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Abstract

A significant proportion of the global burden of disease can be attributed to mental illness.
Despite important advances in identifying risk factors for mental health conditions, the
biological processing underlying causal pathways to disease onset remain poorly understood.
This represents a limitation to implement effective prevention and the development of novel
pharmacological treatments. Epigenetic mechanisms have emerged as mediators of environ-
mental and genetic risk factors which might play a role in disease onset, including childhood
adversity (CA) and cannabis use (CU). Particularly, human research exploring DNA methy-
lation has provided new and promising insights into the role of biological pathways implicated
in the aetio-pathogenesis of psychiatric conditions, including: monoaminergic (Serotonin and
Dopamine), GABAergic, glutamatergic, neurogenesis, inflammatory and immune response
and oxidative stress. While these epigenetic changes have been often studied as disease-spe-
cific, similarly to the investigation of environmental risk factors, they are often transdiagnostic.
Therefore, we aim to review the existing literature on DNA methylation from human studies
of psychiatric diseases (i) to identify epigenetic modifications mapping onto biological path-
ways either transdiagnostically or specifically related to psychiatric diseases such as Eating
Disorders, Post-traumatic Stress Disorder, Bipolar and Psychotic Disorder, Depression,
Autism Spectrum Disorder and Anxiety Disorder, and (ii) to investigate a convergence
between some of these epigenetic modifications and the exposure to known risk factors for
psychiatric disorders such as CA and CU, as well as to other epigenetic confounders in psych-
iatry research.

Introduction of main epigenetic processes in psychiatry research

Both genetic and environmental factors are implicated in the aetiology of psychiatric disorders,
however, the key causal mechanisms for guiding effective prevention and treatment remain
poorly understood (Van Os, Rutten, & Poulton, 2008). Genetic association studies (Ripke
et al., 2014) as well as epidemiological studies addressing the impact of the environment
(van Os, Kenis, & Rutten, 2010) on disease burden, have not yet explained the non-complete
genetic correlation between monozygotic twins in conditions such as schizophrenia (SCZ)
(41–65%), Bipolar Disorder (BD) (∼60%) (Craddock, O’Donovan, & Owen, 2005) or Major
Depression (MDD) (∼40%) (Ripke et al., 2013).

In the past decade, growing evidence has shown a link between epigenetic processes, and a
range of mental health disorders (Binder, 2017). Epigenetic modifications refer to functional
changes in DNA structural packaging or associated proteins without structural alteration of the
DNA sequence itself (Jaenisch & Bird, 2003). This biological mechanism has important impli-
cations on how genes are expressed and how the chromatin is packaged, thus modifying
subsequent protein translation within regionally specific parts of the central nervous system
(Binder, 2017). The most studied epigenetic process in humans is DNA methylation
(DNAm) (Table 1 for definitions of key terms). Indeed, recent parallel evidence suggests
that differential DNAm profiles are associated with exposure to childhood adversity (CA) as
well as cannabis use (CU) (Kandaswamy et al., 2020; Markunas et al., 2020; Nöthling,
Malan-Müller, Abrahams, Hemmings, & Seedat, 2020). This suggests that epigenetic factors
may account for some of the non-explained variance in genetics studies and possibly mediate
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Table 1. A glossary of key epigenetic terms and biological function of genes involved in pathways discussed in this review

Gene names and key terms Biological function and definition

Epigenetic terms

DNA-methylation DNA-meth is the covalent addition of a methyl group to the 5th carbon of a Cytosine (C) base, resulting in a
5-methylcytosine (5-mC) base. Epigenetic is the major process by which the environment can alter gene expression

Candidate gene approach Explores methylation on certain genes of interests based on a priory hypothesis. It often examines whether DNAm
changes in different CG sites within specific genes are related to a particular phenotype.

Epigenome-Wide Association
Studies

Examines the association of DNAm changes (otherwise called methylome-wide association studies (MWAS)) across
the entire genome for a particular phenotype, using a hypothesis-free paradigm. EWAS have been performed with
increasingly powerful techniques and have moved from pioneer CpG-island microarrays studies that interrogated
around 12.000 sites across the DNA (Mill et al., 2008) to more advanced techniques such as Infinium MethylationEPIC
BeadChip, that covers more than 850 000 CpG methylation sites (Yong et al., 2016).

Histone acetylation studies Histone acetylation is a dynamic epigenetic modification that functions in the regulation of DNA-templated
reactions, such as transcription. This lysine modification is reversibly controlled by histone (lysine) acetyltransferases
and deacetylases.

Methylome-wide association
studies (MWAS)

Test a genome-wide set of methylation sites for association with an outcome of interest.

Serotoninergic pathway

SLC6A4 Regulated serotonergic signalling via transporting 5-HT from synaptic spaces into presynaptic neurons. SLCA2 is
involved in the recapture of the Norepinephrine

5-HTR (1A, 2A, 2B 3A, 5A) These genes encode for the receptors for the neurotransmitter serotonin

A (MAOA) One of two neighbouring gene family members that encode mitochondrial enzymes which catalyse the oxidative
deamination of amines, such as dopamine, norepinephrine, and serotonin

Dopaminergic pathway

DRD (2a, 3, 4) Encode different subtypes of the dopamine receptor

COMTa(D1) Encodes for Catechol-O-methyltransferase enzyme, which catalyses the transfer of a methyl group from
S-adenosylmethionine to catecholamines, including the neurotransmitters dopamine, epinephrine, and
norepinephrine important in the degradation of Dopamine (DA)

DAT1a The dopamine transporter is implicated in a number of dopamine-related disorders, including attention deficit
hyperactivity disorder, bipolar disorder, clinical depression, alcoholism, and substance use disorder

FAM63B Involved in four networks regulated by miRNA, three of which are linked to neuronal differentiation and
dopaminergic gene expression

SLC6A3 Provides instructions for making a protein called the dopamine transporter or DAT

Glutamatergic/GABAergic pathway

GAD1 Encodes one of several forms of glutamic acid decarboxylase, an enzyme which is responsible for catalysing the
production of gamma-aminobutyric acid from L-glutamic acid

PVALB Encodes for Parvalbumin protein, essential for neural synchronisation in some neurons in the CNS

GRIN1 (2,2B 3B, D1) The protein encoded by this gene is a critical subunit of N-methyl-D-aspartate receptors, members of the glutamate
receptor channel superfamily. It plays an important role in the plasticity of synapses

GRIA 2, 3 Encodes for the Glutamate Ionotropic Receptor AMPA Type Subunit 2 and 3 Glutamate receptors, which are the
predominant excitatory neurotransmitter receptors in the mammalian brain

MARLIN-1 (synonym of JAKMIP1) codes for a protein that may play a role in the microtubule-dependent transport of the
GABA-B receptor

KCNJ6 Encodes a member of the G protein-coupled inwardly-rectifying potassium channel family of inward rectifier
potassium channels. This type of potassium channel allows a greater flow of potassium into the cell than out of it
and thus regulates circuit activities in neural cells. Expressed in GABAergic synapses

HELT Protein Coding gene involved in DNA-binding transcription factor activity and protein dimerisation activity. It is a
transcriptional repressor gene which is known to function as a selector gene that determines GABAergic over
glutamatergic fate in the mesencephalon

GRIK2 Codes for the Glutamate Ionotropic Receptor Kainate Type Subunit 2. Glutamate receptors are the predominant
excitatory neurotransmitter receptors in the mammalian brain

SLC6A12 Transports betaine and GABA. May have a role in the regulation of GABAergic transmission in the brain through the
reuptake of GABA into presynaptic terminals, as well as in osmotic regulation.

GABBR1, 2 Encodes a receptor for GABA that functions as a heterodimer with GABA(B) receptor 1 and 2. Defects in this gene
may underlie brain disorders such as schizophrenia and epilepsy.

(Continued )

2 Luis Alameda et al.

https://doi.org/10.1017/S0033291721005559
Downloaded from https://www.cambridge.org/core, IP address: 81.156.117.214, on subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0033291721005559
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Table 1. (Continued.)

