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1 Introduction

The objective of this paper is to study cosmological event horizons from a modern holo-
graphic perspective. Cosmological horizons surround observers in universes with a positive
cosmological constant, like the one our own universe asymptotes to. Despite their obvious
relevance, they have been much less explored compared to black hole horizons. Cosmolog-
ical horizons behave differently from black hole horizons, see e.g., [1, 2], even though, for
instance, their entropy is also proportional to the area of the event horizon [3].
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The AdS/CFT correspondence [4] provides a fruitful framework for studying black
hole horizons in negatively curved spaces using conformal field theory (CFT) observables
located at the boundary. In this arena, a special role is played by tools from the world of
quantum information, see e.g., [5–7]. It would be surprising if similar tools did not play
a central role in understanding the cosmological horizon as well. However, the fact that
there is no timelike boundary in de Sitter spacetime (dS) is an obstacle in translating ideas
from gravitational holography into the cosmological case.

Past attempts to study de Sitter holographically include the dS/CFT correspon-
dence [8–13], thinking of the dS horizon as a holographic screen, e.g., [14–16] and static
patch holography which associates a quantum mechanical model with the observer’s world-
line [17, 18]. Recently, a new set of ideas appeared including the use of T T̄ deforma-
tions [19–21], a cosmological bootstrap program [22–28], and studies of the Euclidean
partition function in 2d quantum gravity [29–31]. It is fair to say, though, that still there
is no single microscopic quantum model to describe the cosmological horizon.

Interest in a holographic description of dS is further motivated by the fact that it
has been alarmingly difficult to find stable de Sitter-like vacua in String Theory. The
few successful attempts such as [32] are still a matter of controversy. Some authors have
gone so far as to conjecture that there do not exist stable de Sitter-like vacua in String
Theory [33]. While it is indeed important to continue the search for stable vacua, further
study of holography, especially the question of whether a holographic description of dS is
even possible, is an alternative way of exploring quantum gravity in dS.

Here, we continue the effort started in [34, 35] to probe the cosmological horizon using
the standard tools of the AdS/CFT correspondence. The main idea behind this program is
to embed part of a dS universe inside AdS and, in doing so, providing a boundary to study
the cosmological horizon. Embedding dSd+1 inside AdSd+1 in d > 1 was first attempted
in [36, 37], where it was observed that in order to satisfy the null energy condition, it
was necessary to hide the dS patch inside a black hole horizon in AdS. However, a new
set of geometries was proposed in [34, 35], where the cosmological event horizon is in
causal contact with the AdS boundary. These are solutions to certain dilaton-gravity
theories in two dimensions that, when uplifted to higher dimensions, do satisfy the null
energy conditions [38]. They appear in the context of the recently studied near AdS2
geometries [39–42], where there is a large, slowly varying dilaton playing the role of the
size of the compact dimensions. These geometries share similar features to the low energy
regime of the SYK model [43, 44]. From this point of view, they can be seen as an RG
flow from a UV near-conformal point towards a dS infrared point and we therefore refer to
them as flow geometries. One could imagine building the dual to the flow geometries from
relevant deformations of SYK-like models [38].1

From a macroscopic perspective, the flow geometries allow us to compute different
types of observables in the hope of characterising the cosmological event horizon. These
observables turn out to differ significantly from their counterparts for black hole horizons.

1It was conjectured in [38] that the coupling of the relevant deformation might need to be complexified
in order for the bulk to exhibit a flow towards de Sitter.
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Examples of these include: the frequencies of the dissipative quasinormal modes, which
have a small real part which indicates that the geometry in the deconfined phase is less
efficient at thermalizing [34]; the out-of-time-ordered four point function, that oscillates in
time rather than obeying the acclaimed exponential growth of chaotic systems [35]; and,
positive energy shockwaves, which open the wormhole rather than closing it [45]. All these
pose challenges in the microscopic interpretation of the flow geometries.

Furthermore, in three dimensions, corrections to the cosmological horizon entropy were
recently computed, finding again notable differences with respect to analogous corrections
for black holes [46, 47].

In this paper, we concentrate on a different macroscopic observable: the volume of an
extremal spacelike codimension-one slice connecting opposite sides of an eternal double-
sided geometry. In two dimensions, this is simply the length of a geodesic. This observable
has recently gained a lot of attention due to its ability to probe the horizon interior and
also due to its connection to the notion of quantum computational complexity.2

Quantum computational complexity is a notion from quantum information which
estimates the difficulty of constructing a quantum state from simple elementary oper-
ations [51, 52]. Complexity has some striking features which distinguish it from other
measures of quantum correlations. Specifically, in chaotic systems, the complexity grows
linearly following a quantum quench for a long time (exponential in the entropy of the
system) and then saturates. It also reacts to perturbations in a characteristic way which
encodes chaos and scrambling. All these behaviours have been reproduced using the max-
imal volume slices in AdS black holes. see e.g., [53–59].

These similarities led to conjecture that complexity of a quantum state is a plausible
holographic dual to the extremal volume anchored at the boundary times where the state
is defined

CV = max V

GN`
(1.1)

where ` is a certain length scale associated with the geometry, usually selected to be the
AdS radius of curvature.3 In two-dimensional dilaton gravity it was suggested in [64] that
equation (1.1) should include an additional factor Φ0 which is the constant part of the full
dilaton field. Alternatively, propositions were made which relate the complexity to the ac-
tion of the WdW patch [65, 66] and to its spacetime volume [67]. In cases with a horizon, all
these quantities probe the behind horizon region. Here we explore the complexity=volume
(CV) conjecture (1.1) in flow geometries.

We find that the geodesics in the flow geometries are strongly affected by the interior
dS2 region and differ significantly from geodesics in AdS2 black holes. It is well known
that spacelike geodesics in dS starting at a point will reach its antipodal point and that
not all points on the worldline of an observer are connected by a spacelike geodesic with
points on the “antipodal worldline”. As a consequence, we will see that in most of our flow
geometries not all boundary times will be connected by spacelike geodesics and only a finite

2Previous attempts to study quantum computational complexity in dS space appeared in [48–50].
3This conjecture was reformulated using Lorentzian flows in [60, 61] similarly to the earlier reformulation

of the Ryu-Takayanagi prescription [62] using ‘bit threads’ [63].
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short range of times of the order of the inverse temperature will have a complexity=volume
observable associated to it.

Another important difference is that, even when they exist, the length of geodesics does
not behave as in the case of black holes. In the usual limit where the boundary lies very far
from the horizon, the length of geodesics in the flow geometries with dS horizons behave as4

CV (t) ∼ S0 log cos(cγπTt) + const , (1.2)

where cγ depends on the specific flow geometry we consider and S0 is the entropy
associated with the constant part of the dilaton. In most cases, the volume complexity
decreases at early times reaching a minimum. This behaviour is valid up to times of
the order of the inverse temperature Tt . 1.5 At that point, there is a last geodesic
that becomes (almost everywhere) null and reaches past/future infinity. At later times,
finite-length geodesics cease to exist. A similar phenomenon was observed for pure dS
geometries in [68]. This contrasts with the known result for the AdS2 black hole,

CV (t) ∼ S0 log cosh(πTt) + const, (1.3)

where the volume complexity grows linearly at late times tT � 1. The above formula is
a good approximation for the volume at all times as long as the boundary lies far enough
from the horizon.

One might suspect that the different behaviours come from having glued together two
geometries. In order to rule this out, we consider flow geometries that interpolate between
an AdS black hole in the interior and an AdS with different curvature radius close to the
boundary. In this case, we do recover exactly the same linear growth at late times as in
the black hole case.

The rest of the paper is organised as follows: in section 2, we present the dilaton-gravity
theories under consideration; in section 3, we build the formalism to compute the length of
the geodesics for an arbitrary geometry; section 4 discusses the known examples of some
maximally symmetric spacetimes through this formalism; in section 5, we compute the
lengths of geodesics in different flow geometries that interpolate between an AdS boundary
and different (A)dS interiors; we end up with a discussion of the different results in section 6.
Some details of the flow geometries have been relegated to two appendices.

4Slightly different behaviours can be obtained with different types of flow geometries with dS interiors
as cγ becomes imaginary, but since the solutions are valid only for a short range of times, none of them
produces linear growth at late times. See comments below and section 5.2.

5Equation (1.2) is a short time approximation valid for Tt . 1 for large enough boundary-horizon
separation and for most of the flow geometries we consider. Note that the expression becomes complex
for times larger than tcrit = 1/(2cγT ). Despite being a short time approximation, it captures many of the
properties of the exact result. For example, the exact result for the volume also becomes imaginary at a
time of the order of the inverse temperature.
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2 2d dilaton-gravity theories

We will study general dilaton-gravity theories in two dimensions. The Lorentzian action is
given by,

S = Φ0
16πGN

(∫
d2x
√
−gR+ 2

∫
du
√
−hK

)
+ 1

16πGN

∫
d2x
√
−g

(
φR+ `−2U(φ)

)
+ 1

8πGN

∫
du
√
−hφb(K − 1/`) .

