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Abstract  

In the mature brain, structural and functional ‘fingerprints’ of brain connectivity can be used 

to identify the uniqueness of an individual. However, whether the characteristics that make a 

given brain distinguishable from others already exist at birth remains unknown. Here, we used 

neuroimaging data from the developing Human Connectome Project (dHCP) of preterm born 

neonates who were scanned twice during the perinatal period to assess the developing brain 

fingerprint. We found that 62% of the participants could be identified based on the congruence 

of the later structural connectome to the initial connectivity matrix derived from the earlier 

timepoint. In contrast, similarity between functional connectomes of the same subject at 

different time points was low. Only 12% of the participants showed greater self-similarity in 

comparison to self-to-other-similarity for the functional connectome. These suggests that 

structural connectivity is more stable in early life and can represent a potential connectome 

fingerprint of the individual. In contrast, the functional connectome is highly dynamic at this 

developmental time. Thus, a relatively stable structural connectome appears to support a 

changing functional connectome at a time when neonates must rapidly acquire new skills to 

adapt to their new environment. 
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INTRODUCTION  

Advances in neuroimaging technology have provided new means to investigate the human 

brain in vivo. This has enabled characterization of a connectome delineating the structural and 

functional organization of the brain at a macro-scale. This connectome can be represented as 

a large-scale correlation matrix where each row and column correspond to brain subunit 

indices which may be structural or functional nodes, so that each matrix element describes 

‘connectivity’ between two neural parts (Sporns, Tononi and Kötter, 2005; Sporns, 2010). The 

information contained in the functional and structural connectome of an individual is highly 

specific to that person and has been compared to a personal ‘fingerprint’ (Finn et al., 2015; 

Yeh et al., 2016). Although, the functional connectome has been demonstrated to be highly 

stable over multiple years after late adolescence (Horien et al., 2019), a delay in establishing a 

distinctive functional connectome through adolescence has been linked to mental health 

difficulties (Kaufmann et al., 2017). However, the structural and functional connectome of an 

infant differs from older age groups (Cao, Huang and He, 2017), and the extent to which either 

is stable (i.e., reproducible at the level of the individual) is unknown. A better understanding of 

the extent of malleability of a given property of an individual’s brain and its relation to 

outcomes may guide personalized approaches to optimize child neurodevelopmental health.  

The developing brain is governed by dynamic processes that transform an amalgam of a few 

cells in early gestation into a complex organ capable of rapidly processing and integrating 

information. The foetal period is marked by cortical migratory processes, with anomalies at 

this stage frequently leading to neuronal migration disorders and atypical brain structure (Ten 

Donkelaar and Van der Vliet, 2004; Kostović et al., 2014). A hallmark of the third foetal 

trimester is a change in the relative proportion of short and long range association fibres 

(Ouyang et al., 2019). These fast-changing microscopic developmental mechanisms quickly 

lead to reshaping of macrostructural features, which can be captured with Magnetic 

Resonance Imaging (MRI). For example, despite ongoing rapid growth, cortical folding features 

show remarkable high similarity between scans of the same subject across the first year 

following birth, suggesting a high self-similarity in cortical macrostructure between birth and 

the first 2 postnatal years (Duan et al., 2020). However, the stability of structural/functional 

network metrics and whether the connectome is ‘individual’ in early life has not been 

previously investigated. This is important to understand because, although the structural and 
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functional connectome are inter-related and complimentary, they represent models of brain 

connectivity with distinct developmental influences (for a review see (Suárez et al., 2020)).  

Useful information about the perinatal brain and its subsequent maturation has already been 

acquired. In the perinatal brain, in parallel with structural changes, cortical neurons fire specific 

activity patterns which further regulate genetic expression and refine structure into functional 

systems (Tau and Peterson, 2010; Kirkby et al., 2013). Highly connected structural and 

functional nodes/hubs are crucial for information flow and further evolve as myelination 

matures (Morgan et al., 2018). A striking difference between the neonatal and the adult brain 

is that functional hubs, highly interconnected regions, are more restricted to somatosensory, 

auditory, visual and motor regions, unlike the higher order networks seen in adults (Cao et al., 

2017). In childhood, the identification accuracy of the functional connectome at rest has been 

estimated to be at 43% (Vanderwal et al., 2019), relative to 92% reported in adults (Finn et al., 

2015), suggesting acquiring functional diversity and consequent uniqueness is part of the 

trajectory towards adulthood. However, the structural connectome fingerprint has only been 

investigated in adults and been shown to be relatively plastic globally but very stable within 

specific white matter bundles, such as the corpus callosum (Yeh et al., 2016). On the contrary, 

the neonatal brain is still immature and differs from the adult one, so it is possible that nature 

and extent of identifiable features of individuals’ structural and functional connectomes that 

are stable over time also differ. 

