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1.  MD Simulations Details 

The initial atom coordinates for the three systems were built using high resolution crystal 

structures with the following PDB codes: 3SW4 (Resolution=1.7 Å), 4FKU (Resolution=1.47 Å), 

and 4FKW (Resolution=1.8 Å). We present the results for 4KFU in the SI Section 8. The 

systems were modelled using the AMBER ff14SB force field,1 and the ligands using the general 

Amber force field (GAFF).2 The ligand's atomic partial charges were obtained using density 

functional theory (DFT)  ωB97X-D/def2TZVPP3,4 as implemented in Gaussian 09 Revision E.5 

The full system was solvated with 12,000-14,000 TIP3P water molecules. Na+ and Cl- ions were 

added to neutralize the system and set a salt concentration of 0.14 M. All the MD simulations 

were performed using NAMD 2.12.6  

The three systems were first minimized using a standard protocol via the steepest descent 

algorithm for a total of 150,000 steps followed by the equilibration of the restrained protein 

(1 kcal mol-1 Å-2 force applied to each heavy atom of the protein) for 10 ns in NVT ensemble 

at 300 K via a standard MD procedure. All the production runs were performed with the NPT 

ensemble with a time step of 2 fs. Pressure was maintained at 1 atm by a Nosé–Hoover 

Langevin piston.7 Temperature was maintained at 298 K using Langevin dynamics with a 

damping coefficient γ of 0.5 ps-1 applied to all atoms. SHAKE8 was applied to all bonds 

involving hydrogen and nonbonded interactions were calculated with a cutoff of 12 Å, and a 

switching distance of 10 Å. The particle mesh Ewald method was used for long-range 

electrostatic calculations with a grid density of >1 Å−3.9 

An initial unbiased simulation of 20 ns was performed for each ligand. This initial simulation 

allows the system to equilibrate and gives us an initial trajectory to calculate the first CVs.  
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2.  Atom Clustering 

Residues with atoms that have a rotational degree of freedom with multiple equivalent 

positions are clustered together. During the unbinding process, if a new contact is found with 

one atom belonging to the cluster, then the harmonic restraint will be applied to the centre 

of mass of the selected clustered atoms. The use of clustered atoms reduces the fluctuation 

caused by the rotation of such bonds, affecting the overall harmonic restraint. 

 

Figure S2. Chemical structures of the residues with clustered atoms, highlighted in red; a for the 
amino acids and b for the ligands. 

 

 

 

 

 



Page 4 of 28 
 

3.  Unbinding Collective Variables 

Distances are included and excluded throughout the entire unbinding trajectory. The initial 

distances are calculated from the initial unbiased ligand-bound MD simulations. At every 10 

ns, the biased simulation is stopped and analyzed. New close interactions between the 

protein and ligand will be added as part of the main CV that is biased, and previous CVs where 

the values exceeded the cut-off are excluded. Fig. S2.I-S2.VI display the distances that are part 

of the main CV along the unbinding trajectories for each ligand and each replica. 

 

Figure S3.I. Distances used for the main CV along the trajectory for 18K replica 1. 

 

Figure S3.II. Distances used for the main CV along the trajectory for 18K replica 2. 
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Figure S3.III. Distances used for the main CV along the trajectory 18K replica 3. 

 

 

Figure S3.IV. Distances used for the main CV along the trajectory for 62K replica 1. 
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Figure S3.V. Distances used for the main CV along the trajectory for 62K replica 2. 

 

Figure S3.VI. Distances used for the main CV along the trajectory for 62K replica 3. 
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4.  MLTSA flowchart 

 
Figure S4. Flowchart of the Machine Learning Transition State Analysis (MLTSA) process. This approach 
uses data from the  downhill unbiased simulations initiated near the TS to train a neural network on 
the trajectory frames using selected CVs. The model then predicts the ligand’s outcome (In/Out). After 
successful training, the original input data (orange) is altered one CV at a time and replaced by a 
constant value (Global Mean), thus producing an altered dataset (Red/Green/Blue). This is used to re-
predict the outcomes on the already trained model (Sea Green) and pinpoint the main accuracy drops. 
This allows identifying the most relevant CVs by assessing the accuracy drop. 
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5.  Classification and Input Features for Machine Learning 
 

Analytical model system 

Two types of 1D potentials were used: single-well (SW, 𝑦𝑠𝑤) potentials and double-well (DW, 

𝑦𝑑𝑤) potentials, defined by the equation: 

𝑦 = 𝑘1  

where 𝑘1 = 100, µ = ½, 𝜎 = 0.01, and 𝑘2= 0 for a SW potential or 𝑘2= 1 for a DW potential. 

 

To generate trajectories along these model 1D free energy profiles, we used the 1D Brownian 

Overdamped Langevin Equation:  

 

𝑑𝑥(𝑡)

𝑑𝑡
=
𝑦(𝑥(𝑡))

𝛾(𝑥(𝑡))
+ √

1

𝛾(𝑥(𝑡))
𝜂(𝑡) 

where 𝛾 = 0.01is constant along x and 𝜂(𝑡) is a number randomly sampled from a normal 

(Gaussian) distribution centred at 0 and the spread is 1.0. 