(2.1)

The first term is topological and proportional to the Euler characteristic of the manifold.6

K and h are the extrinsic curvature and the induced metric on the boundary, respectively,
` is the curvature radius of the manifold, and φb is the value of the dilaton at the boundary.
Finally, we require the full dilaton to be positive Φ = Φ0 + φ > 0 and we work in the limit
where Φ0 � φ.

The equations of motion for the dilaton and the metric read

R = −U
′(φ)
`2

,

0 = ∇a∇bφ− gab∇2φ+ gab
2`2U(φ) .

(2.2)

Examples of such theories include the JT gravity theory where the dilaton potential is set
to U(φ) = 2φ. For any sufficiently smooth dilaton potential, the equations of motion (2.2)
admit solutions given by

ds2 = −f(r)dt2 + dr2

f(r) , φ = r/` , (2.3)

where the blackening factor f(r) is

f(r) =
∫ r/`

rh/`
U(φ)dφ , (2.4)

and rh is the position of the event horizon where the blackening factor vanishes. It is
straightforward to check that this solution satisfies the equations of motion for any poten-
tial. The thermodynamics of these dilaton gravity theories was studied in [34] (see also
appendix A), where it was demonstrated that the temperature and entropy are given by

T = U(φ(rh))
4π` , S = Φ0 + φ(rh)

4GN
. (2.5)

The following derivations will not use the specific form of the blackening factor f(r)
from equation (2.4). Instead, we will use only the fact that our Lorentzian geometry takes
the form (2.3) where t ∈ R and f(r), for now, is a generic continuous function of the
r-coordinate with AdS asymptotics, i.e., f(r) → r2 when r → ∞.7 We further assume

6Here we only focus on solutions which have a trivial topology, but see, e.g., [59] for the influence of
different topologies on the complexity.

7In section 4.3, we will relax this assumption when considering purely dS spacetime.
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that f(r) has a single root within the physical range of the coordinate r at some r = rh
indicating the position of the horizon, that it is positive outside the horizon, and that the
geometry can be maximally extended into a two-sided geometry with two boundaries.

In order to extend the geometry, it is useful to define a tortoise coordinate,8

r∗(r) =
∫ r dr̃

f(r̃) . (2.8)

Without loss of generality, we can choose the integration constant such that r∗(r→∞) = 0,
i.e., the tortoise coordinate vanishes at the AdS boundary. We next define lightcone coor-
dinates,

vR = tR + r∗ , uR = tR − r∗ . (2.9)

The R subscript indicates that these coordinates cover the right-side of the two-sided
Penrose diagram. In these coordinates the metric (2.3) becomes

ds2 = −f(r)dv2
R + 2dvRdr = −f(r)du2

R − 2duRdr . (2.10)

Similarly, we can define a set of left coordinates, vL = −tL + r∗, uL = −tL − r∗, that
cover the left part of the Penrose diagram. Note that with this choice of coordinates, the
time variable runs upwards along both boundaries. The different lightcone coordinates are
depicted in figure 1.

2.1 Penrose diagram coordinates

In order to draw a Penrose diagram it is convenient to define new coordinates x+, x− that
are finite across the horizon. In the x+, x− > 0 quadrant, these are defined by

x+ = evR/` , x− = e−uR/` . (2.11)

Similar formulas apply in the other quadrants with some overall sign modifications. Note
that x+x− = e2r∗/`, so constant x+x− correspond to constant-r slices and similarly, con-
stant x+/x− = e2tR/` corresponds to constant-tR slices. The x± coordinates still run from
−∞ to ∞, so to compactify them into the Penrose diagram we define UR, VR coordinates
such that

x+ = tanUR , x− = tan VR . (2.12)

We will generally use coordinates where the asymptotic boundary of AdS is at x+x− = 1,
so that each boundary is a vertical line in the Penrose diagram.

8Some care has to be taken when evaluating the tortoise coordinate across the horizon. Under our
assumptions, the blackening factor takes the form f(r) = (r−rh)F (r) where F (r) has no other roots within
the physical range of r. The inverse of f(r) can be decomposed as

1
f(r) = 1

F (rh)(r − rh) + F (rh)− F (r)
F (r)F (rh)(r − rh) (2.6)

which integrates to
r∗(r) = log |r − rh|

F (rh) +G(r) (2.7)

where G(r) comes from integrating the second term on the right hand side of (2.6) and is completely regular
at r = rh.
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Figure 1. Penrose diagram for AdS2. The boundary r = Rb, corresponding to some fixed value of
the dilaton φ = φb, is indicated by a dashed black line. The times tL = tR run upwards along both
boundaries. The axis of changing uL/R, vL/R are indicated in the figure. We have also illustrated
a geodesic with turning point rt (see below).

3 Geodesics in 2d spacetimes

The aim of this paper is to study the volume9 of spacelike geodesics that are anchored
at fixed times on the two boundaries. It is possible to develop a formalism to find these
geodesics and compute their volume for generic f(r), see e.g., [56, 58]. We explain how to
do this in the current section. In the following sections, we will use this formalism to study
the geodesics in specific examples including the flow geometries.

3.1 Geodesics for general f(r) geometries

To find geodesics in geometries described in terms of a blackening factor f(r), consider the
volume of these geodesics

V =
∫
ds
√
−fv̇2

R + 2v̇Rṙ =
∫
ds
√
−fu̇2

R − 2u̇Rṙ , (3.1)

where vR, uR and r are parametrized in terms of a parameter s and the dot indicates
derivative with respect to this parameter. It is always possible to choose a parametrization
where

− fv̇2
R + 2v̇Rṙ = −fu̇R − 2u̇Rṙ = 1 , (3.2)

so that
ṙ = 1 + fv̇2

R

2v̇R
= −1 + fu̇2

R

2u̇R
. (3.3)

The volume does not depend explicitly on the vR (or uR) coordinate, so there is a conserved
quantity

Pv = δV

δv̇R
= −fv̇R + ṙ = 1− fv̇2

R

2v̇R
= −fu̇R − ṙ = 1− fu̇2

R

2u̇R
= δV

δu̇R
= Pu ≡ P . (3.4)

9The volume usually refers to the size of a codimension-one surface. In this paper we are interested in
two dimensional geometries, so the volume is equivalent to the length of the geodesics. We will keep using
the term volume throughout the rest of the text to be consistent with the complexity literature in higher
dimensions.
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From here, we can solve for v̇R and u̇R as a function of P and r and obtain

v̇R± = −P ±
√
f + P 2

f
= u̇R∓ , (3.5)

which in turn implies using (3.4) that

ṙ± = ±
√
f + P 2 . (3.6)

Here, we see that we can interpret the subscripts ± labelling the different solutions as an
indication of whether the radial coordinate r is increasing or decreasing with increasing s
along the geodesic.

At points where (3.6) changes sign the geodesic will turn around, i.e., if before this
point the geodesic was moving away from the boundary into the interior of the geometry,
after this point it will go back towards the boundary (in the second side of the double sided
geometry). We denote the point where ṙ± = 0 by rt and refer to it as the turning point,
see figure 1. It can be obtained by solving the equation

f(rt) + P 2 = 0 . (3.7)

Except for specific degenerate cases, all the geometries considered in this paper will admit
a single turning point, i.e., equation (3.7) will have a single solution within the physical
range of the coordinate r. The position of this turning point will depend on the form of
f(r) so we will discuss it later for each of the examples separately. In geometries with
shockwaves [54, 58] multiple turning points can occur, but we will not be dealing with such
cases here.

Next, let us write down expressions for the volume of the extremal slices. The isome-
tries of our geometries imply that the volume is invariant under the following change of the
boundary times tR → tR+∆t and tL → tL−∆t and hence only depends on the combination
tL + tR. For simplicity, we will assume a symmetric configuration of the boundary times
tL = tR = t/2, but our result will be valid also for non-symmetric configurations. With
the symmetric configuration, the total volume will be twice the volume on each side of the
geometry. The latter is obtained by integrating (3.1) from the turning point towards the
boundary along increasing r. We will assume that the boundary is fixed at some r|bdy = Rb
where the dilaton takes a constant value φ = φb = Rb/`, see eq. (2.3). Then,

V [P ] =
∫
ds = 2

∫ Rb

rt

dr

ṙ+
= 2

∫ Rb

rt

dr√
f(r) + P 2 . (3.8)

This integral is well-behaved for any finite Rb. In particular, the integrand is smooth at
the horizon.

Finally, we would like to relate the volume to the boundary times at which the geodesic
is anchored. To find an expression for the boundary times in terms of the momentum P ,
we integrate eqs. (3.5)–(3.6) according to

vR(Rb)− vR(rt) =
∫ Rb

rt
dr
v̇R+
ṙ+

=
∫ Rb

rt
τ(P, r)dr , (3.9)

uL(rt)− uL(Rb) =
∫ rt

Rb

dr
u̇L−
ṙ−

=
∫ Rb

rt
τ(P, r)dr , (3.10)

– 8 –
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where
τ(P, r) ≡

√
f(r) + P 2 − P

f(r)
√
f(r) + P 2 . (3.11)

In the above expressions, we have assumed that P > 0. The geodesic moves from the
left boundary to the right boundary, crossing behind the future horizon. Note that the
integrand τ(P, r) does not diverge around r = rh.10 Above, we have chosen the same
boundary cutoff Rb for the right and left boundaries.

