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Abstract 

Nephrotic syndrome (NS) is a rare kidney disease resulting from malfunction of the 

primary ultra-filtration unit in the kidney, the renal glomerulus, leading to excessive 

leak of protein into urine. NS has an annual incidence of 2 and 7 per 100,000 children 

and adults, and a prevalence of 1 to 15 per 100,000 depending on the ethnicity; NS is 

more common in African and South Asian populations. However, despite its rare 

disease status, it remains one of the most common kidney diseases to affect children 

and adults. It has a devastating impact on the health of affected individuals, with 

around 20% of cases developing end stage kidney failure and 60% of the severe group 

experiencing disease recurrence post kidney transplant. 

Mendelian inheritance appears only to explain around 30% of cases. Inheritance may 

be autosomal recessive or dominant with variable penetrance and more recently X-

linked has also been described. To date, causal genetic variants have been identified 

in 67 genes in NS patients. However, the molecular genetic mechanisms underlying 

the remaining 70% remain poorly understood and are likely to fall into a complex 

genetic category. 

The aim of this study was to identify causal genetic variation of NS, focusing on the 

70% of cases currently unexplained by single mutations in previously established 

nephrotic syndrome genes. A cohort of 485 deeply phenotyped patients was available 

for analysis; all have undergone whole exome sequencing or whole genome 

sequencing. Data was analysed by applying computational approaches including 

linkage and association analyses. Based on this, a link with HLA was identified, 

confirming that despite a lack of typical inflammatory markers, NS in both children 

and adults falls into the category of an autoimmune disease. 



 5 

 

Table of Contents 

Chapter 1 – General Introduction ............................................................................ 16 

1.1 Renal system ................................................................................................... 16 

1.1.1 Kidney structure and function ...............................................................................16 

1.1.2 The glomerular filtration barrier ...........................................................................18 

1.2 Nephrotic syndrome ....................................................................................... 20 

1.2.1 Clinical definition and presentation ......................................................................20 

1.1.2 Pathogenesis ..........................................................................................................22 

1.1.3 Histology ...............................................................................................................23 

1.1.4 Treatment ..............................................................................................................26 

1.2 Clinical classification of nephrotic syndrome .............................................. 27 

1.2.1 Steroid sensitive nephrotic syndrome (SSNS) ......................................................28 

1.2.2 Steroid resistance nephrotic syndrome (SRNS) ....................................................28 

1.3 Genetics basis of idiopathic nephrotic syndrome ........................................ 29 

1.3.1 Genetics of SSNS ..................................................................................................30 

1.3.1.1 Risk alleles ..................................................................................................................32 

1.3.2 Genetics of SRNS .................................................................................................32 

1.3.2.1 Mendelian disease .......................................................................................................33 

1.3.2.2 Risk alleles ..................................................................................................................40 

1.4 Generation of human genetic variation profiles using high-throughput 

sequencing ............................................................................................................. 41 

1.4.1 Library preparation of whole exome and whole genome sequencing ..................43 

1.4.2 Sequencing of short DNA fragments using Illumina platform .............................45 

1.4.3 Alignment, variant calling and annotation ............................................................47 



 6 

1.5 Identification of disease-causing genetic variation ..................................... 48 

1.6 Aims and overview ......................................................................................... 50 

Chapter 2 – Materials and Methods ......................................................................... 52 

2.1 Study participants .......................................................................................... 52 

2.1.1 Cases .....................................................................................................................52 

2.1.2 Controls .................................................................................................................54 

2.2 Ethical approval ............................................................................................. 56 

2.3 DNA extraction and storage .......................................................................... 56 

2.4 Sequencing ...................................................................................................... 56 

2.4.1 Sample preparation ...............................................................................................56 

2.4.2 Whole exome sequencing .....................................................................................56 

2.4.3 Whole genome sequencing ...................................................................................57 

2.5 Data processing pipeline for whole exome sequencing ............................... 57 

2.5.1 Alignment .............................................................................................................60 

2.5.2 Variant calling .......................................................................................................60 

2.5.3 Joint variant calling ...............................................................................................60 

2.5.3.1 Variant Quality Score Recalibration (VQSR) .............................................................61 

2.5.4 Variant annotation .................................................................................................63 

2.5.4.1 Online databases and genome browsers ......................................................................63 

2.5.4.2 Pathogenicity prediction scores...................................................................................64 

2.6 Data processing pipeline for whole genome sequencing ............................. 65 

2.7 Data quality control ....................................................................................... 66 

2.7.1 Relatedness and ancestry ......................................................................................67 

2.8 HLA typing from WES and WGS ................................................................ 68 



 7 

2.8.1 Benchmarking of methods for HLA typing ..........................................................70 

2.9 Computational and statistical approaches to identify disease-causing 

variants using whole exome and whole genome sequencing. ........................... 72 

2.9.1 Family-based study designs ..................................................................................73 

2.9.1.1 Segregation analysis ....................................................................................................74 

2.9.1.2 Parametric linkage analysis .........................................................................................75 

2.9.1.3 Nonparametric linkage analysis ..................................................................................77 

2.9.2 Case-control association studies ...........................................................................78 

2.9.2.1 Gene-based burden test ...............................................................................................79 

2.9.2.3 Genome-wide association study (GWAS) ..................................................................81 

2.10 Other statistical methods ............................................................................. 82 

2.10.1 Fisher’s exact test ................................................................................................82 

2.10.2 Hypergeometric test ............................................................................................83 

2.10.3 Dosage analysis ...................................................................................................84 

2.10.4 Linear regression .................................................................................................84 

2.10.5 Colocalisation .....................................................................................................85 

2.10.6 Multiple testing corrections ................................................................................85 

Chapter 3 – Phenotypic description of the patient cohort ....................................... 87 

3.1 Introduction .................................................................................................... 87 

3.2 Cohort description ......................................................................................... 88 

3.2.1 Sex ratio ................................................................................................................89 

3.2.2 Ancestry ................................................................................................................91 

3.3 Disease transmission ...................................................................................... 92 

3.3.1 Sporadic cases .......................................................................................................92 

3.3.1.1 Sporadic cases with extended family sequenced ........................................................92 

3.3.2 Familial cases – description of pedigrees .............................................................93 



 8 

3.3.2.1 WES Families..............................................................................................................94 

3.3.2.2 WGS Families .............................................................................................................97 

3.4 Phenotyping of cases .................................................................................... 100 

3.4.1 Age of onset ........................................................................................................101 

3.4.2 Nephrotic syndrome type ....................................................................................103 

3.4.3 Histology .............................................................................................................103 

3.4.4 Clinical outcome .................................................................................................104 

3.5 Discussion ...................................................................................................... 104 

Chapter 4 – Evaluation of rare genetic variants disrupting coding regions of 

established SRNS genes .......................................................................................... 108 

4.1 Study design considerations ........................................................................ 108 

4.2 Results ........................................................................................................... 110 

4.2.1 Previously described variants in established genes ............................................117 

4.2.1.1 Risk alleles in APOL1 ...............................................................................................119 

4.2.2 Novel variants in established genes ....................................................................122 

4.2.3 Previously described or novel variants in established genes that are inconsistent 

with previously reported mode of inheritance .............................................................125 

4.3 Discussion ...................................................................................................... 126 

Chapter 5 – Rare genetic variants in novel candidate genes ................................. 130 

5.1 Introduction .................................................................................................. 130 

5.2 Identifying likely damaging variants per sample in novel genes ............. 131 

5.3 Family analysis ............................................................................................. 133 

5.3.1 Segregation analysis............................................................................................134 

5.3.2 Parametric linkage analysis.................................................................................136 



 9 

5.3.3 Nonparametric linkage analysis ..........................................................................139 

5.4 Case-control analysis: gene-based burden test .......................................... 142 

5.4.1 Study design considerations ................................................................................143 

5.4.2 Joint calling across samples ................................................................................145 

5.4.3 Data filtering .......................................................................................................145 

5.4.4 Results .................................................................................................................150 

5.4.5 Gene-set analysis: hypergeometric test ...............................................................155 

5.5 Discussion ...................................................................................................... 156 

Chapter 6 – Common variant predisposition to SRNS .......................................... 160 

6.1 Introduction .................................................................................................. 160 

6.2 Cohort description ....................................................................................... 161 

6.3 Data quality control ..................................................................................... 164 

6.4 Genome-wide association study .................................................................. 166 

6.5 Association analysis of classical HLA alleles ............................................. 170 

6.5.1 HLA genotypes from WES and WGS ................................................................171 

6.5.2 HLA dosage-based analysis ................................................................................171 

6.5.3 Conditional analysis ............................................................................................172 

6.6 Replication .................................................................................................... 173 

6.7 The effect of HLA-DQA1*01:02 across SRNS subphenotypes ................ 175 

6.8 Investigation of other putative SRNS genetic association signals............ 177 

6.9 Discussion ...................................................................................................... 177 

Chapter 7 – General discussion .............................................................................. 180 

7.1 Summary ....................................................................................................... 181 



 10 

7.2 Genetic heterogeneity and phenotypic variation....................................... 187 

7.3 General technical limitations ...................................................................... 189 

7.4 Future work .................................................................................................. 191 

References ............................................................................................................... 193 

 

  



 11 

Table of Figures 

Figure 1. Morphology of the kidney and schematic representation of the nephron.. 17 

Figure 2. Schematic view of the glomerular filtration system. ................................. 19 

Figure 3. Renal biopsies from patients with INS. ..................................................... 25 

Figure 4. Stratification of idiopathic nephrotic syndrome. ....................................... 28 

Figure 5. Antigen presentation by MHC class II. ..................................................... 31 

Figure 6. Venn diagram of gene overlap between podocyte enriched genes and SRNS 

associated genes. ........................................................................................................ 34 

Figure 7. The ten most commonly mutated genes in SRNS patients. ....................... 37 

Figure 8. Number of disease-associated mutations by year of publication. .............. 42 

Figure 9. Number of entries by mutation type in the HGMD database. ................... 44 

Figure 10. Generation of human genetic profiles. ..................................................... 46 

Figure 11. Breakdown of nephrotic syndrome subtypes by platforms. .................... 53 

Figure 12. Overview of the data processing pipeline for whole exome sequencing. 59 

Figure 13. Gaussian mixture model report for SNPs automatically generated by the 

VQSR tool. ................................................................................................................. 62 

Figure 14. Ts/Tv ratio by AF for cases and controls. ................................................ 67 

Figure 15. Overview of data analysis for HLA typing. ............................................. 69 

Figure 16. HLA typing accuracy comparison. .......................................................... 71 

Figure 17. Strategies for finding disease-causing variants using high-throughput 

sequencing. ................................................................................................................. 73 

Figure 18.Hypergeometric test diagram and equation. ............................................. 84 

Figure 19. Distribution of the number of heterozygous variants in chromosome X per 

sample. ....................................................................................................................... 90 

Figure 20. Principal component analysis of the SRNS cohort and percentages ....... 91 



 12 

Figure 21. Pedigree structure of the families that underwent WES. ......................... 96 

Figure 22. Pedigree structure of the families that underwent WGS.......................... 99 

Figure 23. Age of onset distribution in SRNS patients (n=366). ............................ 101 

Figure 24. Age of onset of SRNS in patients with family history and patients with 

monogenic disease. .................................................................................................. 102 

Figure 25. Analysis of known causative variants identified in the cohort. ............. 113 

Figure 26. Segregation of the variant in NUP107 (p.M101I) in Family C. ............ 118 

Figure 27. Principal component analysis of affected individuals with APOL1 risks 

alleles and their age of onset. ................................................................................... 121 

Figure 28. Pedigree structure of the Family 6 and their APOL1 risk alleles........... 122 

Figure 29. Segregation of the variant in LCAT (p.G54V) in Family 5. .................. 123 

Figure 30. Segregation of the variant in TRPC6 (p.D890N) in Family B............... 124 

Figure 31. Segregation of the variants in NPHS2 (p.R138Q and splicing variant) in 

Family G. ................................................................................................................. 125 

Figure 32. Parametric linkage analysis of Family A. .............................................. 138 

Figure 33. Nonparametric liankge analysis results from the chromosome 2 and 

chromosome 7. ......................................................................................................... 141 

Figure 34. Hypothetical pattern of variation in cases and controls across a gene... 144 

Figure 35. Case-control analysis quality control steps. ........................................... 147 

Figure 36. Coverage distribution across cases and controls.................................... 148 

Figure 37. Filtering pipeline to extract genotypes with no missingness. ................ 149 

Figure 38. Summary of the results from the two gene-based burden tests by 

chromosome. ............................................................................................................ 153 

Figure 39. Principal component analysis of the cohort comprising European SRNS 

cases (n=159) and controls (n=4405). ...................................................................... 165 



 13 

Figure 40 Summary of genome-wide association study results by chromosome. .. 168 

Figure 41. A quantile-quantile plot of GWAS summary statistics (lambda= 1.00).

 .................................................................................................................................. 168 

Figure 42. Locuszoom association plot of the GWAS results. ............................... 170 

Figure 43. Conditional analysis. .............................................................................. 173 

Figure 44. Effect size estimates for HLA-DQA1*01:02 on risk of SRNS. ............ 174 

 

  



 14 

Table of Tables 

Table 1. List of 67 genes considered directly associated with nephrotic syndrome. 38 

Table 2. NIHR BioResource study domains. ............................................................ 55 

Table 3. Variant class annotations ............................................................................. 63 

Table 4. Parametric model used in MERLIN. ........................................................... 77 

Table 5. Fisher Exact Test contingency table. ........................................................... 83 

Table 6. Families of the cohort. ................................................................................. 93 

Table 7. Previously described variants in established SRNS genes. ....................... 114 

Table 8. Novel variants in established SRNS genes. .............................................. 115 

Table 9. Previously described or novel variants in established genes with an 

inconsistent model of inheritance............................................................................. 116 

Table 10. Number of APOL1 risk alleles in cases. .................................................. 116 

Table 11. Number of variants segregating in each family....................................... 135 

Table 12. Genes with the highest variation recurrence across families. ................. 135 

Table 13. Variants with the highest evidence of linkage in the region in chromosome 

2. ............................................................................................................................... 138 

Table 14. Genes from the linkage region in chromosome 2 that are expressed in 

podocytes. ................................................................................................................ 142 

Table 15. Nonparametric linkage results per family in chromosome 2. ................. 142 

Table 16. Nonparametric linkage results per family in chromosome 7. ................. 142 

Table 17. Results from the burden test. ................................................................... 154 

Table 18. Results from the gene burden test filtering by CADD score. .................. 154 

Table 19. Parameters used in the hypergeometric test. ........................................... 155 

Table 20. Cohort description of the European WGS samples. Differential profiling in 

patients with nephrotic syndrome (n=159). ............................................................. 163 



 15 

Table 21. Number of participants in each study domain from the NIHR BioResource 

after quality control steps. ........................................................................................ 166 

Table 22. Results of the genome-wide significant analysis comparing SRNS cases 

with controls (P < 5 x 10-8). .................................................................................... 169 

Table 23. HLA allele association test results. ......................................................... 172 

Table 24. HLA-DQA1*01:02 genotypes in familial cases. .................................... 176 

Table 25. HLA-DQA1*01:02 genotypes in cases with a mutation in one of the 

establsihed SRNS genes. .......................................................................................... 176 

  



 16 

Chapter 1 – General Introduction 

 

1.1 Renal system 

1.1.1 Kidney structure and function 

The main function of the renal system is to filter blood to remove waste products and 

excreted them into urine. The kidneys are complex organs constituted by many 

specialised cells and are located in the retroperitoneal space. These organs can be 

divided into two main regions: cortex and medulla. The structural and functional unit 

of the kidney is the nephron, and an adult human kidney contains approximately one 

million of these (1). The nephrons are responsible for the filtering of the blood, waste 

removal and reabsorption of needed substances. Each nephron contains a network of 

capillaries called glomerulus where the filtering of the blood takes place and a tubule, 

that concentrates substances secreted into the urine and recovers any important solutes 

from the primary urine to the blood. The glomeruli and most of the proximal tubules 

are found in the kidney cortex whereas the medulla contains the majority of the distal 

portions of the tubules. Thus, in the medulla is where the concertation of urine is 

performed (1) (Figure 1).  

The kidney function is crucial for a healthy fluid composition in the body, correcting 

any variations that might occur due to food intake, metabolism, environmental factors 

and exercise. Thus, kidneys are responsible for the excretion of metabolic end products 

or foreign products like toxins and drugs. Additionally they also produce important 

enzymes and hormones such us renin, erythropoietin and 1,25 di-hydroxy vitamin D3 

(2). 
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Figure 1. Morphology of the kidney and schematic representation of the nephron. The kidney 

is divided into two main regions: cortex and medulla. The nephron is the structural and 

functional unit of the kidney 
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The process of urine formation begins with the blood entering the kidney through the 

renal artery into small arterioles that form a capillary tuft in the glomeruli. These 

glomerular capillaries are supported by basement membrane of highly specialised 

epithelial cells known as the glomerular filtration barrier (GFB), where waste products 

with a low molecular weight are filtered and an ultrafiltrate of plasma is formed. The 

filtered fluid is collected in the Bowman’s capsule and enter the renal tubule. Most of 

the glomerular filtrate is reabsorbed at the loop of Henle into the renal vein specially 

water and ions, although some additional substances are secreted. Then, the urine 

enters the distal convoluted tubule and finally the collecting duct, where it is 

transported through the kidney medulla to empty at the renal pelvis (Figure 1).  The 

extracellular fluid in this region of the kidney has a much higher solute concentration 

than plasma and the main function of the medullary structures is the concentration of 

urine. The final product enters the renal pelvis where is transported to the bladder and 

is finally excreted from the body. 

1.1.2 The glomerular filtration barrier 

The glomerular filtration barrier is the first filtering unit in the kidney located in the 

Bowman’s capsule in the renal cortex. The GFB is constituted by fenestrated 

endothelial cells, the glomerular basement membrane (GBM) and glomerular 

epithelial cells known as podocytes (Figure 2). Endothelial cells and podocytes share 

a protective negative charge net made by glycocalyx contributing to the permeability 

properties of the barrier (3). Therefore, the GFB is a highly sophisticated 

macromolecular sieve with size and charge restricting characteristics. Molecules with 

a molecular weight above 15-20 kDa are normally unable to traverse the barrier (4). 
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Figure 2. Schematic view of the glomerular filtration system. There are approximately 1 

million of glomeruli in the cortex of each kidney. The glomerulus is formed by multiple 

capillaries. Each capillary is constituted of fenestrated endothelium and surrounded by the 
glomerular basement membrane and podocytes.  
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The intercellular junctions form by podocytes which are called slit diaphragm, leave 

space between the cells to allow the ultrafiltration of molecules. The glomerular 

basement membrane restricts the passage of large molecules, with the podocytes and 

slit diaphragms acting as the framework to keep it in compression (5). The attachment 

of the glomerular basement membrane and podocytes is made via foot processes which 

act as a filter contributing to size limit of the GFB, as well as reinforcing it against the 

relatively high tensile forces resulting from the capillary pressure of 40mmHg. 

Additionally, podocytes are thought to have a contractile function to confer elasticity 

to the GFB. (6). Thus, the integrity of the actin cytoskeleton that keeps the podocyte 

architecture is key for the function of the glomerular filtration barrier. 

1.2 Nephrotic syndrome 

1.2.1 Clinical definition and presentation 

Nephrotic syndrome (NS) is a rare kidney disease, with an estimated annual incidence 

of 2 to 7 cases per 100,000 children and adults and prevalence of 1 to 15 cases per 

100,000 individuals depending on ethnicity and region (7). Epidemiological studies in 

the United Kingdom (UK), United States (US) and Canada have reported a higher 

incidence of nephrotic syndrome in Africans and South Asians compared to Europeans 

(8, 9). NS may occur as an isolated kidney defect known as idiopathic nephrotic 

syndrome (INS) or be part of a syndrome involving other organ systems such as 

diabetes mellitus, systematic lupus erythematosus or myeloma and lymphoma, where 

the glomerulus becomes affected as a secondary hit (10, 11). Mitochondrial diseases 

have also been linked to some of the renal manifestations present in nephrotic 

syndrome (12).  
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NS manifests clinically with various physiological changes related to abnormal fluid 

balance. It is defined by a triad of symptoms such as excessive leakage of protein into 

the urine (proteinuria), swelling of the body (oedema) and also low levels of plasma 

albumin (hypalbuminaemia). Mostly NS symptomatology is a sequence of connected 

events: proteinuria leads to low levels of plasma albumin and a decrease of the 

intravascular oncotic pressure resulting in sodium retention and movement of water 

into the interstitial space to cause nephrotic oedema. The loss of other key plasma 

components into urine leads to metabolic disturbances like  dyslipidaemia, a pro-

thrombotic tendency, anaemia and low vitamin D (13). 

A diagnosis of nephrotic syndrome is established by blood and urine investigations 

and if indicated, a kidney biopsy. Ranges vary but generally, proteinuria is confirmed 

when the protein excretion is more than ≥3.5 g/day and the protein-to-creatinine ratio 

> 2000 mg/g. Urinary protein loss is a prognostic biomarker and is considered an 

independent risk factor for cardiovascular morbidity and mortality. Hypoalbuminemia 

is confirmed when serum albumin <30 g/L. Additionally, some patients present severe 

hyperlipidaemia with elevated cholesterol cholesterols >10 mmol/L. Although renal 

biopsy in patients with NS might be useful for treatment and prognosis especially in 

adult disease, it is not performed on most paediatric patients who are initially 

responsive to treatment, as it has been found to be of limited benefit (14, 15). Current 

guidelines advocate renal biopsy in nephrotic syndrome individuals that do not 

respond to treatment at all ages, and if atypical features are present such as haematuria, 

hypertension or extra-renal features either compatible with a syndrome or multisystem 

disease which may be suggestive of a secondary NS (16, 17). Renal biopsy remains 

an integral part of the management of patients with adult-onset nephrotic syndrome in 

view of the higher incidence of secondary causes such as membranous nephropathy 
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and other pathologies such as IgA nephropathy, and in differentiating atypical 

presentations of proteinuria in childhood masquerading as NS. 

1.1.2 Pathogenesis 

The molecular pathogenesis of INS results from malfunction of the first filtering unit 

in the kidney, the glomerular filtration barrier. As previously mentioned, the GFB is a 

highly sophisticated macromolecular sieve with size and charge restricting 

characteristics (18). It allows free flow of water and small solutes but restricts the 

transit of molecules >15 kDa. In NS, there is a disruption of the permselective 

properties of the GFB allowing the loss of important proteins leading to further 

disruption of body homeostasis (19). While damage to any of the three components of 

the GFB, fenestrated endothelium, extracellular glomerular basement membrane or 

podocytes, results in kidney disease, podocytes appear to be the main cells targeted by 

injury and have a central role in the initiation and progression of glomerular disease 

(20). Podocyte damage or loss is hard to restore due to the limited capacity of cell 

regeneration. However, the causes leading to podocyte disruption remain unclear in 

INS as well as the underlying mechanisms that allow the recovery of the podocyte 

function using immunosuppression treatment (19). 

The efficacy of different immunosuppressive treatments including steroids in many 

patients indicates the importance of the immune system in the pathogenesis of INS. 

Abnormal function of T lymphocytes had been shown in some patients with an 

increase of CD8+ cells and a decrease of CD4+ circulating T cells, during active phases 

of disease (7, 21). B cells are also another potential immune candidate as treatment of 

INS patients targeting CD-20 antigen on the surface of B cells, significantly reduces 

the number of relapses (22). Moreover, disease onset and relapses are frequently 
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triggered by infectious diseases, mainly viral, or allergic episodes suggesting that the 

activation of the immune system plays an important role in INS (21). 

An unknown “circulating factor” has also been hypothesised to be involved in the INS 

pathogenesis by increasing the permeability of the GFB to albumin. Evidence of this 

phenomena have emerged after some patients experience disease recurrence post 

kidney transplantation from a healthy donor (23). Additionally, clinical and in-vivo 

studies have shown that injection of plasma from INS patients induces proteinuria 

(24). Recent data on the efficacy of a new technique for treatment of individuals with 

nephrotic syndrome recurrence post renal transplant, Liposorber LDL apheresis, 

supports that this may be a lipid related molecule (25). 

1.1.3 Histology 

Examination of renal biopsies from patients with INS have identified different 

histological appearances: minimal change disease (MCD), focal segmental 

glomerulosclerosis (FSGS), membranous nephropathy, membranoproliferative 

glomerulonephritis (MPGN) and complement 3 glomerulopathy (C3G) (13) (Figure 

3). MCD is seen in the majority of nephrotic syndrome diagnosis that response to 

treatment especially in childhood. Here the glomeruli appear normal under light 

microscopy but loss and fusion of podocyte foot processes are evident on electron 

microscopy. In contrast, FSGS is more frequently but not exclusively associated with 

affected individuals that response poorly to steroids. The pathological changes that 

take place develop focally (not in all glomeruli) and segmentally (only in parts of a 

glomerulus) and are visible with light microscopy (26). Membranous nephropathy is 

less common in nephrotic syndrome cases and very rare in children. It is characterised 

by immune complex deposits located between podocytes and the GBM (27). 
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Moreover, there are other histological variants of INS such as tubular dilatation or 

diffuse mesangial sclerosis (DMS), but they are not frequent (28). 

Historically, the first clinical classification of INS was based on histological findings 

aligned with outcome and response to treatment. MCD was thought to be associated 

with good prognosis and response to treatment, whereas FSGS was associated with 

the worst outcome and resistant to treatment (29). Whilst this is very broadly true in 

simple nephrotic disease, the pathology may be more complex with recent studies 

providing evidence supporting a common aetiology for MCD and FSGS, suggesting 

they are different manifestations of the same progressive disease. Thus, patients with 

MCD can develop FSGS over time (30, 31). Overall, response to injury is influenced 

by multiple factors such as type of disease, treatment or genetic background, with 

some cases progressing to renal scarring, whereas others manage the initial localised 

insult and progress to repair (32). 
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Figure 3. Renal biopsies from patients with INS. Histopathology slides from children with 

MCD, FSGS and membranous nephropathy. Image taken from Eddy AA et al (13).  
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1.1.4 Treatment 

At present, only non-directed treatment strategies centred on generalised 

immunosuppression are available. These alleviate symptoms and minimise 

complications but rarely result in a ‘cure’ (33).  The standard initial treatment for INS 

is corticosteroid therapy, normally given as oral prednisone for at least 4 - 6 weeks. 

The time from onset to remission is considered an important prognostic factor for the 

disease in the sense that response in children should be seen within this time (34). In 

adults, technically 4 months is considered the cut off for classifying the patient as 

steroid resistant. Patients that experience frequent relapses or steroid dependency 

require steroid-sparing agents such as levamisole, mycophenolate mofetil (MMF) and 

tacrolimus, individually or in combination (33). According to UK NICE guidelines, if 

these steroid sparing agents are ineffective, patients are treated with a chimeric 

monoclonal antibody called rituximab that targets CD-20 antigen on the surface of B 

cells depleting the activation of these cells (35). This is often successful in arresting 

disease progression. For patients who fail to respond and are classed as resistant to 

conventional therapy, low-density lipoprotein (LDL) apheresis using the Liposorber 

system may be offered (25). Management of INS varies depending on patient’s 

condition and side effects, drug efficacy, clinician’s preference and drug availability 

by country. However, all of these drugs have the main objective to achieve long term 

nephrotic remission by either decreasing the activation of immune cells (36) or in 

some instances potentially by direct action on podocytes (37). 

Long term outcomes for INS patients vary depending on response to treatment. 

Around 5 – 10 % patients achieve complete remission after initial treatment with 

prednisolone alone. However, the vast majority will require further courses of 

prednisolone and/or a second-line agent to reach remission. Patients who experience 
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frequent relapses and develop secondary treatment resistance, and do not respond to 

rituximab, have a future risk of end-stage renal disease (ESRD) and require renal 

replacement therapy (38, 39). If this leads to kidney transplant, cases have a 60% risk 

of disease recurrence in the graft, especially if initially, some treatment response was 

observed (40). 

1.2 Clinical classification of nephrotic syndrome 

Response to steroid medication has led to an arbitrary classification of INS: steroid 

sensitive nephrotic syndrome (SSNS) or steroid resistant nephrotic syndrome (SRNS). 

However, many patients have an initial response to treatment (around 50% in 

childhood) but then unpredictably, develop subsequent resistance to steroids, known 

as secondary SRNS, for reasons that are currently unclear, and these may progress to 

total treatment resistance. Thus, it is increasingly recognised that the divide is often 

artificial and not specifically indicative of the underlying pathology (Figure 4). 
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Figure 4. Stratification of idiopathic nephrotic syndrome. Based on response to treatment INS 

can be classified into two groups: SSNS and SRNS. Some patients do not response to 

treatment also known as primary SRNS whereas others do response initially but later develop 

a resistance to steroids knowns as secondary SRNS 

1.2.1 Steroid sensitive nephrotic syndrome (SSNS) 

SSNS is responsible for 80-90% of total cases of the disease and responds to 

immunosuppressive agents like corticosteroids and calcineurin inhibitors. The 

histological subtype most common is MCD (41). Although the majority of patients 

achieve remission after treatment, clinical course varies with different relapse rates 

often accompanied by dependence on steroid administration (42). At least half of the 

patients experience frequent relapses that can lead to steroid dependency and 

complications, such as increased morbidity and poor quality of life. However, less 

than 5% of SSNS patients progress to end-stage renal disease (43).  

1.2.2 Steroid resistance nephrotic syndrome (SRNS) 

Around 10-20% of INS cases do not respond to steroid within 4 weeks in childhood 

and 4 months in adults, and as such are classed as steroid resistant (SRNS). Primary 
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SRNS is defined as non-response to prednisolone within 4 -6 weeks in children and 4 

months in adults, whereas secondary SRNS occurs when responsiveness to 

prednisolone or other steroids is lost at some point in the therapeutic pathway. Those 

cases that do not respond to steroids may be multidrug resistant and also not response 

to other immunosuppressant agents (44). However, some cases may still respond to 

drugs, suggesting that the steroid resistant phenotype is not an absolute. Primary 

SRNS constitutes the third most prevalent cause of ESRD in the first two decades of 

life (45). The most common histological subtype is FSGS, although patients may have 

MCD at disease onset and before developing FSGS lesions. Rare forms of inherited 

nephrotic syndromes such as diffuse mesangial sclerosis (DMS) and Finnish Type 

congenital nephrotic syndrome may be found in early life. Additionally, 

approximately 33% of SRNS patients experience disease recurrence post kidney 

transplant (40). 

