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Abstract: Cytokine therapy for cancer has indicated efficacy in certain diseases but is generally accom-
panied by severe toxicity. The field of antibody–cytokine fusion proteins (immunocytokines) arose to
target these effector molecules to the tumor environment in order to expand the therapeutic window
of cytokine therapy. Pre-clinical evidence has shown the increased efficacy and decreased toxicity of
various immunocytokines when compared to their cognate unconjugated cytokine. These anti-tumor
properties are markedly enhanced when combined with other treatments such as chemotherapy,
radiotherapy, and checkpoint inhibitor antibodies. Clinical trials that have continued to explore the
potential of these biologics for cancer therapy have been conducted. This review covers the in vitro,
in vivo, and clinical evidence for the application of immunocytokines in immuno-oncology.

Keywords: antibody; antibody engineering; immunocytokine; immunotherapy; cytokines; can-
cer therapy

1. Introduction

For most of the 20th century, the role of the immune system in cancer was debated.
It is now understood that the immune system is involved in the control of malignancy
through ‘immunosurveillance’ [1]. Early studies indicated the importance of cytokines
in this process as effector and co-stimulatory molecules. A report using fibrosarcoma
cells expressing a dominant negative interferon-γ (IFN-γ) receptor, thus rendering the
cells IFN-γ-insensitive in immunocompetent mice resulted in a loss of tumor control in
the model [2]. Additionally, the discovery of interleukin 2 (IL-2) and its role in T cell
expansion enabled ex vivo culture and expansion of T cells in a therapeutic context [3,4].
Interleukin 2 enhanced the cytotoxic potential of lymphocytes in two different syngeneic
tumor models, thus prolonging subject survival, when lymphocytes were cultured with or
injected simultaneously with IL-2 [5,6].

Tumor necrosis factor (TNF) has been approved for clinical use in Europe for isolated
limb perfusions of sarcoma patients in conjunction with the chemotherapeutic agent
melphalan. An initial trial of 23 patients treated with IFN-γ and TNF yielded an 89%
complete response rate with high grade hematological toxicity in two patients [7]. A
subsequent larger study had a similar high response rate of 153/186 patients resulting
in limb salvage for previously unresectable tumors. Grade 4 regional adverse effects
occurred in 14 patients, and grade 3–4 hepatic and cardiovascular toxicity occurred in 17
and 6 patients, respectively [8].

To date, only interferon-α (IFN-α) and IL-2 have been approved by the Food and Drug
Administration (FDA) for cancer treatment [9]. Clinical trials showed that IFN-α2b had a
response rate of 57/64 patients with hairy cell leukemia and 6/20 and 40/114 patients with
Kaposi’s sarcoma in two separate studies [10–12]. The treatment of cutaneous melanoma
with high dose IFN-α2b resulted in a median survival time of 3.82 years versus the control
at 2.78 years [13]. A combination of chemotherapy and IFN-α2b in follicular lymphoma
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yielded an overall response rate of 104/123 patients compared to 82/119 patients in the
chemotherapy-only arm [14]. However, the IFN-α therapy required a decrease in dosage or
the cessation of treatment due to hematological, neurological, and hepatic toxicities [12–14].

Interleukin 2 administration resulted in objective response rates of 14% and 16%
in metastatic renal cell carcinoma (mRCC) and metastatic melanoma patients, respec-
tively [15,16]. Similar to IFN-α, IL-2 was found to have high rates of dose-limiting toxicities.
Interleukin 2 treatment exhibited high grade cardiovascular, gastrointestinal, neurological,
pulmonary, hepatic, renal, and hematological toxicities, and it led to deaths in 4% and 2%
of mRCC and metastatic melanoma patients, respectively [15,16]. A trial combining sys-
temic IL-2 with autologous ‘lymphokine activated killer’ (LAK) cells showed no significant
increase in survival or responses in patients given both LAK cells and IL-2 compared to
IL-2 alone. Additionally, IL-2 infusion was associated with high levels of severe toxicity, as
highlighted by a 3.3% treatment related mortality rate [17]. These clinical trials for IL-2,
TNF, and IFN-α illustrated the necessity to establish a less toxic method of cytokine therapy
with a wider therapeutic window.

With the introduction of hybridoma technology [18], it became possible to create
large libraries of monoclonal antibody-producing clones in order to specifically target
antigens of interest. The evolution of recombinant antibody technology led to the phage
display method that offers fully humanized antibodies independent of the host’s immune
response [19–22]. Utilizing recombinant antibody production, payloads can be conjugated
to antibodies and directed towards tumor-associated antigens (TAAs) for targeted therapy.
As a method of targeted cytokine delivery, antibody–cytokine fusion molecules termed
‘immunocytokines’ (Figure 1) have been widely developed and assessed in clinical trials
involving a variety of cancers and inflammatory conditions. They are composed of a
targeting-antibody moiety, an amino acid linker, and a cytokine payload. Given the toxicity
profiles of many systemically delivered cytokines, the use of an immunocytokine approach
can often broaden the therapeutic window of the cytokine under study [23,24]. Initial
reports showed the successful generation of immunocytokines containing lymphotoxin,
TNF, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-2 with direct
and indirect anti-tumor capabilities in vitro [25–29]. An IL-2 immunocytokine targeting
disialoganglioside (GD2) co-administered with LAK cells in a murine model for neuroblas-
toma resulted in the absence of detectable liver metastases. The injection of unconjugated
recombinant human IL-2 (rhIL-2) at the same dosages as the immunocytokine was insuffi-
cient to abrogate liver metastases [30]. This field has since expanded to include different
antibody formats, cytokines, combination regimens, and targeted indications. This review
covers the evidence for immunocytokine therapy for the treatment of cancer.