Gene names and key terms Biological function and definition

GRIN3B The protein encoded by this gene is a subunit of an N-methyl-D-aspartate (NMDA) receptor. The encoded protein is
found primarily in motor neurons, where it forms a heterotetramer with GRIN1 to create an excitatory glycine
receptor. Variations in this gene have been proposed to be linked to schizophrenia

Neurogenesis

RELN This gene encodes a large secreted extracellular matrix protein (Reelin) thought to control cell-cell interactions
critical for cell positioning and neuronal migration during brain development. expressed in GABAergic interneurons

BDNF Encodes the brain-derived neurotrophic factor (BDNF), a protein involved in promoting the survival, growth and
differentiation of new neurons and synapses

POU5F1, POU6F2. POU3F1 Encodes a transcription factor protein that binds to the octamer motif (5-ATTTGCAT-3) and controls myelination
(thought to be involved in embryogenesis and neurogenesis)

NPDC1 Encored for a protein that Suppresses oncogenic transformation in neural and non-neural cells and down-regulates
neural cell proliferation. Might be involved in transcriptional regulation

PI3K Phosphatidylinositol 3-kinases, are a family of enzymes involved in cellular functions such as cell growth,
proliferation, differentiation, motility, survival and intracellular trafficking

CUX1a Encodes a member of the homeodomain family of DNA binding proteins that regulates gene expression,
morphogenesis, and differentiation and it also plays a role in cell cycle progression

CLMNa Encodes calmin (calponin-like transmembrane domain protein)

SENP7a Encodes sentrin-specific protease 7

Immune system and inflammation

ZC3H12D It is a Protein (Zinc Finger CCCH-Type Containing 12D) Coding gene, which in association with ZC3H12A enhances
the degradation of interleukin IL-6 mRNA level in activated macrophages, among other functions

TCF3 This gene encodes a member of the E protein (class I) family of helix-loop-helix transcription factors. E proteins play
a critical role in lymphopoiesis, and the encoded protein is required for B and T lymphocyte development, among
other functions

IKZF4 Members of the Ikaros family of transcription factors, which includes Eos, are expressed in lymphocytes and are
implicated in the control of lymphoid development

YOD1 Protein ubiquitination controls many intracellular processes, including cell cycle progression, transcriptional
activation, and signal transduction, involved in IL-1 signalling to NF-κB

IL17RA Code for Interleukin 17A (IL17A), which is a proinflammatory cytokine secreted by activated T-lymphocytes

TLR1 (3) Encodes Toll-Like Receptor 1, family which plays a fundamental role in pathogen recognition and activation of
innate immunity

TNFRSF13C TNF Receptor Superfamily Member 13C, a membrane protein of the TNF receptor superfamily which recognises
BAFF, an essential factor for B cell maturation and survival

HERC5 This gene is a member of the HERC family of ubiquitin ligases and encodes a protein with a HECT domain and five
RCC1 repeats. Pro-inflammatory cytokines upregulate expression of this gene in endothelial cells

FCGR2B One of the genes thought to influence susceptibility to several autoimmune diseases in humans inhibiting the
functions of activating FcγRs, such as phagocytosis and pro-inflammatory cytokine release

PIK3R3 Plays an important role in the regulation of cellular lipid metabolism

INPP5D Encodes Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1) that functions as
a negative regulator of cell proliferation and survival

FCGR2C, 2B Encodes one of three members of a family of low-affinity immunoglobulin gamma Fc receptors found on the surface
of many immune response cells and involved in phagocytosis

IGHA1 Encodes a constant (C) segment of Immunoglobulin A heavy chain that plays a critical role in immune function in
the mucous membranes

FCAR Codes for the transmembrane receptor FcαRI, also known as CD89 (Cluster of Differentiation 89), that plays a role in
both pro- and anti-inflammatory responses

CD224 This gene is a human gamma-glutamyltransferase catalyses the transfer of the glutamyl moiety of glutathione to a
variety of amino acids and dipeptide acceptors

LAX1 A membrane-associated adaptor protein mainly expressed in B cells, T cells, and other lymphoid-specific cell types

TXK A member of Tec family nonreceptor tyrosine kinase, is expressed on Th1/Th0 cells, and Txk regulates specifically
IFN-gamma gene expression

PRF1

(Continued )
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the interactions between genotype and known environmental risk
factors in influencing the onset of complex diseases (Relton &
Smith, 2010).

Initially, epigenetic research in psychiatry used a candidate
gene approach, and progressively, research moved to Epigenome
Wide Association studies (EWAS) (Table 1). While both designs
have their advantages and limitations, the breadth of coverage
of EWAS offers a more informative insight on biological path-
ways. This is based on the rational that chromatin conformation
and transcriptional regulation are influenced by a set of

methylated or unmethylated cytosines across a region, rather
than specific CpG sites in isolation (Mill et al., 2008)

Different biological pathways have been implicated in the
aetio-pathogenesis across multiple mental disorders. Some of
these are pathways related to neurotransmission such as serotonin
(Provenzi, Giorda, Beri, & Montirosso, 2016), dopamine or
GABA/glutamatergic processes (McCutcheon, Krystal, & Howes,
2020); while others pathways involve inflammation (Cullen
et al., 2019), oxidative stress (Steullet et al., 2016), synaptic plas-
ticity and neurogenesis (Claudino, Gonçalves, Schuch, Martins,

Table 1. (Continued.)

Gene names and key terms Biological function and definition

Encodes perforin a pore-forming cytolytic protein found in the granules of cytotoxic T lymphocytes (CTLs) and
natural killer cells (NK cells)

CD7 Encodes a transmembrane protein which is a member of the immunoglobulin superfamily found on thymocytes and
mature T cells that plays an essential role in T-cell interactions and also in T-cell/B-cell interaction during early
lymphoid development

MPG Encodes N-methylpurine DNA glycosylase a specific type of DNA glycosylase involved in the recognition of a variety
of base lesions, including alkylated and deaminated purines, and initiating their repair via the base excision repair
pathway

MPOG A member of the XPO subfamily of peroxidase enzyme most abundantly expressed in neutrophil granulocytes

MARC2a The protein encoded by this gene is an enzyme found in the outer mitochondrial membrane that reduces
N-hydroxylated substrates

CEMIPa Cell migration-inducing and hyaluronal-binding protein, known as KIAA1199, has been shown to bind hyaluronic acid
and catalyse its depolymerisation its depolymerisation independently of CD44 and hyaluronidases

Oxidative stress

GGT6 Encored for a gamma-glutamyltransferase, that plays a key role in glutathione homoeostasis by providing substrates
for its synthesis

GSTM5 (Glutathione S-Transferase Mu 5), important for glutathione homoeostasis

Hypothalamus pituitary adrenal axis pathway

NR3C1 Encodes the human glucocorticoid receptor protein, which is the receptor to which cortisol and other
glucocorticoids bind

miR124 A microRNA that targets NR3C1

FKBP5 (2, 1B) Encodes the FK506 binding protein, a member of the immunophilin protein family which may play a role in
immunoregulation and basic cellular processes involving protein folding and trafficking

SKA2 Encodes for a component of the spindle and kinetochore-associated protein complex, which is a protein complex
involved in regulating chromosomal segregation. SKA2 is important in facilitating GR nuclear transactivation.

Cannabinoid system

CNR1 and CNR2a Encodes the cannabinoid receptor gene

Other genes

DNMTS This gene encodes an enzyme that transfers methyl groups to cytosine nucleotides of genomic DNA

OXTR Encodes oxytocin, which is a neuropeptide hormone produced by the hypothalamus and released into systemic
circulation by the posterior pituitary

Tobacco signature genes

AHRRa The protein encoded by this gene participates in the aryl hydrocarbon receptor (AhR) signalling cascade, which
mediates dioxin toxicity, and is involved in the regulation of cell growth and differentiation

F2RL3a Encodes a member of the protease-activated receptor subfamily, part of the G-protein coupled receptor 1 family of
proteins. This receptor plays a role in blood coagulation, inflammation and response to pain

GFI1 Encodes a nuclear zinc finger protein that functions as a transcriptional repressor. This protein plays a role in diverse
developmental contexts, including haematopoiesis and oncogenesis

MYO1G Is a plasma membrane-associated class I myosin that is abundant in T and B lymphocytes and mast cells.. This
myosin is required during immune response for detection of rare antigen-presenting cells by regulating T-cell
migration

agenes related to cannabis use.
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& Rocha, 2020), or the stress response system (Hypothalamic
Pituitary adrenal Axis – HPA) (Wesarg, Van Den Akker, Oei,
Hoeve, & Wiers, 2020). It is important to take into account that
some of these processes participate in disease pathogenesis in a
parallel manner, such as via the redox system and through the
glutamatergic/GABAergic imbalance (Hardingham & Do, 2016);
or the immune system and the stress response (Pariante, 2017).
Although these processes are often explored within discrete
categorical clinical conditions, they often overlap transdiagnosti-
cally. For instance, alterations in serotonin pathways are linked
to both depression and psychosis phenotypes (Selvaraj, Arnone,
Cappai, & Howes, 2014).

