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Improved Task Planning through Failure Anticipation in
Human-Robot Collaboration

Silvia Izquierdo-Badiola1,3, Gerard Canal2, Carlos Rizzo1 and Guillem Alenyà3

Abstract— Human-Robot Collaboration (HRC) has become
a major trend in robotics in recent years with the idea of
combining the strengths from both humans and robots. In order
to share the work to be done, many task planning approaches
have been implemented. However, they don’t fully satisfy the
required adaptability in human-robot collaborative tasks, with
most approaches not considering neither the state of the human
partner nor the possibility of adapting the collaborative plan
during execution or even anticipating failures.

In this paper, we present a planning system for human-robot
collaborative plans that takes into account the agents’ states and
deals with unforeseen human behaviour, by replanning in antic-
ipation when the human state changes to prevent action failure.
The human state is defined in terms of capacity, knowledge and
motivation. The system has been implemented in a standardised
environment using the Planning Domain Definition Language
(PDDL) and the modular ROSPlan framework, and we have
validated the approach in multiple simulation settings. Our
results show that using the human model fosters an appropriate
task allocation while allowing failure anticipation, replanning
in time to prevent it.

I. INTRODUCTION

Human-Robot Collaboration (HRC) has undoubtedly be-
come a major trend in robotics in recent years. The idea of
combining the comparative strengths from both humans and
robots to improve the efficiency and productivity of plans is
very appealing and promising in several applications. One
of these application areas is the industrial scenario, which
is characteristic for having teams of humans and robots
cooperating. The main objective of HRC is for the human and
the robot to achieve a shared goal through collaborating as
a team, by executing tasks that contribute towards achieving
the common goal. We refer to this as collaborative plans.

The main challenge in HRC is dealing with the stochastic
nature of a human-centric dynamic environment. The human
becomes an uncontrollable agent, making flexibility and
adaptability key features when planning for shared goals in
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these scenarios. In human-human collaboration, humans plan
ahead to achieve a goal but generally manage to automati-
cally adapt to the changes in the dynamic and uncertain real
world by re-evaluating the current state of the world and
the partner and replanning to reach the goal. Furthermore,
humans are usually able to anticipate events based on the
partner’s behaviour.

Automated task planning for robots aims to achieve this,
by generating a plan consisting in a sequence of actions
to accomplish a goal. Nevertheless, existing task planning
approaches don’t satisfy the required adaptability in human-
robot collaborative tasks, and we believe a major issue is the
lack of modelling of the partner and its integration into the
automated task planning system.

In this work, we intend to generate plans that solve
a human-robot collaborative task whilst dealing with the
unplanned behaviour of the human partner. Our hypothesis
is that by modelling and taking into account the agents’
states (physical and mental) in the plan generation and exe-
cution, the robot can better understand non-planned human
behaviour and react accordingly, adding adaptability and
anticipation to unforeseen situations through modelling and
replanning.

This paper intends to contribute towards closing the gap
between human state modelling and AI planning to anticipate
and avoid failures due to human behaviour in human-robot
collaborative tasks. We intend to answer the following re-
search questions:

• R1 - Can HRC plans be improved in terms of success
rate and action failure prevention by integrating an
agent’s state model into the planning stage?

• R2 - Can an appropriate and balanced task allocation
between the agents still be achieved in this case?

The contribution of this paper consists in a planning
system for human-robot collaborative plans that takes into
account the agents’ states and avoids failures due to un-
foreseen human behaviour, by replanning if the human state
changes. The human state is defined in terms of capacity,
knowledge and motivation. The system generates two parallel
sequences of actions assigned to the robot and the human.
By integrating the human state into the planning component,
the system can anticipate the failure of certain actions
assigned to the human and replan ahead. We implement this
system in a standardised environment using the Planning
Domain Definition Language (PDDL) [1] and the modular
ROSPlan framework [2], so that it can be easily extended
to a variety of scenarios and applications involving human-
robot collaboration. We then validate the described system in



simulated scenarios where failures due to human behaviour
occur, demonstrating the advantages of integrating a human
model in the planner for the generation and execution of
collaborative plans.

The remaining of the paper is structured as follows:
Section II provides an overview of related work. Section
III describes the methodology and proposed framework for
improved task planning through failure anticipation. Then,
we present the results of our evaluation in Section IV. Finally,
we point out the conclusions and discuss future work in
Section V.