Similar to monoclonal antibody therapy, the structure and size of the immunocytokine
under investigation affects the performance of the drug. Full size antibody formats have
increased circulation half-life and engage immune cells through the crystallizable fragment
(Fc) portion of the molecule, retaining much of the antibody effector function within the
immunocytokine [31,32]. However, immunocytokines utilizing antibody fragments also
increase the half-life of the respective cytokine [24]. Smaller immunocytokine formats have
a quicker clearance rate and greater tumor penetration [24,33]. Additionally, the structure
of the cytokine payload can affect efficacy. An IL-12-based immunocytokine demonstrated
an enhanced tumor retention and growth inhibition when expressed as a single chain
variable fragment (scFv) heterodimer connected by a disulfide bridge between the two
subunits of IL-12 compared to a monomer consisting of both IL-12 subunits fused by a
linker [34]. The intended effect of the immunocytokine and the native conformation of the
delivered cytokine should be taken into consideration during engineering.

By targeting the antibody portion to the tumor-associated antigens presented on
tumor cells, the immunocytokine is sequestered in the tumor microenvironment. Here,
the functional cytokine can signal through its cognate receptors expressed on either/both
tumor and immune cells and induce an anti-tumor response. An upward-facing arrow
denotes an increase in activity, while a downward-facing arrow denotes a decrease.
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2. Immunocytokines in Pre-Clinical Models

Investigations have covered a multitude of different immunocytokine payloads and
formats. In this section, previous reports of these antibody-fusion molecules will be
addressed in the order of the delivered cytokine.

2.1. Interleukin-2

The most widely reported immunocytokines are IL-2-based. Interleukin-2 is a small
protein primarily produced by activated T cells that increases proliferation and survival in
an autocrine/paracrine fashion [35]. Based on the clinical evidence of unconjugated IL-2,
targeted formats were developed to increase its therapeutic efficacy and safety. Early stud-
ies characterized the efficacy of IL-2 fused with an antibody specific for GD2 in models for
melanoma and neuroblastoma [27,30,36–40]. In a murine model of metastatic melanoma,
IL-2 immunocytokines targeting GD2 and epidermal growth factor receptor (EGFR) sup-
pressed lung and liver metastases, in addition to prolonging survival, when administered
after LAK cell reconstitution in immunocompromised mice. Unconjugated IL-2 and anti-
body injected after LAK cell reconstitution did not yield the same therapeutic effect [37]. In
immunocompetent murine melanoma models, the immunocytokine anti-tumor response
was dependent on CD8+ T cells and conveyed long-term protection against tumor rechal-
lenge [36,38,39]. Later, it was determined that efficacy in pulmonary metastases models was
also reliant on CD4+ T cell-dependent CD40/CD40 ligand signaling [41]. Immunocytokine
efficacy was demonstrated in neuroblastoma and, in contrast to the melanoma model, was
dependent on natural killer (NK) cells and not T cells [30,40,42]. This was attributed to
the neuroblastoma cell line secreting factors such as transforming growth factor-β (TGF-β)
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and IL-10, which decreases T cell cytotoxicity, whereas select studies have shown IL-10 to
increase NK cell activity in vivo [42,43]. Additionally, the intratumoral injection of GD2
or epithelial cell adhesion molecule (EpCAM)-targeting IL-2 immunocytokines increased
the anti-tumor effect and immune cell presence in neuroblastoma and melanoma in vivo
compared to intravenous administration and unconjugated IL-2 [44–47]. Both immunocy-
tokines enhanced the formation of synapses between NK cells and melanoma or ovarian
carcinoma, which was inhibited by an anti-IL-2 receptor α (IL-2Rα) antibody, suggest-
ing that synapse formation was based on IL-2R engagement on NK cells by the cancer
cell-bound immunocytokines [48].

Targets other than TAAs expressed on the cancer cells have been explored for IL-2
immunocytokine therapy. Immunocytokines have been designed to target the aberrant
extracellular matrix (ECM) often found in the tumor micro-environment, which presents a
more stable target in comparison to transformed cells. Different isoforms of fibronectin and
tenascin-C are angiogenesis-related ECM proteins and show a tumor-vasculature restriction.
Specifically, these vasculature TAAs are the extra-domain A (EDA) and extra-domain B
(EDB) isoforms of fibronectin and the A1 domain isoform of tenascin-C (Tnc A1) [49–52].
An initial study investigating targeted IL-2 to EDB showed sufficient trafficking to the
tumor vessels after intravenous administration and a significant reduction in tumor growth
compared to saline, unconjugated IL-2, and parental antibody groups [23]. The delivery
of IL-2 via EDA and Tnc A1 specificity showed efficacy at different dosages in acute
myeloid leukemia (AML), non-small cell lung carcinoma (NSCLC), and teratocarcinoma
models after intravenous or intratumoral injection; however, EDA-IL-2 was only effective
when co-administered with an EDA-specific TNF immunocytokine [53–55]. Tumor control
was dependent upon NK cell and CD8+ T cell presence, and immunocytokine treatment
propagated an increase in CD8+ T cell proliferation and granzyme B secretion in the NSCLC
tumors [53–55]. In the AML model, the immunocytokine caused a loss of weight in mice,
but it was transient and did not require the cessation of treatment [54]. Interleukin-2
immunocytokines have been developed to target an array of antigens including prostate-
specific membrane antigen (PSMA), programmed death ligand-1 (PD-L1), EGFR, carbonic
anhydrase IX (CAIX), CD20, and DNA. As such, these immunocytokines increase the
therapeutic window compared to unconjugated IL-2 and seem dependent on immune
effector cells to illicit an anti-tumor response [31,56–61].