Here, we investigate whether a structural and/or functional fingerprint is already established 

perinatally, by assessing the similarity of the structural and functional connectome of preterm 

born infants, who were scanned soon after birth and then again at term equivalent age. Unlike 

adults, the maturing brain is highly dynamic and undergoing rapid reorganization. Therefore, 

we hypothesized that connectome similarity would be lowest when the time between scans 

was longest. In addition, brain activity becomes experience-driven during this early postnatal 

period and experiences increase daily as the infant interacts with the world ex-utero 

(Greenough, Black and Wallace, 1987; Khazipov and Luhmann, 2006). Thus, we also 

hypothesized that this constantly changing functional activity leads to experience-dependent 

changes in the functional connectome upon a (relatively) stable structural connectome. 
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METHODS 

Subjects 

Research participants were prospectively recruited as part of the developing Human 

Connectome Project (dHCP), an observational, cross-sectional Open Science programme 

approved by the UK National Research Ethics Authority (14/LO/1169). Written consent was 

obtained from all participating families prior to imaging. 

As part of the dHCP, a total of 63 subjects were scanned twice and had both functional and 

diffusion MRI data acquired. After pre-processing, 18 diffusion datasets were discarded due to 

poor registration to template space, resulting in a total of 45 subjects (26 males) with good 

quality diffusion MRI data. The infants were born at a median of 32.29 weeks gestational age 

(GA) [range: 25.57-37], with their first scan acquired at a median of 35 weeks post menstrual 

age (PMA) [range: 29.29-37.43] and the second acquired at a median of 41 weeks PMA [range: 

38.43-44.86]. From the functional data, 18 subjects were discarded due to poor registration to 

template space and additional 14 had to be discarded due to significant signal loss during 

acquisition. Thus, there was a total of 31 subjects (21 males) with good quality functional 

connectome data, born at a median of 34.57 weeks GA [range: 27.57-37.00], had their first 

scan at a median of 35.57 weeks PMA [range: 30.86-37.43] and had their second scan at a 

median of 40.57 weeks PMA [range: 38.86-44.57]. The final sub-group with both good quality 

structural and functional data consisted of 26 subjects (16 males), born at a median age of 

34.14 weeks [range: 28.71-37.00], with their first scan acquired at a median of 35.43 weeks 

PMA [range: 31.43-37.43] and the second acquired at a median of 40.93 weeks PMA [range: 

38.86-44.86] (details described in Table 1). 

Table 1. Descriptive sample characteristics 

Group GA at birth PMA - scan 1 PMA - scan 2 

Structural  
(n=45, males n=26) 

32.29 [25.57-37.00] 35.00 [29.29-37.43] 41.00 [38.43-44.86] 

Functional  
(n=31, males n=21) 

34.57 [27.57-37.00] 35.57 [30.86-37.43] 40.57 [38.86-44.57] 

Structural and functional  
(n=26, males n=16) 

34.14 [28.71-37.00] 35.43 [31.43-37.43] 40.93 [38.86-44.86] 
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Data acquisition 

All subjects underwent Magnetic Resonance Imaging (MRI) scanning at the Evelina Newborn 

Imaging Centre, St Thomas’ Hospital, London, UK. Structural, diffusion and functional data was 

acquired using a 3 Tesla Philips Achieva system (Philips Medical Systems, Best, The 

Netherlands) with customized neonatal imaging system including a 32-channel phased-array 

head coil (Rapid Biomedical, Rimpar, Germany) (Hughes et al., 2017). Infants were studied 

during natural sleep following feeding and immobilization in a vacuum evacuated bag (Med-

Vac, CFI Medical Solutions, Fenton, MI, USA). Hearing protection (moulded dental putty in the 

external auditory meatus (President Putty, Coltene Whaledent, Mahwah, NJ, USA) and 

earmuffs (MiniMuffs, Natus Medical Inc., San Carlos, CA, USA)) and physiological monitoring 

(oxygen saturations, heart rate, axillary temperature) were applied before data acquisition. 

MR-compatible foam shielding was used for further acoustic noise attenuation. All scans were 

supervised by a neonatal nurse and/or paediatrician who monitored heart rate, oxygen 

saturation and temperature throughout the scan.  