Using the definition of the coordinates and summing up equations (3.9)–(3.10), we end
up with

t

2 = r∗t − r∗(Rb) +
∫ Rb

rt
τ(P, r)dr , (3.13)

where we have defined the total boundary time11

t ≡ tL + tR . (3.14)

The relations (3.8) and (3.13) are parametric equations for the volume and time in terms of
the momentum P . Alternatively, inverting (3.13) gives P (t), from which we can obtain V (t).

Despite the somewhat complicated integrals which we will have to perform separately
for each f(r), it turns out that the rate of change of the volume has a very simple expression
in terms of the momentum (cf. [56, 58]):

dV

d(tR + tL) = P . (3.15)

3.2 Geodesics are always maximal

By the upper semi-continuity of arc-length [69, chapter 9.4], spacelike geodesics, being
extremal, will always have maximal volume, while timelike geodesics will always have
maximal proper time. In our case, we can verify explicitly that the volume of the geodesics
corresponds to a maximum. Consider the volume (3.1) in a parametrization set by the
radial coordinate s = r. The the second variation of the volume functional V [v(r)] with
respect to the path v(r) reads

δ(2)V = −
∫
dr

1
V3 δv

′(r)2 , (3.16)

where V =
√
−f(r)v′(r)2 + 2v′(r) is the (positive) volume element and δv′(r) = d

drδv(r).
(There is no term proportional to δv(r) because the integrand only depends on v′(r).)

10We always parametrize our geodesics starting at the left boundary and ending on the right boundary. In
this case P > 0 corresponds to a geodesic crossing behind the future horizon which can be treated in terms
of the vR and uL coordinates. The alternative case P < 0 of geodesics passing behind the past horizon
should be treated using the uR and vL coordinates. In the latter case, the time integral in eq. (3.13) will
be replaced with

t

2 = −r∗t + r∗(Rb)−
∫ Rb

rt

τ(−P, r)dr . (3.12)

Note that here too, the integrand does not diverge at the horizon. Most of the expressions we present in
the following sections will be valid for both P > 0 and P < 0.

11Here tL and tR indicate the value of the time coordinate along the boundary curve r = Rb.
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Since the expression for δ(2)V is manifestly negative, we conclude that the volume of
geodesic corresponds to a maximum. We will see later situations where multiple geodesics
correspond to some fixed boundary times and in these cases, all the geodesics will be of
maximal length compared to nearby (non-extremal) trajectories.

3.3 Working in dimensionless coordinates

To simplify the notation in what follows, we will be using dimensionless coordinates. We
redefine the radial coordinate rdl = r/|rh|, the dilaton potential U(φ) = Udl(rdl) |rh|/` and
the blackening factor f(r) = fdl(rdl) r2

h/`
2 such that equation (2.4) becomes

fdl(rdl) =
∫ rdl

sign(rh)
Udl(rdl)drdl . (3.17)

Redefining a dimensionless volume Vdl = V/`, the volume integral (3.8) becomes

Vdl[Pdl] = 2
∫ Rdl,b

rdl,t

drdl√
fdl(r) + P 2

dl

, (3.18)

where we have used the redefinitions rdl,t = rt/|rh| and Rdl,b = Rb/|rh| and redefined the
momentum according to P = Pdl |rh|/`. Finally, the time (3.13) reads

tdl,R + tdl,L
2 = r∗dl,t − r∗dl(Rdl,b) +

∫ Rdl,b

rdl,t

√
fdl(rdl) + P 2

dl − Pdl

fdl(rdl)
√
f(rdl) + P 2

dl

drdl , (3.19)

where we have redefined the tortoise coordinate (2.8) r∗(r) = r∗dl(rdl) `2/|rh|, and the times
t = tdl `

2/|rh|. Effectively, working in dimensionless conventions simply amounts to setting
` = |rh| = 1 in all our previous formulas. From now on we will do so. We omit the dl
subscripts to keep the notation compact and keep in mind that in order to recover the
dimensionful volume and time we should substitute

V = ` Vdl, t = tdl `
2/|rh| . (3.20)

4 Geodesics in A(dS) spacetimes

4.1 Geodesics in global AdS2

Solutions with constant negative curvature are obtained when U(φ) = 2φ.12 The metric
for global AdS2 is given by13

f(r)global = r2 + 1 . (4.1)

The Penrose diagram is the infinite vertical strip. It has two boundaries and, in this
coordinate system, r runs from r = −∞ at one boundary to r = +∞ at the other. It is

12More generally, the Ricci scalar is give by R = −f ′′(r).
13This geometry, which does not have a horizon, can be obtained by analytically continuing eq. (2.4) to

imaginary horizon radius rh = i.
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Figure 2. Penrose diagram for global AdS2. The geodesics in blue connect equal times on the two
boundaries. The black dashed line is the cutoff surface r = Rb � 1.

known that geodesics at fixed, equal boundary times are just constant global time slices,
as shown in figure 2. So it is straightforward to compute their volume,

V =
∫ Rb

−Rb

dr√
f(r)global

= arcsinh r|Rb−Rb = 2 log(2Rb) +O(1/Rb) , (4.2)

where Rb here serves as a UV regulator for the volume divergences near |r| = ∞. As
expected, the volume is independent of the boundary times chosen. As a warm up exercise,
we will use our general f(r) procedure from section 3.1 to reproduce this result.

First, we note that in this geometry, geodesics do not have a turning point, i.e.,
f(r) + P 2 is always greater than zero, so instead of integrating from the turning point,
we just integrate from one boundary to the other. The volume integral (3.8) gives

V =
∫ Rb

−Rb

dr√
f(r)global + P 2

. (4.3)

To recover eq. (4.2), we need to show that P = 0 for geodesics anchored at equal boundary
times. To demonstrate this, we consider the time integral (3.9) and integrate from one
boundary to the other

vR(Rb)− vR(−Rb) =
∫ Rb

−Rb
τ(P, r)dr . (4.4)

Using the definition of vR (2.9), this can be re-expressed as

tR(Rb)−tR(−Rb) = r∗(−Rb)−r∗(Rb)+2arctan(Rb)−2arctan
(

PRb√
P 2+r2+1

)
. (4.5)

The tortoise coordinate, vanishing at r →∞, is given by

r∗(r) = arctan r − π

2 . (4.6)

With these ingredients, the requirement that the geodesics are anchored on both boundaries
at the same time tR(Rb) = tR(−Rb) yields

0 = −2 arctan

 PRb√
P 2 +R2

b + 1

 , (4.7)

which sets P = 0. Then our volume integral (4.3) reduces to the one found in equation (4.2),
as expected.
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4.2 Geodesics in the AdS2 black hole

The AdS2 black hole is actually very similar to the previous global AdS2. The difference
is that the metric is expressed in Rindler coordinates and the boundary, located at some
constant value of the Rindler radial coordinate, is bent towards the bulk in a way which
makes parts of it inaccessible, i.e., hidden behind a horizon, see figure 1. The complexity
of the AdS2 black hole was already studied in [64], where it was found that the geodesic
length grows linearly with time at late times. This result is derived using the known fact
that geodesics are lines of constant “global” time. Here, we reproduce that behaviour using
the procedure described in section 3.1.

The AdS2 black hole is obtained once again using the dilaton potential U(φ) = 2φ.
The corresponding blackening factor reads

f(r)BH = r2 − 1 , (4.8)

where we set the horizon and curvature radii rh = ` = 1 as described in section 3.3. This
corresponds to a temperature of T = 1/2π, see eq. (2.5). The boundary of AdS is at
r → ∞. In higher dimensional black holes there is a curvature singularity at r → 0, but
this is not the case in two dimensions.

We can follow the procedure outlined in the previous section. First, we need to find
the turning point,

f(rt) + P 2 = r2
t − 1 + P 2 = 0→ rt =

√
1− P 2 , (4.9)

which gives a turning point rt ≤ 1 inside the horizon and implies that −1 ≤ P ≤ 1. Next
we need to perform the volume and times integrals. The volume integral (3.8) can be
performed analytically and yields

V [P ] = 2 arccosh
(

Rb√
1− P 2

)
. (4.10)

The time integral (3.13) can also be evaluated analytically. We first note that the tortoise
coordinate r∗(r) = 1

2 log
∣∣∣ r−1
r+1

∣∣∣ at the turning point is given by

r∗t = −arccosh
( 1
|P |

)
. (4.11)

Then, (3.13) becomes

t = 2 arctanh

 PRb√
R2
b − 1 + P 2

 . (4.12)

Note that for large Rb, this expression gives tL + tR = 0 for P = 0 and tL + tR → ±∞ for
P = ±1, so it covers all boundary times. Luckily, it is also possible to invert this expression
analytically and obtain

P =
tanh

(
t
2
)√

R2
b − 1√

R2
b − tanh2 ( t

2
) . (4.13)
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Figure 3. Volume and its time derivative as a function of the boundary time t with Rb = 100.