In this review, we set to appraise firstly, the evidence of DNAm
modifications both from candidate genes and EWAS studies, asso-
ciated either specifically or transdiagnostically with psychiatric
conditions, and secondly, if these DNAm modifications map
onto biological pathways. Thirdly, we will explore if the existing
findings from studies on DNAm changes associated with CA
and CU, two of the environmental exposures most consistently
associated with psychiatric disorders (Lindert et al., 2014;
Mandelli, Petrelli, & Serretti, 2015; Marconi, Di Forti, Lewis,
Murray, & Vassos, 2016; Sideli, Quigley, La Cascia, & Murray,
2020a; Varese et al., 2012), point at the same biological pathways
therefore contributing to the understanding of how these environ-
mental exposures increase transdiagnostic and specific psychiatric
liability. Details on methodological considerations can be found
in Online Supplementary Material (SM).

Evidence of epigenetic processes in major transdiagnostic
pathways

In this section we will review the evidence, predominantly from
case–control studies pointing at an association between DNAm
changes in the Serotoninergic, Dopaminergic pathways,
Excitatory inhibitory balance (including the Glutamatergic and
GABAergic dysfunction), Synaptic plasticity and Neurogenesis;
the Immune system, Inflammation and Oxidative stress and the
major mental conditions (focusing on Eating Disorders (ED):
anorexia nervosa (AN) and bulimia nervosa (BN), Autism
Spectrum Disorder (ASD), BD and Psychotic Disorder,
Depression, Post Traumatic Stress Disorder (PTSD) and
Anxiety Disorders). Summary of findings is illustrated in Fig. 1;
findings on HPA-axis and its association to environmental risk
factors are presented in Section ‘The epigenetic signature of child-
hood adversity and cannabis use’ and Fig. 2 and Online
Supplementary Table S1 (SM) summarises the characteristics of
the articles mentioned in that section. Table 2 summarised the
key elements of studies finding evidence of a link between
DNAm on genes involved in each biological pathway across all
disorders. Screening

The serotoninergic pathway

There are preclinical and human studies pointing at an implica-
tion of the serotonin (5HT) system dysfunction in a broad
range of psychiatric diseases (Kaye, Fudge, & Paulus, 2009). The
strongest evidence is at the level of the serotonin transported
genes (mainly SLC6A4) with candidate genes studies suggesting
an increased in methylation in depression (Kang et al., 2013;
Philibert et al., 2008; Zhao, Goldberg, Bremner, & Vaccarino,
2013), BD (Sugawara et al., 2011) and reporting a positive associ-
ation with symptoms severity (Olsson et al., 2010), comorbid

depression in those with panic disorder (Schiele et al., 2019),
and improvement from baseline to follow-up (Perez-Cornago,
Mansego, Zulet, & Martinez, 2014). It has been suggested that
an increased DNAm of SLC6A4 could repress gene expression,
leading to decreased serotonin uptake and lower activity, which
ultimately would lead to the manifestation of depressive symp-
toms (Chen, Meng, Pei, Zheng, & Leng, 2017)

A pattern of hypermethylation has also been found in samples
of SCZ (Abdolmaleky et al., 2014). although with mixed evidence
(Alelú-Paz et al., 2015). Candidate gene studies in SCZ and BD
across various tissues (Abdolmaleky et al., 2011; Carrard,
Salzmann, Malafosse, & Karege, 2011; Cheah, Lawford, Young,
Morris, & Voisey, 2017) show elevated DNAm of the 5-HTR1A
and 5-HTR2A genes respectively. Further, EWAS studies have
identified differential DNAm in HTR2A (Numata, Ye, Herman,
& Lipska, 2014), HTR5A and HTR1E (Nishioka et al., 2013;
Pidsley et al., 2014) genes in those with psychosis.

Evidence on ED so far has not found an association with
SLC6A4 DNAm and AN (Boehm et al., 2019; Pjetri et al., 2013;
Steiger et al., 2019).

In ASD, preliminary evidence indicated higher HTR2A
promoter DNAm in leucocytes of those carrying the high-risk
genotype in the HTR2A (Hranilovic, Blazevic, Stefulj, & Zill,
2016).

Another well-explored gene of interest in the serotoninergic
pathway is MAO-A (Shih & Thompson, 1999) which is involved
in monoamine degradation and it has established linked with
depression (Meyer et al., 2006). While studies in depression
have found inconsistent DNAm changes (Domschke et al.,
2015; Melas & Forsell, 2015; Melas et al., 2013); in candidate
gene studies in anxiety disorders, the evidence points at a pattern
of hypomethylation (Ziegler et al., 2016) as shown in acrophobia
(Schiele et al., 2018) and obsessive compulsive disorder (OCD)
(Domschke et al., 2012). Moreover, increased MAO-A DNAm
has been suggested as a potential useful marker of better response
to psychotherapy in anxiety disorders (Schiele et al., 2020; Ziegler
et al., 2016).

Overall, we find a transdiagnostic link between DNAm
changes in genes involved in the serotoninergic pathway, with
limited evidence in ED (findings on PTSD discussed in Section
‘The epigenetic signature of childhood adversity and cannabis
use’ and described in Table 2).

The dopaminergic pathway

It is widely accepted that dopaminergic dysregulation stands
as one of the most supported hypotheses for the pathogenesis
of SCZ and psychosis as a whole (Jauhar et al., 2018;
McCutcheon et al., 2020). Studies examining DNAm in the
blood of patients with SCZ as compared with controls have
showed both higher and lower DNAm levels in different DA
receptor’s genes; with decreased DNAm in DRD3 (Dai et al.,
2014) and DRD4 (Cheng et al., 2014); and in other dopamine
receptors (Kordi-Tamandani, Sahranavard, & Torkamanzehi,
2013b; Yoshino et al., 2016).

Hypomethylation of the COMT membrane-bound isoform,
has been identified in samples of people with SCZ across tissues
(Abdolmaleky et al., 2006; Nohesara et al., 2011; Nour El Huda
et al., 2018; Walton et al., 2014), while the soluble isoform
(S-COMT) has been reported to be hypermethylated (Melas
et al., 2012; Murphy, O’Reilly, & Singh, 2005). EWAS studies
comparing SCZ patients with controls have found
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hypomethylation of SLC6A3, a dopamine transporter (Nishioka
et al., 2013), COMTD1 and FAM63B, a gene linked to dopamin-
ergic gene expression (Aberg et al., 2014).

In ED, findings of DNAm changes affecting dopaminergic
genes DAT and DRD2 are mixed (Frieling et al., 2010; Pjetri
et al., 2013). It has been suggested that DNAm variation in the
dopamine pathway in ED may be related to comorbid
Borderline Personality Disorder (Borderline PD) (Groleau et al.,
2014) and exposure to CA (Section ‘The epigenetic signature of
childhood adversity and cannabis use’ and Online
Supplementary Table S1 (SM)).

None of the EWAS studies conducted in ASD has found
evidence supporting an association with DNAm changes involved
in the Dopaminergic pathway.

Overall, recent findings support a link between DNAm
changes in genes involved in the dopaminergic pathway related

to neurodevelopmental disorders such as SCZ, with limited
evidence suggesting a link with other conditions.