A total of 300 volumes of diffusion MRI were acquired over 19 minutes and 20 seconds with b-

values of 400 s/mm2, 1000 s/mm2 and 2600 s/mm2 spherically distributed in 64, 88 and 128 

directions respectively, with 20 b=0 s/mm2 images and parameters: Multiband factor 4, SENSE 

factor 1.2, partial Fourier 0.86, acquired in-plane resolution 1.5x1.5mm, 3mm slices with 

1.5mm overlap, repetition time (TR)/ echo time (TE) of 3800/90ms and 4 phase-encoding 

directions (Hutter et al., 2018). After reconstruction, image resolution was 1.5 mm isotropic. 

High-temporal-resolution BOLD fMRI optimized for neonates was acquired over 15 minutes 3 

seconds (2300 volumes) using a multislice gradient-echo echo planar imaging (EPI) sequence 

with multiband excitation (multiband factor 9), TR 392 ms, TE 38 ms, flip angle 34°, and 

acquired spatial resolution 2.15 mm isotropic (Price et al., 2015). For clinical interpretation and 

registration purposes, a Turbo spin echo sequence (parameters: TR = 12s, TE = 156ms, SENSE 

factor 2.11 (axial) and 2.54 (sagittal)) was used to acquire high-resolution T2-weighted (T2w) 

images. The T2w axial and sagittal volumes originally acquired at 0.8x0.8mm, 1.6mm slices with 

0.8mm overlap were motion corrected and super-resolved to a final resolution of 0.8mm 

isotropic (Cordero-Grande et al., 2018).  
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Image pre-processing and connectome construction 

A neonatal specific segmentation pipeline (Makropoulos et al., 2014) was used to obtain tissue 

segmentation of each subject’s T2w images in native space. A neonatal adaptation (Shi et al., 

2011) of the AAL atlas (Tzourio-Mazoyer et al., 2002) aligned to the dHCP high-resolution 

neonatal template (Schuh et al., 2018) was used to parcellate each’s subject brain into 90 

cortical and subcortical regions. Previously calculated tissue segmentation and T2w images 

were used as input for a non-linear registration based on a diffeomorphic symmetric image 

normalization method (SyN) available in ANTS software (Avants et al., 2011) to bring the 90 

regions neonatal atlas into the subject’s native space (Supplementary Table 1). 

Pre-processing of diffusion MRI data and structural connectome construction was performed 

as previously reported (Taoudi-Benchekroun et al., 2020). Briefly, after hybrid SENSE 

reconstruction (Zhu et al., 2016),  diffusion signal was denoised (Cordero-Grande et al., 2019), 

and susceptibility distortions were corrected  (Andersson, Skare and Ashburner, 2003). A  

spherical harmonics and radial decomposition (SHARD) slice-to-volume reconstruction was 

applied to further correct motion effects and other artefacts (Christiaens et al., 2021). The N4 

algorithm (Tustison et al., 2010) implemented in MRtrix (Tournier et al., 2019) was applied for 

bias field correction. Multi-tissue CSD (Jeurissen et al., 2014) using restricted anisotropic 

diffusion for brain tissue and free diffusion for fluid like features (Pietsch et al., 2019) was used 

to estimate fibre orientation distribution (FOD) in each brain voxel. Response functions for 

each tissue type were generated as the average from the response functions in an independent 

sub-group of 20 healthy term control neonates from the dHCP (Taoudi-Benchekroun et al., 

2020). Multi-tissue log-domain intensity normalisation (Raffelt, et al. 2017) was applied to 

FODs, and normalised brain tissue like FODs were used to generate 10 million streamlines with 

anatomically constrained probabilistic tractography (Smith et al., 2012) with biologically 

accurate weights (SIFT2) (Smith, et al. 2015). The fibre density SIFT2 proportionality coefficient 

(μ) for each subject was obtained to achieve inter-subject connection density normalisation. 

Atlas parcellation and tissue maps in T2w native space were registered to diffusion space with 

a rigid registration using b=0 volumes as target. (Schnabel et al., 2001). The structural 

connectome of each infant was constructed in native diffusion space, by calculating the μ × 

SIFT2-weighted sum of streamlines connecting each pair of regions into a weighted adjacency 

matrix of size 90×90. 
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For functional data, all 2300 volumes of fMRI data acquired per participant were utilized 

without undergoing any scrubbing. Data were pre-processed using the Developing Human 

Connectome Project pipeline optimized for neonatal fMRI, detailed in (Fitzgibbon et al., 2020). 