Plugging this into (4.10) we find that

V (t) = 2 arccosh
(√

(R2
b − 1) cosh2 t

2 + 1
)
. (4.14)

We plot this function in figure 3, where a linear growth at late times can be observed. In
fact, if we expand this expression for large Rb, we obtain

V (t) = 2 log
(

2Rb cosh t

2

)
+O(1/R2

b) , (4.15)

which becomes at late times

V (t) ≈ 2 logRb + |t|+ · · · , (4.16)

which is the celebrated linear growth result. To eliminate the cutoff dependence, we may
consider the time derivative of the volume

dV

dt
=

tanh
(
t
2
)√

R2
b − 1√

R2
b − tanh2 ( t

2
) = P = tanh t

2 +O(1/R2
b) −−−→t→∞

1 . (4.17)

Recall that the equality to P is a general property of the rate of change of the volume, see
comments around equation (3.15). Re-establishing the dimensions using equation (3.20)
and the thermodynamic quantities (2.5) we obtain in the late time limit

dV

dt
= rh/` = 2π` T, dCV

dt
= 8πS0T, (4.18)

where the complexity was evaluated using eq. (1.1) with the extra factor of Φ0 suggested
by [64], and S0 is the leading contribution to the entropy.

We can instead consider only the part of the volume that lies behind the horizon. This
requires integrating (3.8) from the turning point rt =

√
1− P 2 to the horizon rh = 1,

giving

Vinside = 2 arccosh
( 1√

1− P 2

)

= 2 arccosh


√

(R2
b − 1) cosh2 t

2 + 1
Rb

 = |t|+O
(
1/R2

b

)
. (4.19)
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Figure 4. Penrose diagram for the AdS2 black hole and the geodesics in blue connecting equal
times at the two boundaries. Rb = 10 is the black dashed line.

Subtracting this from eq. (4.16), we see that the volume outside the horizon does not grow
linearly and in fact approaches a constant at late times.

A collection of geodesics anchored at different boundary times in the AdS2 black hole
Penrose diagram is shown in figure 4. Note that the geodesics are indeed constant global
time slices.14

4.3 Geodesics in dS2

In order to obtain solutions with positive constant curvature, we set U(φ) = −2φ. The
metric corresponds to pure dS2, with a blackening factor given by

f(r)dS = 1− r2 . (4.20)

We will concentrate on the part of the geometry with positive r. The radial coordinate
outside the horizon ranges between 0 ≤ r ≤ 1 and future/past infinity is reached as r →∞.

In this geometry there is no timelike boundary where it is natural to anchor the
geodesics. Nonetheless, we can consider symmetric geodesics anchored at the observer’s
worldline r = 0. Of course, these geodesics will not have a natural holographic interpre-
tation at this point, but this calculation will provide some interesting intuition for the
geodesics in the flow geometries which we consider in the next section. The technology
is very similar to that developed in section 3.1. Geodesics in the dS2 spacetime have a
turning point at

rt =
√

1 + P 2 , (4.21)

and the tortoise coordinate is
r∗(r) = 1

2 log
∣∣∣∣r + 1
r − 1

∣∣∣∣ , (4.22)

14It is interesting to compare this shape of the geodesics to the extremal volumes obtained for higher
dimensional black holes. In the latter case, the extremal slices wrap around constant rmin = rh/21/d at
late times, see section 3.1 of [56]. This is obtained by minimizing the turning point associated function
W (r) =

√
−f(r)rd−1, but since for us d = 1 the minimization yields rmin = 0 and all the slices approach

this straight line.
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Figure 5. Penrose diagram for (half of) dS2 and the geodesics in blue connecting tR = tL = 0. P
runs from −∞ to ∞ and in these limits, the geodesics become (almost everywhere) null.

with the integration constant chosen so that the tortoise coordinate vanishes on the ob-
server’s worldline r∗(r = 0) = 0. At the turning point this results in

r∗t = arcsinh
( 1
|P |

)
. (4.23)

The volume integral (3.8) does not depend on P and in fact, we obtain

V [P ] = π , (4.24)

for any spacelike geodesic in dS anchored at points with r = 0. Evaluating the time integral,
we obtain

tR + tL
2 = r∗t +

∫ 0

rt
τ(P, r)dr = 0 . (4.25)

We see that geodesics anchored on the left and right r = 0 worldlines must satisfy tR = −tL.
This means that certain points on the worldlines are not connected by smooth spacelike
geodesics of finite length. This can be seen from embedding dS2 in three dimensional
Minkowski spacetime. In this picture, dS2 is the hyperboloid and geodesics are obtained
by its intersections with planes that pass through the origin. In this embedding picture, it
is clear that tR = −tL. The Penrose diagram with the symmetric tL = tR = 0 geodesics
are shown in figure 5. We did not consider geodesics reaching future/past infinity whose
lengths diverge. We will return to this point in section 6. In the next section, we will use
these results to compute the lengths of geodesics in flow geometries with a dS interior.

5 Geodesics in flow geometries

5.1 Geodesics in the centaur geometry

With our experience of AdS2 and dS2, we can now address the problem of finding geodesics
in the centaur geometry

f(r)centaur =

(1− r2) , −∞ < r < 0 ,
(1 + r2) , 0 < r <∞ .

(5.1)
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This geometry is obtained as a solution of a dilaton-gravity theory with potential U(φ) =
2|φ|.15 For large r → ∞, the geometry looks like global AdS2. At r = 0, it interpolates
into a dS2 region with a horizon at r = −1. The choice of the horizon16 at rh = −1 was
made such that it gives the same temperature as for the black hole case T = 1/2π, see
appendix A. We refer to this geometry as a centaur geometry.

We assume there is a turning point rt along our geodesics with

rt = −
√

1 + P 2 . (5.2)

Note that rt < 0, which implies that the turning point is inside the dS horizon. The next
step is to define the tortoise coordinate. Again, we fix r∗(r) so that it vanishes at the bound-
ary and we require continuity along the interpolating curve r = 0. Doing so, we obtain,

r∗(r)centaur =


1
2 log

∣∣∣ r+1
r−1

∣∣∣− π
2 , −∞ < r < 0 ,

arctan(r)− π
2 , 0 < r <∞ .

(5.3)

Evaluating this at the turning point we further get

r∗t = −π2 − arcsinh
( 1
|P |

)
. (5.4)

We can evaluate the volume and time integrals separating the integrals into intervals. Note
that since the metric is continuous up to its first derivatives, there is no jump in P along
the geodesic.17 The volume integral (3.8) yields

V [P ] = 2
(∫

dS
+
∫

AdS

)
dr√

f(r)centaur + P 2

= 2
(∫ 0

rt

dr√
1− r2 + P 2

+
∫ Rb

0

dr√
1 + r2 + P 2

)

= π + 2 arcsinh
(

Rb√
P 2 + 1

)
.

(5.5)

Note that the π contribution comes precisely from the dS part and it is the same that we
got in section 4.3. The second term is the contribution from the AdS patch. Similarly, we
can perform the time integral,

t

2 = r∗t − r∗(Rb) +
∫ 0

rt
τdS(P, r)dr +

∫ Rb

0
τAdS(P, r)dr

= r∗t − r∗(Rb) + 1
2 log

∣∣∣∣∣∣
(r + 1)

(√
P 2 − r2 + 1− Pr

)
(r − 1)

(
Pr +

√
P 2 − r2 + 1

)
∣∣∣∣∣∣
∣∣∣∣∣∣

0

rt

+
(
arctan(r)− arctan

(
Pr√

P 2 + r2 + 1

))∣∣∣∣Rb
0

= −arctan

 PRb√
R2
b + P 2 + 1

 = − arctanP +O
(
1/R2

b

)
.

(5.6)

15One might worry that this potential has a discontinuity in its derivative. It has been shown in [34] that
this is not a problem, since it can be thought of as a smooth limit of continuous dilaton potentials.

16Recall that in two dimensions there are two cosmological horizons at rh = ±1.
17This can be proven using the equations of motion for the volume (3.1) integrated in a small shell around

the transition between the dS and the AdS regions.
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(a) P = ±(100, 2, 1, 0.5, 0.25, 0.01).

Out[]=

(b) P = −1.

Figure 6. Penrose diagrams for the centaur geometry and geodesics anchored at different boundary
times in blue, spanning the full range of times for which smooth spacelike geodesics of finite length
exist. The dashed black line is the cutoff surface with Rb = 10. The dark blue dashed line is the
interpolating line between the two geometries at r = 0. The red lines correspond to the horizons
and the green ones correspond to r → −∞.

It is interesting to note that for positive P , the times are negative (and vice versa) and
also that while −∞ < P < ∞, the times are constrained to the range −π < t < π, so it
is not possible to obtain geodesics connecting boundary points at equal arbitrarily large
times. This can be appreciated in the Penrose diagram in figure 6a where we plot some of
the geodesics.

The reason for this is that in the dS part, the only allowed geodesics start at t = 0 and
not all boundary points in the AdS part are spacelike connected to this point. It would
be interesting to understand this intriguing feature of the geometry from the boundary
quantum perspective. We return to this point in section 6.

Another important difference between the centaur geometry and the AdS black hole is
that for the centaur, geodesics anchored at positive boundary times pass through the past
horizon, and not the future one, as can be seen from figure 6b.