II. RELATED WORK

When humans and robots work collaboratively towards
a common goal, the planning framework is expected to
generate joint plans that take into account the inferred
or predicted human behaviour, assigning the appropriate
complementary actions and adapting them to the capabilities
of the participants. An example of a planning framework
for human-robot collaboration is the Hierarchical Agent-
based Task Planner (HATP) [3], a Hierarchical Task Net-
work (HTN) planner adapted for robotics that can split a
plan into multiple streams for multiple agents. The sys-
tem incorporates user-supplied social rules and interleaves
HATP planning with geometry planning. The system is
further developed in [4], where the robot can infer the
users’ intentions and monitor their actions to replan if the
initial plan fails. A demonstration of the system for both
multiple cooperating UAVs and human-robot collaborative
manipulation is described in [5]. The partner’s willingness to
contribute is not considered in this work. In [6], the human’s
flexibility during the collaboration is taken into account by
selecting a pre-defined negotiation or an adaptation mode.
The authors aim to adapt the generated shared plans to
the human’s preferences using simple mechanisms involving
cost estimation to decide who should perform the actions
during the plan execution. Canal et al. [7] adapt robot task
planning to user preferences by means of modifying the
plan’s cost, learning from user feedback at the end of the
execution. However, they use a predefined user model, not
taking into account the user’s state during execution. In [8],
Bezrucav et al. aim to improve collaborative plans to adapt to
unforeseen situations through replanning, focusing on timing
in the plan generation and execution. Our work differs from
the ones presented here in the following ways: unlike ours,
these works adapt the plan based on the user’s actions rather
than the user state. Replanning is therefore triggered after
a failure in the collaboration. In our work, integrating an
agent model and replanning based on the user state allows for
anticipation of failures, leading to a smoother collaboration.
Some works dive into the idea of integrating the human
mental state in the plan generation and execution. Devin
et al. [9] explicitly use an estimation of the human mental
state in the shared plan execution, focusing on producing a
less intrusive behaviour of the robot. The human mental state
concerns information about the environment and the state of
the plan from the human perspective, but doesn’t consider the

emotional state of the human, nor the human commitment
towards an agreed shared goal. In [10], the authors propose a
solution for human-robot collaborative plans where the robot
acts in an adaptive way based on the human partner’s level of
knowledge about the task. The level of knowledge is obtained
from action outcomes and interactions, and the focus of the
adaptation lies on choosing between two policies (teaching
or efficiency) which provide different levels of interactions.
Again, the level of engagement of the human partner is
not considered. Furthermore, the human mental state is not
directly integrated into the plan generation. Instead, the plan
is initially generated before being adapted using external
algorithms. In this paper, we propose a direct integration
of the agent state as action costs that will enable the direct
generation of a feasible and optimal plan based on the current
world’s and partner’s state.

Another line of works focuses more on modelling the
state of the human partner during a collaboration, in order
to anticipate their behaviour and react to it. Hoffman et
al. [11] remove the assumptions that the human is always
committed to the goal or willing to receive help during a
plan. Instead of only considering the human’s visual and
positional perspective-taking, they develop an architecture
that integrates human’s intention and emotion into a robot’s
decision-making to decide whether to help the human or
not. They focus on the estimation and modeling of human
mental states and their effects on assisting the human with
certain actions. In [12], [13], the authors attempt to model
several types of human partners through MDPs and POMDPs
in order to estimate correctly and non-intrusively when to
intervene and assist the human. Their objective is to antic-
ipate the human state in terms of stubbornness, tiredness,
and distraction, and to be able to improve the collaboration
when facing unexpected human behaviour. Nikolaidis et al.
[14] model the concept of human adaptability level in order
to update an MOMDP policy for a human-robot collabo-
rative task. Compared to our work, these works only deal
with decision making on previously defined policies, rather
than automatically generating full collaborative plans. The
applications and range of plans are therefore vastly limited
in terms of variety and complexity.

Despite the research efforts made towards improving AI
planning human-robot collaborative systems, several chal-
lenges remain open for obtaining practical and efficient
versions of such systems. A number of works show the
potential of using different agents’ physical and mental state
models to improve adaptability during the generation and
execution of collaborative plans. However, there are still
several limitations in the presented systems, and we believe
the potential of merging models and planning has not been
fully exploited. By targeting the gap between maintaining
an agent state model and explicitly using it in shared plan
generation and execution, we believe the uncertainty can
be decreased, and unexpected events can be anticipated
and better dealt with. The integration of the human model
and AI planning into an implemented framework is not
straightforward and goes beyond the state-of-the-art, but is an



essential element to achieve a system capable of generating
and executing flexible human-robot collaborative plans.

To the best of our knowledge, there is no work that
robustly integrates the agents’ states and emotions directly
into the automated generation of a shared plan, in order
to anticipate failures rather than react to them. This paper
aims to contribute towards these efforts, implementing and
evaluating a framework integrating these components.