Using the trajectories generated, we defined input features (𝑦𝑓𝑒𝑎𝑡𝑢𝑟𝑒) by combining the 

coordinates along two different potentials (𝑦𝑝𝑜𝑡), either SW or DW using 𝑦𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 𝛼𝑦𝑝𝑜𝑡1 +

(1 − 𝛼)𝑦𝑝𝑜𝑡2 . We generated 180 features for both a dataset with 24 SW potentials and 1 

single DW potential which decides the IN/OUT state, and for a dataset with 20 SW potentials 

and 5 DW potentials, having among them the decisive DW potential as well.  
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Table S1.I. Table containing the feature numbers for the correlated features, the values of the mixing 

coefficients (α1) for the selected DW potential, and the second SW potential used for the linear 

combination. Coefficients for all other uncorrelated input features are not shown.  

Feature Number α1 SW  

5 0.575 11 

21 0.475 10 

25 0.535 21 

42 0.673 19 

48 0.403 23 

55 0.840 18 

87 0.656 1 

90 0.348 4 

119 0.858 12 

136 0.355 9 

167 0.899 3 

 

Table S1.II. Table containing the feature numbers for the correlated features, the values of the mixing 

coefficients (α1) for the selected DW potential, and the second SW or one of the five DW potentials 

used for the linear combination. Coefficients for all other uncorrelated input features are not shown.  

Feature Number α1 Potential 

4 0.366 DW-4 

8 0.767 SW-16 

22 0.507 SW-6 

25 0.880 SW-7 

35 0.867 SW-12 

50 0.452 DW-3 

62 0.432 SW-18 

71 0.321 SW-1 

114 0.761 DW-14 

131 0.511 SW-15 

137 0.359 SW-24 

165 0.390 SW-23 

167 0.476 DW-2 

175 0.349 SW-8 

177 0.269 SW-20 
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Figure S5 Left: Plot of the trajectory coordinates across different simulations depending on the 
classified outcome (IN-red OUT-blue) for the decisive DW potential. Middle: Plot of one correlated 
feature for different simulations after the linear combination between the decisive DW and a SW 
potential, this plot corresponds to feature 136 of the 1DW dataset, with a linear coefficient of 
α = 0.355. Right: Plot of a correlated feature which is combined with the decisive DW potential and 
another DW potential, the line colour depends on the classified outcome. In this case this corresponds 
to feature 4 from the 5 DW dataset, the decisive DW (marked with *) has a linear coefficient of 
α = 0.366. In shaded cyan the region selected for the ML training (from the 30th step to the 60th). 

CDK2 system data pre-processing 

The classification of the ligand in the bound position (IN) and unbound position (OUT) is 

calculated by analyzing the last 250 ps of the downhill trajectories. For each frame we extract 

and sum two key distances between the ligand and the protein (see Table S2.I) and average 

these for all the frames of the last 250 ps. If the sum of these distances is below a given IN-

threshold the trajectory is classified as IN, if the value is above the OUT-threshold then is 

classified as OUT (see Table S2.I). Table S2.II presents all the interatomic distances used in the 

ML inputs. 

Table S2.I. Key distances used to automate the IN/OUT labelling of the 5 ns-long downhill trajectories. 
These are used to create a dataset suitable for the ML algorithm to learn the classification with the 
selected CVs as inputs (X) and the labels IN/OUT as targets (Y).  

SYSTEM DISTANCES IN-THRESHOLD OUT-THRESHOLD 

3SW4 
LIG(N9)-LEU83(O) -  

LIG(N7)-LEU83(N) 
10 12 

4FKW 
LIG(N3)-LEU83(O) -  

LIG(O9)-LEU83(N) 
11 13 
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Table S2.II. List of all interatomic distances for heavy atoms between the ligand and the protein 
within 6 Å at the selected TS structure. In addition, three intra-residue distances within the protein 
were also added.  

 

3sw4 
(184 Features) 

============================== 
V1=LIG(S1)-VAL64(CB) 

V2=LIG(S1)-VAL64(CG1) 
V3=LIG(S1)-VAL64(CG2) 
V4=LIG(S1)-PHE80(CB) 
V5=LIG(S1)-PHE80(CG) 

V6=LIG(S1)-PHE80(CD1) 
V7=LIG(S1)-PHE80(CE1) 
V8=LIG(S1)-PHE80(CZ) 

V9=LIG(S1)-PHE80(CE2) 
V10=LIG(S1)-PHE80(CD2) 
V11=LIG(S1)-LEU134(CD1) 
V12=LIG(S1)-ALA144(CB) 
V13=LIG(C2)-ILE10(CB) 

V14=LIG(C2)-ILE10(CG2) 
V15=LIG(C2)-ILE10(CD1) 
V16=LIG(C2)-VAL18(CB) 

