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Abstract 

 

In recent years, the application of Molecular Dynamic (MD) simulations has 

become a widespread tool in biological and medical research. This type of 

simulations provide atomistic information and estimate thermodynamics 

and kinetics event associated with physical and biological processes. Due to 

improvement in simulation speed, accuracy and accessibility, MD 

simulations have become a routine protocol applied in different subjects, 

such as the modelling of biomolecules or during the drug discovery process. 

However, it is not always possible to properly sample biological processes 

that happen in long-timescale through simple MD. For this reason, an 

important effort has been put to provide new methodologies in MD, to 

accelerate the timescale of simulations, and to obtain results in agreement 

with experimental data.  

This thesis contributes to these efforts by presenting a new method to 

sample rare events and by understanding biological mechanisms. I start by 

presenting a new method to predict the free energy of protein-ligand 

unbinding and demonstrate the efficacy of the method by applying it to a 

system with experimental kinetic data. Furthermore, I describe what 

information MD simulations can provide by applying it to different 

biological systems. Specifically, I provide insights into the inhibition 

mechanism of integrase inhibitors used for the treatment of HIV. I then 

unravel the mechanism behind the formation of the D-Ala peptide through 

the D-Ala-D-Ala ligase, an essential enzyme for the formation of the 

peptidoglycan wall in the bacterial cell of Mycobacterium tuberculosis. Next, 

I show how, through MD simulations and homology modelling, we can 



 IV 

predict the holoprotein Sars-Covid19 Helicase structure. Lastly, I include 

work where I study the behaviour of known drugs while crossing a generic 

membrane layer, providing kinetic and structural information. 

Overall, this thesis demonstrates the potential of applying MD simulations 

to provide insights into diverse biological events. However, the application 

of MD simulations cannot entirely replace experimental procedures but 

should be a complementary method, to be applied in different biological 

fields, such as drug discovery. 
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Chapter 1 Introduction to the Thesis 

“… if we were to name the most powerful assumption of all, which lead one on 

and on in an attempt to understand life, is that all things are made of atoms 

and that everything that living things do can be understood in terms of jigglings 

and wigglings of atoms” 

Richard P. Feynman, 1963 [1] 

The quote above implies that proteins, the living things, are not rigid bodies but 

are dynamic objects. Fourteen years later, the first molecular dynamics (MD) 

simulations were performed. From this point forward, the number of studies 

using MD has increased exponentially, especially in the last two decades, thanks 

to the ability to access faster computers and programs to perform the 

simulations. Within the last 12 months alone, there have been ~6,000 

publications that involve MD simulations (research conducted from 

Webofscience.com, using as a filter molecular dynamics and protein). 

Today, MD has becomes a powerful technique that provides thermodynamic 

and kinetic information about biological processes. In particular, in drug 

discovery, MD is a fundamental tool for providing information on a biological 

molecule's flexibility and dynamics. By looking at the movements of atoms in 

proteins during a specific time, it is possible to obtain information about the 

structure and its function. Understanding the structure and the functional 

activity of proteins provides key information in uncovering the mechanism 
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behind diseases and provides information to address the design and 

optimisation of molecules for the treatment of these diseases. 

Following the criteria of Karplus and McCammon [2] we can generally classify 

the application of MD simulations applied to macromolecules into three 

groups: (1) sampling of conformational space to refine structures obtained from 

experimental techniques (2) description of a system in equilibrium to obtain 

thermodynamic properties (3) use of MD to examine the dynamics of the 

system of interest. When examining the dynamics of a system, it is particularly 

important to broadly sample all states and configurational space. Unfortunately, 

this can be challenging as rare events not always can be sampled by running 

long time-consuming simulations.  

This thesis provides examples of how MD simulations can be a resourceful tool 

in understanding the activity of a protein involved in different diseases. I focus 

my attention on understanding the mechanism of interactions between 

proteins and small molecules, particularly focusing on these events' kinetics. 

Furthermore, I also present new methodological tools to improve the sampling 

of rare events. In all the works presented in this thesis, MD play a central role.  

Chapter 2 will provide a brief review of all the computational techniques that I 

have used in this thesis, providing a general introduction to MD, docking and 

QM/MM simulations. 

Chapter 3 presents one of my main works, in which I present a novel method to 

predict kinetic information of protein-ligand unbinding; I have applied the 

method to Cyclin-Dependent Kinase 2 (CDK2) and compared the results 

obtained from this method to experimental data. This work is about to be 

submitted to a peer-review journal. 
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Chapter 4 describe the work from the collaboration with Cherepanov group at 

the Francis Crick Institute. The project provides a comparison of the binding 

affinity of two different HIV-integrase inhibitors using MD and Quantum 

Mechanic simulations; using as initial coordinate the recently deposited cryo-

EM structures generated from Cherepanov lab. This research was published in 

2020 in Science. 

Chapter 5 presents another piece of work resulting from the collaboration with 

the Carvalho group at the Francis Crick. I analyse through experimental and 

computational techniques the mechanism of D-Ala-D-Ala ligase in 

Mycobacterium Tuberculosis. Through a combination of spectrophotometer 

experiments and liquid chromatography-mass spectroscopy analysis, I provide 

evidence on which residues are important for the enzyme activity, using the wild 

type protein and three single point mutations. Those results are then compared 

with QM/MM calculations. Additionally, we perform a set of docking 

calculations to provide new interesting candidates to inhibit the activity of 

MtDdl, and from the results obtained, we tested them experimentally.  

 Chapter 6 uses MD simulation and homology modelling results to provide 

structural insights into Sars-Cov-2 helicase; an important enzyme highly 

conserved in the coronavidae family. Understanding the mechanism and 

function of this enzyme will aid the development of potent inhibitors for this 

disease. The project started as a response to the Covid19 pandemic. The work 

has been deposited into a BioRxiv in November 2020.  

Chapter 7 is dedicated to one of the first projects of my PhD, which I analysed 

the behaviour of several known drugs across a lipid layer lipid membrane, and 

I will provide kinetic information in agreement with experimental results. The 

work was published in 2018 in The Journal of Physical Chemistry B. 
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Chapter 2 Methods 

2.1  Molecular Dynamics 

Molecular dynamics (MD) is a method used in computational chemistry to 

simulate the atoms' motion by integrating Newton’s law of motion. In biology, 

MD simulations can provide important atomistic information about the 

mechanism of biological processes, such as ligand-target interaction, 

conformational change, protein folding/unfolding. This is achieved by providing 

the position of all the atoms represented in the simulation at femtosecond time 

resolution [3]. 

MD was for the first time introduced in 1957; it was used to study the collision 

between particles in a rectangular box to calculate the system's equilibrium 

properties [4]. It was only in 1977 that McCammon et al. [2] applied MD for the 

first time to a biological system to study the dynamics of the Bovine Pancreatic 

Trypsin Inhibitor (BPTI) protein for a total time of 9.2 picoseconds on a system 

with 58 residues. Thanks to the development of MD codes, force fields, and 

faster computers, MD's applicability has increased drastically in the last 

decades, becoming a powerful tool to understand biological and chemical 

processes [4-5]. 
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The method consists of generating a time-dependent set of atomic coordinates 

by iteratively integrating Newton’s law of motion, through the following 

equation: 

𝑑2𝑟𝑖(𝑡)

𝑑𝑡2
=  

𝐹𝑖(𝑡)

𝑚𝑖
 

(2.1) 

Where 𝐹𝑖(𝑡) represents the force applied on atom i of mass m at time t, and 

𝑟𝑖(𝑡) represent the vector position of the atom i. 

Practically, to perform MD simulations, we require several steps summarized as 

follow:  

1 – Definition of the initial coordinates of the system to simulate. This is a key 

factor for the success of the MD simulation, especially for biological systems, 

like proteins. Usually, the atoms' initial position comes from experimental 

results (such as X-ray crystallography, NMR, or Cryo-EM). Unfortunately not 

always a good initial structure is provided, however using homology modelling, 

docking, or quantum mechanical approaches it is possible to obtain a reliable 

structure.  

2 – Choice of the method to calculate the potential energy. Different methods 

have been proposed, ab initio quantum chemical, Density Functional Theory 

(DFT), hybrid quantum mechanical methods, or quantum mechanics. The last is 

the most common used, but it requires the definition of a Force Field (FF), a set 

of terms (bond stretching, angle bending, dihedral torsion, partial charges, VdW 

interaction) that takes into account the distortion of the values from an ideal 

position (see 2.1.1 for further details). 

3 – Energy minimisation and assignment of an initial velocity to all the atoms 

before initiating the molecular dynamics. As mentioned in the first step, the 

initial structures might present steric clashes and overlaps between atoms. An 
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initial energy minimization allows the sampling of the conformational place 

towards the closest local minimum. The most common method is the steepest 

descend gradient that uses a first-order derivative equation [7]. For the initial 

velocity, important is the definition of the temperature at which to perform the 

MD simulations. It can be calculated through the following equation of the 

kinetic energy: 

〈𝐸𝑘𝑖𝑛〉 =  〈𝐸𝑝𝑜𝑡〉  =  ∑
𝑚𝑖|𝑣𝑖|2

2

𝑁

𝑖=1

=  
3

2
 𝑁𝐾𝑏𝑇 (2.2) 

Where 𝑁 represents the total number of atoms of the ensemble and 𝑘𝑏 is the 

Boltzmann constant. During the simulation, the assigned velocity is assigned to 

each atom with a randomized factor, according to a predetermined distribution 

and rescaled by a constant, to ensure that the overall kinetics matches equation 

2.2. 

4 – Simulation of the system to a required number of time-step nstep. The 

application of Newton’s law of motion is made through different integration 

methods; the most common of the Verlet family is the Velocity-Verlet algorithm 

[8]: 

{
𝑅(𝑡 + ∆𝑡) = 𝑅(𝑡) + 𝒗(𝑡)∆𝑡 +  

1

2
𝒂(𝑡)∆𝑡2

𝑣(𝑡 + ∆𝑡) = 𝑣(𝑡) +  
1

2
{𝑎(𝑡) + 𝑎(𝑡 + ∆𝑡)}∆𝑡

 (2.3) 

Where v and a are the abbreviation for the first (velocity) and second 

(acceleration) time derivatives of the position vector R. The first term provides 

the position of each time t at the next time step, and the second term gives the 

velocity of each atom. The method is a variant from the original Verlet 

integration, with a main difference that in the Velocity-Verlet algorithm the 

velocity is directly calculated in each step, and not derived from a mean value 

approach that generates additional errors from an approximate equation. 
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Similarly to the Velocity-Verlet algorithm, the Leap-Frog algorithm determine 

the new positions of the atoms using half-integer time steps: 

{
𝑅(𝑡 + ∆𝑡) = 𝑅(𝑡) + 𝒗 (+

∆𝑡

2
) ∆𝑡 +  0∆𝑡3

𝑣 (𝑡 +
∆𝑡

2
) = 𝑣 (𝑡 −  

∆𝑡

2
) +  𝑎(𝑡)∆𝑡 +  0∆𝑡3

 (2.4) 

The kinetic and the potential energy are not defined at the same time, but the 

position and the forces are calculated at interleaved time points [9]. The choice 

of the integration results to be important while considering: the long-term 

energy conservation, the conservation of the phase-space volume and time 

reversibility. 

Important is the choice of the time-step since the stability of the simulations is 

dependent on this step. Ideally, we need to choose a long time step to reduce 

the time of the calculations; however, the side effect is that motions occurring 

faster than the selected time-step are not sampled, resulting in a loss of 

information [7], [10], [11]. Typically for biological processes, the time-step is set 

at two femtoseconds per step, thanks to the introduction of different 

techniques (SHAKE [12] or RATTLE [9]), where the fastest motions (usually all X-

H bonding) are kept frozen, and we can obtain a good compromise of sampling 

over the time step.  

5 – Analysis of the simulations. From the simulation, it is possible to extract each 

atom's position and the relative energy of the system at specific time steps. For 

example, to check if an important interaction is kept during the MD simulations, 

we extract the interatomic internal distances between the atoms involved in the 

interaction and seeing if the distance increases, reduces, or stays constant 

during the trajectory. Dihedral and angle values of the intramolecular molecules 

might give information about the flexibility of the last. The Root Mean Square 
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Deviation (RMSD), is a simple but straightforward way to overall analyse the 

fluctuation of a selected set of atoms from a reference position. 

2.1.1 Force Field 

As mentioned in the previous section, an important set of parameters that 

needs to be defined is the force field (FF). FF is a parametric function of atomic 

coordinates, that provides the potential energy of the system. The potential 

energy is represented by the sum of the different terms used to model the 

bonded and non-bonded interactions. The bonded interactions contain the 

contribution from bond stretching, torsional angle, rotation around a dihedral, 

while non-bonded interactions come from Van der Waals and electrostatic 

interaction. The value for each of these parameters can be derived from 

experimental analysis or ab initio calculations. Atoms are grouped by similarity, 

and for each of these contributions (bond distances, angle torsion, dihedral), 

the ideal value for the specific parameter is provided including the amplitude 

of the distortion. Popular FF algorithms include AMBER [13], GROMOS [14], 

OPLS [15], and CHARMM [16]. In most of the work presented in this thesis, I 

have employed the CHARMM force field, where the potential energy is 

expressed as follow: 

𝑈𝑓𝑓
𝐶𝐻𝐴𝑅𝑀𝑀 =  ∑ 𝐾𝑏(𝑟 − 𝑟0)2

𝑏𝑜𝑛𝑑𝑠

 +  ∑ 𝐾𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

 

+ ∑ 𝐾𝜒(1 + cos(𝑛𝜒 − 𝛿))

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

 

+ ∑ 𝐾𝑈𝐵(𝑆 − 𝑆0)2

𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦

+  ∑ 𝐾𝜙(𝜙 − 𝜙0)2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

 

(2.5) 
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+ ∑ 𝑢𝑐𝑚𝑎𝑝(𝜙, 𝜓)

𝑐𝑚𝑎𝑝

 

+ ∑ (𝜀𝑖𝑗 [(
𝑅𝑚𝑖𝑛

𝑟𝑖𝑗
)

12

− 2 (
𝑅𝑚𝑖𝑛

𝑟𝑖𝑗
)

6

] +  
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
)

𝑁𝑜𝑛−𝐵𝑜𝑛𝑑𝑒𝑑

 

 

𝑟0, 𝜃0, 𝑆0, 𝑎𝑛𝑑 𝜙0 represents the equilibrium value for the distance (2-3), angle 

(1-2-3), distance (1-3), and dihedral of improper angle (1-2-3-4) respectively 

(see Figure 2.1). Urey-Bradley (UB) represents the cross-potential factor for 1-3 

bending. 𝑛, 𝜙, 𝑎𝑛𝑑 𝛿 are respectively the number of barriers, angle, and phase 

that represent the torsional potential. 

 

Figure 2.1. Illustration of the geometry in a simple chain molecule, with distance 

r23, bending angle 𝜃234 and torsional angle 𝜙1234. (From ref [11]) 

𝑅𝑚𝑖𝑛 is the arithmetic average of the minimum value of 𝑟𝑖 + 𝑟𝑗 . The last term 

corresponds to the non-bonded interaction, where the first part is the Lennard-

Jones contribution, which includes both the excluded volume repulsion (𝑟𝑖𝑗
-12) 

and the VdW attraction component (𝑟𝑖𝑗
-6), while the second part is the Coulomb 

potential. The last parameter, the Coulomb potential, can be achieved by 
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assigning a partial charge q to each atom of the system. However, this will 

usually lead to an important approximation, as the partial charge of each atom 

depends on the adjacent atoms attached and is also affected by the 

surrounding environment. In general, each of these parameters can be defined 

specifically for each atom interactions, but this is unfeasible in practice. For this 

reason, atoms that share similar interactions are grouped within the same atom 

types, and the parameters applied to those atoms will be the same. For example, 

in proteins, the Cα carbon of the backbone is called CA, the nitrogen atom of 

the backbone is N et cetera. Grouping atoms by atom type simplify the 

parametrization process consistently, making it simpler. However, this type of 

clustering in some cases can lead to a big approximation, mining the quality of 

the results in molecular dynamics. For small molecules, the automatic 

parametrization becomes more challenging, due to the variability of the atoms 

interaction, and even with using popular force filed parametrization software, 

such as CHARMM General Force Field (CGenFF) [17] and the Generalized 

AMBER Force Field (GAFF) [18], not always it provides accurate results. The main 

problem is often related to the assignment of the partial charges for each atom 

of the molecule, which is usually done by using a semi-empirical method with 

bond charge correction (AM1-BCC) or based on atom types and connectivity. 

In this thesis's several works, we deploy a more exhaustive calculation to obtain 

the small molecules' partial charges based on quantum mechanical approaches 

(see chapter 2.3). 

2.1.2  Periodic Boundary Condition 

Additional parameters need to be considered and set before submitting the 

simulations. Because we sample a closed system, in MD simulations we 
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introduce periodic boundary condition (PBC). In a PBC system, the entire 

simulation volume is surrounded by replicas of itself; if an atom leaves the 

simulation box, the same atom's image is then created from the opposite side 

of the box to interact with the nearby particles or their replica image. Using PBC, 

you include long-range interaction between the atoms at the edge of the box 

in order to approximate a bulk environment. Typical algorithms used to 

consider the PBC is the Ewald summation [19], where the Coulomb term is 

divided into a short-range component, treated in the real space, a long-distance 

component, treated as reciprocal and a correction for when the particle is 

seeing its own image: 

𝑈𝑒𝑙  =  𝑈𝑟𝑒𝑎𝑙  +  𝑈𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙  +  𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (2.6) 

Due to the costly computational limit while calculating Uel in a O(N2) system, 

most MD codes introduce an efficient grid-base projected O(NlogN) Ewald 

summation method, where Ureciprocal is calculated using Fast Fourier Transform 

(FFT) called Particle Mesh Ewald (PME) [20]. Additionally to Ewald summation, 

in the PME the partial charges of the system are divided into a grid located on 

the surface of the simulation cell of the system. 

2.1.3  Temperature and Pressure Control 

Another aspect to consider is the type of statistical ensemble to apply; a typical 

ensemble used in MD simulations is the microcanonical ensemble (NVE), where 

the number of atoms (N), volume (V), and the total energy (E) are kept constant 

along the trajectory. However, NVE is a closed state, not representing real 

condition of experiments. For this reason, MD simulations are usually coupled 

with thermostats or barostats. When using a thermostat, the volume (V) and the 
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temperature (T) are kept constant (NVT, also referred to a canonical ensemble), 

while with a barostat, the pressure (P) is maintained constant and V is allowed 

to change (NPT). Several thermostats have been implemented in MD 

simulations [21]: velocity rescaling [22], Andersen [23], Nosé-Hoover [24], [25], 

Berendsen [26] and Langevin [27] thermostat. In the present thesis I applied the 

Langevin thermostat as implemented in NAMD software. An external bath of 

virtual particle is applied to the system, influencing the solute with stochastic 

collision. A constant friction γi, and an additional Gaussian random force R(t) 

acting on all the particles is applied following the differential equation: 

𝜕𝑷𝒊

𝜕𝑡
 =  −

𝜕𝑈

𝜕𝑟𝑖
 −  𝛾𝑃𝑖  +  𝑹(𝑡) (2.7) 

The benefit of using the Langevin thermostat is the ability to reproduce 

correctly canonical ensemble while maintaining a stable dynamics. Experiments 

of chemical and biological reactions are normally done in an open atmosphere, 

for this reason NPT become a better choice. Also here, several barostats has 

been applied to MD simulations: Berendsen [28], Andersen [23], Parrinello-

Rahman [29], and Nosé-Hoover [30] and Martyna-Tuckerman-Tobias-Klein [30] 

barostat. NAMD use Nosé-Hoover-Langevin pressure control, where the Nosé-

Hoover barostat is coupled with Langevin dynamics. An additional pressure 

bath is included in the system to simulate virtually a real piston. The piston 

degree of freedom V is coupled to a thermal reservoir, and the dynamic 

equation of the velocity, pressure gradient and modified Langevin equations 

can be expressed as: 

𝑟̇𝑖(𝑡) =
𝑝𝑖(𝑡)

𝑚𝑖
+

1

3

𝑉̇

𝑉
𝑟𝑖(𝑡) 

𝑝̇𝑖(𝑡) = 𝐹𝑖 (𝑟𝑖(𝑡)) −
1

3

𝑉̇

𝑉
𝑝 

(2.8) 
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𝑉̈ =
1

𝑊
[𝑃(𝑡) − 𝑃ext] − 𝛾𝑉̇ + 𝑅𝑖(𝑡) 

 

P(t) is the instantaneous system pressure at time t, and Pext represent the 

external pressure. The mass of the piston degree of freedom is represented by 

W and Ri is the solvent random force. 

2.1.4  Free Energy Landscapes 

On of the benefit of MD, and in general of computational chemistry, is the ability 

to characterize chemical reactions. Theoretically, relative free energies can be 

calculated by counting the relative populations at different states (or 

configurations) in long equilibrated simulations. We can obtain thermodynamic 

and kinetic information approximated by summing multiple states through the 

application of statistical mechanics. While in QM, the relative free energy can 

be calculated as a sum of rotational, transitional, and vibrational energy 

contribution, in MD, that usually deals with a large system, this becomes 

impractical. In molecular mechanic approaches, we consider the possible 

position q and their momenta r adopted by the system's atoms. For a set of N 

atoms we can apply a Hamiltonian operator H(p,r) to calculate the partition 

function, where the atom has the form: 

𝐻(𝒑, 𝒓) =  ∑
𝒑𝒊

2

2𝑚𝑖
+ 𝑉(𝑟1

𝑁

𝑖=1

, 𝑟2, … , 𝑟𝑁) (2.9) 
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Where 𝑚𝑖 represent the mass of the atom i and V is the potential energy 

function. Because the system is usually on a NPT ensemble, the free energy F is 

calculated through: 

𝐹(𝑁, 𝑉, 𝑇) =  −𝐾𝑏𝑇 ln [ℎ−3𝑁  ∬ exp {−
𝐻(𝑝, 𝑟)

𝐾𝑏𝑇
} 𝑑𝒑𝑑𝒓] (2.10) 

With ℎ as Planck’s constant, this factor can often be omitted when calculating 

relative free energy as the number of atoms is not changing along with the 

simulation [31]. In a system with thousands of atoms, the exact solution of 

equation 2.10 becomes impractical, as there are too many sets of coordinate r 

to consider. However, MD assumes that the probability with which each 

configuration is visited during the trajectory is proportional to the one 

expressed by equation2.10. To obtain representative states for each population 

using MD, we either perform long-term MD simulations or introduce an 

enhanced sampling technique (see chapter 2.1.5). 

2.1.4.1 Transition State Theory 

Rate constant between two states can be calculated, using statistical 

thermodynamics, by applying the Eyring equation: 

𝑘 ≅  𝑘𝑇𝑆𝑇 =  
𝑘𝐵𝑇

ℎ
× 

1

𝑐𝑠𝑡𝑑
∆𝑛

 × exp (
−∆𝐺‡

𝑅𝑇
) (2.11) 

cstd is the standard concentration assumed when calculating the translational 

partition function, n is equal to zero when there is no change in the number of 

molecules between states otherwise is one. ∆𝐺‡ is the Gibbs energy of 

activation, that is the minimum amount of energy required to achieve the 

transition state. Therefore, this reaction rate is called transition state theory 

(TST), due to the qualitative value on how chemical reactions occur. Because in 

classical MD, in its simplified nature, we do not have the breaking and forming 
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of a covalent bond, what we can see is the energy difference between 

configurational states. In several chapters of this thesis, we analyse the 

transition state between protein-ligand complexes. Such information provides 

key atomistic insight about the type and strength of the interaction between 

these two states. 

2.1.5 Enhanced Sampling Techniques 

Biological events, such as ligand-protein binding or unbinding, protein folding 

or unfolding, happen on a second to hour scale, rendering hardto sample 

through simple MD simulations, even using the most sophisticated hardware. 

To sample and observe such biological events, MD needs to be run for a long 

time. Only in the last 20 years, we can perform µs long time simulations in few 

days [32], this was possible only thanks to advances in computer technology 

and the possibility to run simulations in high-performance computing. In 2008, 

D.E. Shaw built in New York a parallel supercomputer designed specifically to 

run MD simulations, and in one of his firsts work he was able to perform 100 µs 

to characterize the folding of the FiP35 domain. [33] More affordable progress 

has been achieved by using a GPU processor to run MD simulations using CUDA 

architecture. Nowadays, is it possible to obtain hundreds of ns in a day only 

using a personal desktop accessorized by a good GPU.  

From MD simulations, we obtain a time series set of coordinates along with a 

user-defined time range. If the system is trapped to a local minimum, defined 

as a low energy state along the free energy surface, a jump to another state 

requires overcoming a high energy barrier, which is unlikely but,can be achieved 

through long simulations. However, to sample rare events, we need to enhance 

the sampling simulation and ensure that the relevant regions of the 
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configurational space are visited well. For this purpose, a valid option is either 

to temper, usually done by increasing the temperature of the system, such as 

parallel tempering where coordinates extracted along the trajectory are 

exchanged between replicas run at different temperature, or to modify (bias) 

the potential energy of the system [34]. The latter is done by applying an 

external bias potential; this allows the system to sample different areas of the 

potential energy surface, including rare states, by elevating the energy of the 

reactant, though lowering the energy barriers of the potential energy surface 

[35]. However, because we bias with an additional potential the system, the 

distribution over the structures cannot allow direct calculation of the relative 

free energy. These sets of methods are called enhanced sampling techniques 

[36]. Overall, all these methods can be generally divided into different families: 

CV based methods such as Umbrella Sampling (US) [37] or metadynamics [38], 

multiple replica based methods such as Hamiltonian Replica exchange [39], 

path based methods, such as finite temperature string method [40], PathCV and 

Markov State Models (MSM) [41] methods, such as WHAM [42] and DHAM [43].  

Among these methods, in this thesis I have used Umbrella sampling combined 

with DHAM to analyse the passive permeation of 7 drugs crossing a membrane 

layer and finite temperature string method associated with a binless version of 

WHAM to predict the kinetics of protein ligand unbinding. Hereafter, I will 

briefly describe these methods.  

2.1.5.1 Umbrella Sampling (US) 

Suggested by Torrie and Vallau in 1977 [37], is one of the first enhanced 

sampling technique applied to MD. The method consists of sampling the 

reaction coordinate by applying a harmonic bias potential to a reaction 

coordinate (ξ) and a potential strength 𝑘: 
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𝑉(𝜉) =  
𝑘

2
 (𝜉 −  𝜉𝑟𝑒𝑓)2 

(2.12) 

The method consists of dividing the reaction coordinate into multiple windows, 

where for each window a specific bias to that CV is applied. During the 

simulations, the trajectory is constrained along with that specific phase space. 

If the position of the windows are close enough, and there is overlap along each 

trajectory along with the windows, then it is possible to apply a post-process 

method to obtain the free energy profile, such as WHAM [42] and DHAM [43] 

(described at chapter 2.1.5.3 and 2.1.5.4 respectively). 

2.1.5.2 Finite Temperature String Method 

Finite Temperature String Method sample adaptively the energy landscape, and 

through weighting the equilibrium probability distribution, it is possible to 

construct the transition path. [40] After defining a set of collective variable, an 

N-dimensional space string is built, representing the reaction pathway. 

Thebeginning and the end of the strings represent respectively the reactant and 

the product of the reaction. Multiple constrained simulations are performed 

along these hyperplanes to sample the conformational space. In the end, the 

data coming from each string window can be processed using WHAM or 

DHAM. 

2.1.5.3 WHAM 

Several methods have been proposed for the calculation of the free energy 

profile through MD simulations. The Weighted Histogram Analysis Method 

(WHAM) [42] is one of the first methods that include all the intermediate state, 

along with the potential of mean force (PMF). Coming from the Multiple 

Histogram equation developed by Ferrenberg and Swendsen [44], the method 

works with the idea that all the states of your system can be discretized into a 
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defined number of bins, that describes the reaction coordinate. From the 

probability of being on each of these bins, it is then possible to calculate the 

free energy profile. To obtain the free energy profile (FEP) using WHAM, we 

need to solve iteratively two equations; one to calculate the probability 

distribution and then the free energy function: 

𝑝𝑗 =  
∑ 𝑛𝑖𝑗

𝑆
𝑖=1

∑ 𝑁𝑖𝑓𝑖𝑐𝑖𝑗
𝑆
𝑖=1

  

𝐹𝑖 =  ∑ 𝑐𝑖𝑗

𝑀

𝑗=1

𝑝𝑗 

(2.13) 

The total number of configurations is represented by S, 𝑝𝑗 is the probability for 

each j bin, for a total of M bin. 𝑁𝑖𝑓𝑖 are the number of configuration and 

normalizing factor respectively and 𝑐𝑖𝑗 is the biasing factor. 

2.1.5.4 DHAM  

Unlike WHAM, the dynamic histogram analysis method (DHAM) [43] calculates 

the free energy profile by using a Markov model. The data points obtained, 

usually from the umbrella sampling simulations, are unbiased through, and the 

Markov matrix is constructed by calculating the transition count. The advantage 

of this method is that, compared to WHAM, there is no need to calculate the 

iterative solution applied in the first equation of WHAM. Please refer to Chapter 

7.4.1 for more detail on the equation and the relative method. 
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2.2  Docking 

Docking is a molecular modelling technique that consists of fitting one or 

multiple molecular structures into a target (for example, a protein) and predicts 

the complex's binding affinity. The method fits a ligand to a binding site, analyse 

each poses for steric, hydrophobic, and electrostatic interactions and rank the 

results according to a scoring function between different molecules and 

configurations of the same molecule. Docking has been widely used in the drug 

discovery process; the benefit of this method is that you can screen millions of 

compounds against a specific target within hours. The process is divided into 

two stages: configurational sampling and the evaluation of the scoring function. 