Glutamatergic/GABAergic Pathway and excitatory/inhibitory
balance

Alterations in glutamatergic and GABAergic pathways, which can
lead to either excitatory/inhibitory imbalance, have been reported
to play a role in the etiopathogenesis of psychotic disorders
(McCutcheon et al., 2020) and ASD (Marotta et al., 2020).
Furthermore, N-Methyl-D-aspartic acid or N-Methyl-D-aspartate
(NMDAR) hypofunction as well as a decrease in the parvalbu-
min-expressing fast-spiking interneurons (PVI), both processes
being essential for the excitatory/inhibitory balance, have been
widely shown to be involved in psychotic disorders (Thuné,
Recasens, & Uhlhaas, 2016).

Fig. 1. Summary of the evidence on potential pathways linking childhood trauma and cannabis use with psychiatric conditions through DNAm changes.
Note: This figure summarises the evidence presented in this review, highlighting the idea that some biological pathways linking environmental risk factors with
mental health disorders via epigenetic changed in the form of DNAm are transdiagnostics (e.g immune system/inflammation) while others seem to be more specific
(e.g dopaminergic system). (1) The environmental risk factors row and epigenetic modifications row suggest links between childhood adversity (CA), and Cannabis
use (CU) and DNAm changes mapping to biological pathways which are also functionally related (Serotoninergic, Dopaminergic pathways, Glutamatergic &
GABAergic pathway, Neurogenesis, Immune system & Inflammation and Oxidative stress). (2)The epigenetic modifications row and mental health disorders row
illustrate the evidence, from case–control studies, of an association between DNAm changes in these pathways and the major mental health conditions
(Eating Disorders (anorexia nervosa and bulimia nervosa) Post-traumatic stress disorder, Anxiety Disorders, Psychotic Disorder, Bipolar disorders, Depression
and Autism Spectrum Disorders). (3) The arrows connecting the three rows show the potential mediating role of DNAm changes linking CA and CU and risk to
develop mental health conditions. The thickness of the lines shows the robustness of the evidence reported in the literature review. The items “genotype: and
“other risk factors” are added to highlight the influence of genetic factors and environmental confounders in DNAm studies. The dotted line connecting eating
disorders with the pathways indicate that literature was limited and mixed not allowing to draw clear links with the pathways.
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In SCZ and psychosis, there is evidence from candidate genes
studies across tissues supporting DNAm differences between cases
and controls in genes such as the Parvalbumin (PVALB) gene
(Fachim, Srisawat, Dalton, & Reynolds, 2018), GMR2 and
GMR5 of the glutamatergic receptors (Kordi-Tamandani,
Dahmardeh, & Torkamanzehi, 2013a); various CpG sites in the
β2 subunit of the GABAa receptor gene (GABRB2) (Pun et al.,
2011; Zong et al., 2017), and in GRIN2B, involved in the function
of NMDAR (Fachim et al., 2019). A dysregulation of multiple
DNAm positions in the regulatory network of GAD1, was identi-
fied in patients with SCZ and BD compared to controls (Ruzicka,
Subburaju, & Benes, 2015).

In terms of EWAS Mill and colleagues (Mill et al., 2008)
performed the first EWAS in post-mortem brains of SCZ and
BD subjects compared to controls, and found DNAm changes
associated with SCZ and BD at loci involved in glutamatergic
(GRIA 2, GRIND3B) and GABAergic (MARLIN-1, KCNJ6,
HELT) neurotransmission, supporting previous candidate genes
results. Findings related to GRIA family genes have been repli-
cated in latter EWAS studies (Aberg et al., 2012; Numata et al.,
2014), and other EWAS studies have confirmed DNAm changes
in genes involving GABAergic neurotransmission (SLC6A12
and GABBR1) (Hannon et al., 2021).

In ASD, an EWAS study on histone acetylation in participants
with the disorder compared to controls found an enrichment of
hyperacetylated sites in genes involved in GABA receptor activity
(Ramaswami et al., 2020), although this has not been previously
found on DNAm (Wong et al., 2018).

Lastly, a Depression EWAS (Nagy et al., 2015) of post-mortem
brains of suicide victims and controls found 115 differentially
methylated regions (DMRs), which included regions related to
GRIK2.

Overall, there is evidence linking DNAm changes on genes
involved in the glutamatergic pathway mainly with psychosis,
with some evidence suggesting a link with ASD and MDD

Synaptic plasticity and neurogenesis

Synaptic plasticity anomalies are associated with psychiatric con-
ditions and may account for various symptoms, such as cognitive
deficits (Claudino et al., 2020; Di Carlo, Punzi, & Ursini, 2019;
Lin & Huang, 2020).

RELN is a good studies gene that has been linked to SCZ
(Costa et al., 2002). An aberrant DNAm status in RELN has
been found in SCZ and BD patient as compared with controls
(Fikri et al., 2017; Tamura, Kunugi, Ohashi, & Hohjoh, 2007).

Fig. 2. Summary of the evidence linking childhood adversity and DNAm changes on the Hipotalamic Pituitary Adrenal Axis in various conditions as well as with
some clinical measures.
Note: This Figure illustrates the evidence from candidate gene studies linking childhood adversity (CA) with DNAm in CpG sites located in NR3C1, FKBP5, SKA2 and
CA, with various conditions and various clinical outcomes. In the gene and DNAm columns, CA + (with an arrow pointing up) reflects the presence of a positive
association between the DNAm in probes located in those genes and CA; CA- (with an arrow pointing down) reflects a negative association. The disorder column
shows in which mental health condition that association has been found. Lastly, the clinical outcomes column shows the presence of evidence linking DNAm, with
a particular clinical phenotype; CA + indicated that the association between DNAm and the clinical outcome was related to CA.
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Table 2. Summary of the direction of the associations between DNAm, mental health disorders and clinical or biological outcomes presented in this review

Gene (hyper ↑ or ↓ hypo DNAm) and
citation

Candidate gene
or EWAS Tissue Condition/sample Clinical/biological outcome

Serotoninergic pathway

SLC6A4

↑Abdolmaleky et al. (2014) Candidate gene PMB/
saliva

SCZ

Kang et al. (2013) Candidate gene Blood Depression CA → ↑SLC6A4 → clinical severity

Olsson et al. (2010) Candidate gene Buccal Depression ↑SLC6A4 → ↑ Depressive symptoms

↑Philibert et al. (2008) Candidate gene Blood Depression ↑SLC6A4 → ↑ history MDD

↑Zhao et al. (2013) Candidate gene Blood Twin male veterans ↑SLC6A4 → ↑ Depressive symptoms

Perez-Cornago et al. (2014) Candidate gene Blood General population ↑SLC6A4 → decrease depressive symptoms
from baseline to Follow-up

Boehm et al. (2019) Candidate gene Blood Anorexia nervosa ↑SLC6A4 → resting-state functional
connectivity→ anorexia symptoms

Koenen et al. (2011) Candidate gene Blood PTSD CA + ↓SLC6A4 → PTSD

Peng et al. (2018) Candidate gene Blood General population CA → ↑SLC6A4 → depressive symptoms

Schiele et al. (2019) Candidate gene Blood Panic disorder ↑SLC6A4→ Comorbid depression

5-HTR 1A

↑Carrard et al. (2011) Candidate gene Blood SCZ/BD

5-HTR 2A

↑Cheah et al. (2017) Candidate gene PMB SCZ

↑Abdolmaleky et al. (2011) Candidate gene PMB SCZ/BD

↑Hranilovic et al. (2016) Candidate gene Blood ASD

5-HT3A-R

↑Perroud et al. (2016) Candidate gene Blood BD/Borderline PD CA → ↑5-HT3A-R → clinical severity

A MAOA

↓ Ziegler et al. (2016) Candidate gene Blood Panic disorder ↑ → Better response to CBT in agoraphobic
symptpms

↓Schiele et al. (2018) Candidate gene Blood Agoraphobia

↓Domschke et al. (2012) Candidate gene Blood Panic disorder CA → ↓A (MAOA)

Peng et al. (2018) Candidate gene Blood General population CA → ↓A (MAOA) → depressive symptoms

Dopaminergic pathway

DRD2

↑Kordi-Tamandani et al. (2013b) Candidate gene Blood SCZ

↓Yoshino et al. (2016) Candidate gene Blood SCZ

↑Frieling et al. (2010) Candidate gene Blood Anorexia and bulimia
nervosa

DRD3

↑Dai et al. (2014) Candidate gene Blood SCZ

DRD4

↑Cheng et al. (2014) Candidate gene Blood SCZ

↑Kordi-Tamandani et al. (2013b) Candidate gene Blood SCZ

DRD5

↑Kordi-Tamandani et al. (2013b) Candidate gene Blood SCZ

MB-COMT

↓Abdolmaleky et al. (2006) Candidate gene PMB SCZ/BD

(Continued )
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Table 2. (Continued.)