V17=LIG(C2)-VAL18(CG1) 
V18=LIG(C2)-VAL18(CG2) 
V19=LIG(N3)-VAL18(CG2) 
V20=LIG(N3)-LYS33(CE) 
V21=LIG(N3)-LYS33(NZ) 
V22=LIG(N3)-PHE80(CG) 

V23=LIG(N3)-PHE80(CD1) 
V24=LIG(N3)-PHE80(CE1) 
V25=LIG(N3)-PHE80(CZ) 

V26=LIG(N3)-LEU134(CD1) 
V27=LIG(N3)-ALA144(CB) 

V28=LIG(N3)-ASP145(OD2) 
V29=LIG(C4)-VAL18(CB) 

V30=LIG(C4)-VAL18(CG1) 
V31=LIG(C4)-VAL18(CG2) 
V32=LIG(C4)-LEU134(CD1) 

V33=LIG(N5)-LYS33(CE) 
V34=LIG(N5)-LYS33(NZ) 

V35=LIG(N5)-VAL64(CG1) 
V36=LIG(N5)-PHE80(CB) 
V37=LIG(N5)-PHE80(CG) 

V38=LIG(N5)-PHE80(CD1) 
V39=LIG(N5)-PHE80(CE1) 
V40=LIG(N5)-PHE80(CZ) 

V41=LIG(N5)-PHE80(CE2) 
V42=LIG(N5)-PHE80(CD2) 
V43=LIG(N5)-ALA144(CA) 
V44=LIG(N5)-ALA144(CB) 
V45=LIG(N5)-ASP145(N) 

V46=LIG(N5)-ASP145(OD2) 
V47=LIG(C6)-LYS33(CE) 

V48=LIG(C6)-VAL64(CG1) 
V49=LIG(C6)-VAL64(CG2) 
V50=LIG(C6)-PHE80(CB) 
V51=LIG(C6)-PHE80(CG) 

V52=LIG(C6)-PHE80(CD1) 
V53=LIG(C6)-PHE80(CE1) 
V54=LIG(C6)-PHE80(CZ) 

V55=LIG(C6)-PHE80(CE2) 
V56=LIG(C6)-PHE80(CD2) 
V57=LIG(C6)-LEU134(CD1) 
V58=LIG(C6)-ALA144(CA) 
V59=LIG(C6)-ALA144(CB) 
V60=LIG(N7)-ILE10(CG2) 

4fkw 
(181 Features) 

============================= 
V1=LIG(N1)-ILE10(CB) 

V2=LIG(N1)-ILE10(CG1) 
V3=LIG(N1)-ILE10(CD1) 
V4=LIG(N1)-GLN131(O) 
V5=LIG(N1)-LEU134(CG) 

V6=LIG(N1)-LEU134(CD1) 
V7=LIG(N1)-LEU134(CD2) 

V8=LIG(S2)-ILE10(CG2) 
V9=LIG(N3)-ILE10(CB) 

V10=LIG(N3)-ILE10(CG1) 
V11=LIG(N3)-ILE10(CD1) 
V12=LIG(N3)-GLN85(O) 
V13=LIG(N3)-ASP86(CB) 

V14=LIG(N3)-LEU134(CG) 
V15=LIG(N3)-LEU134(CD1) 
V16=LIG(N3)-LEU134(CD2) 

V17=LIG(N4)-ILE10(CA) 
V18=LIG(N4)-ILE10(CB) 

V19=LIG(N4)-ILE10(CG2) 
V20=LIG(N5)-ILE10(CD1) 
V21=LIG(N5)-VAL18(CG2) 
V22=LIG(N5)-ALA31(CB) 

V23=LIG(N5)-LEU134(CD1) 
V24=LIG(N5)-LEU134(CD2) 
V25=LIG(N5)-ALA144(CB) 
V26=LIG(C6)-LYS129(CD) 
V27=LIG(C6)-LYS129(CE) 
V28=LIG(C6)-LYS129(NZ) 
V29=LIG(C6)-GLN131(CB) 
V30=LIG(C6)-GLN131(CG) 

V31=LIG(C7)-ILE10(O) 
V32=LIG(C7)-GLY11(N) 
V33=LIG(C7)-GLY11(CA) 
V34=LIG(C7)-GLY11(C) 
V35=LIG(C7)-GLU12(N) 

V36=LIG(C7)-GLN131(CB) 
V37=LIG(O8)-VAL18(CG1) 
V38=LIG(O8)-ASP145(CB) 
V39=LIG(O8)-ASP145(CG) 

V40=LIG(O8)-ASP145(OD2) 
V41=LIG(O9)-ILE10(CD1) 
V42=LIG(O9)-ALA31(CB) 
V43=LIG(O9)-GLU81(O) 

V44=LIG(O9)-LEU134(CG) 
V45=LIG(O9)-LEU134(CD1) 
V46=LIG(O9)-LEU134(CD2) 

V47=LIG(O10)-HIE84(O) 
V48=LIG(O11)-ASP86(OD2) 
V49=LIG(O11)-LYS89(CG) 
V50=LIG(O11)-LYS89(CD) 
V51=LIG(O11)-LYS89(CE) 
V52=LIG(C12)-ILE10(CB) 

