

King’s Research Portal

DOI:
10.1109/TWC.2022.3163249

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Liu, Y., & Simeone, O. (2022). Learning How to Transfer from Uplink to Downlink via Hyper-Recurrent Neural
Network for FDD Massive MIMO. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 21(10), 7975-
7989. https://doi.org/10.1109/TWC.2022.3163249

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 14. Jan. 2025

https://doi.org/10.1109/TWC.2022.3163249
https://kclpure.kcl.ac.uk/portal/en/publications/3d36acdb-b2cd-4b35-a0ee-276571013aec
https://doi.org/10.1109/TWC.2022.3163249

1

Training Hybrid Classical-Quantum Classifiers via
Stochastic Variational Optimization

Ivana Nikoloska, Graduate Student Member, IEEE, and Osvaldo Simeone, Fellow, IEEE.

Abstract—Quantum machine learning has emerged as a poten-
tial practical application of near-term quantum devices. In this
work, we study a two-layer hybrid classical-quantum classifier in
which a first layer of quantum stochastic neurons implementing
generalized linear models (QGLMs) is followed by a second
classical combining layer. The input to the first, hidden, layer
is obtained via amplitude encoding in order to leverage the
exponential size of the fan-in of the quantum neurons in the
number of qubits per neuron. To facilitate implementation of
the QGLMs, all weights and activations are binary. While the
state of the art on training strategies for this class of models
is limited to exhaustive search and single-neuron perceptron-like
bit-flip strategies, this letter introduces a stochastic variational
optimization approach that enables the joint training of quantum
and classical layers via stochastic gradient descent. Experiments
show the advantages of the approach for a variety of activation
functions implemented by QGLM neurons.

Index Terms—Quantum Machine Learning, Quantum Com-
puting, Probabilistic Machine Learning

I. INTRODUCTION

Ever since Richard Feynman proposed the concept of
quantum computers almost half a century ago, technology
giants, startups and academic labs alike have competed against,
and collaborated with each other, eager to make it a real-
ity. Progress has had to contend with the stark limitations
of current noisy-intermediate scale quantum (NISQ) systems
providing 50-100 non-fault-tolerant qubits [1]. An emerging
potential practical use of NISQ hardware is quantum machine
learning, a hybrid research discipline that combines machine
learning and quantum computing [2]–[4].

Many classical techniques, ranging from kernel methods [5]
and Boltzmann machines [6] to deep learning models like
convolutional [7] and graph neural networks [8], now have
quantum counterparts [9]–[12], which can operate, at least on a
small scale, on NISQ hardware. These methods apply classical
optimization routines to select parameters that define the
operation of a quantum circuit. Such parameters are most often
continuous and optimized via gradient descent techniques
that apply the so-called parameter-shift rule, an exact form
of finite-difference differentiation [4]. Alternative approaches,
which may be more promising in the short term, involve hybrid
quantum-classical models, where classical computation, e.g.,
for feature extraction, is combined with quantum parametric
circuits [13].

A notable example of hybrid quantum-classical models is
the multi-layer artificial neural network introduced in [14],

I. Nikoloska and O. Simeone are with KCLIP, CTR, Department of King’s
College London. e-mails: {ivana.nikoloska, osvaldo.simeone}@kcl.ac.uk.
This work was supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 Research and Innovation Program (Grant
Agreement No. 725731).

N-dimensional
 input

quantum hidden
layer

classical output
layer

.

.

.

amplitude
encoding

QGLM
1

QGLM
2

QGLM
M

CGLM

amplitude
encoding

amplitude
encoding

Fig. 1: In the studied hybrid classical-quantum classifier,
a quantum hidden layer, fed via amplitude encoding and
consisting of quantum generalized linear models (QGLMs), is
followed by a classical combining output layer with a single
classical GLM (CGLM) neuron. All weights and activations
are binary.

[15], which includes stochastic binary neurons implementing
generalized linear models (GLMs). The key merits of this
architecture are that: (i) quantum implementations of GLMs,
referred to as QGLM, have an exponentially large number
of inputs and number of synaptic weights in the number of
physical resources – qubits – within the neuron; and (ii) unlike
more conventional deterministic models, such as [16], the
outcomes of the quantum neurons need not be averaged by
performing multiple measurements to obtain the expectations
of given observables.