Gene (hyper ↑ or ↓ hypo DNAm) and
citation

Candidate gene
or EWAS Tissue Condition/sample Clinical/biological outcome

↓Nohesara et al. (2011) Candidate gene Saliva SCZ/BD

Walton et al. (2014) Candidate gene Blood SCZ ↑ MB-COMT ->better neural activity in left
DLPFC

↓Nour El Huda et al. (2018) Candidate gene Blood SCZ ↑ MB-COMT-> ↓excited and depressed
symptoms

S-COMT

↑Murphy et al. (2005) Candidate gene PMB SCZ

↑Melas et al. (2012) Candidate gene Blood SCZ

COMTD1

↓Nishioka et al. (2013) EWAS Blood SCZ

SLC6A3

↓Nishioka et al. (2013) EWAS Blood SCZ

DAT1*

↑Frieling et al. (2010) Candidate gene Blood Anorexia and bulimia
nervosa

FAM63B

↓Aberg et al. (2012) EWAS Blood SCZ

Glutamatergic/GABAergic pathway (Excitatory/inhibitory balance)

PVALB

↑Fachim et al. (2018) Candidate gene PMB SCZ

GMR2, GMR5

↓Kordi-Tamandani et al. (2013a) Candidate gene Blood SCZ

GRIA 3

↑Kordi-Tamandani et al. (2013a) Candidate gene Blood SCZ

GRIA 2

↓Mill et al. (2008) EWAS PMB SCZ/BD

↓Aberg et al. (2012) EWAS Blood SCZ

GRIA 4

↑Numata et al. (2014) EWAS PMB SCZ

GABBR1

↑Hannon et al. (2021) EWAS Blood Psychosis and SCZ

GABBR2

↑Pun et al. (2011) Candidate gene Blood SCZ

↑Zong et al. (2017) Candidate gene Blood SCZ

GRIN 2B

↓Fachim et al. (2019) Candidate gene Blood SCZ CA → ↑GRIN2B

Engdahl et al. (2021) Candidate gene Saliva General population

GRIND1

Weder et al. (2014) EWAS Saliva Trauma/non-trauma
children

GAD1

Ruzicka et al. (2015) Candidate gene PMB SCZ/BD

↓Domschke et al. (2013) Candidate gene Blood Panic disorder Life events → ↓GAD1 DNAm

(Continued )
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Table 2. (Continued.)

Gene (hyper ↑ or ↓ hypo DNAm) and
citation

Candidate gene
or EWAS Tissue Condition/sample Clinical/biological outcome

GRIN3B

↓Mill et al. (2008) EWAS PMB SCZ/BD

MARLIN-1

↑Mill et al. (2008) EWAS PMB SCZ/BD

KCNJ6

↑Mill et al. (2008) EWAS PMB SCZ/BD

HELT

↑Mill et al. (2008) EWAS PMB SCZ/BD

GRIK2

Nagy et al. (2015) EWAS PMB Depression

SLC6A12

↑Hannon et al. (2021) EWAS Blood Psychosis and SCZ

Synaptic plasticity and neurogenesis

RELN

Tamura et al. (2007) Candidate gene PMB SCZ/BD ↓DNAm → poor cognition

Alfimova et al. (2018) Candidate gene Blood SCZ

Fikri et al. (2017) Candidate gene Blood SCZ

PI3K

Wong et al. (2019) EWAS PMB ASD

BDNF

↑Ursini et al. (2016) Candidate gene Blood SCZ

↑Duffy et al. (2019) Candidate gene Saliva BD

↑Dell et al. (2014) Candidate gene Blood Unipolar, BD and
MDD

↑Kim et al. (2017) Candidate gene Blood PTSD

↑Kang et al. (2015)* Candidate gene Blood Depression ↑BDNF->↑depressive symptoms

↑Peng et al. (2018) Candidate gene Blood Depression CA -> ↑BDNF→ depressive symptoms

↑Thomas et al. (2018) Candidate gene Saliva Borderline PD

D’Addario et al. (2019) Candidate gene Blood OCD

↑Thaler et al. (2014) Candidate gene Blood Bulimia nervosa CA + Borderline PD →↑BDNF meth

Moser et al. (2015) EWAS Saliva PTSD CA → ↑BDNF meth / ↑BDNF meth-> maternal
anxiety

Weder et al. (2014) EWAS Saliva/
blood

Trauma/non-trauma
children

Differently methylated between CA + and CA-

POU6F2

Comes et al. (2020) EWAS Blood BD ↑CA-> ↓POU6F2

POU5F1

Arranz et al. (2021) EWAS Blood Borderline PD ↑CA-> ↓POU5F1

POU3F1

Lutz et al. (2017) EWAS PMB Depression ↑CA-> ↓POU3F1

CUX1*

Osborne et al. (2020) EWAS Blood General population Differently methylated in CU (exploratory
analyses)

(Continued )
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Table 2. (Continued.)

Gene (hyper ↑ or ↓ hypo DNAm) and
citation

Candidate gene
or EWAS Tissue Condition/sample Clinical/biological outcome

CLMN*, SENP7*

Clark et al. (2021) EWAS Blood Adolescents Differently methylated in CU users

Immune system and inflammation

ZC3H12D

↓Montano et al. (2016) EWAS Blood SCZ

TCF3

↑Montano et al. (2016) EWAS Blood SCZ

IKZF4

↓Montano et al. (2016) EWAS Blood SCZ

YOD1

↑Hüls et al. (2020) EWAS PMB Depression

IL17RA

Prados et al. (2015) EWAS Blood Borderline PD/
depression

CA → ↑ IL17RA

TLR1 3

Uddin et al. (2010) EWAS Blood PTSD CA → ↓TLR1/3

TNFRSF13C

Arranz et al. (2021) EWAS Blood Borderline PD Differently methylated in CA exposed

FCGR2B, PIK3R3, INPP5D,
INPP5D, IGHA1, FCAR

EWAS Blood SCZ

Aberg et al. (2014)

CD224, LAX1, TXK, PRF1, CD7,
MPG, MPOG

EWAS Blood SCZ

Liu et al. (2014)

MARC2*

Osborne et al. (2020) EWAS Blood General population Differently methylated in CU and tobacco
users

CEMIP* EWAS Blood General population Differently methylated in CU

Markunas et al. (2020)

Oxidative stress

↑GSTM5

Kebir et al. (2017) EWAS Blood At the risk of
psychosis

↑GSTM5 in converters v. non-converters

GGT6

Arranz et al. (2021) EWAS Blood Borderline PD

Hypotalamus pituitary-adrenal axis pathway

NR3C1

Bustamante et al. (2016) Candidate gene Blood Depression CA → ↓ NR3C1 DNAm

Farrell et al. (2018) Candidate gene Blood Depression CA → ↑ NR3C1 DNAm

Martin-Blanco et al. (2014) Candidate gene Blood Borderline PD CA → ↑ NR3C1 DNAm→ clinical severity

Perroud et al. (2011) Candidate gene Blood Borderline PD /MDD CA→ ↑ NR3C1 DNAm

Radtke et al. (2015) Candidate gene Blood General population CA + ↑ NR3C1 DNAm → Borderline PD
symptoms

Labonte et al. (2014) Candidate gene Blood PTSD PTSD +→ ↓ NR3C1 DNAm

Schechter et al. (2015) Candidate gene Saliva PTSD PTSD +→ ↓ NR3C1 DNAm

(Continued )
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Interestingly, peripheral blood hypomethylation in the RELN pro-
moter was associated with poor cognitive functioning (Alfimova,
Kondratiev, Golov, & Golimbet, 2018).

In ASD, an EWAS study in post-mortem brain found dysregu-
lation in the pathway of phosphatidylinositol 3-kinase (PI3K)
activity (Wong et al., 2019), an enzyme that is involved in cellular
growth, proliferation and differentiation, and which has been pre-
viously been associated with SCZ (Law et al., 2012).