2.2. Interferons

Interferon-α, a type I interferon with multiple subtypes displaying similar effects, was
initially characterized for its antiviral properties. In the context of cancer, it exhibits direct
and indirect anti-tumor effects through the dysregulation of tumor-promoting genes, the
upregulation of suppressor genes and major histocompatibility complex I (MHC I), the
inhibition of cell replication, sensitization for cell death, and the stimulation of immune
cells [62,63]. A CD20-targeting immunocytokine utilizing the IFN-α2 subtype decreased
the 50% inhibitory concentration (IC50) compared to commercially available forms of IFN-α,
increased antibody-dependent cellular cytotoxicity (ADCC) against lymphoma cells (with
a decreased complement-dependent cytotoxicity (CDC)), and prolonged survival in murine
groups treated with the immunocytokine compared to equal concentrations of parental
IFN-α and antibody [63]. A similar immunocytokine-targeting human leukocyte antigen
DR (HLA-DR) demonstrated an enhanced ability to stimulate the apoptosis-promoting sig-
nal transducer and activator of transcription 1 (STAT1) pathway in multiple myeloma and
lymphoma cells compared to the CD20-specific immunocytokine, but it also mediated toxic-
ity against healthy peripheral blood mononuclear cells (PBMCs) [64]. A bispecific hybrid of
these two immunocytokines exhibited a greater cytotoxicity in Daudi lymphoma cells than
either monospecific original immunocytokine and a similar toxicity to the monospecific
anti-HLA-DR immunocytokine [65].

Interferon-α has also been targeted to checkpoint molecule PD-L1. The in vivo produc-
tion of the T cell tumor trafficking chemokine C-X-C motif chemokine ligand 10 (CXCL10)
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increased in murine lung cancer cells accompanied by retarded tumor growth with anti-
PD-L1-IFN-α compared to parental anti-PD-L1 and a non-specific immunocytokine [66].
Interferon-α immunocytokines targeting PD-L1 or CD20 demonstrated superior tumor
control in lymphoma and colon cancer that was dependent on IFN-α receptor (IFNAR)
expression in either the tumor cells or host immune cells [67,68]. In contrast, one group
investigated an immunocytokine delivering IFN-α to the ECM protein EDA. It localized to
the tumor and recruited immune cells but was no more effective at controlling the growth
of teratocarcinoma or melanoma xenografts than a non-specific immunocytokine control.
One possible explanation for this lack of efficacy is that increased IFN-α located in the
perivasculature may deliver less of an anti-tumor response than if directly targeted to the
tumor cells [69].

Interferon-γ is a type II interferon produced by activated T cells and NK cells. It
has anti-viral/anti-tumor characteristics and stimulates innate and adaptive immune re-
sponses [70]. Early studies exemplified the importance of IFN-γ for inherent protection
against tumor formation and progression. Investigations using transgenic mice lacking
the crucial cell-mediated cytotoxicity molecules or receptors for IFN-γ and perforin led to
a higher rate of chemically-induced tumor development, the increased tumor growth of
syngeneic xenografts, and an elevated proportion of metastases [71,72]. Targeting IFN-γ to
the tumor microenvironment via EDA or EDB resulted in enhanced tumor and liver metas-
tasis control when compared to a non-specific IFN-γ immunocytokine in teratocarcinoma
models, sarcoma, and Lewis lung carcinoma (LLC) models. Increased numbers of CD4+ T
cells, NK cells, macrophages, and granulocytes were observed in the tumors treated with
targeted IFN-γ with a decrease in regulatory T cells (Tregs). Both immunocytokines exhib-
ited impeded tumor trafficking by the IFN-γ receptor binding off-target tissues. Tumor
specificity could be potentiated by saturating receptors with additional immunocytokine
administration and no apparent effect on body weight [73,74].

Smaller antibody formats, such as single-domain variable heavy chain (VHH) anti-
bodies, with potentially greater tumor penetration, and more tumor restricted interferons
such as IFN-λ have also been explored in the context of immunocytokine therapy [61,75].

2.3. Tumor Necrosis Factor

The earliest reports of antibody–cytokine fusion molecules included TNF. Tumor
necrosis factor is a pro-inflammatory cytokine expressed by macrophages, NK cells, T
cells, and B cells. While studies have shown the anti-tumor effects of TNF administration,
endogenous production can also promote tumor cell survival through its activation of
transcription factor NF-κB and is expressed by various cancer cells types [76–80]. Due
to its inflammatory potency, TNF is a good prospect for localized therapy and was ini-
tially targeted to the human transferrin receptor and GD2 with cytotoxicity in vitro in
breast cancer cells and murine fibroblasts [25,81,82]. The tumor necrosis factor delivery to
tumor microenvironment antigens such as EDA, EDB, and fibroblast activation protein
(FAP) demonstrated growth inhibition in multiple models. Anti-FAP-TNF stimulated
polymorphonuclear (PMN) cells to generate reactive oxygen species and human umbilical
vein endothelial cells (HUVECs) to produce the clotting molecule tissue factor, which
can cause necrosis and granulocyte infiltration, while anti-EDA-induced necrosis and NK
cell infiltration [53,83]. Targeting TNF to EDB delayed tumor growth in teratocarcinoma
models compared to untargeted cytokine, and the anti-cancer effect was amplified when co-
administered with melphalan or an EDB-specific IL-12 immunocytokine [24,84]. Necrosis
was seen when TNF was targeted to the described hypoxic marker CAIX along with growth
inhibition and protection against rechallenge in CAIX+ colon and renal cell carcinoma-
bearing mice with q 3% decrease in body weight [59,85]. Tumor necrosis factor-resistance
in a breast cancer cell line was overcome by a TNF immunocytokine targeting human epi-
dermal growth factor 2 (HER-2) via the upregulation of TNF receptor 1 (TNFR1) expression,
the activation of caspase-associated apoptosis, and the deactivation the Akt proliferation
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pathway [86,87]. Overall, TNF immunocytokines engage anti-tumor immunity through
direct cytotoxicity and the induction of necrosis of tumor tissue.