The QGLM-based neural network considered in [14], [15]
has binary synaptic weights, as well as binary, classical, acti-
vations, rendering standard optimization methods infeasible.
For models comprised of one or two QGLM neurons, the
weight vectors were optimized in [14], [15] via a single-neuron
perceptron-like sign-flips strategy or via exhaustive search.
Both approaches are inapplicable or infeasible for models
comprised of an arbitrary number of neurons.

In this paper, we address this issue by focusing – as in
the experiments presented in [15] – on the hybrid classical-
quantum two-layer architecture illustrated in Fig. 1. In it, a first
layer of QGLMs is followed by a second classical combining
layer. The input to the first, hidden, layer is obtained via
amplitude encoding (see, e.g., [4]). This letter introduces a
stochastic variational optimization (SVO) approach [17] that
enables the joint training of quantum and classical layers via
stochastic gradient descent. The proposed SVO-based training
strategy operates in a relaxed continuous space of variational
classical parameters. Experiments via computer simulations
show the advantages of the approach for a variety of activation
functions implemented by the QGLM neurons.

ar
X

iv
:2

20
1.

08
62

9v
1

 [
qu

an
t-

ph
]

 2
1

Ja
n

20
22

2

II. MODEL

In this section, we describe the hybrid classical-quantum
classifier depicted in Fig. 1.

A. Hybrid Classical-Quantum Binary Classifier

As illustrated in Fig. 1, we consider a two-layer architecture
implementing a binary classifier on an input, classical, vector
x. The first, hidden, layer consists of M QGLM-based neu-
rons, and the last layer of a classical GLM (CGLM) neuron
producing the final classification decision.

The input vector x = [x0, ..., xN−1]T , which is assumed to
be binary with xn ∈ {−1,+1}, is mapped to the amplitude
vector of a pure quantum state consisting of log2(N) qubits
(assumed to be an integer) as

|Ψx〉 =
1√
N

N−1∑
n=0

xn |n〉 , (1)

where |n〉, with n ∈ {0, ..., N − 1}, denotes the nth vector of
the computational basis (see, e.g., [18]). We note that preparing
the quantum state (1) from a general binary input vector x
entails a minimal complexity of N/ log2(N) computational
steps, most of which are two-qubit gates, unless vector x has a
specific structure (e.g., it is a sample from a smooth probability
distribution) [4].

As seen in Fig. 1, the quantum state |Ψx〉 is prepared M
times and input to each of the QGLM neurons in the first
layer. Each mth QGLM neuron produces a stochastic binary
output ym ∈ {−1,+1} as a function of the input state |Ψx〉
and of an N -dimensional vector wqm = [wqm,0, ..., w

q
m,N−1]T

of binary weights, with wqm,n ∈ {−1,+1}.
The M binary digits y = [y1, ..., yM]T produced by the

first layer are then fed to a CGLM neuron, which outputs
a final, stochastic, decision z ∈ {−1,+1} for binary clas-
sification as a function of its own vector of binary weights
wc = [wc1, ..., w

c
M]T .

We emphasize that, unlike deterministic models such as
[16], the outputs of the quantum neurons need not be averaged
to obtain the expectation of an observable over multiple runs.
Rather, the outcomes of the quantum neurons are obtained via
a single measurement, producing a stochastic binary output.

B. Classical GLM (CGLM) Neuron

In order to describe the operation of the neurons, let us start
with the classifying CGLM neuron in the last layer. As seen,
the CGLM neuron receives an M -dimensional binary input
vector y and produces a final binary decision z ∈ {−1,+1}.
The probability of the binary output given the input vector y
is given by

pwc(z = 1 |y) = gc
(

M∑
m=1

wcmym

)
= gc

(
yTwc

)
, (2)

where gc(·) denotes the response function of the CGLM and
(·)T denotes transposition. Typical examples of the response
function gc(·), which must be invertible, of GLMs include
the sigmoid function and the Gaussian cumulative distribution
function (see, e.g., [19]).

C. Quantum GLM (QGLM) Neuron

Quantum procedures closely mimicking the operation (2)
of the CGLM neuron can be designed using (approximately)
log2(N) qubits (see [4] for an overview). The fact that
log2(N) qubits are sufficient to process an exponentially larger
input x, of size N , illustrates the potential computational
advantage of quantum information processing in this context.
We refer to quantum circuits implementing the stochastic
mapping defined by the conditional distribution

pwq
m

(ym = 1 |x) = gq
(
N−1∑
n=0

wqm,nxn

)
= gq

(
xTwqm

)
, (3)

for some (invertible) response function gq(·), given binary
weight vector wqm, as QGLM neurons. The outputs of the M
QGLMs are independent given the input x, and hence we have
pwq (y |x) =

∏M
m=1 pwq

m
(ym |x), where wq = {wqm}Mm=1.