Brain-derived Neurotrophic factor (BDNF) is essential for
neurogenesis and extensively studied as a biomarker in psychiatry
(Lin & Huang, 2020) There is extensive evidence of a difference in
DNAm in BDNF, as well as EWAS studies showing enrichment
for the neurogenesis pathway in SCZ (Di Carlo et al., 2019;
Ursini et al., 2016), BD (Dell et al., 2014; Duffy et al., 2019),
PTSD (Kim et al., 2017; Uddin et al., 2010), Depression (Hing,
Sathyaputri, & Potash, 2018; Kang et al., 2015), Borderline PD
(Arranz et al., 2021; Thomas et al., 2018), Anxiety Disorders
(D’Addario et al., 2019), ED (Thaler et al., 2014), ASD
(Ramaswami et al., 2020) thus making a well-replicated epigenetic
transdiagnostic finding in psychiatry.

As a whole, transdiagnostic evidence suggests an involvement
of DNAm changes in neurogenesis an neural plasticity.

Immune system and inflammation

Abundant evidence supports the role of neuroinflammation and
altered immune processes in the aetiopathogeneses of various mental
conditions (Mazza, Lucchi, Rossetti, & Clerici, 2020; Pariante, 2017).

An EWAS by Montano et al. (Montano et al. 2016) found
differences in DNAm in genes involved in T-cell development
in the blood of SCZ patients (ZC3H12D, TCF3, and IKZF4);
other EWAS have also reported an enrichment in the immune
system pathway by differently methylated genes (FR2B, PIK3R3,
INPP5D, FCGR2C, IGHA1, FCAR; CD224, LAX1, TXK, PRF1,
CD7, MPG, and MPOG) (Aberg et al., 2014; Hannon et al.,
2016; Liu et al., 2014).

In depression, a discordant monozygotic twin study based on
peripheral blood, found 39 DMRs associated to a lifetime history
of MDD, which were significantly enriched in biological pathways
associated to cytokine secretion (Zhu et al., 2020). Another EWAS
on post-mortem brain of people with late-MDD (Hüls et al.,
2020), found altered DNAm in the YOD1 locus, which is dysregu-
lated in depression (Howren, Lamkin, & Suls, 2009) and its impli-
cated in the regulation of inflammatory processes (Schimmack
et al., 2017).

Two EWAS studies in PTSD found differences in DNAm
across genes part of biological pathways involved with inflamma-
tion and immune response (Kuan et al., 2017; Uddin et al., 2010).

In ASD, various EWAS studies have pointed at dysregulation
of pathways related to immune response (Ramaswami et al.,
2020; Wong et al., 2019), and in a genome-wide microRNA
(miRNA) expression profiling study (Wu, Parikshak, Belgard, &
Geschwind, 2016).

Furthermore, an EWAS study from patients suffering from
Panic Disorder found enrichment in genes involved in the regu-
lation of lymphocytes (Shimada-Sugimoto et al., 2017).

We can conclude that there is transdiagnostic, rather than spe-
cific, a link between DNAm changes in the immune system and
inflammation and neural plasticity, although evidence is more
robust in SCZ.

Oxidative stress

There is converging evidence pointing at a role of redox dysregu-
lation as a possible mechanism involved in the aetiopathogenesis
of both ASD (Bjørklund et al., 2020) and psychosis (Perkins,
Jeffries, & Do, 2020). Oxidative stress has been shown to play a
role in epigenetic modifications, enhancing inflammatory gene
transcription (Rahman, Marwick, & Kirkham, 2004). Oxidation
of 5mC to the 5-hydroxymethylcytosine (5hmC) is considered a
key step in the reversibility of DNA methylation, which can
have important therapeutic implications. Moreover, glutathione,

Table 2. (Continued.)

Gene (hyper ↑ or ↓ hypo DNAm) and
citation

Candidate gene
or EWAS Tissue Condition/sample Clinical/biological outcome

Yehuda et al. (2015) Candidate gene Blood PTSD PTSD +→ ↓ NR3C1 DNAm

↑ Wang et al. (2017) Candidate gene Blood GAD CA → ↓ NR3C1 DNAm

Peng et al. (2018) Candidate gene Blood General population CA → ↑ NR3C1→ depressive symptoms

FKBP5

Tozzi et al. (2018) Candidate gene Blood Depression CA → ↓ FKBP5 DNAm

Misiak et al. (2020) Candidate gene Blood SCZ CA → ↓ FKBP5 DNAm

Klengel et al. (2013) Candidate gene Blood PTSD CA → ↓ FKBP5 DNAm

SKA2

Kaminsky et al. (2015) Candidate gene Blood/
saliva

General population CA ↑ x SKA2↑-> suicide attempt

↑Sadeh et al. (2016a, 2016b) Candidate gene Blood PTSD CA↑-> SKA2↑-> cortical thickness

*extensive reviews cover the role of BDNF Methylation in depression (Hing et al., 2018), Schizophrenia (Di Carlo et al., 2019), and eating disorders (Thaler and Steiger, 2017), therefore studies
mentioned here are just examples of the literature in this particular domain. When various genes are reported in the same pathway and the same study, but no specific information on
clinical/biological outcome or specific direction if the association is provided, these genes have been put in the same row (e.g Asberg et al., and Liu et al.,). When an arrow is next to the
author’s name it reflects the direction of the DNAm of the particular gene in in relation to the condition ↑ : increased ↓: decreased DNAm. When in column 1 there is no arrow is because
information could not be obtained or was not clear, and the presence of that gene indicates the association of DNAm in that gene with the respective condition (differently methylated).
When a three step sequence separated by an arrow is presented, this refers to mediation analyses (e.g peng et al.,: CA → ↑SLC6A4 → depressive symptoms: DNAm of SLC6A mediates the
effect of CA on depressive symptoms). CA: childhood adversity; CU: cannabis use. Definition of each gene is presented in Table 1. DLPFC: Dorsolateral prefrontal cortex. ASD: autism spectrum
disorder; SCZ: schizophrenia. PTSD: post-traumatic stress disorder; Borderline PD: Borderline personality disorder; MDD: major depression disorder; BD: bipolar disorder.
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the major antioxidant in the brain, is involved in the methionine
cycle, and depletion of glutathione can be detrimental for the
DNAm process (García-Giménez, Roma-Mateo, Perez-Machado,
Peiro-Chova, & Pallardó, 2017).

Although evidence examining this pathway in the context of
epigenetics is scarce, some EWAS have shown interesting results:
one study examined prospectively the association of EWAS
methylation changes with the transition to psychosis (Kebir
et al., 2017), and found an enrichment of pathways related to
oxidative stress regulation in those transitioning. Furthermore,
an EWAS study in Borderline PD found differences in methyla-
tion in GCT6, which is important in glutathione metabolism
(Arranz et al., 2021).

The epigenetic signature of childhood adversity and
cannabis use

The characteristic of the studies described in this section can be
found in Online Supplementary Table S1 (SM), and in Table 2.

Hypothalamus pituitary-adrenal axis pathway

While multiple studies have explored the link between epigenetic
modification involved in the HPA-axis, and psychiatric disorders,
recent evidence is beginning to indicate that some of these epigen-
etic modifications might follow exposure to CA. The latter is a
robustly replicated risk factors for many psychiatric disorders
(Online Supplementary Table S1 (SM) summarises the main find-
ings on studies examining the link between DNAm and genes
involved in the HPA-axis, and key findings are summarised in
Fig. 2). As a whole, as illustrated in Fig. 2, at the level of
NR3C1 there is consistent evidence on a positive correlation
between CA and DNAm in Borderline PD and MDD and some
clinical outcomes (Farrell et al., 2018; Martin-Blanco et al.,
2014; Perroud et al., 2011; Radtke et al., 2015), and a negative
correlation with anxiety and PTSD (Labonte, Azoulay, Yerko,
Turecki, & Brunet, 2014; Schechter et al., 2015; Wang et al.,
2017; Yehuda et al., 2015). Lower DNAm in FKBP5 is associated
with CA in psychosis and PTSD (Klengel et al., 2013; Misiak et al.,
2020); while in depression, 3 studies found no such link
(Bustamante et al., 2018; Farrell et al., 2018; Klinger-König
et al., 2019), as opposed to another study (Tozzi et al., 2018).
As for NR3C1, findings on FKBP5 DNAm are different across
disorder, suggesting a divergent transdiagnostic mechanism
involving in HPA related genes (see Fig. 2). The SKA2 interacts
with adversity scores in predicting lifetime suicide attempt
(Kaminsky et al., 2015), and mediated the association between
reduced cortical thickness and PTSD (Sadeh et al., 2016a) and
suicide phenotypes (Sadeh et al., 2016b).