In the configurational sampling, the ligand, which can be a small molecule, a 

peptide, or another protein, is fitted to the target, following the force field 

potential. To speed up the process, the sampling can be: (1) rigid, where both 

the ligand and the receptor are not moving (often this method is compared as 

key-lock imposition), (2) semi-flexible, where the ligand has some degree of 

freedom, or (3) flexible, where also the protein is free to move. The rigid and 

semi-flexible methods assume that the atom coordinates of the receptor are 

the ones able to interact with the ligand. The application of constraints to the 

atom positions of the system is made to speed-up the process itself; however, 

if the structure used is not reliable, the results obtained can be misleading. The 

sampling of the ligand poses during the docking can be done through a 

systematic approach, such as exhaustive search, or through a stochastic 

approach, for example, using either the Monte Carlo algorithm or more recently 

through the application of Machine Learning techniques. According to how 

many and which components of the force field are considered, multiple scoring 
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technique can be suggested. Some scoring functions implement a knowledge-

based function, using a database of structures.  

2.3  Quantum Mechanics and QM/MM 

While in classical mechanics, atoms are treated as spherical particles connected 

by springs that follows the rules of parametrized force fields, in quantum 

mechanics QM, the system is described as a function of the particle coordinates, 

called wavefunction. The potential energy of the system is a function of the 

atomic coordinates and the total energy can be expressed by the Hamiltonian 

equation: 

𝐻̂tot = 𝑇̂e + 𝑇̂n + 𝑈̂en + 𝑈̂ee + 𝑈̂mn (2.14) 

Where 𝑇̂e and 𝑇̂n are the sum of the kinetic energy operators for the electrons 

and nuclei respectively. 𝑈̂en is the attractive electrostatic potential between the 

electron and the nuclei and 𝑈̂ee and 𝑈̂mn represents the electrostatic repulsive 

interaction between electron-electron and nuclei-nuclei respectively. Using the 

time-dependent Schrodinger equation, it is possible to predict the evolution in 

time of a system based on its wavefunction: 

𝐻̂|Ψ⟩ = 𝐸|Ψ⟩ (2.15) 

 

Here the wavefunction Ψ describe all the electron (r) and nuclear coordinates 

(R). Through approximation, the total wavefunction can be decoupled into an 

electronic (Φ(𝐫; 𝐑)) and a nuclear wavefunction (𝑋(𝐑)): 
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Ψ(𝐫, 𝐑) = Φ(𝐫; 𝐑)𝑋(𝐑) (2.16) 

Since the size of the electrons are ~2000 times smaller than the size of the 

protons and neutrons we can implement the Born-Oppenheimer (BO) 

approximation. In the BO approximation the nuclei are considered as fixed and 

the kinetic energy of the nuclei can be excluded, simplifying the Hamiltonian as: 

𝐻𝑒𝑙𝑒 = −
1

2
∑  

𝑖

∇𝑖
2 + ∑  

𝑖<𝑗

1

|𝑟𝑖 − 𝑟𝑗|
− ∑  

𝐼,𝑖

𝑍𝐼

|𝑅⃗⃗𝐼 − 𝑟𝑖|
+ ∑  

𝐼<𝑗

𝑍𝐼𝑍𝐽

|𝑅⃗⃗𝐼 − 𝑅⃗⃗𝐽|
. 

(2.17) 

The electronic Hamiltonian (𝐻𝑒𝑙𝑒) is given as the sum of the kinetic energy of 

the electrons, the repulsive potential of between electrons, the attractive 

potential between nuclei and electrons, and the nuclear energy due to the 

repulsion between nuclei.  

A different computational approach is the density functional theory, which uses 

the electron density to describe the system instead of directly solving the 

electronic wavefunction to obtain the orbitals. In their seminal work [45], 

Hohenberg and Kohn suggested that the ground-state properties of a many-

electron system are uniquely determined by its density. However, the exact 

expression of the density functional is not known, instead in practice, an 

approximation of the functional is applied: 

𝐸[𝜌(𝑟)] =  
1

2
 ∫ ∫

𝜌(𝑟1)𝜌(𝑟2)

𝑟12
 𝑑𝑟1𝑑𝑟2  +  𝑇𝑠[𝜌(𝑟)]  − ∑ (∫

𝜌(𝑟)𝑍𝐽

𝑟𝐽
𝑑𝑟)

𝐽

 

+ 𝑉𝑋𝐶[𝜌(𝑟)] 

(2.18) 

The first term corresponds to the Coulombic repulsions in a non-interacting 

electron gas, the second term to the kinetic energy, the third term is the 

Coulombic energy between the orbital and the nuclei, and the fourth term 

accounts for the electronic exchange and correlation interaction energies. The 

first and third terms can be derived analytically, while the exact form of the 
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second term is only known for non-interacting electron gas systems [46]. The 

form of the remaining fourth term is unknown, and numerical approximants 

were developed to complete the equation. These exchange correlation 

functionals vary from relatively simple local density approximations to 

composite hybrid functionals, which can even include ab initio calculated 

components. For example, B3LYP is a commonly applied member of the hybrid 

functionals [47], parametrized by Becke, and includes a combination of Hartree-

Fock exchange and DFT exchange-correlation. The first term corresponds to the 

Coulombic repulsions accounting for the electronic density, the second term to 

the orbital kinetics, the third term is the Coulombic energy between the orbital 

and the nuclei and the fourth term is the exchange-correlation energy 

functional.  

In this thesis, quantum mechanics calculations have been performed to 

calculate the partial charges of small molecules. I refer the reader to see chapter 

(4.4.2 or 5.3.2) to obtain information about the method and level of theory used. 

In chapter (DDL), we applied Quantum Mechanic/Molecular Mechanics 

(QM/MM) calculations to understand the reaction mechanism of the D-Ala-D-

Ala ligases in Mycobacterium Tuberculosis. The principle behind QM/MM relies 

on an idea first presented by Warshel and Levitt in 1976 [48]. The idea behind 

QM/MM is to treat at a high level of theory a small number of atoms, for 

example, the atoms involved in chemical reactions, using quantum mechanic 

approaches, and treat with a lower level of theory, molecular mechanics, the 

surrounding environment. Using QM as a level of theory for the active site, we 

can compute the electronic rearrangement and sample the formation and 

breaks of bonds, which cannot be done by running simple MD simulations. The 

energy extracted from QM/MM can be of two types: additive, where Etot = 

EQM(QM) + EMM(MM) + EQM-MM where EQM-MM is the energy between the two 
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interfaces; or however less common, subtractive, where Etot = EQM(QM) + EMM(MM) 

- EQM-MM. Like MD, in QM/MM, it is possible to apply enhanced techniques such 

as umbrella sampling and the finite temperature string method. From the data 

obtained, we can unbias the data using for example, WHAM and determine a 

minimum free energy path. 

QM/MM have been exhaustively used in the last decades for biological systems, 

especially in enzymatic reactions, where the size of the protein and molecules 

involved in the reaction are often extremely big, making it impossible to be 

simulated using only QM approaches. However, using plain MD simulations, we 

cannot sample the reaction path, which involves breaking and forming bonds. 

Successful results have been achieved using QM/MM simulations. [49]. In a 

work done by me and colleagues we present a review where we show the 

importance of QM/MM calculations to understand enzymatic catalytic reactions 

highlighting the importance of Mg2+ and H+ ions in particular metalloenzymes 

catalysis: 

Berta, D.; Buigues, P.; Badaoui, M.; Rosta, E. (2020) ‘Cations in motion: QM/MM 

studies of the dynamic and electrostatic roles of H+ and Mg2+ ions in enzyme 

reactions’, Current Opinion in Structural Biology, 61, pp. 198–206. doi: 

10.1016/j.sbi.2020.01.002. 
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3.1  Preface  

This chapter details the main project of my doctorate, which involved a 

collaboration with Novartis US. The work aimed to present an alternative 

approach to predicting koff from a protein-ligand complex in a simple and high 

throughput way. This research presents a state of the art method to predict the 

free energy profile of ligand-protein unbinding. My attention was focused on 

choosing the relative collective variable that best describes the unbinding event 

and how to generate an initial reliable unbinding trajectory. Additionally, after 

obtaining reliable unbinding paths, we used the unbinding trajectory data to 

apply supervised machine learning calculations to understand key interactions 

around the transition state. From the machine learning results, we obtain 

additional information on what the important interactions that best describe 

the directionality of a reaction at the transition state point. The work presented 

in this chapter was completely performed by me, with discussion and feedback 

from people within my group and Novartis. This work will soon be submitted 

for peer-review.  
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3.2  Abstract 

Determining residence times of potential drugs, which define the time the 

inhibitor is in complex with its target, is fundamental in the drug discovery 

process. While several methods, e.g., surface plasmon resonance, are available 

experimentally, these are expensive and take a long time to perform. In this 

work, we aim to computationally identify drug residence times. We designed a 

new enhanced sampling technique to accurately predict the free energy profiles 

of the ligand unbinding process, focusing on the free energy barrier for 

unbinding. Our method first identifies unbinding paths determining a set of 

internal coordinates (IC) that form contacts with the ligand during the 

unbinding process. We iteratively identify the interactions between the ligand 

and the protein during a series of biased molecular-dynamics (MD) simulations 

to reveal these key ICs important for the unbinding process. Subsequently, we 

use them for accurate free energy calculations by performing finite temperature 

string simulations to obtain the free energy barrier for unbinding. Finally, we 

apply supervised machine learning calculations designed to identify key 

interactions driving the system through the transition state (TS). 

We tested our method on the example of Cyclin Dependent Kinase 2 (CDK2) in 

complex with three different ligands. We demonstrate that the free energy 

barriers obtained from our calculations result in comparable kinetic unbinding 

rates as observed in available experimental data. Additionally, we identify key 

ligand-protein interactions that are determining structural factors in the TS 

structure and therefore, in the unbinding rates for the unbinding process. Our 

method provides a new tool to determine unbinding rates and point to key 

structural features of the ligands that provide starting points for novel design 

strategies in drug discovery to predict and optimize ligand unbinding kinetics.  
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3.3  Introduction  

Two essential factors affect the interaction between a drug and its target: 

binding affinity and residence time [50]. While the binding affinity describes the 

intermolecular interaction between the ligand and the protein; the residence 

time defines the timescale of the interaction [51], [52]. Even if a drug interacts 

strongly with its target (high binding affinity), a short residence time can 

significantly reduce the efficacy of the drug [53]. The binding affinity arises from 

the thermodynamic relation between the stable bound and unbound states. 

However, the residence time will be determined by the path connecting those 

states, in particular, at the transition state of the unbinding pathway. 

Accordingly, promising hit candidates with high affinity have been discarded 

for the next step of the drug discovery process due to their low residence time 

[54]. Traditionally, drug discovery focused on finding compounds that interact 

with high binding affinity to a specific target. It is recently recognized that 

predicting pharmacokinetics properties is also vital in the drug design process 

[55], [56]. 

A major challenge in drug discovery is to find a fast and reliable method to 

predict the kinetics of ligand-protein interactions [57]. Different experimental 

methods have been used to obtain kinetics of ligand-receptor unbinding, such 

as radioligand binding assays, fluorescence methods, chromatography, 

isothermal titration calorimetry (ITC), surface plasmon resonance (SPR) 

spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy [55]–[58]. 

Radioligand binding assays and fluorescence binding essays require binding 

essays of labelled ligands, where they exploit the physical-chemical 

characteristics of the ligand between their free and complexed forms with the 

target. Several successful essays have been used to predict ligand-protein 
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unbinding, for example, fluorescence resonance energy transfer (FRET)[59] or 

fluorescence correlation spectroscopy (FCS)[60]. These methods can suffer from 

interference (especially fluorescence), lack of accuracy for short residence times, 

and high cost/hazard in the case of radioligands. SPR is the most widely used 

essay to measure kon and koff of ligand-receptor unbinding. The receptors are 

immobilized to a sensor that can distinguish the protein from its ligand-free 

form and bound forms. This method is label-free; however, the attachment of 

the protein to the probe may influence the activity of the protein, due to 

conformational changes. In general, experimental techniques provide a direct 

measurement of the kinetic rate, however they do not provide mechanistic 

interpretation at the atomic level of the unbinding process. To offer a screening 

approach that alleviates these difficulties, various complementary 

computational techniques have been proposed to estimate the kinetics of 

unbinding events [52], [61]. 

Molecular dynamics (MD) is a powerful computational tool to understand at an 

atomistic level the behaviour of biological processes such as protein-ligand 

interactions [62]. Unbiased MD simulations were successfully used in the early 

drug discovery process, using either multiple independent relatively short 

simulations [63] or using specialized computer architecture, such as ANTON, 

where microsecond long simulations are easily accessible [64]. However, due to 

the limited timescales typically accessible via MD simulations, it is often 

challenging to obtain sufficient statistical sampling required to calculate kinetic 

and thermodynamic properties accurately. Drug-protein unbinding processes 

occur on long timescales, typically ranging from millisecond to hours, 

depending on the nature and the strength of the interaction between the two 

molecules. For example, some drugs, such as Telmisartan, Carbamazepine, 

Diazepam, or Meloxicam, have a residence time that reaches 24 hours,[65] 

requiring prohibitively long time scale simulations and highly demanding 
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computer resources, therefore enhanced sampling methods are required [66], 

[67]. 

 To accelerate the simulations and sample rare events, different enhancement 

techniques have been proposed to predict free energy barriers and uncover the 

kinetics of biological events. Below, I provided a general overview of some 

common techniques used to predict kinetics of protein ligand unbinding: 

Milestoning is a method that combine MD, Brownian dynamics and milestoning 

theory for the estimation of kinetic rates [68]. The reaction path is divided into 

predetermined intermediates, and the transition events between these 

intermediate states is defined as milestones. Multiple parallel simulations are 

run to obtain a proper sampling of these milestone events. Metadynamics 

(metaD) is a popular enhanced sampling method [38], [69], [70], where a history 

dependent potential is added to the overall potential energy of the system 

where the bias is applied to a user defined set of CVs. Because of the history 

dependency, the system is forced to escape from the local minima and sample 

the defined reaction coordinate. MetaD can be used with path collective 

variables (PCVs) [71] to enhance the sampling of the free energy surface. The 

advantage of this method is that it combines path-based methods, PCVs, with 

methods based on CVs, metaD. An extra CV that represents the path connecting 

two well defined state, for example bound an unbound, is defined in the space 

of other CVs. PCVs were successfully employed to determine the free energy 

profile of several ligands in complex with CDK2 [72]. In Steered MD (SMD) [73] 

we apply a scaling factor to the entire potential energy surface, reducing the 

hight of the energy barriers and the transition between energy minima are 

facilitated. In SMD there is no need to define the reaction coordinate, because 

the potential energy is applied to the entire system, the protein stability is 

affected, and to overcome this issue, positional restrained are applied to the 

protein. The residence time of Sunitinib and Sorafenib in complex with the 
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human endothelial growth factor receptor two has been calculated using 

SMD[74]. SMD was also used to calculate the unbinding free energy profile for 

TAK-632 and PLX4720 bound to B-RAF [75]. In both these works, the ligands 

could be distinguished qualitatively to assess shorter, or longer residence times, 

however, the predicted free energy barriers for the unbinding were lower than 

the experimental data. This methodology, was successfully tested to predict the 

ligand-protein unbinding of p38 MAP kinase bound to type II inhibitors,[76] 

where depending on the set of CVs chosen, they obtain different values for the 

koff, and the closest koff to the experimental data is still one order of magnitude 

lower. Relative residence time can be calculated by using random accelerated 

MD (tau-RAMD) [77]. In this technique a random force is applied to the system 

to promote the unbinding of the ligand from the protein. In tau-RAMD, there is 

no need to a priori select the CVs, the direction of the force is randomly 

reassigned if the defined time interval falls below a specified threshold distance. 

In a recent work of Kokh et al. [78] 70 compounds were correctly ranked by their 

relative residence time. Transition state-partial path transition interface 

sampling (TS-PPTIS) [79] uses the binding free energy obtained from a variety 

of enhanced technique, for example metaD simulations, by implementing 

interface crossing probabilities using a semi-Markovian approximation. A main 

advantage of this method consists into dividing the full path into windows, each 

of them independently sampled, to reduce the computational time. TS-PPTIS 

has been proven to predict in good agreement the koff of imatinib in complex 

with the proto-oncogene c-Src [80]. A recent combination of enhanced 

technique and machine learning has been proposed by Evans et al. [81] and has 

been used to calculate the absolute free energy profile of 18 ligands in complex 

with the human soluble expoxide hydrolase. 
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Often during a simulation, the system is trapped to a local minimum, defined 

as a low energy state, and to jump to another state requires overcoming a high 

energy barrier. To produce a free-energy profile where all the biasing points are 

well-defined, we need to define an ideal set of CVs that map the full path of the 

reaction coordinate [82], [83]. Usually, these vectors that describe this manifold 

are selected based on a priori chemical/physical intuition, usually selected 

based on the ligand's initial binding pose. The same set of CVs are then kept 

constant and used for the full simulation. Considering only CVs from an initial 

structure is possibly neglecting essential interactions that occur during the 

unbinding process significantly affecting the free energy calculation. Path CV, 

introduced by Branduardi at all. [71] and its recent implementation by Hovan 

[84] are an ideal solution to overcome the problem of choosing a correct set of 

CVs, however the knowledge of the end states is still a requirement.  

This work introduces a novel enhanced sampling method to obtain accurate 

free energy barriers for ligand-protein unbinding. Unlike existing methods, we 

suggest an iterative way of assigning our CVs during our unbinding trajectory 

and using these CVs as the driving force to pull the ligand out from the pocket 

and to perform the sampling for accurate free energy calculations. Through this 

method, we are able to build a reliable path of unbinding taking into 

consideration the flexibility and dynamics of the system; the path is used as a 

starting point for free energy calculations using the finite temperature string 

method [85].  In addition to determining unbinding rates, we also aim to identify 

key molecular descriptors that provide guidance for further design of drugs 

based on improved residence times. We propose a systematic approach to 

identify key low-dimensional sets of internal coordinates using machine 

learning (ML) approaches. Machine learning methods have been widely 

successful in multidimensional data driven problems, which are also applied to 

biomolecular simulations to determine key CVs [86]–[88]. Here, we develop a 
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novel approach making use of our obtained string unbinding pathway and, 

within that, the knowledge of the transition state (TS) ensemble. We generate 

unbiased “downhill” trajectories initiated at our TS, and use these to train a ML 

model which predicts the fate of binding or unbinding. Our results demonstrate 

that our novel ML analysis can identify the key features correlated to this 

selected double-well potential to define the end states and thus can be used 

for key feature selection successfully. 
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Figure 3.1. Graphical representation of CDK2 bound to three different ligands: 

a thiazolylpyrimidine derivative (18K), b oxindole carboxylic acid derivative 

(60K), and c carboxylate oxindole derivative (62K), originated from PDB 

structures 3sw4, 4fku, 4fkw, respectively. Structural details of the ATP pockets 

are shown for the three systems (bottom), with the ligands in the bound (green 

sticks), unbound (red sticks), and transition states (grey sticks). Dashed lines 

depict key interactions. 

To demonstrate this approach's applicability and accuracy, we obtained free 

energy barriers for three ligands with PDB IDs of 18K, 60K, and 62K bound to 

CDK2 (Figure 3.1). CDK2 is an ideal benchmark system with its relatively small 
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size and well-documented kinetic data for the binding of a range of different 

molecules [89]. 

This method's novelty is that there is no need to a priori select CVs; these 

naturally arise from the unbinding trajectories and later get incorporated into 

the free energy calculations for better sampling. Additionally, we also perform 

a post-processing step using machine learning to identify key features that 

determine the outcome of trajectories near the TS and therefore are the key 

descriptors of the reaction coordinate describing the saddle point. 

3.4   Method 

3.4.1  Simulation Setup 

The systems used to test our method comes from the following PDB: 3SW4, 

4FKU, and 4FKW. The systems were modelled using AMBER ff14SB force field 

[90], and the ligands using the general Amber force field (GAFF) [18]. The 

ligand's atomic partial charges were obtained using density functional theory 

(DFT) ωB97X-D/def2TZVPP as implemented in Gaussian 09 Revision E [91]. The 

full system was neutralized with Na+ and Cl- and solvated with 12,000 -14,000 

TIP3P water molecules. All the simulations were performed via the standard MD 

procedure using NAMD 2.12 [92]. 

The three systems were minimized using a standard protocol via the steepest 

descent algorithm for a total of 150,000 steps and equilibrated for ten ns with 

restrained heavy atoms in constant number pressure and temperature (NPT). 

All the production runs are then performed in constant number volume and 
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temperature (NVT) at 1 atm, 298 K using a time step of 2 fs, the non-bonded 

cut-off of 9 Å. 

An initial unbiased simulation of 20 ns was performed for each ligand. This initial 

simulation allows the system to equilibrate and gives us an initial trajectory to 

calculate the first CV. 

3.4.2  Unbinding Trajectory 

 

Figure 3.2. Flowchart illustrating the unbinding protocol. 

Our unbinding method is summarized algorithmically in Figure 3.2. An 

explorational unbiased MD simulation of at least 20 ns was performed to 

identify the initial interactions between the protein and the ligand in the bound 

state. These initial simulations allow us to define the first set of CVs describing 

all distances between heavy atoms of the ligand and heavy atoms of the protein 

less than din = 3 Å, as our interaction cut-off. The identified interactions will 
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generate a single one-dimensional CV as the sum of 𝑀𝑛 number of distances 

𝑑𝑖
𝑛 and will be used for iteratively biasing the simulations to observe an 

unbinding trajectory (Figure 3.3).  

At every iteration, we define our bias as a harmonic restraint: 𝑉𝑛 =

 
1

2
 𝑘 (𝐷𝑛 −  ∑ 𝑑𝑖

𝑛𝑀𝑛

𝑖=1  )
2
, where 𝐷𝑛 =  𝐷0

𝑛 + 𝑀𝑛 . Here, we aim to reach the target 

value 𝐷𝑛 for our 1D CV starting from the initial value at the beginning of the 

iteration n at 𝐷0 
𝑛. The targeted 𝐷𝑛  value will be reached progressively within the 

next 10 ns long MD simulation for every iteration. The force constant is set to 

20 kcal/mol/Å2.  

 

Figure 3.3. Graphical example between one strong interaction and one weak 

interaction. The yellow arrows represent the hypothetical spring force, in a the 

spring forces are selected for each distance of the CV, wherein b the spring 

forces is obtained as a sum of the individual interactions. 

At the end of each iteration, the biased trajectory is analysed, and novel 

interactions are identified within din of the ligand that are present for more than 

half of the total simulation time (5 ns). These novel interactions are then added 

to the list of interactions that define the main CV for the next iteration. 

Additionally, we also re-evaluate existing interactions. If a distance during the 

last 5 ns of the trajectory exceeds dout = 6 Å or its variance exceeds dvar = 1 Å, 

then the distance is removed from the main CV in the next iteration. This 

exclusion factor will ensure that once a protein-ligand atom pair distance has 
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exceeded dout, and therefore there is no significant interaction between these 

atoms, we no longer bias this interaction. Similarly, such loosely interacting 

atom pairs have higher distance fluctuations, and thus this weak interaction 

does not need to be included in the bias. To reduce the number of interactions 

between the ligand and the protein and to remove redundancies, we combine 

atoms that are part of an equivalency group where a rotational degree of 

freedom can interconvert the atoms from one to the other (Figure 3.4). Here, 

we considered the center of the mass of that functional group and not the 

individual atoms. By using the center of the masses, we reduced the fluctuations 

caused by such bonds' rotations. 

 

Figure 3.4. Chemical structures for a the amino acids and b the ligands residues 

where atoms represented in red are clustered. 

The iterative process will end when no more distances are present in the main 

CV from the last iteration n, which can be associated with the fact that there are 



Chapter 3 – Kinetics of protein ligand-unbinding: How to find the right 

Collective Variable 38 

 

no more stable interactions between the ligand and the protein, suggesting that 

the ligand is outside the pocket.  

 

Figure 3.5. a Unbinding trajectory for the example of 60K represented as several 

snapshots along the trajectory. The relative distances used for the bias, b shows 

the same distances during the trajectory, the lower dashed line is the cut-off 

below which interaction is included in the main CV, the upper cut-off is the 

value above which the distance is excluded from the CV. c shows the same 

distances when they are included in the CV. 

Figure 3.5 shows a representative result of the process for selected 

representative interactions, which illustrates that some distances (blue and 

orange) are identified from the initial unbinding trajectory, later in the 

unbinding process at 60 ns a new interaction is found (green line) and at 90, 

and 160 ns more distances are included in the main CV (red and purple 

respectively). 
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3.4.3  Free Energy Calculation 

Once the ligand is outside the pocket, to determine the free energy path along 

with our set of CVs, we used a combination of finite-temperature string method 

and umbrella sampling method using as initial path and set of distances the 

ones obtained from the unbinding trajectory [40], [85], [93]. 

We collect all the distances found in the unbinding trajectory, and we extract 

the value of each interatomic distance along the unbinding path to construct 

the refined unbinding pathway, building a string of windows (100) of the 

coordinate space. For each window, and each distance we set the position to 

restrain equidistantly along the initial fitted string, using a force constant of 20 

kcal/mol/Å2 for a total time of 5 ns per window. From the obtained set of 

trajectories, a high-order (8) polynomial fitting is applied using the average 

collective coordinate to built the subsequent set of refined positions of the CVs.  

We unbiased the simulations using the binless implementation [85] of the 

weighted histogram analysis method (WHAM) [42]. Temperature is set to 298K 

to be consistent with the experiments and simulations. The procedure is carried 

out until a convergence value is obtained by checking if all the CVs' changes 

along the different iterations are below a given threshold [85]. 

By adding multiple overlapping biasing potentials along the dissociation 

pathways which are parametrized as the multiple ICs, the string simulations can 

sufficiently sample all points of the ICs. 
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3.4.4  Transition State Analysis 

To perform our novel Machine Learning Transition State Analysis (MLTSA), from 

the PMF obtained using WHAM, we then choose the closest five windows to 

the TS point of the PMF (Figure 3.6) as a starting coordinate for producing 

multiple unbiased MD simulations for each of the three ligands. From each of 

these five starting coordinates, we then run 50 independent unbiased MD 

simulations 5 ns long each. We then classify and label them by considering a 

combination of key distances, which simulations finish with the ligand in either 

a bound position (IN) or an unbound position (OUT). 

 

Figure 3.6. Representation of the TS along the PMF of 60K. From the TS 

coordinate as a starting point, a set of simulations leading to both an IN position 

(blue) and an OUT position (red) are represented as lines. The green dots 

represent the free energy profile obtained from the WHAM calculation using 

the string window as string coordinate, and as a green line, the fitting obtained 
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from the green dots. The area colored in yellow represents the simulation time 

used for analysis during our machine learning approach. 

Once we found the window that provides the closest to a 1:1 ratio of IN and 

OUT events for these trajectories; we then run 200 additional unbiased MD 

simulations 5 ns long each, where we track all the interatomic distances initially 

(i.e., at the TS) within 5 Å from the ligand. 

The next step was to train a Neural Network to analyze the downhill trajectories' 

dataset and predict their possible outcome from early on data, i.e. at 0.3 ns. The 

training was performed using Scikit-learn’s implementation [94]. We trained a 

simple Multi-layer Perceptron (MLP) Classifier, made of three main layers (input, 

hidden, and output), with a hidden layer of 100 neurons, optimized using the 

Adam solver [95] and using the ReLu [96] function as an activation function, 

with a limit of 200 maximum iterations over data. Thus, using the frames coming 

from the multiple short, unbiased MD simulation trajectories starting from our 

TS, we provided a dataset of distances extracted along the trajectory, as well as 

the outcome of the IN or OUT events as the desired answer so that it would 

become a classification problem. We performed the training with trajectories of 

several different lengths (Figure 3.9), to observe the predicted accuracy at 

different time ranges along the simulations.  

 Once we obtained a trained model, the next step is to understand which 

features from this set of distances are important for the model to predict 

whether the simulation is going to bound (IN) or unbound (OUT) position. To 

do so, we then apply our feature reduction approach (FR), in which progressively 

every single distance is excluded from the analysis, and we check the drop in 

accuracy compared to the full set of distances. Differently from the standard 

approach, where the real value of each feature is replaced with a zero, here we 

replace each real value with the global mean of the selected features along with 

the simulations.  
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3.5  Results and Discussion 

For each system, we perform three independent replicas starting from the 

crystal structure position. We perform the initial unbiased MD simulation for 

each replica, followed by our unbinding trajectory procedure and calculating 

the free energy profile from the finite temperature string method upon reaching 

convergence. The energy barrier extracted from the PMF of our simulations 

agrees with the experimental results (Table 3.1). 

Table 3.1. Kinetics and thermodynamics values of the three systems from 

Dunbar et al. 2013 [89] and calculated results obtained from our computational 

simulations. 

