightforward to observe that the probability of collapsing
onto eigenstate |0⟩ enlarges after the quantum preparation

phase (i.e., |+⟩
U |+⟩U |0⟩−→ |Ψk⟩), because the polar angle rotates

from ∠90◦ (of |+⟩) to an acute angle θΨk
(of |Ψk⟩). Similarly,

the collapse probability onto eigenstate |0⟩ after one time of
Grover iteration on |+⟩ can be kept unchanged or shrinked
via selecting feasible combination of phase shift parameters
ϕ1 ∈ [0, 2π] and ϕ2 ∈ [0, 2π].

In practical applications, some experiences may be sampled
for training with undesired high frequency, leading to over-

11The QiER buffer is designed to be with fixed-size capacity in line with
standard ER technique of DRL, which means that the first stored experience
will be popped out first to create space for recording the new-coming transition
when the QiER buffer is fully exploited. Therefore, each recorded experience
is supposed to remain in the buffer for a fixed time.
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training issue. Besides, the finite size of QiER buffer could
further deteriorate this disservice [41], which will cause unfair
and biased sampling performance. To circumvent this issue,
the replay time of each stored transition should be taken
into consideration for the quantum preparation phase, which
enables it to enrich sample diversity to improve the learning
performance. In the early stage of training the agent, the im-
portance of each experience is ambiguous. However, alongside
the learning process, the absolute TD errors of some transitions
remain relatively large, despite many times they have been
sampled for training. Hence, it is necessary to relate training
episode to the quantum preparation phase.

The quantum preparation phase aims to modify the collapse
probability onto eigenstate |0⟩, via one time of Grover iteration
with free parameters ϕ1 and ϕ2. To quantify the amplification
step of quantum preparation phase, we let

ϕ1 =
e
|δt|π
δmax − e−

|δt|π
δmax

e
|δt|π
δmax + e−

|δt|π
δmax

π

2
=

π

2
tanh

(
|δt|π
δmax

)
∈
[
0,

π

2

)
, (33)

ϕ2 =
rtk
rtmax

te

temax
π +

π

2
∈
(
π

2
,
3π

2

]
. (34)

With (33) and (34), the quantum amplitude amplification is re-
lated with the corresponding absolute TD error |δt|, maximum
TD error δmax, replay times rtk, maximum replay time rtmax,
current training episode te and the total training episode temax,
which means that the quantum preparation phase updates the
priority of expt into its associated k-th qubit |Ψk⟩.

Remark 2: The collapse probability of |Ψk⟩ onto eigenstate
|0⟩ versus ϕ1 ∈ [0, 2π] and ϕ2 ∈ [0, 2π] is depicted in Fig. 4.
From this figure, we can find that | ⟨0|Ψk⟩ |2 = 0.5|P −ejϕ1 |2
is a symmetric function w.r.t. ϕ1 = ϕ2 and ϕ1 = 2π − ϕ2,
which is a specific case (i.e., |α|2 = 0.5) of Corollary 1. If
we concentrate on surface within ϕ1 ∈ [0, π/2] and ϕ2 ∈
[π/2, 3π/2], it is straightforward to conclude that (33) and
(34) together can control the quantum amplification step and
direction. Specifically, larger ϕ1 will lead to greater amplitude
amplification step, for arbitrary fixed ϕ2. Besides, ϕ2 controls
the amplification direction, where ϕ2 ∈ [π/2, π) means that
the probability of collapsing onto |0⟩ will be enlarged, while
ϕ2 ∈ (π, 3π/2) indicates that the probability of collapsing
onto |0⟩ will be reduced.

Remark 3: In the early stage of training, the radio rtk/rtmax
remains relatively large because rtmax is not sufficiently up-
dated yet. To avoid unreasonably denying all the sampled
transitions in the early stage of training, we introduce the
factor te/temax to steer parameter ϕ2 in (34).