Several implementations of QGLM neurons have been
proposed in the literature using different quantum circuits.
The main goal of these circuits is to produce a stochastic
binary output with probabilities which are a function of
the inner product 〈Ψwq |Ψx〉 = xTwqm between the input
state |Ψx〉 and the amplitude-encoded binary weight vector
|Ψwq 〉 = 1/

√
N
∑N−1
n=0 w

q
n |n〉. Different solutions, along with

the resulting response functions are listed in Table I, accom-
panied by relevant references. In the experiments provided in
Sec. IV we consider all these options.

III. STOCHASTIC VARIATIONAL OPTIMIZATION-BASED
TRAINING

In this section, we first define the problem of training
the hybrid classical-quantum classifier defined in the previous
section, and then introduce an SVO-based training procedure.

A. Problem Definition

We assume to have access to a training set D of input-
output samples (x, z), with x ∈ {−1, 1}N and z ∈ {−1, 1}.
Given the model described in the previous section, we define
the log-loss on an example (x, z) as

L(x,z)(w) = − ln
(
Epwq (y | x) [pwc (z | y)]

)
, (4)

which is a function of the weights w = {{wqm}Mm=1, w
c} of

the M QGLMs and of the CGLM. Note that computing the
log-loss requires averaging over the outputs y of the hidden
QGLMs. Using Jensen’s inequality, the loss in (4) can be
bounded as

L(x,z)(w) ≤ Epwq (y | x)
[
`
(
z, g(yTwc)

)]
:= L(x,z)(w), (5)

where we have defined the negative log-probability of the
output of the CGLM as

− ln pwc(z | y) = `
(
z, g(yTwc)

)
, (6)

with `(a, b) = − ln
(
b

1+a
2 (1− b) 1−a

2

)
.

The training objective is to minimize the loss bound in (5)
over the NM+M binary weights w by addressing the problem

min
w∈{0,1}NM+M

∑
(x,z)∈D

L(x,z)(w). (7)

3

TABLE I: List of response functions for QGLM neurons

Name g (·) Routine
Quadratic (Q) g(xTwqm) = |xTwqm|2 Sign-flip blocks [14], [15]
Biased quadratic (BQ) g(xTwqm) = 1/2 + 1/2|xTwqm|2 Swap test [20]
Biased centered quadratic (BCQ) g(xTwqm) = 1/2 + 1/2|xTwqm − 1/2|2 Swap test on extra dimensions [21]
Linear (L) g(xTwqm) = 1/2 + 1/2xTwqm Interference circuit [22]

B. SVO-Based Training Algorithm

The direct optimization of problem (7) is problematic due
to the discrete nature of its domain. In this paper, we propose
to address this problem via SVO. SVO is a generalization
of stochastic optimization via simultaneous perturbation [23]
that has the key merit of being applicable also to discrete
models. It is noted that stochastic optimization via simul-
taneous perturbation was found to be effective in [3] to
optimize a parameterized quantum circuit with continuous
model parameters.

SVO makes use of the observation that the minimum of a
collection of values cannot be larger than an arbitrary average
of such values, i.e., [17]

min
w

∑
(x,z)∈D

L(x,z)(w)

≤ min
q(w |φ)

Eq(w |φ)

 ∑
(x,z)∈D

L(x,z)(w)

 , (8)

where q(w |φ) represents a parametric distribution on the
space of the model parameters w that depends on a continuous-
valued vector of parameters φ. Furthermore, if the family of
distributions is sufficiently large to include all distributions
concentrated at the possible values of w, the relation in (8)
holds with equality.

Given that the model parameters are discrete, we define
the variational distribution q(w |φ) as the product-Bernoulli
probability mass function

q(w |φ) =

M∏
m=1

N−1∏
n=0

σ(φqm,n)
1+w

q
m,n
2 (1− σ(φqm,n))

1−w
q
m,n
2

×
M∏
m=1

σ(φcm)
1+wc

m
2 (1− σ(φcm))

1−wc
m

2 , (9)

where σ(a) = (1 + exp(−a)) denotes the sigmoid function
and we have defined the NM + M variational parameters
φ = {{{φqm,n}Mm=1}N−1n=0 , {φcm}Mm=1}. These are the natural
parameters defining the probabilities that the corresponding
weights equal 1. Specifically, the real parameter φqm,n yields
the probability σ(φqm,n) that we have wqm,n = 1, and φcm gives
the probability σ(φcm) of event wcm = 1 under the variational
distribution q(w |φ). With this choice, we address problem
(7) by minimizing the upper bound in (8) over the NM +M -
dimensional real vector φ.