2.4. Interleukin-12

Interleukin 12 is a heterodimeric cytokine produced by most leukocytes and skews
immunity towards an anti-cancer T helper cells type 1 (TH1) effector response [88]. High
systemic toxicity rates at low dosages of IL-12 led to its development for targeted deliv-
ery [89,90]. An early study of targeted IL-12 to EDB showed tumor growth control in
colon carcinoma and, to a greater extent, teratocarcinoma models. This was accompanied
by a 6% body weight loss and pathological findings in harvested liver tissue. There was
an increased IFN-γ and CXCL10 production in the tumor environment and an influx of
CD8+, CD4+ T, and NK cells [90]. The modification of this particular immunocytokine’s
format indicated that a heterodimeric fusion protein containing two anti-EDB scFvs, linked
by a natural disulfide bridge in the two subunits of IL-12, had greater tumor trafficking,
retention, and efficacy in teratocarcinoma than the previous single scFv-IL-12 format [34].
Variability has also been observed with different linker lengths and sequences attaching
IL-12 and IL-2, with specific linkers enhancing tumor localization and retention [91,92].
Targeting IL-12 to EDB and EDA has been efficacious in tumor models of teratocarcinoma,
prostate cancer, colon cancer, and epidermoid carcinoma with an influx of inflammatory
innate and adaptive leukocytes [93–95].

A well-described IL-12 immunocytokine includes an anti-DNA fragment-targeting
portion in order to direct the cytokine to necrotic tumor tissue. The immunocytokine
outperformed unconjugated IL-12 in delaying the progression of LLC, colon carcinoma,
melanoma, and bladder cancer tumors. This anti-cancer response and the prolongation
of survival was reliant on NK cells and CD8+ T cells, but not CD4+ T cells, and ultimately
did not protect against rechallenge [96,97]. An analysis of the microenvironment showed
a shift towards a more inflammatory cellular response comprised of an increase in the
CD8/CD4 T cells:macrophage/myeloid-derived suppressor cell (MDSC) ratio, a decrease
in intratumoral TGF-β, and an increase in the proliferation/activation of CD4+ and CD8+

T cells [97]. This immunocytokine has been trialed in dogs with malignant melanoma with
2/15 partial responses and four experiencing grade 4–5 toxicity [98].

2.5. Interleukin-15

Similar to IL-2, IL-15 induces proliferation in T cells. In contrast, IL-15 preferentially
promotes the proliferation of cytotoxic T cells rather than Tregs and decreases activation-
induced cell death (AICD) compared to IL-2. Furthermore, IL-15 promotes the differen-
tiation and maintenance of memory T cells and NK cells [99]. Targeting IL-15 to EDB
indicated stronger efficacy in teratocarcinoma and colon carcinoma models compared to
non-specific immunocytokine in a CD8+ T cell-dependent manner [100]. Interleukin-15 is
primarily effective through trans-presentation: it is bound to IL-15 receptor α (IL-15Rα) on
the surface of monocytes, macrophages, and dendritic cells, which then bind to IL-15Rβ/γc
on T cells and NK cells [101]. Because of this, most immunocytokine studies based on IL-15
have developed a recombinant cytokine, RLI, that encompasses IL-15 bound to a portion
of the IL-15Rα called the sushi domain. The trans-presentation immunocytokine caused
the greater proliferation of PBMCs in vitro compared to anti-FAP-IL-15 and increased the
cytotoxicity of T cells [102]. Targeting RLI to GD2 and CD20 indicated ADCC and CDC
in neuroblastoma and lymphoma cells, reduced the number of liver metastases, and pro-
longed the survival of mice for up to 120 days in lymphoma models compared to parental
proteins [103,104].

2.6. Granulocyte-Macrophage Colony-Stimulating Factor

Granulocyte-macrophage colony-stimulating factor is an inflammatory cytokine in-
volved in the maintenance and maturation of myeloid cells, and it stimulates dendritic
cell and macrophage activity [105]. This cytokine has been employed for immunother-
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apeutic regimens such as the FDA-approved dendritic cell vaccine for prostate cancer,
Provenge [106]. Early studies described GM-CSF immunocytokines with varying activ-
ity [82,107]. An anti-GD2 antibody conjugated to GM-CSF showed increased neuroblas-
toma cell lysis compared to an unconjugated antibody when incubated with PMN cells,
and cell death was attributed to ADCC [108]. Targeting GM-CSF to HER-2 reduced colon
carcinoma tumor growth in a syngeneic model, initiated a TH2-type antibody response,
and increased the antigen presentation of dendritic cells [109,110]. When targeting EDB,
the immunocytokine was able to traffic to teratocarcinoma tumors and delay progression
at repeated high doses compared with a non-specific immunocytokine [100]. The dual
delivery of IL-2 and GM-CSF to EpCAM-expressing colon carcinoma in vivo resulted in
less lung metastases at low doses, but the effect of the dual immunocytokine was not
greater than the single cytokine-carrying molecules [111].