V53=LIG(C12)-ILE10(CG2) 
V54=LIG(C12)-ILE10(CG1) 
V55=LIG(C12)-ILE10(CD1) 
V56=LIG(C12)-PHE82(CE1) 

V57=LIG(C12)-LEU83(O) 
V58=LIG(C12)-GLN85(N) 

V59=LIG(C12)-GLN85(CA) 
V60=LIG(C12)-GLN85(C) 
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V61=LIG(N7)-ILE10(CD1) 
V62=LIG(N7)-LEU83(N) 
V63=LIG(N7)-LEU83(CA) 
V64=LIG(N7)-LEU83(CB) 
V65=LIG(N7)-LEU83(C) 
V66=LIG(N7)-HIE84(N) 

V67=LIG(N7)-HIE84(CA) 
V68=LIG(N7)-HIE84(C) 
V69=LIG(N7)-HIE84(O) 
V70=LIG(N7)-GLN85(N) 
V71=LIG(N7)-GLN85(C) 
V72=LIG(N7)-GLN85(O) 

V73=LIG(N7)-LEU134(CD1) 
V74=LIG(N7)-LEU134(CD2) 

V75=LIG(C8)-ALA31(CB) 
V76=LIG(C8)-LEU134(CD1) 
V77=LIG(N9)-ILE10(CG2) 

V78=LIG(N9)-HIE84(C) 
V79=LIG(N9)-HIE84(O) 
V80=LIG(N9)-GLN85(C) 
V81=LIG(N9)-GLN85(O) 
V82=LIG(N9)-ASP86(N) 
V83=LIG(N9)-ASP86(CA) 

V84=LIG(N9)-LEU134(CG) 
V85=LIG(N9)-LEU134(CD1) 
V86=LIG(N9)-LEU134(CD2) 
V87=LIG(C10)-ILE10(CG2) 
V88=LIG(C10)-ILE10(CD1) 
V89=LIG(C10)-ALA31(CB) 

V90=LIG(C10)-LEU134(CG) 
V91=LIG(C10)-LEU134(CD1) 
V92=LIG(C10)-LEU134(CD2) 
V93=LIG(N11)-ASP86(CG) 

V94=LIG(N11)-ASP86(OD1) 
V95=LIG(N11)-ASP86(OD2) 
V96=LIG(C12)-ILE10(CD1) 
V97=LIG(C12)-ALA31(CB) 
V98=LIG(C12)-GLU81(O) 
V99=LIG(C12)-LEU83(N) 

V100=LIG(C12)-LEU83(CA) 
V101=LIG(C12)-LEU83(CB) 
V102=LIG(C12)-LEU83(CG) 

V103=LIG(C12)-LEU134(CD1) 
V104=LIG(N13)-ILE10(CG2) 
V105=LIG(N13)-ILE10(CD1) 
V106=LIG(N13)-LEU134(CG) 

V107=LIG(N13)-LEU134(CD1) 
V108=LIG(N13)-LEU134(CD2) 

V109=LIG(C14)-ILE10(CG2) 
V110=LIG(C14)-ILE10(CD1) 
V111=LIG(C14)-ALA31(CB) 
V112=LIG(C14)-GLU81(O) 
V113=LIG(C14)-PHE82(CA) 

V114=LIG(C14)-PHE82(CD1) 
V115=LIG(C14)-PHE82(CE1) 

V116=LIG(C14)-PHE82(C) 
V117=LIG(C14)-LEU83(N) 
V118=LIG(C14)-LEU83(CA) 
V119=LIG(C14)-LEU83(CB) 
V120=LIG(C14)-LEU83(CG) 
V121=LIG(C14)-LEU83(C) 
V122=LIG(C14)-HIE84(N) 

V123=LIG(C14)-HIE84(CA) 
V124=LIG(C14)-HIE84(C) 
V125=LIG(C14)-HIE84(O) 

V126=LIG(C14)-LEU134(CD1) 
V127=LIG(C15)-ILE10(CG2) 
V128=LIG(C15)-ILE10(CD1) 
V129=LIG(C15)-HIE84(O) 
V130=LIG(C15)-GLN85(O) 

V131=LIG(C15)-LEU134(CG) 

V61=LIG(C12)-GLN85(O) 
V62=LIG(C13)-ILE10(CB) 

V63=LIG(C13)-ILE10(CG2) 
V64=LIG(C13)-ILE10(CG1) 
V65=LIG(C13)-ILE10(CD1) 

V66=LIG(C13)-ILE10(O) 
V67=LIG(C13)-GLN85(C) 
V68=LIG(C13)-ASP86(N) 

V69=LIG(C13)-ASP86(CA) 
V70=LIG(C13)-ASP86(CB) 
V71=LIG(C13)-ASP86(CG) 

V72=LIG(C13)-ASP86(OD2) 
V73=LIG(C14)-ILE10(CB) 

V74=LIG(C14)-ILE10(CG2) 
V75=LIG(C14)-ILE10(CD1) 
V76=LIG(C14)-PHE82(CE1) 