3) Quantum Measurement Phase: After the QiER buffer
is fully occupied by recorded transitions, a mini-batch of
experiences will be sampled to perform network training for
the agent, via standard gradient descent method. To prepare the
mini-batch sampling procedure under constraint of priorities,
quantum measurement on the associated qubits should be ac-
complished first. Specifically, the probability of the k-th qubit
collapsing onto eigenstate |0⟩ can be calculated as | ⟨0|Ψk⟩ |2.
Then, the probability of the corresponding experience being
picked up during the mini-batch sampling process can be
defined as bpk = | ⟨0|Ψk⟩ |2/

∑C
e=1 | ⟨0|Ψe⟩ |2, in which the

(a) 3D View

(b) The corresponding top view

Figure 4: Collapse Probability onto |0⟩ versus ϕ1 and ϕ2

denominator means the sum of collapse probabilities onto
eigenstate |0⟩ of qubits that are associated with all stored
experiences.

During the mini-batch sampling period, several times of
picking recorded experiences from the QiER buffer will be
executed, following the generated picking probability vector
b⃗p = [bp1, bp2, . . . , bpC ] after quantum measurement phase.
Note that the total sampling time is equal to the size of mini-
batch, which will be specified in the numerical result section
later.

Remark 4: Although the QiER buffer involves quantum
representations and operations, the corresponding processes,
i.e., the quantum initialization phase, the quantum preparation
phase and the quantum measurement phase, can be imitated
on conventional computing devices without implementing real
quantum computations on practical quantum computers.

Remark 5: The associated qubit of sampled experience
should be reset to the uniform quantum state, which means
that the corresponding quantum preparation phase starts from
the uniform quantum state rather than the previous counterpart.
This is in line with the quantum phenomenon where a quantum
system will collapse onto one of its eigenstates after an ob-
servation. Note that the sampled transitions are still remained
in the QiER buffer until they are discarded.

D. The Proposed DRL-QiER Solution

The proposed DRL-QiER algorithm is summarized in Al-
gorithm 1, and its flow chart is illustrated in Fig. 5. To solve
the formulated MDP in Section V-A, double DQN (DDQN)
with duelling architecture (D3QN) is adopted to approximate
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the Q function Q(q⃗u, v⃗u). To further speed up and stabilize
the learning process, Nms-step learning and target network
techniques are adopted for updating parameters of the online
D3QN. Specifically, the online D3QN aims to minimize the
following loss function

L(θD3) = [rt:t+Nms+

γNmsQ(q⃗u(t+Nms), v⃗
∗
u|θ

−
D3)−Q(q⃗u(t), v⃗u(t)|θD3)

]2
, (35)

where θD3 is the parameter vector of the online D3QN, θ−
D3

means the parameter vector of the target D3QN. The selected
action v⃗∗u in (35) is chosen from the online D3QN rather than
the target D3QN, i.e., v⃗∗u = argmax

v⃗u∈A
Q(q⃗u(t+Nms), v⃗u|θD3),

which completes the DDQN procedure.
Algorithm 1 starts with network and hyper-parameter ini-

tializations, as shown in step 1. At the beginning of each
training episode, the UAV’s initial location is randomly picked
from the state space S (step 3). Then, the UAV chooses an
action following the popular ϵ-greedy action selection policy,
which means that the UAV either selects a random action from
the action space A with probability ϵ ∈ [0, 1] or chooses the
optimal action that maximizes the state-action approximation
of the online D3QN with probability 1−ϵ. After the execution
of the selected action, the environment will feed back the next
state and the corresponding immediate reward (step 5). The
experienced transition expn will then be recorded by a sliding
buffer, to prepare for the Nms-step learning (step 17). When
the sliding buffer is full, the latest Nms-step experience can
be generated and then delivered into the QiER buffer (step
18-step 24). Each training episode terminates when one of
the following cases are encountered: reaching the destination,
hitting the boundary, or exhausting the step threshold (step
26).12 When one episode is over, the exploration parameter ϵ
will be annealed to encourage exploitation from exploration.
For every fixed amount of training episodes, the target D3QN
will be updated to the online counterpart (step 27). Once
the QiER buffer is fully occupied, the mini-batch training
for the online D3QN begins (step 6-step 16). With the mini-
batch samples, the online D3QN is trained to minimize the
mean counterpart of loss function (35), via standard stochastic
gradient descent approach (step 15).
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Figure 5: Flow chart of the proposed DRL-QiER algorithm

Remark 6: The proposed QiER framework for manipulating
mini-batch sampling is realized via adopting an unsorted
data structure known as binary sum-tree, inspired by the

12It is worth noting that although an explicit energy cost model (commonly
for the UAV propulsion power consumption) is not specified in our considered
UAV navigation scenario, the global constraint of energy consumption is
implied because the step threshold Nmax poses a shared budget of propulsion
energy cost for all possible trajectories.