2.7. Additional Cytokines

Various cytokine payloads have been investigated, with the most common listed pre-
viously. Additional studies have described cancer immunocytokine therapy incorporating
tissue factor, IL-4, IL-3, granulocyte colony-stimulating factor (G-CSF), IL-1β, IL-6, IL-13,
IL-17, IL-7, vascular endothelial growth factor (VEGF), C-C motif chemokine ligand 21
(CCL21), and 4-1BBL [95,112–124].

2.8. Variants

Because of the potency of some inflammatory cytokines and the toxicity reported in
trials, an added measure to increase safety and efficacy in immunocytokines is the use of
variant cytokines. A point mutation in the IL-2 sequence responsible for binding endothe-
lial cells, and thus off-target toxicity, resulted in a modest decrease of the binding of the
high affinity receptor (IL-2Rα) expressed on T cells and a dramatically decreased binding
of the intermediate affinity receptor expressed on other tissues. This led to preferential
proliferation in T cells over NK cells and a 20-fold reduction in toxicity compared to the
wild type [125]. In contrast, a carcinoembryonic antigen (CEA)-targeting IL-2 variant with
diminished IL-2Rα binding, and thus preferential IL-2Rβ association that is predominant
on cytotoxic T cells, was developed to reduce Treg response and off-target receptor bind-
ing. Proliferation in Tregs was greatly reduced in the IL-2 mutant compared to the wild
type, with no difference in CD8+ T cell or NK cell proliferation and an increased tumor
uptake [126]. The same group also fused this IL-2 variant to a PD-1-targeting antibody to
directly deliver IL-2 to effector cells. The administration of the anti-PD-1 IL-2 variant erad-
icated pancreatic tumors in orthotopic models, while the co-administration of anti-PD-1
and an irrelevant IL-2 variant immunocytokine did not [127]. Another IL-2 variant with
decreased binding to high affinity IL-2Rα but increased binding to intermediate affinity
IL-2Rβ showed the augmentation of intratumoral CD8/Treg ratio and efficacy in melanoma
and colon carcinoma models [128].

Variations have been developed without mutating the IL-2 sequence itself. One such
variation includes the linkage of the chemotherapeutic drug DM1. This drug-conjugated
immunocytokine retained IL-2 signaling in T cells and tumor-homing capabilities, but it
exhibited a significant increase in tumor control with no elevation of toxicity [129]. An alter-
native structure design of cytokine conjugation to the light chain instead of the heavy chain
of a full length antibody increased the half-life and therapeutic effect through the hinder-
ance of the IL-2Rβ-binding portion of IL-2 [130]. Without specifically targeting a TAA, one
group developed an IL-2/anti-IL-2 antibody complex that blocked IL-2 association with
IL-2Rα. This antibody complex increased the cytokine’s half-life in circulation, preferen-
tially expanded CD8+ T cells over Tregs, and augmented the anti-tumor response [131,132].
Similarly, the specific PEGylation of unmutated IL-2 diminished IL-2Rα binding and biased
the molecule towards IL-2Rβ. This PEGylated IL-2 exhibited greater tumor retention and
circulation half-life, increased infiltrating CD8+ T cells, and had superior tumor growth
inhibition compared to unconjugated IL-2 in multiple murine models [133,134]. Tumor
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inhibition was significantly increased when co-administered with checkpoint inhibitors
anti-CTLA-4 or anti-PD-1 [133,135]. This selective IL-2 variant has since progressed to
phase II and III clinical trials in combination with anti-PD-1 (nivolumab) for advanced
solid tumors, demonstrating a 50% overall response rate in PD-L1+ tumors [136–139].

In an attempt to increase the safety profile of IFN-α, a mutant was developed with a
greater dissociation rate from its receptor, and it resulted in enhanced tumor-specific lysis
while sparing healthy cells compared to the wild type [140,141]. This design led to tumor
accumulation and efficacy in lymphoma, multiple myeloma, and melanoma models compa-
rable to untargeted and wild-type IFN-α immunocytokines, though with significantly less
toxicity [141,142]. A similar concept incorporated a mutated TNF or IFN-γ with decreased
affinity for its receptor and showed target-specific cytotoxicity, induced cellular adhesion
molecules in the tumor, and did not increase toxicity [143]. A TNF mutant with a reduced
potency was generated for an IL-2-TNF dual immunocytokine and controlled tumor pro-
gression when targeted to EDA in colon carcinoma, LLC, sarcoma, and teratocarcinoma
models [144]. A strategy to limit the off-tumor effects of IL-12 involved separate constructs
encoding the p35 and p40 subunits targeting EDA for dimerization/activation in the tumor
microenvironment. However, this study suggested that the p35 subunit immunocytokine
retained IL-12 signaling capabilities in T cells and NK cells [145].

3. Immunocytokines in Combination Therapeutic Approaches

Combinatorial regimens with immunocytokines have suggested additive or synergis-
tic effects in pre-clinical tumor models compared to monotherapies. These investigated
combinations include immunocytokines with chemotherapy agents, radiotherapy, mono-
clonal antibodies, cytokines, small molecule inhibitors, and vaccines.

3.1. Chemotherapy

As chemotherapy is the gold standard treatment for most advanced malignancies,
the addition of immunocytokines have been explored in order to increase the efficacy of
already established therapies. An early study indicated a significantly enhanced tumor
growth control when administered in conjunction with paclitaxel or cyclophosphamide, at
inefficacious dosages alone, in syngeneic breast, colon, and lung carcinoma models [146].
Similar results were seen in the context of targeting the tumor microenvironment with
IL-2-based immunocytokines. In a xenograft model of melanoma, the EDA-specific im-
munocytokine abolished tumors when injected 4 or 24 h after paclitaxel. A look into the
mechanism showed an increased vascular perfusion, immunocytokine tumor-homing, and
NK cells in the tumor of combination-treated mice [147]. In a syngeneic melanoma model,
the same EDA-targeting IL-2 immunocytokine increased the efficacy of both paclitaxel and
dacarbazine [148]. Utilizing an IL-2 immunocytokine-targeting Tnc A1 augmented the
control of tumor progression for both paclitaxel and doxorubicin in breast cancer-bearing
mice without additional toxicity [149]. Targeting IL-2 to Tnc A1 in combination with temo-
zolomide exhibited an increase in the arrest of tumor progression in subcutaneous and
intracranial glioblastoma models compared to monotherapy. The combination significantly
increased tumoral apoptosis and the infiltration of NK cells and macrophages [150].