V77=LIG(C14)-LEU83(O) 
V78=LIG(C14)-HIE84(C) 
V79=LIG(C14)-HIE84(O) 
V80=LIG(C14)-GLN85(N) 

V81=LIG(C14)-GLN85(CA) 
V82=LIG(C14)-GLN85(C) 
V83=LIG(C15)-ILE10(CB) 

V84=LIG(C15)-ILE10(CG2) 
V85=LIG(C15)-ILE10(O) 
V86=LIG(C15)-GLN85(C) 
V87=LIG(C15)-ASP86(N) 
V88=LIG(C15)-ASP86(CB) 
V89=LIG(C15)-ASP86(CG) 

V90=LIG(C15)-ASP86(OD2) 
V91=LIG(C16)-VAL18(CB) 

V92=LIG(C16)-VAL18(CG1) 
V93=LIG(C16)-VAL18(CG2) 
V94=LIG(C16)-ALA144(CB) 
V95=LIG(C16)-ASP145(CB) 
V96=LIG(C16)-ASP145(CG) 

V97=LIG(C16)-ASP145(OD2) 
V98=LIG(C17)-VAL18(CB) 

V99=LIG(C17)-VAL18(CG1) 
V100=LIG(C17)-VAL18(CG2) 
V101=LIG(C17)-ALA144(CB) 
V102=LIG(C17)-ASP145(CB) 
V103=LIG(C18)-VAL18(CB) 

V104=LIG(C18)-VAL18(CG1) 
V105=LIG(C18)-VAL18(CG2) 
V106=LIG(C18)-GLN131(O) 

V107=LIG(C18)-LEU134(CD2) 
V108=LIG(C19)-LYS129(CE) 
V109=LIG(C19)-LYS129(NZ) 
V110=LIG(C19)-GLN131(CA) 
V111=LIG(C19)-GLN131(CB) 
V112=LIG(C19)-GLN131(CG) 
V113=LIG(C19)-GLN131(C) 
V114=LIG(C19)-GLN131(O) 
V115=LIG(C19)-ASN132(N) 

V116=LIG(C19)-ASN132(CG) 
V117=LIG(C19)-ASN132(OD1) 
V118=LIG(C19)-ASN132(ND2) 
V119=LIG(O20)-GLN131(CB) 
V120=LIG(O20)-GLN131(C) 
V121=LIG(O20)-GLN131(O) 
V122=LIG(O20)-ASN132(N) 

V123=LIG(O20)-ASN132(CA) 
V124=LIG(O20)-ASN132(CG) 

V125=LIG(O20)-ASN132(OD1) 
V126=LIG(O20)-ASN132(ND2) 
V127=LIG(C21)-VAL18(CG1) 

V128=LIG(C21)-ASN132(ND2) 
V129=LIG(C21)-ASP145(CB) 

V130=LIG(C21)-ASP145(OD2) 
V131=LIG(C22)-ILE10(CB) 
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V132=LIG(C15)-LEU134(CD1) 
V133=LIG(C15)-LEU134(CD2) 
V134=LIG(C16)-ILE10(CG2) 
V135=LIG(C16)-GLN85(O) 
V136=LIG(C16)-ASP86(CA) 
V137=LIG(C16)-ASP86(CB) 

V138=LIG(C16)-LEU134(CG) 
V139=LIG(C16)-LEU134(CD2) 
V140=LIG(C17)-ILE10(CG2) 
V141=LIG(C17)-GLN131(O) 
V142=LIG(C17)-LEU134(CG) 

V143=LIG(C17)-LEU134(CD1) 
V144=LIG(C17)-LEU134(CD2) 
V145=LIG(C18)-ILE10(CG2) 
V146=LIG(C18)-GLN131(O) 

V147=LIG(C18)-LEU134(CD2) 
V148=LIG(C19)-ILE10(CG2) 

V149=LIG(C19)-ILE10(O) 
V150=LIG(C19)-ASP86(CB) 
V151=LIG(C19)-ASP86(CG) 

V152=LIG(C19)-ASP86(OD1) 
V153=LIG(C19)-ASP86(OD2) 
V154=LIG(C20)-LYS88(CB) 
V155=LIG(C20)-LYS88(CG) 

V156=LIG(C20)-GLN131(CA) 
V157=LIG(C20)-GLN131(CB) 
V158=LIG(C20)-GLN131(CG) 
V159=LIG(C20)-GLN131(C) 
V160=LIG(C20)-GLN131(O) 

V161=LIG(C21)-ILE10(O) 
V162=LIG(C21)-GLY11(CA) 

V163=LIG(C21)-ASP86(OD1) 
V164=LIG(C22)-ILE10(CG2) 

V165=LIG(C22)-ILE10(O) 
V166=LIG(C22)-ASP86(CA) 
V167=LIG(C22)-ASP86(CB) 
V168=LIG(C22)-ASP86(CG) 

V169=LIG(C22)-ASP86(OD1) 
V170=LIG(C22)-ASP86(OD2) 
V171=LIG(C23)-ILE10(CG2) 