To this end, we aim at approximating the gradient-based

update

φ← φ+ η∇φ Eq(w |φ)

 ∑
(x,z)∈D

L(x,z)(w)

= φ+ η Eq(w |φ)

 ∑
(x,z)∈D

L(x,z)(w)− b

∇φ ln q(w |φ)

 ,
(10)

where η > 0 is the learning rate and b is an arbitrary vector of
the same dimensions as φ. The equality in (10) follows from
the standard REINFORCE expression [24]. The gradient of
the log-variational distribution in (10) has the simple form

∇φ ln q(w |φ) =
1 + w

2
− σ(φ), (11)

where the functions are evaluated entry-wise.
In order to obtain a practical update rule, the expectation

over the variational distribution q(w|φ) and the sum over the
data set in (10) are estimated using samples from both the
variational distribution q(w|φ) and from the data set D. With
a single sample w ∼ q(w|φ), we obtain the doubly stochastic
estimate [24]

φ← φ+ η

 |D|
|Db|

∑
(x,z)∈Db

L(x,z)(w)− b

∇φ ln q(w |φ)

 ,
(12)

where | · | is the cardinality of the argument set and Db
represents a mini-batch of the data setD. The estimate (12) can
be readily extended to any number of samples from q(w|φ).
Importantly, the update (12) is local: Each entry of vector φ
can be updated separately based on knowledge of the global
loss L(x,z)(w) for the batch of samples Db. In fact, the gradient
(11) can be computed entry-wise and hence separately for each
parameter in vector φ.

The update (12) can be interpreted in a manner similar
to stochastic optimization via simultaneous perturbations [23]
(which is also related to evolution-based strategies [25]). At
each iteration, the random sampling of the weights from the
variational distribution q(w|φ) explores the space of the binary
model parameters “around” the current variational probability
vector φ.

It is important to choose a baseline vector b in an adaptive
manner so as to minimize the variance of the gradient estimate
[24]. This can be done as derived in (10) as [26]

b =

E
[(∑

(x,z)∈D L(x,z)(w)∇φ ln q(w |φ)
)2]

E
[
(∇φ ln q(w |φ))

2
] , (13)

4

where again operations are carried out entry-wise. In order to
estimate the expectations in (13), we use two moving averages,
estimated using an exponentially decaying factor γ, one for
the numerator and one for the denominator in (13) across
the iterations [26]. Note that the baseline can also be updated
locally and separately for each local parameter.

Moreover, training the model using the local update rule
does not require estimating the response functions, i.e., the
expectation of the outcomes of the quantum neurons. For
quantum hardware, one can only take a finite number of
measurements, so one can never determine a circuit’s ex-
pectation values exactly. This makes training the proposed
architecture less computationally intensive than variational
quantum circuits relying on parameters shift rules that require
taking the difference of two circuit expectation values, with
forward and backward shifts in angles [22], [27], [16].

IV. EXPERIMENTS

In this section, we provide experimental results to elaborate
on the performance of the proposed training scheme.

A. Data Set

We consider a prototypical image data set, namely Bars-and-
Stripes (BAS) which is widely used in related studies [14]–
[16], [28], [29]. Each sample of size d × d illustrates bars,
stripes, or random patterns. The samples are transformed from
d×d pixel images to binary strings x of length d2. As in [14],
[15], [28], [29], we consider d = 4. The samples containing
bars or stripes are labeled as z = 1, whilst the random patterns
are labeled as z = −1.

B. Schemes and Benchmarks

We compare the performance of the SVO-based strategy
with the perception-like scheme proposed in [14] to train
single quantum neurons. To adapt the scheme in [14] to the
two-layer architecture studied in this paper, we train each
neuron individually as in [14]. A final classification decision
is then made by the classical neuron in the second layer via
a majority rule, i.e., a label is selected if it is chosen by
at least half of the neurons. Specifically, following [14], the
weight vector wqm for QGLM m is updated as follows. If the
respective neuron classifies a sample with a negative label as
positive, one flips a fixed portion η ∈ [0, 1] of the binary
weights, which are selected at random among the positions
at which the signs of the weights and the sample coincide.
Conversely, if the respective neuron classifies a positive sample
as negative, one flips the same portion of the weights, which
are selected at random among the positions at which the signs
of the weights and the sample differ.