In brief, susceptibility dynamic distortion together with intra- and inter-volume motion effects 

were corrected in each subject using a bespoke pipeline including slice-to-volume and rigid-

body registration (Andersson et al., 2017). In order to regress out signal artifacts related to 

head motion, cardiorespiratory fluctuations and multiband acquisition, 24 extended rigid-body 

motion parameters were regressed together with single-subject ICA noise bespoke 

components identified with the FSL FIX tool (Oxford Centre for Functional Magnetic Resonance 

Imaging of the Brain’s Software Library, version 5.0) (Salimi-Khorshidi et al., 2014). Atlas 

parcellation and tissue maps were propagated from T2w native space using a boundary-based 

registration  (Greve and Fischl, 2009). Average timeseries of each of the previously parcelled 

ROIs intersecting with GM regions were calculated in native fMRI space. Functional 

connectivity (FC) was calculated as the Pearson’s partial correlation of the signal between each 

pair of ROIs, controlling for the signal in the rest of the ROIs (Shi et al., 2011) and resulting in a 

matrix of size 90×90. Negative correlations were not considered and set to zero. 

Similarity Analysis 

Global similarity - Identifiability rate quantification 

To identify the optimal network density threshold for structural and functional connectome 

similarity, we tested the percentage of correctly identified subjects for all possible thresholds 

(Supplementary Figure 1). Based on this analysis, we applied a 25% network density threshold 

to the structural and functional connectomes at time-point 1 for each subject. This connectivity 

matrix was then binarized and used as a mask for the connectivity matrix in time-point 2 

ensuring that the same inter-regional connections were compared between the two time 

points. Spearman’s correlation between each matrix at time-point 1 and time-point 2 was 

calculated, resulting in a similarity matrix of 45×45 subjects for structural connectivity and 

31×31 subjects for functional connectivity. If the self-similarity between time-point 1 and time-

point 2 (diagonal correlation) was higher than the self-to-other-similarity, this was quantified 

as a successful match (Finn et al., 2015). 
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For visualization purposes, all similarity values were normalised by scaling relative to the 

maximum correlation between time-point 1 and all other subjects at time-point 2 dividing by 

the maximum value in each row (i.e., for each row, value of 1 indicated the maximum match 

between time-point 1 and time-point 2). As shown in Figure 1 this scaling results in a value of 

1 in the diagonal when self-similarity is higher than any self-to-other-similarity value. If the 

value of 1 is not in the diagonal it indicates self-to-other-similarity is higher than self-similarity. 

The same analysis was repeated for a sub-group of participants that had both structural and 

functional connectome data. This resulted in two 26x26 matrices containing structural and 

functional data, characterising the identifiability rate for the two modalities in the same 

individuals. The diagonal values of these matrices were extracted to provide median and range 

of structural and functional self-similarity.  

Age effect on self-similarity and self-to-other-similarity  

In order to assess the effect of age in the structural and functional fingerprint, we first 

calculated the partial correlation between PMA at scan at time-point 1 and self-similarity 

(controlling for days between scans), and then the partial correlation between days between 

scans and self-similarity (controlling for PMA at time-point 1) for the whole group in each 

modality. Then, for the sub-group we converted the self-similarity and the self-to-other-

similarity into z-scores for better visualization of the effect of age on self-similarity. If the self-

similarity z-score of a subject was higher than any of the self-to-other-similarity z-score, this 

would be equivalent to successfully matching a subject between time-point 1 and time-point 

2, as in previous fingerprinting studies (Finn et al., 2015).  

To further characterize the effect of age on self-similarity, we ran a general linear model 

analysis with PMA at time-point 1 and days between scans as independent variables and self-

similarity as dependent variable. This allowed quantification of the beta coefficients of the age 

effect on self-similarity. To characterize self-to-other-similarity association with age difference 

between time-point 1 and time-point 2, we performed a linear mixed-effects model (LME) with 

days between scans as fixed effect and with subject at time-point1 dependent random effect 

for the intercept to account for repeated measures. 
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Regional analysis  