 

For ligand 18K, we obtain the same energy barrier of the experimental data; 

however, both ligands 60K and 62K show a deviation of ~ 4 kcal/mol (Figure 

3.7). The last could be due to the limitations of the current force field, the 

convergence of the sampling, and the sensitivity of the experimental data. We 

believe that our energy barriers results to be close to the experimental values, 

but also relatively high as we introduce in our CV distances that are not only 

taken from the initial coordinate but instead by introducing 

distances/interactions that are found along the unbinding path (Figure 3.6). 
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Figure 3.7. PMF of the unbinding path for 3sw4 (a) 4fkw (b), and 4fku (c). The 

free energy profile is obtained from a representative replica, the standard error, 

shown as shaded area are obtained by dividing the full dataset into four 

subgroups. 

While different unbinding trajectories might lead to slightly different variations 

due to multiple local minima along the paths, we typically expect that the main 

transition state ensembles would be captured by all of these paths similarly after 

the convergence to the minimum free energy pathway. This is the main 

underlying assumption behind the finite temperature string method, which was 

proven to work very well even for complex systems [97], [98].. For all the three 

models, one important interaction is between the backbone carboxyl of His84 

and a central N of the ligand (Figure 3.8). This H-bond has been reported as a 

key interaction in many ligands in complex with CDK2 [99]. These distances were 

found and already included from the initial unbinding simulation in each of the 

three systems. However, during the unbinding trajectory, once this important 

H-bond (His84(O)-N) is broken, new interactions are formed, for a varying time 

scale. For 3sw4, in all the three replicas, H-bonds are formed with the external 

amino group of the ligand (N5) and the backbone oxygen of Glu81 and later on 

with the backbone oxygen of His84. 60K and 62K molecules present a 

sulphamide terminal group, which, during the trajectory, interacts with Val163 

and His84, for 4fku and 4fkw respectively.  
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Figure 3.8. CV obtained from the unbinding of 18K (a), 60K (b), and 62K (c); 

representative distances represented in dashed lines (yellow: interaction from 

the initial coordinate, cyan: interaction found during the unbinding trajectory), 

colored in red represent the coordinate of the ligand when is outside the 

pocket.  

These distances appear in each of the three replicas for each system. 

From the MLTSA results, we obtain a list of distances for each system that are 

major determinants for predicting the bound or unbound states (Figure 3.11). 

By analyzing trajectory data up to 0.3 ns of each downhill simulation, the model 

can predict with high accuracy the IN or OUT directionality of the trajectories, 

more specifically: 80.11% for 18K, 90.44% for 60K and 93.83% for 62K 

respectively (Figure 3.9).  

The ML training's effectiveness is confirmed by comparing the accuracy of 

predicting the trajectory outcomes using our original final free energy reaction 

coordinate. When analyzing the initial parts of the TS-initiated trajectories (0.3 

ns from the total of 5 ns), we find that ML is able to predict much more 

accurately, about 80% versus ~60%, the final IN or OUT states as compared to 

using the string reaction coordinate value for the prediction (Figure 3.10). 
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Figure 3.9. Accuracy prediction at a different time step of the simulations using 

the MLTSA for 18K in red, 60K in blue, and 62K in green. 

Using the trained model, we then perform a feature reduction analysis to 

identify which CV features affect the most the overall prediction ability of the 

ML model. For all three molecules, we can select the most important structural 

features (Figure 3.11b,c,e), which leads to the significant reduction of the 

prediction accuracy, when this feature is eliminated (constant values fed to the 

ML). In contrast, other features do not affect the overall accuracy of the 

predictions. 
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Figure 3.10. Manual check at different time points (0.15, 0.3 and 0.5 ns) for the 

three ligands compared with the results obtained from the ML. 

We also compare the feature reduction approach's validity with a different 

machine learning algorithm named Gradient Boosting (GB). While the GB 

algorithm is inferior to the multilayer perceptron ML model, the results 

obtained show some similarity with our main MLTSA approach (see Figure 

3.12). This suggests that alternative ML models may also be used successfully 

and further validates our results. 
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Figure 3.11. Identification of the essential distances from the feature reduction 

analysis at 0.3 ns using the last 50% (yellow), 25%(red), and 10%(blue) of data 

points for a: 18K, c: 60K, e: 62K. The different colours of the background groups 

the different features according to the atom of the ligand involved. Features 

presenting high accuracy drop are labelled and shown graphically in the right 

side of each plot: b:18K, d:60K, and f:62K. 

Looking at the structures of the ligands, it appears that important interactions 

for the TS are between the protein and the extremities of the ligands. 

Interestingly, the main features used to define the IN/OUT outcome of the 
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ligand are not important according to the training. For ligand 60K and 62K, due 

to their similarities, important interactions are between the sulphidic group of 

the ligands and Lys89 from one extremity, and with the Asp145 for the other 

extremity, for ligand 60K is with the carboxylic group, and for ligand 62K is with 

the ester group (Figure 3.11d,f). Ligand 18K, similarly to the other two ligands, 

present important interactions between the protein and the external atoms of 

the ligand, however, because structurally different from the other ligands, the 

interaction is between different residues (Figure 3.11c). 

 

Figure 3.12. Comparison of the FR and GB approach for ligand 60K.  

3.6   Conclusion 

Optimizing ligand unbinding kinetics is a very challenging design problem for 

small molecule drug discovery that can lead to the development of drugs with 

superior efficacy. To tackle this, we have developed a new method, which allows 
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us to calculate the free energy barrier for the ligand unbinding step, therefore 

providing quantitative information about the residence time of a specific ligand. 

Our method involves first an exploration step, where a ligand unbinding path is 

determined together with key initial variables that describe this path. 

Subsequently, we perform accurate free energy calculations using the complete 

set of identified interactions as CVs along the unbinding path via the finite 

temperature string method. This provides us with the free energy barriers, and 

an ensemble of structures at the transition state of the ligand unbinding 

process. The novelty of the method lies in the combination of automated 

iterative addition and removal of the collective variables determining an 

unbinding trajectory, which allows us to discover novel interactions not 

available a priori, just based on the interactions from the ligand-bound 

structure. The combination of the unbinding path to find the CVs and the 

umbrella sampling-based string method with high dimensional reaction 

coordinates provides an efficient way to obtain quantitative kinetics of ligand 

unbinding. 

We tested this method using a well-studied cancer drug target, CDK2, using 

three drug molecules with known kinetic profiles. We obtained high energy 

barriers corresponding to experimental using our method, which demonstrates 

the fundamental importance of determining a well-selected, high-dimensional 

set of CVs obtain correct free energy profiles and kinetics results.  

To aid the kinetics-based design of novel compounds, we also developed a 

novel method, MLTSA, that allows us to identify the most important features 

determining the transition state paths. Here, we generated multiple trajectories 

initiated at the TS of the unbinding process, which either terminated in the 

bound state or in the unbound state. We then trained a multilayer perceptron 

ML algorithm to predict the outcome of the trajectories by using a set of CVs 

and the initial segment of the trajectories only. By doing so, we demonstrated 
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that the ML was able to predict the trajectory outcomes with much more 

accuracy than it was available to us, using the original set of CVs used for the 

free energy calculations. A feature importance analysis was further developed 

to identify which key CVs and corresponding structural features determined the 

faith of the trajectories, and therefore are the most important descriptors of the 

TS.  

Qualitatively, we identified novel interactions between the protein and specific 

parts of the ligands that were of major importance for the trajectories to pass 

the TS. These corresponded to protein interactions at the TS-bound poses with 

functional groups of the distal ends of the ligands. Importantly, to perform this 

analysis, we require the knowledge of the TS structures as well as the MLTSA 

analysis of a set of trajectories from these initial points. Our algorithms enable 

us to uncover novel design objectives for a kinetics-based drug discovery 

process. 
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4.1  Preface  

The work presented in this chapter started from the collaboration between our 

group and the experimental work from the group of Cherepanov lab at the 

Francis Crick Institute. The project aimed to understand the interaction between 

known inhibitors used for the treatment of HIV with the integrase protein at the 

atomic level. The group of Cherepanov successfully provided cryo-electron 

microscopy structures of the integrase proteins, in its wild type form and 

Q148H/G140S mutant form in complex with Bictegravir and an analogue 

structure of Doluctegravir (analog 1). From the structure obtained, my 

contribution was to understand, through computational tools, the difference in 

the interaction between the two drugs, as despite both Dolutegravir analogue’s 

and Bictegravir belongs to the second generation of inhibitors, the two 

molecules shows different inhibition activity. In this chapter, I set up, perform 

and analyse the results from the unbiased molecular dynamic simulations and 

analyse the data from the QM calculations. 

This work was successfully published in Science: 

Nicola J. Cook, Wen Li, Dénes Berta, Magd Badaoui, Allison Ballandras-Colas, 

Andrea Nans, Abhay Kotecha, Edina Rosta, Alan N. Engelman, and Peter 

Cherepanov. "Structural basis of second-generation HIV integrase inhibitor 

action and viral resistance." Science 367, no. 6479 (2020): 806-810. 
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4.2  Abstract 

Despite worldwide prescription, the mechanistic basis for superiority of second-

generation HIV integrase (IN) strand transfer inhibitors (INSTIs) is poorly 

understood. We used single-particle cryo-electron microscopy to visualize the 

mode of action of the advanced INSTIs Dolutegravir and Bictegravir at near-

atomic resolution. Q148H/G140S amino acid substitutions in IN that pervade 

clinical INSTI failure perturb optimal magnesium ion coordination in the enzyme 

active site. The expanded chemical scaffolds of second-generation compounds 

mediate interactions with the protein backbone, which are critical for 

antagonizing Q148H/G140S mutant virus. Our results reveal that binding to 

magnesium ions underpins a fundamental weakness of the INSTI 

pharmacophore that is exploited by the virus to engender resistance and 

provide a structural framework for the development of this important class of 

anti-HIV/AIDS therapeutics. 
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4.3  Introduction 

Despite the immediate clinical impact, the first-in-class INSTI Raltegravir (RAL) 

suffered setbacks from the emergence of viral resistance [100]. Although 

second-generation INSTIs Dolutegravir (DTG) and Bictegravir (BIC) display 

improved activity against RAL-resistant strains [101], [102], the advanced 

compounds are not immune to resistance [102]–[106]. In particular, 

Q148H/G140S changes in HIV-1 IN are associated with complete or partial loss 

of efficacy across the entire drug class. The mode of INSTI binding to the IN 

active site was first visualized in the context of the prototype foamy virus (PFV) 

intasome [107]. However, the limited ~15% amino acid sequence identity 

between PFV and HIV-1 INs greatly restricts the utility of PFV for studies of INSTI 

resistance and precludes its use as a template for structure-based lead 

optimization. Conversely, unfavourable biochemical properties of the HIV-1 

intasome have impeded structural refinements to atomic resolution [108]. 

In order to establish a robust experimental system suitable for informing INSTI 

development, our collaborators evaluated IN proteins from primate lentiviruses 

that are highly related to circulating strains of HIV-1. The simian 

immunodeficiency virus from red-capped mangabeys (SIVrcm) is a direct 

ancestor of chimpanzee SIV [109], [110]. Because the HIV-1 pol gene is originally 

derived from SIVrcm, the viruses share as much as 75% IN amino acid sequence 

identity. SIVrcm IN displayed robust strand transfer activity in vitro, which was 

stimulated by the lentiviral IN host factor LEDGF/p75 [111], [112]. Reaction 

conditions were conducive for the formation of stable nucleoprotein 

complexes, which were competent for strand transfer activity and sensitive to 

INSTI inhibition. Examining the material by negative stain electron microscopy 
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(EM) revealed a heterogeneous population with the prominent presence of long 

linear polymers (hereafter referred to as stacks, Figure 4.1A).  

 

Figure 4.1. Reconstruction of the SIVrcm intasome core. (A) Raw image (left) and 

2D class averages (right) of negatively stained SIVrcm intasome particles; 

apparent numbers of IN subunits are indicated for non-stacked classes. The 

envelope of the hexadecameric maedi-visna virus intasome (red circle; central 

and flanking IN tetramers in blue/green and yellow, respectively) is shown for 

comparison; scale bars are 0.2 nm. (B) Atomistic reconstruction of the SIVrcm 

intasome stack shown as space fill (left) and cartoons (right); separate repeat 

units are shown in alternating red and green colours. (C) Detailed view of a 

single intasomal repeat representing a pair of viral DNA ends (vDNA, grey 

cartoons) synapsed between a pair of IN tetramers (composed of yellow, 

orange, pink, and either green or cyan IN protomers; the active sites of the 

green and cyan molecules (red dots) catalyze DNA recombination). The repeat 

unit is completed by pairs of C-terminal (orange) and N-terminal (dark 
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magenta) domains donated by IN chains belonging to neighbouring repeats. 

These CTDs are critical to form the conserved intasome core (CIC), which is 

shown in space fill mode in the middle panel. CCD, catalytic core domain. 

Reference-free classification revealed 2D averages that were strikingly similar to 

those observed in maedi-visna virus (MVV) intasome preparations (Figure 4.2A) 

[113]. However, while the latter behaved as a near-monodispersed population 

with a predominance of hexadecamers (tetramer-of-tetramers) of IN, the 

flanking IN tetramers of SIVrcm intasomes were notably disordered, often 

nucleating stack formation. Although HIV-1 IN assembly was much less 

efficient, it yielded particles visually indistinguishable from SIVrcm intasomes. 

These observations are consistent with polydispersity previously reported in 

HIV-1 intasomes assembled with a hyperactive IN mutant [108]. 2D class 

averages apparently corresponding to the dodecameric assembly from that 

study were readily identified in our wild type HIV-1 and SIVrcm intasome 

images (Figure 4.2A). 

Our collaborators recorded micrograph movies of unstained SIVrcm intasome 

stacks in vitreous ice using a direct electron detector and refined the cryo-EM 

structure of an averaged intasome repeat unit. To prevent DNA binding to the 

target binding groove, which would occlude INSTI occupancy [114], the 

intasomes were prepared using A119D IN that precludes target DNA capture 

without affecting IN active site function [115]–[117]. The overall resolution of 

the reconstruction throughout the conserved intasome core (CIC) was 3.3 Å, 

while the local resolution of the active site region approached 2.8. In agreement 

with the resolution metrics, the cryo-EM density map was sufficiently detailed 

to build and refine an atomic model. The resulting model encompassed two IN 

tetramers with associated viral DNA ends, as well as two pairs of C- and N-

terminal domains (CTDs and NTDs) donated by flanking stack units (Figure 4.1 

B and C). Exchange of NTDs and CTDs between neighbouring intasomes forms 

the structural basis for stack formation. 
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Using available nucleotide sequence data [109], our collaborators engineered 

recombinant SIVrcm and evaluated its sensitivity to INSTIs. First- (RAL) and 

second- (DTG, BIC) generation INSTIs inhibited HIV-1 and SIVrcm at similar 50% 

effective concentrations (EC50) (Figure 4.2A). Q148H/G140S changes in IN 

rendered both HIV-1 and SIVrcm >2,000-fold resistant to RAL, while EC50 

values of the second-generation INSTIs BIC and DTG increased ~5 to 8-fold 

against HIV-1 and 40 to 73-fold against SIVrcm. Importantly, the majority of 

residues that when altered confer INSTI resistance are conserved between HIV-

1 and SIVrcm. An exception is Thr138: in HIV-1, E138T potentiates resistance of 

Q148H-containing viruses [19,20]. Concordantly, reverting Thr138 to Glu 

decreased DTG and BIC resistance of Q148H/G140S SIVrcm to the levels 

observed with HIV-1 Q148H/G140S. Moreover, T97A/L74M, which increase 

resistance of Q148H/G140S HIV-1 to second-generation INSTIs [106], exerted 

the same effect on SIVrcm. 
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Figure 4.2. Binding modes of second-generation INSTIs in the IN active site. (A) 

Chemical structures of select first- (RAL) and second-generation (DTG, BIC) 

INSTIs (left; halo-benzyl groups in blue and metal-chelating oxygen atoms in 

red) and viral sensitivities (right). Results are averages and standard deviations 

of minimally n = 2 experiments, with each experiment conducted in triplicate; 

EC50 values are noted. (B) The active site of the SIVrcm intasome in complex 

with BIC; protein, DNA, and drug are shown as sticks. Blue spheres are Mg2+ 

ions, water molecules are shown as small red spheres. (C) Superposition of BIC 

(magenta) and DTG (yellow) bound structures with protein and DNA are shown 

in space-fill mode. Yellow lines accentuate proximity to IN β4-α2 connector. (D) 

Q148H/G140S active site bound to BIC. δ+ indicates increased electropositivity 

of the His148 Nε2 proton. (E) The extended hydrogen bond network that 

couples Thr138 to His148 in the Q148H/G140S SIVrcm intasome. Black arrows 
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indicate hydrogen bond donation; the corresponding interatomic distances are 

given in Ångstroms. (F) Long-range interactions of Ile74 and Thr97 with the 

chelating metal cluster via Phe121. Key amino acid residues are shown as sticks 

and semi-transparent van der Waals surfaces. Contacts between side-chain 

atoms are indicated by double-headed dotted arrows with distances given in 

Ångstroms.  

Encouraged by these results, our collaborators acquired cryo-EM data on 

SIVrcm intasomes vitrified in the presence of INSTIs and Mg2+ ions. DTG- and 

BIC-bound structures were reconstructed to resolutions of 3.0 and 2.6 Å across 

the CIC, with local resolutions within active site regions of 2.8 and 2.4 Å. The 

inhibitors were defined remarkably well in density maps, allowing their 

refinements with bound Mg2+ ions and associated water molecules. The 

invariant IN active site carboxylates Asp64, Asp116, and Glu152 coordinate a 

pair of Mg2+ ions, which in turn interact with the metal chelating cores of the 

INSTIs (Figure 4.2B and C). As previously observed in PFV intasome crystals 

[107], the drugs displace the 3′ viral DNA nucleotide, which stacks against the 

central body of the INSTI. In agreement with low-level amino acid sequence 

identity, there are considerable differences in the environment of the small 

molecules in the SIVrcm and PFV structures. 
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Figure 4.3. Effects of Q148H/G140S substitutions on DTG and analog 1 activities. 

(A) Structure of analog 1 (top; colours as in Figure 4.2A) and a time course of 

3H-DTG and analog 1 dissociation from wild type and Q148H/G140S HIV-1 

intasomes (bottom). Results from three independent experiments are plotted; 

each data point is an average of two measurements done in parallel; trendlines 

are for illustration purpose. Apparent INSTI dissociative half-times from the 

mutant intasome are indicated. (B) Activities of DTG and analog 1 against wild 

type (top) and Q148H/G140S (bottom) HIV-1. Results are averages and 

standard deviations of two independent experiments, with each experiment 

conducted in triplicate. 

The map of the BIC complex revealed an interaction between the side-chain 

amide of Gln148 and the carboxylates of metal-chelating residues Glu152 and 

Asp116 via a water molecule (W5, Figure 4.2B). Molecular dynamics simulations 

confirmed the stability of this hydrogen bonding network (Figure 4.4). During 

the MD simulations, in the wt integrase the water W5 coordinating Glu152 and 

Asp116 is extremely stable, remaining the same molecule (represented with the 

same dot colour in Figure 4.4 A), while in the Q148H/G140S mutations the water 

molecule is continuously replaced by different water molecules ( the different 

dot colours correspond to exchanges of the water molecule with bulk solvent 

in Figure 4.4 B). DTG and BIC intimately contact the backbone atoms of Asn117 



Chapter 4 - Structural basis of second-generation HIV integrase inhibitor action 

and viral resistance 61 

 

and Gly118 from the IN β4-α2 connector, making respectively 8 and 12 contacts 

with interatomic distances ≤5 Å. Moreover, BIC makes three contacts with 

interatomic distances of 3.9-4.0 Å within this active site region. We obtained a 

truncated INSTI derivative lacking the heterocycle involved in these interactions 

to test their importance to drug potency (analog 1, Figure 4.3A). This 

modification was not expected to impact the metal chelating properties of the 

compound or its ability to stack with DNA bases, and indeed analog 1 and DTG 

similarly inhibited HIV-1 infection. However, in contrast to DTG, analog 1 was 

~80-fold less effective against HIV-1 Q148H/G140S (Figure 4.3B). In agreement 

with published work [120], the amino acid substitutions increased the 

dissociative rate of DTG from HIV-1 intasomes, while their impact on the 

truncated derivative was much greater (Figure 4.3A). Collectively, these data 

implicate contacts with the β4-α2 connector as a crucial feature of the second-

generation INSTIs. 
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Figure 4.4. The behaviour of water molecules shared by Gln148 or His148 and 

active site carboxylates. (A) The structure of WT SIVrcm intasome bound to BIC 

was stripped of water molecules not directly coordinated to metal ions, 

embedded in the bulk solvent, and subjected to 100 ns of molecular dynamics. 

The bulk solvent-derived water molecule closest to Gln148 Ne2 and the 

carboxylates of Glu152 and Asp116 was identified in each frame of the 

simulation. The dot plots report the corresponding distances every 0.1 ns of the 

molecular dynamics. The position corresponding to that occupied by W5 in the 

structure becomes occupied by a stably bound water molecule during the initial 

5 ns of the simulation. Alterations of dot colours correspond to exchanges of 

the water molecule with bulk solvent. (B) A similar analysis with the 

Q148H/G140S SIVrcm BIC structure. Here, a water molecule closest to His148 

Ne2 and the carboxylates of Glu152 and Asp116 was identified in each frame 

of the simulation. Note frequent exchanges with bulk solvent; ~4 Å is 

considered to be the upper limit for hydrogen bonding. 

To visualize the impact of the Q148H/G140S substitutions on drug binding, we 

imaged mutant SIVrcm intasomes in complex with BIC to a local resolution of 

2.8. Ser140 and His148 side chains directly interact, and the latter positioned 

within 3.3 Å of the metal-chelating Glu152 carboxylate. In the refined model, 

steric clashes between the side chains are avoided by a 0.5-Å shift at the His148 
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Cα atom. Importantly, local crowding due to insertion of the mutant His148 side 

chain expelled water molecule W5 (Figure 4.4B), thus disturbing the secondary 

coordination shell of the Mg2+ ions. We also note that the amino acid changes 

caused a ~0.5-Å shift in the position of the bound drug; while arguably minor 

given the resolution of the cryo-EM map, the observed displacement agrees 

precisely with predictions by computational chemistry, illustrating the effect of 

the substitutions on drug binding. The Nε2 atom of His148, which intimately 

contacted the carboxylate of Glu152 (3.3 Å), is involved in bidentate 

coordination with one of the Mg2+ atoms. Importantly, the acidity of His148 

Nε2 is increased due to hydrogen bonding of Nδ1 with Ser140 (Figure 4.2D). 

The Ser140-His148-Glu152 coupling is strikingly reminiscent of the non-

catalytic Ser-His-Glu triad proposed as a stability determinant in α-amylases, 

representing a reversal of the charge relay system in hydrolase active sites [121], 

[122]. However, hydrogen bonding would require reorientation of IN Glu152 

and His148 side chains, which would be incompatible with Mg2+ ion 

coordination and drug binding, suggesting an empirical interpretation of the 

INSTI resistance mechanism. 
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Figure 4.5. Dynamics of BIC and analogue-1 in the intasome active site. WT and 

Q148H/G140S SIVrcm intasomes bound to BIC or analogue 1 were subjected to 

MD simulation. The resulting frames (12,500 structures derived from a total of 

250 ns simulation per condition) were aligned by Ca atoms of intasome active 

site residues. (A) A subset of 10 WT intasome-BIC complex frames separated by 

10 ns of simulation. Protein and DNA are shown as cartoons and BIC as sticks. 

DNA is coloured grey and protein is coloured according to r.m.s. deviation from 

the initial position (blue, small displacement; red large displacement); the IN 

CTD and visible secondary structure elements of the CCD are indicated. (B) BIC 

and analogue 1 with the common carbon atoms closest to the b4-a2 connector 

when bound to the intasome active site indicated with red circles; arrowheads 

show direction of displacement chosen for the analysis. (C) Probability density 

for a given displacement of the chosen BIC (blue) or analogue-1 (orange) 

carbon atom from the initial plane defined by bolded atoms in panel B in 
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complex with WT (top) or Q148H/G140S (bottom) intasome. The full width at 

half maximum (FWHM) is listed for each distribution. Note a wider distribution 

of the atomic displacements in the case of analogue 1. 

Our simulations show that analog 1 is considerably more dynamic in the active 

site compared to the full-sized molecule, the mobility of which is restricted 

through interactions with the β4-α2 connector (Figure 4.5 and Figure 4.6 B,D). 

By comparing the movement of a topologically identical atom in our multiple 

unbiased MD simulations we can see how the movement of that terminal 

segment of the ligand, presents a higher fluctuation in the case of analog 1 

(Figure 4.6 B, C in the case of the wt and Q148H/G140S respectively), in contrast 

with BIC (Figure 4.6 A, D in the case of the wt and Q148H/G140S respectively) 

that shows a lower degree of freedom. The additional degree of freedom is 

expected to allow more extensive re-orientation of the truncated inhibitor, 

which may permit His148 to withdraw more electron density from the Mg2+-

ligand cluster.  

 

Figure 4.6. Spatial distribution of two topologically identical carbon atoms in 

ligands BIC (a) and analog 1 (b) in complex with wt integrase, and with 
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G140S/Q148H mutant integrase (respectively c: BIC and d: analog 1), the 

colouring of the surface represents the distribution of the C atom during the 

simulations. 

Our natural bond orbital analysis illustrates the changes of atomic charge 

distribution within the cluster in response to polarization by protonated His148 

Nε2 and subtle conformational adaptations (Figure 4.7). It is easy to extend 

these observations to the other substitutions at position 148, Lys and Arg, both 

of which introduce electropositive functionalities to yield high-level INSTI 

resistance [103]. 

Further work will be required to unravel long-range interactions involved in 

boosting INSTI resistance by secondary changes such as E138T and L74M/T97A 

[118], [119]. As a start, we analysed respective side chains in our SIVrcm 

Q148H/G140S intasome structure. Thr138 is ideally positioned to hydrogen 

bond with Nδ1 of conserved residue His114, prompting it to donate its Nε2 

proton to Ser140 (Figure 4.2E). This extended network, which may form a proton 

wire, is expected to reinforce Ser140 as a hydrogen bond donor for its 

interaction with His148 Nδ1, explaining why the E138T substitution can enhance 

the resistance of Q148H/G140S HIV-1[19,20]. SIVrcm IN residues Ile74 (the 

position occupied by Leu or Ile in HIV-1 strains) and Thr97 are in close proximity 

to the side chain of conserved Phe121, which is involved in van der Waals 

interactions with the metal-chelating carboxylate of Asp116 (Figure 4.2F). 

Readjustment of the Phe121 side chain in response to changes in its local 

packing environment serves as a likely conduit to perturb the structural integrity 

of the metal-chelating cluster. 
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Figure 4.7. Active site polarizability changes due to Q148H/G140S substitutions 

for BIC (top) and analogue 1 (bottom). Natural bond orbital analysis results are 

shown for the active site Mg2+-ligand cluster. Protein residues, bound ligands, 

and metal ions from QM/MM minimized structures are represented as sticks 

and semi-transparent space-fill spheres. Colours indicate changes in charge 

distributions between the Q148H/G140S mutant and the wild type. Note the 

increased change in polarization of the metal chelating atoms of analogue 1 

due to the amino acid substitutions. 

The interactions with Mg2+ ions, which are nearly covalent in nature, are partly 

responsible for the extraordinary tight binding of INSTIs. Our results reveal that 

the chink in the armor of this drug class, exploited by the virus, is the extreme 

sensitivity of metal ions for the precise geometry and electronic properties of 

the ligand cluster [123], [124]. Each DNA-bound IN active site within the 

intasome catalyzes just one strand transfer event, allowing the virus to balance 
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INSTI resistance by detuning its active site while retaining sufficient replication 

capacity. However, extending the small molecules toward the IN backbone 

helps to stabilize optimal binding geometry and improve the resilience of the 

drug in the face of INSTI resistance mutations. We note that although DTG and 

BIC maximally extend to the β4-α2 connector, they leave substantial free space 

in the IN active site, which is occupied by solute molecules in our structures. 

Extension of the INSTI scaffolds to fill this space should be explored for the 

development of improved compounds. 

4.4  Method 

4.4.1  Molecular Dynamics 

MD simulations were performed for four systems: the wild type and 

Q148H/G140S SIVrcm intasome bound to two types of ligands: BIC and analog 

1. The initial models were assembled based on the experimental structures 

determined in this work, using N-terminal acetyl and C-terminal amide capping 

groups for missing residues. The ligands were parametrized using the general 

Amber force field (GAFF)[18]. The atomic partial charges were obtained from 

electrostatic potential calculations [125] at the level of density functional theory 

(DFT) ωB97X-D/def2TZVPP as implemented in Gaussian 09 Revision E [91], 

[126], [127]. The system was solvated by 100,000 -120,000 TIP3P water 

molecules depending on the ligand and mutations Na+ and Cl- ions were added 

to neutralize the system and set a salt concentration of 0.14 M.. From the 

original starting cryo-EM structure, water molecules directly involved in the 

metal coordination were retained. The system was minimized using a standard 
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protocol via steepest descent algorithm for a total number of 150,000 steps, 

followed by 10ns equilibration with restrained heavy atoms (heavy atom of the 

backbone of the protein and the nucleic with an isotropic force of 1000 kJ mol-

1nm-1) in constant number pressure and temperature (NPT) and constant 

number volume and temperature (NVT; up to 1 ns) at 300 K via standard MD 

procedure using NAMD 2.12 [92]. Pressure was maintained at 1 atm by a Nosé–

Hoover Langevin piston [128]. Temperature was maintained at 298 K using 

Langevin dynamics with a damping coefficient γ of 0.5 ps-1 applied to all atoms. 