Finally, we can express the volume in terms of the boundary times. For this, we first
need to invert equation (5.6) which yields

P 2 =
(
R2
b + 1

)
tan2 ( t

2
)

R2
b − tan2 ( t

2
) , (5.7)

as long as Rb > tan |t|2 . Inserting this into equation (5.5) we get

V (t) = π + 2 arcsinh
(√

(R2
b + 1) cos2

(
t

2

)
− 1

)
, (5.8)

and at large Rb this becomes

V (t) = π + 2 log
(

2Rb cos t2

)
+O(1/R2

b) , (5.9)

– 17 –



J
H
E
P
0
2
(
2
0
2
2
)
1
9
8

which is valid as long as −π < t < π and Rb − tan |t|2 � 0.18 It is straightforward to
compute the time derivative,

dV (t)
dt

= P = −

√
R2
b + 1√

R2
b − tan2 ( t

2
) tan

(
t

2

)
= − tan t

2 +O
(
1/R2

b

)
. (5.10)

Re-establishing the dimensions using eq. (3.20) and the thermodynamic quantities (2.5)
we obtain

dV

dt
= −2π` T tan(πtT ), dCV

dt
= −8πS0T tan(πtT ), (5.11)

where the complexity was evaluated using eq. (1.1) with the extra factor of Φ0 suggested
by [64], and S0 is the leading contribution to the entropy.

Plots of these functions can be found in figure 7. The behaviour exhibited by the
centaur geometry is radically different from the one observed in the black hole case, even
though both geometries have an event horizon. Comparing equations (4.15) and (5.9), we
note that they are related by changing t→ it. Nevertheless, their behaviour is completely
different. The centaur geometry does not exhibit linear growth of the volume as a function
of time and in fact, there is no growth at all but a decrease in volume as time advances.
While the time derivative of the volume in the black hole case goes to a constant, here it
diverges when approaching the edges of the range of allowed times. Moreover, the length of
the geodesic in the dS part of the geometry remains constant at a value of π. Finally, this
behaviour is not valid for arbitrary long times. After a certain time, there are no connected
geodesics between the two boundaries of spacetime.

It is instructive to compute the part of the volume that lies behind the horizon. This
requires integrating from the turning point rt = −

√
1 + P 2 to the horizon rh = −1. We find:

Vinside[P ] =2
∫ −1

−
√

1+P 2

dr√
1− r2 + P 2

= π − 2 arcsin
( 1√

1 + P 2

)
. (5.12)

Since the geodesic is still anchored to the boundary, we can still use (5.6) to associate a
time to it. This yields a very short regime of linear growth

Vinside = π − 2 arcsin


√

(1 +R2
b) cos2 t

2 − 1
Rb

 = |t|+O
(
1/R2

b

)
, (5.13)

valid for times |t| < π, as follows from (5.6) with −∞ < P <∞. In contrast, in this range
of times, the geodesic length inside the black hole grows quadratically with time, as can
be seen from expanding equation (4.15).

5.2 Geodesics in γ-centaurs

The centaur geometry from the previous section is one out of a larger family of flow
geometries that interpolate between an AdS boundary and a dS interior. This family

18Note that the volume of the last geodesic at t = ±2 arctanRb can be extracted from (5.8) and is given
by π as expected.
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Figure 7. Volume and its time derivative as a function of the boundary time t for the centaur
geometry with Rb = 100.

is characterized by a continuous parameter representing the radial location where the dS
space is glued to AdS. While the centaur geometry is the most symmetric example, all
these geometries are equally important to understand the behaviour of the cosmological
horizon. In this section we would like to employ those geometries to check how our results
depend on this gluing point.

The continuous flow geometries that sharply interpolate between AdS2 and dS2 can
be parametrized by a single real parameter γ ∈ [−1, 1]. We will refer to them as γ-centaur
geometries. They can be thought of as solutions of a different dilaton-gravity theory with
a generalized dilaton potential U(φ) = 2(|φ − φ0| − φ0), as shown in appendix D of [35].
The parameters φ0 and γ are related according to

γ ≡ 1− 2φ2
0 . (5.14)

The thermodynamic properties of these theories are explored in appendix A.
Using (2.4), the metric in the Schwarzschild gauge which we will be using, takes the

following form19

f(r)γ =

1− r2 , −∞ < r < φ0 ,

1 + r2 + 2φ0 (φ0 − 2r) , φ0 < r <∞ ,
(5.15)

where we again set rh = −1, to keep the same temperature as before. For r < φ0, the
geometry has positive curvature while for r > φ0, the curvature is negative. We therefore
see that φ0 corresponds to the (radial) gluing location between the two geometries. The
parameters φ0 and γ can lie in the following ranges

1√
2 > φ0 > 0 → 0 < γ < 1 ,

0 > φ0 > − 1√
2 → 1 > γ > 0 ,

− 1√
2 > φ0 > −1 → 0 > γ > −1 ,

(5.16)

19While φ0 is a natural variable in the Schwarzschild gauge, in the conformal gauge it is more convenient
to use γ. The relation between the two coordinate systems is given in appendix B.
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where φ0 = 0 (or γ = 1) corresponds to the centaur geometry where AdS and dS are
glued exactly at r = 0, and where φ0 = −1 (or γ = −1) corresponds to a case where
the interpolating region sticks to the horizon, so that outside the horizon there is only
negatively-curved spacetime. Positive φ0 solutions correspond to having a larger part of
the dS spacetime while negative φ0 corresponds to having a smaller dS portion.

Having the form of f(r), we can now proceed to evaluate the integral expressions for
the volume and boundary time. While they can be found analytically, some of the expres-
sions are quite cumbersome and we therefore relegate the derivation and exact results for
the volume and time as a function of the momentum (t[P ],V [P ]) to appendix C, see equa-
tions (C.5)–(C.6). Here, we will discuss only their general properties and present interesting
limits. The main results from our analysis (as we will see below) are the following.

(A) There do not exist geodesics beyond a certain boundary time of the order of the
inverse temperature. In the range −1 < φ0 < − 1√

2 , for several boundary times there
exist two or three different geodesics anchored at the same time.

(B) For the range |φ0| < 1/
√

2, the volume decreases as a function of time, until a time of
the order of the inverse temperature, where the geodesics stop existing. In the range
−1 < φ0 < − 1√

2 there is a short period of quadratic increase in the maximal volume
but even in this case, the maximal geodesics stop existing at times of the order of
the inverse temperature.

(A) Behaviour of the boundary times. For |φ0| < 1√
2 the behaviour is similar to

that of the centaur geometry in the previous section, where each boundary time has at
most one specific geodesic associated with it. However, those geodesics only exist for times
in the range20

|t| ≤ 1√
1− 2φ2

0

π + 2 arctan

 φ0√
1− 2φ2

0

− log
(1− φ0

1 + φ0

)
+O(1/Rb) , (5.17)

where, of course, for φ0 = 0, this gives the range |t| < π as in the previous section.
Moreover, as |φ0| → 1√

2 , the time gap goes to infinity, allowing geodesics at all times. In
this case the γ → 0+ centaur geometry develops an infinitely long AdS throat, see [35].
This will be evident later when plotting the volumes.

In contrast, for the range −1 < φ0 < − 1√
2 , at very early times, there are three different

geodesics anchored at the very same boundary time. As we will see later, they also have
different lengths. Depending on the value of φ0, at later times, there are two geodesics for
a given boundary time or only one, see figure 8. At larger times, of the order of the inverse
temperature, the geodesics stop existing, see figure 9.

(B) Behaviour of the volume. As mentioned above, in the appendix we provide ex-
act analytic results for the volume and boundary time as a function of the momentum
(V [P ], t[P ]) (see equations (C.5)–(C.6)). Of course, these provide a parametrization of the
volume as a function of time V (t), but an analytic expression cannot be found for arbitrary
φ0. Nevertheless, we can plot V (t) numerically, for various values of φ0, see figure 10.

20Introducing back the dimensional quantities, the left hand side is replaced with 2πT |t|.
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(a) φ0 = 0.2
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(b) φ0 = −0.85

Out[]=

(c) φ0 = −0.95

Figure 8. Penrose diagrams for the different γ-centaur geometries and geodesics anchored at
different boundary times. The dashed black line is the cutoff surface with Rb = 10. The dark blue
dashed line is the interpolating line at r = φ0, the red lines are the horizons and the green ones
are r → −∞. Yellow lines correspond to geodesics at early times and green lines to geodesics at
slightly later times.
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(c) φ0 = −0.95

Figure 9. Same Penrose diagrams as in figure 8, but here we plot geodesics for several different
boundary times. Note that the geodesics stop existing for large times.