Given the distinct trajectories of maturation of subcortical and cortical regions, we repeated 

all the analysis described above in 7 clusters that represent larger anatomical areas: central, 

frontal, limbic, occipital, parietal, deep grey matter and temporal. These regions were 

composed of 8, 22, 14, 14, 10, 8, and 14 nodes respectively. The central cluster was composed 

of bilateral precentral and postcentral gyrus, paracentral lobules and supplementary motor 

areas. The frontal cluster was composed of superior, middle, inferior and orbitofrontal cortices, 

as well as the olfactory lobule and the rectus gyrus. The limbic cluster was composed of the 

insula, anterior and posterior cingulate, hippocampus and amygdala. The occipital cluster was 

composed of the calcarine, cuneus, lingual cortices together with superior, inferior and middle 

occipital gyrus and the fusiform. The parietal cluster was composed of the superior and inferior 

parietal gyrus, supramarginal, angular and precuneus gyrus. The deep grey matter cluster was 

composed of all basal ganglia structures and thalami.  The temporal cluster was composed of 

the Rolandic operculum, the Heschl gyrus, and superior, middle and interior temporal cortices 

as well as the temporal poles. Supplementary Table 1 contains all 90 regions of the atlas and 

to which cluster they belong to. This allowed to calculate similarity identifiability rates, 

similarity z-scores and age linear models for each sub-region. 

Data availability 

The dHCP is an open-access project. The imaging and collateral data can be downloaded by 

registering at https://data.developingconnectome.org/.   

Derived data including structural and functional connectivity networks used in this study are 

available in github.com/code-neuro/neonatalconnectomefingerprint/. 

RESULTS 

Whole-brain similarity 

The structural connectome comparison between the scans at preterm and term equivalent 

ages yielded strong correlations not only among the scans of the same subject but also 

between the scans of different subjects (Figure 1AB). The mean self-similarity was r=0.90, 

ranging from r=0.67 to r=0.96, and the mean self-to-other-similarity was r=0.88, ranging from 

r=0.65 to r=0.94. The identifiability rate was 28/45 (62.22%), representing the percentage of 
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times self-similarity was higher than the self-to-other-similarity.  Furthermore, we found a 

significant correlation between PMA at first scan and self-similarity values (i.e., the older a 

subject was at the first scan, the more “self-similar” their structural connectome was between 

scans), controlling for days between scans (r=0.49, p=0.006). 

The functional connectome comparison showed less consistent results (Figure 1CD). The 

correlation values between scans were lower compared to structural connectome similarities.  

The mean self-similarity was r=0.56, ranging from r=0.21 to r=0.70, and the mean self-to-other-

similarity was r=0.54, ranging from r=0.17 to r=0.73. Thus, the identifiability rate for functional 

connectome similarity was 3/31 (9.68%). We observed no significant correlation between PMA 

at first scan and functional self- similarity, but there was a significant negative correlation 

between functional self-similarity and days between scans (r=-0.39, p=0.03). 

 

Figure 1. Structural and Functional global similarity. The correlation between the connectome of each subject at time-point 1 
and 2 is depicted by the similarity matrix for structural connectivity (A) and functional connectivity (C). The correlations are 
then plotted against days between scans with a colour gradient showing the age of the subject at time-point 1 for structural 
data (B) and functional data (D). The stars represent the correlation between the connectome of a subject at time-point 1 with 
the connectome of the same subject at time-point 2 (i.e., self-similarity), and the dots represent the correlation of a subject 
at time-point 1 with a different subject at time-point 2 (i.e., self-to-other-similarity).   
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Closer inspection of the self-similarity for the structural and functional connectivity in a sub-

group of participants with data available in both modalities confirmed that all subjects had 

higher similarity between their structural connectomes than their functional connectomes. 

The median structural self-similarity was r=0.93, ranging from r=0.89 to r=0.96, and the median 

functional self-similarity was r=0.55, ranging from r=0.21 to r=0.69. The identifiability rate for 

structural data was 18/26 (69.23%), in contrast with 3/26 (11.54%) for functional data (Figure 

2). As the structural and functional data examined were from the same individuals, age and 

time between scans was exactly matched.  

 

Figure 2. Self-similarity for structural and functional connectivity. The similarity correlation between the structural 
connectivity (SC) matrices between scans (blue) and between the functional connectivity (FC) matrices (red) is plotted 
again age at first scan (A) and against days between scans (B). 

 

Finally, we converted the self-similarity and self-to-other-similarity values into z-scores for 

each subject and sorted them based on age at time-point 1 to better visualize whether older 

subjects have a more identifiable whole-brain structural connectome (Figure 3). Results show 

that the structural connectome was more stable than the functional connectome against 

variations on age or time between scans. 