1.3 Genetics basis of idiopathic nephrotic syndrome 

INS is a heterogeneous disease, as genetic and environmental factors do play a role in 

modulating phenotype. The identification of disease-causing mutations has improved 

our understanding of the pathogenesis of INS. As phenotypes can vary, conventional 

clinical assessment and diagnostic techniques may not provide complete answers. As 

such, genetic testing can be crucial in the clinical setting as an adjunct to diagnosis 

and subsequent management of patients with nephrotic syndrome (19). Some gene 

mutations may also stratify cases and have prognostic value helping identify 

guidelines on treatment selection. 
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1.3.1 Genetics of SSNS 

While specific loci are known or suspected to increase the risk of SSNS, only one 

single gene defect has been described as a cause of Mendelian forms of SSNS, EMP2, 

which was detected as causative in autosomal recessive inheritance (46, 47). However, 

other studies in familial SSNS did not find any link with EMP2 or other genes that 

could be responsible for monogenic forms of the disease despite previous described 

associations (48). A genetic predisposition has been suspected since different 

epidemiologic studies have reported multiple families with different generations 

affected by SSNS. Additionally, there are families with a combination of affected 

members that are steroid sensitive and steroid resistant (46, 49). Thus, patients might 

share a common genetic factor that predisposes to SSNS but in response to yet 

unidentified environmental triggers, could develop different reaction to treatment. A 

study of 59 SSNS families identified variants associated with disease in the human 

leukocyte antigen (HLA) region, precisely in the HLA-DQ gene, implying the 

importance of the adaptive immunity in the molecular mechanisms of SSNS (47). 

The HLA region, also known as the major histocompatibility complex (MHC), is the 

most polymorphic region in the entire genome and it has been associated with the 

greatest number of human diseases, including immune-mediated renal diseases (50). 

The HLA locus contains a cluster of genes that are crucial for the immune system 

function. It is divided into three subclasses of genes: class I; HLA-A,-B and -C, class 

II; HLA-DR,-DQ, and -DP and class III; TNF, HSP70 and C2-C4 (51). In addition to 

being a gene-rich and extremely polymorphic region with considerable variation 

across different populations, it has an extensive linkage disequilibrium (LD) (52). This 

results in multiple genetic markers being coinheritance because they are nonrandomly 

associated due to their close proximity. Therefore, these genomic characteristics make 
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the accurate identification of the exact alleles responsible for disease signals very 

challenging.  

HLA class II genes have long been associated with SSNS, although the molecular 

mechanisms of how these genes are involved in the pathogenesis of the disease remain 

unknown (47).  HLA class II molecules are only expressed by antigen-presenting cells 

(APCs), such as dendritic cells, mononuclear phagocytes and B cells. Their function 

is to present self or foreign peptides to CD4+ T cells, helping the adaptive immune 

system to send an appropriate response to infection while maintaining immune 

tolerance to self-antigens (Figure 5) (50, 51). Thus, it has been hypothesised that 

antigen presentation might be in some way impaired in SSNS patients (53). 

 

Figure 5. Antigen presentation by MHC class II. HLA class II molecules are only expressed 

by antigen presenting cells (APCs) such as B lymphocytes, dendritic cells and macrophages. 

A fragment of a foreign peptide is phagocytosed inside the B cell and transported to the cell 

surface to be presented to T cells.  
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1.3.1.1 Risk alleles 

Genome-wide association studies (GWAS) have also been used to shed light into the 

aetiology and pathogenesis of SSNS. The increasing abundance of good quality 

patient genomic data available has facilitated the discovery of combinations of 

common genetic variants that are known to increase the risk of having rare and 

complex disorders. This approach uses genotype data from a cohort of individuals that 

share same phenotype to identify alleles that are present in greater or lower frequency 

compared to an unaffected ethnically matched control population. To date, at least 

three independent GWAS studies have reported an association with HLA-DR/DQ 

region and SSNS in children and adults of European and also Japanese ethnicity. 

Specifically, using HLA imputation the studies described risk and protective alleles in 

HLA-DQA1 and HLA-DQB1. These loci explained 6-10% of the genetic risk for SSNS 

(54-56).  

1.3.2 Genetics of SRNS 

Advances in high throughput sequencing technologies have resulted in sequencing 

cost declining making possible the screening of patients at first presentation with 

SRNS for a monogenic cause of disease. As a result, targeted panel, whole exome 

(WES) and whole genome sequencing (WGS) have become widely used for the 

identification of disease associated genes in SRNS (57). Genetic diagnostics provides 

important information to better stratified SRNS, improving treatment and transplant 

management. Studies of Mendelian forms of SRNS suggest patients do not response 

to immunosuppressive agents and are less likely to present recurrent disease after 

transplantation compared to those without a known monogenic cause (58). 

  



 33 

 

1.3.2.1 Mendelian disease 

The majority of genes responsible for monogenic forms of SRNS were identified by 

studying family pedigrees through linkage analysis. When sequencing data from large 

family pedigrees are available, genetic variants can be studied for segregation with 

disease status. This approach narrows the search space for the causative variant, as it 

is expected to segregate with the phenotype status within the family, therefore variants 

present in unaffected members can be discarded (59). Additionally, consanguineous 

families have been particularly effective in increasing the statistical power to identify 

novel or known pathogenic variants using homozygosity mapping. Monogenic SRNS 

can be autosomal recessive (AR) or autosomal dominant (AD), with variable 

penetrance and more recently X-linked has also been described (60, 61). Typically, 

early onset of the disease tends to be caused by mutations in kidney developmental 

genes, resulting in malformation of GFB, generally under an autosomal recessive 

model with high penetrance. In contrast, later onset of the disease more frequently 

affects genes responsible for the regulation of the actin cytoskeleton in the podocytes, 

under autosomal dominant inheritance with incomplete penetrance (62). Here the 

phenotype may be more variable through incomplete penetrance. 

The discovery of the first mutations in genes reported to be causal for Mendelian 

SRNS was crucial in understanding the importance of the podocyte dysfunction in the 

pathogenesis of the disease. Various genetic mutations were shown to cause podocyte 

abnormalities. Often studies use terminology loosely when describing established 

SRNS genes as “podocyte genes” even when these are not specific or highly expressed 

within this cell type. Furthermore, not only the podocyte function is disrupted in 
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SRNS, but also the signalling crosstalk mechanisms with other glomerular cell types, 

potentially influenced by epigenetic events and unknown pathogenic events (63) 

(Figure 6).  

 

Figure 6. Venn diagram of gene overlap between podocyte enriched genes and SRNS 

associated genes. The pink circle represents 673 podocyte enriched genes and the green circle 

67 genes directly associated with SRNS. There is an overlap of 22 genes between the two 

groups shown in yellow.The list of genes in which it expression was enriched in human 

podocytes was extracted from single cell RNA-Seq data from the studied made by Gillies CE 

et al (64). 

The WT1 gene, was originally identified in 1990 as a candidate gene for Wilms’ 

tumour through studies of patients with 11p13 deletions causing WAGR syndrome 

(Wilms’ tumour, anirida and genitourinary abnormalities) (65). WT1 encodes an 

ubiquitously expressed transcription factor with a regulating domain (exons 1-6) and 

a DNA binding domain (exon 7 – 10). Beyond being a tumour suppressor gene, WT1 

has a key role in the control of genitourinary development. Nonetheless, it was not 

until 1991 when mutations in WT1 were detected mostly within exon 9 under 

autosomal dominant inheritance in patients with Denys-Drash syndrome (DDS), 

which is characterised by SRNS, intersex and Wilms’ tumour (66, 67). With further 

molecular genetic analysis the spectrum of WT1 mutations was expanded to a related 
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and equally rare condition that also presents with SRNS, Frasier Syndrome, a triad of 

SRNS, intersex and gonadoblastoma (68, 69). The examination of related phenotypes 

from apparently different disorders detected an overlap at a molecular level since cases 

of familial Frasier syndrome in one generation followed by Denys Drash in the next 

(70, 71). 

NPHS1 and NPHS2 were subsequently cloned in 1998 and 2000 respectively and 

found to cause autosomal recessive congenital nephrotic syndrome (CNS) and 

autosomal recessive early onset SRNS (72, 73). NPHS1 mutations cause massive 

proteinuria by resulting in a developmental defect of the GFB. Whilst proteinuria is 

detectable from birth, the oedema may not appear until 6 weeks of age once glomeruli 

start to mature. NPHS1 encodes nephrin, a transmembrane protein member of the Ig-

superfamily of adhesion molecules. It has complex mechanisms of action including 

participation in multiple protein-protein interactions, a role in autophagy, cellular 

signalling and is a key component of the slit diaphragm junctions located between 

podocytes within the GFB. NPHS1 mutations result in disruption of protein and 

malformation of slit diaphragms in the kidney. Through a founder effect, NPHS1 

mutations are causative in 98% of Finnish children with this syndrome (CNS Finnish 

Type I), although non-Finnish cases have a lower incidence and are genetically more 

heterogeneous (74). NPHS2 is the only established SRNS gene exclusively expressed 

in the podocytes and encodes a membrane protein called podocin. Mutations in this 

gene have been associated with SRNS under an autosomal recessive model of 

inheritance which may be familial or rarely sporadic through de novo mutations (75). 

Dysregulation of podocin protein function leads to alterations in the slit diaphragm 

architecture (73). Podocin also has multiple functions such as protein-protein 
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interactions including with the intracellular domains of nephrin helping to recruit to 

lipid rafts, important signalling platforms within the podocyte membrane (76). 

Another gene that was discovered to be mutated in patients with early onset nephrotic 

syndrome LAMB2. Mutations in LAMB2 are detected in patients with Pierson’s 

syndrome, characterised by early onset SRNS that rapidly progresses to ESRD and 

ocular abnormalities (77, 78). Laminins are one of the most predominant components 

in the glomerular basement membrane and they play an important role in cell motility 

and adhesion (79) 

Together, mutations in NPSH1, NPHS2, WT1 and LAMB2 are responsible for a 66.3% 

of congenital nephrotic syndrome cases at first year of age (80, 81).  However, from 

the very first causal gene discoveries in SRNS primarily based on traditional positional 

cloning techniques, advances in next generation sequencing technology over the last 

20 years including whole exome and whole genome sequencing have dramatically 

enabled new disease gene discovery, at times in the absence of large and interbred 

pedigrees. Consequently, the list of genes causing nephrotic syndrome has 

dramatically increased. Currently, mutations in at least 67 genes have been reported 

to cause SRNS (Table 1). Despite the genetic heterogeneity, mutations in NPHS1 and 

NPHS2 are responsible for approximately 44% of the SRNS cases reported in the 

literature partly through reporting bias in childhood disease (Figure 7). Whilst 

identifying the prevalence of mutations in rare diseases is problematic, a lack of 

replication in wider cohorts of SRNS raises the question whether some more recent 

SRNS genes specifically those identified in highly interbred families, may actually be 

segregating with the family rather than disease especially in the absence of 

confirmatory functional data. 
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Overall, only 30% of patients with family inherited or early onset have a monogenic 

mutation in one of the established SRNS genes documented in the literature (82). 

Despite the possibility that some mutations have been missed, or exist in genes that 

have not yet been discovered, this supports an emerging hypothesis that many SRNS 

cases may not follow Mendelian patterns of inheritance especially in sporadic cases 

with an absent family history. 

 

Figure 7. The ten most commonly mutated genes in SRNS patients. A total of 896 mutations 

have been reported for the phenotype ‘Nephrotic syndrome, steroid resistant’ in HGMD 

2020.4 release (83). The breakdown of the ten genes with the highest number of mutations is 

showned in the barplot. The ‘other’ label represents the sum all of the mutations found in 57 

genes known to cause SRNS. 
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Table 1. List of 67 genes considered directly associated with nephrotic syndrome. 

Gene Model Disorder 

Slit diaphragm associated and adaptor proteins  

NPHS1 AR CNS/NS           

NPHS2 AR CNS/NS  

PLCE1 AR Early onset NS          

KIRREL1 AR NS 

CD2AP AR Early onset NS, HIV nephropathy        

FAT1 AR NS, Hematuria, Tubular ectasia 

Actin cytoskeleton components  

ACTN4 AD Adult onset NS         

INF2 AD NS, Charcot-Marie-Tooth         

MYH9 AD Adult onset NS        

MYO1E AR FSGS      

ARHGDIA AR CNS/NS           

ARHGAP24 AD Adult onset NS         

ANLN AD Adult onset NS         

MAGI2 AR NS 

PODXL AD NS       

SYNPO AD  FSGS  

KANK1 AR Early onset NS          

KANK2 AR Early onset NS          

KANK4 AR Early onset NS          

NPHP1 AR Early onset NS          

ANKFY1 AR NS, CKD 

GSN AD NS, Amyloidosis 

GAPVD1 AR NS, CKD 

ITSN2 AR NS 

DLC1 AR NS 

TBC1D8B AR NS 

AVIL AR NS 

NEIL1 AR NS 

Glomerular basement membrane proteins 

LAMB2 AR 
Pierson syndrome, CNS with ocular 

abnormalities 

ITGB4 AR NS     

ITGA3 AR Epidermolysis bullosa and NS     

CD44 AR Pretibial bullous skin lesions, NS 

COL4A1 AD/AR NS          

COL4A3 AD/AR Alport disease          

COL4A4 AD/AR Alport disease          

COL4A5  X-linked recessive Alport disease          

FN1 AD Glomerulopathy 

LAMA5 AR NS        
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Apical membrane proteins  

TRPC6 AD Adult onset NS         

EMP2 AR Early onset NS          

 Nuclear proteins 

WT1 AD Denys-Drash Syndrome, Early onset NS            

LMX1B AR NS, Nail-Patella Syndrome     

SMARCAL1 AR Schimke immuno-osseous dysplasia         

PAX2 AD Adult onset NS         

LMNA AD NS, Familial partial lipodystrophy      

NXF5 X-linked recessive NS, Heart block disorder     

NUP85 AR NS, FSGS 

NUP93 AR NS, FSGS 

NUP107 AR NS, FSGS 

NUP133 AR NS, FSGS 

NUP160 AR NS, FSGS 

NUP205 AR NS, FSGS 

XPO5 AR Early onset NS 

Mitochondrial proteins  

COQ2 AR Mitochondrial disease, Nephropathy         

COQ6 AR NS, Deafness        

PDSS2 AR NS, Leigh syndrome          

COQ8B  AR CNS 

Other intracellular proteins  

APOL1 AR Adult onset NS        

PTPRO AR Early onset NS 

CRB2 AR Early onset NS          

DGKE AR NS, Hemolytic-uremic syndrome 

ALG1 AR Congenital disorder of glycosylation        

CUBN AR NS, Epilepsy      

TTC21B AR NS with tubulointerstitial involvement        

WDR73 AR Galloway-Mowat Syndrome          

SGPL1 AR NS 

LCAT AR NS 
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1.3.2.2 Risk alleles 

In 2010, a genome-wide association study identified two risk alleles in APOL1 that 

were significantly associated with FSGS and chronic kidney disease in the African 

American population (84). This study was possible because of genomic resources 

from the 1000 Genomes Project (1KGP) (85). The international efforts performed by 

the 1KGP established a catalogue of human variation from diverse ancestry allowing 

the study of common and rare variants in the African population. Findings were then 

replicated in other studies demonstrating the two variants account for some of the 

excess risk of kidney disease in Africans compared to Europeans (86).  

Both risk alleles are coding variants that lead to amino acid changes that alter the 

function of APOL1. They are normally described as: G1 allele, two non-synonymous 

single nucleotide polymorphisms (rs73885319, rs60910145) and G2 allele, in-frame 

deletion of two amino acid residues (rs71785313). Inheritance of two risk alleles leads 

to an increased risk of FSGS and CKD, whereas inheritance of one risk allele causes 

a much smaller risk. Thus, both alleles have a recessive model of inheritance (84). 

Additionally, a much smaller effect is found in patients with heterozygous G1 

compared with heterozygous G2 (87). The allele frequencies of G1 and G2 in the 

African population are 0.22 and 0.13 respectively. Approximately 13% of African 

Americans have any of the two APOL1 risk alleles (G1+G1 or G2+G2) causing a 7-

to-30-fold increased risk of renal disease (88). These variants are common and also 

have large effects on disease susceptibility. 
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1.4 Generation of human genetic variation profiles using 

high-throughput sequencing 

The next milestone in human genetics after the publication of the first draft sequence 

of the human genome in 2001 (89), was the development of massive parallel 

sequencing technologies known as “high-throughput sequencing” in 2005. This was 

enabled by two ground-breaking studies that revolutionised the field of genetics by 

describing a method that allowed accurate sequencing of the entire bacterial genome 

(90, 91). This technique based on PCR allows the amplification and sequencing of 

multiple DNA fragments simultaneously, increasing the speed and reducing the 

overall cost. Before which, Sanger sequencing was the methodology that dominated 

the genome sequencing field, where only a single DNA fragment was processed at a 

time. 

Affordable genome-scale sequencing has revolutionised the medical sector increasing 

the understanding of the molecular genetic basis of multiple diseases, especially 

Mendelian disorders (92). This technology allows the study of human genetic 

variation where genomes from patients can be compared with healthy individuals in 

order to identify disease causing mutations. Thus, the catalogue of genetic variants 

underlying human diseases, in monogenic and complex conditions, has changed 

medical decisions and treatments, making possible a personalised medicine (92-94) 

(Figure 8). 
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Figure 8. Number of disease-associated mutations by year of publication. The cumulative 

number of mutations reported in the Human Gene Mutation database (HGMD) each year from 

1980 to 2020. Following the development of high-throughput technologies the number of 

disease-associated mutations has increased dramatically, effectively doubling since 2010 

(Data source obtained from the HGMD website). 

High-throughput sequencing encompasses a number of different methodologies that 

share the following steps: library preparation, cluster generation, sequencing and data 

analysis. Each technique uses specific protocols to transform raw data into meaningful 

information, and the output varies depending on the platform used (95). Illumina 

sequencing platform has been the most successful and has generated more than 90% 

of the world’s sequencing data (96). Sequencing technologies can be divided into two 

main categories depending on read length where data output can have long or short 

reads (97). Some regions of the genome are highly complex with multiple long 

repetitive elements that are undetectable using short read strategies. Thus, long-reads 

are preferred to map these complexity regions in a single continuous read. However, 

short reads are cheaper and less prone to error. 
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1.4.1 Library preparation of whole exome and whole genome sequencing 

High-throughput sequencing can be applied to entire genome known as whole genome 

sequencing (WGS) or to specific genomic regions that encode proteins known as 

whole exome sequencing (WES). The human genome contains 180,000 exons and 

they constitute just 1% of the total (~30 Mb) (98). The exomes encompass all the 

annotated protein coding genes that number approximately ~22,000 (99). Restricting 

the size of the genomic material studied enables the sequencing of more individuals at 

a deeper depth and in a lower cost. Majority of alleles that are known to underlie 

Mendelian disorders lie on the exon regions of the genome, altering the protein folding 

and other cellular processes (Figure 8). Furthermore, the output data generated by 

WES is easier to store and quicker to analyse and process (100). Despite being a cost-

effective option, the analysis of exomes also presents limitations as it does not assess 

the impact of non-coding variants, especially regulatory regions. Ascertainment of 

disease causing single-nucleotide (SNV) and structural variants (SV) is less reliable 

in WES compared with WGS (101, 102). 
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Figure 9. Number of entries by mutation type in the HGMD database. HGMD does not 

include either somatic or mitochondrial mutations. More than 90% of mutations reported are 

located in the coding regions also known as coding sequence (CDS). 

Over the last ten years, exome sequencing and low-coverage whole-genome 

sequencing have been used to study the human genetic variation within genome 

profiles. A typical individual’s genome differs from the reference human genome at 

approximately 4.1 to 5.0 million sites (103). The majority of the variants are single 

nucleotide changes and short indels that are frequently found in the population of the 

sample. The total number of sites that differ from the reference genome varies 

dramatically depending on the population ethnicity (104). Profiles from African 

ancestry contain greater variation with the highest number of non-reference sites, 

consistent with the demographic history of human origins (105). 

The first step in the sequencing process for WES and WGS is the library preparation, 

required to generate the template that will be use for the sequencing reaction (106) 

(Figure 9). Genomic DNA is extracted in laboratory from blood samples and checked 
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for high quality. Once purified, the DNA is randomly cut into small fragments of 

similar length (~150 bp) by sonification leaving the double strand with uneven ends 

where one strand has a few base pairs more than the other. In order to repair the uneven 

ends, a single adenine base is added to form an overhang also known as A-tailing 

reaction. Subsequently, the DNA fragments are linked to specific sequences of a 

couple of base pairs long called adapters (Figure 10). These adapters are crucial to 

start the DNA reading reaction in downstream analyses but also for the identification 

of samples, as they contain a specific barcode sequence for each sample. When whole 

exome sequencing is conducted an extra step is required in order to capture the coding 

regions of the genome. An in-solution capture method developed by Agilent was used 

on the samples studied in this dissertation (107). This technology uses a pool of custom 

RNA oligos known as probes to selectively hybridise to exons in the genome (Figure 

10). These probes are biotinylated and bind to special magnetic streptavidin beads in 

the solution, allowing to wash away the parts of genome that are not exons. Lastly, the 

overall template of DNA fragments generated by the genomic library is attached to a 

solid surface containing multiple flow cells where billions of sequencing reactions 

take place simultaneously (108). 

1.4.2 Sequencing of short DNA fragments using Illumina platform 

Illumina is the most widely used platform for short-read sequencing technology with 

a wide range of protocols where the read length goes up to 300 bp. Illumina dye 

sequencing is achieved by solid-phase bridge amplification and a ‘sequencing by 

synthesis’ approach (95) (Figure 9).  The aim is to amplify the DNA fragment 

generating hundreds of identical strands of DNA. 
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Figure 10. Generation of human genetic profiles. Diagram showing the most important steps 

of whole exome sequencing: library preparation, exome capture, bridge amplification and 

sequence by synthesis. For whole genome sequencing the same steps are followed except for 

the exome capture. Some of the images were adapted from Goodwin S et al and Hardwick SA 
et al (95, 109)  
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After the library preparation, the ligated products are denatured and attached to a flow-

cell surface. Each fragment is then amplified into distinct clonal clusters via bridge 

amplification (110). Multiple cycles of annealing, extension and denaturation happen 

resulting in clonal amplification of all fragments all over the flow cell simultaneously. 

Once the clonal amplification is complete, the templates are ready for sequencing. The 

DNA polymerase adds a fluorescently tagged dNTP to the DNA strand at a time. After 

each round, the single base incorporated in the DNA fragment is detected by a 

sequencing machine that reads the fluorescent signal as the four bases (adenine, 

thymine, guanine, cytosine) have an unique emission. The result is highly accurate for 

base by base sequencing (95). 

1.4.3 Alignment, variant calling and annotation 

The raw data generated by the sequencing process requires a series of processing and 

quality control steps before embarking on downstream genetic analyses. The output 

data is stored in a FASTQ file  (111) (Figure 10), which is a common file format for 

sharing sequencing data containing the DNA sequence also known as read and quality 

scores. The PHRED software (112) assigs a quality score for each base estimating the 

probability of error and is calculated as: 

𝑄𝑃𝐻𝑅𝐸𝐷 =  −10 𝑥 𝑙𝑜𝑔10 (𝑃𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑏𝑎𝑠𝑐𝑒 𝑐𝑎𝑙𝑙) 

The bases with a low-quality score (PHRED <20) are trimmed from the reads. The 

first step is to align the reads from the FASTQ file to a reference genome (112). All 

samples studied in this dissertation were aligned to GRCh37 (Genome Reference 

Consortium human build 37). Reads are analysed in order to find fragments with 

overlapping areas, called contigs, and compared to the reference genome for variant 

identification. The aligned reads are then stored in Binary Alignment Map (BAM) file 
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format (113). There are multiple quality control (QC) steps that take place at this stage 

where the duplicates from the PCR reaction are removed, the GC content and the 

strand bias is reported to identify potential contaminations and the quality scores are 

recalculated. Variant calling is then performed by identifying the positions of the 

positions of the reads that differ from the reference genome. Variants are normally 

stored in Variant Call Format (VCF) file (114). The number of variants identified 

through WES and WGS varies depending on many factors such as the technology 

used, variant calling approach, coverage and ethnicity of the samples. The total 

number of variants ranges from ~90,000 in the exome regions to 4 million variants in 

whole genome (85, 115, 116). Finally, some annotation can be added to each variant 

to facilitate genetic analyses, specifically for disease-associated gene discovery. 

Often, variants are annotated with population-based allele frequencies for each allele 

and the prediction of the consequence of the variant at a protein level (missense, 

splicing…) (117). Additionally, scores for pathogenicity prediction can be added too.  

1.5 Identification of disease-causing genetic variation 

The interpretation of the thousands of variants that are identified by high-throughput 

sequencing technologies remains challenging as genes fall along a spectrum of 

pathogenic and benign variation. While successful gene discovery can lead to a better 

understanding of the disease and improve the clinical care for patients, the analysis of 

genomes or exomes without the right evidence framework can lead to false positives 

(118). Statistic evidence is required in order to identify a causal relationship between 

a gene and phenotype. Thus, a causal variant must be significantly enriched in cases 

compared to controls (119).  
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When the phenotype being studied is a monogenic disorder some assumptions are 

generally made for the searching of causative mutations. In Mendelian diseases, a 

single mutation is sufficient to cause the disease. The causal variant must be rare in 

the general population and is likely to affect the function of the protein encoded by the 

gene. Additionally, individuals that carry the mutation present the phenotype (also 

known as complete penetrance) and the same gene must be mutated in other unrelated 

affected individuals. Therefore, variants with a high allele frequency for the 

populations with the same ancestry to the patients studied are normally rejected. 

Coding regions of the genome are prioritised and synonymous variants that are not 

expected to have an effect on the resulting protein product are discarded (120). 

Furthermore, the suspected model of inheritance of the disease is also taken into 

consideration and variants can be filtered on zygosity; if a dominant model is assumed 

only variants that are heterozygous would be considered. 

In 2015 the American College of Medical Genetics (ACMG) published the first 

guidelines on the clinical interpretation of variants identified in patients (121). Since 

then, these recommendations have been refined over time and have been adopted 

internationally by genetic diagnostic laboratories for rare diseases and familial cancers 

across different countries (122). The guidelines recommend using a five-tier system 

where variants are classified as pathogenic, likely pathogenic, of uncertain 

significance, likely benign or benign. The term “likely” corresponds to 90% certainty 

of either benign or pathogenic classification (121). Moreover, likely pathogenic and 

pathogenic are considered to be evidence that can be used in health setting for clinical 

decision making. The classification is based on evidence from different sources such 

as minor allele frequency (MAF), segregation through family studies and 

computational predictions. However, adherence to these standards and guidelines is 
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not compulsory in research settings and should not be considered inclusive or 

exclusive to the use of other procedures. 

1.6 Aims and overview 

Idiopathic nephrotic syndrome is a rare disorder of the kidney glomerulus. Proteinuria, 

the hallmark of this disease, occurs as a consequence of the loss of the normal 

permselective properties of the glomerular filtration barrier (GFB) with the primary 

target for cellular injury being the podocyte layer. At least 67 genes have been 

associated with affected individuals demonstrating classical Mendelian inheritance. 

There is also considerable developmental and functional genomic evidence that other 

mechanisms including common genetic variation play a key role in glomerular 

filtration both in health and disease. As such, the heterogeneous nature of disease make 

the study of its molecular genetics and clinical subtypes challenging. Furthermore, the 

rarity of INS, specifically SRNS forms, has dramatically limited the size of patient 

cohorts available for research purposes. Therefore, the majority of the SRNS studies 

are inadequately powered.  

In this dissertation I studied, to my knowledge, one of the biggest cohorts of SRNS 

patients in Europe with stringent phenotypic data available to improve our 

understanding of the molecular genetic basis of the disease. A comprehensive 

description of the cohort with phenotype and clinical features is shown in chapter 3. 

Additionally, this project contains three distinct objectives in which whole exome and 

whole genome sequencing were used in combination with multiple study designs and 

analytical strategies. All methodology used can be found in chapter 2. The aims can 

be summarised as: 
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1. To evaluate rare genetic variation in the coding regions of established SRNS 

genes in this cohort. This was achieved in chapter 4 by WES-based screening 

of all genes that are currently known to cause nephrotic syndrome across all 

samples. The individuals that were whole genome sequenced were 

transformed to WES. 

2. To identify rare variants that are potentially pathogenic in previously 

undescribed associated nephrotic syndrome genes. A stringent variant filtering 

pipeline is described in chapter 5, combined with pedigree segregation and 

burden test analysis to identify potential causal variants. 

3. To study the contribution of common genetic variation within the entire 

genome in SRNS patients. In chapter 6, I described the analysis that led to the 

identification common genetic variants that influence the risk of SRNS by 

genome-wide association study. 

Overall, the main goal of this project was to investigate the contribution of rare and 

common variants to the pathogenesis of INS, specifically SRNS. Lastly, in chapter 7, 

I explained the limitations of the study and the major conclusions made from these 

analyses. Furthermore, I discussed the impact of some of these results for patients and 

to the current knowledge of nephrotic syndrome pathogenesis. 
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Chapter 2 – Materials and Methods 

 

2.1 Study participants 

2.1.1 Cases 

The study cohort included a total of 422 individuals (including sporadic cases and 

probands, excluding duplicates and affected/unaffected family members) with familial 

nephrotic syndrome as well as sporadic cases. All had a diagnosis of either primary or 

secondary steroid resistant nephrotic syndrome (SRNS) and were classified based on 

standard clinical criteria and renal biopsy. All individuals underwent rigorous deep 

phenotyping to ensure phenotypic accuracy and consistency. This type of 

standardisation was needed to avoid variation in clinical criteria and standards of 

clinical recording, which can make the study of relatively small rare disease cohorts 

challenging.  Any misclassified cases of nephrotic syndrome such as IgA nephropathy 

were removed from further study. 

Assessment included direct patient contact and data collected from hospital records, 

the Renal Rare Disease Registry (RaDaR) and the UK Renal Registry (UKRR). 16 

patients were subsequently re-classified as steroid sensitive (SSNS) by Dr. Ania 

Koziell but included in the study in view of severe disease and relatively short follow 

up. In total, there were 14 families (4 duos, 6 trios, 2 families with five members, 1 

family with six members and 1 family with twelve members). Genomic data was then 

gathered through two independent sequencing projects, one sequencing the whole 

exome and the other the whole genome. The diagnostic demographic of the study 

cohort is illustrated in Figure 11 below. 
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Figure 11. Breakdown of nephrotic syndrome subtypes by platforms. Three nephrotic 

syndrome diagnostic tags and their counts sequenced in two platforms (WES and WGS) as 

part of two distinct research projects.  Primary SRNS is shown in blue, secondary SRNS in 

grey and SSNS in red. For WES, majority of samples were diagnosed with primary SRNS 

whereas for WGS more than half of the samples were diagnosed with secondary SRNS. The 

number of samples diagnosed with SSNS was very low. 