Serotoninergic, dopaminergic and glutamatergic/GABAergic
pathways

Childhood adversity
With regards to the serotoninergic pathway, while hypomethyla-
tion in SLC6A is associated with resilience to PTSD (Koenen
et al., 2011), hypermethylation of SLC6A has been linked to
exposure to CA and associated with the worst clinical presentation
in MDD (Kang et al., 2013). Moreover, hypermethylation in the
5-HT3A-R gene appeared to mediate the link between exposure
to adversity and higher severity of disease parameters in a
mixed sample of BD and Borderline PD (Perroud et al., 2016).

Moreover, hypomethylation of MAOA, a gene important for
the degradation of serotonin and DA (Xu, Jiang, Gu, Wang, &
Yuan, 2020), appears to partially mediate the known association
between CA and depressive symptoms, alongside with other
stress-related genes such as BDNF and NR3C1 and SLC64
(Peng et al., 2018). Moreover, MAOA DNAm was negatively cor-
related to life events in a sample of Panic Disorder (Domschke
et al., 2012).

In relation to DA, one study in patients with bulimia spectrum
disorders found no differences in DRD2 DNAm when comparing
those with exposure and non-exposure to trauma (Groleau et al.,
2014).

At the level of the Glutamatergic pathway, one study found
that exposure to CA was associated with decreased DNAm in
GAD in a sample of Panic Disorder (Domschke et al., 2013).
Lastly, a candidate gene study (Engdahl, Alavian-Ghavanini,
Forsell, Lavebratt, & Rüegg, 2021) and an EWAS (Weder et al.,
2014) linked CA to increased methylation levels in GRIN2B/
GRIND1 genes, suggesting evidence that this change may lead
to the onset of depressive symptoms.

As a whole, DNAm changes in some of the genes that have
been previously linked to major psychiatric conditions (Section
‘Evidence of epigenetic processes in major transdiagnostic path-
ways’, Table 2), such as SLC6A, 5HT3A-R, A (MAOA), BDNF,
GAD and the GRIND family, (related to the serotoninergic, and
glutamatergic pathways respectively) are also associated to CA.
This suggests that some of the DNAm changes attributed to
these disorders may be partially related to the consequence of
CA exposure, as illustrated in Fig. 1.

Cannabis use
CU and in particular heavy use (Marconi et al., 2016) has been
consistently associated with increased risk for PD, but to a lesser
degree for other psychiatric conditions (Sideli, Trotta, Spinazzola,
La Cascia, & Di Forti, 2020b). In recent years, candidate genes
studies from peripheral blood have reported changes in DNAm
associated with heavy CU in genes involved in dopamine trans-
mission, such as DRD2 (Gerra et al., 2018), DAT1 (Grzywacz
et al., 2020) and COMT (Van der Knaap et al., 2014) and in
the CB1 and CB2 receptors genes part of the endocannabinoid
system (Rotter et al., 2012; Tao et al., 2020). The latter playing
an important role in brain development and synaptic
transmission.

A recent study investigated the effect of heavy CU with and
without tobacco on EWAS (Osborne et al., 2020). The analyses
in the sample with both cannabis and tobacco use identified dif-
ferentially methylated sites in 2 genes, AHRR and F2RL, previ-
ously reported to be affected by tobacco exposure. Within the
sample of cannabis users without tobacco, while none of the dif-
ferentially methylated loci reached EWAS significance, an
exploratory analysis showed enrichment for genes involved in
the signalling pathway, including glutamatergic transmission,
brain function and mood disorders. Moreover, these exploratory
analyses show two differentially methylated sites significantly
associated with both only CU and cannabis with tobacco, which
are within the MARC2 gene. The latter previously linked to
adverse effects to antipsychotics in schizophrenia (Åberg et al.,
2010) and within the CUX1 gene which is involved in neuronal
development (Platzer et al., 2018).

Furthermore, recent whole blood and cell-specific
Methylome-wide association studies (MWAS) from a sample of
adolescents with CU disorder pointed at many methylation sites
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relevant to brain function and to neurodevelopment (Clark et al.,
2021). These included CpGs located in the CLMN gene and the
SENP7 gene, expressed in the brain and playing a role in brain
developmental and synaptic function and organisation (Juarez-
Vicente, Luna-Pelaez, & Garcia-Dominguez, 2016; Marzinke &
Clagett-Dame, 2012). Interestingly, the pathway analyses based
on the cell type-specific significant DNAm changes associated
with CU implicated pathways such as the Slit-Robo signalling
(granulocytes) under the regulatory control of the endocannabi-
noid system during brain cortical development (Alpár et al.,
2014), the ErbB signalling pathway (T-cell) and pathways
involved in DNA repair (B-cell) (Clark et al., 2021).

Inflammation, oxidative stress, synaptic plasticity and
neurogenesis

Childhood adversity
A number of EWAS studies conducted in clinical samples have
reported an association between exposure to CA and DNAm
changes across genes involved in inflammation. For instance, a
study (Prados et al., 2015) found a positive correlation between
the IL17RA DNAm and CA in a Borderline PD and MDD sam-
ple. Other evidence suggests a negative correlation between
DNAm in genes enriched for immune pathways (such as TLR1
and TLR3) and CA in PTSD subjects (Uddin et al., 2010); while
the TNFRSF13C gene was differently methylated between
Borderline PD participants with and without CA (Arranz et al.,
2021) (See Online Supplementary Table S1 (SM) – EWAS
section).

Candidate genes studies have linked CA with DNAm changes
in BDNF (Moser et al., 2015; Thaler et al., 2014; Weder et al.,
2014), consistently with EWAS data reporting DNAm changes
affecting genes involved in neurogenesis (Prados et al., 2015;
Uddin et al., 2010). For instance, three EWAS studies in BD
(Comes et al., 2019), Borderline PD (Arranz et al., 2021) and
MDD (Lutz et al., 2017) have consistently shown changes in
DNAm in genes from the POU family that are associated with
CA (POU6F2, POU5F1 and POU3F1 respectively), which are
genes involved in myelinisation and neurogenesis (Online
Supplementary Table S1 (SM) – EWAS section).

A recent EWAS study found differences in DNAm of the
GGT6 gene that were associated with exposure to CA in a sample
of Borderline PD patients; GGT6 is key for glutathione homoeo-
stasis (Arranz et al., 2021), it is also the main antioxidant and
redox regulator that has previously been associated with SCZ
aetiopathogenesis (Steullet et al., 2016). Further evidence is sum-
marised in Online Supplementary Table S2 (SM).

As a whole, candidate gene and EWAS studies suggest a link
between CA and genes involved in the inflammatory and neuro-
genesis pathways, with some preliminary evidence suggesting a
link between CA and DNAm and oxidative stress genes (Fig. 1).

Cannabis use
The largest to date case–control study to examine the effect of life-
time CU on DNAm reported an epigenome-wide-significantly
differentially methylated CpG site within the CEMIP gene
(Markunas et al., 2020). The CEMIP gene, involved in hyaluronic
catabolism, which has been shown to have an important role in
inflammation, immune processes as well as associated with BD
and SCZ previously (Petrey & de la Motte, 2014).

Other environmental exposures that can act as confounders
in psychiatric epigenetic

Tobacco smoking

A number of publications have identified robust associations
between tobacco smoking and DNAm (Elliott et al., 2014;
Shenker et al., 2013; Tsaprouni et al., 2014; Zeilinger et al.,
2013), with a number of genes (e.g. AHRR, F2RL3, GFI1 and
MYO1G) replicated across studies.