SHAKE[12] was applied to all bonds involving hydrogen and nonbonded 

interactions were calculated with a cutoff of 12 Å, and a switching distance of 

10 Å. The particle mesh Ewald method was used for long-range electrostatic 

calculations with a grid density of >1 Å−3 [129]. A series of unbiased MD 

simulations were performed for the four systems (wild type and G140S/Q148H 

IN bound with BIC or analog 1) to obtain multiple independent trajectories. A 

total of 10 replicas were run for all systems, and each simulation was 100 ns 

long. 

4.4.2  Quantum Mechanics/Molecular 

Mechanics (QM/MM) 

The experimentally resolved structures were subject to QM/MM minimizations 

to obtain geometry-optimized structures of the active site at the ab initio DFT 

level and assess the ligand-bound structures' quantitative response to the 

mutations. The MM region was described by CHARMM36 force field [130] while 

the hybrid functional B3LYP with the GTO basis set of 6-31G* [131] was utilized 

for the active site, as implemented in CHARMM [132] and Q-Chem 4.3 [10], 

respectively. QM/MM calculations were performed in a non-periodic fashion, 
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with atoms further than 25 Å from the ligand removed while those between 20 

and 25Å were fixed. Population analysis was carried out for the QM region 

embedding the electrostatics of the MM atoms [133], using natural bond orbital 

(NBO) 3.1 scheme [134]–[136], as implemented in Gaussian 09 Revision E.
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5.1  Abstract  

This work has been performed in collaboration with Dr Luiz Carvalho of the 

Francis Crick Institute. I present a combination of computational and 

experimental techniques, both done by me, where I analyse in detail the 

enzymatic mechanism of D-Ala-D-Ala Ligases in Mycobacterium tuberculosis 

(MtDdl). MtDdl is an essential enzyme for the cellular life of the bacteria, as it 

provides building block material for the cell wall. For this reason, it becomes 

essential to understand the mechanism of the enzyme to design new potent 

inhibitors, which can become a strong alternative drug against tuberculosis.  

After modelling the protein in complex with its natural substrates, I performed 

QM/MM simulations to provide an atomistic insight behind the reaction 

mechanism that allows the formation of the peptide product through the ATP 

phosphorylation. The results suggest that the glutamate in position 239 is the 

most suitable base for the deprotonation of the second alanine. Those results 

have been confirmed through multiple “in vitro” experiments, including 

spectrophotometer and mass spectroscopy analysis. Thanks to the results 

obtained, I relied on the structure obtained from the QM/MM calculations to 

perform a virtual screening approach and suggest new molecules that inhibit 

the enzyme activity. The best candidates obtained from the virtual screening 

will be further analysed through molecular dynamic simulations and tested 

through “in vitro” spectrophotometric assay, to confirm the actual inhibition 

activity. It was discovered that four molecules present IC50 at the millimolar 

range, comparable with the known inhibitor D-cycloserine. 

This work is an ongoing project. The next steps include more iteration for the 

QM/MM string simulations to obtain a better convergence, and more replica 
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and analysis from the MD simulations to obtain more statistical results from the 

virtual screening. 

5.2  Introduction 

Mycobacterium tuberculosis (Mt), the disease-causing agent of Tuberculosis 

(TB), remains a significant cause of mortality, particularly, childhood morbidity 

and mortality worldwide [137]. As for many bacterial pathogens, the cell wall of 

TB is an interesting and essential component of the organism, and, interfering 

with it can lead to the disruption and death of the TB cells [138]. 

D-Alanine-D-Alanine Ligase (Ddl) catalyses the ATP-driven reaction of ligation 

between two D-Alanine (D-Ala) molecules to form the D-Alanine-D-Alanine 

dipeptide [139]. This dipeptide is an essential building block of peptidoglycan 

that is the scaffold of the lipid-rich bacterial cell wall. Ddl belongs to the family 

of ATP-grasp enzymes, where two domains, α + β, grasp an ATP molecule, and 

through the phosphorylation of the nucleotide, it drives the energetically 

unfavourable formation of the peptide [140]. Because of its specificity, Ddl has 

always been considered as a target to stop bacterial infections, such as in 

Mycobacterium tuberculosis. D-cycloserine (DCS), was one of the first drug used 

for the treatment of Tuberculosis and included in the list of essential medicines 

for the World Health Organization (WHO) [141]. DCS is structurally similar to D-

Ala; hence, its inhibition interferes with the natural substrate for Ddl [142], [143]. 

Allergic reactions, seizures, sleepiness are some of the important side effects of 

Cycloserine; addressing its usage only as second stage therapy or drug-resistant 

tuberculosis. Here the need to find a new and more efficient molecule that will 
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become an antibacterial agent. Several previous works have combined 

molecular modelling and biological study to find possibly inhibitors for Ddl, 

suggesting structures that recollect the enzyme's natural substrate or the 

intermediate product of the reaction [144]–[149]. 

Before addressing our work to develop a new inhibitor to this target; our 

attention is addressed to understand the enzymatic mechanism of Ddl. 

Previous works suggested that the catalytic mechanism of Ddl consists of three 

stages [150]: An initial ATP-dependent phosphorylation of the first D-Ala to 

generate the acylphosphate intermediate forming a metastable enzyme 

intermediate complex, followed by the reaction between the second D-Ala and 

the acylphosphate forming a short-lived tetrahedral intermediate. Lastly, we 

have the release of the organic phosphate leading to the dipeptide product's 

formation (see Figure 5.1 for the reaction mechanism). 

However, the full detailed mechanism of the peptide formation is still not fully 

characterised. An important question regarding the enzyme's catalytic reaction 

is which residue or residues acts as a base to deprotonate both the hydrogens 

of the second alanine and allows the formation of the tetrahedral intermediate. 

Up today, it is still unknown which base is involved in the deprotonation of the 

second D-Ala [139], [140]. In a work by Shi and co-worker [151], through 

mutagenesis work in Escherichia Coli, they excluded tyrosine 277 as the base. 
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Figure 5.1. a catalytic and b kinetic mechanism of Ddl (From ref [143]). 

Our homology modelling study found out that Glutamate 239 results in being 

very close to the second D-Ala and relatively conserved among DDL proteins. 

Part of my work is to provide a feasible mechanism of the catalytic activity of 

the enzyme. Our results suggest that glutamate 239 is the base required for the 

first deprotonation of the second alanine's amino group. Having a better idea 

on the mechanism of peptide formation, our next step was to provide 

experimental evidence of Glu239 being the base. This was achieved by 

comparing the wild type (wt) enzyme activity profile with three single-point 

mutants of MtDdl (E239Q, E239A, and Y277F). The enzymes' activity profile is 

tested through spectrophotometric and liquid chromatography-mass 

spectroscopy essays (LC-MS). 
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This result achieved by the QM/MM simulations and the experimental 

techniques, confirms our initial hypothesis of Glu239 being the base for the first 

deprotonation of the second D-Ala. 

Having obtained a more exhaustive idea about the enzymatic mechanism of 

Ddl, we then presented a virtual screening approach to design novel inhibitors 

that target MtDdl. We performed a docking screening using the MolPort library, 

the results was manually checked and refined, and the molecules that present 

good docking results and relative stability along Molecular Dynamic (MD) 

simulations were tested enzymatically through spectrophotometer essay. To 

validate our method, we also tested enzymatically 40 random molecules from 

the Sigma-Aldrich library. From our work, we find that four molecules, two from 

the Molport and two from the Sigma library, presents an inhibition activity 

similar to DCS, making them interesting candidates for further drug 

development.  

5.3  Methods 

5.3.1  Initial Coordinates 

Up to date, there are 46 Ddl crystal structures from 20 different organisms 

(enzyme commission number 6.3.2.4) deposited in the Protein Data Bank (PDB). 

Some of these structures contain the catalytic magnesium ions, ATP molecule 

or ADP + AlF3, and inhibitors which mimicked the D-Alanine-D-Alanine 

dipeptide product. The only available crystal structure of Mycobacterium 
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tuberculosis DDL (PDB code: 3LWB) was chosen as a reference structure. It is an 

apo structure lacking 50 residues from chain A and 75 residues from chain B. By 

using multiple sequence alignments to identify enzymes belonging to the same 

enzyme class, structure 2ZDQ was chosen as the ATP and D-Alanine substrate 

template and 1EHI structure as the magnesium ions positional-template. Using 

molecular modelling of the structures mentioned before our model structure 

was built including the missing residues, magnesium ions, an ATP molecule and 

the two D-Alanine substrates, all necessary for enzyme activity. The M4T Server 

[152] was used for the standard 3D structure homology modelling. 

5.3.2  QM/MM Simulation 

Once we obtained the model, we use CHARMM-GUI [153] to parametrise the 

system, and we run 50 ns of equilibration and 100 ns of production trajectory 

using NAMD [92]. We used CHARMM36 [154] force field with periodic boundary 

condition and particle mesh Ewald [129] method for long-range electrostatic in 

combination with a 12 Å cutoff for the evaluation of the nonbonded 

interactions. The system was then trimmed to a sphere with 20 Å radius centred 

at the position of the first D-Ala. The QM/MM calculations were performed 

using Q-chem [10] coupled with the CHARMM [132] program. The QM region 

was treated with B3LYP [155] 6-31+G DFT level of theory, involving a total of 80 

atoms, while for the MM region, we apply full electrostatic embedding [156]. 

Standard link atom treatment was used to connect the QM and MM regions. 

The QM/MM dynamics was performed using Langevin thermostat at 300K with 

1 fs time step. For the QM region, we included: the ATP, only the atoms of the 

phosphate groups cut from C5’ of the ribose, the two Mg2+, the two alanine, 
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three water molecules and the terminal functional groups from the side chain 

of residues 239, 318, 330 and 332. 

5.3.3  String Method Calculations 

To determine the free energy path for the peptide formation, we implemented 

the finite-temperature string method [40]. As similarly described in Chapter 3, 

the method is defined by N windows that describe the reaction path, starting 

from ATP and the two alanine as a reactant, and arriving at the ADP + 

phosphate and the peptide as a product.  

 

Figure 5.2. List and schematic representation of the reaction coordinate used to 

define the multidimensional space. 

For each window, a set of collective variable, represented as interatomic 

distance, is defined, and for each of them, a harmonic potential is applied using 
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a force constant of 150 kcal/mol. This defines a multidimensional space where, 

for each window, each distance is restrained to a specific position. We then run 

100 fs long QM/MM simulations for each of the 52 images. At the end of each 

iteration, a high-order polynomial (10) is applied to the average of each image's 

collective coordinates, and new positional restrain for the next iteration is 

generated. Between string simulations and updating the string values, the 

iteration is done till the variation of all collective coordinates fell below a given 

threshold. In this work, we used 20 distances to define the reaction path (see 

Figure 5.2). The results are then unbiased using WHAM with a convergence 

threshold of 0.001 kcal/mol to obtain the reaction's free energy profile. 

5.3.4  Docking 

The docking is carried out using Glide [157]. The last frame from our previous 

MD simulation, representing a minimised and dynamically stable system, is 

chosen as a starting structure for the docking calculations, including ATP and 

the metal ions. The docking grid area is defined as the region within 15 Å from 

the centre of mass of the first D-Ala. For the docking calculation, we included 

both the ATP and the two Mg2+ because we wanted to design novel drug 

molecules that directly coordinate the Mg2+ ions, analogously to the clinically 

used HIV IN drugs. The virtual screening was performed using the entire 

MolPort library (updated up to July 2018); first, we generate the 3D structures 

with their relative conformers of 7.5 millions of compounds using LigPrep 

obtaining a final library of 17 million compounds. For the docking, we used 

different precision levels integrated into the pipeline (Glide, with HTVS, SP and 

XP precision). We then parametrise and run long MD simulations of the 
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molecules showing the highest Glide score. The simulations aim to confirm that 

the selected molecules stay inside the pocket. MD simulations were performed 

using Desmond [158] software and OPLS3 [159] force field. Simulations have 

been analysed using the obtained trajectories, assessing both the ligand 

stability and the overall changes in the protein conformation, along the time. 

Four our validation, we performed the after-mentioned docking and MD 

simulation approach also with a randomly chosen molecule from the Sigma-

Aldrich Cambridge library. We then choose the best 32 molecules from the 

MolPort library and the 40 molecules for Sigma-Aldrich for the enzymatic 

activity test. 

5.3.5  Enzymatic Activity 

WtDdl, E239Q, E239A, and Y277F Ddl were previously expressed and purified 

by a member of Carvalho laboratory. For each protein's enzymatic activity, the 

velocities are monitored continuously using UV-vis spectrometer (Shimadzu 

UV-2550 UV-Vis spectrophotometer, Milton Keynes, UK). The activity is 

measured by coupling our interested protein with pyruvate kinase and lactate 

dehydrogenase enzymes. Using this coupled enzyme, we can directly associate 

the peptide formation, from the ATP's cleavage to ADP, the last being one of 

the pyruvate kinases reaction substrates. Pyruvate, the product obtained from 

the pyruvate kinase, becomes the substrate of lactate dehydrogenase, oxidating 

NADH to NAD+ (ε340 = 6220 M-1 cm-1), (see Figure 5.3 for the full reaction 

mechanism). 

All reactions are performed in 50 mM of HEPES buffer (pH 7.3), 10 mM MgCl2, 

80 KCL, 0.2 mM NADH, 2mM of phosphoenolpyruvate at 37 °C at various 
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substrate concentrations of D-Ala (2-30 mM) and ATP (0.12-3mM). The reaction 

is initiated with the addition of enzyme at a range of 0.05-1 µM for wt and 

mutants respectively. The change in absorbance is recorded, and the initial 

linear rates are taken. These initial rates are then fitted against equation 1 to 

obtain the kcat and the Km for both substrates. 

𝑣 =  
𝑘𝑐𝑎𝑡 [𝐴𝑇𝑃][𝐴𝑙𝑎]

𝐾𝑖𝐴𝑇𝑃𝐾𝐴𝑙𝑎2 +  𝐾𝐴𝑙𝑎2[𝐴𝑇𝑃] + 𝐾𝐴𝑇𝑃[𝐴𝑙𝑎] + [𝐴𝑇𝑃][𝐴𝑙𝑎] 
 (5.1) 

 

Where 𝐾𝑖𝐴𝑇𝑃 represents the inhibition constant of ATP, 𝐾𝐴𝑙𝑎2 and 𝐾𝐴𝑇𝑃 

correspond to the Michaelis constant for D-Ala and ATP respectively. 

For inhibitor screening, the same assay conditions were used as described 

before with some modifications. For this experiment, the same concentration of 

buffer was used, with saturating concentrations of substrates 3.6 mM of D-Ala, 

3 mM of ATP in the presence of 1 mM of the inhibitor.  
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Figure 5.3. Reaction mechanism showing the coupled essay of PK/LDH involving 

PEP and NADH. The ADP produced from the initial reaction of DDL, becomes 

the substrate for the Pyruvate Kinase enzyme, converting Phospho (enol) 

pyruvate to produce ATP and Pyruvate. The conversion of pyruvate to lactate 

by lactate dehydrogenase (LDH). This step requires NADH which is oxidized to 

NAD+. 

5.3.6  LC-MS 

Chromatography is performed using a Cogent Diamond Hydride Type C silica 

column, 150 mm × 2.1 mm, at ambient temperature. Mobile phase A was 0.1% 

(v/v) formic acid in water. Mobile phase B was 0.1% (v/v) formic acid in 

acetonitrile. Analytes are eluted using a flow rate of 0.4 mL/min and the 
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following mobile phase gradient: 0 – 5 min, 85 – 70% B; 5 – 9 min, 70 – 5% B; 9 

– 9.1 min, 5 – 85% B; The system is re-equilibrated to initial conditions for 4 

minutes at the end of each run. The injection volume was 2 µL. 

The ToF is operated in positive-ion mode with electrospray ionisation (ESI) using 

a dual AJS ESI source. Capillary, nozzle and fragmentor voltages were set at 

3500 V, 2000 V and 110 V respectively. The nebuliser pressure is set at 35 psi, 

and the nitrogen drying gas flow rate is set at 13 L/min. The drying gas 

temperature is maintained at 250 °C. The sheath gas temperature and flow rate 

are at 350 °C and 12 L/min. Data are collected in the m/z range 50 – 1200 and 

saved in centroid mode. Dynamic mass axis calibration is achieved by 

continuous infusion of a reference mass solution, which enabled accurate mass 

spectral measurements with an error of less than five parts-per-million (ppm). 

The calibration curve is established over the D-Ala-D-Ala peptide concentration 

at 0, 0.4, 0.8, 1.6, 3.2, 4.8, 6.4, 8, 10, 12 mM. 

The assay directly measures peptide formation at different time step for the wt 

and the three mutants. We kept the same concentration of the buffer as for the 

enzymatic assay (50 mM of HEPES, 80 mM of KCl, 10 mM of MgCl2), and adding 

3.6 mM of D-Ala and 3.1 mM of ATP. The reaction is carried at 37 °C; it will start 

with the addition of the enzyme, and it stops by quenching the sample with a 

solution of acetonitrile and formic acid (2%), 1:4 ratio. For each of the four 

protein (wt and the three mutants), we stop the reaction and detected the 

peptide concentration at the following times: 10-30-60-90-120-150-180-240 

seconds. 
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5.4  Results and Discussion 

5.4.1  The Catalytic Mechanism of The Peptide 

Formation 

 

Figure 5.4. a Free energy profile projected onto the coordinate reaction 

windows, highlighted the three transition states observed from the QM/MM 

calculations, and the representative coordinate representation in b, c, and d. 

The first transition state (in purple) corresponds to the phosphorylation of the 

first D-Ala, the second transition state (blue) correspond to the deprotonation 
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of the second D-Ala and the third transition state is related to the peptide 

formation and release of the phosphate group.  

A sampling of the conformational states through constrained minimisation 

scanning has been achieved through our QM/MM simulations. This scan 

provides us with the coordinate at a different stage of our reaction path. We 

then built the reaction path for the finite-temperature string method by dividing 

the reaction path into 52 windows. We then run 1ps long QM/MM simulations 

for each window for a total of 40 iterations. A histogram-free implementation, 

using the multidimensional WHAM method, was used from the combined data 

of the replica-exchange string simulations. The free energy profile, shown in 

Figure 5.4a, define the peptide formation process. According to the number of 

transition state barriers, the reaction mechanism can be divided into three steps: 

1. Formation of the acylphosphate: The initial step is associated with the 

cleavage and transfer of the Pγ from the ATP to the first alanine (D-Ala1), 

this is facilitated by the presence of the Mg2+ and water molecules (see 

Figure 5.4a). Here the carboxylate of D-Ala1 attacks the γ-phosphate of 

ATP, forming the acylphosphate intermediate. 

2. Deprotonation of the second D-Ala2: The primary amine of the second 

alanine, needs to be in its deprotonated form to be able to attack the 

first alanine. In this work, we suggest that is glutamate 239 (Glu239) that 

steal the hydrogen from the amino group of D-Ala2 (see Figure 5.4b). Our 

QM/MM calculations provide a good explanation for choosing this 

residue as the base for the deprotonation; this will also be confirmed by 

our mutagenesis study (see Chapter 5.4.2). 

3. Peptide formation: The second deprotonation of the amino group of the 

D-Ala2 allows the nitrogen to attack the phosphorylated carbonyl carbon 

of D-Ala1, resulting first in the formation of a tetrahedral intermediate, 
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and then to the formation of the D-Ala-D-Ala peptide by cleavage of 

inorganic phosphate (see Figure 5.4d). This work suggests that a water 

molecule coordinated by the phosphate group is the proton acceptor. 

This step results in being the rate-limiting step of our free energy profile, 

showing an energy barrier of ~24 kcal/mol (Figure 5.4a). 

Alternatively, for the second deprotonation, an alternative mechanism involves 

the same Glu239 acting as a base. However, the already protonated glutamate 

needs first to be deprotonated by a basic neighbour, to be able to attack the 

second hydrogen of the amino group. This mechanism, also known as a proton 

shuttle, has already been seen in different proteins such as serine proteases 

[160]. This part of the work is partially completed; as we are still running more 

iteration of the QM/MM string simulations in order to obtain a better 

convergence of the free energy profile. 

5.4.2  Mutagenesis Study 

Here I report the kinetic studies of Ddl with its native substrates. The results are 

obtained from the wt protein and the three single-point mutants E239Q, E239A 

and Y277F. For mutants, E239A and Y277F, no activity was observed at 

saturating substrate concentration. The E239Q did show some activity. 

Because of the lack of saturation by D-Ala, as shown in Figure 5, it was not 

possible to measure Vmax and Km for E239A and Y277F. As expected, the wt 

protein shows the highest activity rate, compared with the other three 

mutations. This data demonstrates that all the mutations affect the enzyme 
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activity consistently; however, while E239A and Y277F show almost no activity 

at this condition, E239Q presents a slow enzymatic event. 

 

Figure 5.5. NADH's real-time absorption profile emission associated with the 

activity of the enzyme; wt: blue, E239A: orange, E239Q: grey, and Y277F: light 

blue. 

The kinetic analysis was carried out, and Km and kcat (Vmax/[Enzime]) were 

calculated as described previously in the method session 5.3.5 by testing the 

enzymatic activity at varying substrate concentrations of D-Ala and saturating 

ATP. Steady-state kinetic parameters for the wt enzyme are in good agreement 

with a previous work done by Prosser et al. [143], with the Km for D-Ala at 8.8 

mM & kcat of 4.13 s-1. We were also able to calculate the steady-state kinetic 

parameters for E239Q mutant, obtaining a Km of 0.79 mM for D-Ala and a kcat 

of 0.06 s-1.  
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Figure 5.6 Steady-state activity of wt-MtDdl (left) and E239Q-MtDdl (right). 

Initial rates at varying concentrations of D-Ala (≤ 30 mM) and several fixed 

saturating concentrations of ATP: 0.12 mM (closed square), 1.2 mM (open 

triangle), 0.6 mM (closed triangle), 0.3 mM (open circle) and 0.12 mM (closed 

circle). For the wild type essay, the full experiment is performed in triplicate, and 

the standard error is plotted. 

These results provide strong evidence of Glu239 being the base, as its 

substitution to glutamine results in a drastic reduction of activity (about ~100 

fold), and a complete loss of activity when mutated to alanine. This can be 

explained as when the basic glutamate is replaced by glutamine, the 

glutamine's oxygen can still act as a weak proton acceptor, allowing the reaction 

to proceed, while a substitution to alanine, stop the activity of the enzyme. 

Furthermore, the data suggest that the mutation of E239 does not affect the D-

Ala's affinity to the binding site, as the difference between the two Km is not 

significant; but the kcat, representing the velocity of the reaction is two orders 

of magnitude smaller in the mutant. Tyrosine 277, is another residue highly 

conserved in Ddl, but this residue was already demonstrated not to be the base 

[151]; however, the mutation of this protein, stop the activity of the enzyme, 

suggesting an important effect on the activity of the enzyme. 
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Using the LC-MS, we also checked the enzyme activity by detecting the 

product's concentration (D-Ala-D-Ala) at different reaction times. This 

experiment allows us to directly correlate the enzyme activity and the product 

formation, while by using the spectrophotometer, this was done indirectly by 

measuring the ADP formation and subsequently monitoring the reduction of 

NADH.  

 

Figure 5.7. A calibration curve (left plot) for the LCMS essay. Stoichiometry of 

D-Ala-D-Ala along with the reaction time performed using the LCMS for the 

wild type (blue dots) and E239Q (orange dots).  

Figure 5.7 confirms our previous results, showing a significant peptide 

formation with the wt while for E239Q, the formation of D-Ala-D-Ala is minimal. 

5.4.3  Virtual Screening 

For the docking calculations, I used the energy minimised initial structure of 

Ddl, in the bound ternary complex, where the enzyme is bound to the ATP and 
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the two D-Alas. The docking grid map is built with the ATP and the two Mg2+ 

included in our virtual screening, and we define the region for the docking 

sample in the same area of the two D-Ala. The pocket definition in this way is 

because the ATP, and therefore the two Mg2+, are the first substrate to bind 

and the last to leave (in the form of ADP + Pi) (see Figure 5.1) [161]. Docking 

results were obtained and ranked accordingly to the Glide scoring function. 

From the entire MolPort library, we obtained 1,627 compounds with good 

binding affinity, which we clustered using interaction fingerprint and classified 

using both the glide docking-score and ligand-target geometries and 

interactions (including solvent effects). Out of these 1,626 compounds, we 

selected the best 40 molecules and performed 150 ns long MD simulations for 

each ligand-protein complex to assess the binding pose's stability. We see that 

eight compounds leave the pocket from these MD simulations, suggesting that 

they might not be good candidates. We then purchased the remaining stable 

32 compounds, and we perform the enzymatic inhibition assay (Figure 5.8).  
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Figure 5.8. Chemical representation of the compound used from the MolPort 

library 

From a preliminary analysis, we can see that a good number of molecules with 

a high docking score share structural similarity to the natural substrate of the 

enzyme or intermediate of the enzymatic reaction. From these compounds, we 

can see that 19 out of the 32 molecules present a carboxylic group, recollecting 

the carboxylic group of the D-Ala's natural reactant substrate (Figure 5.8). 

Furthermore, compound 2, 3, 6, 7, 10, 11, 15, 17, 18, 25, 26, and 28 present an 

amide group, similar to product the D-Ala-D-Ala. Additionally, the presence of 
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negatively charged functional groups, such as the carboxylic group, is also 

explained by the presence of the Mg2+ ions; hence most of the docking pose 

involves a direct interaction of the molecule to either one or both the 

magnesium cations. 
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Figure 5.9. Chemical representation of the compound used from the Sigma-

Aldrich 

Additionally, to validate our method; we purchase 40 compounds from the 

Sigma-Aldrich Cambridge library. The molecules were randomly selected from 

the entire library and tested in vitro to validate our docking methodology. To 

these 40 compounds (Figure 5.9) we also performed a docking calculation to 

predict the binding poses, and we assessed the stability of these compound by 
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running 150 ns long MD simulations, using the same procedure as for the 

MolPort library. In this case, only four compounds (Sigma Aldrich: 1, 22, 25, 26) 

remain inside of the active site. 

5.4.4  Enzymatic Inhibition 

The top-ranked compounds found from our docking calculations using the 

MolPort library and the 40 randomly selected molecules from the Sigma-Aldrich 

library, were selected for an in vitro evaluation. We use the product inhibition 

essay to assess the order of MtDdl binding and the product release following 

the same procedure as for the enzymatic assay. To assess the inhibition activity 

for each compound, first, we compare the activity rate of the enzyme with its 

natural substrates, from our previous experiments, with the enzyme in complex 

with its natural substrates and DCS, a known inhibitor for MtDdl. Out of the 32 

molecules from the MolPort library, only 11 shows an inhibition similar to DCS, 

and similarly, from the 40 molecules of the Sigma Aldrich library, 12 shows 

inhibition. 
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Figure 5.10. Ddl inhibition activity of the best docking results obtained for the 

MolPort and Sigma-Aldrich library. For the molecules presenting high activity 

(activity rate ≤ 0.12), we provide IC50 concentrations through initial velocity 

pattern analysis, using multiple concentration of the inhibitor (0.1 mM, 0.5 mM, 

1 mM, 1.5 mM, 2 mM and 5 mM). 

For the four compounds with the highest inhibition profile, we were also able 

to perform initial velocity pattern analysis, using multiple concentration of the 

inhibitor and calculate the IC50. These four compounds were found to inhibit 

MtDdl with IC50 value at the millimolar range, with the same order of magnitude 

of DCS (Figure 5.11). Compound 6 and 11 from the MolPort library share a 

similar structure, with two amide group in both the molecules and by looking 

at the docking pose, they also show similar orientation in the active site. 

However, the two compounds from the Sigma-Aldrich library differs 

significantly from the natural substrates or product for this enzyme. 

Additionally, the MD simulations show that both the molecules results to be 

unstable in the binding pocket, suggesting that either the binding pose 

predicted by the docking calculations is not the optimal one, either that the 
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inhibition is not done at the orthosteric site but interacting with the protein with 

an important allosteric site (Figure 5.11). 

 

Figure 5.11: Graphical representation of the docking results for the four 

compound with inhibition activity, MolPort 6: top-left, MolPort 11: top-right, 

Sigma 2: lower-left, and Sigma 14: lower-right. The carbon atoms of the 

inhibitors are coloured in orange for the Molport molecules and beige for the 

Sigma molecules, while the carbon atoms of the ATP is coloured in magenta. In 
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the centre of the figure a representation if the phosphorylated DCS bound to 

Ddl obtained from PDB: 4C5A. 

5.5  Conclusion 

In this work, I presented a novel mechanism on the enzymatic activity of Ddl. 

This enzyme is an important protein in different bacteria, as its activity in 

forming the peptide D-Ala-D-Ala provides a critical scaffold for multiple 

bacterial cell-walls. My attention here is focused on the Ddl of Mycobacterium 

tuberculosis.  