(i) KCL-GSTT BRC SRNS Programme (WES): 256 patients with primary nephrotic 

syndrome were recruited nationally, around half through the NephroS/RaDaR projects 

(https://renal.org/rare-renal/patient/nephrotic-syndrome-0) and the remainder through 

the specialist glomerular disease clinics at Evelina London Children’s Hospital and 

Guy’s hospital. Samples were whole exome sequenced by the Genomics Core at 

KCL/Guy’s and St Thomas Hospital Trust (GSTT) Biomedical Research Centre. 

Sequencing data was aligned and annotated using an in-house pipeline (123). Families 

were categorised using letters. 

(ii) National Institute for Health Research (NIHR) BioResource for the 100,000 

Genomes Project Rare Diseases Pilot (WGS): A further 277 cases were recruited as 

part of another national rare disease study where 13,037 participants, of whom 9,802 
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had a rare disease as well as some of their close relatives were enrolled from 57 

National Health Service (NHS) hospitals in the United Kingdom and 26 hospitals in 

other countries as part of the Cambridge NIHR BioResource Rare Disease whole 

genome sequencing study, a pilot for the Genomics England 100k project. There were 

originally 18 study domains comprising of rare diseases and healthy controls (Table 

2). The SRNS domain recruited 277 deeply phenotyped individuals, including families 

and sporadic cases. SRNS cases were recruited nationally from different centres 

around the UK, with around 70% from Evelina London and Guys hospital. Other 

centres were again Bristol Children’s, Cardiff and Vale University Health Board, 

Newcastle Children’s Hospital, North Bristol NHS Trust, Nottingham University 

Hospitals NHS Trust, Queen Elizabeth Hospital Birmingham, Southampton Children's 

Hospital, Colchester General Hospital and Manchester PCT. Sequencing data was 

aligned and annotated using the pipeline at the University of Cambridge High 

Performance Computing Service (HPC). Families from this cohort were categorised 

using numbers.  

2.1.2 Controls 

For whole exome sequencing, 1000 control individuals from the 1958 British Birth 

Cohort were analysed using the same in-house pipeline (123). The raw data (FASTQ 

files) was aligned and annotated in the same way as the cases. This is a nationally 

representative resource that includes individuals born during a specific week in 1958 

(124). This cohort was chosen because is an unselected population and the use of 

controls that are large groups of cases of specific diseases has potential to create 

situations that identify spurious associations. 



 55 

For whole genome sequencing, in the absence of healthy control samples, individuals 

were selected across 11 rare disease domains and 2 domains (The UK Biobank 

Extreme Red Cell Traits and Technical Controls) with apparently healthy individuals. 

Cohorts with other kidney phenotypes (membranoproliferative glomerulonephritis 

[PMG]), cancer (multiple primary malignant tumours [MPMT]) and large effect 

associations reported for common variants (such as pulmonary arterial hypertension 

[PAH] and primary immunodeficiency diseases [PID]) were excluded. All domains 

were sequenced by the same Illumina platform and processed in the pipeline at the 

University of Cambridge High Performance Computing Service (HPC) as part of the 

pilot study for the 100,000 Genomes Project. (102) (Table 2). 

Table 2. NIHR BioResource study domains. A total of 18 study domains part of the pilot 

study for the 100,000 Genomes Project with their number of individuals. For the control 

selection only 13 domains were used. 

NIHR BioResource Domains Total 

100,000 Genomes Project - Rare diseases pilot (GEL) 4889 

Pulmonary Arterial Hypertension (PAH) 1216 

Primary Immunodeficiency Diseases (PID) 1430 

Bleeding and Platelet Disorsders (BPD) 1206 

Extreme Red Cell Traits (UK Bionbank) 766 

Inherited Retinal Dystrophy (IRD) 736 

Neurological and Developmental Disorders (NDD) 688 

Multiple Primary Malignant Tumours (MPMT) 633 

Intrahepatic Cholestasis of Pregnancy (ICP) 306 

Steroid Resistant Nephrotic Syndrome (SRNS) 277 

Hypertrophic Cardiomyopathy (HCM) 269 

Stem Cell and Myeloid Disorders (SMD) 267 

Cerebral Small Vessel Disease (CSVD) 260 

Neuropathic Pain Disorder (NPD) 210 

Membranoproliferative Glomerulonephritis (PMG) 195 

Tenchnical Controls (CNTRL) 73 

Leber Hereditary Optic Neuropathy (LHON) 72 

Ehlers-Danlos Syndrome (EDS) 23 
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Additionally, different control populations were utilised at several stages throughout 

this study. For the association tests, allele frequencies from the relevant ethnic groups 

were extracted from different online databases explained in the section 2.5.4 Variant 

Annotation. 

2.2 Ethical approval 

Work preceding the analyses in this thesis included writing study designs, application 

for ethical approval and data capture. To obtain the clinical data presented in this work, 

ethical protocols 13/EE/0325 (NIHR BioResource – Rare Diseases Cambridge, 

BRIDGE) and 09/H0106/80 (Radar/NephroS: NURTuRE study) were approved, and 

informed consent obtained under the supervision and guidance of Dr Ania Koziell. All 

patients provided informed written consent for the use of their DNA and clinical data.  

2.3 DNA extraction and storage 

DNA was extracted from peripheral blood with the Gentra Puregene Blood Kit 

(Qiagen). The extraction procedure was performed by Clinical Genomics Lab hub at 

Guy’s Hospital. Aliquots of DNA were stored for future use in case confirmation 

within a clinically accredited lab was required for the purposes of genetic diagnosis. 

2.4 Sequencing 

2.4.1 Sample preparation 

Samples selected for whole exome sequencing were assessed for quality by 

quantifying their concentration with a Qubit Fluorometer (Invitrogen) using the BR 

and HR dsDNA assay kits, according to the manufacturer’s instructions. 

2.4.2 Whole exome sequencing 
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For WES samples, DNA libraries were prepared from 3 mg dsDNA using the Agilent 

SureSelect Human All Exome Kit v.4 (pre-2017) or v.6 (2017 onwards). Sequencing 

libraries were hybridised with the capture library for 24hrs at 65°C. The hybridised 

DNA was then captured by streptavidin-coated magnetic beads and amplified with 

indexing primers. After purification, the amplified DNA was analysed with the 

Bioanalyzer High Sensitivity DNA Assay. Samples were multiplexed using four 

samples on each lane, and 100-bp paired end sequencing was performed on the 

Illumina HiSeq2000 System (pre-2017) or HiSeq3000/4000 (2017 onwards). 

2.4.3 Whole genome sequencing 

The WGS samples were prepared in batches of 96 and processed using the Illumina 

TruSeq DNA PCR-Free Sample Preparation kit. The final libraries were checked 

using the Roche LightCycler 480 II. Samples sequenced with 100bp and 125bp reads 

utilised three and two lanes of an Illumina HiSeq 2500 instrument, respectively. 

Samples sequenced with 150bp reads utilised a single lane of a HiSeq X instrument. 

Following sample and data QC at Illumina, BAM files were received at the University 

of Cambridge HPC. 

2.5 Data processing pipeline for whole exome sequencing 

Despite the ability of high-throughput sequencing technologies to cost effectively 

create large genomic datasets, the multiple steps involved in the sequencing process 

have the potential to create many sources of artefact and technical variation reducing 

accuracy of results and limiting data interpretation. To decrease these systematic 

sequencing errors, a joint variant calling across all samples was performed as well as 

downstream quality control measures of variants (125). 
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Within this study, samples were gathered from two related projects that had been 

sequenced on different platforms, one produced from whole exome and one by whole 

genome sequencing. This resulted in comparable but differently generated data. 

Therefore, the two datasets were merged and re-processed using the same in-house 

variant calling pipeline used by the Simpson group (123) to standardise as many data 

parameters as possible and minimise the impact of potential artefacts. All 277 WGS 

raw data files for the SRNS subproject were downloaded from the Cambridge High 

Performance Computing Service and transferred to the King’s College London server 

in BAM format. Exonic sequences (exons + 10bps) were extracted from the WGS 

BAM files and reverted back to FASTQ sequences using SAMtools (Sequence 

Alignment/Map Tools) (113) (Figure 12). FASTQ files were then processed in the 

same way as the WES samples, using the following steps as shown in Figure 12. Once 

the dataset was merged, this demonstrated that there were 66 duplicated samples and 

the data sets adjusted accordingly. 
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Figure 12. Overview of the data processing pipeline for whole exome sequencing. Three 

datasets, cases sequenced in King’s College London University, cases sequenced in 

Cambridge University and controls sequenced for the 1958 National Child Development 

Study, were procressed using the same in-house pipeline. Cases from Cambridge University 

had to be transform into exome format to be compared with the rest of the samples. Pipeline 

can be summarised into three main steps: alignment, variant calling and variant annotation. 
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2.5.1 Alignment 

Reads from the FASTQ files were aligned to the reference genome by NovoAlign 

(http://www.novocraft.com/products/novoalign/) assigning a quality score to each 

base pair. The human reference genome build used was the GRCh37 version. Two 

thresholds were applied: gap opening penalty=65 and gap extension penalty=7. After 

alignment, reads from each sample were stored in BAM file format and sort by 

coordinate using SortSam tool from the Genome Analysis Tool Kit (GATK 4.1.3.0) 

(https://gatk.broadinstitute.org/hc/en-us) (126). Duplicate reads arising during sample 

preparation (PCR artefacts) were removed by MarkDuplicates tool from GATK. 

2.5.2 Variant calling 

The positions of the reads that differ from reference genome were identified using 

SAMtools (v0.1.18) (113). The SAMtools algorithm with the ‘-mpileip’ command 

calls variants in each sample individually and the final data is later combined for the 

statistical analysis.  Several quality metrics were taken into consideration when 

calculating variants that pass the filtering criteria. Variants were filtered using the 

‘vcfutils.pl varFilter’ command, setting the minimum number of alternate reads 

supporting each allele to 4. The output data generated after the variant calling was 

saved in VCF format. The raw VCF files were filtered using VCFtools (v0.1.14) (127). 

The minimum genotyping quality was set to 20 and minimum read depth to 10. 

2.5.3 Joint variant calling 

Joint variant calling was also performed across all the samples using the GATK 

workflow (126). Thus, instead of analysing a BAM file individually, all BAMs (from 

controls and cases) were analysed in separate batches. Then, all batches were merged 

in a downstream processing step, gathering genetic information from the whole cohort 

onto the same VCF file. The file contained information on the total called allele counts 

http://www.novocraft.com/products/novoalign/
https://gatk.broadinstitute.org/hc/en-us
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(AN) and alternative allele counts (AC) and quality scores (QUAL) for each of the 

variants (128). Furthermore, the joint variant calling distinguishes between variants 

that are not seen in samples because they match the reference genome at the variant 

location (represent in the genotype column of the VCF file as “0/0”) and variants that 

are not seen because no call is made at that location for technical reasons (represent in 

the genotype column of the VCF file as “./.”). Therefore, by sharing information across 

all samples, the sensitivity to detect variants increases and the called genotypes are 

more accurate. This strategy also known as multi-sample calling, aims to compensate 

for low or missing coverage in some samples and to reduce calling differences that 

may have arisen due to variants in average sequencing depths.  

2.5.3.1 Variant Quality Score Recalibration (VQSR) 

All variants from the joint variant calling were then score with the Variant Quality 

Score Recalibration algorithm generated by GATK (129). VQRS is a sophisticated 

statistical approach that calculates a new quality score called VQSLOD for each 

variant by using multiple properties (of the variant context) that are not captured in 

the QUAL score. This new score gets added to the INFO column in the VCF file. 

Traditionally, variants are filtered if their values (number of reads covered each allele, 

proportion of reads forward/reverse, etc) are above or below the set arbitrary 

thresholds. However, VQSR uses machine learning algorithms (a Gaussian mixture 

model) that were trained using validated variant resources such as 1000 Genomes and 

HapMap, to learn from each dataset what is the annotation profile of true genetic 

variant versus a false positive (usually a sequencing or data processing artefact). 

Therefore, variants can be filtered to increase sensitivity or specificity depending on 

the aim of the study (Figure 13). Because of differences in annotation distributions, 
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VQRS was applied separately for single-nucleotide polymorphisms (SNPs) and 

indels.  

 

Figure 13. Gaussian mixture model report for SNPs automatically generated by the VQSR 

tool. Projection of Mapping Quality Rank Sum Test (MQRankSum) versus Fisher Strand (FS). 

FS is the PHRED-scaled probability that there is strand bias at the site. The upper left plot 
shows the probability density function that was fit to the data. Green areas are indicative of 

being high quality (positive LOD) whereas red areas show potential low quality (negative 

LOD). For the remaining three panels each SNP from the dataset is represented coloured in 

different ways to show different aspects of the data (outcome, training and novelty). Indels 

were not included in this report. 
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2.5.4 Variant annotation 

Variants were annotated using ANNOVAR (http://annovar.openbioinformatics.org/) 

transforming the input file (VCF format) into an annotated variant tab-delimited text 

file (130). This tool has multiple built-in databases allowing gene annotation, variant 

type annotations, population frequencies and pathogenicity prediction scores. Variants 

were annotated with gene, region, variant class, variant type, zygosity and functional 

consequence including the nucleotide and amino-acid change (Table 3).  

Table 3. Variant class annotations 

Variants Class Description 

Nonsynonymous A single nucleotide substitution that leads to an amino acid 

change 

Synonymous A single nucleotide substitution that leads to the same amino acid 

being encoded 

Stop gain A single nucleotide substitution that leads to the introduction of a 

premature stop codon 

Stop loss A single nucleotide substitution that leads to the loss of the wild 

type stop codon 

Splicing A single nucleotide substitution in the essential splice site, one or 

two nucleotides adjacent to the splice site 

Frameshift indel An insertion or deletion of several nucleotides that leads to a 

frameshift of the amino acid sequence 

Nonframeshift 

indel 

An insertion or deletion of several nucleotides that leads to the 

addition or deletion of a number of amino acids 

 

2.5.4.1 Online databases and genome browsers 

Variant frequencies for European population were also estimated and annotated from 

three large datasets of unaffected individuals via ANNOVAR. This included 1,000 

genomes from the 1KGP, 6,515 exomes from the NHLBI Exome Sequencing Project 

(ESP) (131)  and 60,706 exomes from the Exome Aggregation Consortium (ExAC) 

http://annovar.openbioinformatics.org/
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(132). In downstream QC, allele frequencies from variants of interest were updated 

using the Genome Aggregation Database (gnomAD) that includes 125,748 exomes 

and 15,708 genomes (133). 

Variants of interest were explored using browsers such as OMIM (Online Mendelian 

Inheritance in Man) (https://www.omim.org/) and/or ClinVar 

(https://www.ncbi.nlm.nih.gov/clinvar/) where more than 5,000 monogenic 

phenotype-gene relationships are recorded. 

2.5.4.2 Pathogenicity prediction scores 

Pathogenicity prediction tools are routinely used in clinics to prioritise pathogenic 

variants potentially associated with a specific phenotype over variants of unknown 

significance. These predictions can be based on genetic, molecular, evolutionary 

conservation and structural information. These tools estimate whether a genetic 

variant is damaging, altering the normal levels or function of the protein encoded by 

a gene, or deleterious, reducing the reproductive fitness of carriers. Regarding 

sequencing data, the following pathogenicity prediction scores were annotated in the 

variants via ANNOVAR: 

− Polyphen-2 (Polymorphism Phenotyping v2):  uses a classifier trained model 

to predict the consequence of a genetic change. There are two versions of the 

tool HumDiv and HumVar. Both are based on sequence and protein structure 

information obtained from UniProt (134). Polyphen-2 score ranges from 0 

(benign) to 1 (damaging). 

− SIFT (Sorting Intolerant from Tolerant): evaluates the effect of amino acid 

substitutions (nonsynonymous polymorphisms) in the protein function based 

on sequence homology and the physical properties of amino acids. It calculates 

https://www.omim.org/
https://www.ncbi.nlm.nih.gov/clinvar/
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a score for all possible amino acids at a given position considering that highly 

conserved residues are more likely to be deleterious. Thus, variants in regions 

that are highly conserved amongst different species are more likely to have a 

larger effect on the gene function. SIFT score <0.05 is consider damaging or 

deleterious (135).  

− CADD (Combined Annotation Dependent Deletion): is a framework that 

integrates a total of 63 annotations from a diverse range of sources into one 

metric by contrasting variants that survived natural selection. CADD scores 

are available for 8.6 billion possible human SNVS, including de novo 

mutations. In comparison with other scoring tools, CADD is more informative 

because instead of focusing on a single information type, it objectively weights 

and integrates different annotations. CADD score over 20 corresponds to the 

tip 1%, whereas 30 corresponds to the top 0.1%. The authors of the tool suggest 

a cut-off of 15 for deleterious variants (136). The version used in this project 

was CADD v1.6 that includes scores for splicing variants by integrating two 

deep learning models. 

2.6 Data processing pipeline for whole genome sequencing 

In chapter 6, common genetic variation predisposing to SRNS is explored studying 

WGS data that was processed in the pipeline at the University of Cambridge HPC. All 

protocols used to perform the genotype calling can be found in the recent Nature paper 

published on whole genome sequencing of rare disease in NHS patients by Ernest 

Turro et al (102). Samples were aligned by Illumina with the Isaac aligner version 

SAAC00776.15.01.27 (137) to the human genome build GRCh37. SNVs and small 

indels were called using the Illumina Starling software version 2.1.4.2.  All variants 

were annotated with deleteriousness scores and conservation scores and with various 
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summary statistics (allele count, allele number, genotype count, minor allele 

frequency and call rate). The degree of relatedness between participants and their 

ancestry were assess using PLINK v1.9 (138). The kinship matrix generated with 

PLINK was passed to PRIMUS (139) to obtain clusters of related participants. 

2.7 Data quality control 

Before embarking analysis, quality control steps were performed to assure a high-

quality sequencing data and minimise the number of false positive calls both at the 

individual level and also in the joint-variant calling. Variants located in low 

complexity regions (LCRs) which are regions of biased composition that are difficult 

to map because their short repeats of a single amino acid, were excluded from the 

study following the protocol used by H Li et al (140). The LCRs coordinates used 

were in BED (Browser Extensible Data) format and can be found at: 

https://github.com/lh3/varcmp/blob/master/scripts/LCR-hs37d5.bed.gz 

For the single individual VCF files, variants were filtered based on the read depth (DP, 

number of sequencing reads on forward and reverse strand), any genotypes with less 

than 4 reads were set to missing. Additionally, variants with quality control score (QC) 

lower than 20 and genotype quality (GQ) lower than 20 were excluded from the 

analysis.  

For the multi-sample calling, VCFtools (v0.1.14) (127) was used for additional quality 

control of the genotyping data filtering by MAF, call frequency and deviation from 

Hardy-Weinberg equilibrium (HWE) with different thresholds depending on the 

analysis (rare or common variant analysis). Global ratio of heterozygous to alternative 

homozygous alleles (het/hom ratio) was estimated and the outliers were excluded 

using the R package ‘outliers. An additional QC parameter measured to establish 

https://github.com/lh3/varcmp/blob/master/scripts/LCR-hs37d5.bed.gz
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single nucleotide variant (SNV) accuracy was the transition/transversion ratio (Ts/Tv). 

Since transitions are changes in nucleotides of similar molecular shape (G↔A or 

C↔T), whereas transversions are changes in those of different shapes (G↔C, G↔T, 

A↔T, A↔C), the ratio differs between synonymous and non-synonymous variants, 

and its distribution varies between different genomic regions and the read length batch. 

The Ts/Tv ratio measures 2.6 - 3.3 for exome sequence data, with lower ratios 

suggesting technical artefact (128, 141). The Ts/Tv ratio was consistent across 

samples (SRNS cases and controls) in the multi-sample calling VCF, and met the 

expected value for WES data meaning that QC parameters had been met and further 

analysis could proceed (Figure 14). 

 

Figure 14. Ts/Tv ratio by AF for cases and controls.Ts/Tv ratio was calculated for all variants 

using the python package vcftats for cases and controls and shown by the allele frequency. 

2.7.1 Relatedness and ancestry 

Samples were adjusted by pairwise relatedness using KING (142) to define the 

maximum number of unrelated individuals and to correct cross-sample contamination 

due to technical issues during library preparation or sequencing. The pairwise 

relatedness matrix was generated with KING using the command “--kinship”. Kinship 

coefficient was estimated across all samples including families.  A negative kinship 
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coefficient indicated an unrelated relationship. Close relatives can be identified by the 

kinship coefficient values: duplicates or monozygotic twins (>0.354), first degree 

relatives (0,177-0.354), second degree relatives (0.0884-0.177), third degree relatives 

(0.0442-0.0884) and less than third degree (<0.0442). 

All individuals were originally recorded with one of the following self-reported 

ethnicities: African, East Asian, European, Other and South Asian. However, to ensure 

this was accurate, population substructure identification was performed on all cases 

by KING with the multidimensional scaling option (MDS) to confirm reported 

ethnicity. MDS calculates by default 20 principal components (ancestry coordinates) 

for each sample using a subset of common independent exonic variants. Samples were 

projected onto the first (PC1) and second (PC2) principal components and compared 

with a reference population from 1KGP to identify their ethnicity.  

2.8 HLA typing from WES and WGS 

Since there is extensive linkage disequilibrium and great allelic differences present in 

the MHC locus, most of data processing pipelines are unable to generate accurate 

genotype calls within the region. As a consequence, the majority of the short 

sequencing reads from HLA genes are either not mapped correctly or fail the 

alignment process generating a set of unmapped reads subsequently excluded from 

analysis. Accordingly, multiple methods have been developed to correctly classify the 

sequencing reads from HLA genes by using different alignment strategies and 

comprehensive reference panels. Specifically, there are tools that perform HLA typing 

using high-throughput sequencing data which count on the unmapped reads from the 

samples and validated reference datasets such as the International HapMap Project 
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(143) 1KGP to improve the sequencing of the region. The approach used in this study 

for both WES and WGS is summarised in Figure 15. 

 

Figure 15. Overview of data analysis for HLA typing. Sequenced reads (mapped and 

unmapped) from WES and WGS samples are aligned to a comprehensive HLA reference 

panel to search for best matching alleles based on alignment statistict. 

Furthermore, through their exceptional polymorphism, alleles of the HLA genes have 

been represented at the protein level (using serological techniques) with a specific 

nomenclature introduced in the 1987 Nomenclature Report  (144). HLA alleles are 

defined by the name of the gene follow by sets of digits separated by colons (i.e.: 

HLA-DQB1*06:04). The first two digits describe the allele family that encode the 

serologically defined antigen. The third and fourth digits are the specific HLA protein. 

Since the first proposal in 1987 more digits have been added up to eight digits 
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depending on the sequence (145). Here, HLA typing tools used HLA nomenclature 

and alleles were estimated with four digits resolution. 

2.8.1 Benchmarking of methods for HLA typing 

For HLA typing, samples were aligned using NovoAlign and Burrow-Wheeler 

Aligner (BWA) (146). All reads from the HLA region (chr6:28,477,797-33,448,354) 

were extracted from the BAM files by SAMtools. Unmapped reads were selected 

using SAMtools with the command ‘view -f 4’ for unmapped segments. HLA-VBSeq 

and HLA-Genotyper were chosen to estimate HLA alleles because both were 

specifically built to perform HLA typing from WGS and WES data as input. 

Estimation of HLA types by HLA-VBSeq was performed with the HLA v2 database 

based on IMGT/HLA database Release 3.31.0. HLA-Genotyper was used to call HLA 

genotypes with 4-digit resolution with the options ‘--genome’ and ‘--exome’ 

accordingly. Additionally, to improve the speed and accuracy of the HLA genotype 

calls, ethnicity of the samples (EUR) was specified. This option provides a set of priors 

for the various HLA alleles found in the ethnic population supported by HLA 

frequencies found in 1KGP. 

A typing accuracy comparison between HLA-VBSeq and HLA-Genotyper was also 

performed to ensure accuracy. Both tools estimated the HLA types of 22 European 

samples that underwent WES and WGS. The genotype called for two allele groups, 

HLA-DQA1 and HLA-DQB1 were compared across sequencing platforms and 

methods. Since HLA-Genotyper gave better results than HLA-VBSeq when 

concordance of alleles was compared from the same samples sequenced in different 

platforms, this was subsequently used for experiments (Figure 16). 
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Figure 16. HLA typing accuracy comparison. HLA alleles for DQA1 and DQB1 of 22 

European samples that underwent whole exome and whole-genome sequencing were 

compared. (A) Comparison of two different HLA typing methodologies (HLA-Genotyper and 

HLA-VBSeq) across different sequencing technologies. HLA alleles estimated in WES and 

WGS samples were compared by two different typing tools HLA-Genotyper (purple) and 

HLA-VBSeq (grey) with overall concordance 94.3% and 48.8% respectively. (B) Comparison 

of the HLA typing methodologies using the same sequencing platform. HLA alleles estimated 

by HLA-Genotyper and HLA-VBSeq using WES data were compared (blue) with overall 

concordance of 39.7%. HLA alleles estimated by HLA-Genotyper and HLA-VBSeq using 

WGS data were compared (red) with overall concordance of 70.45%. 
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2.9 Computational and statistical approaches to identify 

disease-causing variants using whole exome and whole 

genome sequencing. 

Multiple study designs and analytical strategies were carried out using high-

throughput sequencing technology to identify causal genetic variation and to better 

understand the genetic basis of rare diseases (Figure 17). A clustering of disease within 

families suggests genetic and/or share environmental risk factors. Primary SRNS and 

in some instances SSNS can be considered Mendelian diseases in view of clear 

monogenic inheritance patterns within families. Since a number of such families were 

recruited, pedigree information was used to narrow down the search for candidate 

causal alleles in family studies. Additionally, SRNS and SSNS also present 

characteristics of complex disease, with considerable heterogeneity in terms of the 

genetic architecture with potentially polygenic forms. Thus, strategies to detect 

common disease-causing variants were also used. 
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Figure 17. Strategies for finding disease-causing variants using high-throughput sequencing.  

(A) Linkage analysis to search for  a shared region of the genome segregating within the 

affected individuals and not present in the unaffected. (B) Sequencing of unaffected parents 

and affected child (trios) for identification of de novo conding mutations. (C) Filtering variants 

across unrelated affected individuals to indentify variants within the same gene or genes. (D) 

Individuals with rare variants in the same gene sharing an extreme phenotype of the disease. 

Figure adapted from MJ Bamshad et al (2011).  

2.9.1 Family-based study designs 

Family analyses evaluate genetic markers searching across the entire genome for 

regions harbouring potentially causal risk factors. Historically, family-based studies 

have been the first approach to detect genes responsible in monogenic disorders (147). 

Segregation and linkage studies have been particularly successful in cloning highly 

penetrant diseases causing genes. By studying relatives in the same family with the 

phenotype of interest, the genomic search space is substantially restricted increasing 

the power for gene discovery. This allows identification of rare and probably 

damaging variants shared by the affected members and not present in the unaffected 

members. The number of relatives studied can range from two family members to big 
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pedigrees with multiple generations. Therefore, sequencing of unaffected parents and 

affected child (trios), were considered sporadic cases and studied for identification of 

de novo coding mutations instead of being analysed with any of the family-based 

strategies described in this section.  

2.9.1.1 Segregation analysis 

Segregation analysis uses statistical methodology that attempts to determine if the 

phenotypic pattern within a family is consistent with the genetic inheritance of a 

disease, specifically with a view of identifying single gene defects. This technique can 

be performed using family sequencing data where large pedigrees with many affected 

members are particularly informative to identify genes linked to a disease. Thus, 

selecting enough affected individuals to yield sufficient numbers is crucial. Moreover, 

in this type of analysis some assumptions are made about the underlying mode of 

inheritance (i.e. dominant or recessive inheritance) and the impact of environmental 

factors on a given trait. Depending on the family history and mode of inheritance, 

different parameters were changed accordingly to find the model of best fit for the 

family data. Equally, if there was insufficient information about the family history or 

the pedigree was too small to securely identify a model of inheritance, the stringency 

of filters used for searching for segregation in the affected individuals were adjusted 

accordingly. 

All families in this project were studied through segregation analysis by extracting a 

list of variants shared among the affected individuals that were not present in the 

unaffected. Families without a clear pattern of inheritance were studied using different 

models. Variants selected for dominant model of inheritance were heterozygous 

whereas for recessive model of inheritance were homozygous or compound 
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heterozygous when two or more heterozygous alleles at a particular gene locus (one 

on each chromosome of a pair) were found. The list of variants segregating within the 

affected individuals of each family was filtered by allele frequency using gnomAD 

(133) annotation (section 2.5.4.1) (AF<0.01 for recessive model and AF<0.001 for 

dominant model). For families that underwent WES, the segregation analysis was 

restricted to coding variants. For families that underwent WGS, the segregation 

analysis was performed across all variants including non-coding ones and prioritise by 

consequence on the protein level. Additionally, for the WGS samples variants 

overlapping with low-complexity regions were excluded from the analysis. 

2.9.1.2 Parametric linkage analysis 

Parametric linkage analysis is a method that identifies regions of the genome 

underlying a given trait by testing a set of markers (alleles) for cosegregation with 

disease status within either a family or across several families. Markers located close 

together on the same chromosome are more likely to be coinherited than would be 

expected by chance, because their proximity means that recombination is less likely 

to separate them. Linkage mapping use a set of markers evenly distributed across the 

genome (every 10 cM), to capture most of the recombination events. Linkage studies 

are considered parametric when the data is analysed assuming a specific genetic 

model. This strategy has been successful in detecting rare and highly penetrant 

disease-causing variants with unusually large effect sizes that do not impact on 

reproductive fitness. 

The identification of a locus that co-segregates with disease status was confirmed 

statistically by the LOD score, defined as the ‘logarithm of the odds’. This determines 

the likelihood of whether co-segregation occurred by chance or that the disease locus 
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and markers are co-segregating assuming a particular recombination. A LOD score 

calculation is therefore used to measure the likelihood that markers and disease are 

inheritance non-independently. In 1955, Morton derived the LOD score criterion of 3, 

with the goal of obtaining a posterior false-positive rate among reported linkages that 

was <5%. The value of 3 reflects the fact that the prior probability that two randomly 

selected loci are syntenic and within reasonable mapping distance (say, recombination 

fraction [0] < .3) is small, on the order of 2% (148). In practice, a LOD score below 3 

it is provisional and further evidence is required to confirm linkage. A LOD score of 

less than -2 is considered good evidence that two loci are independent and are therefore 

used for exclusion of linkage. 