Tumor necrosis factor-based immunocytokines have also shown an augmented ther-
apeutic effect when combined with different chemotherapeutic drugs. A combination
of HER2-targeted TNF with 5-fluorouracil (5-FU) significantly inhibited the growth of
pancreatic cancer cells compared to monotherapy of either agent. This combination down-
regulated anti-apoptotic molecule Bcl-2 and signaling through the survival Akt pathway
while upregulating the TNF receptor [151]. Targeting a trimeric TNF to EDA led to cures in
two different sarcoma models when given in conjunction with doxorubicin at a concentra-
tion insufficient to cause tumor regression alone [152]. A TNF immunocytokine specific for
EDB reiterated these results by increasing the cure rate for dacarbazine and trabectedin in a
syngeneic sarcoma model with a temporary acute loss of body weight [153]. Other studies
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have demonstrated the increased anti-tumor efficacy of combination chemotherapy and
IL-12, IL-7, IFN-γ, and IFN-α immunocytokines [73,96,123,142,154].

3.2. Radiotherapy

Radiotherapy is used for the treatment of cancer because of its localized cytotox-
icity and evident stimulation of an anti-cancer immune response [155]. Because of its
immunostimulatory nature as well, the effects of IL-2 immunocytokines combined with
radiation therapy have been documented. External beam radiation alone delayed tumor
progression, but in combination with the intratumoral delivery of a GD2-targeting IL-
2 immunocytokine, there was significant tumor regression and survival in melanoma
models. This reaction was dependent on ADCC and T cell infiltration, and it conferred
protection against rechallenge. Even greater anti-tumor responses were seen when radi-
ation, immunocytokine, and anti-CTLA-4 blockade were combined in immunocytokine
antigen-positive tumors [156,157]. However, the presence of a secondary untreated tumor
negatively impacted the immunocytokine/radiation efficacy in primary treated pancreatic
and melanoma tumors. This therapeutic inhibition was negated upon Treg depletion,
anti-CTLA-4 addition, or the irradiation of all tumors [158]. In contrast, anti-EDB-IL-2 with
radiation in colon cancer models caused a systemic anti-tumor response with control of
tumor progression seen in secondary non-irradiated tumors in the combination group. This
combination increased CD8+ T cells with a memory-like phenotype and protected against
tumor rechallenge [159]. Radiotherapy given prior to anti-EDB-IL-2 significantly inhibited
tumor progression in teratocarcinoma compared to monotherapy, with higher levels of
infiltrating NK cells, and showed antigen density-dependency in colon, breast, and Lewis
lung carcinoma [160,161]. A classified ‘cold’ neuroblastoma tumor achieved complete
tumor eradication upon immune stimulation with anti-CTLA-4, anti-CD40, and toll-like
receptor 9 (TLR9) agonist in addition to radiation and anti-GD2-IL-2 [162]. Additional
studies have shown increased tumor control in vivo with combinations of radiotherapy
and IL-2 immunocytokines targeting CEA and EpCAM [163–165].

Targeting IL-12 to the tumor in conjunction with radiation has indicated an increased
benefit. Additive therapeutic efficacy was observed with the combination of radiation
and a DNA-targeting IL-12 immunocytokine compared to monotherapies in syngeneic
LLC models, along with enhanced tumor localization, after radiation was administered
in xenograft rhabdomyosarcoma models [96,166]. Mice treated with radiation and DNA-
targeting IL-12 showed a decreased tumor burden for both irradiated and non-irradiated
tumors. This was accompanied by an increase in effector cells and a shift in the tumor
microenvironment to a more pro-inflammatory cytokine milieu [167].