III. METHODOLOGY

The framework. We propose a system consisting in the
architecture shown in Figure 1, with the aim of generating
plans for the robot and the human to achieve a task collab-
oratively, taking into account any change in the state of the
team members. The approach relies on AI planning, which is
implemented using the ROSPlan framework [2], [15], PDDL
language [16] and the POPF planner [17]. The agent state
(Figure 2) is continually sensed and inferred by the sensing
component and given to the plan controller, a node that is
constantly running and monitoring these states - whenever
a change in the agent state occurs, the knowledge base is
updated and a new plan is generated and executed. The key
element is that the agents’ states are taken into account by
the AI planning component, integrating them in the PDDL
domain as action costs. The reaction to a change in an
agent state, and therefore in the action costs, will involve
the reassignment of the actions in the generated plan. In this
way, a previous plan that would have most certainly failed
is replaced by a feasible plan before this failure happens.
With a proper representation of the agent states as action
costs in the PDDL domain, the planner should be able to
anticipate and automatically adapt to unexpected changes
in the agents’ state by replanning with the updated costs.
We choose replanning over online probabilistic planning,
as we do not expect to reach unexpected outcomes that
cannot be recovered from by replanning. This makes our
problem probabilistically uninteresting [18], where planning
for a stochastic domain would add unnecessary delays and
complexity to the problem.

The flow execution describing the process is as follows:
1) Update Knowledge Base (KB) and PDDL problem

with current state of the agents (as action costs)
2) Generate and execute initial plan (ROSPlan)
3) Continuously monitor the agents’ states (Plan Con-

troller)
4) If a change is detected:

4.1 Wait for robot to finish current action
4.2 Cancel current plan execution
4.3 Update KB and PDDL problem with new agent

state costs
4.4 Replan and execute new plan

Agent Modelling. The agent state is represented by
three main components: capacity, knowledge and motivation
(Figure 2). These three elements are believed to cover the
main reasons why an agent might not be able to achieve
their expected behaviour towards completing the goal of

Sensed Agents'  
States

Sensing

PLAN CONTROLLER 

Monitors changes in the
agents' states and triggers

replans

ROSPlan 

PDDL Problem Generation
(where the Agent model is

integrated), 
Plan Generation, Parsing and

Dispatching

Current PDDL Agents'  
States in KB

ROSPlan
Knowledge Base

Action Interfaces

Plan Execution

Updated PDDL  
Agents' States 

Fig. 1. System architecture - The plan controller node receives the agents’
states and triggers a replan when needed to take these into account.

the collaboration. We have built this intuition on previous
research: [9] where the knowledge component is used, and
[13] which describes the capacity as well as the distracted
and tired components, which we joined together into the
motivation cost.

Agent State

Capacity

Low cost value if agent is
capable of performing an
action at the specified
location without difficulty

Knowledge

Low cost value if agent
has all necessary
knowledge to perform
their assigned actions

Motivation

Low cost value if agent is
committed towards the
common goal, active and
not distracted

Fig. 2. Agent State Model represented in terms of the capacity, knowledge
and motivation regarding the assigned actions in the plan.

We treat the knowledge and motivation elements as general
for all actions, and therefore independent of any parameters.
The capacity component, however, is dependent on a location
parameter (an agent might be able to reach a location but
not another one, affecting the cost of the action based on the
location it refers to). All knowledge should be known and
consistent for the knowledge cost to be low, and a higher
value assigned to it will be interpreted as the agent lacking
some knowledge related to a task assigned to them. For the
motivation cost to be low, the agent should be focused and
contributing to the plan. A low value for capacity of an agent
at a location indicates the agent is capable of performing
the tasks assigned at that location. The range of values for
these costs was set to [0, 10]. The values of these elements
are obtained from facts sensed in the environment. For this
work, we assume the values are given, and the derivation of
these from sensed facts is left for future work. As a proposal,
methods such as human motion tracking or gaze tracking



could be used for the purpose. There also exists commercial
software such as iMotions in order to sense human emotions.

Integration of the agent model into AI planning. The
problem is defined as an AI planning problem using PDDL.
The PDDL domain file includes the definition of the actions
move, grasp and place with their respective parameters,
preconditions and effects. The agent model is represented
as PDDL functions, that are in turn integrated as action
costs in the domain. The listing below contains a snippet
of the domain showing how the agent model functions are
integrated as costs into the move action. The PDDL problem
file will include the current values for the elements in the
agent model as PDDL functions (e.g. knowledge ?agent).
( : d u r a t i v e − a c t i o n move

: p a r a m e t e r s ( ? a g e n t − a g e n t ? from − wp ? t o − wp )
: d u r a t i o n (= ? d u r a t i o n 50)
: c o n d i t i o n ( and . . . )
: e f f e c t ( and . . .