One family, Family A, had sufficient members spanning 3 generations to perform 

parametric linkage analysis. The observed inheritance of the trait for Family A was 

consistent with autosomal dominant inheritance. 12 family members underwent WES 

(7 affected and 5 unaffected) and 4 of those members also underwent WGS. A multi-

sample calling with WES data was performed across all 12 members of the family to 

create a joint VCF file. All genotypes with a quality below 15 were excluded. The 

minimum number of sequencing reads on forward and reverse strand for any variant 

was set to 10 and the maximum to 1000. All had to be genotyped in at least 90% of 

total individuals. The VCF file was converted to linkage format (.PED, .MAP and 

.DAT) by PLINK. The parametric linkage analysis was performed using MERLIN 

(Multipoint Engine for Rapid Likelihood Inference) (149) software, under the 

assumption of autosomal dominant inheritance. MERLIN’s linkage parametric 

analysis is based on the Lander-Green algorithm (150) and creates sparse inheritance 

trees for pedigree analysis. The measures from the Lander-Green algorithm depend on 

the pedigree size and the number of markers, being linear for the number of loci and 
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exponential in the number of individuals in the family. The first step was to verify the 

input files (pedigree and data file) using the option pedstats. Then, error detection was 

performed with the option ‘--error’ to identify genotyping error that can lead to 

misleading inferences. The genotypes that were flagged during error detection were 

reject from the analysis using pedwipe. Finally, a parametric linkage analysis was 

carried out generating rapid haplotyping with genotype error detection and LOD 

scores for each marker. For this analysis, the file ‘parametric.model’ specified the 

parameters (Table 4) that best fit the family data. The disease allele frequency was 

based on the prevalence of SRNS and the penetrances reflect an autosomal dominant 

model with a low phenocopy rate for non-carriers. Parameters specified in MERLIN 

were as followed: 

Table 4. Parametric model used in MERLIN. 

Affection Disease Allele Frequency Penetrances Model Name 

SRNS 0.0001 0.0001,1.0,1.0 Rare_Dominant 

 

2.9.1.3 Nonparametric linkage analysis 

Nonparametric linkage analysis also known as model-free does not require any genetic 

model of inheritance to be specified and is normally applied for the study of complex 

diseases. This approach relies on the assumption that affected individuals in the same 

family will share markers or chromosomal regions, regardless of the mode of 

inheritance. This methodology uses marker data in affected siblings from multiple 

families in order to identify markers that have been shared among families more often 

that would be predicted by random Mendelian segregation. Siblings are expected to 

share 50% of their genes. However, if there is cosegregation, affected siblings will 

share more alleles identical-by descent (IBD) in the region of interest than as might be 

expected by chance. The probability that a specific marker allele is cosegregating with 
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disease status, with recombination fraction θ, is compared (likelihood of odds) with 

the probability that the marker and disease status are not cosegregating (θ=0.5). 

Nonparametric linkage analyses require higher thresholds for statistical significance.  

LOD scores above 5.4 are considered highly significant evidence for linkage, between 

3.6 and 5.4 are considered significant and above 2.2 are suggestive (151). 

A nonparametric linkage analysis was performed in 7 informative families where no 

causal variant was found in the coding regions of established SRNS genes (Family 1, 

family 2, family 4, family A, family D, family E and family F). For a family to be 

informative, at least two affected children within a generation are necessary. A multi-

sample calling with WES data was performed across all families to selecting common 

and good quality genetic markers. All genotypes with a quality below 30 were 

excluded. The minimum number of sequencing reads on forward and reverse strands 

for any variant was set to 20. Additionally, common variants were selected filtering 

by allele frequency (AF>0.2). The VCF file was converted to linkage format (.PED, 

.MAP and .DAT) by PLINK. The first step verified input files (pedigree and data file) 

using the option ‘--pedstats’. Nonparametric linkage analysis was performed by 

MERLIN with both options the Whittemore and Halpern NPL ‘--pairs’ and NPL all ‘-

-npl’ statistics. The standard nonparametric linkage analysis performed by MERLN is 

based on the Kong and Cox (152) linear model that evaluates the evidence for linkage. 

However, for this analysis the ‘--exp’ option was used to search for a large increase in 

allele sharing in a small number of families providing a more accurate and sensitive 

test for linkage. 

2.9.2 Case-control association studies 
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Case-control association studies use genotype data from individuals with the same 

phenotype to identify alleles that are found in greater or lower frequency compared to 

a group of unaffected controls. These studies require the identification of unrelated 

individuals with the same phenotype, which can be particularly challenging for rare 

diseases through a lack of sufficient numbers of cases, and the identification of 

controls without the phenotype. Furthermore, appropriate numbers of cases and 

controls are crucial to reach enough statistical power.  

Multiple strategies are available for case-control analysis to enable testing for genetic 

association such as single variant tests, multiple variant tests, collapsing methods and 

aggregation methods (114). Out of these, two were chosen to test for genetic variation 

within the cohort: genes-based burden test and genome-wide association study. The 

gene-based burden test evaluates the implication of rare genetic variation at gene-level 

and all variants across a unit (in this case a gene) are collapsed together to increase 

power. Although rare variants individually are infrequent, together might be presented 

in sufficient frequency to be compared against unaffected controls. In contrast, GWAS 

evaluates common variants by testing a single variant at a time. This single variant test 

is more powerful for common variants than for rare variants considering identical 

effect sizes through the number of rare variants being higher than the number of 

common variants (153). 

2.9.2.1 Gene-based burden test 

Burden testing is a collapsing method where information from multiple rare genetic 

variants is aggregated into a single count (the total number of variants) and tested for 

association with a trait. Given the nature of rare disorders, a causal gene might have 

several unique variants (only found in one individual) enriched in cases compared to 
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controls, and the statistical differences observed are then more likely to have 

biological significance once corrected for false positives. Thus, instead of examining 

whether there is an enrichment of any one variant in cases versus controls, it analyses 

whether there was an enrichment of variants in any one gene in cases versus controls. 

For this case-control study, SRNS patients were compared to the 1958 British birth 

cohort as population control group (124). Analysis was carried out using bash scripts 

and a software package called EPACTS (Efficient and Parallelizable Association 

Container Toolbox) (https://genome.sph.umich.edu/wiki/EPACTS). 

Any systematic differences between sequencing data from different platforms is likely 

to introduce bias in association testing. Therefore, to minimize technical artefacts, the 

case-control analysis was performed using the multi-sample calling. By performing 

variant calling jointly, if a variant is called in a set of samples, the multi-sample calling 

checks whether a call (reference or alternative) is made at this position for all samples. 

Analysis was restricted to set of variants that have been genotyped in at least 90% of 

individuals. Any sample with a high number of ‘missingness’ (>0.25) where a 

genotype could not be called was removed. Additionally, regions that are known to 

generate false positives because of highly variable genes. The highly polymorphic 

regions can be found in the work made by KVF Fajardo et al (154). Only cases and 

controls that clustered via principal component analysis with individuals of European 

ancestry were selected for study. Samples were also adjusted by pairwise relatedness 

using KING to define the maximum number of unrelated individuals. 

For the burden testing, all variants observed in a gene were aggregated and classified 

into three categories: alteration (non-synonymous codon-gain and codon loss), 

truncation (frameshift, introduction of stop-codon and alteration of splice site) and 

https://genome.sph.umich.edu/wiki/EPACTS
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synonymous. Variants were further subdivided into two groups (dominant and 

recessive) and filtered by minor allele frequency; for a dominant model, the MAF was 

set at <0.001 whereas for recessive, MAF was set at <0.01. The frequency threshold 

used also took into account the disease prevalence. Two other groups of variants were 

created with a CADD score of more than 10, for both dominant and recessive model. 

Specific variants and genes (such as known false positives) were excluded by 

remaking the VCF file eliminating those SNPs or genes and rerunning the EPACTS 

analysis. Evaluation of the burden association was determined with a one-tailed Fisher 

exact test. 

2.9.2.3 Genome-wide association study (GWAS) 

A genome-wide association study was performed to identify whether there was any 

association between common variants (MAF>0.05) and SRNS. Each variant was 

tested for association with the phenotype using logistic regression (155), which is able 

to adjust for potential confounding variables such as ethnicity by using the first four 

principal components as covariates. The analysis was carried out with EPACTS using 

the logistic Wald association option. The test used binary phenotypes and collapsed 

variables (genotypes) with joint estimation covariates implemented by Hyun Min 

Kang. Thus, phenotypes were converted to two different numeric values (binary) 

where “0” represented unaffected status and “1” represented affected status for the 

trait. Wald test is one of the classical approaches to hypothesis testing that only 

requires the estimation of the unrestricted model, and has the advantage of lowering 

the computation burden compared with other strategies. In this analysis the null 

hypothesis was that there is no association between the odds of having SRNS and a 

genetic variant in the population of interest. The logistic regression model used was 

as followed, where Y is the expected value of the phenotype, given genotype X and 
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covariates A,B,C and D ( first four principal components). P-values were calculated 

based on whether 𝛽1  significantly differs from zero.  

log (
𝑝(𝑌)

1−𝑝(𝑌)
) =  𝛽0 + 𝛽1𝑋 + 𝛽2𝐴 + 𝛽3𝐵 + 𝛽4𝐶 + 𝛽5𝐷  

In the main, GWAS studies rely on imputing data from genotyping arrays to obtain a 

prediction of the whole genome sequence of all samples. However here, the imputation 

step was not required since the SRNS cohort had been whole genome sequenced as 

part of the Rare Disease Pilot study associated with the 100,000 Genomes Project 

(102), and the raw genomic sequence could be sourced and used for analysis. Controls 

also whole genome sequenced using the same platform and pipeline were carefully 

selected from a comparable population taking into consideration ethnicity which was 

restricted to European (section 2.6). Ancestry outliers were detected by principal 

component analysis and excluded from downstream analysis. To minimize technical 

artefacts, a joint variant calling was performed, with variants excluded from analysis 

if the call rate was <0.90, or a minor allele frequency was <0.05, or there was deviation 

from Hardy-Weinberg equilibrium (P <1 x 10-6). Additionally, a genotype quality 

(GQ) threshold of 30 and depth (DP) threshold of 20 were set per genotype. All sites 

with a filter flag other than ‘PASS’ in the joint variants calling were also removed. 

Genetic relatedness was assessed using a subset of high-quality independent common 

variants and a maximum unrelated set of samples was generated (PI HAT< 0.09375). 

Second degree relationships or closer were removed. Following quality control, a total 

of 3,944,568 genotyped variants were retained and used in the association analyses. 

2.10 Other statistical methods 

2.10.1 Fisher’s exact test 
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Fisher’s exact test was used to assess the results from the gene-based burden test (case 

control study) described in section 2.9.2.1. It evaluates the independence between two 

nominal variables, disease status and number of variants within a gene, and studies 

whether the proportions of one variable are different depending on the value of the 

other variable (Table 5). One tailed test was selected due to the expectation of an 

enrichment rather than deficit in the number of variants in cases compared to controls. 

Therefore, the null hypothesis was that the proportion of rare variants in cases was the 

same as controls. Fisher’s exact test is appropriate for rare variants association studies 

because the expected sample size is small. 

Table 5. Fisher Exact Test contingency table. 

 Alleles  

Disease Status Alt Ref Total 

Case x m – x m 

Control k-x n – (k – x) n 

Total k (m + n – k) m + n 

 

2.10.2 Hypergeometric test 

Hypergeometric testing was used to model the association between two independent 

gene sets and to calculate the probability of a certain number of genes overlapping 

between them. This type of test is also equivalent to one-tailed Fisher’s exact test. The 

hypergeometric model used was as shown in the Figure 18, where k is the overlap 

between the two datasets, K in the genes with a p-value lower than 0.05 in the burden 

test, n is the number of genes from a list of interest (in this case podocyte enriched 

genes and CKD associated genes) and N the total number of genes tested in the burden 

test. The test was implemented by R with the built-in function called ‘phyper’. 
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Figure 18.Hypergeometric test diagram and equation. 

2.10.3 Dosage analysis 

A dosage-based test was performed to confirm an association between SRNS and HLA 

alleles. Through typing, HLA alleles were estimated for the cases and controls from 

the GWAS (and replication cohort) and transformed into a dosage file. Number of 

copies for each HLA gene were represented as followed: 0, 1 and 2. The test was 

performed with PLINK v1.9 using the ‘--logistic’ and ‘--dosage’ options. As 

mentioned previously, the first four principal components of cases and controls were 

included as covariates in the model. 

2.10.4 Linear regression 

The relationship between SRNS subphenotypes (gender, SRNS type, histology and 

age-of-onset) and HLA-DQA1*01:02 genotype was examined using linear regression 

analysis. Gender, SRNS type (primary and secondary) and histology (FSGS and 

MCD) information was available for the GWAS cases, and it was transformed into 

categorical variables. Age-of-onset was available in years as a numeric variable. HLA-
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DQA1*01:02 genotype was transformed to a binary outcome: 0 (no copy of the allele) 

and 1 (one or two copies of the allele). Linear analysis was performed with the R 

package stats (3.6.0) using the ‘lm()’ function. The first four principal components of 

cases were included as covariates in the model. 

2.10.5 Colocalisation  

Colocalisation evaluates whether or not the same variant (or variants) in a given region 

are responsible for two potentially related phenotypes. This methodology used the 

summary statistics from GWAS and expression quantitative trail loci (eQTL) data 

from a specific tissue of interest. 

Estimation of the colocalisation between SRNS signals and kidney cis-eQTLs from 

GTEx was performed excluding the HLA region and focusing on the suggestive peaks 

from the GWAS. Kidney eQTL data was downloaded from release V8 that was based 

on WGS from 73 (kidney cortex) donors, which all had RNA-seq data available 

(https://console.cloud.google.com/storage/browser/gtex-resources). Candidate kidney 

cortex eQTLs from European samples were selected from any variant located within 

the SRNS suggestive risk locus (P<1x10-5) or nearby (± 1 Mb from the region of 

interest). The coloc R package (156) was used to performed genetic colocalization 

between SRNS association signals and the kidney cortex eQTL signals using a set of 

variants that overlapped between both datasets. The package is based on a Bayesian 

model that calculates posterior probabilities of different causal variant configurations 

under the assumption of a single causal variant for each trait (156). 

2.10.6 Multiple testing corrections 

Bonferroni correction was used when required in several different analytical processes 

during this study. This is a multiple-comparison correction used when multiple 

https://console.cloud.google.com/storage/browser/gtex-resources
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dependent or independent statistical tests are conducted simultaneously. The alpha 

level, which is the probability of rejecting the null hypothesis (also known as 

significance), might be appropriate for each individual test but not for a set of tests. 

Thus, Bonferroni correction is the division of the alpha by the number of tests 

performed. 

For the results obtained by the gene-based burden test, the significance threshold of 

p<2.5x10-6 was used. The threshold was calculated by Bonferroni correction of the 

effective number of independent test (approximately 20,000 genes) assuming 𝛼=0.05. 

For the results obtained by GWAS, the standard genome wide significance threshold 

of p < 5x10-8 was used. Given the linkage disequilibrium and structure of the genome 

it has been estimated that there are approximately one million independent loci. 

Bonferroni correction for the effective number of independent test (one million 

markers) assuming 𝛼=0.05 has led to the standard genome wide significance threshold 

limiting false positive associations (157). 
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Chapter 3 – Phenotypic description of the patient 

cohort 

 

3.1 Introduction 

High throughput sequencing technologies in the form of WES and WGS have become 

a routine component of gene discovery studies. With this however, come exhaustive 

categories of genetic variation, some causal and therefore relevant and others of 

uncertain significance. This emphasises the importance of accurate phenotype-

genotype correlation, particularly when examining rare disease cohorts that are 

generally small in comparison with common disease cohorts where some untoward 

variation becomes less significant simply through the large number of cases under test.  

Consequently, optimising phenotypes by precise annotation raises the accuracy of 

findings, as it potentially increases power to localise genes of interest and also aids the 

interpretation of associations between variants and disease outcomes. Phenotype 

optimisation includes the use of parameters such as symptoms or ages of onset to 

reduce genetic heterogeneity within a set of cases, allowing analysis of related 

phenotypes, as well as derivation of new phenotypes. New opportunities are also 

presented by technological advances that permit efficient collection of phenotypes on 

an individual conferring maximum advantage for genotype-phonotype correlation and 

accurate association studies through more detailed phenome data (158). 

This chapter explores characterisation of the SRNS study cohort (children and adults, 

recruited nationally from UK nephrology centres), as well as data collection to allow 

rigorous definition of the phenotype in each of the cases recruited. 
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3.2 Cohort description 

The main inclusion criteria was diagnosis of primary nephrotic syndrome in children 

and adults principally primary and secondary SRNS. Probands were identified and 

recruited together with affected and/or unaffected relatives if possible to form at 

minimum a duo or trio via local recruitment and two national initiatives: the BRIDGE 

consortium (https://ega-archive.org/studies/EGAS00001001012) and Radar/NephroS 

(https://renal.org/rare-renal/patient/nephrotic-syndrome-0). Patients were drawn in 

the main from Evelina London, Guys and St Thomas’ and Bristol as decribed, but 

recruitment was also from other national UK Paediatric and Adult Nephrology units.  

Venous blood was drawn on each case, DNA extracted and then stored by each clinical 

genetics laboratory hub prior to sequencing by whole exome or whole genome. 

Additional to genomics analyses, cases were deeply phenotyped. Each had a detailed 

medical, family and medication history taken as well as inclusion of renal biopsy 

findings and results of any other relevant clinical investigations. Clinical data was 

extracted directly from patient records together with sequential data from the UK Rare 

Renal Disease Registry (http://rarerenal.org/radar-registry) to monitor clinical 

outcomes. All patients had long term follow up spanning between 5 and 50 years. 

The cohort is comprised of two independent datasets; 267 samples that were whole-

exome sequenced via GSTT/KCL BRC and 277 whole-genome sequenced as part of 

the BRIDGE consortium at the Cambridge BioResource.  Both sequencing projects 

were performed on Illumina platforms. However, in view of the differences between 

WES and WGS as well as degree of coverage, sequencing data on both cohorts was 

subsequently merged prior to further analysis in order to reduce noise and ensure the 

data was comparable. Both datasets were merged and processed using the in-house 

https://ega-archive.org/studies/EGAS00001001012
https://renal.org/rare-renal/patient/nephrotic-syndrome-0
http://rarerenal.org/radar-registry
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variant calling pipeline explained in section 2.5. The study cohort consisted of 544 

individuals in total, with 66 duplicates (the overlap between the two original datasets), 

24 affected family members and 32 unaffected relatives. Thus, the total number of 

sporadic cases and probands was 422 excluding duplicates and affected/unaffected 

family members. 

3.2.1 Sex ratio 

Multiple studies have reported nephrotic syndrome to be more common in males than 

females, with a male-female ratio in SRNS cohorts of 1.3:1 (82) or 1.4:1 (159). The 

cohort studied in this dissertation comprises 422 unique cases (excluding duplicates 

and family relatives) that were originally annotated with a self-reported sex (male or 

females). Of the 422 patients, 230 (55%) were male and 192 (45%) were female. If 

affected family relatives are included the cohort includes 446 individuals, 241 (54%) 

were male and 205 (46%) were female. The male to female ratio of this cohort was 

1.19:1, which is broadly consistent with the epidemiology reported for SRNS, but the 

sex difference was not as strong as in other studies. 

Genetic sex was also evaluated based on the number of heterozygous variants in 

chromosome X in the raw VCF files. A histogram plot of the number of heterozygous 

variants for all samples confirmed the bimodal distribution with individuals with less 

than 200 variants being male and with more female (Figure 19). 
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Figure 19. Distribution of the number of heterozygous variants in chromosome X per sample. 

The number of variants in chromosome X provides information about the sex of the sample. 

Number of heterozygous variants in chromosome X ranged from 0 to 200 for males whereas 

for females ranged from 200 to 600. 
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3.2.2 Ancestry 

All individuals were originally recorded with one of the following self-reported 

ethnicities: African, East Asian, European, South Asian and mixed ancestry. The 

ethnicity of 478 samples (removing duplicates and including family relatives) was also 

evaluated using principal component analysis (PCA) on a subset of common (MAF 

>0.05) independent biallelic exonic variants that did not deviate significantly from the 

Hardy-Weinberg equilibrium (P >1 x 10-6). Samples were projected onto the first 

(PC1) and second (PC2) principal components and compared with a reference 

population from 1000 Genomes Project Phase 3 (103). PCA analysis reveals 68.72% 

of the study participants cluster closely with individuals of European ancestry, 13.47% 

with individuals of South Asian ancestry, 7.76% African, 1.59% East Asian and 8.44% 

do not cluster closely with any of the populations evaluated and likely represented 

individuals of mixed ancestry (Figure 20). 

 

Figure 20. Principal component analysis of the SRNS cohort and percentagesOn the left, 

projection of individuals onto the first two principal components of genetic variation. Africans 

are represented in red, East Asians in yellow, Europeans in green, South Asians in pink and 

mixed ancestry in blue. On the right, bar plot showing the percentage of each ethnicity. 
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3.3 Disease transmission 

3.3.1 Sporadic cases 

Multiple studies have reported that the prevalence of monogenic SRNS is higher in 

individuals with familial disease (60). Nevertheless, in absence of consanguinity or 

familial history, numerous genetic alterations have been found in sporadic cases 

specifically presenting autosomal dominant disorder with the identification of de novo 

mutations in disease causing genes. From the total 422 probands, 378 were affected 

by sporadic SRNS and did not have familial disease. Six patients had unknown family 

history and were presumed sporadic. Therefore, a majority of patients were sporadic 

cases representing 91% of the cohort. This demographic may have been influenced 

partly by some recruitment bias, since patients with mutations in the associated SRNS 

genes are often familial and the focus was on recruitment of cases where mutations 

had not been confirmed in some of the established genes. 

3.3.1.1 Sporadic cases with extended family sequenced 

Seven sporadic cases of the total 378 sporadic patients have at least one relative that 

underwent WES or WGS. WGS sporadic cases with extended relatives comprised of 

one trio and two duos. The trio included the affected daughter and her unaffected 

parents. One duo contained an affected mother and unaffected daughter and the other 

duo, an affected daughter with unaffected mother. Correspondingly, WES sporadic 

cases with extended relatives entailed one family with five members, two trios and 

one duo. The quintet encompassed an affected daughter, both unaffected parents and 

two unaffected brothers. One trio was formed by an affected daughter and two 

unaffected parents, whereas the other trio by an affected son and two unaffected 

parents. The duo consisted of an affected daughter and unaffected mother. 
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3.3.2 Familial cases – description of pedigrees 

In ~9% of SRNS cases other family members have been affected by SRNS or another 

form of nephrotic syndrome. Within the cohort are 38 familial cases out of 422 cases. 

The familial cases can be divided into 14 probands and 24 singletons (families where 

only one member was sequenced) with additional family members sequenced, in total 

24 affected family members and 32 unaffected relatives. Of the fourteen sequenced 

families; seven underwent whole exome sequencing, seven families underwent whole 

genome sequencing and three of those families have some members sequenced in both 

platforms (Table 6). 

Table 6. Families of the cohort. The predigree size of each family with the total number of 

sequenced samples including affected and unaffected. Families that underwent WES were 

labelled with letters whereas families that underwent WGS were labelled with numbers. 

 

  

Family 

ID 

Pedigree 

Size 

Sequenced Samples 

     Total        Affected       Unaffected 

Sequencing 

Platform 

A 33 12 7 5 WES, 3xWGS 

B 7 6 3 3 WES, 4xWGS 

C 5 3 3 0 WES 

D 5 3 3 0 WES 

E 9 3 3 0 WES 

F 4 2 2 0 WES 

G 4 2 2 0 WES 

1 5 5 2 3 WGS 

2 5 5 2 3 WGS 

3 7 3 2 1 WGS 

4 5 3 2 1 WGS 

5 4 3 2 1 WGS, 2xWES 

6 3 2 2 0 WGS 

7 3 2 2 0 WGS 
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3.3.2.1 WES Families 

Detailed clinical evaluation including family history and pedigree was performed on 

each case and information from clinical notes as well as rare disease database entries 

was combined. Of the seven families that underwent WES, there were 1 family with 

twelve members, 1 family with six members, 3 trios and 2 duos. Apparent segregation 

patterns indicated that these comprise four autosomal dominant families and two with 

an autosomal recessive inheritance (Figure 21).  

Family A was the largest studied, with seven affected and five unaffected members. 

Pedigree analysis suggested that SRNS is inherited as an autosomal dominant trait. 

Detailed clinical and family history was available on four generations, and members 

of three generations were available for sequencing. Of the seven affected relatives all 

had FSGS (4 renal biopsy proven). Four developed end stage renal failure, with one 

dialysis dependent and three post-transplant (no recurrence). One had CKD and 

proteinuria without progression to end stage renal failure despite being in his mid-

70’s, whereas the remaining two had mild proteinuria. Age of onset ranged from 8 to 

~30 years of age. Therefore, there was a large variation in disease severity. 

Family B also spanned three generations and had three affected members and three 

unaffected, with inheritance suggestive of autosomal dominant model. Of the three 

affected members, all had FSGS, however the proband only had mild proteinuria and 

normal renal function whereas the other two CKD, suggestive of incomplete 

penetrance. Here, the age of onset ranged from 8 to 35. 

Family C had three affected siblings (two females and a male) and unaffected parents 

but were not sequenced.  Consanguinity was confirmed after clinical review with 

parents being second cousins. Segregation of the disease in the pedigree was consistent 
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with autosomal recessive inheritance. Affected children have CKD and FSGS. The 

age of onset examined ranged from 6 to 14. Additionally, they have comorbidities 

such as microcephaly and learning difficulties suggestive of a genetic syndrome with 

renal involvement.  

Family D consisted of three affected siblings (two females and a male). DNA was not 

available on the unaffected parents. Of the three siblings, one female had SSNS (and 

presumed MCD) with normal renal function. In contrast, the other two siblings had 

SRNS with FSGS on renal biopsy, progressed to end-stage renal disease. All had 

disease onset in early life, ranging from 11 months to 2 years. Thus, disease phenotype 

between siblings is very different. 

Family E had two affected sisters and affected mother who were sequenced. The 

proband had secondary multidrug resistant SRNS and histological diagnosis of FSGS 

that responded to rituximab. In contrast, her mother and sister were diagnosed with 

SSNS and did respond to conventional treatment with steroid and MMF. Disease onset 

ranged from 3 to 6 years. The father and other two sisters were unaffected but 

unfortunately, DNA was not available.  

Family F had two affected brothers and unaffected parents that were not sequenced.  

Both brothers were diagnosed with SRNS and FSGS and one had severe learning 

difficulties. Their age of onset ranged from 5 to 6.  

Finally, Family G had two affected sisters and unaffected parents that were not 

sequenced. Both sisters were diagnosed with primary SRNS and FSGS and developed 

multidrug resistance, with the age of onset of disease ranging from 1 to 8 years. DNA 

was unavailable on parents. 
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Figure 21. Pedigree structure of the families that underwent WES. Pedigree structure of seven 

families. Squares and circles indicate males and females respectively. Individuals coloured in 

black have been sequenced whereas individuals coloured in grey have not. 
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3.3.2.2 WGS Families 

Of the seven families that were whole genome sequenced, there were 2 families with 

five members, 3 trios and 2 duos. Preliminary data suggests a family with an autosomal 

dominant model of inheritance (family 3) and another family with an autosomal 

recessive model (family 5) (Figure 22). 

Family 1 has two affected members (brothers) and three unaffected (parents and 

daughter). Both brothers were diagnosed with SSNS with steroid dependence and 

MCD with childhood onset at 3 and 8 years. One recovered aged 12 years, with no 

further relapses whereas the other became steroid dependent requiring steroid sparing 

medications and did not go into remission. 

Family 2 comprised IVF triplets (two affected males and an unaffected female) and 

unaffected parents. After examination of the sequence data, the triplets were 

confirmed non-identical and that the father was not the biological father (IVF was 

through an unrelated sperm donor). The two affected triplets developed childhood 

onset secondary SRNS at 2 years of age, responded to rituximab but remain 

medication dependent at 10 years. 

Family 3 has two affected relatives (mother and daughter) and one unaffected (son). 

This family have two pregnancies not carried to term which suggest an autosomal 

dominant model of inheritance. Mother and daughter were diagnosed with SSNS and 

MCD; both had secondary SRNS with the mother responding to secondary agents and 

the daughter to rituximab. 

Family 4 consisted of two affected half-sisters (different fathers) and unaffected 

mother. Both sisters were diagnosed with secondary SRNS, although one had FSGS 
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on kidney biopsy whereas the other MCD. One made a partial response and the other 

a complete response to rituximab.   

Family 5 had two affected siblings and unaffected mother. Parents were first cousins. 

Both siblings had primary SRNS with an age of onset ranging between 7 to 10 years 

and chronic kidney disease. 

Family 6 comprised two affected relatives, son and father, with primary SRNS and 

FSGS on renal biopsy as well as CKD. Additionally, the father had hypertension and 

the son, sickle cell disease.  

Family 7 consisted of a son and mother, both with SSNS and MCD on biopsy. While 

both developed steroid dependence, they responded to secondary agents and mother 

was in permanent remission since her teens. Parents were first cousins, but other 

siblings were unaffected. 
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Figure 22. Pedigree structure of the families that underwent WGS. Pedigree structure of seven 

families. Squares and circles indicate males and females respectively. Triangles were used for 

pregnancies not carried to term. Individuals coloured in black have been sequenced whereas 

individuals coloured in grey have not. 
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3.4 Phenotyping of cases 

Each patient was deeply phenotyped using detailed clinical information extracted from 

patient records and if needed, from sequential rare disease database entries from the 

UK Renal Disease Registry with the help of Dr. Ania Koziell. This ensured all 

information was contemporaneous and accurate reflecting any changes in clinical 

status or revisions in diagnosis. Additionally, it allowed for exclusion of cases with 

overlap pathology such as IgA nephropathy and secondary nephrotic syndromes 

misdiagnosed as primary SRNS. Follow up for selected patients ranged from 5 to 50 

years. Database entries included parameters such as uploaded clinical records, renal 

biopsy, and results of routine haematology and blood chemistry such as serum 

creatinine and albumin as well as measure of urinary protein-creatinine ratios. A 

number of clinical features were annotated as follows: primary diagnosis, family 

history, age of onset, biopsy findings, nephrotic syndrome type, treatment, 

comorbidities, from sequential (anonymised) patient records that incorporated long-

term clinical outcomes including which stage of chronic kidney disease was reached 

if any, whether the case developed end stage kidney failure and a need for renal 

replacement therapy and/or transplantation, and whether cases developed disease 

recurrence post-transplant. These clinical features were informative and provided a 

better understanding of the disease, but they were not independent variables as some 

of them were highly correlated. 