The volume shows different behaviours depending on the value of φ0. For the range
|φ0| < 1/

√
2, the form is similar to the one we found for the centaur in the previous

section: the volume starts at a maximum at t = 0 and decreases for some time until
there are no more geodesics. This can be seen in the green, red and yellow curves in
figure 10a. For the range −1 < φ0 < −1/

√
2, the behaviour changes due to the existence

of two or three geodesics anchored at the same time. This range corresponds to the blue
curves in figure 10a, or the enlarged version in figure 10b. Indeed, we see that the blue
curves represent a multivalued function with, at times, two or three different volumes
corresponding to a given boundary time. The geodesic with largest volume (the uppermost
blue curve) quadratically increases at very early times, similarly to what happens for black
holes, but this behaviour never turns to a linear increase. This is consistent with the
fact that the interior geometry does not have a black hole like behaviour and in fact, the
geodesics inside the dS region never grow to size larger than 2π. So we do not expect to
find linear growth at late times, even though outside the horizon, most of the geometry
looks like the AdS black hole. We return to this point in section 6.
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Figure 10. Volume as a function of the boundary time t for the different γ-centaur geometries
with Rb = 100. In (a), the outermost green curve corresponds to φ0 = 0.7 and adjacent green, red
and yellow curves correspond to decreasing φ0 in jumps of −0.1 up to φ0 = −0.7. The green curves
correspond to φ0 > 0, and the yellow ones to φ0 < 0. The thicker red curve φ0 = 0, corresponds
to the centaur geometry from the previous section. For smaller φ0 we plotted curves in blue from
φ0 = −0.74 to φ0 = −0.99 in steps of −0.05. In (b), we zoom in this last region, showing the
different behaviour of curves with φ0 < −1/

√
2 ∼ −0.7. In dashed red, we show the analytic result

for the AdS black hole and we see how as φ0 approaches −1, the curves tend to the one of the black
hole, but only for short times. They never admit linear growth.

When more than one geodesic exists at a given time, in order to compute the complex-
ity, we need to use the one with maximal volume. If we follow some of the blue curves in
figure 10b along increasing time starting at t = 0 and always pick the branch of maximal
volume, we see two types of behaviours. The maximal volume for values of φ0 slightly be-
low −1/

√
2 will start increasing quadratically. It will then jump discontinuously to a lower

value and start deceasing. This decrease will stop at some time of the order of the inverse
temperature when the curves stop existing. For values of φ0 closer to −1, the maximal vol-
ume will initially increase quadratically (again, just for a short time) and then the curves
will stop existing. The transition between these two behaviours happens at φ0 ∼ −0.928.

While we do not have a closed form analytic expression for the volume as a function of
time, such an expression can be found in an expansion around t = 0.21 The result obtained
(up to quadratic order in t) can be recast in the following form, for the entire range of φ0,22

V±(t) = π ± 2 arctan
(√

1− γ√
1 + γ

)
− 2 log

(√
1 + γ ∓

√
1− γ√

2

)
+

2 log

2Rb cos

√
1∓

√
1− γ2

√
γ

t

2

+O(1/Rb) , (5.18)

where V± corresponds to φ0 > 0 and φ0 < 0, respectively. This expression is in fact a good
21This is done by expanding the parametrization (V [P ], t[P ]) around P = 0 and using the expansion to

obtain an analytic expression for V (t).
22This yields equation (1.2) with the identification cγ =

√
1∓
√

1−γ2
√
γ

.
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approximation for the volume up to times Tt . c, where c is some order one constant. In
the case −1 < φ0 < −1/

√
2 this expression only refers to the uppermost branch of the

volume, see figure 10b. This expression encodes the fact that at early times the volume is
quadratic in t. Note that for φ0 = 0 (γ = 1) we recover the centaur result in equation (5.9)
and for φ0 = −1 (γ = −1), the expression becomes that of the AdS black hole — see
equation (4.15). We stress again that though equal, this expression does not hold for
arbitrary long times, as in the black hole case. It is interesting to see that for γ < 0, the
cos turns into a cosh, generating the change in behaviour found when going from the yellow
curves to the blue ones in figure 10a. Finally, note that as γ → 0 with positive φ0 → 1/

√
2,

the value of the volume at t = 0 diverges logarithmically in γ. This trend is reflected in
the increasing time span of the uppermost green curves in figure 10. This divergence is
independent of the time. Recall that in this case the AdS part of the geometry develops
an infinitely long throat, see appendix D of [35].

5.3 Geodesics in AdS-to-AdS geometries

The last case we will analyse is gluing two AdS-like spaces with different radii, in order to
highlight the differences with the previous AdS-to-dS case.

As with the AdS-to-dS case, it is possible to construct dilaton-gravity theories in
two dimensions, whose solutions interpolate between two AdS spacetimes with different
curvature radii. The dilaton potential is given by

U(φ)AdS-to-AdS =

2φ , φ < φ0 ,

(2 + α)φ− αφ0 , φ > φ0 ,
(5.19)

in terms of two parameters φ0 and α. The parameter φ0 fixes the location of the interpo-
lation. We will assume it is greater than the horizon radius (rh = 1 in our conventions), so
the transition is outside the horizon. The second parameter α characterizes the radius of
the second AdS. It ranges between −2 < α < ∞, where α = −2 corresponds to an inter-
polation to flat spacetime and α = 0 corresponds to no interpolation at all, see figure 11.

The interior AdS has unit radius and we will set the horizon at rh = 1. Then the
metric becomes,

f(r)AdS-to-AdS =

(r2 − 1) , 0 < r < φ0 ,

r2 − 1 + 1
2α(r − φ0)2 , φ0 < r <∞ .

(5.20)

The procedure is identical to the other cases, so we will just state here the main results.
The turning point is

rt =
√

1− P 2 , (5.21)

corresponding to a range −1 < P < 1 of the conserved momentum. The tortoise coordinate
is

r∗(r)AdS-to-AdS =


−1

2 log
∣∣∣ r+1
r−1

∣∣∣+ c1 , 0 < r < φ0 ,

arctan
(

(α+2)r−αφ0√
2α(φ2

0−1)−4

)
−π/2√

1
2α(φ2

0−1)−1
, φ0 < r <∞ ,

(5.22)
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Figure 11. The AdS-to-AdS potential for α > 0 (left) and α < 0 (right). The crossing between
the two regimes happens at φ = φ0.

.

where the constant c1 is given by

c1 =
2 arctan

(
φ0√

1
2α(φ2

0−1)−1

)
− π√

2(αφ2
0 − α− 2)

− 1
2 log

(
φ0 − 1
φ0 + 1

)
. (5.23)

At the turning point, this becomes

r∗t =
arctan

(
φ0√

1
2α(φ2

0−1)−1

)
− π/2√

1
2α
(
φ2

0 − 1
)
− 1

+ arctanh
(√

1− P 2φ0 − 1√
1− P 2 − φ0

)
. (5.24)

The volume integral gives

V [P ] = log

φ0+
√
P 2+φ2

0−1

φ0−
√
P 2+φ2

0−1

+
2
√

2log
(
−αφ0+

√
α+2

√
2(P 2+R2

b
−1)+α(Rb−φ0)2+(α+2)Rb

√
2
√

(α+2)(P 2+φ2
0−1)+2φ0

)
√
α+2

.

(5.25)
It is straightforward to obtain an expression for the times for any value of α, φ0 and for
large Rb

t = log
((φ0 − 1) (µ+ Pφ0)

(φ0 + 1) (µ− Pφ0)

)
+ 2arccoth (φ0)

+ 2
√

2
ν
arccoth

(√
α+ 2P√
ν

)
−
√

2
ν
arccoth

(
µ(α+ 2)P√

2ν φ0 − ν + (α+ 2)P 2

)

−
√

2
ν
arccoth

(
µ(α+ 2)P√

2ν φ0 + ν − (α+ 2)P 2

)
+O(1/R2

b),

(5.26)

where we have defined ν ≡ α(1−φ2
0)+2, µ ≡

√
P 2 + φ2

0 − 1. It is possible to get analytically
the form of V (t), expanding both V [P ] and t[P ] close to P = ±1. This yields a surprisingly
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Figure 12. Volume as a function of boundary time t for the different AdS-to-AdS geometries with
Rb = 100 and φ0 = 2. The curves go from α = −1.9 at the top to α = 5 at the bottom, in steps
of 0.5. In all cases, for long times, the behaviour is linear with the same slope. In dashed red, we
show the curve for the AdS black hole, corresponding to the case α = 0.

simple expression

V (t) = 2
√

2 logRb√
α+ 2

+ t+ . . . , (5.27)

where independently of α and φ0, the volume grows linearly in time with coefficient 1. This
can be further seen in figure 12, where we plot the volume for different values of α, keeping
φ0 fixed. We see that in all cases, the volume grows linearly in time, as in the AdS black
hole, which is strikingly different from the cases with dS interiors.

6 Discussion

In this paper, we computed the length of spacelike geodesics in different spacetime geome-
tries in two dimensions. These geometries include AdS2 black holes, dS2 space, centaur
and γ-centaur geometries interpolating the two, and flow geometries interpolating two AdS2
spaces with different cosmological constants. With the exception of the dS2 geometry, all
the geometries analysed are two-sided, asymptotically AdS geometries with horizons in
the interior. We have seen that the nature of the geometry influences significantly the
results for lengths and existence of geodesics at different boundary times. For spacetimes
containing a black hole event horizon (even when such a horizon is embedded in a flow
geometry) the geodesics exist at all times and their lengths grow linearly in time for a long
time. The main result of this paper is that in spacetimes containing a cosmological hori-
zon, we observe a very different behaviour. In this case, the geodesics decrease in length
for a short time of the order of the inverse temperature23 and then they stop existing.
These interesting features of cosmological geodesics raise a number of interesting questions
regarding their interpretation in terms of complexity of states in the boundary theory and
other interesting points which we discuss below.