Age effect on sub-group similarity 

The general linear model analysis for the sub-group with both structural and functional data 

further showed that age at time-point 1 has a significant effect on global structural 

connectome self-similarity (β=0.007, p=0.01). We observed no significant effect of days 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.08.434357doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434357
http://creativecommons.org/licenses/by/4.0/


between scans on structural connectome self-similarity; and no effect of age at time point 1 or 

days between scans on global functional connectome self-similarity (Table 2). 

The LME analysis showed age at first scan also has a significant effect on global structural 

connectome self-to-others-similarity (β2=0.006, p<0.001), but there was no significant effect 

of days between scans. Unlike what was observed for self-similarity, both days between scans 

(β1=-0.001, p<0.001) and age at time-point 1 (β2=0.02, p<0.001) had a significant effect on 

global functional connectome self-to-others-similarity. 

 

 

Figure 3. Self-similarity and self-to-other-similarity z-scores arranged by PMA. The boxplots show the similarity scores 
between time-point 1 and time-point 2 converted to z-scores for each participant arranged from left to right (youngest to 
oldest at time-point 1). The stars represent self-similarity and the circles represent self-to-other-similarity. The upper row 
depicts structural connectome similarity (A) and the bottom row shows functional connectome similarity (B). 

 

Regional similarity  

Regional comparison of structural connectomes showed lower identifiability rate compared to 

the global metrics. The limbic cluster (insula, cingulate, hippocampus and amygdala) showed 

highest identifiability rate at 11/45 (24.44%), followed by frontal regions at 10/45 (22.22%), 
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occipital at 7/45 (15.56%), central at 5/45 (11.11%), both parietal and deep GM at 4/45 (8.89%) 

and temporal at 3/45 (6.67%).  

Functional connectome comparisons yielded similar identifiability rates compared to whole-

brain metrics. They were still qualitatively lower than structural similarity identifiability rates, 

except for the parietal cluster. Central and parietal regions showed the highest identifiability 

rate of 3/31 (9.68%). Limbic regions showed an identifiability rate of 2/31 (6.45%) and frontal, 

occipital, sub-cortical and temporal clusters showed an identifiability rate of 1/31 (3.23%) 

(Figure 4). 

Closer qualitative inspection of the self-similarity for the structural and functional connectivity 

in the sub-group of participants with both structural and functional connectomes showed 

structural and functional self-similarity closer together in the central cluster and more 

dispersed in the frontal cluster (Figure 5). However, functional similarity identifiability values 

were always lower than structural identifiability rates in this sub-group. 

Age effect on regional self-similarity 

The generalized linear model run independently for each cluster in the sub-group with both 

structural and functional data showed that age at time-point 1 has a significant effect on 

functional connectome similarity in the parietal region after Bonferroni correction (β=0.088, 

p=0.003). We observed no significant effect of age or days between scans on any other cluster 

for functional nor structural self-similarity after multiple comparisons correction (Table 2).  

Table 2. Beta coefficients and p-values for the effect of age and days between scans on self-similarity. 

 

 

 
SC FC 

 
PMA Days between scan PMA Days between scan 

 
β p β p β p β p 

global 0.00611 0.01 -0.00058 0.01 0.02413 0.15 -0.00265 0.08 

central 0.00126 0.72 -0.00024 0.44 -0.03211 0.06 -0.00258 0.09 

frontal 0.00031 0.91 -0.00044 0.07 0.02662 0.31 -0.00270 0.25 

limbic 0.00444 0.28 -0.00069 0.07 0.01875 0.28 -0.00187 0.23 

occipital -0.00107 0.74 -0.00046 0.13 0.06104 0.01 -0.00007 0.97 

parietal -0.00002 1.00 0.00029 0.60 0.08789 0.00 0.00174 0.47 

sub-cortical -0.00150 0.61 -0.00019 0.47 -0.00186 0.91 -0.00069 0.64 

temporal 0.00216 0.44 -0.00015 0.56 0.01117 0.54 -0.00041 0.80 
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Figure 4. Structural and Functional cluster-wise similarity. Similarity matrices together with plots to depict the association of the similarity with days between scans underneath are shown for 
structural connectivity (A, B) and functional connectivity (C, D). These figures are presented in different columns for different anatomical clusters: somatosensory-motor or central region, 
frontal, limbic, occipital, parietal, deep grey matter, and temporal.  
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Figure 5. Regional self-similarity for structural and functional connectivity cluster-wise. The structural self-similarity (blue) 
and the functional self-similarity (red) is plotted against age at first scan (PMA at time-point 1) in the first column and against 
days between scans in the second column for central (A), frontal (B), limbic (C), occipital (D), parietal (E), deep grey matter 
(F) and temporal (G) cluster. Grey lines provide visual guidance to match structural and functional similarity values of the 
same subject.   
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DISCUSSION 