The phenotype characteristics were annotated to build up a precise picture of the study 

cohort and to ensure deep phenotyping of all cases. This was crucial as the number of 

cases generally available for study in a rare disease are limited and can ultimately 

restrict the value of experimental approaches designed such as association studies 

especially if rigorous phenotyping is not performed. 
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3.4.1 Age of onset 

The overall mean age of onset for the cohort was 15.4 (ranged from birth to 82). The 

majority of cases could be assigned an exact age of onset, aside from a percentage of 

adults that had childhood onset disease and did not recollect when this commenced. 

366 patients out of 422 have the age of onset annotation. Cases were annotated as 

paediatric onset (PO) or adult onset (AO):  315 of 422 cases had PO, 97 had AO and 

10 did not have information about onset available. Since SRNS is classically thought 

of as a childhood disease, surprisingly onset of SRNS appeared to follow a bimodal 

distribution, characterised by a first peak extending from birth to the second decade 

and a second peak from the fifth to sixth decades (Figure 23).  

 

Figure 23. Age of onset distribution in SRNS patients (n=366). Empirically derived age of 

onset in years with admixture modelling. 
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Age of onset was also explored in relation to family history and the genetic findings 

described in Chapter 4. Cases with family history and likely Mendelian inheritance 

were found to have an earlier age of onset of 6.6 years (Figure 24). Whilst familial 

SRNS can occur in later life (e.g. TRPC6 or ACTN4 mediated disease), it is more 

prevalent in early life and this finding was consistent with previous studies (60, 82). 

Furthermore, patients with monogenic forms of SRNS that could be attributed to a 

causal genetic mutation in the established genes had the earliest age of onset of 2.9 

years (Figure 24). Therefore, there was an overlap between the cases with family 

history and cases with monogenic forms of the disease. Some of these cases with a 

family history had adult onset whereas cases where a causal genetic mutation was 

identify only had paediatric onset. Cases with genetic risk factors for APOL1 (G1 or 

G2 allele) were not included in Figure 24. 

 

Figure 24. Age of onset of SRNS in patients with family history and patients with monogenic 

disease. On the left, the distribution of the age of onset for familial cases (orange) vs sporadic 

cases (blue). On the right, the distribution of the age of onset for patients with a confirmed 

monogenic disease (orange) vs patient with unknown genetic cause (blue). 
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3.4.2 Nephrotic syndrome type 

Steroid response is used to describe the type of nephrotic syndrome as steroid sensitive 

or steroid resistant. This remains the working classification applicable clinically in the 

absence of alternative biomarkers for disease stratification. In this study, classical 

definitions were used to define cases as either steroid sensitive (SSNS) – response 

within one month for children or four months for adults, or steroid resistant (SRNS) if 

there was no response within one month for children or four months for adults. SRNS 

was subdivided into primary SRNS, cases that showed no response to steroid even at 

the outset, and were also often multidrug resistant and secondary SRNS, those patients 

that subsequently developed steroid resistance after initial response. Of the total 422 

individuals, 253 (60%) were diagnosed with primary SRNS, 154 (37%) were 

diagnosed with secondary SRNS, 9 (2%) were diagnosed with SSNS and 6 (1%) did 

not have a diagnostic tag. 

3.4.3 Histology 

The most common renal histology in primary SRNS was FSGS, and MCD for 

secondary SRNS. Biopsy findings indicated FSGS in 253 patients, with a minority of 

syndromic childhood SRNS (specifically Pierson, Denys Drash and Frasier 

syndromes) showing a mixed picture of FSGS combined with diffuse mesangial 

sclerosis. Two cases with FSGS associated with mild GBM abnormalities and de novo 

COL4A mutations suggestive of Alport syndrome but had renal restricted phenotype 

and no family history. MCD (including its variants IgM and C1q nephropathy) was 

detected in 143 patients, histological changes compatible with congenital nephrotic 

syndrome in 13 patients and no histology annotation was available for 13 patients. 
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3.4.4 Clinical outcome 

Primary SRNS with FSGS as a histological pattern are associated with a higher risk 

of developing end-stage kidney disease and responsible for 15% of all children with 

CKD (39). As seen within the clinical demographic of this cohort, primary SRNS 

patients may progress to ESRF more rapidly if a genetic cause is detected and/or the 

FSGS is part of a syndrome. Others responded to treatment and may achieve partial 

remission or complete recovery, especially if the SRNS is secondary. 

Patients in this cohort were grouped according to the following clinical outcomes: 

recovery, stable on medication and CKD/ESRD/Transplant.  Recovery was defined as 

no relapse for 5 years off medication. The group stable on treatment (with or without 

secondary agent) encompassed patients in remission (urine testing negative for 

protein) or with mild protein loss. The final group included those cases that developed 

multidrug resistance, progressing to CKD or ESRD and dialysis or renal transplant, 

and whether post-transplant recurrence occurred. Among 315 patients with 

information about their clinical outcome, 42 achieved recovery, 128 were stable on 

medication and 145 patients progressed to ESRD/CKD or transplant. 27 patients of 

these 145 developed post-transplant disease recurrences. To summarise, despite 

clinical outcomes for SRNS appearing heterogeneous, the majority of cases had 

ESRD/CKD or were stable on medication. 

3.5 Discussion 

This chapter comprehensively explored the recruitment and characterisation of an 

SRNS cohort (primary and secondary) of children and adults from UK nephrology 

centres. To my knowledge these patients represent the largest SRNS cohort that has 

undergone whole exome and/or whole genome sequencing in the UK and one of the 
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most extensive resources that includes genetic data and phenotype information 

internationally, with the exception of the study performed by Hildebrandt’s group that 

included 1783 families (82). Phenotyping involved extraction of a detailed clinical 

course, including parameters such as age of onset, outcomes, biopsy data and 

medication history using clinical records and Radar/Renal Registry to allow rigorous 

definition of the phenotype. Accessing the actual phenotype within a nationally 

recruited cohort can be particularly challenging – either through inaccessibility of data, 

or incomplete or inaccurate database entries since this may not be performed by 

specialists in the field. Another disadvantage is that records may not be updated over 

time as cases move between paediatric and adult care, or hospital trusts and the thread 

describing clinical progression is lost.  

Sporadic SRNS in the European population was accurately represented within this 

cohort since this was the main group recruited. The exploration of the disease 

transmission showed 91% of the patients had sporadic SRNS and only 9% had family 

inheritance. The clinical characteristics available for these patients highlight the 

heterogeneous nature of the disease and the variety of phenotypes. The results 

described in this chapter regarding sex ratio, age of onset in familial cases and clinical 

outcomes were consistent with previous studies of SRNS in children and adults (38, 

39, 60, 82). The bimodal distribution found in the age of onset was a novel finding as 

classically, this is considered a disease of early life. Nevertheless, the epidemiological 

observations made from this cohort are still limited due to a lack of statistical power 

consequent on an insufficient number of cases because of the rare status of the disease.  

The male to female ratio within this cohort was 1.19:1, which is broadly consistent 

with other studies (82, 159) although the differences are not as striking. The reduced 
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ratio is likely related to the demographic of the cohort as there was an almost equal 

collection of children and adults, and majority of SRNS studies only include children. 

In order to demonstrate that SRNS is more common in males than females, all new 

patients arriving in a clinic over a period of time would need to be catalogued. 

Furthermore, there are other sources of bias during the recruitment of genetic studies 

that could affect the sex ratio (160).  

Fourteen families of different sizes that had detailed phenotypic information available 

were whole exome and/or whole genome sequenced. At least two families (family D 

and family E) presented with a mixed phenotype; some members presented with 

classical SRNS and others with SSNS. This mixture of phenotypes within the same 

family highlights the heterogeneity of INS and the similarities of SRNS and SSNS that 

could potentially have a similar or shared genetic architecture. Notably, even when all 

the affected members of a family had SRNS, there was still phenotypic variability in 

phenotypic expression. This could be due to incomplete penetrance or epistatic effects 

such as modifier genes. 

The main objective of treating INS is to achieve long-term nephrotic remission whilst 

minimise toxic side effects of medications and complications such as hypovolaemia, 

infection and thrombosis. Assessing the clinical outcomes of SRNS based on response 

to treatment, genetics and clinical features such as histology or age of onset can be 

challenging because of the limited size of the cohorts available for study, reduced 

follow-up period and lack of information for some patients with unknown or uncertain 

features. Furthermore, despite national standardisation, clinics do not always adopt 

national guidelines and may have different protocols meaning that SRNS patients are 

not offered a standard set of medications. This can also be due to funding issues and 
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other factors, for example Rituximab is used for complex SRNS as protocol, especially 

for children with secondary steroid resistance but this is not as prevalent in adult 

nephrology practice (22, 36). Thus, it is difficult to standardise clinical outcomes, 

since observed differences in clinical features between patients could be linked to the 

consequences of how patients are managed and treated, rather than their underlying 

genetics making stratification on this basis challenging. As the majority of SRNS cases 

had an early age of onset (< 18 years) and were diagnosed with primary SRNS that is 

classically multidrug resistant, the most frequent clinical outcome was CKD, ESRD 

or transplant, followed by patients stabilised on multiple medications but not in 

permanent disease remission. The outcomes identified were consisted with those 

described in previous clinical studies, which provided further verification that despite 

being a relatively small cohort that did not capture all SRNS cases in the UK, the study 

did accurately represent the SRNS phenotype. 

.  
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Chapter 4 – Evaluation of rare genetic variants 

disrupting coding regions of established SRNS 

genes 

4.1 Study design considerations 

Despite the direct association of mutations in 67 genes with SRNS, the molecular basis 

of the disease remains poorly understood as only a maximum of 29.5% of patients 

(with familial or sporadic disease) carry a causal mutation in one of these established 

genes (20, 82). Furthermore, patients present considerable variability in their 

phenotype, even in families where affected relatives share the same causative 

mutation.  This supports the hypothesis that as well as monogenic causes, modifier 

genes, polygenic risks and complex environmental-genetic interactions could 

potentially modulate disease severity. These mechanisms remain largely unexplored 

in SRNS. 

Within this study, even if a candidate gene had been reported as causing SRNS or 

comparable disease phenotype, the evidence for this from previous studies was 

carefully evaluated. Thus, in order to identify disease-causing or associated variants, 

it is crucial to separate genuine causal variants from the background of variants that 

are rare, but not actually pathogenic for SRNS. A pathogenic variant significantly 

alters levels or affects the normal biochemical function of the product of the affected 

gene, playing a role in the disease pathogenesis. In this study, certain parameters of 

pathogenicity were set; synonymous variants were not considered as putative 

pathogenic variants since they are not expected to have a damaging effect on the 

protein structure, despite the occasional association with splice site formation. 

However, rare variants located within coding regions of established SRNS genes and 



 109 

intronic variants adjacent to exons (±10 bp) that can cause abnormal splicing by 

interfering with splice site recognition were examined. Predicted distributions of allele 

frequencies and effect sizes for pathogenic variants were also taken into consideration, 

to determine the probability of observing this result by chance with a randomly 

selected variant. If a variant is pathogenic, it will be generally subject to negative 

selection and be rare in a healthy population. How rare also depends on its penetrance 

and the mode by which it is known to cause disease (118). Since nephrotic syndrome 

is a rare disease, variants with an allele frequency higher than 0.001 were excluded as 

these were highly unlikely to be pathogenic. However, some common variants known 

to be predisposing factors for SRNS were also explored separately, such as the risk 

alleles G1 and G2 in APOL1 (84) and the NPHS2 gene mutation R229Q encoding an 

allele associated with albuminuria and ESRD when inherited in trans with another 

NPHS2 mutation (75). In addition, the potential pathogenicity of a variant was 

assessed by deleteriousness rankings from CADD algorithm (161). CADD score was 

used to predict how damaging a variant might be on protein function, based on 

conservation across species and difference between the reference and alternative 

amino acid. Therefore, variants with a score higher than 15 were prioritised in the first 

instance. Data from each patient was analysed individually, assuming either a 

dominant or recessive model based on the established inheritance of the gene. 

Sequences from 422 probands of European, South Asian, East Asian, African and 

mixed-race descent (Figure 20), were analysed to confirm the presence of potential 

mutations in the known SRNS genes. Rare and functional variants in the established 

67 genes were extracted in each sample. This included variants with an allele 

frequency lower than 0.001 for dominant model and 0.01 for recessive alleles and 

variants that affected the protein coding sequence such as nonsense, frameshift, small 
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in-frame insertions or deletions, splice acceptor and stop gained or lost (section 2.5.4). 

In cases where a potentially pathogenic mutation was detected, available family 

members were also investigated to determine if the mutation was segregating with the 

affected members of the family. Finally, the assessment of structural variation, such 

as copy number variation (CNV), across the established SRNS genes was beyond the 

scope of this thesis. 

4.2 Results 

Potentially pathogenic variants in established SRNS genes were classified into three 

main categories: variants that have been previously described in the literature to be 

responsible for SRNS (Table 6), variants that are novel or have not been reported in 

the literature (Table 7) and variants previously described or novel, that had an 

inconsistent model of inheritance to the established gene (Table 8). The latter are 

variants that have been reported causative in homozygous and were found in 

heterozygous in the cohort (Table 8). 

A total of 67 pathogenic or likely damaging variants were detected across 48 cases of 

the 422 (Table 7) (Table 8). These harboured either pathogenic or likely pathogenic 

variants with genotypes that were consistent with the described mode of inheritance 

of the gene in question and robustly explained the associated phenotype based on 

existing data from previous studies (Table 7) (Table 8). Of these, 19 samples were 

investigated for compound heterozygosity as they had two potentially causal variants 

identified within the same gene. When possible, any compound heterozygous 

mutations were confirmed by sequencing the parents of the case. Out of the 48 patients 

where mutations were identified, 11 (23%) had familial disease and 4 of them had 

relatives sequenced in the cohort whereas 38 (77%) patients were sporadic cases with 
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no apparent family history of kidney disease. The 4 probands and family members 

were investigated and a clear link between their genotype and phenotype was 

identified as mutations were present in affected members and absent in unaffected 

members.  

All affected individuals with a potential mutation identified had paediatric onset, 47 

were diagnosed with primary SRNS and 1 with secondary SRNS, 23 were female and 

25 were male. Their ethnicity can be summarised as followed: 33 Europeans, 13 South 

Asians, 1 East Asians and 1 African. 

All potential pathogenic variants were found in coding regions except for seven 

variants that were close to the exons and altered splicing. Only 13 genes out of the 67 

that have been directly associated with SRNS, where found to harbour mutations in 

this cohort (Figure 25.A). The genes harbouring the biggest number of mutations 

within the cohort were NPHS1 and NPHS2 (Figure 25.A), replicating the results of 

some other studies and validating the cohort to some extent as typical of SRNS and 

therefore representative (60, 80). The type of mutation of these variants and 

consequences at the protein level is showed in Figure 25.B, with nonsynonymous 

single nucleotide variants being the most frequently observed, followed by splicing, 

indels (frameshift and non-frameshift), stop gained variants and nonframeshift 

deletion. Information about the reported status can be also found in Figure 25.B.  

The distribution of the allele frequency of the mutations was calculated using gnomAD 

(133) and divided into two groups, heterozygous and homozygous variants, showing 

a range of 0 to 0.00125 for heterozygous variants and a range of 0 to 0.0006 for 

homozygous variants. A heatmap plot showing the breakdown of mutations by type 

of substitution reveals a high frequency of C>T and G>A mutations (Figure 25.C). 
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Additionally, affected individuals were interrogated for APOL1 G1 allele and G2 

alleles, known to be risk alleles associated with FSGS, CKD/ESRF and hypertension 

in the African population (86, 162). Of the total 422 cases in the study cohort, only 35 

had African ancestry and from those, 23 presented at least one risk allele in the G1 

allele and/or G2 allele, known to be associated with pathogenicity and an increased 

risk of developing SRNS (Table 10). Additionally, these same risk alleles were 

detected in 6 cases that did not cluster closely with individuals of African ancestry on 

PCA plot but were known mixed race with African influence. 
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Figure 25. Analysis of known causative variants identified in the cohort.(A) The breakdown 

of associated SRNS genes where mutations were found in the cohort. 67 pathogenic variants 

were detected across 48 patients (B) Distribution of consequence classes and the reported 

status of the variants: known variants presented in green and novel in purple. (C) Heatmap 

plot showing the breakdown of mutations by type of substitution. 



 114 

Table 7. Previously described variants in established SRNS genes. The genome build used 

was GRCh37. 

Sample Gene Zygosity Chr Pos Ref Alt Consequence 

S1228 LAMB2 HOM chr3 49168562 G A p.R246W 

S2227 LMX1B HET chr9 129455598 G A p.R246Q 

S012538 LMX1B HET chr9 129455598 G C p.R246P 

S1852 LMX1B HET chr9 129455598 G A p.R246Q 

S1217 NPHS1 HOM chr19 36321958 G A p.R1160X 

S1223 NPHS1 HET chr19 36333453 C T splicing 

 NPHS1 HET chr19 36333296 G A p.R831C 

S1654 NPHS1 HOM chr19 36341889 G A p.P167L 

S1704 NPHS1 HET chr19 36342241 G A p.A107V 

 NPHS1 HET chr19 36342681 C A splicing 

S1851 NPHS1 HET chr19 36333453 C T splicing 

 NPHS1 HET chr19 36321994 G A p.Q1148X 

S0635 NPHS2 HOM chr1 179530462 C T p.R138Q 

S0694 NPHS2 HOM chr1 179526187 CTCTC - p.235_238del 

S1214 NPHS2 HET chr1 179530462 C T p.R138Q 

 NPHS2 HET chr1 179526257 G A p.Q215X 

S1652 NPHS2 HOM chr1 179530462 C T p.R138Q 

S1668 NPHS2 HET chr1 179530462 C T p.R138Q 

 NPHS2 HET chr1 179526257 G A p.Q215X 

S1714 NPHS2 HET chr1 179526214 C T p.R229Q 

 NPHS2 HET chr1 179521740 G A p.R223W 

S1726 NPHS2 HET chr1 179526214 C T p.R229Q 

 NPHS2 HET chr1 179521740 G A p.R223W 

S1731 NPHS2 HET chr1 179530462 C T p.R138Q 

 NPHS2 HET chr1 179521743 C T p.V222M 

S0621 NUP107 HOM chr12 69115634 G A p.C442Y 

S1696 NUP107 HOM chr12 69084526 G A p.M101I 

S0689 WT1 HET chr11 32414250 C T p.R439H 

S1211 WT1 HET chr11 32413566 G A p.R467W 

S1677 WT1 HET chr11 32413513 C T splicing 

S1850 WT1 HET chr11 32413513 C T splicing 

S014195 WT1 HET chr11 32413514 G A splicing 
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Table 8. Novel variants in established SRNS genes. The genome build used was GRCh37. 

Sample Gene Zygosity Chr Pos Ref Alt Consequence 

S1848 COL4A3 HET chr2 228147214 A - p.G874fs 

 COL4A3 HET chr2 228175539 T - p.P1601fs 

S2032 CRB2 HET chr9 126133214 C T p.R628C 

 CRB2 HET chr9 126135914 - GGCCC p.P1035fs 

S2054 LCAT HOM chr16 67977109 C A p.G54V 

S1684 LMX1B HET chr9 129455537 C T p.L226F 

S1722 MAGI2 HOM chr7 77649003 C - p.G1319fs 

S1728 MAGI2 HET chr7 77755055 - GCCAGT p.R1161fs 

 MAGI2 HET chr7 79082567 GGTTG - p.G21fs 

S1717 MAGI2 HOM chr7 77824247 C T p.R738Q 

S1682 MAGI2 HOM chr7 77824247 C T p.R738Q 

S0727 MYO1E HOM chr15 59466395 A T p.Y698X 

S1230 MYO1E HOM chr15 59528852 T C p.K118E 

S1215 NPHS1 HET chr19 36334481 G A p.R743C 

 NPHS1 HET chr19 36333400 C T p.G796E 

S1655 NPHS1 HET chr19 36333453 C T splicing 

 NPHS1 HET chr19 36330191 - C p.L1019fs 

S1660 NPHS1 HOM chr19 36330304 - T p.T982fs 

S1669 NPHS1 HET chr19 36321954 C A splicing 

 NPHS1 HET chr19 36322587 - C p.G1082fs 

S1676 NPHS1 HOM chr19 36336290 AAG - p.636_637del 

S010304 NPHS1 HOM chr19 36336272 A G p.L643P 

S0646 NPHS2 HET chr1 179530462 C T p.R138Q 

 NPHS2 HET chr1 179533820 C T splicing 

S1673 NPHS2 HET chr1 179530462 C T p.R138Q 

 NPHS2 HET chr1 179533824 C A splicing 

S1715 NPHS2 HET chr1 179530462 C T p.R138Q 

 NPHS2 HET chr1 179544847 C - p.A51fs 

S014334 NPHS2 HET chr1 179530462 C T p.R138Q 

 NPHS2 HET chr1 179521756 TT - p.Q217fs 

S0648 NUP93 HET chr16 56875663 T C p.L633S 

 NUP93 HET chr16 56872929 T C p.L572S 

S2960 NUP93 HOM chr16 56871529 A G p.K514E 

S013682 NUP93 HOM chr16 56871529 A G p.K514E 

S1140 TRPC6 HET chr11 101323814 C T p.D890N 
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Table 9. Previously described or novel variants in established genes with an inconsistent 

model of inheritance. The genome build used was GRCh37 

Sample Gene Zygosity Chr Pos Ref Alt Consequence 

S1656 COL4A1 HET chr13 110815866 G A p.P1398L 

S0628 NPHS1 HET chr19 36322018 G A p.R1140C 

S0629 NPHS1 HET chr19 36342697 C G p.G15R 

S1656 NPHS1 HET chr19 36340184 C G p.C265S 

S1689 NPHS1 HET chr19 36342248 C T p.D105N 

S2051 NPHS1 HET chr19 36321796 T C p.T1182A 

S2232 NPHS1 HET chr19 36317544 G A p.P1200S 

S009997 NPHS1 HET chr19 36321820 G A p.H1174Y 

S010112 NPHS1 HET chr19 36339613 T G p.S366R 

S013742 NPHS1 HET chr19 36336398 C G p.G601A 

S014148 NPHS1 HET chr19 36340506 A C p.S220A 

S014207 NPHS1 HET chr19 36317420 A G p.V1241A 

S014249 NPHS1 HET chr19 36333453 C T splicing 

S014285 NPHS1 HET chr19 36332686 C A p.A916S 

S1678 NPHS1 HET chr19 36321958 G A p.R1160X 

S0760 NPHS1 HET chr19 36336953 G A p.C528C 

 NPHS1 HET chr19 36342236 A G p.Y109H 

S014415 NPHS1 HET chr19 36333024 A T splicing 

S1686 NPHS2 HET chr1 179533907 C T p.G99E 

S1846 NPHS2 HET chr1 179520568 C G p.E230Q 

S2053 NPHS2 HET chr1 179530421 - T splicing 

S2231 NPHS2 HET chr1 179528830 T C p.E173G 

 

 

Table 10. Number of APOL1 risk alleles in cases. The three APOL1 alleles were:G1,G2 and 

WT (wild-type). 

Genotype Cases 

WT+G1 10 

WT+G2 4 

G1+G1 13 

G2+G2 2 

G1+G2 2 
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4.2.1 Previously described variants in established genes 

A total of 24 cases had at least one putative pathogenic variant in an associated SRNS 

gene that has been previously described in association with familial or sporadic SRNS 

(Table 6). Visual inspection of the read alignments was performed by IGV (Integrative 

Genomic Viewer) (163) in order to verify the 32 variants in each gene of interest. All 

these variants were well characterised and had been confirmed pathogenic in previous 

studies. This established a clear link between genotype and phenotype in these 24 

cases and therefore, were subsequently considered ‘solved’ and not included in any 

further analysis. Additionally, each mutation was confirmed by Sanger sequencing by 

Dr. Agnieska Bierzynska and Dr. Ania Koziell (60, 102) (Table 6). 

An interesting finding was that some mutations occurring in the NPHS2, LMX1B and 

WT1 genes were identified in multiple unrelated cases. This suggested that mutations 

within these genes are prevalent across sporadic SRNS cases in early life as well as 

familial. The NPHS2 gene mutation p.R138Q (rs74315342) was detected in five 

unrelated sporadic cases within the cohort. This mutation has previously been 

associated with familial SRNS occurring in early life (164-166). Four of these cases 

(S0635, S1214, S1652 and S1668) had a very early onset (<1 year), whereas S1731 

had a later onset (13 years). The LMX1B mutation p.R246Q (rs1191455921) was also 

detected in two patients, one sporadic (S2227) and another familial (S1852) though 

no relatives were available for sequencing to confirm this was inherited. Both cases 

had an early onset in childhood. The mutation p.R246Q has been previously described 

in Nail Patella syndrome and also in early onset FSGS (167, 168). Regarding WT1 

gene mutations, the splicing variant, rs587776576, was identified in S1677 and S1850 

and has been associated with Frasier syndrome, SRNS and FSGS (Table 6). 
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Of the total 24 cases with previously described mutations in known SRNS genes, 5 

had familial disease. S1696 was part of Family C, three affected siblings (two females 

and male). Here, a homozygous mutation in the NUP107 gene (p.M101I) was detected 

in all three siblings. DNA was not available for sequencing on the unaffected parents, 

but consanguinity was confirmed through clinical review as parents reported that they 

were first cousins. All siblings presented with FSGS and CKD, as well as other 

comorbidities such as microcephaly and learning difficulties (Figure 26). This same 

NUP107 gene mutation had been previously described in other families in association 

with both SRNS and intellectual disability, microcephaly and developmental delay 

(169, 170). 

 

Figure 26. Segregation of the variant in NUP107 (p.M101I) in Family C. Squares and circles 

indicate males and females respectively. All siblings were homozygous for the mutation. DNA 

was not available for sequencing on the unaffected parents. Consanguinity was confirmed 

through clinical review. 
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4.2.1.1 Risk alleles in APOL1 

Data from studies carried out in the United States describes the risk of CKD and ESRF 

being 4 to 5 times higher in African Americans compared with individuals of 

European ancestry (171). Specifically, two particular risk alleles in APOL1 have been 

associated with large increases in risk of kidney disease in both paediatric and adult 

patients of African descent. These risk alleles, annotated as G1 and G2, are associated 

with an increased risk of ESRD and FSGS by 7 to 10-fold (84, 86, 162).  

Two mutations are responsible for the alteration of the amino acid sequence of the 

protein product and are located in the coding region of the C-terminal domain. The G1 

risk allele results from two non-synonymous amino acid substitutions (rs73885319 

and rs60910145) that are in linkage disequilibrium. The G2 risk allele is an in-frame 

deletion of two amino acid residues (rs71785313). Both alleles are present in 10-15% 

of individuals of African descent (172).  The increase in renal disease risk is associated 

with any of the two alleles found under an autosomal recessive model of inheritance, 

although a smaller risk in individuals with one allele has also been described (162). 

Additionally, the combination of both alleles G1+G2 has also been associated with an 

increased risk. Since G1 and G2 are located within the same region in close proximity, 

recombination between them is very unlikely. Thus, G1 and G2 are mutually exclusive 

and the presence of both alleles in a single individuals indicated compound 

heterozygosity (84). 

Although the majority of cases recruited to the study cohort were Europeans, 35 out 

of 422 cases had African descent. Of this subgroup of 35, at least one risk allele for 

G1 or G2 was detected in a majority of 25 cases (72%) whereas the remaining 10 cases 

(28%) did not carry any APOL1 risk alleles (wild-type) (Figure 27.A). Therefore, more 
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than half of affected individuals of African descent in the cohort had a risk allele in 

APOL1 (72%), this suggested a higher prevalence of G1 and G2 in SRNS cases 

compared with standard metrics in African populations of 10-15% (173). Moreover, 

the 6 cases that did not cluster with the individuals of African but were of mixed 

African/European origin also carried risk alleles in G1 or G2 (Figure 27.A). Thus, 

there were 31 SRNS cases with at least one APOL1 risk allele in the cohort that did 

not have any known or likely pathogenic variants in established SRNS genes. The 

breakdown can be summarised as followed: 10 individuals were heterozygous for G1, 

4 were heterozygous for G2, 13 were homozygous for G1, 2 were homozygous for G2 

and finally, 2 samples had both risk alleles G1 and G2 risk alleles (compound 

heterozygosity) (Table 10). 

The allelic inheritance involving the common genetic variants G1 and G2 in APOL1 

with small to moderate effects resulted in very heterogeneous phenotype across the 

cases. Affected individuals with monogenic form of SRNS where a genetic mutation 

with large effects on disease status was identified had early age of onset with a mean 

of 2.92 (Figure 24) whereas cases with a risk allele in APOL1 (G1 or G2) had a diverse 

age of onset that ranged from 1 to 65 years (mean=16.49) (Figure 27.B). Clinical 

outcomes for cases with a risk allele were also very heterogeneous. However, most 

cases had chronic kidney disease or required a kidney transplant. 
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Figure 27. Principal component analysis of affected individuals with APOL1 risks alleles and 

their age of onset. (A) Projection of individuals onto the first two principal components of 
genetic variation. Individuals with a risk allele in APOL1 are represented in red whereas 

individuals with no risk allele are represented in blue. (B) Distribution of the age of onset for 

cases with a APOL1 risk allele (orange) vs cases with no risk allele (blue). 
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Interestingly, Family 6 had two affected relatives (son and father) diagnosed with 

FSGS and CKD and who had the G1 risk allele. The father was heterozygous for G1 

and had milder disease with a late age of onset at 30 years old, whereas the son was 

homozygous for G1 and had a more aggressive phenotype with an early age of onset 

at 9 years old and more rapidly progressing disease reaching CKD by 15 years of age. 

Both had other comorbidities that could potentially be associated with the presence of 

the G1 risk allele such as hypertension and sickle cell (162) (Figure 28). 

 

Figure 28. Pedigree structure of the Family 6 and their APOL1 risk alleles. Squares and circles 

indicate males and females respectively. The risk alleles were shown as WT(wild type allele) 

and G1. 

4.2.2 Novel variants in established genes 

A total of 24 cases had at least one likely damaging variant that was not previously 

reported to be associated with SRNS or it was novel (never seen in another publicly 

available dataset) (Table 7). The genotype of these patients was consistent with the 

known mode of inheritance of the established SRNS gene in which the variant 

occurred. Furthermore, these 35 novels (or not reported) variants were predicted to be 

damaging to the encoded product according to different bioinformatic tools such as 

the ones described in the section 2.5.4.2. Some patients exhibited compound 

WT+G1

G1+G1
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heterozygosity between a previously described variant and a novel one (Table 8). 