23In certain cases this decrease is replaced or preceded by a short period of quadratic increase.
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The complexity equals volume conjecture. In the black hole case, spacelike geodesics
anchored at the same time on both boundaries always exist. Therefore, the prescription
to define complexity as the volume of these geodesics seems reasonable. In some of the
geometries analysed in the present paper this is not the case: geodesics anchored at the
same time only exist for a short time of the order of the inverse temperature. However,
from a boundary perspective, we do not expect that after some time complexity stops being
defined. On the contrary, it has been proposed as a measure for late-time entanglement
properties. One possibility to solve this apparent contradiction is to consider geodesics
that go through future/past infinity which will have infinite length [68]. In this case, we
expect the validity of the semi-classical approximation to be lost, but the behaviour of
the length is nevertheless intriguing. It decreases for a short time and then jumps to
infinity instantaneously. This resonates with the idea of “hyperfast” complexity growth
recently explored in [68]. In that paper, the geodesics in pure dS were considered where a
temporal boundary is absent. Therefore, the complexity was associated with a notion of
time evolution directly on the dS horizon. The interpretation suggested for the complexity
becoming infinite after times of the order of the inverse temperature was that of a model
whose Hamiltonian couples a significant portion of the system’s degrees of freedom within
each of its terms. Our approach utilizes a different notion of time evolution and it will be
interesting to understand the relation between the two. It is curious to note that if the
dual to boundary complexity is instead assumed to be the volume that lies only behind the
horizon as in [68], we find linear growth behind the dS horizon as shown in equation (5.13).
This is valid only for times of the order of the inverse temperature whereas the black
hole volume grows quadratically with time at such early times, as can be checked from
expanding equation (4.15).

A different possibility is that complexity=volume is not enough after all, and we need
another prescription to compute the complexity of the boundary state. It would be in-
teresting to compare the results obtained for the volume with the ones given by other
proposals such as the complexity=action — see [64, 70] for computation in JT gravity
–, and complexity=spacetime-volume [67]. Those two last proposals are presumably well
defined for all boundary times (but possibly also yield divergent answers).

Even though the calculations in the present paper only involve geometries with trivial
topology, it is also interesting to compare our results with the recent non-perturbative
definition of length proposed in [59]. Under certain assumptions for the potential U(φ)
(see [71, 72]), the authors of [59] find a universal linear growth in the length for times
between the thermalization time and eS0 , independent of the form of the potential. It
would be interesting to understand how the arguments of [59] break down in our case.

Shockwaves and out-of-time-ordered correlators. Another interesting observable
that probes quantum chaos is the out-of-time-ordered correlator (OTOC). It has been
shown that both the exponential growth of the OTOC and the linear growth of complexity
are related to the chaotic nature of the system under consideration [54, 73]. As mentioned,
the OTOC in an interpolating geometry with a dS horizon does not exhibit exponential
growth [35]. Another evidence for the unusual behaviour of the system is found in the
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results of the present paper where the length does not grow linearly with time for long
times. Close to the boundary, these geometries have a Schwarzian-like behaviour, governed
by the following action [35, 74–76],

Sbdy = φb
8πGN

∫
du

(
γ

2 (∂uτ(u))2 − Sch[τ(u), u]
)
, (6.1)

which might suggest that the OTOC behaves like ∼ cos√γt, giving exponential growth
for negative γ geometries. However, the results obtained in this paper show that there is
no linear growth for the geodesic length even in that case. This is due to the fact that
the horizon interior is filled with dS spacetime. If a precise relation between complexity
and the OTOC is established this would suggest that interesting cancellations should hap-
pen in the OTOC between the boundary Schwarzian action and the interior modes. It
would be interesting to confirm this fact by either doing a direct calculation of the OTOC
following [35] or by computing the geodesic length in a shockwave setup.24

The volume in shockwave geometries was related to the complexity growth of the
precursor operator encoding the influence of a perturbation inserted some time tw in the
past on the system [54, 57, 58]. In terms of tw, the complexity grows initially exponentially
according to the Lyapunov exponent of maximally chaotic systems λL = 2πT [82] and then
at the scrambling time t∗ = (1/2πT ) logS [73], it starts growing linearly at a rate which is
twice the usual linear growth of complexity in the black hole background. It would be useful
to study this observable in the centaur geometries to characterize chaos and scrambling in
those systems.

Complexity of formation. The length of our geodesic is regulated by the finite location
of the boundary. This has a large effect on the complexity, but this large effect does not
depend on time. It was suggested in [83] that a useful way to subtract the effect of the
boundary, which functions here as a UV regulator, is to consider differences between the
complexity of our system and a reference system which was taken to be the AdS vacuum.
This vacuum-subtracted complexity goes under the name of complexity of formation

∆C = C − Cglobal = Φ0
GN`

(V − Vglobal) , (6.2)

where, as opposed to the higher dimensional case [83], here we subtract a single copy of
AdS2 since global AdS2 geometry has two boundaries. Evaluating this for the AdS2 black
hole, we find using equation (4.15)

∆CBH(t) = 8S0 log (cosh(πTt)) +O(1/Rb) , (6.3)

which simply vanishes for t = 0 because it is essentially the same space. For the centaur,
we find using equation (5.9)

∆Ccentaur(t) = π + 8S0 log (cos(πTt)) +O(1/Rb), |t|T < 1/2 . (6.4)
24Shockwaves in the centaur geometry were considered in [35]. Other studies of shockwaves in dS space

include [77–81].
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At t = 0, this gives π, which is exactly the length in the dS2 part as we could have expected.
Similarly to the higher dimensional case, also here the difference in complexities (at t 6= 0)
grows linearly with the thermal entropy. It is curious to note that the two formulas are
related by analytic continuation, but only for short times. Although the volume is always
positive, note that the expression (6.4) can become negative. This contrasts with the
theorem proven in [84] for asymptotically AdS spacetimes in four dimensions. It would
be interesting to use our example to find limitations on possible generalizations of this
theorem to different dimensions.

Towards a microscopic quantum theory for dS. If the volume is connected to some
notion of complexity, then it would be interesting to see what is needed from the boundary
perspective to obtain this type of complexity. We have already a lot of evidence showing
that the cosmological horizon is not a quantum maximally chaotic horizon like the black
hole one. Given we are studying the problem in two dimensions, the dual theory will be
quantum mechanics and we might be able to compute complicated quantities such as the
complexity or the OTOC in microscopic models or even try to reverse-engineer models to
behave in accordance with our holographic results, possibly along the line of [85] or the
SYK RG-flows of [38].

Complex geodesics and dS 2-pt function. Finally, it is interesting to discuss the
geodesics in pure dS2. In particular, the length of the geodesics should be related to the two-
point function of heavy fields in dS2 through a saddle-point approximation. The two-point
function is known for scalar fields of arbitrary mass at any two points [2]. In particular,
at any finite time, it is non-vanishing for points at opposite sides of the circle, as the ones
we analysed in this work. However, we showed that there are no real, finite, geodesics
anchored at any time different than t = 0. This apparent contradiction might be solved
by the inclusion of complex saddles for the geodesics. The relevance of these saddles in
holography remain an interesting open question. We hope to return to this in future work.

Acknowledgments

We gratefully acknowledge discussions with Dionysios Anninos, Dimitrios Giataganas, Luca
Iliesiu and David Vegh. The work of SC is supported by the Israel Science Foundation
(grant No. 1417/21) and by the German Research Foundation through a German-Israeli
Project Cooperation (DIP) grant “Holography and the Swampland”. SC acknowledges
the support of Carole and Marcus Weinstein through the BGU Presidential Faculty Re-
cruitment Fund. The work of DAG is funded by the Royal Society under the grant “The
Resonances of a de Sitter Universe” and the ERC Consolidator Grant N. 681908, “Quantum
black holes: A microscopic window into the microstructure of gravity”. EDK is supported
by the Israel Science Foundation (grant No. 1111/17) awarded to Eric Kuflik.

– 28 –



J
H
E
P
0
2
(
2
0
2
2
)
1
9
8

A Thermodynamics of dilaton-gravity theories and γ-centaur geometries

In this appendix, we study the thermodynamics of dilaton-gravity theories with a general
dilaton potential. This has been studied previously in a variety of different contexts,
including [34, 86–88]. For any continuous dilaton potential, the temperature, entropy and
specific heat are given by

T = U(φ(rh))
4π , S = Φ0 + φ(rh)

4GN
, C = 1

4GN
U(φ(rh))
∂φU(φ(rh)) , (A.1)

where we have set ` = 1.25 The thermal partition function and energy are given by

logZ = S − E

T
, E = − 1

16πGN

∫ Rb

rh

dr̃ U(φ(r̃)) , (A.2)

where Rb is the location of the Euclidean AdS2 boundary. The energy diverges in the limit
Rb → ∞. This divergence can be absorbed in an infinite shift of the ground state energy.
It is more meaningful to consider the energy difference between two solutions

∆E = Erh − Er′h = 1
16πGN

∫ rh

r′
h

dr̃ U(φ(r̃)) . (A.3)

We obtain the thermodynamics for the interpolating geometries studied in the main
text by choosing the appropriate dilaton potentials. Let us consider U(φ) = 2(|φ−φ0|−φ0),
see figure 13.