Despite the number of mechanistic studies regarding the catalytic activity of 

Ddl, not all the steps have been comprehensively addressed in terms of the 

specific details of their catalytic mechanism. An important question about this 

mechanism is which residue can act as a base for the deprotonation of the 

second alanine; to allows the peptide formation. Part of this work addressed 

this question. We demonstrated that the glutamate 239 is the first base that 

accepts the proton from the alanine and that a water molecule coordinated by 

the phosphate attached to the first alanine act as the base to extract the second 

hydrogen. We constructed a reaction path from the QM/MM calculations and 

calculated the free energy profile along the reaction path. Additionally, I 

performed single point mutation studies, to assess the protein's activity, when 

the interesting residues are mutated. Our conclusion, confirms the hypothesis 

of glutamate 239 being the base of the reaction.  

Additionally, thanks to the results obtained from our QM/MM calculation, we 

assessed the important features that allow the peptide formation. We have 

conducted a virtual screening of two different libraries to identify novel 
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inhibitors for Ddl. Consequently, 46 molecules out of the 7.5 million compounds 

from the MolPort library and 40 randomly selected molecules from the Sigma-

Aldrich library were tested for in vitro inhibition activity against MtDdl. For four 

molecules that show high inhibition activity, we calculated their relative IC50. 

The results obtained showed for the last four molecules inhibition activity at the 

same order of magnitude to the known inhibitor D-cycloserine, providing an 

initial scaffold for the design of potent inhibitors for Tuberculosis treatment. 

Two of these inhibitors are structurally similar to the natural peptide product, 

constituting a promising starting point for further investigation. 
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6.1  Preface 

The project started as a response to the biggest biological challenge of 2020, 

the Covid19 pandemic. The project aims to present a reliable structure of the 

SARS-Cov19 helicase protein in its holo form to provide key structural 

information of the catalytic site. Despite the helicase's fundamental activity in 

the viral transcription, we have very few information about the interaction 

between the protein and the natural substrates, RNA and ATP + Mg2+. By 

performing long unbiased Molecular Dynamic simulations, we provided 

structural information of the helicase, providing key information to develop 

specific inhibitors to this target. In this work, my contributions were to set-up, 

perform and analyse all the simulations, interpret the results and write help draft 

the manuscript that is now published in Chemical Science: 

Badaoui M., Berta D., Buigues P. J., Martino S. A., Pisliakov A. V., Elghobashi-

Meinhardt N., Wells G., Harris S. A., Frezza E., Rosta E. (2020). Modelling the 

active SARS-CoV-2 helicase complex as a basis for structure-based inhibitor 

design. 
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6.2  Abstract 

Having claimed over 1.7 million lives worldwide to date, the ongoing COVID-19 

pandemic has created one of the biggest challenges to develop an effective 

drug to treat infected patients. Among all the proteins expressed by the virus, 

RNA helicase is an essential protein for viral replication, and it is highly 

conserved among the coronaviridae family. To date, there is no high-resolution 

structure of helicase bound with ATP and RNA. We present here structural 

insights and molecular dynamics (MD) simulation results of the SARS-CoV-2 

RNA helicase both in its apo form and in complex with its natural substrates. 

Our structural information of the catalytically competent helicase complex 

provides valuable insights for the mechanism and function of this enzyme at 

the atomic level, a key to develop specific inhibitors for this potential COVID-

19 drug target. 
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6.3  Introduction 

Only a few approved drugs currently repurposed for treating COVID-19, a 

disease caused by the human coronavirus SARS-CoV-2, despite its close 

relatives, SARS-CoV and MERS-CoV are responsible for multiple outbreaks 

earlier this century. As of September 2020, Remdesivir and Dexamethasone are 

used in clinical practice [162], [163]. Therefore, drugs need to be developed that 

can be used against the viral replication to help patients overcome the disease 

in the most severe cases. 

Here we focus on determining the catalytically active complex structures of the 

SARS-CoV-2 RNA helicase, labeled as Non-structural Protein (NSP) 13 (Figure 

6.1). This protein is part of the Orf1ab polyprotein, which gets spliced to 

produce the enzymes required for viral replication. The RNA helicase performs 

two essential functions for viral replication making it an ideal drug target. It is 

thought to perform the first step in the 5’-capping of the viral RNA by its 

triphosphatase function hydrolyzing the 5'-triphosphate group to form 

diphosphate-RNA [164], [165]. Furthermore, its main helicase function is to 

enable RNA translocation and unwinding in an ATP-dependent mechanism 

during viral replication. 

Accordingly, numerous studies have already demonstrated that it is possible to 

develop potent inhibitors of viral helicases as antiviral agents[166].  
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Figure 6.1. Cartoon representation of the RNA helicase NSP13 of SARS-CoV-2 

monomer model composed of three domains: RecA1 (yellow), RecA2 

(magenta), and Domain 1 (aquamarine). ATP analogues (sticks) along with Mg 

(green sphere) and single-stranded nucleic acids are depicted from aligned 

homologous structures. 3’ ends of the nucleic acids present the same 

orientation in all chains (highlighted in green). Specific helicase inhibitor 

binding region with allosteric inhibitors displayed in cyan (black arrow). 

Coronaviral RNA helicases share a high similarity. 600 out of the 601 residues 

of the SARS-CoV2 RNA helicase are identical to those of the SARS-CoV virus, 

and 70% match that of the MERS-CoV NSP13, demonstrating that these 

proteins are highly conserved within the coronaviridae family. Despite the 

importance of this target protein, currently, only the apo structure is available 

crystallographically. There are no structures currently known of the RNA 
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helicase bound with either inhibitors or nucleic acids, severely limiting the 

structure-based mechanistic understanding and the design of more potent 

drugs. Currently, the only experimentally available information on SARS-CoV-2 

helicase comes from a recent study by Shi et al., that offer a low-resolution cryo-

EM structure with ATP bound in the active site [167]. They fit the APO helicase's 

crystal structure from 6jyt to their cryo-EM density maps and refined using 

several software [168]. Recent works mainly focusing on the RNA-dependent 

RNA polymerase (RdRp) NSP12 [168], [169]. which is expressed in the 

polyprotein sequence just before the helicase, also yielded structures of the 

replication machinery, including low-resolution cryo-EM images of the helicase. 

Unfortunately, the level of resolution is too low in this structure to model the 

ATP pocket in a catalytically competent conformation. 

Helicase Structures and Models 

The recent July 2020 SARS-CoV-2 helicase structure (PDB ID 6zsl) and the 

almost identical SARS-CoV helicase structure from 2019 (PDB ID 6jyt)[170] were 

both resolved as crystallographic dimers (Figure 6.2a-b). Interestingly, the 

dimerization interface is different in the two cases, leading to structurally 

dissimilar complexes. In the cryo-EM structure of the RdRp complexed with the 

RNA helicase (and co-factors NSP7 and NSP8), the two helicase protomers are 

non-interacting (Figure 6.2c). Therefore, the catalytically active form of a 

monomer is of interest, and a dimer may not be the biologically functioning 

unit. 
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Figure 6.2. Structural comparison of the deposited PDB structures of the 

helicase dimer in SARS-CoV-1 (PDBID: 6jyt), SARS-CoV-2 (PDBID: 6zsl), and 

SARS-CoV-2 in complex with NSP7 NSP8 and NSP12 (PDBID: 6xez). The 

interaction between the two helicase monomers differs depending on the 

experimental method used to resolve the structures. 

Here we present the first computational models of the SARS-CoV-2 RNA 

helicase with ATP and RNA substrates bound. We have performed sequence 

similarity searches to identify key domains and homologous sequences, 

suggesting structurally important conserved motifs. We also performed 

structural alignments of available homologous helicase crystal structures to 

help position the bound RNA and ATP substrates (Figure 6.1). A previous 

computational model by Hoffmann et al.[171] described the proposed helicase 

ATP interactions. However, there is no RNA incorporated in these modelled 

structures. Here, we also present long timescale MD simulations of both the apo 
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and ligand-bound states to address the flexibility and stability of our 

catalytically competent structures. Our results will help guide ongoing drug 

development with the identification of novel pockets. 

6.4  Methods 

6.4.1  Homologous Sequence Analysis 

Sequence alignments were done using BLAST with default settings and 

BLOSUM62 distance matrix, requesting the most similar 1000 hits from 

UniProtKB [172]. Pairwise alignments for the obtained sequences were used to 

count identities and similarity for each residue in the SARS-CoV-2 helicase. 

6.4.2  Homology Modelling 

Proteins with crystal structures were aligned with mustang for a combined 

structural-sequence alignment[173]. The apo structure was based on PBD ID 

6jyt [170]. Missing residues and the I570V mutagenesis were constructed in 

pymol. The position of the ATP was determined using the coordinates of PDB 

ID 2xzo [174], as a template, modifying residues around the ATP pocket, except 

for Arg443 which was modelled based on PBD ID 6jim [175]. The single-

stranded RNA (ssRNA) was placed based on 2xzl [174].  
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6.4.3  Molecular Dynamics 

The helicase model was used as a starting point for MD simulations. The system 

consists of the helicase, three Zn2+ ions, ATP, Mg2+, and ssRNA with eight uracil 

bases. The MD simulations were performed using NAMD 2.13 [176], using the 

CHARMM36 force field [177]. 

The system was solvated by 50,000 – 70,000 TIP3P water molecules resulting in 

a box of 120 Å per side. To neutralize the system and account for a 0.15 M KCl 

solution, we added 171 K+ and 189 Cl- ions [178]. Periodic boundary conditions 

(PBC) were used in all the simulations, and the particle mesh Ewald (PME) 

method was used for long-range electrostatic interactions. SHAKE algorithm 

was deployed to constraint the covalent bonds involving hydrogen atoms. A 

cutoff of 12 Å was used to treat non-bonding interactions. 

The energy of the system was minimized using a standard protocol via steepest 

descent algorithm for a total number of 10,000 steps, followed by 50 ns 

equilibration with restrained heavy atoms (heavy atom of the backbone of the 

protein and the nucleic acid with an isotropic force of 1000 kJmol-1nm-1) in 

constant pressure and temperature (NPT) and constant volume and 

temperature (NVT; up to 1ns) at 303.15 K via standard MD procedure with a 

time step of 2 fs.  

To help equilibrate the complexes, we used a harmonic constraint on selected 

contacts with a force constant of 10 kcal/mol for 15 ns in our preliminary MD 

simulations to maintain relevant contacts. These constraints were subsequently 

progressively reduced and removed during the next 20 ns, using the colvar 

function implemented in NAMD. For both the apo and the holo form, we 

performed five independent unbiased MD simulations, each 1 µs long, for a 

total of 5 µs simulations.  
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To compare simulation results obtained with MD, we also carried out MD 

simulations using GROMACS 2018 [179]–[182] with the Amber ff99+ 

parmbsc0+chioL3 force field [183], [184] for ssRNA and Amber14SB [185] for 

the helicase. To maintain the coordination of the Zn2+ ions, the ZAFF model was 

used[186]. The molecular systems were placed in a cubic box and solvated with 

TIP3P water molecules [178]. The distance between the solute and the box was 

set to at least 14 Å. The solute was neutralized with potassium cations and then 

K+Cl- ion pairs were added to reach the salt concentration of 0.15 M. We used 

the ion corrections of Joung et al.[187] as this force field has been shown to 

produce stable RNA structures [188]. The parameters for Mg2+ are taken from 

Ref. [189]. Long-range electrostatic interactions were treated using the particle 

mesh Ewald method[20], [129] with a real-space cut-off of 10 Å. The hydrogen 

bond lengths were restrained using P-LINCS [180], [190], allowing a time step 

of 2 fs [191]. Translational movement of the solute was removed every 1000 

steps to avoid any kinetic energy build-up [192]. After energy minimization of 

the solvent and equilibration of the solvated system for 10 ns using a Berendsen 

thermostat (τT = 1 ps) and Berendsen pressure coupling (τP = 1 ps) [191], 

simulations were carried out in an NTP ensemble at a temperature of 300 K and 

a pressure of 1 bar using a Bussi velocity-rescaling thermostat[22] (τP = 1 ps) 

and a Parrinello-Rahman barostat (τP = 1 ps) [29]. During minimization and 

heating, all the heavy atoms of the solute were kept fixed using positional 

restraints. The restraints on the RNA and the protein backbone were relaxed 

slowly during the equilibration from 1000 kJmol-1 nm2 to 10 kJmol-1.nm2. 

Additional MD simulations, constructed using the AmberTools20 building 

package, were performed with the GPU version of Amber18 using the ff14SB 

force field to represent the protein [193], the ff99OL3 force field for the RNA 

[194], [195], ATP parameters from Meagher et al.[196] and parameters for Mg2+ 

are taken from Ref. [197]. The tetrahedral coordination state of the zinc was 
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maintained using the ZAFF bonded force field [197]. Note that additional 

parameters were required for the HIS-33 that interacted with the zinc via its 

epsilon nitrogen by reference to comparable parameters in the ZAFF using a 

hybrid of the centre ID 4 and 6 models [198]. For structures where ATP is bound, 

the octahedral coordination of the Mg2+ (which involves bonds to the ATP β 

and γ phosphate oxygen atoms, one with the oxygen of the Ser289 hydroxyl 

group and three structural water molecules) was constructed using the Chimera 

metal centre builder [199]. The solute was neutralized with potassium cations, 

then the protein was immersed in a box of TIP3P water molecules extending a 

minimum of 10 Å from the protein surface, and K+Cl- ion pairs were added to 

achieve a salt concentration of 0.14 M. MD simulations were performed in the 

NTP ensemble, with Berendsen temperature and pressure coupling. SHAKE was 

applied to all bonds involving hydrogen, allowing an MD integration timestep 

of 2 fs. Long-range electrostatic interactions were treated using the particle 

mesh Ewald method[20], [129] with a real-space cut-off of 12 Å. To equilibrate 

the protein and nucleo-protein complexes, the systems was initially energy 

minimized with positional restraints placed upon the solute, followed by 

minimization of both solvent and solute. The system was then heated to 300 K 

in the presence of positional restraints upon the solute, which were gradually 

reduced from 50 kcal/mol Å2 to 1.0 kcal/mol Å2 over a timescale of 100 ps. For 

the apo-helicase structure, all restraints were then removed. For the ATP-RNA 

helicase complex which included the coordinated Mg2+ ion, an additional 50 ns 

of equilibration was performed with harmonic distance restraints (set at 2.1 Å 

with a spring constant of 20 kcal/mol Å2) to maintain the positions of 

coordinated atoms, and angle restraints imposing the octahedral geometry 

around the Mg2+ ion. An additional restraint was imposed to maintain the 

orientation of Asp374 and Glu375 to the adjacent coordinated water molecule, 

as observed in the MutS-ATP complex (PDB ID 1w7a,[200]). Three 1 µs 
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simulations of the apo-structure at a salt concentration of 140 mM, and one 

1.5 µs simulation in neutralizing salt were performed. We have also obtained 

1 µs simulations of the ATP-helicase (two replicas), the RNA-helicase and the 

ATP RNA-helicase complex. For all coordinated ATP Mg2+ metal centers, these 

equilibration protocols provide stable octahedral geometries, including the 

complexed water molecules, during unrestrained MD over 1 µs timescales.  

Pocket analysis 

For the analysis of the ATP pocket size, we used the open-source cavity 

detection software, Fpocket [201]. From our MD simulations of the apo and 

ATP-RNA helicase, we extracted 100 equally time-spaced protein structural 

snapshots from the last 200 ns simulation of both systems. We performed the 

pocket size analysis using several parameter sets using Fpocket and compared 

the results for our system. We then calculated the average volume of the ATP 

pocket for the most optimal parameter sets and compared these between the 

apo and the ATP-RNA complex simulations. The parameters we modified were: 

−m: minimum α-sphere size; -M: maximum α-sphere size -D: first clustering α-

sphere size. 

6.5  Results 

6.5.1  Helicase Domains and their Sequence 

Homology  

Following previous studies, the single-chain SARS-CoV-2 helicase can be 

divided into three domains, as depicted in Fig. 1. The sequence starts with 
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Domain 1 (residues 1-260), which features: a Zinc-binding domain (ZBD, 

residues 1-100), known to facilitate nucleic acid recognition; a Stalk region 

shaped by 2 adjacent alpha helices (residues 100-150) which functions as an 

interface connecting the ZBD with the rest of the Domain 1 (residues 150-260, 

also known as Domain 1B) that interacts with the RNA. The rest of the chain 

splits into RecA1 and RecA2 domains, which are well characterized in the 

superfamily 1B type helicases and bind ATP at their interface [202]. 

We have obtained the most homologous 1000 non-redundant sequences and 

their alignments from the UniProtKB library. About 10% of these sequences 

show similarities across the whole helicase sequence and the best 95 has 400 

or more positives or similarities in the sequence alignment (Figure 6.3). These 

are all coronaviruses mainly derived from bat virome (beta and 

alphacoronaviruses), and affecting various hosts in the animal kingdom, 

including humans. Intriguingly, the next best sequence alignment only covers 

235 amino acids as similar residues; all of these and subsequent aligned regions 

are specific to the RecA domains and range through all types of organisms.  
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Figure 6.3. Distribution of the pairwise sequence alignments to the SARS-CoV-

2 helicase. There are only members of coronaviridae above 398 matching 

residues (66%, lime circles, 95 entries). There are no sequences with medium 

similarity (235-394 similar residues, red circles). The closest relatives (95 

sequences highlighted in lime dashed frame) are grouped in coronavirus 

subfamilies with principal hosts highlighted in the inset. 

To evaluate any similarities to Domain 1 only, we also performed a search using 

only the first 230 residues. This search for sequences that match at least 70 

residues resulted in the exact same 95 sequences as before, exclusively 

belonging to coronaviridae. An additional only 21 sequences match shorter 

segments of this domain between 1-230 residues, corresponding to a 22% 

sequence identity or below. 
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Figure 6.4. Sequence similarity (orange) and identity (blue) of the closest 946 

sequences from UniProtKB using BLAST pairwise alignments to the 601-residue 

long SARS-CoV-2 RNA helicase. Domain 1 shows similarity only to the close 

relatives (95 sequences), while the RecA1 and RecA2 domains are more 

common across ATPase sequences. Key structural motifs are highlighted using 

symbols (P-loop: grey square, DE motif: green square, arginine fingers: black 

triangle, ssRNA interactions: red triangles). 

Amongst crystal structures containing ATP analogues, most helicases have very 

low sequence similarity to NSP13. The closest homologues are 2xzo, 5mzn, and 

6jim with 11.00%, 10.20%, and 8.40% sequence identity, respectively. Despite 

the low sequence identity, most residues in the ATP binding pocket are 

conserved. At the same time, the closest human sequence homologue based 

on our homology search, ZGRF1, a putative RNA helicase, shares only 22% 

sequence similarity, restricted to the RecA1 and RecA2 domains. This relatively 

narrow bandwidth of sequence similarity can be harnessed to design specific 
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inhibitors against the coronavirus RNA helicases that do not inhibit human 

proteins. 

6.5.2  Structural Model of the ATP Binding Site 

We modelled the ATP-bound active site using the 2xzo structure as a template 

(Figure 6.7). The essential Mg2+ ion cofactor coordinates both the β and γ-

phosphates and a conserved Ser288. The active site contains a DE of the DEAD-

motif of RNA helicases. The conserved Asp374 H-bonds with the Ser288 and 

one of the Mg-coordinating water molecules, whereas the Glu375 is positioned 

as the proton acceptor [171], [203], [204]. The γP is stabilized via H-bonds with 

Arg567 Lys289 and Gln404 through a water molecule, that are found in 

respectively 95, 56 and 57% of the homologous sequences analysed, while βP 

forms an H-Bond with Arg443. The sugar region of the ATP likely interacts also 

with Glu540 and Lys320 as seen in ten and four PDB structures, respectively. 

Unlike the highly conserved residues recognizing the triphosphate pocket, the 

environment of the sugar and purine moieties (Figure 6.7, right) shows a greater 

diversity. The purine ring is stabilized through multiple π stack interactions, 

from one side with Arg442, while in some helicases with tyrosine, and from the 

other side with His290 and Phe261. Additionally, there is an H-Bond between 

the amino group of the purine ring with Asn265, a residue that is more typically 

served by glutamine in similar sequences. 
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Figure 6.5. Conserved residues coordinating the ATP and RNA substrates of the 

SARS-CoV-2 helicase. Sequence conservation for RecA1 (orange) and RecA2 

(magenta) domains are depicted in logos for each residue and its neighbours 

(data from Figure 6.4). The coloured letter represents the residues in the SARS-

CoV-2 helicase sequence; depicted residue indices are bold in the logos. 

A lack of specificity towards the purine group is likely due to the dual function 

of the SARS-CoV-2 helicase to aid the 5’-capping of the RNA by the 

triphosphate hydrolysis of most NTP substrates [164]. Due to these major 

differences, this area of the nucleotide-binding pocket can serve in the design 

of SARS-CoV-2-specific antiviral drugs. 

6.5.3  Structural Model of the RNA Binding Site 
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To identify the main contact points with the ssRNA, it is first important to 

understand the unwinding function of the helicase. Filtering the related crystal 

structures to the ones containing RNA, we noticed that the RNA directionality 

relative to the ATP pocket is well defined (Figure 6.1). The unwinding is driven 

by a domain-wise translocation process, which moves the RNA one base in two 

steps [174], [175], [205]. Upon ATP hydrolysis, domain RecA2 translocate one 

base towards the 5’ end of the RNA which is then followed by the RecA1 when 

a new molecule of ATP binds to the enzyme. 

Domain 1, being in contact with the sidechain of the RNA, does not feature 

specific motifs, thus allowing different RNA bases to translocate. A long loop 

transition into the RecA1 and two domains are sandwiching the ATP pocket on 

the side of the RNA backbone. This region, equipped with the necessary 

functionalities to perform the ATP hydrolysis, has a higher degree of 

conservation along with the helicases. Both RecA domains have specific 

residues reliable for contact with the RNA phosphates, depicted in Figure 6.8. 

Thr359 in RecA1 and Thr532 are identified as the main anchoring points of the 

two domains. The base between these two threonine residues is coordinated 

by a backbone NH of His311, an interaction that is kept in RNA containing 

crystal structures. Ser310 is also reasonably conserved, although not directly 

featured in RNA coordination in this state of the enzyme.  

Interestingly, the most conserved motif across the sequences is a GDP(A)Q loop 

interfacing between the RecA1 and RecA2 domains. This motif features Gln404, 

a residue that we consider to be important in the coordination of the 

nucleophilic water; moreover, it bridges the γP and the SH motif discussed 

earlier. We speculate these moieties play a role in the translocation of RecA2 

upon ATP hydrolysis. 
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6.5.4  MD Simulations 

6.5.4.1 Apo Structures 

All replicas of the apo structure show low flexibility and no major changes in 

the backbone structure of the dimer. We analyze the overall flexibility of the 

dimers and compare our results with the experimental b-factor obtained in 6jyt 

and 6zsl (Figure 6.2). Our model, in common with the two crystal structures, 

shows higher flexibility on the external shell of the RecA2 domain, while the ATP 

and the RNA pockets appear to be more conserved. The ZBD shows low 

flexibility, in agreement with the b-value of 6jyt, but not with 6zsl (especially 

chain A), in which the temperature factor is higher, due to the different 

dimerization of the crystal structures. 
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Figure 6.6. Conformational flexibility of the APO helicase protomers from 6jyt, 

6zsl, and our model if the apo dimer from the MD simulations. The residues are 

coloured according to the deposited PDB B-factors (6jyt and 6zsl; from blue: 

low B-factor to red: high B-factor), and by the residue RMSD from the MD 

trajectory. 

6.5.4.2 Pocket Analysis 

We identify the cavity size of the ATP pocket using Fpocket. We tested different 

combinations of parameters to find a combination that yields more robust 

results. A comparison of the average pocket volume from the apo trajectory 

(394.6±157.5 Å3) with the average pocket volume from the ATP bound 

trajectory (367±146 Å3) shows no substantial differences within the error of the 

analysis. This finding suggests that the ATP cavity structure is not altered 

significantly by the presence of ATP. 
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Figure 6.7. Structure of the ATP pocket aligned with homologous ATP-helicase 

complexes. RecA1 and RecA2 are shown in yellow and magenta, respectively. a) 

Main protein-substrate interactions of the triphosphate and magnesium ions 

are compared with alignment for PDB template 2xzo (cyan lines). b) Nucleotide-

binding region focusing on Arg442 (magenta sticks) is aligned with 

homologous arginine residues (lines, PDB structures 5k8u, 5vhc, 5xdr, 5y4z, 

5y6m, 5y6n, 6adx, 6ady, 6c90, and 6jim). 
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6.5.4.3 RNA Binding Site 

 

Figure 6.8 Structures of the RNA binding region aligned with existing RNA-

helicase crystal structures complexed with RNA (depicted in lines). RecA1 and 

RecA2 domains are shown in yellow and magenta, respectively. Key residues 

(sticks) are labelled, and H-bonds are depicted in yellow dashes. 

From the structural analysis and the homology modelling, we denote two 

important and well conserved interactions between the RNA and the helicase. 

Both interactions involve an H-bond between threonine and the O of the 

phosphate residue on the backbone of the RNA. Specifically, from Thr359 from 

RecA1 and Thr532 from RecA2. Additionally, another H-bond is made between 

the central RNA and the N of residue 311, this residue is not highly conserved, 

but the interaction between the backbone of this residue and the OP of the 

RNA is present in several PDB structures. A key residue close to the RNA pocket 

is Ser310; this residue is conserved (often present as a threonine) and appears 

to be important for the communication between the ATP pocket and the RNA 

pocket. 
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6.6  Summary 

We present the catalytically competent computational model of the SARS-CoV-

2 NSP13 ATP dependent RNA helicase. Our structure is the first to host ATP and 

a single strand RNA with detail to the binding modes of the substrates. 

The analysis of homologous sequences shed light upon the specificity of the 

domain structure of the viral helicase yielding no match over 40% except close 

relatives from the coronaviridae family. Our model features two major 

improvements compared to the apo protein. The ATP pocket was reconstructed 

based on the structural conservation of the most similar crystal structures 

including signature motifs from phosphate-binding proteins such as the DE(AD) 

of helicases, the P loop, or the arginine fingers. Furthermore, we identified the 

main anchoring points of the ssRNA through the helicase, which are essential 

to understand the translocation driving the unwinding activity of NSP13. 

With molecular dynamics, we have verified the stability of conserved 

interactions in our model as well as improved our initial model to host the 

nucleic acid. We assess the flexibility of the ATP pocket with and without the 

nucleotide bound detecting a well-maintained cavity. 

Our work provides insight into one of the viral replication machinery elements, 

ideal for targeting by drug developers. Our structure can be the basis of 

structure-based compound design and screening. Moreover, elaborating the 

RNA translocations driven by the identified interactions can reveal other 

targetable states of the helicase. 
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7.1  Preface 

This work represents an early project I was working during the early years of my 

PhD. The project aimed to understand different types of molecules' behaviour 

while crossing a lipid membrane through molecular dynamic simulations. Using 

the Dynamic Histogram Analysis methods, I predicted the kinetic rates of seven 

know drugs crossing a membrane lipid bilayer and described the molecules' 

orientations using a 2D Markov model approach. The kinetic rates obtained 

from the model agrees with the experimental data. 

My contribution to this work was to analyse the results from umbrella sampling 

simulations using the Dynamic Histogram Analysis method and define their 

preferred orientations while crossing the lipid membrane.  

This work was successfully published in The Journal of Physical Chemistry B: 

Badaoui, M., Kells, A., Molteni, C., Dickson, C. J., Hornak, V., & Rosta, E. (2018). 

Calculating Kinetic Rates and Membrane Permeability from Biased Simulations. 

The Journal of Physical Chemistry B, 122(49), 11571-11578. 
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7.2  Abstract 

We present a simple approach to calculate the kinetic properties of lipid 

membrane crossing processes from biased molecular dynamics simulations. We 

demonstrate that by using biased simulations, one can obtain highly accurate 

kinetic information with significantly reduced computational time. We describe 

how to conveniently calculate the transition rates to enter, cross and exit the 

membrane in terms of mean first passage times. By constructing a Markov 

model from the biased data using the Dynamic Histogram Analysis Method, the 

spectral properties of the resultant model allow for the easy calculation of free 

energy barriers and relaxation times. The permeability coefficients that are 

calculated from the relaxation times are found to correlate highly with 

experimentally calculated values. We show that more generally, certain 

calculated kinetic properties linked to the crossing of the membrane layer (e.g., 

barrier height, barrier crossing rates etc.) are good indicators of ordering drugs 

by permeability. Extending the analysis to a 2-D Markov model allows for a 

physical description of the membrane crossing mechanism. 

7.3  Introduction 

For a drug to be effective, not only has to bind strongly to its target, but it is 

also required to have good ADME (Absorption, Distribution, Metabolism, 

Excretion) profile [206]. An important factor for the absorption and the 

distribution is the drug’s ability to cross the cell membrane to reach its target 

[207]–[209]. This became particularly important for drugs that act in the central 

nervous system and have to cross the blood-brain barrier [206]. This property 

is traditionally estimated by the lipophilicity of the drug. However, taking into 
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account only the lipophilicity of the molecule does not allow to fully understand 

the mechanism of membrane permeation (Figure 7.1), and for this reason, 

subsequent more refined models take into account additional physical 

parameters, such as depth-dependent partitioning and the resistance 

coefficient of the membrane.  

 

Figure 7.1. Representation of the system used in the molecular dynamics 

simulations: a drug molecule (in brown at the center of the image) interacts 

with and passes through a lipid membrane which is surrounded by water. 