Visual inspection of read alignments of each variant was performed with IGV. 

Moreover, these variants were also checked by Sanger sequencing. 

Six cases with a novel variant in an established SRNS gene had familial disease, and 

three of them (S2054, S1673 and S1140) had relatives sequenced within the cohort. 

The three families were: Family 5, Family B and Family G. 

Family 5 had two affected siblings with a novel homozygous variant in LCAT 

(p.G54V) and the unaffected mother was heterozygous for the variant. The father was 

not sequenced but parents of the affected siblings were first cousins. Both siblings 

were diagnosed with SRNS and CKD with an early age of onset (7 and 10 years) 

(Figure 29). LCAT is an enzyme involved in the cholesterol homeostasis and recently 

mutations in this gene have been linked to nephrotic syndrome and ESRD (174).  

 

Figure 29. Segregation of the variant in LCAT (p.G54V) in Family 5. Squares and circles 

indicate males and females respectively. Both siblings were homozygous for the mutation 

whereas the mother was heterozygous. DNA was not available for sequencing on the 

unaffected father. Consanguinity was confirmed through clinical review. 

  



 124 

Family B had three affected relatives (proband, mother and grandfather) where a novel 

heterozygous TRPC6 variant (p.D890N) was found. One had mild proteinuria and two 

had CKD and FSGS. The mutation was predicted to be pathogenic and was not present 

in the three unaffected members of the family (Figure 30). 

 

Figure 30. Segregation of the variant in TRPC6 (p.D890N) in Family B. Squares and circles 

indicate males and females respectively. Family spanned three generations. Grandfather and 

mother had CKD disease whereas the proband only had mild proteinuria. The three affected 

relatives were heterozygous for the mutation. The alternative base was represented in bold. 

Family G consisted of two affected sisters with two heterozygous variants in NPHS2 

(p.R138Q and splicing variant) in compound heterozygosity. Both sisters were 

diagnosed with primary SRNS and FSGS and developed multidrug resistance with an 

early age of onset (Figure 31). 
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Figure 31. Segregation of the variants in NPHS2 (p.R138Q and splicing variant) in Family 

G. Squares and circles indicate males and females respectively. The alternative base was 

represented in bold. Both siblings had the two variants in compound heterozygosity. DNA 

was not available for sequencing on the unaffected parents. 

 

4.2.3 Previously described or novel variants in established genes that are 

inconsistent with previously reported mode of inheritance 

A total of 22 candidate disease-causing variants (novel or previously described) in 

known SRNS genes with an inconsistent model of inheritance were detected in 20 

primary SRNS cases. All cases had one variant except for S1656 that had two variants, 

one in COL4A1 and another in NPHS1 and S0760 that had two heterozygous variants 

in NPHS1. All variants described in this section were found in the following genes: 

NPHS1, NPHS2 and COL4A1 (Table 8). The inherited conditions associated with 

mutations in NPHS1 and NPHS2 in relationship with nephrotic syndrome follow an 

autosomal recessive model (72, 73) and the variants described in this section were 

heterozygous. Therefore, these variants could be potentially contributing to the 

phenotype but the evidence to support causality is weaker than in the two previous 

sections, as the genotypes were not consistent with the known mode of inheritance of 

the genes. Some studies in NPHS1 and NPHS2 have suggested that patients with 
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heterozygous mutations have proteinuria but may respond to therapy and have a good 

long-term outcome (175, 176). However, further investigations are required to confirm 

the link between heterozygous mutations in NPHS1 and NPHS2 and the development 

of proteinuria. Interestingly, S0760 could have compound heterozygosity in NPHS1 

but one of the variants was synonymous (p.C528C) and would be considered neutral 

as it is not expected to have a damaging effect on the encoded protein. Additionally, 

COL4A1 has been associated with nephropathy in an autosomal dominant pattern 

(177) although the clinical phenotype of S1656 did not match with the ones described 

for mutations in the gene (178). Consequently, these 20 cases remain unsolved.   

4.3 Discussion 

Whole exome and whole genome sequencing enabled the efficient screening of 67 

genes that have been previously associated with nephrotic syndrome in a cohort of 422 

individuals from different ethnicity groups. A total of 48 patients had one or two 

pathogenic or likely pathogenic variants that explained their phenotype. From those 

48 patients, four probands have a pathogenic variant that explained their family 

phenotype in the following genes: NUP107, LCAT, TRPC6 and NPHS2. Collectively, 

mutations in the established nephrotic syndrome genes collectively explained ~11% 

of the cases in the cohort. In contrast, previous genetic analyses of other SRNS cohorts 

used whole exome and also targeted sequencing strategies but had a smaller number 

of genes screened such as the one carried out by Sadowski CE et al (82). Although the 

number of genes screened was smaller (27 genes) they found a single-gene cause in 

29.5% of their patients. This study was the first one to analyse a large international 

cohort of paediatric SRNS patients with 1783 individuals with familial disease (82). 

Since the study of Sadowski CE et al and most others have analysed exclusively 
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paediatric cohorts with familial disease, these results could reflect the difference in 

study population in comparison with the cohort studied in this dissertation. In view of 

the vastly higher incidence of known SRNS gene mutations in early life and familial 

cases, this would in part explain with the observed difference with the study cohort 

here since this was not exclusively paediatric, and also preferentially recruited 

sporadic rather than familial SRNS. Majority of samples with a previously established 

pathogenic or likely damaging variant in this cohort had a childhood onset, supporting 

previous findings of a higher incidence of monogenic disease in childhood (Figure 

24).  

Other recent studies such as the one carried out by M Wang et al used whole exome 

sequencing to screen for 165 genes associated with kidney disease and found rare 

variants in known disease-associate genes in 33.6% of their cases (179). However, the 

cohort studied was not exclusively comprise of primary SRNS patients but a histology 

compatible with FSGS (179). Therefore, secondary causes of FSGS such tubular 

disease were not rejected. As such, genes that would not normally be associated with 

primary SRNS were also significant in the burden test (179). Thus, differences in the 

clinical eligibility criteria could lead to the differences in the percentage of the cases 

explained by monogenic disease in other studies compared with the cohort examined 

here. Additionally, in this study cases that underwent whole genome sequencing as 

part of the BRIDGE study (Rare Disease Pilot for the 100,000 Genome Project), were 

previously screened for some established SRNS genes for this reason the recruitment 

was biased towards patients that did not have an obvious monogenic SRNS form. 

Overall, this cohort better represented the heterogeneity of SRNS in renal clinic 

populations (paediatric and adult) in clinics across the UK, as most previous studies 

selectively recruit patients with an especially high likelihood of a monogenic disorder. 
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Mutations were only detected in 13 of the 67 genes currently associated with nephrotic 

syndrome (Figure 25.A). NPHS1 and NPHS2 had the highest frequency of mutations, 

as has been described in other cohorts (60, 82).These findings highlight the 

heterogeneity of the disease and suggests that some of the variants or genes previously 

reported in the literature might be questionable in terms of nephrotic syndrome 

causality. For this reason, it is crucial to correctly discriminate between causal, 

uncertain significance or benign when the variant pathogenicity is assessed. During 

the course of this work, a number of different filters were carried out in order to 

generate robust findings and ultimately identify genuine causal variants. For instance, 

synonymous variants were considered as neutral because they are not expected to have 

a damaging effect on protein, although in some studies they have been shown to affect 

mRNA stability and protein expression (180). Prioritisation of variants by allele 

frequency was used to enrich potential pathogenic variants over likely neutral variants, 

due to the expectation that deleterious variants would be selected against (118). CADD 

score was also considered as a well-established guide to predict how damaging a 

variant might be. Overall, by removing a substantial number of variants from the 

analysis using the described cut-offs, could lead to failure of identifying a truly causal 

variant (false negative result) (119). Having analysed the causative variants identified 

in this report, as shown in Figure 25, it might be useful to identify future variants in 

novel genes by improving the design of cut-offs used to filter variants. 

Apart from monogenic forms of SRNS, the risk alleles G1 and G2 in APOL1 were 

also assessed. 72% of the patients with African descent had a risk allele in APOL1 

suggesting the high prevalence of G1 and G2 in individuals of African ethnicity with 

SRNS. These risk alleles are associated with moderated to severe FSGS and CKD (84, 

87, 172). Therefore, the phenotype of these patients was very heterogeneous as 
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expected, with early and late age of onset and variety of long-term outcomes (Figure 

25.B). 

Despite stringent quality control steps and adequate filtering, the different coverage 

across established SRNS genes could have resulted in failure to identify causal 

variants in the cohort. As described in the methodology section in Chapter 2, in order 

to maximise the number of patients with SRNS, two datasets from different projects 

were combined and processed using the same pipeline. Thus, cases from the BRIDGE 

project (WGS) were sequenced at lower depth than the samples sequenced from KCL 

genome core (WES) (section 2.5). When studying monogenic causes of SRNS, coding 

variants were analysed rejecting noncoding variation as not all patients were whole 

genome sequenced and there are many challenges regarding the functional 

interpretation of noncoding variants (181). Furthermore, the variable exome capture 

technology led to differences in the sensitivity and specificity of the data. Other studies 

had reported variability in the coverage depth across the exome (182, 183). Thus, it is 

recognised that high-throughput sequencing technologies have limitations that could 

potentially lead to an impact in the variant identification. 

Finally, this chapter illustrates the importance of genotype – phenotype correlation in 

ascertaining the true pathological significance of any mutation. 
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Chapter 5 – Rare genetic variants in novel candidate 

genes 

5.1 Introduction 

As previously described in chapter 4, the SRNS cohort was studied to identify the 

incidence of mutations in established SRNS genes as well as their patterns of 

inheritance. Single gene mutations appeared to again explain only a minority of cases 

(11%) in comparison with previously published literature (30%). As such, the 

available evidence pointed to more complex genetic architecture in the majority of 

patients. The 67 genes that are known to be mutated in SRNS were screened across 

the cohort in order to find previously described or novel pathogenic variants. Aside 

from monogenic inheritance detected in some familial as well as sporadic disease, 

potential risk alleles in predisposition genes such as APOL1 were also identified. 

In this chapter novel and rare genetic causes of large effect in genes that have not been 

previously associated with SRNS were explored. Therefore, the aim was to identify 

the contribution (if any) of novel genes to SRNS in both familial and sporadic cases 

that had not been solved through detecting causal mutations in established SRNS 

genes. 

Cases where no pathogenic or likely pathogenic variants had been detected in 

established SRNS genes were selected for further study. For each, the genetic variation 

profile was built based on exome sequencing data and then filtered searching for likely 

damaging variants in a wider spectrum of genes chosen either through their association 

with glomerular kidney disease and/or genes significantly enriched in podocytes. 

Different methods of family analyses including parametric linkage analysis or 
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nonparametric linkage analysis were performed to identify genomic regions 

potentially harbouring causal variants. Finally, a case-control study was undertaken in 

SRNS samples of European ethnicity to identify novel disease risk and/or causative 

variants of potential therapeutic relevance. 

5.2 Identifying likely damaging variants per sample in novel 

genes 

Unsolved cases within the SRNS cohort underwent data processing using the pipeline 

described in the section 2.5. A variant profile was generated for each sample with 

annotated genetic variants that passed the quality control filters. This contained 

variants detected within coding regions and intronic variants in regions in the 

immediate vicinity of exons likely to participate in splicing. This generated individual 

variation profiles containing approximately ~16,000 variants each annotated using 

standard characteristics of genetic variation such as allele frequency, protein 

consequence and pathogenicity scores (outlined in section 2.5.4).  

To identify deleterious genetic mutation in novel genes, variants were filtered using 

the cut-offs described in Chapter 4 based on characteristics of likely causal variants. 

As previously mentioned, solved cases with a causal variant or variants identified were 

excluded from this analysis, leaving a total number of 374 residual cases explored to 

analyse. This prioritised rare variation (AF<0.001), variants with a CADD score 

higher than 15 and rejection of synonymous variants. Only variants located in ±3 bp 

from the exons were selected. Heterozygous variants that were found in more than 9 

controls from the in-house dataset (analysed using the same pipeline) or as 

homozygotes in more than 5 controls were also rejected, especially if this was 
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corroborated in control databases such as gnomAD. Variants of potential interest were 

extracted using two exploratory gene lists: one was a list of 3,019 genes expressed in 

podocytes generated using the raw data from the study performed by H Yu et al (DNA 

microarrays of mouse podocytes and extracting the human orthologues) (184) the 

other a list of 316 genes associated with the HPO term ‘Nephrotic syndrome’ in OMIM 

(https://hpo.jax.org/app/). After filtering, there were approximately ~380 variants of 

interest per sample. A further step of filtering for variants within the same gene, across 

samples was also performed. The gene with the most variation across samples was 

AHNAK2, a gene mostly associated with neuromuscular disorders and cancer. 

Although there are no direct links between AHNAK2 and SRNS to date, it is expressed 

in podocytes and paradoxically lies within the critical region of chromosome 14 

harbouring the gene INF2 which is associated with autosomal FSGS (185), with both 

genes located within 400kb of each other. A very tenuous phenotypic link is that both 

INF2 and AHNAK2 are also associated with a rare neuromuscular disorder, Charcot 

Marie Tooth which in turn can be associated with SRNS (186, 187). Recent studies 

have also found that AHNAK2 is a prognostic marker for clear cell renal carcinoma 

(188). 

As such, although this analysis was informative, the evidence that any of these genes 

including AHNAK2 may be associated with SRNS was not robust and therefore 

inconclusive. Accordingly, other methodologies such as family analysis and case 

control study were performed to generate more evidence in support of novel genetic 

causes of SRNS. 

  



 133 

5.3 Family analysis 

Positional cloning combined with linkage and homozygosity mapping were the first 

approaches to be used in familial SRNS to successfully identify genes responsible for 

the disease (74, 189). These analyses focused on the search of genetic markers across 

the genome of affected relatives in an attempt to narrow down the causal variant 

responsible for the phenotype of the family. Segregation and linkage studies have been 

particularly informative in finding the genomic regions of highly penetrant disease-

causing variants as they should be presented in the affected relatives but not in the 

unaffected. However, there are challenges when using this approach as there is no 

guarantee that the family of interest has a fully penetrant mutation and that there are 

enough individuals to allow a meaningful statistical analysis. Thus, when families are 

smaller and/or not sufficiently interbred to allow homozygosity mapping, or the causal 

mutation is not fully penetrant such that affected members may not be initially obvious 

and included incorrectly in analysis as unaffected individuals, linkage studies may be 

unsuccessful until this point is reached.  

In the previous chapter, only four families (Family 5, B, C and G) out of the total 14 

families sequenced in the study cohort were solved by detection of mutations in 

established SRNS genes. Therefore, this chapter focused on the remaining 10 families 

that did not have causal variants in the coding regions of the established SRNS genes 

(Family 1, 2, 3, 4, 6, 7, A, D, E and F). Three main strategies were applied to search 

for potential novel candidate genes. First, all families were studied by segregation 

analysis extracting a list of likely damaging variants shared by affected relatives of the 

same family. Additionally, the results for each family were compared to see if there 

were any recurrent variants in the same genes among families with comparable 
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phenotypes. Parametric linkage analysis was used to identify regions of the genome 

that might harbour a causal variant that could explained the SRNS dominant trait in 

Family A. Finally, out of the 10 families, 7 met the criteria (at least two affected 

siblings) to be evaluated by nonparametric linkage analysis to explore allele sharing 

across the affected individuals of the families.  

5.3.1 Segregation analysis 

Segregation analysis explores if the pattern of a phenotype within a family is 

consistent with genetic inheritance of disease. All 10 unsolved families with no causal 

mutation detected were studied by segregation analysis to identify whether 

cosegregation was present in the affected members of each family. To search for 

potential disease-linked variants, those shared between affected relatives yet absent in 

the unaffected were selected, filtered by allele frequency and scored for significant 

protein alteration, as described in the section 2.9.1.1. Each family was explored under 

both a dominant and recessive model of inheritance (Table 11). 

As shown in Table 11, most genes presented variation in just one family, however a 

minority did exhibit recurring variation shared across the families, namely MUC4 

which showed multiple variants in six families, followed by AHNAK that had variants 

found in five families, and AHNAK2 with variants found in 4 families (Table 12). 

However, an identical variant was detected in AHKAK in multiple families. This was 

likely artefactual as it is not expected that the same variant would be recurrent as the 

families were not related. Other genes only showed variation across three families 

such as PRDM9, MYO15A and FLG2. Finally, these genes were explored in context 

of kidney expression and kidney disease. As discussed previously, AHNAK2 is 

expressed in podocytes according to the list generated by H Yu et al (184) and has 
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been associated with renal carcinoma (188). MUC4, FLG2, MYO15A and PRDM9 

were highly expressed in kidney but were not associated with SRNS; MUC4 is an 

oncogene, FLG2 is primarily associated with skin disorders, MYO15A is a deafness 

gene including Usher syndrome (although this is associated with kidney disease this 

is ciliopathy rather than SRNS) and PRDM9 is again associated with a number of rare 

syndromes, such as velocardiofacial syndrome, but none of these had SRNS as a 

feature. As such none of these could be placed as plausible candidates for familial 

SRNS. 

Table 11. Number of variants segregating in each family. Variants segregating in the affected 

relatives of each family were extracted under recessive and dominant model of inheritacne. 

Family 

ID  

Variants  

segregating  

(dominant) 

Variants  

segregating 

(recessive) 

Potential  

gene candidates  

1 38 1 MUC4, AHNAK2 

2 34 6 MUC4 

3 46 3 MUC4, PRDM9 

4 34 2 AHNAK2 

6 492 15 MUC4, AHNAK2, MYO15A 

7 107 4 AHNAK2, MYO15A, PRDM9 

A - - - 

D 127 6 MUC4 

E 141 1 MUC4 

F 398 15 MYO15A, PRDM9 

 

Table 12. Genes with the highest variation recurrence across families. 

Gene Number of families with variation recurrence 

MUC4 6  

AHNAK 5  

AHNAK2 4  

PRG4 4  

FLG2 3  

MYO15A 3  

PRDM9 3  
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Interestingly, Family A did not exhibit any coding variants that were segregating 

within the affected members of the family Therefore, this multigenerational family 

with a clear pattern of autosomal dominant inheritance, was selected for more detailed 

analysis (Table 11). 

5.3.2 Parametric linkage analysis 

Analysis of families with individuals from different generations that have accurate 

genotype and phenotype information, can be used to establish if variants segregate 

with disease using the suspected model of inheritance via linkage analysis. In Family 

A, no potential pathological variants were detected by segregation analysis that met 

those criteria in the coding regions (Table 11). Notwithstanding the limitations in 

detecting rare genetic variants in areas of the genome by WES analysis (190). This 

result potentially supports a hypothesis that the variant causing SRNS in this family 

might be located within a non-coding region. 

Detailed family history and phenotypic examination of Family A revealed four 

generations of affected individuals with DNA available in three generations for 

sequencing, and a pattern of inheritance compatible with an autosomal dominant 

model (Figure 21). The age of onset of symptomatic SRNS as measured by 

development of nephrotic range proteinuria and end stage kidney failure in affected 

individuals ranged from early teens to mid-thirties; however significant abnormal 

urine protein loss indicative of impending disease could be detected in affected 

individuals from late childhood, either through a urine test or historical examination 

of medical records. Unaffected individuals had undetectable protein loss (as expected 

for a normal individual) as measured by protein and albumin creatinine ratios in the 

urine even in middle age. All affected individuals presented FSGS, with histological 
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confirmation in five individuals from three generations by kidney biopsy. 12 

individuals from the family including the proband underwent exome sequencing 

(seven affected and five unaffected). Initially, sequences were analysed to check for 

the presence of likely pathogenic variants in the coding regions that were present in 

the seven affected individuals but not the five unaffected, but no variants that met the 

criteria were detected. 

In view of this result, parametric linkage analysis was then performed using MERLIN 

software under the assumption of autosomal dominant inheritance. MERLIN uses a 

fast algorithm based on sparse trees to represent the flow of genes through pedigrees. 

The evidence for linkage is assessed by computation of a heterogeneity LOD score. A 

positive LOD score indicates excess allele sharing among affected individuals and a 

negative indicates less than expected allele sharing. For this family, a region in 

chromosome 2 located between co-ordinates 180,810,180 to 180,835,792 with a LOD 

score greater than two (with a maximum LOD score of 2.1154) was identified (Figure 

32) (Table 13). Thus, haplotype analysis of the segregating genomic region in the 

pedigree indicates that there is not consistent cosegregation with an extended 

haplotype, though we cannot exclude the possibility of a short shared haplotype. Given 

the clinical presentation of the disease it appears more likely that there are phenocopies 

or non-penetrance. The linkage peak in chromosome 2 contained one gene CWC22, 

that has not been previously associated with kidney disease although is highly 

expressed in the nervous system and kidney. CWC22 associated with rare autosomal 

cancer and neurological syndromes (191, 192). 
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Figure 32. Parametric linkage analysis of Family A. The parametric model used was for a 

rare dominant trait. Plot shows multipoint LOD scores from chromosome 2. The maximum 

LOD score was 2.11. Data and plot generated by MERLIN. 

 

Table 13. Variants with the highest evidence of linkage in the region in chromosome 2. 

CHR POS LABEL MODEL LOD ALPHA HLOD 

2 1.8081 chr2 180810180 C T Rare Dominant 2.1154 1 2.1154 

2 1.8081 chr2 180810264 A T Rare Dominant 2.1154 1 2.1154 

2 1.8081 chr2 180810358 C T Rare Dominant 2.1154 1 2.1154 

2 1.8081 chr2 180810443 C T Rare Dominant 2.1154 1 2.1154 

2 1.8084 chr2 180835589 A G Rare Dominant 2.1069 1 2.1069 

2 1.8084 chr2 180835792 T A Rare Dominant 2.1069 1 2.1069 
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5.3.3 Nonparametric linkage analysis 

From the remaining ten families where no causal mutation was identified in the coding 

regions of established nephrotic syndrome genes, seven (Family 1, Family 2, Family 

4, Family A, Family D, Family E and Family F) were also analysed by nonparametric 

linkage analysis using MERLIN as described in the section 2.9.1.3. This methodology 

does not require any information about the model of inheritance and uses genotypes 

from affected siblings from multiple families to explore markers that might be shared 

among families more often than would be predicted randomly. Thus, it requires at least 

two affected siblings per family to be informative and only seven families out of the 

ten met those criteria.  

Filtering the genetic data by genotype quality and allele frequency as described in the 

methodology (section 2.9.1.3), from a total of 100,717 possible sites shared across the 

seven families just only 27,058 genotypes were kept. Furthermore, because the 

standard linear model used by MERLIN is too conservative, the analysis was also 

repeated using an exponential model to accommodate the small number of families 

and large increases in allele sharing expected due to the nature of the disease and 

potential for high penetrance mutation. The pedigree structure was 41 individuals (20 

females and 21 males) with a SRNS prevalence of 52.5%. The average of the family 

size was 5.86 and the generation average was 2.14. The maximum possible LOD score 

using the exponential model was 4.0 and the minimum was -2.473. None of the 

markers met the criteria for genome-wide significance (a LOD score of 4.0). However, 

some regions in chromosome 2 reached a LOD score of 2.811 (from position 

186,625,770 to 192,701,393) and chromosome 7 reached 2.319 (from position 

100,551,692 to 100,553,073) which could be considered suggestive evidence of 
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linkage (Figure 33). The linkage peak in chromosome 2 was broad and contained 40 

genes. To prioritise the search in chromosome 2, genes that are expressed in podocytes 

were selected resulting in 7 genes from the total 40 (Table 14). 

The peak in chromosome 7 was smaller and contained only two genes MUC3B and 

MUC3A. The mucin genes are part of a family of epithelial glycoproteins and 

transmembrane ones are MUC1, MUC3A and MUC3B. MUC1 has been associated 

with kidney disease and FSGS (193), whereas MUC3A has been associated with renal 

carcinoma (194) and MUC3B has not previously been associated with kidney disease, 

though does have a role in kidney development (195).  

Then, the two variants with the highest LOD score in both peaks (position 191,224,981 

in chromosome 2 and 100,552,017 in chromosome 7) were investigated to identify 

which families were contributing the most to the linkage signals running MERLIN 

with the ‘--perFamily’ option. The family that contributed the most in both regions 

was Family A. In chromosome 2, Family E and Family F where the ones with the 

highest LOD score after Family A and Family 1 had a negative LOD score (Table 15). 

In chromosome 7, all the families apart from Family A reached a LOD score of 0.3 

except from Family 2 that had a negative score (Table 16). 
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Figure 33. Nonparametric liankge analysis results from the chromosome 2 and chromosome 

7. The linear (black line) and the exponential (blue line) model based on the work made by 

Kong and Cox are shown in the plots. Regions in chromosome 2 and chromosome 7 reached  

suggestive evidence of linkage.  
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Table 14. Genes from the linkage region in chromosome 2 that are expressed in podocytes. 

CHR STRAND START END GENE 

chr2 + 189856394 189859058 COL3A1 

chr2 + 191273080 191367041 MFSD6 

chr2 + 191523883 191557492 NAB1 

chr2 + 191745546 191761227 GLS 

chr2 + 192110106 192290115 MYO1B 

chr2 - 188206689 188313021 CALCRL 

chr2 - 188328957 188419219 TFPI 

 

Table 15. Nonparametric linkage results per family in chromosome 2. 

FAMILY LOCATION Z-SCORE pLOD DELTA LOD 

1 chr2 191224981 -0.000009 -0.000003 -0.707107 -0.000003 

2 chr2 191224981 1.305773 0.284051 0.707107 0.284052 

5 chr2 191224981 0.989302 0.230332 1 0.298701 

A chr2 191224981 4.509114 0.62205 1.276731 0.829749 

D chr2 191224981 0.710363 0.176757 1.224745 0.271845 

E chr2 191224981 1.340723 0.289596 0.745356 0.300881 

F chr2 191224981 1.4142 0.301028 0.707107 0.301028 

 

Table 16. Nonparametric linkage results per family in chromosome 7. 

FAMILY LOCATION Z-SCORE pLOD DELTA LOD 

1 chr7 100552017 1.414209 0.236417 0.707107 0.301029 

2 chr7 100552017 -1.412788 -0.557203 -0.707107 -0.300811 

5 chr7 100552017 0.999988 0.179438 1 0.301027 

A chr7 100552017 4.943077 0.547643 1.276731 0.863975 

D chr7 100552017 0.861127 0.158532 1.224745 0.31274 

E chr7 100552017 1.341402 0.226929 0.745356 0.300991 

F chr7 100552017 1.414213 0.236418 0.707107 0.30103 

 

5.4 Case-control analysis: gene-based burden test 

Association analysis is a very useful strategy to identify novel disease variants in the 

absence of groups of individuals from the same pedigree. Case-control studies require 

the selection of cases with the same phenotype, as well as the collection of controls 

without the phenotype. A gene-based burden test analyses whether there is an 
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enrichment of rare variants (low frequency) in any one gene in cases versus controls. 

Despite the successful findings made by such studies, there are several difficulties 

associated with the collapsing of rare variants within a gene, as it raises the problem 

of how to deal with neutral variation that might occur in pathogenic genes in both 

cases and controls. Additionally, extensive quality control strategies must be 

considered to avoid systematic biases and false positives when studying sequencing 

data from different sources. 

5.4.1 Study design considerations 

Rare alleles responsible for Mendelian disorders have high penetrance and affect the 

genetic fitness of the carrier individuals. Thus, rare causal variants are strongly 

influenced by natural selection and are less likely to be transmitted to subsequent 

generations. In order to run successful single-variant association tests for rare diseases 

the sample size has to be sufficiently large and the effect of the causal variant has to 

be strong. Because of the rare disease status of SRNS and as a consequence the limited 

sample size of the cohort a multi-variant collapsing method was chosen instead (114). 

Gene-based burden testing combines information of genetic variation across cases and 

controls within a gene. This strategy overcomes the limitations of single-variant 

association tests but relies on most variants included in the analysis to be causal. While 

there is no definitive procedure to distinguish between harmful and non-harmful 

genetic variation, certain filters can be introduced to enrich for variants with a similar 

profile to pathogenic events. Therefore, the burden test relied on several assumptions 

made about the characteristics of the variants studied such as frequency, functional 

prediction and protein consequence. This study assumed that causal variants were 

located in coding regions of the genome, rejecting regulatory elements and other non-
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coding variants outside of the exome. Synonymous variants do not usually have a 

damaging effect on the protein function, aside from rare cases of functional 

synonymous changes introducing splicing. Due to the negative selection pathogenic 

variants were assumed to be rare in the control population and common variants were 

rejected. Variants were filtered by allele frequency depending on the model of 

inheritance (dominant or recessive). In addition, the CADD score was used to predict 

the damaging effect of a variant in the protein function. The unit used for the analysis 

was a gene, assuming all sections of the gene are equally important, when it is 

recognised that certain exons that encode protein domains are directly responsible for 

the protein function and may therefore cluster pathogenic mutations (196) (Figure 34). 

 

Figure 34. Hypothetical pattern of variation in cases and controls across a gene. The diagram 

shows a gene with four exons where two of them contain a functional domain important for 

the protein function. This gene harbor pathogenic variants in the function domains in the cases 

but not in the controls although they both have same absolute number of variants.This example 

higlights the difficulties and problems faced when performing a gene collpasing burden test. 

 Quality control steps were also performed to detect sequencing errors and variation 

that was poorly captured in one or more of the datasets simply through differences in 

sequencing depth. Specifically combing exome data with lower coverage whole 

genome data requires a joint analysis to identify systematic differences. Additionally, 

some extra filtering recommendations were followed to remove batch effects caused 

by different experimental conditions including different exome capture kits used over 

the time patient recruitment occurred (explained in section 2.4.2 and 5.4.3). 
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5.4.2 Joint calling across samples 

To minimize technical artefacts, the case-control analysis was run using variants that 

were called across all samples by performing a variant calling jointly. This strategy 

improved the sensitivity and specificity of the variant calling process allowing early 

detection of errors or false positives. Joint calling distinguished whether a variant call 

(reference or alternative) was made at that position for all samples. Thus, it detected 

variants that were not seen in other samples because no call was made at the variant 

location for technical reasons and only variants that were called in at least 90% of 

samples were used in the gene-based burden test. Moreover, an advanced statistical 

approach called variant quality score recalibration (VQRS), was used to identify the 

technical profile of variants using machine learning algorithms and remove systematic 

sequencing errors (explained in section 2.5.3.1). 