In the current study we used a unique set of longitudinal high quality structural and functional 

neonatal brain MRI data from the Developing Human Connectome Project to investigate the 

status of the connectome fingerprint at an early stage of neurodevelopment. To do so, we 

selected data from preterm born infants that were scanned soon after birth and then again at 

term equivalent age. Our results show that the whole-brain structural connectome can already 

identify an older individual at birth. In contrast, the whole-brain functional connectome 

changes more noticeably between scan timepoints, so individual identification is less stable 

based on their functional connectome regardless of their age at birth or time between scans.  

A structural connectivity fingerprint is present during the perinatal period 

During the perinatal period, the brain undergoes marked micro and macrostructural changes 

(Kunz et al., 2014; Batalle et al., 2017; Pietsch et al., 2019).Nevertheless, our observations 

suggest that by the normal time of birth, an individual’s brain structural connectome is 

relatively stable. This suggests that the individual template of structural connectivity is 

predominately genetically determined, in the absence of an external insult. Consistent with 

this, macroscale structural white matter tractography has been shown to be highly heritable 

with axial diffusivity, radial diffusivity and fractional anisotropy of commissural fibres found to 

have the highest genetic influence and association fibres the least (Lee et al., 2015).  By term 

equivalent age, the neonatal brain has an established framework of thalamocortical fibres, a 

large abundance of u-shaped cortico-cortical fibres, and visible long range association 

pathways such as the cingulum bundle and callosal fibres (Takahashi et al., 2012). The 

abundance of u-shaped cortico-cortical fibres at term is in line with an early establishment of 

cortical folding patterns that remain individually unique throughout the first two postnatal 

years (Duan et al., 2020). Thus, the acquisition of a stable structural connectome appears to 

coincide with the attainment of more mature brain structural appearance and may therefore 

be a marker of maturity. This fits with the observed relationship between higher structural 

connectome self-similarity and an older age at the time of the first scan. Alongside self-

similarity, we also observed high self-to-other-similarity values in the structural connectome 

which likely represents the development of common macroscale features (structural 

connectivity backbone). 
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Functional connectivity fingerprint is absent at birth 

Task-based fMRI studies in neonates have demonstrated that the primary sensory cortices (e.g. 

somatosensory, auditory, olfactory and visual) are capable of processing external stimuli and 

are undergoing activity-dependent maturation during the perinatal period (Anderson et al., 

2001; Arichi et al., 2010; Perani et al., 2010; Lee et al., 2012; Baldoli et al., 2015; Allievi et al., 

2016; Adam-darque et al., 2018; Dall’Orso et al., 2018). Resting state studies have reported 

significant age-dependent increases in functional short-range connectivity in the 

somatosensory, visual, auditory and language networks throughout the perinatal time window, 

further suggesting rapid functional plasticity and maturation within these systems (Cao et al., 

2017). These changes in local degree centrality may represent functional reshaping of primary 

resting state networks that resemble adult networks by term equivalent age, while higher-

order association networks appear immature (Eyre et al., 2020). Such fast reorganization 

across multiple functional systems during the perinatal time window may explain why we did 

not observe a single case where self-similarity was higher than self-to-others-similarity.  

Our results markedly contrast with those of previously reported work in children. To our 

knowledge, the youngest previously investigated population for connectome similarity analysis 

to date has been a sample of 6-year-old children, where they reported an identification rate of 

43% between resting state functional connectomes (Vanderwal et al., 2019). Another study in 

children aged 7 to 15 years reported high correlation coefficients between functional 

connectivity matrices of the same participant, almost on par with adult similarity values (Horien 

et al., 2019). While our results indicate that a functional connectome fingerprint is barely 

present at birth, future studies should investigate when this starts to increase between infancy 

and childhood.  