( a t s t a r t ( i n c r e a s e ( t o t a l − c o s t )
(+ (+ ( knowledge ? a g e n t )

( m o t i v a t i o n ? a g e n t ) )
( c a p a c i t y ? a g e n t ? t o ) ) ) )

)
)

IV. EVALUATION

A. Simulation Setup

In order to present our approach, we define the scenario
shown in Figure 3, consisting of a robot and a human that
need to move boxes between different locations. Initially,
all motivation, capacity and knowledge costs are set to a
low value for both agents, meaning both agents are capable,
focused, and have all the required knowledge to complete
the shared task. The specified goal is for the green box to
be moved from wp3 to wp2 and the blue box to be moved
from wp4 to wp5.

Simulating the agent states. As previously mentioned, the
agent states are simulated and not inferred from sensed data.
We specify a range of possible values for motivation, knowl-
edge and capacity, and assign a value to them depending on
the failure(s) simulated in each test case.

Simulating action failures. The human actions are given
a success/failure outcome after a specified time. The failure
causes are associated with one or several elements in the
model: motivation, knowledge, capacity. We simulate the
outcome of an action with a probability of success of
1 − currentCostV alue

maxCostV alue . As an example, if there is a failure
related to the motivation of an agent, the probability of
success of an action assigned to the agent will be of
1 − sensedAgentMotivation

maxMotivationCost . The robot actions are always
successful, as we only evaluate failures due to the agent states
modelled. We assume the robot is always willing and capable
of contributing towards achieving the shared goal.

B. Illustrative Example

We present the result of a simulation that illustrates the
advantage of integrating our agent model in Figure 4. In the
optimal case, both agents are committed to the plan and have
the capacity, motivation and knowledge required to complete

Fig. 3. Simulated scenario for evaluation consisting of two agents (robot
and human) that have to transport several blocks to different locations.

it. All actions are therefore successful. We compare this case
to the one where the human gets distracted after grasping
the blue box, which causes the move action from wp4 to
wp5 to fail. Without the model, the system is not aware of
this lack of motivation and keeps reassigning the same move
action to the human, that keeps failing. With the model, the
lack of motivation is detected by an increase in the human
motivation cost. The planner then assigns a place action to
the human, assuming they will place the object so the robot
can grasp it and take it to the correct location. A successful
plan where the goal is reached is found after one replan. The
same concept can be applied to the knowledge cost (e.g. the
agent is lacking some important knowledge) and the capacity
cost (e.g. the agent can’t reach a location).

C. Evaluation

We have performed an extensive analysis by running a
series of simulations to evaluate the effects of integrating
the agent’s model in the planning stage. We want to evaluate
the following hypotheses:

• H1 - Failure anticipation. The integration of an agent
model increases the success rate in reaching the goal,
whilst reducing action failure and the number of replans.

• H2 - Workload allocation. The integration of an agent
model fosters an appropriate task allocation, avoiding
failures whilst maximising the contribution of both
agents.

Impact of the model on failure anticipation. In order to
evaluate the advantage of integrating the agent model into our
planning system, we have run a number of simulations for
the scenario described in the example presented in Section
III, introducing failures that might occur due to the human’s
motivation, knowledge, capacity, or a combination of these.
We evaluate the results in terms of the success rate and
number of replans in achieving the goal, as well as the
percentage of failed actions over the total executed actions.



TABLE I
EVALUATION METRICS FOR DIFFERENT SIMULATED EXECUTION CASES

Success rate
[%] Number of replans Failed actions

[%]
Assigned actions

(human) [%]
Assigned actions

(robot) [%]
Successfully executed
actions (human) [%]

Successfully executed
actions (robot) [%]

Case 1a 25.00 3.75 44.50 65.60 34.40 14.17 85.83
Case 1b 100.00 0.93 8.50 31.92 68.08 19.03 80.97
Case 2a 37.50 3.13 36.75 63.10 36.90 21.25 78.75
Case 2b 95.00 1.48 10.98 41.18 58.82 27.65 72.35
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Fig. 4. Comparison of the resulting plans with and without an agent model
for the case where the human gets distracted. Without using the model, the
system keeps replanning and the goal is never reached. With the model, a
feasible plan is found after one replan.