5.4.3 Data filtering 

Before embarking on downstream genetic analysis, quality control procedures were 

performed in the multi-sample VCF to ensure high quality sequencing data. Thus, the 

coverage, missingness and the ratio of heterozygous and homozygous variants in each 

sample was investigated to detect outliers. Additionally, samples were selected 

depending on their ethnicity and relatedness (with other cases) to include the 

maximum number of unrelated cases in the analysis. 

Ancestry matching was performed to avoid detecting rare variants that might appear 

pathogenic in cases through enrichment in a particular ethnicity rather than any real 

association with the disease. Therefore, only cases and controls that cluster via 

principal component analysis with individuals of European ancestry were selected. In 

the absence of appropriate cohorts of ethnically matched controls beyond those 
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reflecting a European ancestry, analysis was carried out just in Europeans as this was 

also the largest ethnic group (Figure 35.A). Relatedness analysis was conducted 

generating a kinship matrix using methodology described in 2.7.1 section.  The kinship 

coefficient is the pairwise relationship between two samples and is achieved by adding 

the scores of any two samples together. Thus, identical samples and identical twins 

will score 0.5, sibling score approximately 0.25 and cousins score 0.125. For closely 

related family members (parents, sibling, cousin, etc.) only one sample was included 

from the entire family (proband). From all pairs with a kinship coefficient higher than 

0.12, one sample of the pair was removed (Figure 35.B). The genotype missingness 

rate was calculated for each sample using BCFTools (197), to show the proportion of 

variants for which no genotype was called (Figure 35.C). This led to 8 controls and 2 

cases being rejected from the analysis because of their genotype missingness rate. 

Possible sample contamination was suspected in 11 controls and 34 cases due to high 

or low levels of heterozygosity (Figure 35. D), and these individuals were also 

excluded from further analysis. 
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Figure 35. Case-control analysis quality control steps. (A) European cases and controls were 

selected via principal component analysis by setting up the cut-off in PC1<0.0025. Cases and 

represented in red and controls in green. (B) Kinship coefficients for all samples showing 

relatedness within the cohort. (C) Missingness rates of all samples from 0 to 1.0. (D) 

Heterozygosity/homozygosity ratio at common variants within the cohort. 
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The proportion of reads for each sample was calculated providing information on the 

exact depth of coverage. As expected, when combining WES and WGS datasets, the 

coverage of cases differed depending on the type of sequencing (Figure 36). WES 

cases and all controls had higher coverage than the WGS cases. Due to the increased 

sensitivity to detect variation across datasets with higher coverage and decreased 

specificity to evade sequencing errors in lower coverage datasets, an additional filter 

was applied to reject genotype missingness at a group level. Thus, sites with a 

missingness rate higher than 10% in the WES cases, WGS cases and controls were 

filtered separately by group as shown in Figure 37. Then the intersection of variants 

across all groups was selected and filtered by a missingness rate higher than 10%. 

Variants in low complexity regions were rejected. Biallelic variants were selected and 

filtered by depth (DP) and genotype quality (GQ). Furthermore, all variants were 

annotated with allele frequencies from gnomAD and CADD score and common 

variants were filtered out (AF<0.01). Correspondingly, from a total of possible sites 

201,803 shared across all samples just only 169,628 genotypes were kept for further 

analysis. 

 

Figure 36. Coverage distribution across cases and controls. Each bar represents and individual 

samples and the percetange of genotypes with at 1X,5X, 10X and 20X depth coverage. 
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Figure 37. Filtering pipeline to extract genotypes with no missingness. The three original 

datasets were filtered by missingness and then the intersection of genotypes across all 

samples underwent the same filter too. 

Finally, samples with known causal variants or variants that were highly likely to be 

causal based on previously published work were excluded. In particular, some samples 

had novel or non-published variants that were similar to previously confirmed variants 

in SRNS associated genes. Often, these novel variants were in a known hotspot for 

pathogenic mutations within the gene or were predicted to have an deleterious effect 

on the function of the gene (e.g. truncating a protein before a crucial domain). 

Consequently, 48 cases from the test cohort with pathogenic variants identified in the 

section 4.2 were excluded from the case-control analysis. 
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5.4.4 Results 

Following the quality control filters to ensure that samples were appropriately selected 

for further analysis, there were a total of 245 cases and 970 controls that passed all the 

cut-offs as explained in the previous section. Then, a gene-based rare variants burden 

test was carried out by EPACTS framework as explained in the materials and 

methodology section (2.9.2.1). Collapsing all variants across a gene together, allows 

testing for association under the assumption that all variants have a consistent direction 

of effect. For this analysis, two burden tests were performed using different 

methodologies to select rare variants. In the first test, all rare variants observed in one 

gene in cases and controls were aggregated and classified by three categories 

(alteration, truncation and synonymous) and model of inheritance (dominant and 

recessive) (Figure 38.A). In the second test, all rare variants observed in one gene in 

cases and controls were aggregated and filtered by CADD score (>10) and model of 

inheritance (dominant and recessive) (Figure 38.B). Significance of the burden 

association was determined with one-tailed Fisher exact test (section 2.10.1), which 

test for an excess of variants in the case group versus the control group, under the 

assumption that rare functional variants in Mendelian diseases are damaging and not 

protective. Every gene containing one or more potential causal variants was tested for 

association. Genes were prioritised for downstream investigation based upon the 

evidence of association (p-value). 

In the first test, there were three genes that reached burden significance (p<2.5x10-6) 

(section 2.10.6). FLG2, the gene with the highest association, was significant under a 

recessive model of inheritance when the synonymous and alteration variants were 

aggregated and compared between cases and controls. FLG2 protein expression is 
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more prominent in the tubular epithelium rather than glomeruli, however has been 

described as a glomerular extracellular matrix protein and recently ascribed a putative 

role in glomerular injury through participation in pathways leading to damage and 

FSGS (198). The synonymous variant group was performed to form a negative control 

as they are not expected to be pathogenic (except rare exceptions) and the number of 

synonymous variants should be similar in cases and controls. Here, the same 

synonymous variant 1-152325465-G-A was found in 5 cases and the 1-152324547-C-

T in 4 cases suggesting the signal in FLG2 could be artefactual as it would be unusual 

for the same rare variant to occur across unrelated cases (Figure 38.A) (Table 17). 

Additionally, they did not pass the filter criteria for the genotype quality metrics in 

gnomAD (section 2.5.4.1). The other two genes that appeared significant within the 

recessive model were ZNF257 and ZNF780B, belong to a family of Kruppel-like zinc 

finger proteins. While both are expressed in kidney, this was more in tubular 

epithelium than podocytes or glomeruli. There was no known association between 

kidney disease and/or SRNS with ZNF257, which appears to function more as an 

oncogene, or ZNF780B. Similarly to FLG2, signals of ZNF257 and ZNF780B were 

driven by two variants in compound heterozygosity present in 8 cases. The genes with 

a suggestive p-value (p>2.5x10-6), the only one that was associated with a kidney 

phenotype was CR1L which encodes Complement Component Receptor 1-Like 

Protein (Table 17). CRIL is expressed in glomeruli and also in podocytes and appears 

to participate in glomerular injury pathways as deficiency of Crry, the murine 

orthologue of CR1L (199). Nonetheless, the relevance to SRNS remains tenuous as 

complement is not normally involved in the pathogenesis of either FSGS or other 

SRNS related glomerular phenotypes. 
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When the gene burden test was repeated this time filtering by CADD score, only one 

gene, ZNF780B, reached the burden significance under recessive model in common 

with the previous test. However, ZNF780B has not been associated with any kidney 

phenotype and in addition, the discovery of two compound heterozygous variants 

shared across 8 unrelated cases (19-40541898-A-C and 19-40541912-G-C) suggested 

that the signal was not informative and it was unlikely that this was not a candidate 

(Figure 38.B) (Table 18). Furthermore, both variants were considered ‘benign’ 

according to the Polyphen-2 score although they had a CADD score higher than 10. 

From the genes with a suggestive p-value in this test the only genes associated with a 

kidney phenotype were APLNR and FOXL1 (Table 18). APLNR is not expressed in 

podocytes or kidney but encodes an adiopokine that when is overexpressed can injure 

podocyte, interfering with the autophagy (200, 201). FOXL1 is highly expressed in 

podocytes and it has been associated with renal carcinoma (202, 203). 
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Figure 38. Summary of the results from the two gene-based burden tests by chromosome. 

Unrelated European cases (n=245) and controls (n=970) were compared by two burden tests. 

In both plots, each gene was tested for association by one-tailed Fisher’s exact test. The x axis 

represents the position on each chromosome from the p terminus to the q terminus and the y 

axis the p-values on a logarithm scale. The dashed line represents the threshold for gene 

significance (p-value<2.5x10-6). (A) The first burden test all rare variants across a gene were 

collapsed and classified by three categories: alteration, truncation and synonymous; and by 

model: recessive or dominant. (B) The second burden test all rare variants observed in gene 

were aggregated and filtered by CADD score (>10) and model of inheritance. 
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Table 17. Results from the burden test. Table is sorted by groups and p-value. 

Test  Gene  p-value  

Effect 

Size 

Variant 

Cases 

Variant 

Controls 

Recessive Model      

rec.synon.fisher FLG2 3.44E-08 50.362 12 1 

rec.alter.fisher FLG2 6.52E-07 8.4926 16 8 

rec.alter.fisher ZNF257 2.30E-06 inf 8 0 

rec.alter.fisher ZNF780B 2.30E-06 inf 8 0 

rec.alter.fisher ZNF586 1.18E-05 inf 7 0 

rec.alter.fisher ZNF845 6.03E-05 inf 6 0 

Dominant Model      

dom.alter.fisher DPCR1 2.41E-05 4.8018 17 15 

dom.synon.fisher ZNF544 7.09E-05 16.493 8 2 

dom.alter.fisher FLG2 7.73E-05 2.9487 26 38 

dom.alter.fisher CR1L 7.83E-05 28.773 7 1 

 

Table 18. Results from the gene burden test filtering by CADD score. Table is sorted by 

groups and p-value. 

Test  Gene  p-value  

Effect 

Size 

Variant 

Cases 

Variant 

Controls 

Recessive Model      

rec.full.cadd.fisher ZNF780B 2.30E-06 inf 8 0 

rec.full.cadd.fisher ZNF257 1.71E-05 33.015 8 1 

rec.full.cadd.fisher KRTAP10 0.00030697 inf 5 0 

Dominant Model      

dom.full.cadd.fisher APLNR 0.00030697 inf 5 0 

dom.full.cadd.fisher FOXL1 0.00030697 inf 5 0 

dom.full.cadd.fisher ANGPTL1 0.00080872 9.5761 7 3 

dom.full.cadd.fisher ZNF816 0.00080872 9.5761 7 3 
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5.4.5 Gene-set analysis: hypergeometric test 

The genes with a suggestive p-value in the burden test when filtering variants by 

pathogenicity were investigated to determine if they were previously associated with 

kidney disease (such as CKD) or highly expressed in the kidney (specifically 

podocytes). Therefore, the overlapping probability of the genes obtained from the 

burden test with the gene candidates acquired from other kidney studies was 

performed by a hypergeometric test. Since the list of genes expressed in podocytes 

that was previously used to extract potential novel variants in the section 5.2 was very 

broad (a total 3,019 human orthologs expressed in mouse podocytes) and list of 673 

genes highly enriched in podocytes was chosen. This list was generated from a single 

cell RNA-seq experiment of human kidney tissue made by Gillies CE (64). 

Additionally, a list of 104 replicated loci that are relevant for kidney function in CKD 

in European subjects was also used. The resource was obtained from a GWAS meta-

analysis of more than 1 million individuals with CKD by Wuttke et al (204). 

There were 15,615 genes tested in the gene collapsing burden test filtered by CADD 

score (CADD>15) and 256 genes had a p-value <0.05. The overlap of the 256 genes 

was compared with the two previously described lists. The overlap with the list of 

podocytes enriched genes was 12 genes and with the list of CKD associated genes was 

1. None of the hypergeometric test had statistical significance. (Table 19). 

Table 19. Parameters used in the hypergeometric test. The P-values were generated using a 

one-sided test. 

List K k n N P-value 

Podocyte enriched genes 256 12 673 15,135 0.14 

CKD associated genes 256 1 104 15,135 0.18 
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5.5 Discussion 

This chapter investigated potential novel genetic mechanisms contributing to SRNS 

by studying individuals for whom no causative mutation in the established genes have 

been identified. This comprised individuals with both familial and sporadic SRNS. 

Specifically, rare genetic variation that could be potentially pathogenic was explored 

using different methodologies including linkage-based analysis in familial SRNS and 

gene-based burden tests in sporadic cases. To narrow down the search for rare variants 

with a similar profile to causal mutations and reduce the chance of false positives, 

filters such as allele frequency and pathogenicity scores were implemented within 

analytical pipelines. Additionally, for the identification of likely damaging variation 

per sample, variants in genes associated with kidney disease and/or expressed in 

podocytes were selected. 

The advantages of using family-based studies to identify new causal genes in a rare 

disease such as SRNS are the common genetic background shared by the relatives 

which enables to narrow down the search for potential candidates and the fact that 

families might undergo through similar environmental factors counteracting 

confounding effects. However, success of family analysis is heavily dependent on the 

recruitment process and factors such as pedigree size. It is critical to maximise the 

participation within the family to increase the power and ultimately find the genuine 

pathogenic variant rather than a neutral variant segregating with the family and not the 

disease. Ten families out of a total fourteen in the cohort did not have a causal mutation 

in the coding regions of the established SRNS genes and therefore they were studied 

through segregation analysis. Rare variants segregating with affected members of each 

family were explored under different model of inheritances to determine if there were 
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recurrent variation within the same genes across families. Variants in MUC4 were 

found across six different families. However, the sample size was limited as there were 

only ten families and some of them only had two relatives. In order to demonstrate 

that MUC4 could be responsible for the SRNS in families, further analysis is require 

using a control group (Table 11 and Table 12). 

In Family A, no shared variants in the coding regions were found in the affected 

members of the family. Previous studies have identified variants in noncoding 

sequences to be disease causing, although to date no studies have described noncoding 

variants responsible for nephrotic syndrome (205). Here, Family A was analysed by 

parametric linkage analysis which produced promising results showing a region in 

chromosome 2 that might contain the causal variant for SRNS within the family 

(Figure 32). However, the region did not reach genome-wide significance suggesting 

that the dominant parametric model used by MERLIN was very strict (Table 4). 

Additionally, the variant causing SRNS in the family might not be fully penetrant and 

it could be present in unaffected relatives which could lead to a low LOD score. 

Further analysis must be conducted in order to narrow down the region by recruiting 

more family members.  

Seven families were also studied through nonparametric linkage analysis. Two regions 

in chromosome 2 and chromosome 7 were identified with suggestive evidence of 

linkage but further evidence would be required to confirm linkage (Figure 33). For 

both peaks the family contributing the most to the signals was Family A, which is the 

biggest family in the whole cohort (Table 15 and Table 16). Whilst this was a good 

exploratory technique, more families with larger pedigrees will be required to narrow 

down the regions to confirm findings. 
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For the case control analysis, the sequencing data was assessed by carefully chosen 

methods and very stringent quality control steps. A joint variant calling was performed 

to avoid any systematic read depth bias between cases and controls.  In this analysis, 

only European individuals (major ethnicity from the cohort) were studied to avoid 

different distribution in rare variants caused by populations going through bottle neck 

events. Therefore, cases and controls were appropriately matched in terms of depth 

sequencing and ethnic composition (Figure 35). This step is crucial to assure that any 

statistically significant finding resulting from the analysis is not due to technical 

differences between datasets. Despite the string quality control steps, the effects of 

systematic biases were observed in the presence of false associations specifically in 

the first burden test (without filtering by CADD score). This analysis showed the 

difficulties associated with combining sequencing data from different technologies. 

Because rare variants are not frequently observed in the population the effects of 

different sequencing depth across different platforms are very difficult to correct 

(Figure 36). Previous studies have reported that WES provides non-uniform coverage 

when compared to WGS. Additionally, differences in the exome capture technology 

between the cases and controls could also lead to variation in sensitivity and specificity 

during variant calling. On the other hand, because of the strict filters some true causal 

variants might be excluded from the analysis. Two burden tests were performed 

aggregating variants within a gene with slightly different approaches. In the first 

burden test, variants were divided by model of inheritance and categorised into three 

groups: alteration, truncation and synonym. Unexpectedly, some of the genes with the 

highest association were from the synonymous group. Because most of the 

synonymous variants are neutral and are not responsible for Mendelian diseases, the 

synonymous group in this study was used as a negative control. Therefore, it was not 
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expected to find a higher number of synonymous variants within a gene in cases versus 

controls. This suggests that most of these signals are artefacts due to sequencing 

technology despite the strict quality control steps (Table 17) (Figure 38.A). In the 

second burden test, variants were aggregated by model of inheritance and filtered by 

CADD score. The results suggested that the pathogenicity filter could overcome the 

issue experienced in the previous test and most of the artefacts were not replicated. 

(Table 18) (Figure 38.B)   

Overall, this chapter described some preliminary genes that might be associated with 

SRNS in recessive and dominant model, but further analysis and validation must be 

carried out. Additionally, despite the fact that sequencing of healthy population 

individuals has been conducted for European populations, appropriate control 

sequences for other ethnicities are still lacking. This cohort includes 59 South Asians 

cases (Figure 20) which could be studied by association analysis with the appropriate 

controls. 

 

  



 160 

Chapter 6 – Common variant predisposition to 

SRNS 

6.1 Introduction 

Both rare and common genetic variation are known to contribute to risk of SRNS, 

although majority of variants associated with this disease are very infrequent in the 

standard population. Over the years, several linkage studies have successfully 

identified genomic regions implicated in SRNS and these types of methodologies are 

most likely to detect rare and highly penetrant whose frequency in the population 

remains low due to selection. This is because linkage studies normally lack the power 

to discover common variants of small effect sizes as the penetrance of individual 

variants will not be sufficient to observe cosegreagation. Additionally, due to the low 

prevalence of the disease, most of the SRNS study cohorts available for research are 

limited in size. Therefore, the impact of common genetic variation on SRNS risk and 

the contribution to the pathology remains poorly understood. The only common 

variants well characterised in SRNS are the alleles G1 and G2 in APOL1 (84). These 

risk alleles are a rare example of common coding variants that lead to amino acid 

changes that have large effects on disease susceptibility (up to 30-fold increased risk 

of renal disease). However, G1 and G2 are only relevant in patients of African descent 

and no risk alleles have been identified in other ethnicities (162).  

In this chapter, to examine if common genetic variation contributes to the risk of 

disease development in European individuals whose nephrotic disease is unexplained 

by rare genetic variation in genes previously described in monogenic SRNS, a 

genome-wide association study was performed. GWAS tests common genetic variants 

across the whole genome systematically to detect genetic variants that are associated 
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to diseases and quantitative traits using a logistic regression model. This technique 

compares the frequencies of each genotype in samples with the phenotype of interest, 

with the frequencies found in unaffected controls. Thus, controls must be ascertained 

from a population with similar genomic ancestry to cases in order to avoid false 

positives. Furthermore, the findings from the GWAS analysis were replicated in an 

independent cohort (case and control samples) to ensure that the signals found are not 

specific to a group of cases and can be applied to SRNS patients of European descent. 

6.2 Cohort description 

For the common variation analysis in this chapter, only the individuals whose DNA 

had undergone WGS were selected to systematically interrogate their entire genome. 

Therefore, the SRNS cohort sequenced as part of the 100,000 Genomes Project Rare 

Diseases Pilot was studied (section 2.1.1) (Figure 11). Of the total 277 individuals that 

were whole genome sequenced in the SRNS domain, only 177 had European descent. 

The cohort comprised 161 sporadic cases, 5 familial cases (probands) and 10 family 

members. Only a single affected individual from each family was selected for the 

analysis (just including probands). Any cases with rare putative causal variants that 

explained their phenotype were excluded. After final phenotypic and renal biopsy 

review, a further sample was excluded because the biopsy in fact showed likely IgA 

nephropathy (Berger’s disease) and not SRNS (which is characterised by FSGS or 

MCD without IgA deposition), resulting in a case cohort totalling 159 individuals. 

Controls were also selected from the same NIHR BioResource project (section 2.1.2) 

(Table 2), across 13 domains that did not have a renal phenotype, cancer or large effect 

associations reported for common variants, resulting in a total of 4,405 controls.  
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Among the 159 SRNS cases, 57.9% were male and were 42.1% female. Clinical 

phenotypes were paediatric (50.3%) and adult (49.7%) onset and the majority were 

sporadic cases. The overall mean age of onset was 26.7 years. The onset of SRNS 

followed a bimodal distribution, characterised by a first peak extending from birth to 

the second decade and a second peak from the fifth to sixth decades as the one 

described in section 3.4.1 (Figure 23). Additionally, cases were divided into two 

clinical subgroups depending on their initial response to steroids: primary SRNS 

(51.6%) and secondary SRNS (48.4%). Patients had a histological renal biopsy 

diagnosis, 58.5% were FSGS and 41.5% were MCD. Clinical outcomes were: chronic 

kidney disease, stable on medication (with or without proteinuria and normal albumin 

levels) and recovery, defined as no relapse for five years (Table 20). 
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Table 20. Cohort description of the European WGS samples. Differential profiling in patients 

with nephrotic syndrome (n=159). 

Category  N of patients (%)  

Gender 
 

    Males 92 (57.9) 

    Females 67 (42.1) 

Onset 
 

    Paediatric 80 (50.3) 

    Adult 79 (49.7) 

Type 
 

    Primary SRNS 82 (51.6) 

    Secondary SRNS 77 (48.4) 

Histology 
 

    FSGS 93 (58.5) 

    MCD 66 (41.5) 

Outcome 
 

    CKD and transplant 47 (29.6) 

    Stable on medication 83 (64.2) 

    Recovery 29 (18.2) 
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6.3 Data quality control 

Most of genome-wide association studies described in the literature analyse genotype 

data that was generated using SNP arrays combined with imputation. In this analysis 

whole-genome sequencing data from cases and controls was used instead. Thus, the 

protocols used for genotype calling and quality control were different to the ones 

described in the standard imputation-based sequencing technologies. The pipeline 

used to process the WGS samples is described in detailed in the section 2.6. Variants 

were called independently across samples and all genotypes were stored together in a 

multi-sample VCF file performed by the HPC team at the University of Cambridge 

(102). 

In order to run the common variant genome-wide association study, variants with a 

minor allele frequency higher than 0.05 were selected. In addition, variants were 

excluded of the analysis if they had a call rate <0.90 or deviated from Hardy-Weinberg 

equilibrium (P <1 x 10-6). Additionally, a genotype quality (GQ) threshold of 30 and 

depth (DP) threshold of 20 were set per genotype. All sites with a filter flag other than 

PASS were removed to ensure selection of high-quality genotypes. Any previously 

unidentified ancestry outliers were detected with principal component analysis and 

excluded from downstream analysis (Figure 39). Controls were appropriately matched 

to cases in terms of genomic ancestry, with 4405 individuals of European ethnicity 

selected across 11 rare diseases domains and 2 domains with apparently healthy 

individuals (section 2.1.1) (Table 21). Genetic relatedness was assessed using a subset 

of high-quality independent common variants and a maximum unrelated set of 

samples was generated (PI HAT< 0.09375, 2nd degree relationships or closer were 
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removed). Following quality control, a total of 3,944,568 genotyped variants were 

retained and used in the association analyses. 

 

Figure 39. Principal component analysis of the cohort comprising European SRNS cases 

(n=159) and controls (n=4405). The plot shows the projection of individuals onto the first two 

principal components of genetic variation. Cases are shown in red dots and controls in green 

dots. The unused dots in blue are other samples that were not used in the analysis and 

individuals within the 1000 Genomes Phase 3 data. PCA coordinates were obtained from PC-

AiR (206). 
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Table 21. Number of participants in each study domain from the NIHR BioResource after 

quality control steps. 18 study domains part of the pilot study for the 100,000 Genomes 

Project. After post-QC only unreleated participants were selected 

 

 

6.4 Genome-wide association study 

A genome-wide association study was performed to assess if common genetic 

variation contributes to the risk of SRNS. Therefore, as mentioned in the previous 

sections, the study focused on individuals that did not have rare genetic pathogenic 

variants in the coding regions of genes previously described to be causal in SRNS. 

The case-control analysis was carried out in 159 cases and 4405 controls at 3,944,568 

common variants with a logistic Wald association test (EPACTS) (section 2.9.2.3) 

(Figure 40). The model included the first four principal components as covariates. A 

summary statistic was reported where each locus was systematically tested for disease 

association. Examination of the distribution of the observed p-values in the quantile-

quantile (QQ) plot and the lambda value (λGC=1.00) indicated that population 

NIHR BioResource Domains Total European Post-QC 

100,000 Genomes Project - Rare diseases pilot (GEL) 4889 1702 1083 

Pulmonary Arterial Hypertension (PAH) 1216 1021 - 

Primary Immunodeficiency Diseases (PID) 1430 1126 - 

Bronchopulmonary Dysplasia (BPD) 1206 1010 848 

Extreme Red Cell Traits (UK Bionbank) 766 750 750 

Inherited Retinal Dystrophy (IRD) 736 443 436 

Neurological and Developmental Disorders (NDD) 688 448 364 

Multiple Primary Malignant Tumours (MPMT) 633 558 - 

Intrahepatic Cholestasis of Pregnancy (ICP) 306 218 217 

Steroid Resistant Nephrotic Syndrome (SRNS) 277 183 159 

Hypertrophic Cardiomyopathy (HCM) 269 240 227 

Stem Cell and Myeloid Disorders (SMD) 267 137 86 

Cerebral Small Vessel Disease (CSVD) 260 241 132 

Neuropathic Pain Disorder (NPD) 210 152 141 

Membranoproliferative Glomerulonephritis (PMG) 195 166 - 

Tenchnical Controls (CNTRL) 73 51 51 

Leber Hereditary Optic Neuropathy (LHON) 72 68 52 

Ehlers-Danlos Syndrome (EDS) 23 22 18 
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stratification and genomic inflation were controlled by the stringent QC criteria of 

genotypes (Figure 41). Four genetic variants in strong linkage disequilibrium reached 

genome-wide significant association at the MHC region on chromosome 6p21.3 

(Table 22). The variant with the strongest evidence of association 6-32584625-A-G 

(p-value=7.41E-09, odds ratio [OR]=2.321, 95% CI, 1.744 to 3.088), was located in 

the intergenic region between HLA-DRB1 and HLA-DQA1 (Figure 42). The allele was 

observed at a frequency of 0.8032 in cases compared with 0.6379 in controls. The 

frequency in the control group was consistent with the frequency of this allele 

observed in gnomAD (AF=0.6198) for Europeans (non-Finnish). Outside the HLA 

region, some suggestive signals located in different genomic regions were observed in 

chromosome 4, 9, 12 and 15 but none of them reached the multiple testing genome 

wide significance threshold and would require an increase in cases to explore their 

significance further. 
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Figure 40 Summary of genome-wide association study results by chromosome. Association 

with SRNS was determined comparing unrelated European cases (n=159) with controls 

(n=4405) for 3,944,568 SNPs. Each SNP was tested for association by logistic Wald 

association test. The x axis represents the position on each chromosome from the p terminus 

to the q terminus, and the y axis shows the P values on a logarithmic scale. The red line 

indicates the threshold for genome-wide significance (P=5x10-8). 

 

 

Figure 41. A quantile-quantile plot of GWAS summary statistics (lambda= 1.00). The plot 

displays the quantile distribution of observed p-value. The x and y axes show the expected 

and observed logistic regression -log10(P). The red line shows x=y  
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Table 22. Results of the genome-wide significant analysis comparing SRNS cases with controls (P < 5 x 10-8). The SNPs were tested for association by logistic 

Wald association test. Four variants reached genome-wide significance and their minor allele frequencies for cases and controls and odd ratios with 95% 

cofidence intervals are shown: chromosome (Chr), reference allele (Ref), alteration allele (Alt), allele frequency (AF) in cases and controls, allele frequency for 

Europeans reported in gnomAD and odds ratio (OR) with confidence intervals (CI). 

SNP ID Chr Position Ref Alt AF Case AF Control AF gnomAD  P-value OR (95% CI) 

rs3129758 6 32584625 A G 0.803 0.637 0.62 7.41E-09 2.321 (1.744-3.088) 

rs9271269 6 32580820 G T 0.589 0.42 0.424 1.84E-08 1.94 (1.54-2.445) 

rs9271376 6 32587113 G A 0.899 0.751 0.731 1.42E-08 2.904 (2.009-4.198) 

rs9274660 6 32636434 A G 0.771 0.61 0.585 2.04E-08 2.2 (1.67-2.898) 
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Figure 42. Locuszoom association plot of the GWAS results. The -log10 of the p values are 

plotted against their physical chromosomal position. Each point represents an analysed SNP 

by logistic regression, with the strongest association SNP represented by a black diamond. 

6.5 Association analysis of classical HLA alleles 

To further investigate the allelic basis of the observed GWAS results, the MHC locus 

was examined in detailed. Because this region is very polymorphic, majority of 

processing pipelines fail to correctly map the HLA genes since many of the HLA 

genome sequences present in the population are naturally divergent from the reference 

genome sequence. Thus, other alignment strategies are needed to perform accurate 

genotype calls within the region (section 2.8). 
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6.5.1 HLA genotypes from WES and WGS 

As described in the section 2.8.1, two different methodologies were used to call 

genotypes for HLA alleles in a set of samples that underwent both, WES and WGS. 

The level of concordance across sequencing platforms (WES and WGS) was 

compared using both strategies. The tool HLA-Genotyper was chosen because of the 

high accuracy of genotype calls. Therefore, HLA-Genotyper was used to determine 

classical HLA alleles from sequencing reads spanning for MHC Class I (HLA-A, -B 

and -C) and MHC Class II (HLA-DR and HLA-DQ) for each sample in the cohort. To 

further improve the accuracy of the HLA genotype calls ethnicity information was 

included. There was a total of 270 different HLA alleles for Europeans based on 

transplant registry frequencies and supplemented HLA alleles found in the 1KGP. 

HLA alleles were represented by four-digit codes, where the first two represent related 

group of similar alleles and the third and fourth represent specific proteins with 

different amino-acid sequences.  

6.5.2 HLA dosage-based analysis 

A case-control association test was performed on the estimated HLA alleles using a 

logistic regression model explained in section 2.10.3. The first four genetic principal 

components were included as covariates to control for population structure effects. 