For a fully quantitative description, it has become fundamental to predict the 

kinetic behaviour of drugs addressing membrane interaction and permeation 

[206], [210]–[213]. Studies related to the transport of small ligands crossing 

various phospholipid membranes are the subject of increased interest in recent 

years [210], [214]–[217]. There are also significant challenges to investigating 

this behaviour experimentally. Eyer et al. [218] proposed a liposomal 

fluorescence assay method by which the permeation of weak basic drug-like 

solutes across the lipid membrane can be determined. However, details of 

membrane crossing mechanisms at an atomistic level are still missing 

experimentally [218]. Thanks to the dramatic recent development of computer 



Chapter 7 - Calculating Kinetic Rates and Membrane Permeability from Biased 

Simulations 126 

 

technology, molecular dynamics (MD) simulations are now capable of reaching 

biologically significant time scales and are becoming widely used in the 

pharmaceutical industry [213], [219]–[227]. In tandem with the improvement in 

simulation hardware and software, an important role has been played by the 

construction of mathematical models which allow the vast volumes of MD data 

to be processed in a statistically optimal manner. Markov state models (MSMs) 

have emerged as a useful tool for analyzing and understanding the results of 

these simulations. In fact, MSMs allow for the convenient combination of 

multiple MD trajectories into a single kinetic network model from which 

experimental observables and kinetic rates can be computed [211], [217], [228]–

[230]. Using experimentally obtained permeabilities by Eyer et al.[218] across a 

lipid membrane for seven structurally unrelated drugs (Figure 7.2), Dickson et 

al.[231] recently demonstrated that accurate results for the permeability rates 

can be obtained by running long unbiased MD simulations [231].  
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Figure 7.2. Chemical structure of the seven drugs analysed by Eyer et al.[218] 

By using an MSM formalism, kinetic rates of the key steps in membrane crossing 

can then be estimated. However, very large computational resources are 

required for a sufficiently converged set of unbiased simulation trajectories to 

be analysed by MSMs. With the use of enhanced sampling biasing procedures, 

such as umbrella sampling (US), this computational time can be significantly 

reduced. The construction of MSMs from biased simulation data has not been 

traditionally possible. Biased simulations require the potential energy function 

of the system of interest to be modified such that the system is, for example, 

harmonically restrained to a given region of the energy landscape. This method 

is advantageous as it allows sampling of regions which might otherwise not be 

adequately visited during the simulation time. However, the kinetic behaviour 

observed is no longer representative of the true system, and as such, this needs 

to be accounted for when constructing the MSM. A recently derived unbiasing 

method, the dynamic histogram analysis method (DHAM), by Rosta and 

Hummer[232] uses a maximum likelihood estimate of the MSM transition 

probabilities given the observed transition counts during each biased trajectory 

and is found to produce often more accurate results than those of the more 

commonly used weighted histogram analysis method (WHAM) [42]. This 

unbiasing method is the first to use only biased US simulation data to obtain 

kinetic information directly by constructing the unbiased MSM. Here we 

determined the free energy profiles and kinetic rates of crossing a lipid 

membrane for the seven drugs represented in Figure 2 by using US biased 

simulations. All experimental kinetic permeation data used for comparison for 

these seven drug molecules was previously obtained by Eyer et al. [218]. Using 

this kinetic information, we aim to order the drugs according to their 

permeability coefficients (log Perm values). We analysed US simulation data to 

calculate kinetic rates for the entry into the membrane, flipping, and exit from 
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the membrane, and we compared it with that obtained from long unbiased 

simulations. All MD simulation data (unbiased and US biased) was previously 

obtained by Dickson et al. [231]. Here, we reanalysed the US biased data to 

obtain molecular kinetic rates for the membrane permeation using DHAM [232]. 

We found an excellent agreement between the kinetic properties of the drugs 

from US biased simulations compared with those from the combined biased 

and unbiased MD simulations, which are also in agreement with experimental 

permeation measurements, demonstrating that these calculations provide 

accurate in silico kinetic rates for these important dynamical processes. 

Additionally, we analysed the free energy surfaces corresponding to the 

orientations of the seven drug molecules while crossing the membrane by 

determining MSMs on a two-dimensional (2D) surface using DHAM, describing 

in detail the orientation for three of them. This method provides key insights 

into the drug permeation pathways and offers guidance for the design of 

molecules with required kinetic permeation properties. 

7.4  Method 

7.4.1  Markov State Modelling 

An MSM consists of a set of memoryless conditional probabilities between user-

defined discrete states (in our implementation along with a finely discretized 

chosen reaction coordinate z), such that the value of P(j,t|i,0) is the probability 

that the system is in state j at time t given that it was in state i initially. These 

conditional probabilities are typically calculated by determining the transition 

count matrix Cji, which contains the count numbers of the observed transitions 
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from state i to j. The time parameter t is called the lagtime and must be chosen 

sufficiently large such that the Chapman−Kolmogorov test [233] is satisfied (i.e., 

that the relaxation time scales, τ of the system are insensitive to changes in the 

lagtime). To produce an MSM from enhanced sampling simulations in practice, 

we use a reaction coordinate of interest that was also employed to bias the MD 

simulation data. In the context of membrane permeation, it is desired to 

compute the kinetic rates with which the drug undergoes three important 

processes (see Figure 7.1): the rate at which it enters into (kin), crosses (kflip), and 

exits (kout) from the membrane. The corresponding reaction coordinate is the 

distance between the center of mass (COM) of the ligand and the center of the 

lipid membrane (z coordinate as shown in Figure 7.1) was used. Unlike in typical 

MSM models consisting of only metastable states, here we discretized this 

coordinate into bins, where the number of bins is chosen sufficiently large to 

give a finely discretized coordinate but not so large as to give an under-

sampling of transitions between bins. Once the bins have been determined, we 

count the number of observed transitions (𝐶𝑗𝑖
𝑘(𝑡)) between each pair of bins i 

and j in simulation k at the chosen lagtime t, as well as the number of times 

each bin is occupied (𝑛𝑖
𝑘 =  ∑𝐶𝑗𝑖

𝑘(𝑡)) during each simulation k. These values then 

provide the necessary conditional probabilities Mji(t) = P(j,t|i,0). In the simplest 

unbiased case not enforcing detailed balance strictly, the maximum likelihood 

estimates are given by  

𝑀𝑗𝑖(𝑡) =  
∑ 𝐶𝑗𝑖

𝑘(𝑡)𝑗

∑ 𝑛𝑖
𝑘

𝑘

 
(7.1) 
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For biased simulations where a biasing energy of 𝑢𝑖
𝑘 is applied to state i during 

simulation k, we employed the DHAM [232] to compute the unbiased MSM 

from the biased data as given by  

𝑀𝑗𝑖(𝑡) =  
∑ 𝐶𝑗𝑖

𝑘(𝑡)𝑗

∑ 𝑛𝑖
𝑘

𝑘  exp (−
𝑢𝑗

𝑘 − 𝑢𝑖
𝑘

2𝑘𝑏𝑇
)

 
(7.2) 

  

Equation 7.2 reduces to the unbiased equation when the biasing potentials are 

set to zero. Once an MSM has been constructed from simulation data, one is 

typically interested in determining the free energy profile as well as the kinetic 

information (relaxation times and mean first passage times). These quantities 

can be computed directly from the eigenvalues λn and eigenfunctions ψn of the 

transition matrix. All the eigenvalues of the transition matrix with detailed 

balance fall between 1 and 0 and can be arranged in decreasing order 

1 =  𝜆1 >  𝜆2  ≥  …  ≥  𝜆𝑛 > 0 (7.3) 

The largest eigenvalue (equal to 1) gives the equilibrium populations of the 

states of the system (useful to find the free energy), while the second largest 

eigenvalue can be used to determine the time scale of the slowest relaxation 

process in the system via 

𝜏2 =  
−𝑡

ln (𝜆2)
 (7.4) 

The kinetic rates are computed by coarse graining our discretized states and 

the corresponding free energy profile into four regions, the outer water, outer 

membrane, inner membrane, and inner water regions (Figure 7.1), using the 

robust Perron cluster analysis (PCCA+) method [234] following Dickson et al. 

[231]. Once the clusters have been specified, we calculate the rates (kin, kflip, and 

kout) from the Markov matrix as the inverse of the mean first passage times 
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(MFPT) [235] between the regions. The log Perm permeability values are 

typically calculated using Equation 7.5 

Perm =  
𝑘𝑠𝑙𝑜𝑤𝑟

3
 

(7.5) 

where kslow is defined to be the rate of the slowest process in the system, i.e., 

the process which is most significant in describing the decay of the populations 

to equilibrium, and r is the radius of the liposome (100 nm). It should also be 

noted, that in this context, we use a base ten logarithm as is typically used when 

analyzing membrane permeability values. Typically, for membrane crossings, it 

is estimated by setting up a system of equations using the three rates (kin, kflip, 

and kout) as inputs, solving these equations in a kinetic network model and 

fitting the time dependent populations to a biexponential curve. Here we 

propose a simpler and more direct approach to calculate the overall slowest 

relaxation time directly from the original Markov model and obtain a 

corresponding rate for kslow. We compared and demonstrated that this simple 

approach is highly accurate and results in a similar kslow estimate as the 

traditional approach. Recently, a number of advances of DHAM have been 

proposed where detailed balance is included [236]–[238]. We found that 

enforcing detailed balance did not lead to any observable changes in many US 

test cases we studied (data not shown); therefore, here we used the simplest 

original DHAM approach via Equation 2 [232], [236]. 

7.4.2  Simulation Details 

Compounds were modelled with the parm@Frosst force field, a small molecule 

force field that extends AMBER ff99SB [239] and uses conformationally 

averaged AM1-BCC charges; lipids were modelled using the AMBER Lipid14 
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force field and water using the TIP3P model. MD simulations were run with 

AMBER16 and PMEMD CUDA on GPU cards [240]. The starting structures for 

the US simulations were obtained by placing each ligand at the centre of a POPC 

bilayer surrounded by water molecules (72 POPC and 60 water molecules per 

lipid) [241]. Three-dimensional periodic boundary conditions with the usual 

minimum image convention were employed. Energy minimization was 

performed by using the steepest descent method for 5000 steps and using the 

conjugate gradient method for a further 5000 steps. The system was then 

heated from 0 to 100 K using Langevin dynamics within a 5 ps constant volume 

run, with restraints on the drug molecule and lipids using a force constant of 10 

kcal mol−1Å−2. Subsequently, the volume was allowed to change freely, 

increasing the temperature to 303 K. The Langevin collision frequency was γ = 

1 ps−1, and anisotropic Berendsen control of the pressure around 1 atm was 

applied by coupling the periodic box with a time constant of 2 ps for 100 ps. 

The equilibration was completed after an additional 5 ns with the pressure 

relaxation time reduced to 1 ps in NPT, removing the restrain on the lipids. The 

SHAKE algorithm[242] was used to constrain the bonds involving hydrogen, and 

a time step of 2 fs was used. Using a pulling rate of 1 Å/ns, the drugs were then 

pulled out from the center of the system to outside the membrane, for a total 

of 40 Å (force constant of 1.1 kcal mol−1Å−2), in the NPT ensemble with semi-

isotropic pressure scaling. During the simulations, a snapshot was saved every 

1 Å, from the center z = 0 Å to z = 40 Å generating 40 windows. The results 

were calculated for one bilayer leaflet, and it was assumed that the second half 

behaves in the same way. This was achieved by reflecting the data along the z 

axis and adding 39 or 40 windows, depending on whether or not the window 

at z = 0 Å was reflected as well. Each US window was run for 20 ns to allow 

equilibration, followed by additional 80 ns of the production run in NVT 
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condition using an US force constant of 2.5 kcal mol−1Å−2. Configurations were 

recorded every 10 ps. 

7.4.3  2D-DHAM 

Analogously to the 1D case, we constructed a finely discretized 2D grid to 

determine the MSMs along with two reaction coordinates for the seven drugs. 

Specifically, for domperidone, loperamide, and labetalol, we analysed the drug's 

rotational movement during its passage across the membrane.  

 

Figure 7.3. Definition of the Δz coordinate used in our 2D-DHAM analysis. The 

values are obtained by projecting the vector along the drug molecules’ length, 

as shown by the red arrows, onto the z-axis. The vector describing the molecular 

length joins the COM of the circled atoms, as shown for Domperidone (a), 

Labetalol (b), and Loperamide (c). 

As our first reaction coordinate, we used the same z coordinate as previously 

determined (distance from ligand COM to membrane center). For our second 

coordinate, we used the projection of the molecular orientation vector onto the 

z coordinate Δz, as a measurement of the orientation of the ligand with respect 
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to the membrane for two selected regions of the drug molecule along its length. 

Δz is equivalent to the molecular length scaled by the cosine of the angle 

between the z axes of the membrane and the molecular vector defined by the 

two ends of the ligand (Figure 7.3). With the projection along the z axes, we can 

predict the orientations of the molecules, for example when the ligand is 

oriented parallel to the membrane, Δz will be around 0 Å, as both ends are 

equidistant from the membrane, whereas when it is oriented perpendicular, 

then Δz will be equal the end-to-end length of the ligand (around −10 Å). The 

extremities of the ligand can be the COM of distal functional groups (e.g., 

benzene) or single atoms, as shown in Figure 7.3 for the molecules considered 

here. This 2D-DHAM analysis and the 2D free energy surfaces were used to find 

correlations between the rotation of the ligand and its position across the 

membrane, showing how the orientations of the ligand affected the free 

energies while crossing the membrane. 

7.5  Results and Discussion 

7.5.1  MSM Analysis of US Simulations 

Using the Markov modelling methods and US simulation trajectories, the 

relaxation time, τ2, was calculated by constructing MSMs at a range of lagtimes 

up to 300 ps with 1000 bins, as shown in Figure 7.4. Using a recently derived 

method for calculating the limiting relaxation time of an MSM [243], we 

determined the long lagtime limit of the relaxation time for each drug, as shown 

by the dashed lines in Figure 7.4. The relaxation times can be seen to level off 

in the region of lagtimes greater than 100 ps.  
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Figure 7.4. Relaxation time vs lagtime of the seven drugs (Figure 7.2). The 

dashed lines represent the long lagtime limit of the relaxation time obtained 

by a least-squares fitting to the relaxation times in the range of 1−300 ps. 

In the analysis that follows, we chose to use a lagtime of 200 ps, as it is 

sufficiently large for τ2 to be insensitive to the precise choice of the lagtime.  

When calculating the MSMs with bin numbers of 600, 800, and 1000, at our 

chosen lagtime of 200 ps, there is almost no change in the obtained free energy 

profiles. We used 1000 bins for all subsequent analysis. Following this initial 

choice of parameters, seven Markov models were constructed with 1000 bins 

and a lagtime of 200 ps (100 000 simulation steps). This allows us to compute 

the free energy profiles for each drug and draw a comparison with the profiles 

obtained in the unbiased simulations using WHAM (Figure 7.5). Error bars were 

determined by dividing the data into two equal sections, determining the 

profiles independently, and calculating the variance. All of our free energy 

profiles show the same trend as the one calculated by Dickson et al. [231] 

(dotted lines in Figure 7.5) for the combined unbiased and biased MD data, and 

indeed, all of the WHAM predictions fall within the margin of error for the 
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DHAM results. While the PMF changes depending on whether the US window 

at z = 0 Å was reflected or not (Figure 7.5), the log Perm data are essentially 

unchanged. The asymmetry observed in the not fully reflected PMF profiles also 

suggests that longer simulations might be needed to reduce the error at this 

transition region. At the same time, we used a fraction of the data required for 

the unbiased simulations. 
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Figure 7.5. Free energy profiles calculated with DHAM from US simulations 

(solid lines) and WHAM using unbiased MD data (dashed lines). Errors are 

represented by the shaded area for US data. 

 We obtained the kinetics profile using the US data by Dickson et al. [231] with 

a total simulation time of 3.2 μs for each drug, whereas in the work done by 

Dickson et al. [231], the calculation of the kinetic profile required multiple 

unbiased simulations, with a total simulation time of 12.5 μs per drug. By 

analyzing the US data with DHAM, we are able to reduce the total time by at 

least 75% over using unbiased data. 
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7.5.2  Ordering Drugs According To Their 

Permeability 

 

Figure 7.6. Log Perm values determined by the biased and unbiased simulations 

are compared with the experimental values [218]. The correlation in between 

the data sets is comparably high for both the biased and unbiased simulations 

(both have p-values of well below the 5% required to be statistically significant). 

To determine the relative permeability, it is required to compare the rate of the 

slowest occurring process, kslow corresponding to the crossing of the free energy 

barrier at the center of the membrane among the different drug molecules. 

Here, we considered several ways to estimate the relative ordering. First, we can 

use the overall relaxation time corresponding to the second eigenvalue of the 

MSM constructed for each drug using Equation 4. Second, we can make use of 

the free energy profile alone and compare the height of the free energy barrier 

across the different drugs, using an Arrhenius relationship 

𝑘𝑠𝑙𝑜𝑤 = 𝐴𝑒−Δ𝐺‡/𝑘𝐵𝑇 (7.6) 
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Using the relaxation time obtained from the MSM in conjunction with the ΔG‡ 

calculated from the populations, we can determine the Arrhenius prefactor. We 

obtained similar prefactors for all of the drugs, with an average value of 9.72 ± 

5.76 e+07 s−1, 4 orders of magnitude bigger than the typical value of 𝐴 =  
𝑘𝐵𝑇

𝐻
 , 

considering a transmission coefficient close to 1. Third, as the barrier 

corresponds to the flipping process, we can use the rate constants determined 

by MFPT, assuming kslow ≈ kflip. These three methods are each computationally 

simple to implement compared with alternative methods in the field of 

simulating a kinetic system from the calculated rates and performing a 

biexponential fit to the resultant time-dependent probabilities. The biased and 

unbiased calculated log Perm values correlate very well with the experimental 

data (Figure 7.6). The US simulation data displays similar R2 values from the 

linear fit as the original kinetic data. The log Perm values from the combination 

of unbiased and biased potential of mean force (PMF) data with the discrete 

transition-based reweighting analysis method (dTRAM) of Dickson et al. [231] 

mostly lie above the experimental values predicting slightly faster permeation, 

while the biased values are almost all below the line. This slow time scale might 

be because our model was calculated at a larger lagtime. Increasing the lagtime 

will increase the relaxation time and, in turn, decrease the value of the rate of 

the slowest process, resulting in a smaller permeability value. We expect that 

the most accurate simulation-based rate estimates are calculated from all data 

(biased and unbiased) using longer lagtimes. Importantly, the process of 

ordering drugs according to their permeability is insensitive to the precise 

choice of lagtime. This can also be seen from Figure 7.4, where the ordering of 

the lines does not change as a function of the lagtime, predicting the same 

ordering in a lagtime independent manner. This demonstrates that equivalently 

high correlations can be found between the experimental and biased data as 

with the unbiased data. Furthermore, using the simple approach of the 
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relaxation time of the full Markov state model is an appropriate way to order 

the permeability of the drugs. By analyzing various kinetic quantities as 

predictors of the ordering of the drugs by permeability, we found that, in 

general, any sensible choice of the kinetic quantity which is closely related to 

the barrier crossing process will serve as an accurate indicator of drug ordering. 

The MSM relaxation times correlate very well with the calculated free energy 

barriers. The corresponding permeation obtained from the free energy barrier 

heights using an Arrhenius rate expression with a constant prefactor of kBT/ h 

does not match the experimental log Perm values as closely as the MSM 

relaxation times. However, because the R2 calculations are invariant under linear 

transformations, the free energy barrier can also be used to calculate log Perm 

values accurately. If the permeation is investigated using different membrane 

compositions, the Arrhenius prefactor may vary, and a kinetic comparison using 

MSMs might become necessary. 

7.5.3  2D-DHAM 

Using the 2D-DHAM analysis, we calculated the 2D free energy surface of all 

seven drugs. Here we illustrate the results on three of them, domperidone, 

loperamide, and labetalol, focusing on the rotation of the molecules while 

crossing the membrane. We also verified that the free energy barriers from the 

2D-DHAM analysis agree well with 1D-DHAM results. Domperidone (Figure 

7.7a), due to its polar characteristic, has a specific orientation inside the 

membrane. In the surrounding aqueous region, the molecule is free to rotate 

its z position between −40 and −25 Å. Once near the membrane, domperidone 

has a preferential orientation parallel to the surface of the membrane. Between 

the inter lipid region and the polar head (0 Å < z < 20 Å) of the membrane, it 

orientates perpendicular to the z coordinate showing a particular preference 
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where the structure is parallel to the membrane surface. Due to its dipole 

moment, in between the two phospholipidic layers, domperidone switches 

position, preferring a parallel orientation with its more polar end pointing 

toward the water along the z coordinate. This phenomenon is known as solute 

hopping [244]. The second compound, labetalol (Figure 7.7b), has an even 

stronger polar side, due to the presence of both hydroxyl groups and an amide 

group. On the other end, the molecule has a hydrophobic side, showing an 

overall “lipid-like” structure. When the drug is near the polar head of the 

membrane, it keeps its polar region close to the polar side of the membrane. 

Once at the intermembrane layer, it has a rapid interchange of orientation, 

keeping always its polar region close to the polar region of the membrane 

closest to bulk water. Loperamide (see Figure 7.7c) is the most hydrophobic of 

the three drugs, it prefers a specific orientation only when entering the 

membrane, with its hydroxylic group facing the membrane headgroups. 
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Figure 7.7. 2D free energy surfaces of (a) domperidone, (b) labetalol, and (c) 

loperamide along with the absolute z position of the ligand, and the Δz 

coordinate for each molecule (schematic representation of the molecule 
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orientation is also shown). The preferred paths for membrane crossing are 

shown as a function of the molecule orientation (red dotted lines). 

Once entered, it tends to have relatively high rotational freedom. As 

quantitatively assessed by 2D free energy surfaces as a function of the z and Δz 

coordinates, depending on the polarity and symmetry of the molecule, once 

inside the membrane, molecules have specific preferential orientations during 

the passage across the membrane. Several works have already been done to 

analyze the orientation of the ligands while crossing the membrane [245]–[248], 

and our results and general trends from the 2D-DHAM analysis agree with these 

previous works. Polar molecules keep their polar region facing toward the polar 

heads of the membrane, while more lipophilic compounds have a higher 

rotational freedom. Furthermore, polarity and charge distribution also 

determine the orientation of entry and the corresponding free energy pathways 

into the lipid membrane. 

7.6  Conclusion 

We demonstrate that by performing a series of biased simulations of a drug 

molecule near a lipid membrane, highly accurate equilibrium and kinetic 

information can be determined by constructing an MSM using DHAM. This 

gives results which agree closely with experiment and achieve similar levels of 

accuracy as those attained by much longer unbiased MD simulations. 

Furthermore, we present a simpler method for calculating permeability 

coefficients from MD simulation data by calculating the relaxation time directly 

from the MSMs. We also find that if the goal is to order the drugs according to 

permeability, then most kinetic quantities correlate with the free energy barrier 

to cross the membrane, indicating that linear transformations would give an 

excellent approximation to the experimental log Perm value. While this is very 
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promising to order drugs in the same membrane environment, possibly such 

correlation with the barrier height no longer holds across different 

membrane/aqueous environments. We found that the prefactor in the Eyring 

equation differed by about 4 orders of magnitude from kBT/h. This could 

potentially be due to the fact that the diffusion coefficients are very different 

inside the membrane that has a very different dielectric constant than water, or 

it could be due to other factors, including the choice of the reaction coordinates 

affecting the transmission coefficient. Finally, we constructed 2D free energy 

surfaces and corresponding MSMs for three of our drug molecules and 

interpreted the crossing mechanisms in terms of the physical processes 

occurring during the simulations. The molecular properties, i.e., charge 

distribution and lipophilicity, of the solute determine specific rotational 

preferences and pathways during the membrane entrance and crossing 

processes. Our results demonstrate that DHAM is capable of providing accurate 

molecular kinetic information from purely biased simulations. As the range of 

systems with biased simulations is very flexible, we plan to apply this method in 

multiple applications. We can determine unbinding rates in molecular systems, 

such as in host-guest complexes, e.g., the competitive binding of ethanol and 

methanol with cucurbiturils in nanoaggregates of Au nanoparticles in an 

aqueous environment [249] or for catalytic rates of enzyme-catalysed chemical 

reactions, such as the reaction mechanism of lipoxygenases [250]. Future work 

will be addressed to larger ligand permeability data sets, the kinetic prediction 

of ligand-protein unbinding, and other important relevant kinetic processes. 
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Chapter 8 Conclusion and Perspectives 

New drugs are continually required to fight diseases, the most evident example 

is the recent spread of Covid19 pandemic. One of the major bottlenecks in the 

drug discovery process is the lack of 

efficacy. The thermodynamic and kinetic understanding of the interactions 

between a ligand and its target is fundamental to improve the development of 

new drugs. MD simulations can be used as complementary solution to speed 

up the drug discovery process. In this thesis, I have presented several works in 

which the core subject is the study of ligand-protein interactions at atomic 

levels using MD simulations. The aim of the thesis is to provide insights of MD 

methods that can be used in drug discovery, and the effectiveness of these 

methods by applying it to relevant biological systems.  

The first work presented in this thesis represents a state of the art method that 

predict unbinding kinetics of protein ligand complexes. The method consists of 

using enhanced MD simulations to first sample the unbinding reaction path and 

collect valuable information on the mechanism of unbinding. The novelty of the 

method lies in using an automatic way to iteratively add and remove collective 

variables during the unbinding trajectory. The method allows us to discover 

novel interactions not available when collective variables (CVs) are selected a 

priori, using methods where CVs are usually defined from the initial bound 

structure. From the unbinding trajectory we obtain a set of CVs and an 

unbinding path that is then used in conjunction with the well establish finite 

temperature string method to calculate the absolute free energy barrier of the 

unbinding process. The results obtained agree with the experimental data, 

showing how the method can be used as an alternative to other already 
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established methods. Additionally, we focused our attention on the transition 

state ensemble, where using a combination of unbiased MD simulations and a 

novel machine learning analysis, we can identify the most important features 

involved at the TS of the unbinding process. Because the method is fully 

automated, it can be easily applied to any biological system of interest as well 

as to other type of processes.  

The second work presented in this thesis shows how using multiple unbiased 

MD simulations and QM calculations we are able to obtain insight into the 

mechanism of inhibition of two molecules that target the HIV integrase protein. 

Thanks to the collaboration with experimentalists at the Francis Crick Institute, 

we used the coordinates obtained from high-resolution cryo-EM images as the 

starting point for our long unbiased MD simulations. From the analysis of these 

simulations, we were able to understand the reason behind the higher potency 

of the second-generation HIV integrase inhibitors compared to the first-

generation drugs. Additionally, we showed how the presence of two known 

mutations that cause resistance to the first-generation HIV integrase inhibitors 

affects the affinity of the simulated molecules by disrupting the coordination of 

the drugs with the two magnesium ions present in the active site. The results 

obtained from the simulations allow us to better understand the interaction of 

HIV integrase inhibitors and will allow us to design novel more potent drugs to 

treat HIV.  

The next work presented, shows how using a combination of computational 

and experimental works, both carried out by me, we are able to decipher the 

catalytic mechanism of DDL, an important target against Mycobacterium 

Tuberculosis, and to design a set of new molecules that inhibit the activity of 

the protein. By using QM/MM calculations and kinetic experiments on wt and 

single point mutants, we defined which residues are important in the active site 

of the protein. Using this knowledge, we then performed docking calculations 
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and MD simulations using as a library a set of purchasable compounds, testing 

in vitro our best candidates. Our results showed that four tested molecules 

present similar inhibition activity to D-cycloserine, a known FDA-approved drug 

in tuberculosis. The molecules with high inhibition activity will be further tested 

and used as scaffold for the design of novel inhibitors targeting DDL.  

The fourth project presented in this thesis, started as a response to the ongoing 

pandemic of Covid19. The project aimed to present a reliable holo structure of 

the SARS-Covid-19 helicase, aiming to understand the catalytic mechanism of 

the protein and to provide an accurate initial structure for virtual screening. To 

gain key insights into the structure and dynamics of the complete holoenzyme 

in addition to the experimentally available apo protein, we modelled a fully 

assembled complex with both the ATP and ssRNA substrates. We identified 

highly conserved anchoring points in the core of the helicase for polynucleotide 

binding, which are essential to understand the translocation driving the 

unwinding activity of NSP13. We confirmed the stability of the conserved 

interactions through multiple unbiased MD simulations and compared the MD 

results while using multiple force fields. Furthermore, from the simulations 

generated, we were able to discover allosteric pockets that can be used for 

virtual screening allowing the design of possible inhibitors targeting this 

protein.  

Lastly, in Chapter 7, I presented the efficacy of the DHAM method in the case 

of passive membrane permeation of seven known drugs. Here we showed an 

efficient method for calculating permeability coefficients using the data 

obtained from biased and unbiased MD simulations by calculating the 

relaxation time directly from the MSMs. Additionally, by introducing a 2D-

DHAM analysis, we are able to describe the orientation of the ligands while 

crossing the membrane, showing how, according to the functional groups 

present in each molecule, the orientation of the drug changes along the 
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membrane crossing path. The method has been validated with experimental 

results, suggesting that it can be used with larger datasets, or different 

compositions of the lipid bilayer. 