C. Model Architecture and Hyperparameters

We consider the hybrid classical-quantum model in Fig. 1
with M = 32 hidden quantum neurons, and a single classical
output neuron. We use |D| = 30 randomly selected samples
for training, and testing is carried out with the same number
of independently generated samples. We use SGD with 4000
training iterations. For the sign-flips scheme, the fraction of
flipped signs is set to η = 0.625 (which was optimized

0 500 1000 1500 2000 2500 3000 3500 4000
Training iterations

0.45

0.5

0.55

0.6

0.65

0.7

0.75

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

L

Q
BCQ

BQ

SVO

 sign-flips

Fig. 2: Classification accuracy as a function of the training
iteration for the benchmark sign-flips scheme [14] and the
proposed SVO-based procedure for the BAS data set. The
results are averaged over 5 independent trials.

numerically through exhaustive search). For SVO, the learning
rate η is altered based on a cyclical schedule as in [30] as

η = ηbase + (ηmax − ηbase)

×max(0, (1− t))×
(

1 + sin
(cπ

2

))
, (14)

where i denotes the current training iteration; s = 1000
denotes the step size; the base and maximum values for
the learning rate are set to ηbase = 0.1, and ηmax = 0.9,
respectively; and we have defined c = d(1 + i/(2s))e and
t = |i/s− 2c+ 1|. In addition, for SVO, the batch size is
set to |Db| = 16, and the number of samples of the model
parameters used to evaluate the expectations in (12) is set to
10. We adopt a standard sigmoid for the response function
gc(·) of the CGLM.

D. Results

We plot the classification accuracy for all schemes and
benchmarks in Fig. 2 as a function of the training iterations.
For SVO, we consider all response functions, while we illus-
trate only the quadratic (Q) response function for the sign-flips
scheme, since it behaves similarly for all response functions.
The sign-flips scheme [14] is seen to improve as training
proceeds, however, the accuracy saturates after around 3, 000
iterations. The reason is that there is no single hyperplane
separating the bars and the stripes from the random patterns,
making the task difficult to solve for individual neurons
in the ensemble. Conversely, the proposed SVO scheme is
seen to achieve higher classification accuracy for all response
functions. In particular, the QGLM using the Quadratic (Q)
response function yields fastest convergence and achieves the
best performance. Due to the additional bias terms resulting
from the swap test routine, the QGLMs relying on the Biased
quadratic (BQ) and Biased centered quadratic (BCQ) response
functions are slower to learn, but ultimately converge after
around 3, 000 training iterations.

5

V. CONCLUSION

In this paper, we studied a two-layer hybrid classical-
quantum classifier with binary weights and activations in
which a first layer of QGLMs is followed by a second classical
combining layer. For the considered class of models, we
proposed a SVO-based training scheme that results in local
learning rules for joint weight optimization of the quantum
and classical layers via stochastic gradient descent. The pro-
posed method can be naturally extended to architectures with
multiple layers of QGLMs (see [15]), although this is not
elaborated on here due to the practical challenges associated
with repeating amplitude encoding steps in between quantum
layers.

REFERENCES

[1] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quan-
tum, vol. 2, p. 79, 2018.

[2] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp.
195–202, 2017.

[3] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala,
J. M. Chow, and J. M. Gambetta, “Supervised learning with quantum-
enhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209–212, 2019.

[4] M. Schuld and F. Petruccione, Machine Learning with Quantum Com-
puters. Springer, 2021.

[5] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine
learning,” The annals of statistics, vol. 36, no. 3, pp. 1171–1220, 2008.

[6] G. E. Hinton, “Boltzmann machine,” Scholarpedia, vol. 2, no. 5, p. 1668,
2007.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, pp. 1097–1105, 2012.

[8] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[9] R. Mengoni and A. Di Pierro, “Kernel methods in quantum machine
learning,” Quantum Machine Intelligence, vol. 1, no. 3, pp. 65–71, 2019.

[10] M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and R. Melko,
“Quantum boltzmann machine,” Physical Review X, vol. 8, no. 2, p.
021050, 2018.