The HLA allele with the strongest evidence of association was HLA-DQA1*01:02 (p-

value= 1.38E-07, odds ratio [OR]=0.322, 95% CI, 0.211 to 0.491) (Table 23). The 

protective allele HLA-DQA1*01:02 had a frequency of 0.072 in the case cohort 

compared with 0.203 in controls, the frequency in the control cohort was consistent 

with the frequency of this allele observed in HapMap (AF=0.238) for Europeans. The 

SNP with the strongest evidence association from the previous genome-wide 
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association study was in linkage disequilibrium with HLA-DQA1*01:02 (r2=0.66, 

D’=0.91). This result supported HLA-DQA1*01:02 as conferring a protective 

influence against SRNS disease risk. 

Table 23. HLA allele association test results. HLA  alleles from SRNS cases and controls 

were compared using a logistic regression test. The table contains information about the allele 

frequency (AF), odds ratio (OR) and confidence interval (CI) of the alleles with the strongest 

evidence of association. 

HLA Allele AF Cases AF Controls OR (95% CI) P-Value 

DQA1*01:02 0.072 0.203 0.32 (0.209-0.487) 1.16E-07 

DRB1*03:01 0.3 0.172 1.66 (1.353-2.036) 1.18E-06 

DQB1*02:01 0.315 0.194 1.734 (1.388-2.166) 1.21E-06 

DRB1*15:01 0.05 0.182 0.336 (0.213-0.53) 2.68E-06 

B*08:01 0.228 0.135 1.917 (1.458-2.519) 3.06E-06 

DQB1*06:02 0.056 0.159 0.36 (0.228-0.57) 1.26E-05 

 

6.5.3 Conditional analysis 

The genetic variants in close proximity with the associated variant at the associated 

MHC locus are likely to have inflated values in the results from the association test 

due to the linkage disequilibrium of the region. Thus, not all the variants that reached 

genome wide or suggestive significance represent causal associations as they may 

represent a cluster of variants in LD tagging the same causal variant. In order to test if 

the HLA allele with the strongest evidence of association was responsible for the 

signal found in the GWAS results, a conditional analysis was conducted. A GWAS 

was performed using the estimated alleles from HLA-DQA1*01:02 as covariates. The 

results shown that the association of rs3129758 (the SNP with the highest evidence 

association from the first GWAS) was substantially reduced after conditioning on 

HLA-DQA1*01:02 (Figure 43). 
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Figure 43. Conditional analysis. Regional association plot showing the results of the 

unconditioned test (red) and after controlling for HLA-DQA1*01:02 (green). The -log10 of 

the p values are plotted against their physical position in the MHC genomic region on 

chromosome 6. Each point represents an analysed SNP by logistic regression. Conditioning 

on HLA-DQA1*01:02 left no genome-wide significant signal. The dashed horizontal line 

indicates the threshold for genome-wide significance (P=5x10-8). The dashed vertical lines 

indicate the positions of the classical HLA genes (HLA-A, HLA-B, HLA-C, HLA-DR and HLA-

DQ). 

6.6 Replication 

In order to validate the findings of the GWAS study, a replication analysis using an 

independent cohort was performed. Reproducibility is crucial to demonstrate that the 

association found in the MHC locus with SRNS was not by chance or an artefact due 

to sequencing biases from a specific cohort. Additionally, evidence from other datasets 

can improve the estimates of the effect sizes of the risk being studied. Thus, genotypes 

of classical HLA alleles were determined in the SRNS WES cases (section 2.1.1) and 

the control from the 1958 British Birth Cohort (section 2.1.2). As shown in Figure 11, 

the proportion of SRNS subphenotypes was different between the discovery and 

replication cohort due to distinct qualification criteria during the recruitment of cases 

for the WES and WGS project.  
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After QC, there were a total of 101 SRNS cases and 936 population controls in the 

replication cohort. Exome sequencing reads were mapped to gene HLA-DQA1, to 

estimate genotypes of alleles at four-digit resolution in cases and controls. Association 

analysis was then performed on the estimated HLA-DQA1 alleles using a logistic 

regression model including the first four principal components as covariates. The 

protective effect of HLA-DQA1*01:02 on SRNS disease risk was confirmed in the 

replication cohort (p-value=0.038, odds ratio [OR]=0.640, 95% CI, 0.41 to 0.97). The 

allele HLA-DQA1*01:02 had also a reduced frequency of 0.138 in cases compared 

with 0.201 in controls. The direction of this association was consistent between the 

discovery and replication cohort. The point estimate was larger in the discovery cohort 

but the confidence intervals did overlap between the discovery and replication cohort 

(Figure 44). 

 

Figure 44. Effect size estimates for HLA-DQA1*01:02 on risk of SRNS. Effect size estimates 

for HLA-DQA1*01:02 in the discovery cohort determined from WGS data and in the 

replication cohort determined from WES data. Both cohorts were combinations of European 

case/control populations. 
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6.7 The effect of HLA-DQA1*01:02 across SRNS 

subphenotypes 

Since the SRNS phenotype is relatively heterogeneous, the study included subgroups 

of cases with different ages of onset and disease severity. Consequently, additional 

linear regression analysis was performed (described in Section 2.10.4) to ascertain any 

potential association between HLA-DQA1*01:02 and phenotypic variables such as 

gender, primary or secondary SRNS, histology type (FSGS or MCD) and age-of-

onset. The test was corrected for population structure including the first four principal 

components as covariates. This showed that none of the variables were significant 

associated with HLA-DQA1*01:02: gender (p-value=0.871, Estimate=-0.730 and 

Std.error=1.849), SRNS type (p-value=0.541, Estimate=1.84 and Std. error=1.81), 

histology type (p-value=0.521, Estimate=0.424 and Std. error=0.041) and age-of-

onset (p-value=0.132, Estimate=-94.084 and Std.error=89.931). 

The effect of HLA-DQA1*01:02 was also explored in the familial cases and also in 

individuals where a causal mutation or mutations were found for monogenic forms of 

SRNS. In the WGS cohort there were only 3 European families. Although Family A 

has been described as a WES family in chapter 3, three relatives from the family 

underwent WGS too. The protective allele HLA-DQA1*01:02, did not seem to be 

more prevalent in unaffected members across the three families, as there were three 

affected cases that were heterozygous for the protective allele (Table 24). Therefore, 

HLA-DQA1*01:02 did not cosegregate with the disease. Furthermore, of 7 European 

cases whose SRNS was explained by a rare genetic mutation in one of the established 

genes, 3 were heterozygous for HLA-DQA1*01:02 (Table 25). Due to the limited 
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number of both groups, familial cases and ‘solved’ cases, frequencies of the allele 

HLA- DQA1*01:02 could not be compare with the 159 cases studied in the GWAS. 

Table 24. HLA-DQA1*01:02 genotypes in familial cases. 

FAMILY ID STATUS HLA-DQA1*01:02 allele 

3 S013341 Affected 0/0 

 

S013718 Unaffected 1/1 

 

S013754 Unaffected 0/0 

4 S017250 Affected 0/0 

 

S017274 Affected 0/1 

 

S017262 Unaffected 0/0 

A S006337 Affected 0/0 

 

S012009 Affected 0/1 

 

S012021 Affected 0/1 

 

 

Table 25. HLA-DQA1*01:02 genotypes in cases with a mutation in one of the establsihed 

SRNS genes. 

ID GENE HLA-DQA1*01:02 allele 

S012696 TRPC6 0/0 

S013421 CRB2 0/0 

S014415 NPHS1 0/1 

S014334 NPHS2 0/1 

S014195 WT1 0/0 

S014194 WT1 0/1 

S013282 NUP93 0/0 
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6.8 Investigation of other putative SRNS genetic association 

signals 

Genome-wide association studies have been successful in identifying many loci 

associated with complex traits or diseases. However, the causal mechanisms 

underlying these associations are not always clear and require further analysis. Thus, 

colocalisation approaches have been used to search for the causal mechanisms 

responsible for a trait integrating protein expression data from tissues of interest. 

Colocalisation is a statistical methodology that combines the GWAS summary 

statistics with gene expression data to determine if the same underlying variant is 

responsible for both disease risks (156). 

Here, the GWAS results (excluding the MHC region due to its high LD) were tested 

to see if the suggestive peaks in chromosomes 4, 9, 12 and 15 were colocalising with 

kidney gene expression signals. The kidney expression data was obtained from public 

resources, which contain genetic variants that explain a portion of variance in 

expression of a set of genes, also known as expression quantitative trait loci (eQTLs). 

The methodology and data used is described in section 2.10.5. A genetic colocalization 

was performed using a set of variants that overlapped (within the same region of the 

genome) between both datasets under the hypothesis that both traits are associated and 

share a single causal variant. None of the variants reached statistically significant 

association. Thus, there was no overlap between the signals of both datasets. 

6.9 Discussion 

Through association analysis of 159 SRNS cases and 4,405 controls of European 

ancestry using whole-genome sequencing data, a genome-wide significant locus in the 
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MHC region between HLA-DRB1 and HLA-DQA1 was identified (Figure 40). The 

HLA genes are highly polymorphic and responsible for the adaptive immune reposes 

together with the innate immune responses to infectious. Many complex diseases 

including autoimmune, infectious and inflammatory diseases as well as cancer have 

been associated with the MHC complex. Genotypes of HLA alleles were estimated 

through realignment of unmapped reads from WGS data against a comprehensive 

European reference panel. An association analysis showed the MHC class II allele, 

HLA-DQA1*01:02, to be protective for SRNS and had the highest evidence of 

association (p-value= 1.38E-07, odds ratio [OR]=0.322, 95% CI, 0.211 to 0.491) 

(Table 23). This association was also replicated in an independent European SRNS 

cohort that included a mixture of primary and secondary steroid resistant nephrotic 

syndrome patients using WES data. 

The effect of HLA-DQA1*01:02 across SRNS subphenotypes was also explored. 

There were not significant differences in the frequency of HLA-DQA1*01:02 in 

clinical subgroups (disease type, histology, age of onset) of the SRNS cases. However, 

the sample size was very limited, as there were only 159 SRNS cases. The 

cosegregation of the allele was also explored in familial cases and cases whose 

nephrotic syndrome was explained by a causal mutation in one of the established 

genes. Again, sample size was limiting as only three families were available. 

Therefore, the conclusions made on the possible effect of this protective allele in one 

of the subphenotypes of the disease were very restricted and a larger sample size is 

required. 

Although the role of the immune system in the SRNS aetiology was suspected because 

of the efficacy of immunosuppressive treatments to alleviate symptoms of affected 
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individuals, this finding confirms the link between the immune system and SRNS and 

might offer new leads into the pathogenesis of the disease. HLA class II genes are 

expressed in antigen presenting cells such as B cells and are specifically responsible 

for the presentation of self or foreign peptides to CD4+ T cells, to initiate an adaptive 

immune response. The lower frequency of HLA-DQA1*01:02 in SRNS cases in 

comparison with controls might suggest that the antigen presentation is disrupted or 

impaired affecting the adaptive immune response. 

Furthermore, many other studies have identified a significant genome wide association 

with a locus in HLA-DQA1 and SSNS cohorts of European (HLA-DQA1*01, p-

value=1.90E-31, odds ratio [OR]=0.36, 95% CI, 0.30 to 0.43) and South Asian origin 

(rs1129740, p-value=1.18E-6, odds ratio [OR]=2.11). Traditionally, SSNS and SRNS 

have been considered two independent diseases marked by the response to treatment. 

Thus, SRNS has normally been considered a disease caused by gene defects in proteins 

important for the function of the glomerular filtration barrier, whereas SSNS has been 

described as an immune disease since the genetic architecture remains poorly 

understood and the only genetic findings described were polygenic risks in HLA-

DQA1 and HLA-DQB1. Therefore, this association with HLA-DQA1 is not exclusive 

of SSNS (56), as primary and secondary SRNS are also associated with the gene. This 

finding suggests commonality in the molecular basis between SSNS and SRNS in 

Europeans, implying that molecular diagnosis might be more informative than clinical 

labels. 
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Chapter 7 – General discussion 

 

Nephrotic syndrome has been studied over hundreds of years. There are descriptions 

of the disease since the golden age of Athens made by Hippocrates: “when bubbles 

settle on the surface of the urine, it indicates a disease of the kidney, and that the 

disease will be protracted” (207, 208). It was not until 1827 when Sir Richard Bright 

connected the classical symptoms of nephrotic syndrome not only with a disease of 

the kidney but with excessive amounts of protein lost into the urine and this was the 

underlying cause (208). 

The first genetic discoveries responsible for SRNS were not identified until 1991, 

when mutations in WT1 were identified in affected individuals with Denys-Drash 

syndrome characterised by nephrotic syndrome phenotype (66). To date, advances in 

massive parallel sequencing technologies have resulted in sequencing cost declining 

and consequently whole exome and whole genome sequencing has become widely 

used for the study of Mendelian disorders including SRNS. Therefore, this revolution 

in the field of genetics have facilitated the discovery of more than sixty genes that are 

mutated in nephrotic syndrome. Nevertheless, understanding of SRNS disease 

aetiology remains unclear and it is likely that both genetic and environmental factors 

are involved in the course of the disorder. Consequently, the treatments available 

alleviate symptoms and complications but seldom results in a cure. 

This thesis investigated the molecular genetics of idiopathic nephrotic syndrome in 

children and adults, specifically SRNS forms, in one of the largest cohorts that has 

undergone whole exome and whole genome sequencing in the UK. Detailed 

phenotypic data was available including type of SRNS, age of onset, histology, clinical 
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outcomes and medications used as explained in chapter 3. The cohort comprised of 

paediatric and adult SRNS cases drawn from renal populations found in clinics across 

the UK and it was majority formed by sporadic cases of European ethnicity. The onset 

of SRNS followed a bimodal distribution, characterised by a first peak extending from 

birth to the second decade and a second peak from the fifth to sixth decades (Figure 

23). This was a novel finding as classically SRNS is considered a disease of early life. 

Most of individuals had early age of onset and the most common long-term clinical 

outcome was chronic kidney disease or transplant. 

Three main objectives were pursued to identify causal genetic variation and to further 

understand aspects of the disease biology that remain poorly understood. Firstly, rare 

genetic variation in the coding regions of previously associated SRNS genes was 

evaluated, then rare genetic variation in exome of novel genes was also explored and 

finally, common genetic variation within the entire genome of affected individuals 

was also studied. 

7.1 Summary 

In chapter 4, the coding regions of 67 genes previously associated with SRNS were 

screened in a cohort of 422 individuals from different ethnicity groups. Samples were 

recruited from two distinct projects using different sequencing technologies, then 

merged and processed using the same WES data pipeline to minimise systematic 

sequencing errors. 48 patients had at least one putative mutation in a known SRNS 

gene that explained the phenotype (Table 7) (Table 8). The pathogenic variants 

detected were rare and highly penetrant. Despite the rare status, half of the diagnosed 

cases had a mutation that was previously reported in familial or sporadic SRNS cases 

by other studies (Table 7). By contrast, the other half of cases had at least one novel 
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variant where detailed phenotype analysis and bioinformatic prediction tools were 

crucial to assign likely pathogenicity (Table 8).  

Of the total 67 known genes, only 13 were found mutated in the cohort: NPHS2, 

NPHS1, MAGI2, WT1, LM1XB, NUP93, CRB2, COL4A3, MYO1E, NUP107, LAMB2, 

LCAT and TRPC6 (Figure 25). Most of the pathogenic variants were identified in 

NPHS2 and NPHS1 which is similar to what it was reported by other studies, partially 

explained by some bias towards childhood onset SRNS during recruitment. However, 

it was surprising not to detect other genes connected with childhood and adult SRNS 

that are considered “major causes” such as INF2 considering the number of adults 

recruited to the cohort. APOL1 risk alleles were present as expected in cases of African 

descent and not in other ethnicities. 

The variety of mutations found in each of the different genes underpinned the 

considerable heterogeneity present in this disease. Nevertheless, majority of known 

genes were not mutated and therefore responsible for disease in this cohort and the 

incidence of mutations in the established SRNS genes was lower than previously 

reported, due to a tendency to recruit sporadic cases. This may suggest that some of 

the variants or genes that have been previously described in the literature might not be 

pathogenic for SRNS, especially those detected through study of isolated highly 

interbred families. Improvements in control databases now allow rejection of either 

genes/variants as non-causal or randomly associated. This has been an issue in 

previous studies including those that have flagged erroneous classifications of 

pathogenicity in clinical databases, in particular when candidate variants and allele 

frequency could not be studied as comprehensively using population databases such 

as gnomAD. 
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The families sequenced within the cohort were also screened to find potential causal 

mutations by extracting variants in the 67 established SRNS genes shared among the 

affected individuals that were not present in the unaffected. Furthermore, depending 

on the established mode of inheritance of each gene, dominant and recessive 

inheritance models were applied. Of a total 14 families, 4 families (Family 5, Family 

B, Family C and Family G) had a pathogenic variant in one of the established SRNS 

genes that explained their phenotype and fitted the family data (Figure 26, figure 28-

30). 

Overall, the screening of the established SRNS genes collectively explained only 

~11% of the cases. Since the percentage of diagnosed cases was lower in comparison 

with other SRNS cohorts, this could be explained by differences in recruitment as 

majority of affected individuals in the cohort were sporadic cases with heterogonous 

age of onset unlike the other studies that focused on paediatric populations with 

familial disease and very early age of onset. Additionally, some cases were screened 

for established SRNS genes prior to recruitment, introducing potential recruitment 

bias towards affected individuals that did not have an obvious monogenic form of the 

disease. However, since rigorous phenotyping of all cases was possible, this ensured 

there was no misdiagnosis and this figure was likely to represent an accurate incidence 

of causal mutations in known SRNS gene within this cohort. 

In chapter 5, the remaining affected individuals that were not explained by genetic 

variation in the known SRNS genes, were explored to identify rare genetic variation 

in novel genes. A stringent variant filtering protocol was performed in combination 

with two main methodologies, family-based analyses (segregation analysis, 

parametric linkage analysis and nonparametric linkage analysis) and a case control 
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association test (gene-based burden test). Additionally, this chapter described the 

extensive QC performed in the cohort to reject technical errors or false positives, as 

well as the challenges of combining lower coverage whole genome data with whole 

exome and the importance of performing a joint variant calling to overcome such 

issues. 

The ten families not explained by any causal mutations in the coding regions of the 

established SRNS genes were studied further using segregation analysis. Rare variants 

segregating in the affected relatives of each family were explored under dominant and 

recessive model of inheritance. Rare variants in MUC4 were recurrent across six 

families (Table 12). Although MUC1 mutations have been previously associated with 

autosomal dominant tubulointerstitial kidney disease and secondary FSGS, the group 

of genes that encode mucins (MUC1-9) are highly polymorphic and have very 

repetitive sequences. Thus, these genes are poorly mapped and have lots of errors 

and/or false positives variants. As the sample size in this study was quite limited 

encompassing only ten families and some were only duos, further analysis with bigger 

sample sizes would be required to determine any potential causal role of MUC4 in 

familial SRNS. 

Family A, the biggest sequenced family of the entire cohort, did not have any shared 

variants in the coding regions segregating with the affected members that were not 

present in the unaffected. Previous studies have identified disease causing variants in 

noncoding sequences, however, to date no studies have described noncoding variants 

responsible for SRNS. To explore this in more detail, Family A was analysed by 

parametric linkage analysis under the model of a rare dominant and highly penetrant 

trait. A region in chromosome 2 located between co-ordinates 180,810,180 to 
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180,835,792 had a LOD score of 2.1154 (Figure 32) (Table 13). The segregation of 

haplotypes in the region was consistent with linkage and indicated that this could 

potentially contain the causal variant. However, while the LOD score was suggestive 

it was not conclusive. Considering the phenotype itself is variably penetrant within 

this family, this could indicate that the causal variant is not fully penetrant and that the 

model used for analysis too stringent. Further analysis is required to determine the 

causality of the region by recruiting more members of the family. Some members have 

agreed to participate in the analysis, but blood samples have not been obtained yet. 

Analysis of the extended pedigree would potentially facilitate the discovery of a novel 

disease gene, since the region did not contain any known SRNS genes. Moreover, it 

would be the first variant in a non-coding region to be found responsible for SRNS. 

A nonparametric or model free linkage analysis was also performed in seven 

informative families with at least two affected siblings per family. Two regions in 

chromosome 2 and chromosome 7 were identified with suggestive evidence of linkage 

(LOD score of 2.811 and 2.319 respectively) (Figure 33). For both peaks the family 

contributing the most to the signals was Family A, which is the biggest family in the 

whole cohort. Thus, to narrow down both regions the pedigree sizes should be 

expanded, and more families should be recruited. 

Two gene-based burden tests for rare variants were performed using different filtering 

criteria in the European individuals of the cohort. Certain limitations of the study 

design and challenges surrounding using different sequencing technologies are 

described. For both tests, variants were aggregated within a gene a divided by model 

of inheritance. In the first, variants were categorised into three groups: alterations, 

truncations and synonymous, whereas in the second variants were filtered by 
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pathogenicity as measured by CADD score. The only gene that reached burden 

significance in both tests was ZNF780B under a recessive model. Within this gene two 

variants were found in compound heterozygosity in 8 cases suggesting that the signal 

might be an artefact as it is not expected that the same rare variant would be recurrent 

across unrelated cases. Moreover, both variants were considered ‘benign’ according 

to the Polyphen-2. From the burden test results, some genes had suggestive 

significance that might be associated with SRNS in recessive and/or dominant model. 

A gene-set analysis was then explored using a hypergeometric test and two different 

lists of genes associated with kidney disease and kidney expression applied to the 

burden test results. None of the tests reached statistical significance suggesting there 

was not an enrichment of mutations in genes highly expressed in podocytes or genes 

associated with kidney disease. As rare disease analysis is often hampered by sample 

size, further analysis using a larger cohort is required, and this is planned for future 

work. 

In chapter 6, the aim was to detect common genetic variation with small or medium 

effect sizes that could be associated with SRNS risk. A genome wide association study 

was performed using WGS data on 159 SRNS cases and 4,405 controls of European 

ancestry. Although GWAS is normally used for the study of common complex 

diseases or traits, this methodology has also been proven to be informative for some 

rare diseases too such as severe neurodevelopmental disorders (209). Here, a genome-

wide significant locus within the MHC region between the class II genes HLA-DRB1 

and HLA-DQA1 was found to be associated with SRNS (Figure 40). This finding 

confirmed the importance of the immune system in both children and adults affected 

by SRNS, suggesting that this disease could fall into the category of an autoimmune 

disorder. Further analysis of the region through estimation of HLA alleles by 
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realignment of raw reads that were unmapped showed HLA-DQA1*01:02 to be 

protective for SRNS and had the highest evidence of association (p-value= 1.38E-07, 

odds ratio [OR]=0.322, 95% CI, 0.211 to 0.4917) (Table 23). The association was 

replicated in an independent cohort that included primary and secondary SRNS 

individuals that underwent whole exome sequencing (p-value=0.033, odds ratio 

[OR]=0.637, 95% CI, 0.419 to 0.966). The effect of HLA-DQA1*01:02 was also 

explored in the cases subphenotypes although not significant different on the effect of 

the allele were found in any category (disease type, histology, age of onset) but this 

may be due to the relatively low numbers of cases available for study.  

Previous studies had implicated common genetic variants in the HLA-DR/DQ in 

SSNS. However, this is the first time an association has been detected for SRNS, 

including children and adult cases. These findings support the concept that SRNS has 

an autoimmune basis, and also suggests common molecular genetics with SSNS. 

7.2 Genetic heterogeneity and phenotypic variation 

The results from this study using a national cohort of children and adults with SRNS 

confirms that not only is SRNS genetically heterogeneous, but a large proportion of 

cases are unexplained by classical Mendelian inheritance. While exome screening 

detected NPHS2 and NPHS1 mutations as responsible for majority of the monogenic 

forms of the disease in the affected individuals of the cohort, there were at least 13 

different genes mutated that explained only ~11% of the total cases. This was one of 

the original drivers to re-sequence some of the original WES cohort by WGS. 

Interestingly, this did not raise the mutation hit rate which was to some extent 

unexpected (102). Thus, the genetic heterogeneity has probably affected the 

identification of causal variants especially those with a modest effect that could be 
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acting as modifiers or variants with variable penetrance. Furthermore, the 

identification of a locus in the HLA-DR/DQ region associated with SRNS in European 

individuals has also proven that the genetics of the disease is more complex than 

initially thought. This data advocates that undoubtedly, other approaches beyond the 

classical investigative routes used for monogenic disorders should be considered when 

studying SRNS. 

Another challenge present in the different results chapters was the phenotypic 

heterogeneity. While, in contrast to many other studies where robust phenotyping is 

not possible, all cases in this study could be categorised as SRNS and there was high 

confidence that all misclassified cases where the SRNS was secondary (e.g., due to 

IgA nephropathy) were excluded. Despite this, affected individuals within the cohort 

had very different age of onset and symptoms as well as a variety of clinical 

progression, response to medication and consequently clinical outcomes. In fact, in 

some of the families described in the cohort, there were very different phenotypes and 

symptoms within the same family. Family A had some affected relatives with kidney 

failure that required dialysis whereas others only had mild proteinuria and did not 

require treatment. At least two families, Family D and Family E, had a mixture of 

phenotypes with members affected by SRNS and SSNS. Those families potentially 

shared the same causal mutation among the affected relatives of the family, but their 

phenotypes are clinically independent, as SRNS and SSNS are often considered two 

different diseases. This intrafamilial phenotypic variability is not unique of nephrotic 

syndrome and has been observed in other families affected by Mendelian diseases 

such as Bardet-Biedl syndrome (210), hypophosphatasia (211) or limb-girdle 

muscular dystrophies (LGMDs) (212). Additionally, some studies have reported the 

phenotypic variation present specifically in kidney diseases (213). The role of variants 
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or genes associated with kidney disease has dramatically changed due to advances in 

the sequencing technologies and some of the major kidney disease-associated genes 

are known to be responsible for a broader phenotypic spectrum. Mutations in 

COL4A3-5 genes or DGKE are responsible for clinically unrelated kidney diseases 

such as Alport syndrome, FSGS, atypical haemolytic uraemic syndrome and nephrotic 

syndrome. Therefore, the same genetic background can be responsible for very diverse 

clinical phenotypes. Findings from this thesis support these observations as the 

association found with HLA-DQA1*01:02 and SRNS, which is similar to the loci 

previously reported for SSNS, suggests common molecular genetics with SSNS (54-

56). Accordingly, SRNS and SSNS may share immunological traits within the MHC 

class II genes HLA-DR/DQ. This is supported by the observation that both have an 

equivalent risk of disease recurrence post-transplant which is attributed to the presence 

of an immune active circulating factor rather than an intrinsic kidney defect. 

Lastly, these findings also raise questions regarding the classification and diagnoses 

of human diseases in particularly in kidney phenotypes that are not always uniformly 

expressed such as SRNS. Genetic testing to support clinical grounds such as histology 

or response to treatment is crucial to ensure a correct diagnosis. Conceivably, in SSNS 

and SRNS molecular diagnosis might ultimately be more informative than clinical 

labels allowing correct stratification of the phenotype leading to precision medicine. 

Currently, some of the established classifications could be redefined under a broader 

definition that includes genetic evidence and not just clinical observations. 

7.3 General technical limitations 

One of the main limitations was the modest sample size of the cohort which is an 

inherent problem common to such studies in rare disease, where networks and 
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collaborations between different centres are crucial to achieve a successful recruitment 

of sufficient numbers of affected individuals. A larger sample size could have solved 

most of the challenges encountered during the different analyses that were performed 

in this study.  

However, to at least in part address the sample size limitation, two independent 

datasets of SRNS cases were merged and processed using the same pipeline. This was 

to overcome the analytical challenges of matching data across different sequencing 

platforms with non-uniform coverage and to avoid the other sources of artefacts and 

technical variation. This required a joint variant calling and considerable time 

performing quality control procedures to design and optimise thresholds to filter out 

any sequencing errors. Previous studies have also reported the considerable efforts 

required to perform QC assessments that assure high quality sequencing data and also 

the importance of a joint genotype calling (116, 117). 

Despite the improvements in control databases and specifically for European ethnicity, 

this has not yet been matched for other ethnicities and this remains a significant issue 

for these types of studies (214). As such, despite the diverse ethnic background of the 

SRNS cases within the cohort, this had implications on the ability to comprehensively 

explore the genetic background to SRNS beyond the European group. This was not 

possible even though SRNS is nominally more common in populations of African and 

South Asian descent (8, 9).  Larger and more diverse control groups are required 

specially for non-European ethnicities since sequencing of healthy individuals has 

been conducted mainly for European populations. The lack of control groups for 

African or Asian populations meant that analysis such as gene-based burden test or 

the GWAS focused only on European individuals that matched ethnically with our 



 191 

available controls. The association between HLA-DQA1*01:02 and SRNS should 

also be explore in other ethnicities. This lack of control groups is not limited only to 

the present study, but significant improvements are expected in the close future with 

declining cost of WES and WGS technologies and with the creation of national and 

international consortiums that promote initiatives to share data. 

7.4 Future work 

The work presented here has shown that application of whole exome and whole 

genome sequencing technologies can provide important further knowledge regarding 

the genetic architecture and pathobiological mechanisms underlying SRNS and 

nephrotic syndrome in general. The findings also have relevance for other monogenic 

diseases that in addition, may also present as a common complex trait and show 

characteristics of a multifactorial disease. As previously mentioned, further studies 

with larger sample size will be pivotal to significantly improve our knowledge of the 

disease and identify why some people are prone to it and predict their long-term 

clinical outcomes. Ongoing national and international initiatives that include multiple 

recruitment centres as well as robust data-basing of clinical phenotypes to minimise 

misclassification have been developed to allow identification of sufficient numbers of 

cases. 

Functional experiments are proposed to provide mechanistic evidence for the 

pathogenic effect of mutations identified in both established and novel genes using 

animal models and/or human tissue culture models. Furthermore, integration of 

functional and gene expression information obtained from RNA sequencing of kidney 

tissue matched with exome or whole genome sequencing would allow to prioritise 

candidate genes in family-based studies and case control association studies. Evidence 
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was provided for the involvement of a locus in the HLA region, but how HLA-

DQA1*01:02 allele is associated with SSNS/SRNS risk remain unclear. In view of 

current treatments for SRNS that target CD-20 antigens on the surface of lymphocytes 

B (22), it is compelling to consider infection acting as a trigger and a direct/indirect 

interaction with HLA resulting in a maladaptive immune response. 

In conclusion, this work has improved the understanding of the molecular genetic 

basis of nephrotic syndrome and particularly SRNS forms. Cases with detailed 

phenotype were crucial to identify correlation between genetics and clinical features 

that overall could lead to a better diagnosis and treatment for young children and adults 

with nephrotic syndrome. 
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