Algorithm 1: The Proposed DRL-QiER Solution
1 Initialization: Initialize the online D3QN network QD3(s, a|θD3) and its target network

QD3(s, a|θ−
D3

), with θ
−
D3
← θD3 . Initialize the QiER buffer R with capacity C. Initialize the

vector of replay time as r⃗t = [rt1, rt2, . . . , rtC ] = 0⃗. Set the size of mini-batch as Nmb .
Set the order index of R as k = 1. Set the flag indicating whether the QiER buffer is fully occupied or not
as LF = False. Set the maximum TD error as δmax = 1.;

2 for te = [1, temax] do
3 Set time step n = 0. Randomly set the the UAV’s initial location as q⃗u(n) ∈ S. Initialize a

sliding buffer R̂ with capacity Nms .;
4 repeat
5 Select and execute action an , then observe the next state q⃗u(n + 1) and the immediate

reward rn = r[q⃗u(n + 1)];
6 if LF == True then
7 Perform quantum measurement on all stored experiences’ qubits and get the vector of

their replaying probabilities [bp1, bp2, . . . , bpC ];
8 for nmb = [1, Nmb] do
9 Sample a transition according to [bp1, bp2, . . . , bpC ] and get its location

index d ∈ {1, 2, . . . , C};
10 Reset the d-th qubit back to uniform quantum state

∣∣Ψd
⟩
= |+⟩;

11 Update the corresponding replay time rtd+ = 1 and rtmax =

max(r⃗t);
12 Calculate the sampled transition’s absolute Nms -step TD error |δNms

| and
update the maximum TD error δmax = max(δmax, |δNms

|);
13 Perform quantum preparation phase on the d-th qubit;
14 end
15 Update the online D3QN network QD3(s, a|θD3) via gradient descent method

using the mini-batch of sampled Nmb transitions from R;
16 end
17 Get and record transition expn = {q⃗u(n), an, rn, q⃗u(n + 1)} into R̂;
18 if n ≥ Nms then
19 Generate the Nms -step reward rn−Nms:n from R̂

and record Nms -step experience expn−Nms:n =

{q⃗u(n − Nms), an−Nms
, rn−Nms:n, q⃗u(n)} into R

with order index k;
20 Perform quantum initialization phase on the k-th qubit as

∣∣Ψk
⟩
= |0⟩. Reset rtk =

0 and let k+ = 1;
21 if k > C then
22 Set LF = True and reset k = 1;
23 end
24 end
25 Let n+ = 1;
26 until q⃗u(n) = q⃗u(D) || q⃗u(n) /∈ S || n = Nmax ;

27 Update ϵ ← ϵ × decϵ . Update the target D3QN QD3(s, a|θ−
D3

) every ΥD3 episodes,

i.e., θ−
D3
← θD3 ;

28 end

PER approach [24]. The motivation is that for achieving an
efficient sampling performance based on the current picking
distribution b⃗p = [bp1, bp2, . . . , bpC ], the complexity should
not depend on C which could be unbearably large in practice.
An illustration of the used sum-tree architecture can be found
in Fig. 6, where either the root node or the parent node contains
at most two child nodes as their offspring while their values
equal to the sum of their child nodes. Specifically, the k-
th leaf node of the sum-tree is pointed to qubit |Ψk⟩ and
the corresponding stored transition in the QiER buffer, and
therefore there are C leaf nodes in total. When performing
the quantum measurement phase after the priority updating of
quantum initialization phase or quantum preparation phase, the
sum of collapse probabilities onto eigenstate |0⟩ of all involved
qubits, i.e.,