V172=LIG(C23)-ILE10(O) 
V173=LIG(C23)-GLN85(C) 
V174=LIG(C23)-GLN85(O) 
V175=LIG(C23)-ASP86(N) 
V176=LIG(C23)-ASP86(CA) 
V177=LIG(C23)-ASP86(CB) 
V178=LIG(C23)-ASP86(CG) 

V179=LIG(C23)-ASP86(OD1) 
V180=LIG(C23)-ASP86(OD2) 
V181=LIG(C23)-LEU134(CD2) 

V182=LEU(CA)-LYS20(C) 
V183=GLN(C)-VAL18(C) 

V184=LEU(C)-1011.086(ILE) 

V132=LIG(C22)-ILE10(CG1) 
V133=LIG(C22)-ILE10(CD1) 
V134=LIG(C22)-LEU83(O) 
V135=LIG(C22)-GLN85(C) 
V136=LIG(C22)-GLN85(O) 
V137=LIG(C22)-ASP86(N) 
V138=LIG(C22)-ASP86(CB) 

V139=LIG(C22)-ASP86(OD2) 
V140=LIG(C22)-LEU134(CD2) 

V141=LIG(C23)-VAL18(CB) 
V142=LIG(C23)-VAL18(CG1) 
V143=LIG(C23)-VAL18(CG2) 
V144=LIG(C23)-ASP145(CB) 

V145=LIG(C24)-ILE10(CB) 
V146=LIG(C24)-ILE10(CG2) 
V147=LIG(C24)-GLN85(CA) 
V148=LIG(C24)-GLN85(C) 
V149=LIG(C24)-ASP86(N) 

V150=LIG(C24)-ASP86(OD2) 
V151=LIG(C25)-ILE10(CG1) 
V152=LIG(C25)-ILE10(CD1) 
V153=LIG(C25)-VAL18(CG2) 
V154=LIG(C25)-ALA31(CB) 

V155=LIG(C25)-LEU134(CG) 
V156=LIG(C25)-LEU134(CD1) 
V157=LIG(C25)-LEU134(CD2) 
V158=LIG(C26)-ILE10(CG1) 
V159=LIG(C26)-ILE10(CD1) 
V160=LIG(C26)-VAL18(CG2) 
V161=LIG(C26)-LEU134(CG) 

V162=LIG(C26)-LEU134(CD1) 
V163=LIG(C26)-LEU134(CD2) 

V164=LIG(C27)-VAL18(CB) 
V165=LIG(C27)-VAL18(CG1) 
V166=LIG(C27)-VAL18(CG2) 

V167=LIG(C27)-LEU134(CD2) 
V168=LIG(C27)-ALA144(CB) 
V169=LIG(C28)-ILE10(CG1) 
V170=LIG(C28)-ILE10(CD1) 
V171=LIG(C28)-VAL18(CB) 

V172=LIG(C28)-VAL18(CG1) 
V173=LIG(C28)-VAL18(CG2) 

V174=LIG(C28)-LEU134(CD2) 
V175=LIG(C28)-ALA144(CB) 
V176=LIG(C29)-LYS129(CE) 
V177=LIG(C29)-LYS129(NZ) 
V178=LIG(C29)-GLN131(CB) 

V179=LEU(CA)-LYS20(C) 
V180=GLN(C)-VAL18(C) 

V181=LEU(C)-1011.086(ILE) 

 
 
 
 
 
 
 
 



Page 14 of 28 
 

6.  ML Training Results and Feature Analysis 
 

Analytical model system  

We generated 180 independent trajectories of 500 steps each and for each trajectory frame 

we calculated the 180 input features. We split the dataset into a training set (70% of all 

trajectories) and a test set (30% of all trajectories) for the ML training. In addition, we run 

additional 50 independent simulations for validation of the extent of any overfitting. We 

determined the ML prediction accuracy at different times by varying total number of frames 

(i.e., simulation intervals) and starting from different initial frames throughout the 

trajectories. 

 

Figure S6. Accuracy of the Multi-Layer Perceptron (MLP) prediction for the dataset with 1 DW and 24 
SW potentials at different starting times using 10 frame intervals (left) and 30 frame intervals (right). 

For the result that a time range of 30 steps starting from the 30th step (from the 30th to 60th 

step) to be satisfactory for this approach. Thus, we started to train on that time range 100 

models for both GBDT and MLP to proceed with our feature analysis. Some average values 

for accuracy and training epochs are shown in the following table: 

Table S3. Table containing the average accuracies (for training, test and validation) and number of 

epochs used for training of GBDT and MLP methods over the 100 independent replicates of our 

procedure, for both types of datasets (1 DW and the 5 DW potentials) tested.  