The confounding effect of smoking is clearly evidenced in an
EWAS study on peripheral blood of SCZ patients (Hannon
et al., 2016). A similar study examining the impact of CA on
the epigenome in a general population found that tobacco con-
sumption was an important confounding when examining the
signature of CA (Marzi et al., 2018). Whether some of these epi-
genetic changes associated with tobacco exposure could also
mediate the already reported link between tobacco use and
increased risk of psychosis, it is an important question yet to be
determined (Gurillo et al., 2015), and tobacco smoking should
be accounted for in the future epigenetic studies in psychiatry.

Alcohol use and abuse

There is some initial evidence to suggest that alcohol use is asso-
ciated with DNAm changes (Liu et al., 2016; Wang, Xu, Zhao,
Gelernter, & Zhang, 2016; Weng, Wu, Lee, Hsu, & Cheng,
2015). Enrichment analyses examined DNAm in alcohol users
have revealed enrichment in pathways related to neural degener-
ation (Weng et al., 2015), and in genes important for neurogenesis
(NPDC1), inflammation (HERC5) and in GABA receptors (a
receptor delta and B receptor subunit 1); all of which are pathways
previously associated with different mental disorders, as shown in
Fig. 1. However, studies rarely account for such covariates, which
is currently a limitation of current literature.

Psychiatric medication

The extent of the data reporting the DNAm changes associated
with psychiatric medication would require a separate review.
Indeed, there is consistent evidence that pharmacological agents
can trigger DNAm in similar or opposite directions than those
attributed to the disease. For example, Lithium, Carbamazepine
and Quetiapine, often prescribed for the treatment of BD, are
associated with decrease methylation of SLC6A4 (Asai et al.,
2013; Sugawara et al., 2015), in contrast with the hypermethyla-
tion reported in BD in that gene (Table 2). Similarly, studies
who have investigated the effect of antipsychotic medication,
have shown, on the one hand, that Haloperidol affects DNAm
in leucocytes of SCZ patients (Melas et al., 2012), while on the
other hand, a recent EWAS study showed that Clozapine exposure
leads to DNAm differences in patients with treatment-resistant
SCZ (Hannon et al., 2021) as compared to controls. Thus, it is
key to consider the possibility that some of the changes in
DNA pathways may be led by agents rather than the disease itself,
highlighting the need to account for medication in future studies
and to consider epigenetics as a potential mediating mechanism
of action of the beneficial effects of medication in the brain.

Summary and outstanding questions

As illustrated in Fig. 1, many of the epigenetic dysregulations we
report are transdiagnostic, such as those affecting the
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serotoninergic, inflammatory and neurogenesis pathways, while
others such as the Glutamatergic/GABAergic pathway are shared
between a couple of disorders (e.g. SCZ and ASD), or disorder
specific such as the dopaminergic pathway in PDs. These are
pathways that have been classically implicated in the aetiopatho-
genesis of psychiatric phenotypes; additional emerging pathways
such as oxidative stress remain to be further explored.

Moreover, CA, is transdiagnostically associated to psychiatry
morbidity, and seems to play a role in the DNAm dysregulation
of many of these pathways. Furthermore, the preliminary
DNAm changes so far reported associated with CU affect path-
ways previously link to psychosis, suggesting potential mediating
venues to be tested in clinical populations (Fig. 1).

In addition, CA is associated with DNAm changes both in the
general population (Kandaswamy et al., 2020) as well as in clinical
samples with a psychiatric diagnosis (Online Supplementary
Table S1 (SM)). This might suggest that the DNAm changes asso-
ciated to CA exposure predate disease onset and could represent a
marker of acquired psychiatric liability. However, evidence for-
mally testing mediating pathways EWAS level between CA and
the main clinical conditions is non-existent in humans.
Candidate gene studies tend to find the inconsistent direction of
the association between CA across disorders, or findings are
inconsistent within disorders as shown in Fig. 2 and Table 2
and Online Supplementary Table S1 (SM). One explanation
could be that there are other causative partners that are being
missed in the equation, that may explain such inconsistency,
such as the role of genotype, gene expression or a more thorough
assessment of specific adversities in the context of protective fac-
tors and its link with more carefully selected clinical phenotypes.

The existing findings from epigenetics research need to be
appraised in the context of well-known technical limitations epi-
genetics, such as the blood-brain inconsistencies, tissue-type spe-
cificity (Bakulski, Halladay, Hu, Mill, & Fallin, 2016; Nikolova &
Hariri, 2015) and the candidate gene v. EWAS issue (see
Palma-Gudiel, Córdova-Palomera, Leza, & Fañanás, 2015).
Moreover, evidence suggests that variation in DNAm depends
not only on the environment, but also on genetic factors (Bell
& Spector, 2012). Although some studies presented in this review
have found evidence that some genotypic variation in some risk
alleles can influence DNAm (Klengel et al., 2013; Melas et al.,
2013; Perroud et al., 2016), EWAS addressing the joint effect of
genotype and environment are still in its infancy (Min et al.,
2021). Addressing this issue will prove methodologically challen-
ging, but methods quantifying the genetic influences on DNAm,
such as the methylation quantitative trait loci (mQTL) should be
used in relation to the presence of environmental insults.
Moreover, studies included in this work are often small (Online
Supplementary Table S1 (SM)) and thus underpowered, except
some exceptions (Hannon et al., 2021), which presents the need
to create collaborative efforts allowing meta-analysis of compar-
able epigenetic data. Furthermore, evidence of the environmental
exposure impact through epigenetic modification in psychiatric
diseases or phenotypes is still limited, with studies focusing
mainly on exposure to CA and only preliminary results of the
effect of cannabis. Given the replicated but differential impact
of multiple environmental risk factors in major psychiatric disor-
ders (Rodriguez et al., 2021), future studies exploring epigenetic
variation as a mediator between genetic vulnerability and various
environmental factors (not only CA) should be addressed, using
novel methods specifically developed for mediation using EWAS
data (Liu et al., 2021). Another important factor is the phenotypic

characterisation for environmental exposure. For instance, most
of the studies in this work have used broad measures of adversity,
using a composite cumulative score, rather than differentiating
between neglect of abuse. The same can be said for the measures
of CU which little reflects the level of exposure none to affect
psychiatric liability. Moreover, the outcomes are often considered
as SCZ, or MDD or even major psychoses (combining SCZ &
BD), which are extremely heterogeneous entities, involving micro-
phenotypes (Maj et al., 2021), and which accordingly may have
very different biological underpinnings. Evidence is showing
that there are some levels of specificity between adversity subtypes
and symptoms domains, for example, abuse is more related to
positive symptoms while neglect is not (Alameda et al., 2021)
and that CU is associated with paranoia (Freeman et al., 2005).
Thus, using a composite measure of CA and broadly defined con-
ditions when trying to understand specific mediating epigenetic
pathways may consider such specific links between environment
and psychopathology first. Accordingly, this work suggests that
some biological pathways are operating transdiagnostically, and
therefore a phenotypic characterisation based on clinical dimen-
sions may be more biologically informative than diagnostic cate-
gorisations. Furthermore, the timing of environmental exposure
should be addressed, given evidence that a disruption in epigen-
etic programming occurs across different time windows through-
out the life span (Massicotte, Whitelaw, & Angers, 2011). In this
line, the lack of information on the timing of trauma and of CU
initiation could explain some of the inconsistencies mentioned in
our review (Fig. 2). For example, we reviewed studies showing
increased methylation of the serotonin transporter in depressed
individuals exposed to trauma (usually when adversity occurs
before adulthood), which contrasts with the lower methylation
in the same gene in PTSD, when exposure tends to be later in life.

Conclusions

Future Research should include the influence of gender and how it
can modulate the links between DNAm and mental disorders, or
how it can affect the influence of CA on DNAm. More effort
should go towards designing studies that integrate genetic data
with the often-neglected effect of environmental exposures (e.g.
recreational drugs and psychotropic medication). Specifically,
collaborative efforts between geneticists, epigeneticists and epide-
miologists will lead to increased understanding of how the DNAm
changes mapping to specific pathways, might mediate the bio-
logical link between environmental exposures and increased
liability to specific or transdiagnostic psychiatric morbidity.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291721005559.
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