∑C
e=1 | ⟨0|Ψe⟩ |2, can be updated via propagating

the measurement of any updated qubit from the corresponding
leaf node to the root node, enabling O[log(C)] updating and
sampling. Besides, the quantum amplitude amplification in
quantum preparation phase is based on Proposition 1 and
Corollary 1, where the quantum collapse probability updating
is steered by closed-form expressions and thus negligible
extra computation cost is required. Therefore, the complexity
of our proposed QiER framework is comparable to that of
propositional PER and DCRL strategies. With the aforemen-
tioned efficient implementation, the proposed QiER framework
only costs negligible extra computational power and memory,
compared to conventional ER approach. Note that SNARM ap-
proach adopting ER strategy maintains an extra neural network
for radio mapping, which is undoubtedly more computation-
expensive than DRL-ER, DRL-PER, DCRL and our proposed
DRL-QiER solution. Moreover, our QiER framework does not
destruct the convergence of any DRL agent that it is plugged
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onto, but may result in different convergence curve against
DRL agent aided with other experience replay techniques,
because it sorely focuses on polishing the picking process of
stored transitions, as depicted in Fig. 5.
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Figure 6: Sum-tree architecture

VI. NUMERICAL RESULTS

In this section, simulation results for the proposed DRL-
QiER solution and the corresponding performance comparison
against several baselines are performed.

A. Simulation Environment Setups

For conducting the simulation, the UAV’s exploration
airspace is set as A : [0, 1] × [0, 1] × [0, 0.1] km. Fig. 7(a)
delivers the top view of A, in which the locations of involved
BSs and the direction of each ULA’s boresight are specified.
To generate building distribution within A, one realization of
statistical model suggested by the International Telecommuni-
cation Union (ITU) [42] is invoked, which is subject to the
following three parameters: 1) α̂ indicates the ratio of region
covered by buildings to the whole land; 2) β̂ represents average
amount of buildings; and 3) γ̂ determines building heights’
distribution (say, Rayleigh distribution with mean γ̂ > 0).
Besides, the small-scale fading component of G2A link is
assumed to follow block Nakagami-m channel model. The
common destination’s location is fixed at q⃗u = (0.8, 0.8, 0.1)
km, without loss of generality.

Unless otherwise mentioned, the parameter setups regarding
simulation environment are in line with Table I. With the
generated local building distribution, antenna model and small-
scale fading model, the corresponding TOP distribution over
arbitrary UAV location within A can be previewed as Fig. 7(b).

B. Structure of DNNs and Hyper-parameter Settings for
Learning Process

The proposed DRL-QiER algorithm is implemented on
Python 3.8 with TensorFlow 2.3.1 and Keras. Specifically,
the DNNs of online D3QN agent are constructed with fully-
connected feedforward ANNs. The shapes of the online
D3QN’s input and output layers are subject to the UAV’s hor-
izontal locations and the amount of possible flying directions,
respectively. Between the input and output layers, there are
4 hidden layers, where the first 3 hidden layers contain 512,
256, 128 neurons, respectively. The last hidden layer plays
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(b) The corresponding TOP distribution

Figure 7: Simulation environment and the corresponding pre-
view on TOP distribution

the role as duelling layer consisting of Nfd + 1 neurons,
where one neuron indicates the estimation of state-value and
the other Nfd neurons reflect action advantages. Then, the
outputs of the duelling layer will be aggregated to generate
the estimation of the Nfd actions at the output layer. Besides,
the optimizer minimizing the mean square error (MSE) for
the DRL-QiER agent is Adam with fixed learning rate. The
activation functions for each hidden layer and the output layer
are Relu and Linear, respectively. Note that the target D3QN
shares the same structure as its online counterpart.

The settings of hyper-parameter for learning process are
stated in Table II.