For fixed φ0, there are at most two values of rh corresponding to any given temperature.
The metric (2.4) obtained with the choice rh > φ0, will have R = −2 everywhere. If in
addition we have φ0 > 0, we have solutions for all T ≥ 0. On the other hand, for φ0 < 0, our
solutions will always have T ≥ Tmin = |φ0|/2π, so there are no zero-temperature solutions
in this case. The specific heat of all solutions with rh > φ0 is given by C(T ) = πT/2GN .

To have an interpolating solution such as the ones analysed in the main text, we need
rh < φ0. Using eq. (2.4), we can show that in this case, the metric is given by26

f(r)γ =

r2
h − r2 , −∞ < r < φ0 ,

r2
h + r2 + 2φ0 (φ0 − 2r) , φ0 < r <∞ .

(A.4)

When φ0 > 0, we have to make sure that rh is chosen such that the metric is everywhere
positive, see right panel of figure 13. This restricts rh < −

√
2φ0. For φ0 < 0, the metric

will be everywhere positive, but we still have to make sure that rh < φ0. Combining these
two conditions, we find rh < φ0 <

1√
2 |rh| which upon setting rh = −1 restores the range

of φ0 in the main text. In all interpolating solutions, the temperature is given by

T = |rh − φ0| − φ0
2π = |rh|2π . (A.5)

Note that from the above constraints it follows that for φ0 < 0, there only exist interpolating
solutions with T > |φ0|/2π while for φ0 > 0 solutions exist only for T > φ0/

√
2π.

25In this appendix we introduce back the factors of rh. This is important for computing the thermody-
namic quantities.

26Note, that the φ0 used here is |rh| times the φ0 used in the main text. We keep using ` = 1.
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Figure 13. The γ-centaur potential for φ0 < 0 (left) and φ0 > 0 (right). The region where the
slope is negative describes dS while the region where the slope is positive describes AdS and the
crossing between the two regions happens at φ = φ0. There are at most two different values of rh

corresponding to a given temperature T = U(φ(rh))/4π indicated by red dots in this illustration.
To have interpolating solutions we need rh < φ0.

It is straightforward to compute the different thermodynamic quantities for the inter-
polating geometries. The entropy and the specific heat are given by

S(T ) = Φ0 − 2πT
4GN

, C(T ) = − πT

2GN
, (A.6)

where it should be noted that the minus sign comes from having rh < 0. There are also
solutions with positive specific heat, but these have a dilaton that decreases towards the
boundary, see [34, 35]. An important feature of these geometries is that the specific heat
is linear in the temperature. The energy is given by,

E(T ) = − 1
16πGN

(
R2
b − 4φ0Rb + 2φ2

0 + 4π2T 2
)
, (A.7)

which as mentioned earlier diverges as Rb →∞. Nevertheless, only the last term depends
on the temperature. Note, that this term is finite and does not depend on φ0. The
regulated energy is ∆E = − π

4GN ∆(T 2). Note that apart from the ground state energy,
thermodynamic quantities do not depend on φ0.

B From conformal coordinates to the Schwarzschild gauge

In the main text we use mostly Schwarzschild coordinates for the metric. This is a useful
gauge to compute the length of geodesics. For the γ-centaur geometries, though, it is
sometimes useful to go to the conformal gauge. In this appendix, we show how to go
between the two coordinate systems. We start with the metric that was used in the AdS
portion of the γ-centaur geometries in section 5.2:

ds2
γ = −f(r)γdt2 + dr2

f(r)γ
, f(r)γ = 1 + r2 + 2φ0(φ0 − 2r) . (B.1)

Note that this can be written as

f(r)γ = (r − r+)(r + r−) with r± = 2φ0 ±
√
−1 + 2φ2

0 . (B.2)
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We can define r̃ = r − 2φ0. In terms of this coordinate, f(r̃) = r̃2 + (1 − 2φ2
0). We

want to compare this metric to the one in conformal coordinates. The general negative
curvature solution is given by

ds2 = γ

sin2√γρ
(−dt2 + dρ2) . (B.3)

We can always rescale ρ and t and (B.3) will locally look like the AdS2 black hole metric.
However, to fix the temperature of the flow geometries, we fix the periodicity of the time
coordinate (in Euclidean signature) using the dS metric, so, globally, all these γ-centaur
geometries are different [35].

It is now straightforward to perform the change of coordinates from Schwarzschild to
conformal gauge by identifying

r̃ =
√
γ (csc2 (√γρ)− 1), with γ ≡ 1− 2φ2

0 , (B.4)

where you might identify the last parameter as it has been extensively used across
section 5.2.

C Exact volume and boundary time in γ-centaur geometries

In this appendix, we collect several exact results regarding the volume and boundary times
in γ-centaur geometries in section 5.2. We work with the blackening factor (5.15), which
has a dS region and an AdS region. As can be observed, the metric in the dS part, is the
same as in previous examples. Therefore, the turning point is also at the same location

rt = −
√

1 + P 2 . (C.1)

The tortoise coordinate will change slightly, as the interpolation curve changes from r = 0
to r = φ0. We will write the formulas for the φ0 > 0 case, though they can be extended
for φ0 < 0. The tortoise coordinate satisfying r∗(r →∞) = 0 is given by

r∗(r)γ =


1
2 log

∣∣∣ r+1
r−1

∣∣∣+ c2 , −∞ < r < φ0 ,

1√
1−2φ2

0

(
arctan

(
r−2φ0√
1−2φ2

0

)
− π/2

)
, φ0 < r <∞ ,

(C.2)

where the constant c2 is chosen so that the coordinate is continuous along φ0

c2 = −arctanhφ0 −
1√

1− 2φ2
0

arctan
 φ0√

1− 2φ2
0

+ π/2

 . (C.3)

Evaluating it at the turning point, we obtain,

r∗t = −arctanhφ0 −
1√

1− 2φ2
0

arctan
 φ0√

1− 2φ2
0

+ π/2

− arcsinh
( 1
|P |

)
. (C.4)
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Note how γ naturally appears in the expressions. Using the above, it is possible to evaluate
the volume and boundary time as a function of the momentum P . The volume as a function
of P reads

V [P ] = π+2arctan

 φ0√
P 2−φ2

0 +1

+2log

Rb−2φ0 +
√

1+P 2 +R2
b−4φ0Rb+2φ2

0√
P 2−φ2

0 +1−φ0


= π+2log 2Rb+2arctan

 φ0√
1+P 2−φ2

0

−2 log
(√

1+P 2−φ2
0−φ0

)
+O(1/Rb) .

(C.5)

The expression for the time as a function of P is more complicated. For φ0 > −1/
√

2, we
obtain27

t ≡ tL + tR = log


√
P 2 − φ2

0 + 1− Pφ0√
P 2 − φ2

0 + 1 + Pφ0

+ arctan2(x1, y1) + arctan2(x2, y2)√
1− 2φ2

0

, (C.6)

where the function arctan2(x, y) gives the arctangent of y/x, taking into account which
quadrant the point (x, y) is in and

x1 ≡ −3
(
P 2 + 1

)
φ2

0 + P 2 + 2φ4
0 + 1 ,

y1 ≡ −2Pφ0

√
1− 2φ2

0

√
P 2 − φ2

0 + 1 ,

x2 ≡ −P 2
(
−4φ0Rb +R2

b + 6φ2
0 − 1

)
−
(
2φ2

0 − 1
) (
−4φ0Rb +R2

b + 2φ2
0 + 1

)
,

y2 ≡ 2P
√

1− 2φ2
0 (2φ0 −Rb)

√
−4φ0Rb +R2

b + P 2 + 2φ2
0 + 1 .

(C.7)

Plotting the boundary time for different possible values of φ0 allows us to see different inter-
esting patterns for the geodesics. For |φ0| < 1√

2 , each time has at most one specific value of
P , and therefore one geodesic, associated with it, see figure 14a. The geodesics stop existing
at a time of the order of the inverse temperature, given by equation (5.17). For −1 < φ0 <

− 1√
2 , the situation is more interesting. In that range, at very early times, there are three

different maximal geodesics anchored at the very same boundary time. Depending on the
value of φ0, there is another range of times where there are two geodesics at the same time
— see figure 14c — or only one — see figure 14b. At larger times, there are no geodesics.

27For φ0 < −1/
√

2, part of the expression becomes complex. In order to obtain the right value for the
boundary times, one has to take the real part of this expression.
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(c) φ0 = −0.95

Figure 14. t as a function of P for different values of φ0. In each figure, the colours of the dashed
lines correspond to those of the relevant geodesics in figure 8. Rb is set to 10. In the first plot, each
time corresponds to at most a single value of P . In the second plot, at short times there are three
relevant values of P (yellow dashed line), while at later times, there is only one relevant value of P
(green dashed line). In the last plot, the yellow dashed line shows again three relevant values of P ,
but the green line intersects at two different values of P .
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