 



 149 

 

References 

[1] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics, 

Vol. III: The new millennium edition: Quantum Mechanics. Hachette UK, 2015. 

[2] J. A. McCammon, B. R. Gelin, and M. Karplus, “Dynamics of folded proteins,” 

Nature, vol. 267, no. 5612, pp. 585–590, 1977, doi: 10.1038/267585a0. 

[3] J. Harvey, Computational Chemistry. Oxford University Press, 2018. 

[4] B. J. Alder and T. E. Wainwright, “Phase transition for a hard sphere system,” The 

Journal of Chemical Physics, vol. 27, no. 5. American Institute of PhysicsAIP, pp. 

1208–1209, Nov. 13, 1957, doi: 10.1063/1.1743957. 

[5] M. Karplus and J. A. McCammon, “Molecular dynamics simulations of 

biomolecules,” Nature Structural Biology, vol. 9, no. 9. pp. 646–652, 2002, doi: 

10.1038/nsb0902-646. 

[6] S. A. Hollingsworth and R. O. Dror, “Molecular Dynamics Simulation for All,” 

Neuron, vol. 99, no. 6. Cell Press, pp. 1129–1143, Sep. 19, 2018, doi: 

10.1016/j.neuron.2018.08.011. 

[7] S. A. Adcock and J. A. McCammon, “Molecular dynamics: Survey of methods for 

simulating the activity of proteins,” Chemical Reviews, vol. 106, no. 5. American 

Chemical Society , pp. 1589–1615, May 2006, doi: 10.1021/cr040426m. 

[8] L. Verlet, “Computer ‘experiments’ on classical fluids. I. Thermodynamical 

properties of Lennard-Jones molecules,” Phys. Rev., vol. 159, no. 1, pp. 98–103, 

Jul. 1967, doi: 10.1103/PhysRev.159.98. 

[9] W. F. Van Gunsteren and H. J. C. Berendsen, “A Leap-Frog Algorithm for 

Stochastic Dynamics,” Mol. Simul., vol. 1, no. 3, pp. 173–185, 1988, doi: 

10.1080/08927028808080941. 

[10] Y. Shao et al., “Advances in molecular quantum chemistry contained in the Q-

Chem 4 program package,” Mol. Phys., vol. 113, no. 2, pp. 184–215, Jan. 2015, 

doi: 10.1080/00268976.2014.952696. 

[11] A. R. Leach and A. R. Leach, Molecular modelling: principles and applications. 

Pearson education, 2001. 

[12] H. C. Andersen, “Rattle: A ‘velocity’ version of the shake algorithm for molecular 

dynamics calculations,” J. Comput. Phys., vol. 52, no. 1, pp. 24–34, Oct. 1983, doi: 



Appendices  150 

 

10.1016/0021-9991(83)90014-1. 

[13] W. D. Cornell et al., “A Second Generation Force Field for the Simulation of 

Proteins, Nucleic Acids, and Organic Molecules,” J. Am. Chem. Soc., vol. 117, no. 

19, pp. 5179–5197, May 1995, doi: 10.1021/ja00124a002. 

[14] C. Oostenbrink, A. Villa, A. E. Mark, and W. F. Van Gunsteren, “A biomolecular 

force field based on the free enthalpy of hydration and solvation: The GROMOS 

force-field parameter sets 53A5 and 53A6,” J. Comput. Chem., vol. 25, no. 13, pp. 

1656–1676, Oct. 2004, doi: 10.1002/jcc.20090. 

[15] W. L. Jorgensen and J. Tirado-Rives, “The OPLS [optimized potentials for liquid 

simulations] potential functions for proteins, energy minimizations for crystals 

of cyclic peptides and crambin,” J. Am. Chem. Soc., vol. 110, no. 6, pp. 1657–

1666, Mar. 1988, doi: 10.1021/ja00214a001. 

[16] A. D. MacKerell et al., “All-Atom Empirical Potential for Molecular Modeling and 

Dynamics Studies of Proteins,” J. Phys. Chem. B, vol. 102, no. 18, pp. 3586–3616, 

Apr. 1998, doi: 10.1021/jp973084f. 

[17] K. Vanommeslaeghe et al., “CHARMM general force field: A force field for drug-

like molecules compatible with the CHARMM all-atom additive biological force 

fields,” J. Comput. Chem., vol. 31, no. 4, pp. 671–690, Mar. 2010, doi: 

10.1002/jcc.21367. 

[18] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, “Development 

and testing of a general Amber force field,” J. Comput. Chem., vol. 25, no. 9, pp. 

1157–1174, Jul. 2004, doi: 10.1002/jcc.20035. 

[19] P. P. Ewald, “Die Berechnung optischer und elektrostatischer Gitterpotentiale,” 

Ann. Phys., vol. 369, no. 3, pp. 253–287, Jan. 1921, doi: 

10.1002/andp.19213690304. 

[20] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, “A 

smooth particle mesh Ewald method,” J. Chem. Phys., vol. 103, no. 19, pp. 8577–

8593, 1995. 

[21] D. Frenkel and B. Smit, Understanding molecular simulation: From algorithms to 

applications. 1996. 

[22] G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling through velocity 

rescaling,” J. Chem. Phys., vol. 126, no. 1, p. 14101, 2007. 

[23] H. C. Andersen, “Molecular dynamics simulations at constant pressure and/or 

temperature,” J. Chem. Phys., vol. 72, no. 4, pp. 2384–2393, Feb. 1980, doi: 

10.1063/1.439486. 

[24] S. Nosé, “A unified formulation of the constant temperature molecular dynamics 

methods,” J. Chem. Phys., vol. 81, no. 1, pp. 511–519, Aug. 1984, doi: 

10.1063/1.447334. 

[25] W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” 

Phys. Rev. A, vol. 31, no. 3, pp. 1695–1697, Mar. 1985, doi: 

10.1103/PhysRevA.31.1695. 



Appendices  151 

 

[26] H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. Dinola, and J. R. Haak, 

“Molecular dynamics with coupling to an external bath,” J. Chem. Phys., vol. 81, 

no. 8, pp. 3684–3690, Aug. 1984, doi: 10.1063/1.448118. 

[27] D. S. Lemons and A. Gythiel, “Paul Langevin’s 1908 paper ‘On the Theory of 

Brownian Motion’ [‘Sur la théorie du mouvement brownien,’ C. R. Acad. Sci. 

(Paris) 146 , 530–533 (1908)],” Am. J. Phys., vol. 65, no. 11, pp. 1079–1081, Jun. 

1997, doi: 10.1119/1.18725. 

[28] H. J. C. C. Berendsen, J. P. M. M. van Postma, W. F. Van Gunsteren, A. DiNola, and 

J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. 

Phys., vol. 81, no. 8, pp. 3684–3690, Oct. 1984, doi: 10.1063/1.448118. 

[29] M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals: A new 

molecular dynamics method,” J. Appl. Phys., vol. 52, no. 12, pp. 7182–7190, 1981. 

[30] G. J. Martyna, D. J. Tobias, and M. L. Klein, “Constant pressure molecular 

dynamics algorithms,” J. Chem. Phys., vol. 101, no. 5, pp. 4177–4189, Aug. 1994, 

doi: 10.1063/1.467468. 

[31] Y. Song and E. A. Mason, “Statistical-mechanical basis for accurate analytical 

equations of state for fluids,” Fluid Phase Equilib., vol. 75, no. C, pp. 105–115, 

Aug. 1992, doi: 10.1016/0378-3812(92)87010-K. 

[32] Y. Duan and P. A. Kollman, “Pathways to a protein folding intermediate observed 

in a 1-microsecond simulation in aqueous solution,” Science (80-. )., vol. 282, no. 

5389, pp. 740–744, Oct. 1998, doi: 10.1126/science.282.5389.740. 

[33] D. E. Shaw et al., “Atomic-level characterization of the structural dynamics of 

proteins,” Science (80-. )., vol. 330, no. 6002, pp. 341–346, Oct. 2010, doi: 

10.1126/science.1187409. 

[34] C. Abrams and G. Bussi, “Enhanced Sampling in Molecular Dynamics Using 

Metadynamics, Replica-Exchange, and Temperature-Acceleration,” Entropy, vol. 

16, no. 1, pp. 163–199, Dec. 2013, doi: 10.3390/e16010163. 

[35] J. C. Phillips et al., “Scalable molecular dynamics on CPU and GPU architectures 

with NAMD,” J. Chem. Phys., vol. 153, no. 4, p. 044130, Jul. 2020, doi: 

10.1063/5.0014475. 

[36] M. De Vivo, M. Masetti, G. Bottegoni, and A. Cavalli, “Role of Molecular Dynamics 

and Related Methods in Drug Discovery,” Journal of Medicinal Chemistry, vol. 

59, no. 9. American Chemical Society, pp. 4035–4061, May 12, 2016, doi: 

10.1021/acs.jmedchem.5b01684. 

[37] G. M. Torrie and J. P. Valleau, “Nonphysical sampling distributions in Monte Carlo 

free-energy estimation: Umbrella sampling,” J. Comput. Phys., vol. 23, no. 2, pp. 

187–199, Feb. 1977, doi: 10.1016/0021-9991(77)90121-8. 

[38] A. Laio and M. Parrinello, “Escaping free-energy minima,” Proc. Natl. Acad. Sci. 

U. S. A., vol. 99, no. 20, pp. 12562–12566, Oct. 2002, doi: 

10.1073/pnas.202427399. 

[39] H. Fukunishi, O. Watanabe, and S. Takada, “On the Hamiltonian replica exchange 



Appendices  152 

 

method for efficient sampling of biomolecular systems: Application to protein 

structure prediction,” J. Chem. Phys., vol. 116, no. 20, pp. 9058–9067, May 2002, 

doi: 10.1063/1.1472510. 

[40] W. E, W. Ren, and E. Vanden-Eijnden, “Finite temperature string method for the 

study of rare events,” J. Phys. Chem. B, vol. 109, no. 14, pp. 6688–6693, Apr. 2005, 

doi: 10.1021/jp0455430. 

[41] J. D. Chodera and F. Noé, “Markov state models of biomolecular conformational 

dynamics,” Curr. Opin. Struct. Biol., vol. 25, pp. 135–144, 2014, doi: 

10.1016/j.sbi.2014.04.002. 

[42] S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, “The 

weighted histogram analysis method for free‐energy calculations on 

biomolecules. I. The method,” J. Comput. Chem., vol. 13, no. 8, pp. 1011–1021, 

Oct. 1992, doi: 10.1002/jcc.540130812. 

[43] E. Rosta and G. Hummer, “Free energies from dynamic weighted histogram 

analysis using unbiased Markov state model,” J. Chem. Theory Comput., vol. 11, 

no. 1, pp. 276–285, Jan. 2015, doi: 10.1021/ct500719p. 

[44] A. M. Ferrenberg and R. H. Swendsen, “New Monte Carlo technique for studying 

phase transitions,” Phys. Rev. Lett., vol. 61, no. 23, pp. 2635–2638, Dec. 1988, doi: 

10.1103/PhysRevLett.61.2635. 

[45] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., vol. 136, 

no. 3B, p. B864, Nov. 1964, doi: 10.1103/PhysRev.136.B864. 

[46] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and 

correlation effects,” Phys. Rev., vol. 140, no. 4A, p. A1133, Nov. 1965, doi: 

10.1103/PhysRev.140.A1133. 

[47] A. D. Becke, “Density-functional thermochemistry. III. The role of exact 

exchange,” J. Chem. Phys., vol. 98, no. 7, pp. 5648–5652, Aug. 1993, doi: 

10.1063/1.464913. 

[48] A. Warshel and M. Levitt, “Theoretical studies of enzymic reactions: Dielectric, 

electrostatic and steric stabilization of the carbonium ion in the reaction of 

lysozyme,” J. Mol. Biol., vol. 103, no. 2, pp. 227–249, May 1976, doi: 

10.1016/0022-2836(76)90311-9. 

[49] O. Barabás et al., “Catalytic mechanism of α-phosphate attack in dUTPase is 

revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR 

spectroscopy and reaction path modelling,” Nucleic Acids Res., vol. 41, no. 22, 

pp. 10542–10555, Dec. 2013, doi: 10.1093/nar/gkt756. 

[50] R. A. Copeland, Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for 

Medicinal Chemists and Pharmacologists: Second Edition. John Wiley and Sons, 

2013. 

[51] R. A. Copeland, “The drug-target residence time model: A 10-year retrospective,” 

Nature Reviews Drug Discovery, vol. 15, no. 2. Nature Publishing Group, pp. 87–

95, Feb. 03, 2016, doi: 10.1038/nrd.2015.18. 



Appendices  153 

 

[52] M. Bernetti, M. Masetti, W. Rocchia, and A. Cavalli, “Kinetics of Drug Binding and 

Residence Time,” Annu. Rev. Phys. Chem. Annu. Rev. Phys. Chem. 2019, vol. 70, 

pp. 143–171, Jun. 2019, doi: 10.1146/annurev-physchem-042018. 

[53] R. A. Copeland, D. L. Pompliano, and T. D. Meek, “Drug–target residence time 

and its implications for lead optimization,” Nat. Rev. Drug Discov., vol. 5, no. 9, 

pp. 730–739, Sep. 2006, doi: 10.1038/nrd2082. 

[54] H. Lu and P. J. Tonge, “Drug-target residence time: Critical information for lead 

optimization,” Current Opinion in Chemical Biology, vol. 14, no. 4. NIH Public 

Access, pp. 467–474, Aug. 2010, doi: 10.1016/j.cbpa.2010.06.176. 

[55] M. Bernetti, A. Cavalli, and L. Mollica, “Protein-ligand (un)binding kinetics as a 

new paradigm for drug discovery at the crossroad between experiments and 

modelling,” MedChemComm, vol. 8, no. 3. Royal Society of Chemistry, pp. 534–

550, Mar. 23, 2017, doi: 10.1039/c6md00581k. 

[56] A. Ruiz-Garcia, M. Bermejo, A. Moss, and V. G. Casabo, “Pharmacokinetics in 

Drug Discovery,” J. Pharm. Sci., vol. 97, no. 2, pp. 654–690, Feb. 2008, doi: 

10.1002/jps.21009. 

[57] D. A. Schuetz et al., “Kinetics for Drug Discovery: an industry-driven effort to 

target drug residence time,” Drug Discovery Today, vol. 22, no. 6. Elsevier Ltd, 

pp. 896–911, Jun. 01, 2017, doi: 10.1016/j.drudis.2017.02.002. 

[58] R. J. Darling and P. A. Brault, “Kinetic exclusion assay technology: 

Characterization of molecular interactions,” Assay and Drug Development 

Technologies, vol. 2, no. 6. Mary Ann Liebert, Inc. 2 Madison Avenue Larchmont, 

NY 10538 USA , pp. 647–657, Dec. 27, 2004, doi: 10.1089/adt.2004.2.647. 

[59] R. H. Rose, S. J. Briddon, and S. J. Hill, “A novel fluorescent histamine H 1 receptor 

antagonist demonstrates the advantage of using fluorescence correlation 

spectroscopy to study the binding of lipophilic ligands,” Br. J. Pharmacol., vol. 

165, no. 6, pp. 1789–1800, Mar. 2012, doi: 10.1111/j.1476-5381.2011.01640.x. 

[60] K. Herrick-Davis, E. Grinde, A. Cowan, and J. E. Mazurkiewicz, “Fluorescence 

correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and 

dopamine receptor dimerization: The oligomer number puzzle,” Mol. 

Pharmacol., vol. 84, no. 4, pp. 630–642, Oct. 2013, doi: 10.1124/mol.113.087072. 

[61] N. J. Bruce, G. K. Ganotra, D. B. Kokh, S. K. Sadiq, and R. C. Wade, “New 

approaches for computing ligand–receptor binding kinetics,” Curr. Opin. Struct. 

Biol., vol. 49, pp. 1–10, Apr. 2018, doi: 10.1016/j.sbi.2017.10.001. 

[62] D. J. Huggins et al., “Biomolecular simulations: From dynamics and mechanisms 

to computational assays of biological activity,” Wiley Interdiscip. Rev. Comput. 

Mol. Sci., vol. 9, no. 3, p. e1393, May 2019, doi: 10.1002/wcms.1393. 

[63] D. Huang and A. Caflisch, “The Free Energy Landscape of Small Molecule 

Unbinding,” PLoS Comput. Biol., vol. 7, no. 2, p. e1002002, Feb. 2011, doi: 

10.1371/journal.pcbi.1002002. 

[64] S. Wolf, B. Lickert, S. Bray, and G. Stock, “Multisecond ligand dissociation 



Appendices  154 

 

dynamics from atomistic simulations,” Nat. Commun., vol. 11, no. 1, Dec. 2020, 

doi: 10.1038/s41467-020-16655-1. 

[65] R. K. Mamidala, V. Ramana, S. G, M. Lingam, R. Gannu, and M. R. Yamsani, 

“Factors Influencing the Design and Performance of Oral Sustained/Controlled 

Release Dosage Forms,” Int. J. Pharm. Sci. Nanotechnol., vol. 2, no. 3, pp. 583–

594, Nov. 2009, doi: 10.37285/ijpsn.2009.2.3.1. 

[66] S. D. Lotz and A. Dickson, “Unbiased Molecular Dynamics of 11 min Timescale 

Drug Unbinding Reveals Transition State Stabilizing Interactions,” J. Am. Chem. 

Soc., vol. 140, no. 2, pp. 618–628, Jan. 2018, doi: 10.1021/jacs.7b08572. 

[67] S. Haldar et al., “A Multiscale Simulation Approach to Modeling Drug-Protein 

Binding Kinetics,” J. Chem. Theory Comput., vol. 14, no. 11, pp. 6093–6101, Nov. 

2018, doi: 10.1021/acs.jctc.8b00687. 

[68] L. W. Votapka, B. R. Jagger, A. L. Heyneman, and R. E. Amaro, “SEEKR: Simulation 

Enabled Estimation of Kinetic Rates, A Computational Tool to Estimate Molecular 

Kinetics and Its Application to Trypsin-Benzamidine Binding,” J. Phys. Chem. B, 

vol. 121, no. 15, pp. 3597–3606, Apr. 2017, doi: 10.1021/acs.jpcb.6b09388. 

[69] P. Tiwary, V. Limongelli, M. Salvalaglio, and M. Parrinello, “Kinetics of protein-

ligand unbinding: Predicting pathways, rates, and rate-limiting steps,” Proc. Natl. 

Acad. Sci. U. S. A., vol. 112, no. 5, pp. E386–E391, Feb. 2015, doi: 

10.1073/pnas.1424461112. 

[70] A. Cavalli, A. Spitaleri, G. Saladino, and F. L. Gervasio, “Investigating drug-target 

association and dissociation mechanisms using metadynamics-based 

algorithms,” Accounts of Chemical Research, vol. 48, no. 2. American Chemical 

Society, pp. 277–285, Feb. 17, 2015, doi: 10.1021/ar500356n. 

[71] D. Branduardi, F. L. Gervasio, and M. Parrinello, “From A to B in free energy 

space,” J. Chem. Phys., vol. 126, no. 5, p. 054103, Feb. 2007, doi: 

10.1063/1.2432340. 

[72] J. Fidelak, J. Juraszek, D. Branduardi, M. Bianciotto, and F. L. Gervasio, “Free-

energy-based methods for binding profile determination in a congeneric series 

of CDK2 inhibitors,” J. Phys. Chem. B, vol. 114, no. 29, pp. 9516–9524, Jul. 2010, 

doi: 10.1021/jp911689r. 

[73] D. A. Schuetz et al., “Predicting Residence Time and Drug Unbinding Pathway 

through Scaled Molecular Dynamics,” J. Chem. Inf. Model., vol. 59, no. 1, pp. 535–

549, Jan. 2019, doi: 10.1021/acs.jcim.8b00614. 

[74] A. M. Capelli and G. Costantino, “Unbinding pathways of VEGFR2 inhibitors 

revealed by steered molecular dynamics,” J. Chem. Inf. Model., vol. 54, no. 11, 

pp. 3124–3136, Nov. 2014, doi: 10.1021/ci500527j. 

[75] Y. Niu, S. Li, D. Pan, H. Liu, and X. Yao, “Computational study on the unbinding 

pathways of B-RAF inhibitors and its implication for the difference of residence 

time: insight from random acceleration and steered molecular dynamics 

simulations.,” Phys. Chem. Chem. Phys., vol. 18, no. 7, pp. 5622–9, Feb. 2016, doi: 

10.1039/c5cp06257h. 



Appendices  155 

 

[76] R. Casasnovas, V. Limongelli, P. Tiwary, P. Carloni, and M. Parrinello, “Unbinding 

Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations,” 

J. Am. Chem. Soc., vol. 139, no. 13, pp. 4780–4788, Apr. 2017, doi: 

10.1021/jacs.6b12950. 

[77] S. K. Lüdemann, V. Lounnas, and R. C. Wade, “How do substrates enter and 

products exit the buried active site of cytochrome P450cam? 1. Random 

expulsion molecular dynamics investigation of ligand access channels and 

mechanisms,” J. Mol. Biol., vol. 303, no. 5, pp. 797–811, Nov. 2000, doi: 

10.1006/jmbi.2000.4154. 

[78] D. B. Kokh et al., “Estimation of Drug-Target Residence Times by τ-Random 

Acceleration Molecular Dynamics Simulations,” J. Chem. Theory Comput., vol. 

14, no. 7, pp. 3859–3869, Jul. 2018, doi: 10.1021/acs.jctc.8b00230. 

[79] J. Juraszek, G. Saladino, T. S. Van Erp, and F. L. Gervasio, “Efficient numerical 

reconstruction of protein folding kinetics with partial path sampling and pathlike 

variables,” Phys. Rev. Lett., vol. 110, no. 10, p. 108106, Mar. 2013, doi: 

10.1103/PhysRevLett.110.108106. 

[80] M. A. Morando et al., “Conformational Selection and Induced Fit Mechanisms in 

the Binding of an Anticancer Drug to the c-Src Kinase,” Sci. Rep., vol. 6, Apr. 

2016, doi: 10.1038/srep24439. 

[81] R. Evans, L. Hovan, G. A. Tribello, B. P. Cossins, C. Estarellas, and F. L. Gervasio, 

“Combining Machine Learning and Enhanced Sampling Techniques for Efficient 

and Accurate Calculation of Absolute Binding Free Energies,” J. Chem. Theory 

Comput., vol. 16, no. 7, pp. 4641–4654, Jul. 2020, doi: 10.1021/acs.jctc.0c00075. 

[82] J. Rydzewski and O. Valsson, “Finding multiple reaction pathways of ligand 

unbinding,” J. Chem. Phys., vol. 150, no. 22, p. 221101, Jun. 2019, doi: 

10.1063/1.5108638. 

[83] E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral, “Constrained reaction 

coordinate dynamics for the simulation of rare events,” Chem. Phys. Lett., vol. 

156, no. 5, pp. 472–477, Apr. 1989, doi: 10.1016/S0009-2614(89)87314-2. 

[84] L. Hovan, F. Comitani, and F. L. Gervasio, “Defining an Optimal Metric for the 

Path Collective Variables,” J. Chem. Theory Comput., vol. 15, no. 1, pp. 25–32, 

Jan. 2019, doi: 10.1021/acs.jctc.8b00563. 

[85] E. Rosta, M. Nowotny, W. Yang, and G. Hummer, “Catalytic mechanism of RNA 

backbone cleavage by ribonuclease H from quantum mechanics/molecular 

mechanics simulations,” J. Am. Chem. Soc., vol. 133, no. 23, pp. 8934–8941, Jun. 

2011, doi: 10.1021/ja200173a. 

[86] H. Jung, R. Covino, and G. Hummer, “Artificial Intelligence Assists Discovery of 

Reaction Coordinates and Mechanisms from Molecular Dynamics Simulations,” 

arXiv, Jan. 2019. Accessed: Feb. 25, 2021. [Online]. Available: 

http://arxiv.org/abs/1901.04595. 

[87] F. Noé, A. Tkatchenko, K.-R. Müller, and C. Clementi, “Machine learning for 

molecular simulation,” Annu. Rev. Phys. Chem., vol. 71, pp. 361–390, Nov. 2019, 



Appendices  156 

 

doi: 10.1146/annurev-physchem-042018-052331. 

[88] A. Glielmo, B. E. Husic, A. Rodriguez, C. Clementi, F. Noé, and A. Laio, 

“Unsupervised Learning Methods for Molecular Simulation Data,” Chemical 

Reviews. American Chemical Society, 2021, doi: 10.1021/acs.chemrev.0c01195. 

[89] J. B. Dunbar et al., “CSAR data set release 2012: Ligands, affinities, complexes, 

and docking decoys,” J. Chem. Inf. Model., vol. 53, no. 8, pp. 1842–1852, Aug. 

2013, doi: 10.1021/ci4000486. 

[90] J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, and C. 

Simmerling, “ff14SB: Improving the Accuracy of Protein Side Chain and 

Backbone Parameters from ff99SB,” J. Chem. Theory Comput., vol. 11, no. 8, pp. 

3696–3713, Jul. 2015, doi: 10.1021/acs.jctc.5b00255. 

[91] M. J. Frisch et al., “Gaussian 09 Revision E.” Gaussian, Inc., Wallingford CT, 2016, 

[Online]. Available: http://gaussian.com/. 

[92] J. C. Phillips et al., Scalable molecular dynamics with NAMD, vol. 26, no. 16. John 

Wiley and Sons Inc., 2005, pp. 1781–1802. 

[93] I. Lans et al., “Theoretical study of the mechanism of the hydride transfer 

between ferredoxin-NADP+ reductase and NADP+: The role of Tyr303,” J. Am. 

Chem. Soc., vol. 134, no. 50, pp. 20544–20553, Dec. 2012, doi: 

10.1021/ja310331v. 

[94] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. 

Res., vol. 12, no. 85, pp. 2825–2830, 2011, [Online]. Available: 

http://jmlr.org/papers/v12/pedregosa11a.html. 

[95] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, “Deep neural nets as a 

method for quantitative structure-activity relationships,” J. Chem. Inf. Model., 

vol. 55, no. 2, pp. 263–274, Feb. 2015, doi: 10.1021/ci500747n. 

[96] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann 

Machines.” 

[97] H. Wang et al., “Exploring the Reaction Mechanism of HIV Reverse Transcriptase 

with a Nucleotide Substrate,” J. Phys. Chem. B, vol. 124, no. 21, pp. 4270–4283, 

May 2020, doi: 10.1021/acs.jpcb.0c02632. 

[98] V. Ovchinnikov, M. Karplus, and E. Vanden-Eijnden, “Free energy of 

conformational transition paths in biomolecules: The string method and its 

application to myosin VI,” J. Chem. Phys., vol. 134, no. 8, p. 85103, Feb. 2011, doi: 

10.1063/1.3544209. 

[99] Y. Li et al., “Insights on structural characteristics and ligand binding mechanisms 

of CDK2,” International Journal of Molecular Sciences, vol. 16, no. 5. MDPI AG, 

pp. 9314–9340, Apr. 23, 2015, doi: 10.3390/ijms16059314. 

[100] K. Anstett, B. Brenner, T. Mesplede, and M. A. Wainberg, “HIV drug resistance 

against strand transfer integrase inhibitors,” Retrovirology, vol. 14, no. 1. BioMed 

Central Ltd., p. 36, Jun. 05, 2017, doi: 10.1186/s12977-017-0360-7. 

[101] B. A. Johns et al., “Carbamoyl pyridone HIV-1 integrase inhibitors 3. A 



Appendices  157 

 

diastereomeric approach to chiral nonracemic tricyclic ring systems and the 

discovery of dolutegravir (S/GSK1349572) and (S/GSK1265744),” J. Med. Chem., 

vol. 56, no. 14, pp. 5901–5916, Jul. 2013, doi: 10.1021/jm400645w. 

[102] M. Oliveira et al., “Selective resistance profiles emerging in patient-derived 

clinical isolates with cabotegravir, bictegravir, dolutegravir, and elvitegravir,” 

Retrovirology, vol. 15, no. 1, p. 56, Aug. 2018, doi: 10.1186/s12977-018-0440-3. 

[103] S. J. Smith, X. Z. Zhao, T. R. Burke, and S. H. Hughes, “Efficacies of Cabotegravir 

and Bictegravir against drug-resistant HIV-1 integrase mutants,” Retrovirology, 

vol. 15, no. 1, p. 37, May 2018, doi: 10.1186/s12977-018-0420-7. 

[104] H. T. Pham et al., “The s230r integrase substitution associated with virus load 

rebound during dolutegravir monotherapy confers low-level resistance to 

integrase strand-transfer inhibitors,” J. Infect. Dis., vol. 218, no. 5, pp. 698–706, 

Jul. 2018, doi: 10.1093/infdis/jiy175. 

[105] I. E. A. Wijting et al., “HIV-1 resistance dynamics in patients with virologic failure 

to dolutegravir maintenance monotherapy,” J. Infect. Dis., vol. 218, no. 5, pp. 

688–697, Jul. 2018, doi: 10.1093/infdis/jiy176. 

[106] W. W. Zhang, P. K. Cheung, N. Oliveira, M. A. Robbins, P. Richard Harrigan, and 

A. Shahid, “Accumulation of multiple mutations in vivo confers cross-resistance 

to new and existing integrase inhibitors,” J. Infect. Dis., vol. 218, no. 11, pp. 1773–

1776, Oct. 2018, doi: 10.1093/infdis/jiy428. 