C. Training of the DRL-QiER algorithm

Fig. 8(a) and Fig. 8(b) depict the return history and designed
trajectories of the proposed DRL-QiER solution, respectively.
Note that the moving average return for each training episode
is calculated via a moving window with length of 200
episodes, while the corresponding designed trajectories are
picked with spatially-separated initial locations in the late
training stage (in the range of episodes 1900-2000), for the
sake of neat and sufficient demonstration. From Fig. 8(a), it is
straightforward to conclude that the moving average returns
steadily converge to the maximum alongside the training
process, although some fluctuations are experienced, which
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Table I: Parameter Settings for Simulation Environment

Parameters Values Parameters Values

Amount of BSs B 4 Amount of sectors 3B 12
Horizontal side-length of A D 1 km Amount of each ULA’s array elements M 8
Half-power beamwidth Θ3dB/Φ3dB 65◦/65◦ Speed of light c 3× 108 m/s
Carrier frequency fc 2 GHz Wave length λ 15 cm
ULA’s element spacing distance dv 7.5 cm ULA’s electrically titled angle θetilt 100◦
Antenna height of BS 25 m Flying altitude of UAV 100 m
ITU building distribution parameter α̂ 0.3 ITU building distribution parameter β̂ 118
ITU building distribution parameter γ̂ 25 Total amount of buildings β̂D2 118
Expected size of each building α̂/β̂ 0.0025 km2 Maximum height of buildings 70 m
Transmit power of each sector Pi 20 dBm Nakagami shape factor m for LoS/NLoS 3/1
Transmission outage threshold Γth 0 dB Average power of AWGN σ2 -90 dBm
Duration of time slot ∆t 0.5 s Velocity of the UAV Vu 30 m/s
Amount of signal Measurements L 1000 Weight balancing the minimization τ 50

Table II: Hyper-parameter Settings for Learning Process

Parameters Values Parameters Values

Capacity of QiER buffer C 20000 Size of mini-batch Nmb 128
Initial ϵ-greedy factor ϵ 0.5 Annealing speed decϵ 0.994/episode
Target D3QN update frequency ΥD3 5 Length of sliding buffer Nms 30
Positive special reward rD 400 Negative special reward rob -10000
Learning rate αlr Adam’s default Discount factor γ 1
Maximum training episodes temax 2000 Step threshold Nmax 400

is a typical phenomenon in DRL field. Besides, from Fig.
8(b), it is observed that the proposed DRL-QiER solution
can direct the UAV from various initial locations to the
common destination, with designed trajectories adaptive to
the TOP distribution. Regions with higher TOP are avoided
while keeping the UAV being directed to reach the common
destination with possibly fewer moving steps (equivalently, as
short flying time cost as possible). For instance, even the near-
to-zero but extremely narrow TOP slots around (0.4, 0.76, 0.1)
km and (0.6, 0.79, 0.1) km can be recognized. On the contrary,
higher TOP regions in the range of (0.4 − 0.6, 0 − 0.5, 0.1)
km are bypassed as much as possible. Another good example
is the trajectory starting from location around (0.95, 0.09, 0.1)
km, where the "V" shape around (0.95, 0.2, 0.1) km perfectly
demonstrates the effectiveness of the proposed DRL-QiER
solution, in which the higher TOP fields are avoided. Note that
larger weight factor τ will generally lead the designed path to
experience lower TOP regions, but inevitably enlarging the
time cost (say, longer and more tortuous trajectory) reaching
the common destination. This is the reason why weight factor
τ is invoked to balance the proposed minimization problem
(P1).

D. Performance Comparison

Four DRL-aided baselines are considered for performance
comparison, listed as follows.

• DRL-ER: The D3QN is trained via mini-batch sampling
from standard ER buffer with uniform sample-picking
strategy.

• DRL-PER: The D3QN is trained via stochastic mini-
batch sampling from the PER buffer with proportional
prioritization method, in line with [24]. In this approach,
the priority of each recorded transition x is measured
by its corresponding absolute TD error |δ(x)|. Then, the
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Figure 8: Training results of the proposed DRL-QiER solution
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probability of picking a transition from the PER buffer
follows p(x) = (|δ(x)| + ξ)αPER/

∑
x′(|δ(x′)| + ξ)αPER ,

where a small positive constant ξ is used to avoid zero-
priority case and αPER determines how much priori-
tization is applied, with αPER = 0 corresponding to
the special case that is equivalent to DRL-ER baseline.
To correct the bias caused by priority-based sampling,
normalized importance-sampling (IS) weight W (x) =
(C × p(x))−βPER/maxx′W (x′) is calculated to scale the
updating of DNNs, where C is the capacity of the PER
buffer and βPER reflects the amount of IS correction. The
parameter βPER should be incremented from a relatively
small positive constant to 1 over the training process
because a full-step update is more important when the
algorithm begins to converge.