 

 

 

 

 

 ⟨Training Accuracy (%)⟩ ⟨Test Accuracy (%)⟩ ⟨Validation Accuracy (%)⟩ ⟨Epochs⟩ 

GBDT (1DW) 100.00 99.72 91.45 500 

MLP (1DW) 94.83 94.73 93.04 204 

GBDT (5DW) 100.00 99.80 91.64 500 

MLP (5DW) 91.85 91.83 89.32 311 
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Analytical model with 5 - Double Well potentials MLTSA vs GBDT 

 

Figure S6. Comparison between GBDT (top) and MLTSA (bottom) feature analysis methods and the 
captured correlated features on the 5DW dataset for the analytical model. From blue (0%) to red 
(100%), the correlated features are marked depending on the level of correlation. The top four 
features are labelled. The baseline symbols (black) in the top plot show the feature importance 
values for each feature which are close to 0 when irrelevant. The baseline symbols (black) at the 
bottom plot show the accuracy of the trained data when each feature is altered with its global mean 
across simulations.  

 

CDK2 System 

Details of the trained models during the MLTSA using 0.1, 0.15, 0.3, 0.5, 0.75, 1, 1.5, 3, and 

the full 5 ns length of the downhill trajectories for each system (4fkw and 3sw4) are listed 

below. In addition to testing the different lengths of trajectories, the percentage of data to 

use from the latter end of the trajectory at each time frame (i.e., the 50% latter end of 0.1 ns 

would correspond to data from 0.05 ns to 0.1 ns) was also tested. The number of simulations 

available and the number of epochs until convergence for each model are also listed, as well 

as their accuracy on a set of independent simulations (Validation set). This set is comprised 

of the 25% of the available data from 4fkw and 3sw4 having 35 and 37 simulations to test the 

accuracy, respectively. 
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Table S4.I. The table below comprises the details of the models tested on 4fkw data as well as their 

accuracy on the validation set. The first column corresponds to the time frame of trajectory data used 

from the beginning. The data column corresponds to the percentage of latter simulation time used to 

train each model. The third column has the number of epochs until convergence of the model and the 

last column shows the accuracy on the validation set. 
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Table S4.II. The table below comprise the details of the models tested on 3sw4 data as well as their 

accuracy on the validation set. The first column corresponds to the time frame of trajectory data used 

from the beginning. The data column corresponds to the percentage of latter simulation time used to 

train each model. The third column has the number of epochs until convergence of the model and the 

last column shows the accuracy on the validation set. 
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Figure S7. Plots of the loss function evolution through the training epochs at different time frames 
with different percentages of data from the end for both 3sw4 (18K ligand) and 4fkw (62K ligand) CDK2 
systems. 

To understand the relationship between the accuracy of predictions and the data used to 

make those predictions, we trained the MLP with several different datasets. As described in 

the main text, each trajectory provided a set of distances from the simulated trajectory at 

particular timeframes, and each dataset was made up of a set of such timeframe elements. 

The trainings used different timeframes of the trajectories: at 0.3, 0.5, 0.75, 1, 1.5, 3 and 5 ns. 

For each of these datasets we calculated the accuracy of the predictions for each of the three 

systems. The models provide good accuracy from the very initial frames of the simulations. 

For example, at 0.1 ns we have an accuracy of 79.5% for ligand 18K and 83.6% for 62K. 

 

Figure S8. ML accuracy prediction at different time frames using MLP for 18K in red and 62K in green. 
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7.  Free Energy Profiles  
For each system, we performed three independent replicas. The PMF is plotted along the 

string windows. For each replica, the number of distances included in the string depends on 

the unbinding trajectory. The number of distances used in each system are given in Table S2. 

(Fig. S2.I-S2.VI above for details). 

 

Figure S9. PMF of the unbinding path for 18K, 60K and 62K. The standard error shown as shaded 
area are obtained by dividing the full dataset into 4 subgroups. 

 

Table S5. Number of distances included in the RC for each replica. 

System Number of distances 

18K Replica 1 21 

18K Replica 2 38 

18K Replica 3 33 

62K Replica 1 46 

62K Replica 2 38 

62K Replica 3 43 
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8.  60K/4FKU system 

An additional ligand was tested with our unbinding approach, an oxindole carboxylic acid 

derivative (60K) based on the 4fku structure (Fig. S10). The unbinding procedure was carried 

out as described for the other ligands. After performing the string calculations for the 4fku 

system, 60K presented a change in conformation, more specifically, a cis-trans conversion of 

the hydrazineyl N=C bond (Fig. S11). This conformational change would only be expected at 

very high energy costs, and it is a combined artifact of the force field and the biasing 

procedure. The Z (cis) to E (trans) conversion allowed the 60K ligand to unbind with a 

significantly lower free energy barrier than its analogue, 4fkw (Figs. S12 and S13). They both 

share a dihedral angle (φ), which corresponds to this transformation, defined between atoms 

N6-N9-C14-C16 for 60K and N1-N3-C25-C26 for 62K (Fig. S12). On one hand, this is partly due 

to the initially strong constraints from the string method that can be corrected in the future. 

On the other hand, this is also due to the too low energy of the trans form and the too low 

barrier for the isomerisation as compared to the DFT calculations (Fig. S13). Tas a result, the 

final unbinding free energy barrier (Fig. S9, middle, blue) is ~10 kcal/mol lower than the 

experimental (20.01 (±0.12) kcal mol-1) value for all three replicas (9.96 (±1.5) kcal mol-1).  