3.3. Monoclonal Antibodies

Monoclonal antibodies are the immunotherapeutic class with the greatest number of
FDA approvals to date. The anti-CD20 monoclonal antibody rituximab was developed by
IDEC pharmaceuticals and became the first FDA-approved cancer therapeutic monoclonal
antibody [168]. This was followed by a cascade of FDA approvals for therapeutic antibody
treatment in multiple blood cancers and solid tumors. A combination of rituximab and EDB-
specific IL-2 immunocytokine eradicated tumors in multiple lymphoma xenografts with no
apparent toxicity, while rituximab combined with IL-2 only delayed progression [169,170].
Immunocytokine alone, and to a greater extent with rituximab, increased macrophage
and NK cell presence in the tumor compared to controls [170]. An antibody targeting
syndecan-1 inhibited vascular tubule formation, and when co-administered with this
EDB-targeting immunocytokine, melanoma tumors were ablated in ~71% of mice and
a significant reduction occurred in ovarian tumor progression [171,172]. Targeted TNF
to the melanoma antigen gp75 in combination with a monoclonal antibody of the same
specificity augmented the efficacy in syngeneic melanoma models compared to either
therapy alone. There was a loss of no more than 10% body weight in groups treated with
immunocytokines [173].
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While initial antibody development was targeted against tumor-associated molecules,
there was a paradigm shift towards the development of antibodies that instead disrupted
natural immune checkpoints that would otherwise suppress immune responses. The
application of checkpoint inhibitors (CPIs) has led to the largest class of approved anti-
bodies to date with the most indications in advanced solid tumors. Thus far, monoclonal
antibody therapies targeting the immune checkpoints CTLA-4, PD-1, and PD-L1 have
become commercially available, and so combinations with various immunocytokines have
been investigated to enhance anti-cancer potential. Checkpoint inhibitors antagonistic for
PD-L1 have exhibited increased survival and tumor control when combined with a de-
creased affinity IL-2-variant immunocytokine that targets CEA. The immunocytokine also
enhanced the therapeutic efficacy of anti-HER2 and anti-EGFR [126]. A similar IL-2 mutant
immunocytokine targeting EGFR had a synergistic effect with anti-PD-L1 in melanoma
models [128]. In the context of a DNA-specific IL-12 immunocytokine, combination with
anti-PD-L1 delayed colon, orthotopic bladder, and breast carcinoma progression with
protection against rechallenge [174,175]. The immunocytokine with anti-PD-L1 had higher
circulating levels of inflammatory cytokines, effector memory T cells, and intratumoral
macrophages with high MHC expression compared with anti-PD-L1 alone [175]. Approx-
imately 80% of tumor eradication was seen in colon cancer and sarcoma models when
anti-PD-L1 was co-administered with IL-2 or TNF and IL-2 immunocytokines targeted to
EDA and EDB [144,153]. The CPI anti-CTLA-4 has been studied with immunocytokine
therapy and an anti-GD2-IL-2 immunocytokine increased the efficacy of CTLA-4 CPI in
melanoma models in a T cell-dependent manner. Established tumor regression occurred
with the further addition of innate immune cell activators anti-CD40 and TLR9 agonist [176].
Anti-CTLA-4 combined with EDB-targeted IL-2 caused teratocarcinoma and colon tumor
regression to a greater extent when the immunocytokine was injected first [177].

3.4. Other Combinations

Immunocytokine therapy has had successful results upon incorporation into other es-
tablished therapies. Various immunocytokines have been combined with additional uncon-
jugated cytokines such as IL-7, IL-2, Fms-like tyrosine kinase-3-ligand (Flt3-L), and IFN-γ
to show enhanced tumor control and the activation of the immune response [85,178–180].
Of course, to increase the specificity and thus safety of cytokine addition, immunocy-
tokines have been investigated in varying combinations with each other, including targeted
TNF, IL-8, IFN-γ, IL-2, and IL-4 [73,74,95,148,177,181,182]. Immunocytokines have shown
successful potentiation with other therapies such as small molecule inhibitors, vaccines,
oncolytic viruses, resveratrol, and adoptive cell therapy [96,128,183–194].

4. Clinical Investigations of Immunocytokines

Based on the pre-clinical evidence, many immunocytokines have progressed to phase
I/II clinical trials for different indications (Table 1). One of the first immunocytokines to
make it to clinical trials delivered IL-2 to the GD2 antigen commonly found in melanoma
and neuroblastoma tumors. A pilot study in melanoma patients showed dose-limiting
toxicities of hypoxia, thrombocytopenia, hypotension, and hyperglycemia in 7/33 patients,
all of which were reversible [195]. A phase I trial of this immunocytokine in pediatric
neuroblastoma and one melanoma patient indicated tolerability with 8/28 dose-limiting
toxicities including neutropenia, leukopenia, hematuria, hypotension, thrombocytopenia,
blurred vision, allergic reaction, and rash. Immune stimulation was observed with soluble
circulating IL-2R and peaked at day four of treatment [196]. The further analysis of
immune activation in metastatic melanoma patients showed increased T cell infiltrates in
the tumor after treatment and a decrease in the targeted antigen GD2 [197]. Phase II trials
in metastatic melanoma and neuroblastoma patients yielded 1/14 partial responses and
5/23 complete responses, respectively [198,199]. To optimize the therapy in melanoma, a
recent pilot trial in advanced resectable melanoma patients with a lower tumor burden
resulted in a median recurrence-free survival (RFS) of 5.73 months but 6/18 RFS cases
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at ~57 months [200]. The optimization of this immunocytokine in neuroblastoma led to
a phase II trial in combination with GM-CSF and the vitamin A derivative isotretinoin.
Five out of 45 patients had objective responses, and three of those had no events for up to
five years. Four patients had dose-limiting toxicities [201]. The evaluation of the immune
response to therapy showed that 32/61 patients developed anti-immunocytokine idiotype
antibodies, which were not correlated with toxicity, and responses in neuroblastoma were
associated with killer immunoglobulin-like receptor (KIR)/KIR ligand mismatch in NK
cell activity [202,203]. In the context of resected advanced melanoma, patients treated with
immunocytokine before resection showed a correlation between RFS/overall survival and
inflammatory immune cell infiltration [204].

Table 1. Published clinical trials utilizing immunocytokines.

Target Antigen Disease Cytokine
Delivered Phase Clinical Trial # Reference

GD2

Neuroblastoma
Melanoma
Sarcoma

Solid childhood tumors

IL-2 I and II

NCT00590824
NCT00082758
NCT03958383
NCT03209869
NCT01334515
NCT00003750
NCT00109863

[195–205]

Tnc A1

Breast carcinoma
AML

Solid tumors
MCC

IL-2 I and II

NCT01131364
NCT01134250
NCT02957032
NCT02054884
NCT03207191

[206–209]

EpCAM

SCLC
Prostate carcinoma
Ovarian carcinoma
Breast carcinoma

Bladder carcinoma
Kidney carcinoma
Lung carcinoma

Solid tumors

IL-2 I and II
NCT00132522
NCT00016237 [210–212]

EDB

Melanoma
RCC

NSCLC
Solid tumors

Pancreatic carcinoma
Colorectal carcinoma

DLBCL
Glioblastoma

Sarcoma
Glioma

IL-2
IL-12
TNF

I, II, and III

NCT01058538
NCT02086721
NCT01198522
NCT01253837
NCT02076620
NCT02076646
NCT04471987
NCT02957019
NCT01213732
NCT01055522
NCT04443010
NCT04032964
NCT03420014
NCT03779230
NCT04573192
NCT03705403
NCT02938299
NCT03567889
NCT01253096
NCT00625768
NCT02076633

[159,213–222]
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Table 1. Cont.