Impact of age at first scan and days between scans on similarity 

To disentangle the impact of inter-scan interval and age at first scan on similarity of the 

structural and functional connectome, we examined a sub-group of 26 neonates who had both 

data types. We observed a significant effect of age at time-point 1 on the global structural self-

similarity. This effect might be determined by the individual-specific developmental trajectory 

of white matter microstructure and not necessarily indicative of an adult-like unique structural 

connectome (Ouyang et al., 2019).  
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The absence of any significant effect of age on global functional self-similarity at this early stage 

of development might be explained by the reshaping of long-range functional connectivity, 

which matures within the first postnatal year (Damaraju et al., 2014). However, we cannot 

exclude the possibility that the low functional connectome self-similarity in the perinatal 

period is a false negative. For example, there may be a non-linear effect that cannot be 

captured with a linear model or an anatomical parcellation might not be optimal to 

characterize the stability of the functional connectome in early development. Future studies 

focusing in functional connectome similarity should investigate if an appropriate parcellation 

derived from functional data or multi-modal information based parcellations (Glasser et al., 

2016) yields higher self-similarity rates.  

Interestingly, we observed the same age effect on global structural connectome self-to-other-

similarity. This suggests certain age dependent organization patterns are also common across 

subjects. The same was observed for functional self-to-other-similarity, which significantly 

decreased with longer intervals between scans being compared and increased with older age 

at time point 1. The low self-similarity, combined with strong self-similarity-to others and its 

age dependency roots for time constrained functional changes at a developmental time where 

there is a strong mixture of finely tuned spontaneous neural activity patterns and sensory 

experience dependent mechanisms (Hanganu-Opatz, 2010; Toyoizumi et al., 2013). The strong 

dependency of age and similarity patterns across subjects may also be related to genetic 

expression patterns that are highly dynamic and fast changing during this time of development 

(Silbereis et al., 2015).  

Regional fingerprinting of the connectome 

Brain development broadly follows a posterior to anterior maturational trajectory 

(Huttenlocher and Dabholkar, 1997) with sensory systems developing before higher order 

networks (Cao, Huang and He, 2017). Structural connectome identifiability rate was lower 

when investigating regions separately, suggesting global metrics with more data points is more 

informative as a fingerprint when using structural data. Later developing networks such as 

frontal and limbic cortices had the highest structural self-similarity. Given the late maturation 

of these regions, we speculate the high self-similarity might be driven by the fact that these 

regions are undergoing the least amount of structural change during the interval between 

scans. 
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We saw the highest identifiability rate in the central cluster of the functional connectome.  This 

suggests that functional sensory-motor networks can provide higher identifiability rates in 

babies, while in comparison frontal-parietal structures appear more unique in adults (Finn et 

al., 2015). However, it will require a larger sample of data specifically comparing 

somatosensory and frontal regions in infants and adults to test this hypothesis. In addition, 

structural and functional coupling is a sign of maturation which appears more robust after 

adolescence (Baum et al., 2020). Thus, the closer resemblance between structure and function 

self-similarity in the central cluster might be indicative of the relatively mature state of 

somatosensory and motor cortices in the perinatal time window.   

Limitations 

The main limitation of this study is that to assess the connectome fingerprint across weeks in 

the perinatal period ex-utero there is no other option but to investigate a preterm born 

population. Hence, to what extent the fingerprint is affected by preterm birth or is 

representative of normal development will have to be investigated in older infant cohorts or 

using foetal MRI. Another limitation pertains the multiple developmental factors which may 

influence the acquired signal in different ways and consequently the connectome. Despite the 

robustness of SIFT to characterize structural connections (Smith et al., 2015), using the most 

advanced pipelines available for neonatal fMRI data processing (Fitzgibbon et al., 2020), and 

being very stringent on data quality measures, the potential influence of developmental factors 

on the signal is out of our control. For diffusion data, developmental changes such as cortical 

folding or tissue water content reduction among others can affect the signal differently at 

different ages. Similarly, developmental effects which may influence the BOLD signal in 

different ways might relate to vascular density or neurovascular coupling, which can affect the 

sensitivity and specificity at different ages. Therefore, MR signal changes on the similarity 

values reported might be beyond differences in the neural “fingerprint”.  On this line, it is also 

important to note we used anatomical parcellations to characterize the functional nodes and 

future studies should investigate whether diverse functional parcellation methods mimic or 

differ from the findings reported in this study. 
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CONCLUSION 

The brain structural connectome fingerprint is already present in the perinatal period. It is 

relatively stable and individually unique at this stage of development, while functional 

connectivity is either too dynamic or immature to provide strong identification features. 

Region-wise analysis suggested that the functional fingerprint in early development might be 

more stable within clusters, although identifiability rates were still higher for structural data. 

Future studies should investigate regional differences throughout development, the 

association of the global structural fingerprint to developmental outcome, and whether 

genetic or environmental risk impact the stability of the fingerprint.  
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