We compare the difference in workload between the human
and the robot in terms of actions assigned and actions
successfully executed by each agent. For these tests, we set
the maximum number of replans to 5, as past this point the
planner will get stuck outputting the same plan that will keep
failing. Table I presents the mean values resulting from 40
simulations for the different test cases, with and without the
agent model integrated into planning.

Case 1 - Non-contributing human partner. In this case,
we evaluate the edge case where the human partner is not
willing, not capable, or lacks some knowledge to perform
certain actions assigned to them in the plan. Every action
assigned to the human will fail. By comparing the results

(Table I) of integrating the model in the planning system
(Case 1b) and not doing it (Case 1a), it becomes evident that
the integration of the model greatly increases the success
rate, always succeeding in reaching the goal, and reduces
the number of replans as well as the percentage of failed
actions. This proves that the system is able to predict when
an action is likely to fail based on the partner’s state, and
avoids assigning this action to this agent. This is reflected
in the percentage of assigned and executed actions by the
human and the robot. In the case of not integrating the
model, the planner is not aware of the reason why the human
action keeps failing, and keeps reassigning the same actions
to the human - the percentage of assigned actions to the
human is higher than the robot’s one, whilst the successfully
executed actions of the human compared to the robot’s one
is extremely low.

Case 2 - Varying level of of human contribution. We have
performed the same comparison with a more realistic case
where varying levels of contribution from the human are
modelled, corresponding to a different level of contribution
randomly assigned in each test. An action assigned to the
human might fail with a variable action failure probability
determined by the sensed human state. In this case, we see
a better balance distribution of tasks between the human and
the robot compared to Case 1, with the planner risking the
allocation of tasks to the human in some occasions where
there is some cost assigned to it. This is desirable, as the end
objective in the collaboration is for both agents to contribute
as much as possible. When comparing the results to the case
of not using the model (Case 2a), we see that the model
integration (Case 2b) still significantly improves the success
rate, whilst reducing the number of replans and failures. In
terms of the distribution of successfully executed actions, the
use of the model slightly increases the balance. As expected,
the robot is still performing the majority of successful tasks.

Impact of the model on the workload assignment. We
have assessed the impact that a single modelled element
has on the allocated workload, in terms of percentage of
actions assigned to each agent. Figure 5 represents the
results of workload assignment for different simulations.
Each simulation involves the same initial situation and goal,
causing the same plan to be generated, but we vary the level
of human distraction. As the human distraction increases (or
human motivation cost increases), the number of allocated
actions to the robot increases, whilst the number of allocated
actions to the human decreases. After a value of 10 in the
motivation cost, the planner safely allocates all actions to the
robot after the first replan, which is triggered by the sensing



Fig. 5. Human and robot workload distribution by the planner as the human
motivation cost increases.

of an increase in the motivation cost in the human agent. This
also constitutes an initial validation of the range of values
for the elements in our model.

V. CONCLUSIONS

In this paper we have presented an improved human-
robot task planning system that anticipates failures in order
to plan ahead and reassign tasks, taking into account any
change in the state of the team members. The agent state is
represented by three main components: capacity, knowledge,
and motivation. When the agent state changes, the planner
automatically replans to take this new state into account.

The agents’ states are given to the plan controller, which is
constantly running and monitoring them. Whenever a change
in the agent state occurs, the knowledge base is updated and a
new plan is generated and executed, cancelling the previously
running plan. The agents’ states are taken into account by
the AI planning component, which integrates them in the
PDDL domain as action costs. The reaction to a change in
an agent state and therefore in the action costs will involve
the reassignment of the actions in the generated plan. In this
way, a previous plan that would have most certainly failed is
replaced by a feasible plan before this failure happens. The
system was implemented in a standardised environment using
PDDL and the modular ROSPlan framework, so that it can
be easily extended to a variety of scenarios and applications
involving Human-Robot Collaboration.

Furthermore, the effect of the use of the human state model
on the collaboration was evaluated by means of simulations.
Our results show how promising the integration of the agent
model into AI planning is in terms of anticipating failures
in human-robot collaborative plans, and we have shown how
anticipating replanning allows the planner to reallocate the
tasks before they fail. Our two hypotheses regarding the
integration of an agent model in the planning stage have been
confirmed. Firstly, the success rate in reaching the goal is
increased, whilst the action failure and the number of replans
are reduced. Secondly, an appropriate workload allocation

between the agents is still achieved, avoiding failures whilst
maximising the contribution of both agents.

As future work, we envisage to introduce an action type
to trigger interactions for the cases where an interaction to
solve an issue identified by the model might be preferred
over the reallocation of actions. We will also look into the
automatic inference and learning of the agent model values
and action costs, which have been simulated in this work.
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