• DCRL: The DCRL training paradigm aims to offer
better mini-batch sampling efficiency, according to the
complexities of recorded experiences. Specifically, the
complexity of each transition is determined by self-paced
priority and coverage penalty, where self-paced priority
maps TD error into the difficulty of current curriculum
and coverage penalty uses replay times of transitions to
enhance sampling diversity. For detailed implementation
of DCRL, please refer to [25].

• SNARM: The framework SNARM invokes an extra DNN
termed as radio map to help improve the overall learning
efficiency. The signal measurements alongside the UAV’s
trajectory are utilized to train not only the online D3QN
but also the radio map. The radio map enables it to
generate simulated trajectories and thus reduces actual
trials. Based on standard Dyna architecture, one D3QN
update with the actual experiences follows several extra
updates with the simulated transitions. Therefore, the
SNARM approach is promised to help achieve better
learning performance while reducing the cost of data
acquisition from actual experiences. For more details of
SNARM, please refer to [5].

For fair comparison, the structures of online and target
D3QNs for all baselines are the same as those of the proposed
DRL-QiER solution, while the hyper-parameter settings of
these baselines are in line with Table II. Besides, the con-
struction of radio map’s DNN and the corresponding hyper-
parameter settings of baseline SNARM are in accordance
to [5], while the complexity index function, the curriculum
evaluation function, the self-paced prioritized function, the
coverage penalty function and the corresponding DCRL hyper-
parameter settings are in line with [25]. Furthermore, the addi-
tional hyper-parameters regarding PER in DRL-PER baseline
are set as αPER = 1, ξ = 0.01 and βPER = 0.4. All the
baselines are altered to involve multi-step learning and start
training after their replay buffers are fully exploited. Moreover,
all the baselines share the same randomly-generated initial
UAV locations with the proposed DRL-QiER solution, for each
training episode.

Fig. 9(a) delivers the performance comparison on moving
average returns of the proposed DRL-QiER solution and
considered baselines, versus training episodes. From this sub-

figure, it is easy to find that SNARM approach can offer
satisfactory learning performance, thanks to the simulated
trajectories enabled by the extra DNN (i.e., the radio map).
Especially, in the range of training episode from 400 to 1000,
despite that the radio map is getting well trained as the training
process going. Besides, DRL-PER, DRL-QiER and DCRL
approaches can achieve better moving average returns than
DRL-ER method, in the early training stage (e.g., episodes
500-750). The reason is that DRL-ER solution samples tran-
sitions uniformly without considering their priorities, which
leads transitions with higher importance to have less oppor-
tunities for training the online D3QN. However, DRL-PER
method experiences server fluctuations than DRL-QiER and
DCRL (e.g., episodes 1250-2000), which is because DRL-PER
does not take transitions’ replay time into account and thus
some transitions are sampled with undesired high frequency
while their absolute TD errors remain relatively large. The
proposed DRL-QiER solution showcases more steady learn-
ing ability, with less amplification of fluctuation and overall
raising trend, thanks to the QiER technique which balances
sampling priority and diversity in a better manner. Although
SNARM and DCRL approaches can offer satisfactory learning
performances, their respective shortcomings are: 1) SNARM
framework needs to train an extra model-learning DNN, which
thus introduces extra biases and heavy training burden, and
2) it is difficult to set up feasible complexity index function,
curriculum evaluation function, self-paced prioritized function,
coverage penalty function and the corresponding DCRL hyper-
parameters, which limits the robustness of DCRL solution. The
proposed DRL-QiER method requires less hyper-parameters
tuning and contains no extra DNN, and therefore is easier and
more robust for implementation. To deliver more insights, Fig.
9(b) depicts the comparison on designed trajectories of the
implemented algorithms, over three representative starting lo-
cations chosen from episodes 1910-2000. It is straightforward
to observe that the proposed DRL-QiER and the considered
baselines direct the UAV to hit the common destination with
different trajectories.