 

Figure S10. Left (a): CDK2 bound to 60K, the chemical structure of the ligand oxindole carboxylic acid 
derivative is drawn in the inset. Bound state (IN) originated from PDB structure 4fku. Structural details 
of the ATP pocket are shown with the ligand in the bound state (green), unbound (red) and transition 
state (grey). Right (b): common CVs obtained from the unbinding replicas of 60K, representative 
distances are shown in dashed lines (yellow: interaction from the initial structure, cyan: interaction 
found during the unbinding trajectory), red sticks represent the ligand when it is outside the pocket. 
The displayed distances appear in all three replicas for 60K. 
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Figure S11. 60K ligand structures within the CDK2 binding pocket from three different umbrella 
windows portraying the cis-trans conversion through the unbinding pathway from IN (cis/Z, red circle) 
via the intermediate (trans/E, red circle, white sticks) to OUT (cis/Z, red circle) structures.  
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Figure S12. Values of the dihedral angles (φ) for both 4FKU (60K) and 4FKW (62K) throughout the 
umbrella sampling windows of all three replicas. φ is defined as the dihedral angle between atoms 
N6-N9-C14-C16 for 60K and C25-C26-N1-N3 for 62K. The conformations at φ~0° correspond to the cis 
isomers and at φ~180° correspond to the trans isomers.  

 

Figure S13. Relative energy values for 60K and 62K calculated at DFT (dark blue and dark red circles, 
respectively) and MM (light blue and pink squares, respectively) levels of theory for the cis-trans 
interconversion based on DFT optimized geometries along φ. The dihedral angle (φ) is defined 
between atoms N6-N9-C14-C16 for 60K and N1-N3-C25-C26 for 62K. The rotational barriers are lower 
in the force field (MM) than calculated at the DFT level. Note that the MM relative energy of the trans 
isomer with respect to the cis for 62K is about 10 kcal/mol higher than for 60K, contributing to the 
different behavior observed between the two similar ligands.  
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9.  Validation of the ML Analysis 

Figures S14.I and S14.II compare the results of our training against a simple binary 

classification model which attempts to classify the outcome as IN/OUT based on the CV values 

at a specific time (0.15, 0.3 and 0.5 ns). The dots show the CV values (as a sum of two key 

distances from Table S2.I) and are colored according to their outcome, red as OUT and green 

as IN. We then calculate the accuracy of the binary prediction at different thresholds 

represented by the black bars to obtain the highest possible accuracy using a single cutoff 

value (blue arrow). We compare these with the values obtained from the MLP (blue data, top 

of Figs. S14.I-II) and the GBDT (yellow data, top of Figs. S14.I-II). 

 

 

Figure S14.I. Comparison of the accuracy obtained from our MLTSA training (blue data) and GBDT 
(yellow data) with a simple binary classification model for ligand 18K at 0.15, 0.3 and 0.5 ns. Data 
points corresponding to different trajectories show the actual value of the string CV for IN (green) and 
OUT (red) trajectories.  
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Figure S14.VII. Comparison of the accuracy obtained from our MLTSA training (blue data) and GBDT 
(yellow data) with a simple binary classification model for ligand 62K at 0.15, 0.3 and 0.5 ns. Data 
points corresponding to different trajectories show the actual value of the string CV for IN (green) 
and OUT (red) trajectories.  
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10.  Gradient Boosting Decision Trees 

We used GBDT as an alternative approach to the MLP. The model was trained using the same 

amount of data fed for the MLP. We compared the results obtained from the MLTSA against 

the feature importances given by the GBDT. Overall, features resulting important from the 

MLTSA are also present in the GBDT, however, depending on the system we analyzed, 

additional important features were also detected from the GBDT’s important features. This 

suggests that the more complex non-linear behavior might lead to different performances for 

GBDT and the MLP as compared to the analytical model system. 

 

 

Figure S15.VIII. Comparison between GBDT feature importance (orange) and MLTSA accuracy drops 
(blue) at different times for the three systems for ligand 18K.  



Page 26 of 28 
 

 

Figure S15.IX. Comparison between GBDT feature importance (orange) and MLTSA accuracy drops 
(blue) at different times for the three systems for ligand 62K.  
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11.  Additional resources 

Animated trajectories 

Animated GIF files showing the string trajectories for the three systems (3sw4, 4fku and 4fkw) 

of all replicas are available at the GitHub repository:  

• https://github.com/pedrojuanbj/MLTSA-V1 

  

Software package 

A Python package of the analytical MLTSA example and corresponding Python code is 

accessible under the Python Package Index (PyPi) database:  

• https://pypi.org/project/MLTSA/  

 

Jupyter Notebook examples 

Fully annotated Jupyter Notebook examples on how to apply the MLTSA approach for the 

analytical model among others, are available under the “MLTSA_examples” folder on our 

GitHub repository as well as when installing our Python package.  
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