[11] I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural
networks,” Nature Physics, vol. 15, no. 12, pp. 1273–1278, 2019.

[12] G. Verdon, T. McCourt, E. Luzhnica, V. Singh, S. Leichenauer,
and J. Hidary, “Quantum graph neural networks,” arXiv preprint
arXiv:1909.12264, 2019.

[13] A. Mari, T. R. Bromley, J. Izaac, M. Schuld, and N. Killoran, “Transfer
learning in hybrid classical-quantum neural networks,” Quantum, vol. 4,
p. 340, 2020.

[14] F. Tacchino, C. Macchiavello, D. Gerace, and D. Bajoni, “An artificial
neuron implemented on an actual quantum processor,” npj Quantum
Information, vol. 5, no. 1, pp. 1–8, 2019.

[15] F. Tacchino, P. Barkoutsos, C. Macchiavello, I. Tavernelli, D. Gerace,
and D. Bajoni, “Quantum implementation of an artificial feed-forward
neural network,” Quantum Science and Technology, vol. 5, no. 4, p.
044010, 2020.

[16] D. Arthur and P. Date, “A hybrid quantum-classical neural network
architecture for binary classification,” arXiv preprint arXiv:2201.01820,
2022.

[17] T. Bird, J. Kunze, and D. Barber, “Stochastic variational optimization,”
arXiv preprint arXiv:1809.04855, 2018.

[18] N. D. Mermin, Quantum computer science: an introduction. Cambridge
University Press, 2007.

[19] O. Simeone, “A brief introduction to machine learning for engineers,”
Foundations and Trends in Signal Processing, vol. 12, no. 3-4, pp. 200–
431, 2018.

[20] H. Kobayashi, K. Matsumoto, and T. Yamakami, “Quantum Merlin-
Arthur proof systems: Are multiple Merlins more helpful to Arthur?” in
International Symposium on Algorithms and Computation. Springer,
2003, pp. 189–198.

[21] Z. Zhao, J. K. Fitzsimons, and J. F. Fitzsimons, “Quantum-assisted
gaussian process regression,” Physical Review A, vol. 99, no. 5, p.
052331, 2019.

[22] M. Schuld, M. Fingerhuth, and F. Petruccione, “Implementing a
distance-based classifier with a quantum interference circuit,” EPL
(Europhysics Letters), vol. 119, no. 6, p. 60002, 2017.

[23] J. C. Spall, “A one-measurement form of simultaneous perturbation
stochastic approximation,” Automatica, vol. 33, no. 1, pp. 109–112,
1997.

[24] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte carlo
gradient estimation in machine learning.” J. Mach. Learn. Res., vol. 21,
no. 132, pp. 1–62, 2020.

[25] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmid-
huber, “Natural evolution strategies,” Journal of Machine Learning
Research, vol. 15, no. 27, pp. 949–980, 2014.

[26] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural networks, vol. 21, no. 4, pp. 682–697, 2008.

[27] J. Rivera-Dean, P. Huembeli, A. Acín, and J. Bowles, “Avoiding local
minima in variational quantum algorithms with neural networks,” arXiv
preprint arXiv:2104.02955, 2021.

[28] M. Benedetti, D. Garcia-Pintos, O. Perdomo, V. Leyton-Ortega, Y. Nam,
and A. Perdomo-Ortiz, “A generative modeling approach for benchmark-
ing and training shallow quantum circuits,” npj Quantum Information,
vol. 5, no. 1, pp. 1–9, 2019.

[29] R. Y. Li, T. Albash, and D. A. Lidar, “Limitations of error corrected
quantum annealing in improving the performance of boltzmann ma-
chines,” Quantum Science and Technology, vol. 5, no. 4, p. 045010,
2020.

[30] L. N. Smith, “Cyclical learning rates for training neural networks,”
in Proc. IEEE Winter Conference on Applications of Computer Vision
(WACV). IEEE, 2017, pp. 464–472.

	I Introduction
	II Model
	II-A Hybrid Classical-Quantum Binary Classifier
	II-B Classical GLM (CGLM) Neuron
	II-C Quantum GLM (QGLM) Neuron

	III Stochastic Variational Optimization-Based Training
	III-A Problem Definition
	III-B SVO-Based Training Algorithm

	IV Experiments
	IV-A Data Set
	IV-B Schemes and Benchmarks
	IV-C Model Architecture and Hyperparameters
	IV-D Results

	V Conclusion
	References