Fig. 10(a) demonstrates comparison on average time cost
of designed trajectories and the corresponding EOD for the
considered algorithms, over four episode slots 1-1400, 1401-
1600, 1601-1800 and 1801-2000. From this figure, one can
find that the proposed DRL-QiER solution can help achieve
both lower average EOD and average time cost, within each
episode slot. Especially, in the late training state (e.g., episode
slot 1800-2000), the proposed DRL-QiER method outperforms
other baselines, in terms of both average EOD and average
time cost. Furthermore, Fig. 10(b) illustrates comparison on
average duration and average weighted sum of EOD and time
cost over the last 200 training episodes, for all the DRL-aided
approaches and non-learning-based strategy termed as straight
line. From this figure, it is easy to find that while the straight
line solution offers the cheapest average time cost, it leads the
UAV to suffer the highest average EOD, which is extremely
non-preferable and thus unveils the benefits provided by DRL-
aided approaches. On the contrary, the proposed DRL-QiER
solution can not only help the UAV experience the lowest
average EOD, compared to both other DRL-aided approaches
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Figure 9: Performance comparison on moving average returns
and designed trajectories

and the straight line strategy, but also direct the UAV to reach
the common destination with the cheapest average time cost,
against other DRL-aided solutions.

To further highlight superiority of the proposed DRL-
QiER solution against conventional path planning approach,
performance comparisons between DRL-QiER and two other
non-learning baselines are demonstrated in Fig. 11 and Table
III, for three different initial locations. Specifically, the BS-
approaching baseline aims to direct UAV to travel across the
nearest BS alongside the flight because intuitively locations
nearby BS can provide stronger coverage quality. The other
non-learning baseline is based on the assumption of BS’s
circular coverage, within which arbitrary location is simply
treated as that can provide satisfactory coverage strength.
The circles in Fig. 11 are taken as examples to evaluate the
designed trajectories under the circular coverage assumption.
Note that unlike the aforementioned DRL-related approaches,
both of these two considered baselines are not dependent
on the actual TOP distribution, and thus naive and inferior
trajectories could be generated. To validate this, Table III
delivers comparison on average durations of circular, BS-
approaching and DRL-QiER solutions, over trajectories started
from the considered three initial locations. From this table, it
is straightforward to observe that the proposed DRL-QiER

solution can direct UAV to achieve the minimum amount
of average weighted sum of time cost and EOD where
the corresponding average EOD is the cheapest, while the
other two non-learning baselines suffer from greater average
EOD. The corresponding reason can be interpreted as that
the proposed DRL-QiER solution (more generally, DRL-aided
approaches) is trained via interacting with the actual TOP
distribution, which validates the advantages provided by DRL-
related solutions against non-learning alternatives.
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Figure 10: Performance comparison on average time costs and
EODs

Circular BS-Approaching DRL-QiER

Time Cost 28.440 s 31.916 s 31.234 s

EOD 10.469 s 12.128 s 8.136 s

Weighted Sum of
Time Cost and EOD 551.890 638.316 438.034

Table III: Comparison on average durations of circular, BS-
approaching and DRL-QiER solutions

VII. CONCLUSION

In this work, an intelligent navigation task for cellular-
connected UAV networks was investigated, aiming at minimiz-
ing the weighted sum of time cost and expected outage dura-
tion alongside UAVs’ flying trajectories towards the common
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Figure 11: Comparison on designed trajectories of circular,
BS-approaching and DRL-QiER solutions

destination with randomly-generated initial UAV locations. To
overcome the inefficiency of offline optimization techniques
in navigating the UAV, a DRL-aided algorithm, i.e., DRL-
QiER solution, was proposed, in which the innovative QiER
framework is coined to help the D3QN agent hit a better
learning efficiency. Simulation results validated the effec-
tiveness of the proposed DRL-QiER solution, while perfor-
mance comparison against both several DRL-aided baselines
and straight line strategy showcased DRL-QiER method’s
superiority. Moreover, the proposed QiER framework can be
potentially extended into other existing DRL frameworks that
are dependent on ER technique, e.g., deep deterministic policy
gradient (DDPG), soft actor-critic (SAC) and Rainbow.
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