Target Antigen Disease Cytokine
Delivered Phase Clinical Trial # Reference

Histone/DNA
structures

NSCLC
Solid tumors

Pancreatic carcinoma
Urogenital carcinoma

Bladder carcinoma
NHL

Kaposi sarcoma
Melanoma

IL-2LT
IL-12 I and II

NCT04327986
NCT04235777
NCT00879866
NCT01032681
NCT04303117
NCT01973608
NCT01417546
NCT02994953

[223–227]

CEA Solid tumors IL-2v I NCT02350673
NCT02004106 [228,229]

CD20 B cell lymphoma IL-2 I and II
NCT02151903
NCT01874288
NCT00720135

[230–232]

FAP

Solid tumors
RCC

Melanoma
Pancreatic adenocarcinoma

Breast carcinoma
HNC

Esophageal carcinoma
Cervical carcinoma

IL-2v I and II

NCT03063762
NCT03875079
NCT03193190
NCT02627274
NCT03386721

[233]

PD-1 Solid tumors IL-2v I NCT04303858

Targets, diseases, delivered cytokines, trial phases, and references that describe clinical trials involving immunocytokines are listed. Antigen
targets include GD2: disialoganglioside; Tnc A1: tenascin C A1 domain; EpCAM: epithelial cell adhesion molecule; EDB: fibronectin extra
domain B; CEA: carcinoembryonic antigen; and FAP: fibroblast activation protein. Indication abbreviations are as follows. AML: acute
myeloid leukemia; MCC: Merkel cell carcinoma; SCLC: squamous cell lung carcinoma; RCC: renal cell carcinoma; NSCLC: non-squamous
cell lung carcinoma; DLBCL: diffuse large B cell lymphoma; NHL: non-Hodgkin’s lymphoma; and HNC: head and neck cancer.

EDB-specific immunocytokines with payloads of TNF, IL-2, or IL-12 have been studied
in phase I and II clinical trials. A first-in-man trial delivering TNF to solid tumors had only
grade 1–2 adverse events, except one patient with grade 3 bone pain at a site of metastasis,
and stable disease in 19/31 participants [213]. A more localized approach evaluated the
intratumoral administration of the IL-2 EDB-targeting immunocytokine in 24 stage III
melanoma patients and was well-tolerated, with complete responses seen in 44% of treated
lesions and 45% of non-treated lesions. A significant increase was seen in circulating
CD4+ T cells, CD8+ T cells, NK cells, and Tregs, and a decrease was seen in circulating
MDSCs [214]. A phase II trial incorporating anti-EDB IL-2 and TNF immunocytokines in
20 stage III and IV melanoma patients resulted in 30% of lesions experiencing a complete
response. There was increased necrosis in biopsies from the treated lesions and a significant
infiltration of CD8+ T cells [215]. This combination of EDB-targeting immunocytokines has
since progressed to phase III trials for intratumoral delivery to melanoma patients prior to
resection (NCT02938299 and NCT03567889). A phase I study for the combination of the
IL-2 immunocytokine and the chemotherapeutic agent dacarbazine in metastatic melanoma
exhibited low rates of severe toxicity, mainly grade 4 leukopenia/neutropenia and grade
3 hypotension. Of the 29 patients, 28% had an objective response to the therapy [216].
This combination progressed to a phase II trial in which 7/38 patients receiving both
therapies experienced an objective response compared to 1/22 patients receiving only
dacarbazine. The mean progression-free survival (PFS) for the two differentially scheduled
combination treatment groups was 99 days and 74 days compared to 59 days for the control
group, although this was not statistically significant. Four cases of grade 4 neutropenia
and one case of grade 4 thrombocytopenia were reported in the combination groups [217].
Further targeting IL-2 to EDB in solid tumors and RCC in a phase I/II study indicated
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tolerable toxicity with no grade 4 events and most of the grade 3 events occurring at the
higher dose. Seventeen out of 33 patients presented with stable disease, and the mean
PFS in the phase II arm was eight months, with two patients surpassing 24 months [218].
An immunocytokine utilizing a different EDB-specific antibody conjugated to IL-12 was
trialed in melanoma and RCC patients and exhibited tolerability with transient grade 3
hematological toxicity, fatigue, fainting, dehydration, and urinary frequency events. The
immunocytokine increased the circulating levels of IFN-g and CXCL10. Stable disease
was experienced in 5/13 patients, with one partial response [219]. A comprehensive list of
clinical trials involving immunocytokines for the treatment of cancer is detailed in Table 1.

5. Summary

Pre-clinical evidence is strong for targeted cytokine delivery through the immunocy-
tokine format in different indications and has led to multiple clinical trials. Few immunocy-
tokines have progressed to phase II trials, and only two (anti-EDB-IL-2 and anti-EDB-TNF)
have progressed to a larger scale phase III. Continual investigation into the optimization
of this immunotherapy with combinatorial agents could bring to light an encompassing
understanding of its therapeutic value.
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