[107] S. Hare, S. S. Gupta, E. Valkov, A. Engelman, and P. Cherepanov, “Retroviral 

intasome assembly and inhibition of DNA strand transfer,” Nature, vol. 464, no. 

7286, pp. 232–236, Mar. 2010, doi: 10.1038/nature08784. 

[108] D. O. Passos et al., “Cryo-EM structures and atomic model of the HIV-1 strand 

transfer complex intasome,” Science (80-. )., vol. 355, no. 6320, pp. 89–92, Jan. 

2017, doi: 10.1126/science.aah5163. 

[109] S. Ahuka-Mundeke et al., “Full-length genome sequence of a simian 

immunodeficiency virus (SIV) infecting a captive agile mangabey (Cercocebus 

agilis) is closely related to SIVrcm infecting wild red-capped mangabeys 

(Cercocebus torquatus) in Cameroon,” J. Gen. Virol., vol. 91, no. 12, pp. 2959–

2964, 2010, doi: 10.1099/vir.0.025767-0. 

[110] P. M. Sharp, G. M. Shaw, and B. H. Hahn, “Simian Immunodeficiency Virus 

Infection of Chimpanzees,” J. Virol., vol. 79, no. 7, pp. 3891–3902, Apr. 2005, doi: 

10.1128/jvi.79.7.3891-3902.2005. 

[111] P. Cherepanov, “LEDGF/p75 interacts with divergent lentiviral integrases and 

modulates their enzymatic activity in vitro,” Nucleic Acids Res., vol. 35, no. 1, pp. 

113–124, Jan. 2007, doi: 10.1093/nar/gkl885. 

[112] S. Hare, M. C. Shun, S. S. Gupta, E. Valkov, A. Engelman, and P. Cherepanov, “A 

novel co-crystal structure affords the design of gain-of-function lentiviral 

integrase mutants in the presence of modified PSIP1/LEDGF/p75,” PLoS Pathog., 

vol. 5, no. 1, pp. e1000259–e1000259, Jan. 2009, doi: 

10.1371/journal.ppat.1000259. 



Appendices  158 

 

[113] A. Ballandras-Colas et al., “A supramolecular assembly mediates lentiviral DNA 

integration,” Science (80-. )., vol. 355, no. 6320, pp. 93–95, Jan. 2017, doi: 

10.1126/science.aah7002. 

[114] A. S. Espeseth et al., “HIV-1 integrase inhibitors that compete with the target 

DNA substrate define a unique strand transfer conformation for integrase,” Proc. 

Natl. Acad. Sci. U. S. A., vol. 97, no. 21, pp. 11244–11249, Oct. 2000, doi: 

10.1073/pnas.200139397. 

[115] W. M. Konsavage, S. Burkholder, M. Sudol, A. L. Harper, and M. Katzman, “A 

Substitution in Rous Sarcoma Virus Integrase That Separates Its Two Biologically 

Relevant Enzymatic Activities,” J. Virol., vol. 79, no. 8, pp. 4691–4699, Apr. 2005, 

doi: 10.1128/jvi.79.8.4691-4699.2005. 

[116] M. G. Nowak, M. Sudol, N. E. Lee, W. M. Konsavage, and M. Katzman, “Identifying 

amino acid residues that contribute to the cellular-DNA binding site on retroviral 

integrase,” Virology, vol. 389, no. 1–2, pp. 141–148, 2009, doi: 

10.1016/j.virol.2009.04.014. 

[117] G. N. Maertens, S. Hare, and P. Cherepanov, “The mechanism of retroviral 

integration from X-ray structures of its key intermediates,” Nature, vol. 468, no. 

7321, pp. 326–329, Nov. 2010, doi: 10.1038/nature09517. 

[118] R. W. Shafer, “Rationale and uses of a public HIV drug-resistance database,” in 

Journal of Infectious Diseases, Sep. 2006, vol. 194, no. SUPPL. 1, doi: 

10.1086/505356. 

[119] J. M. George et al., “Rapid Development of High-Level Resistance to Dolutegravir 

with Emergence of T97A Mutation in 2 Treatment-Experienced Individuals with 

Baseline Partial Sensitivity to Dolutegravir,” Open Forum Infect. Dis., vol. 5, no. 

10, Oct. 2018, doi: 10.1093/ofid/ofy221. 

[120] K. E. Hightower et al., “Dolutegravir (S/GSK1349572) exhibits significantly slower 

dissociation than raltegravir and elvitegravir from wild-type and integrase 

inhibitor-resistant HIV-1 integrase-DNA complexes,” Antimicrob. Agents 

Chemother., vol. 55, no. 10, pp. 4552–4559, Oct. 2011, doi: 10.1128/AAC.00157-

11. 

[121] D. Blow, “More of the catalytic triad,” Nature, vol. 343, no. 6260. pp. 694–695, 

1990, doi: 10.1038/343694a0. 

[122] J. C. Marx, J. Poncin, J. P. Simorre, P. W. Ramteke, and G. Feller, “The noncatalytic 

triad of α-amylases: A novel structural motif involved in conformational 

stability,” Proteins Struct. Funct. Genet., vol. 70, no. 2, pp. 320–328, Feb. 2008, 

doi: 10.1002/prot.21594. 

[123] M. E. Maguire and J. A. Cowan, “Magnesium chemistry and biochemistry,” 

BioMetals, vol. 15, no. 3. pp. 203–210, 2002, doi: 10.1023/A:1016058229972. 

[124] M. M. Harding, “Geometry of metal-ligand interactions in proteins,” Acta 

Crystallogr. Sect. D Biol. Crystallogr., vol. 57, no. 3, pp. 401–411, 2001, doi: 

10.1107/S0907444900019168. 



Appendices  159 

 

[125] C. M. Breneman and K. B. Wiberg, “Determining atom‐centered monopoles from 

molecular electrostatic potentials. The need for high sampling density in 

formamide conformational analysis,” J. Comput. Chem., vol. 11, no. 3, pp. 361–

373, Apr. 1990, doi: 10.1002/jcc.540110311. 

[126] J. Da Chai and M. Head-Gordon, “Long-range corrected hybrid density 

functionals with damped atom-atom dispersion corrections,” Phys. Chem. Chem. 

Phys., vol. 10, no. 44, pp. 6615–6620, Nov. 2008, doi: 10.1039/b810189b. 

[127] F. Weigend and R. Ahlrichs, “Balanced basis sets of split valence, triple zeta 

valence and quadruple zeta valence quality for H to Rn: Design and assessment 

of accuracy,” Phys. Chem. Chem. Phys., vol. 7, no. 18, pp. 3297–3305, Sep. 2005, 

doi: 10.1039/b508541a. 

[128] S. E. Feller, Y. Zhang, R. W. Pastor, and B. R. Brooks, “Constant pressure molecular 

dynamics simulation: The Langevin piston method,” J. Chem. Phys., vol. 103, no. 

11, pp. 4613–4621, Jun. 1995, doi: 10.1063/1.470648. 

[129] T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N log (N) method 

for Ewald sums in large systems,” J. Chem. Phys., vol. 98, no. 12, pp. 10089–

10092, 1993. 

[130] R. B. Best et al., “Optimization of the additive CHARMM all-atom protein force 

field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and 

χ2 Dihedral Angles,” J. Chem. Theory Comput., vol. 8, no. 9, pp. 3257–3273, Sep. 

2012, doi: 10.1021/ct300400x. 

[131] M. M. Francl et al., “Self-consistent molecular orbital methods. XXIII. A 

polarization-type basis set for second-row elements,” J. Chem. Phys., vol. 77, no. 

7, pp. 3654–3665, 1982, doi: 10.1063/1.444267. 

[132] B. R. Brooks et al., “CHARMM: The biomolecular simulation program,” J. Comput. 

Chem., vol. 30, no. 10, pp. 1545–1614, Jul. 2009, doi: 10.1002/jcc.21287. 

[133] C. M. Smith and G. G. Hall, “The approximation of electron densities,” Theor. 

Chim. Acta, vol. 69, no. 1, pp. 63–69, Jan. 1986, doi: 10.1007/BF00526293. 

[134] A. E. Reed, R. B. Weinstock, and F. Weinhold, “Natural population analysis,” J. 

Chem. Phys., vol. 83, no. 2, pp. 735–746, 1985, doi: 10.1063/1.449486. 

[135] A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular Interactions from a 

Natural Bond Orbital, Donor—Acceptor Viewpoint,” Chem. Rev., vol. 88, no. 6, 

pp. 899–926, Sep. 1988, doi: 10.1021/cr00088a005. 

[136] S. R. Kimura, H. P. Hu, A. M. Ruvinsky, W. Sherman, and A. D. Favia, “Deciphering 

Cryptic Binding Sites on Proteins by Mixed-Solvent Molecular Dynamics,” J. 

Chem. Inf. Model., vol. 57, no. 6, pp. 1388–1401, Jun. 2017, doi: 

10.1021/acs.jcim.6b00623. 

[137] M. Pai et al., “Tuberculosis,” Nature Reviews Disease Primers, vol. 2, no. 1. Nature 

Publishing Group, pp. 1–23, Oct. 27, 2016, doi: 10.1038/nrdp.2016.76. 

[138] G. D. Wright and C. T. Walsh, “D-Alanyl-D-alanine Ligases and the Molecular 

Mechanism of Vancomycin Resistance,” 1992. Accessed: Nov. 27, 2020. [Online]. 



Appendices  160 

 

Available: https://pubs.acs.org/sharingguidelines. 

[139] M. V. Fawaz, M. E. Topper, and S. M. Firestine, “The ATP-grasp enzymes,” Bioorg. 

Chem., vol. 39, no. 5–6, pp. 185–191, 2011, doi: 10.1016/j.bioorg.2011.08.004. 

[140] J. L. Pederick, A. P. Thompson, S. G. Bell, and J. B. Bruning, “D-alanine–D-alanine 

ligase as a model for the activation of ATP-grasp enzymes by monovalent 

cations,” J. Biol. Chem., vol. 295, no. 23, pp. 7894–7904, Apr. 2020, doi: 

10.1074/JBC.RA120.012936. 

[141] Y. Li et al., “Cycloserine for treatment of multidrug-resistant tuberculosis: A 

retrospective cohort study in China,” Infect. Drug Resist., vol. 12, pp. 721–731, 

2019, doi: 10.2147/IDR.S195555. 

[142] S. Halouska, R. J. Fenton, D. K. Zinniel, D. D. Marshall, R. G. Barletta, and R. Powers, 

“Metabolomics analysis identifies d-alanine-d-alanine ligase as the primary 

lethal target of d-cycloserine in mycobacteria,” J. Proteome Res., vol. 13, no. 2, 

pp. 1065–1076, Feb. 2014, doi: 10.1021/pr4010579. 

[143] G. A. Prosser and L. P. S. Carvalho, “Kinetic mechanism and inhibition of M 

ycobacterium tuberculosis d‐alanine: d‐alanine ligase by the antibiotic d‐

cycloserine,” FEBS J., vol. 280, no. 4, pp. 1150–1166, Feb. 2013, doi: 

10.1111/febs.12108. 

[144] M. Hrast, B. Vehar, S. Turk, J. Konc, S. Gobec, and D. Janežič, “Function of the D -

alanine: D -alanine ligase lid loop: A molecular modeling and bioactivity study,” 

J. Med. Chem., vol. 55, no. 15, pp. 6849–6856, Aug. 2012, doi: 

10.1021/jm3006965. 

[145] V. Škedelj et al., “6-Arylpyrido[2,3-d]pyrimidines as novel ATP-competitive 

inhibitors of bacterial D-Alanine:D-Alanine ligase,” PLoS One, vol. 7, no. 8, p. 

e39922, Aug. 2012, doi: 10.1371/journal.pone.0039922. 

[146] S. Liu et al., “Allosteric inhibition of Staphylococcus aureus D-alanine:D-alanine 

ligase revealed by crystallographic studies,” Proc. Natl. Acad. Sci. U. S. A., vol. 

103, no. 41, pp. 15178–15183, Oct. 2006, doi: 10.1073/pnas.0604905103. 

[147] W. H. Parsons et al., “Phosphinic Acid Inhibitors of D-Alanyl-D-Alanine Ligase,” 

J. Med. Chem., vol. 31, no. 9, pp. 1772–1778, Sep. 1988, doi: 

10.1021/jm00117a017. 

[148] A. Kovač et al., “Discovery of new inhibitors of D-alanine:D-alanine ligase by 

structure-based virtual screening,” J. Med. Chem., vol. 51, no. 23, pp. 7442–7448, 

Dec. 2008, doi: 10.1021/jm800726b. 

[149] A. Kovač et al., “Diazenedicarboxamides as inhibitors of d-alanine-d-alanine 

ligase (Ddl),” Bioorganic Med. Chem. Lett., vol. 17, no. 7, pp. 2047–2054, Apr. 

2007, doi: 10.1016/j.bmcl.2007.01.015. 

[150] L. S. Mullins, L. E. Zawadzke, C. T. Walsh, and F. M. Raushel, “Kinetic evidence for 

the formation of D-alanyl phosphate in the mechanism of D-alanyl-D-alanine 

ligase,” J. Biol. Chem., vol. 265, no. 16, pp. 8993–8998, 1990, Accessed: Jul. 08, 

2020. [Online]. Available: https://www.jbc.org/content/265/16/8993.short. 



Appendices  161 

 

[151] Y. Shi and C. T. Walsh, “Active Site Mapping of Escherichia coli D-Ala-D-Ala 

Ligase by Structure-Based Mutagenesis,” Biochemistry, vol. 34, no. 9, pp. 2768–

2776, 1995, doi: 10.1021/bi00009a005. 

[152] N. Fernandez-Fuentes, C. J. Madrid-Aliste, B. K. Rai, J. E. Fajardo, and A. Fiser, 

“M4T: A comparative protein structure modeling server,” Nucleic Acids Res., vol. 

35, no. SUPPL.2, p. W363, Jul. 2007, doi: 10.1093/nar/gkm341. 

[153] S. Jo, T. Kim, V. G. Iyer, and W. Im, “CHARMM-GUI: A web-based graphical user 

interface for CHARMM,” J. Comput. Chem., vol. 29, no. 11, pp. 1859–1865, Aug. 

2008, doi: 10.1002/jcc.20945. 

[154] J. Huang and A. D. Mackerell, “CHARMM36 all-atom additive protein force field: 

Validation based on comparison to NMR data,” J. Comput. Chem., vol. 34, no. 

25, pp. 2135–2145, Sep. 2013, doi: 10.1002/jcc.23354. 

[155] A. D. Becke, “Density-functional thermochemistry. III. The role of exact 

exchange,” J. Chem. Phys., vol. 98, no. 7, pp. 5648–5652, 1993, doi: 

10.1063/1.464913. 

[156] H. L. Woodcock, M. Hodošček, A. T. B. Gilbert, P. M. W. Gill, H. F. Schaefer, and B. 

R. Brooks, “Interfacing Q-Chem and CHARMM to perform QM/MM reaction 

path calculations,” J. Comput. Chem., vol. 28, no. 9, pp. 1485–1502, Jul. 2007, doi: 

10.1002/jcc.20587. 

[157] R. A. Friesner et al., “Extra precision glide: Docking and scoring incorporating a 

model of hydrophobic enclosure for protein-ligand complexes,” J. Med. Chem., 

vol. 49, no. 21, pp. 6177–6196, Oct. 2006, doi: 10.1021/jm051256o. 

[158] K. J. Bowers et al., “Scalable algorithms for molecular dynamics simulations on 

commodity clusters,” SC ’06 Proc. 2006 ACM/IEEE Conf. Supercomput., 2006, 

Accessed: Dec. 06, 2020. [Online]. Available: 

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.98.2121. 

[159] W. L. Jorgensen and J. Tirado-Rives, “The OPLS Potential Functions for Proteins. 

Energy Minimizations for Crystals of Cyclic Peptides and Crambin,” J. Am. Chem. 

Soc., vol. 110, no. 6, pp. 1657–1666, 1988, doi: 10.1021/ja00214a001. 

[160] A. Warshel, G. Naray-Szabo, F. Sussman, and J. K. Hwang, “How do serine 

proteases really work?,” Biochemistry, vol. 28, no. 9, pp. 3629–3637, May 1989, 

doi: 10.1021/bi00435a001. 

[161] G. A. Prosser and L. P. S. De Carvalho, “Kinetic mechanism and inhibition of 

Mycobacterium tuberculosis d-alanine: D-alanine ligase by the antibiotic d-

cycloserine,” FEBS J., vol. 280, no. 4, pp. 1150–1166, Feb. 2013, doi: 

10.1111/febs.12108. 

[162] “U.S. Food and Drug Administration: Coronavirus Disease 2019 (COVID-19) EUA 

Information,” U.S. Food and Drug Administration, 2021. 

https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-

regulatory-and-policy-framework/emergency-use-authorization#coviddrugs. 

[163] EMA, “First COVID-19 treatment recommended for EU authorisation,” 2020. 



Appendices  162 

 

https://www.ema.europa.eu/en/news/first-covid-19-treatment-recommended-

eu-authorisation. 

[164] K. A. Ivanov, V. Thiel, J. C. Dobbe, Y. van der Meer, E. J. Snijder, and J. Ziebuhr, 

“Multiple Enzymatic Activities Associated with Severe Acute Respiratory 

Syndrome Coronavirus Helicase,” J. Virol., vol. 78, no. 11, pp. 5619–5632, Jun. 

2004, doi: 10.1128/JVI.78.11.5619-5632.2004. 

[165] J. A. Tanner et al., “The severe acute respiratory syndrome (SARS) coronavirus 

NTPase/helicase belongs to a distinct class of 5′ to 3′ viral helicases,” J. Biol. 

Chem., vol. 278, no. 41, pp. 39578–39582, Oct. 2003, doi: 

10.1074/jbc.C300328200. 

[166] A. D. Kwong, B. G. Rao, and K. T. Jeang, “Viral and cellular RNA helicases as 

antiviral targets,” Nat. Rev. Drug Discov., vol. 4, no. 10, pp. 845–853, 2005, doi: 

10.1038/nrd1853. 

[167] J. Chen et al., “Structural basis for helicase-polymerase coupling in the SARS-

CoV-2 replication-transcription complex,” Cell, vol. 182, no. 6, pp. 1560–1573, 

Jul. 2020, doi: 10.1016/j.cell.2020.07.033. 

[168] Q. Peng et al., “Structural and Biochemical Characterization of the nsp12-nsp7-

nsp8 Core Polymerase Complex from SARS-CoV-2,” Cell Rep., vol. 31, no. 11, p. 

107774, Jun. 2020, doi: 10.1016/j.celrep.2020.107774. 

[169] W. Yin et al., “Structural basis for inhibition of the RNA-dependent RNA 

polymerase from SARS-CoV-2 by remdesivir,” Science (80-. )., vol. 368, no. 6498, 

pp. 1499–1504, Jun. 2020, doi: 10.1126/science.abc1560. 

[170] Z. Jia et al., “Delicate structural coordination of the Severe Acute Respiratory 

Syndrome coronavirus Nsp13 upon ATP hydrolysis,” Nucleic Acids Res., vol. 47, 

no. 12, pp. 6538–6550, Jul. 2019, doi: 10.1093/nar/gkz409. 

[171] M. Hoffmann et al., “Three dimensional model of severe acute respiratory 

syndrome coronavirus helicase ATPase catalytic domain and molecular design 

of severe acute respiratory syndrome coronavirus helicase inhibitors,” J. Comput. 

Aided. Mol. Des., vol. 20, no. 5, pp. 305–319, May 2006, doi: 10.1007/s10822-

006-9057-z. 

[172] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local 

alignment search tool,” J. Mol. Biol., vol. 215, no. 3, pp. 403–410, Oct. 1990, doi: 

10.1016/S0022-2836(05)80360-2. 

[173] A. S. Konagurthu, J. C. Whisstock, P. J. Stuckey, and A. M. Lesk, “MUSTANG: A 

Multiple Structural Alignment Algorithm.” 

[174] S. Chakrabarti et al., “Molecular Mechanisms for the RNA-Dependent ATPase 

Activity of Upf1 and Its Regulation by Upf2,” Mol. Cell, vol. 41, no. 6, pp. 693–

703, Mar. 2011, doi: 10.1016/j.molcel.2011.02.010. 

[175] Y.-S. Law et al., “Structural insights into RNA recognition by the Chikungunya 

virus nsP2 helicase,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 19, pp. 9558–9567, 

May 2019, doi: 10.1073/pnas.1900656116. 



Appendices  163 

 

[176] J. C. Phillips et al., “Scalable molecular dynamics on CPU and GPU architectures 

with NAMD,” J. Chem. Phys., vol. 153, no. 4, p. 044130, Jul. 2020, doi: 

10.1063/5.0014475. 

[177] A. D. MacKerell et al., “All-Atom Empirical Potential for Molecular Modeling and 

Dynamics Studies of Proteins,” J. Phys. Chem. B, vol. 102, no. 18, pp. 3586–3616, 

Apr. 1998, doi: 10.1021/jp973084f. 

[178] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, 

“Comparison of simple potential functions for simulating liquid water,” J. Chem. 

Phys., vol. 79, no. 2, pp. 926–935, Jul. 1983, doi: 10.1063/1.445869. 

[179] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. 

Berendsen, “GROMACS: fast, flexible, and free,” J. Comput. Chem., vol. 26, no. 

16, pp. 1701–1718, 2005. 

[180] B. Hess, C. Kutzner, D. Van Der Spoel, and E. Lindahl, “GROMACS 4: algorithms 

for highly efficient, load-balanced, and scalable molecular simulation,” J. Chem. 

Theory Comput., vol. 4, no. 3, pp. 435–447, 2008. 

[181] S. Pronk et al., “GROMACS 4.5: a high-throughput and highly parallel open 

source molecular simulation toolkit.,” Bioinformatics, vol. 29, no. 7, pp. 845–854, 

2013, doi: 10.1093/bioinformatics/btt055. 

[182] M. J. Abraham et al., “Gromacs: High performance molecular simulations 

through multi-level parallelism from laptops to supercomputers,” SoftwareX, 

2015, doi: 10.1016/j.softx.2015.06.001. 

[183] A. Pérez et al., “Refinement of the AMBER force field for nucleic acids: Improving 

the description of α/γ conformers,” Biophys. J., 2007, doi: 

10.1529/biophysj.106.097782. 

[184] M. Zgarbová et al., “Refinement of the Cornell et al. Nucleic Acids Force Field 

Based on Reference Quantum Chemical Calculations of Glycosidic Torsion 

Profiles,” J. Chem. Theory Comput., vol. 7, no. 9, pp. 2886–2902, Aug. 2011, doi: 

10.1021/ct200162x. 

[185] J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, and C. 

Simmerling, “ff14SB: Improving the Accuracy of Protein Side Chain and 

Backbone Parameters from ff99SB.,” J Chem Theory Comput, vol. 11, no. 8, pp. 

3696–3713, 2015, doi: 10.1021/acs.jctc.5b00255. 

[186] M. B. Peters, Y. Yang, B. Wang, L. Füsti-Molnár, M. N. Weaver, and K. M. Merz, 

“Structural Survey of Zinc-Containing Proteins and Development of the Zinc 

AMBER Force Field (ZAFF),” J. Chem. Theory Comput., vol. 6, no. 9, pp. 2935–

2947, Aug. 2010, doi: 10.1021/ct1002626. 

[187] I. S. Joung and T. E. Cheatham, “Determination of Alkali and Halide Monovalent 

Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations,” J. Phys. 

Chem. B, vol. 112, no. 30, pp. 9020–9041, Jul. 2008, doi: 10.1021/jp8001614. 

[188] I. Beššeová, M. Otyepka, K. Réblová, and J. Šponer, “Dependence of A-RNA 

simulations on the choice of the force field and salt strength,” Phys. Chem. 



Appendices  164 

 

Chem. Phys., vol. 11, no. 45, p. 10701, Nov. 2009, doi: 10.1039/b911169g. 

[189] O. Allnér, L. Nilsson, and A. Villa, “Magnesium ion--water coordination and 

exchange in biomolecular simulations,” J. Chem. Theory Comput., vol. 8, no. 4, 

pp. 1493–1502, 2012. 

[190] B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, “LINCS: a linear 

constraint solver for molecular simulations,” J. Comput. Chem., vol. 18, no. 12, 

pp. 1463–1472, 1997. 

[191] H. J. C. Berendsen, J. P. M. van Postma, W. F. van Gunsteren, A. DiNola, and J. R. 

Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys., 

vol. 81, no. 8, pp. 3684–3690, 1984. 

[192] S. C. Harvey, R. K.-Z.-. Z. Tan, and T. E. Cheatham, “The flying ice cube: velocity 

rescaling in molecular dynamics leads to violation of energy equipartition,” J. 

Comput. Chem., vol. 19, no. 7, pp. 726–740, 1998. 

[193] J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, and C. 

Simmerling, “ff14SB: Improving the Accuracy of Protein Side Chain and 

Backbone Parameters from ff99SB,” J. Chem. Theory Comput., vol. 11, no. 8, pp. 

3696–3713, Aug. 2015, doi: 10.1021/acs.jctc.5b00255. 

[194] A. Pérez et al., “Refinement of the AMBER force field for nucleic acids: Improving 

the description of α/γ conformers,” Biophys. J., vol. 92, no. 11, pp. 3817–3829, 

2007, doi: 10.1529/biophysj.106.097782. 

[195] M. Zgarbová et al., “Refinement of the Cornell et al. Nucleic Acids Force Field 

Based on Reference Quantum Chemical Calculations of Glycosidic Torsion 

Profiles,” J. Chem. Theory Comput., vol. 7, no. 9, pp. 2886–2902, Sep. 2011, doi: 

10.1021/ct200162x. 

[196] K. L. Meagher, L. T. Redman, and H. A. Carlson, “Development of polyphosphate 

parameters for use with the AMBER force field,” J. Comput. Chem., vol. 24, no. 9, 

pp. 1016–1025, Jul. 2003, doi: 10.1002/jcc.10262. 

[197] O. Allnér, L. Nilsson, and A. Villa, “Magnesium Ion–Water Coordination and 

Exchange in Biomolecular Simulations,” J. Chem. Theory Comput., vol. 8, no. 4, 

pp. 1493–1502, Apr. 2012, doi: 10.1021/ct3000734. 

[198] P. Li and K. M. Merz Jr., “ZAFF Modeling Tutorial,” 2015. 

https://ambermd.org/tutorials/advanced/tutorial20/ZAFF.htm (accessed Oct. 

29, 2020). 

[199] E. F. Pettersen et al., “UCSF Chimera - A visualization system for exploratory 

research and analysis,” J. Comput. Chem., vol. 25, no. 13, pp. 1605–1612, Oct. 

2004, doi: 10.1002/jcc.20084. 

[200] J. H. G. Lebbink, A. Fish, A. Reumer, G. Natrajan, H. H. K. Winterwerp, and T. K. 

Sixma, “Magnesium coordination controls the molecular switch function of DNA 

mismatch repair protein MutS,” J. Biol. Chem., vol. 285, no. 17, pp. 13131–13141, 

Apr. 2010, doi: 10.1074/jbc.M109.066001. 

[201] V. Le Guilloux, P. Schmidtke, and P. Tuffery, “Fpocket: An open source platform 



Appendices  165 

 

for ligand pocket detection,” BMC Bioinformatics, vol. 10, no. 1, p. 168, May 

2009, doi: 10.1186/1471-2105-10-168. 

[202] B. Leonaité et al., “Sen1 has unique structural features grafted on the 

architecture of the Upf1-like helicase family,” EMBO J., vol. 36, pp. 1590–1604, 

2017, doi: 10.15252/embj.201696174. 

[203] I. Briguglio, S. Piras, P. Corona, and A. Carta, “Inhibition of RNA Helicases of 

ssRNA + Virus Belonging to Flaviviridae, Coronaviridae and Picornaviridae 

Families,” Int. J. Med. Chem., vol. 2011, p. 22, 2011, doi: 10.1155/2011/213135. 

[204] X. Yang et al., “Mechanism of ATP hydrolysis by the Zika virus helicase,” FASEB 

J., vol. 32, no. 10, pp. 5250–5257, 2018, doi: 10.1096/fj.201701140R. 

[205] T. C. Appleby et al., “Visualizing ATP-dependent RNA translocation by the NS3 

helicase from HCV,” J. Mol. Biol., vol. 405, no. 5, pp. 1139–1153, Feb. 2011, doi: 

10.1016/j.jmb.2010.11.034. 

[206] D. Schuster, C. Laggner, and T. Langer, “Why Drugs Fail - A Study on Side Effects 

in New Chemical Entities,” Curr. Pharm. Des., vol. 11, no. 27, pp. 3545–3559, Oct. 

2005, doi: 10.2174/138161205774414510. 

[207] D. Smith et al., “Passive lipoidal diffusion and carrier-mediated cell uptake are 

both important mechanisms of membrane permeation in drug disposition,” 

Molecular Pharmaceutics, vol. 11, no. 6. American Chemical Society, pp. 1727–

1738, Jun. 02, 2014, doi: 10.1021/mp400713v. 

[208] A. Avdeef, Transport Model. 2012. 

[209] R. V. Swift and R. E. Amaro, “Back to the Future: Can Physical Models of Passive 

Membrane Permeability Help Reduce Drug Candidate Attrition and Move Us 

Beyond QSPR?,” Chem. Biol. Drug Des., vol. 81, no. 1, pp. 61–71, Jan. 2013, doi: 

10.1111/cbdd.12074. 

[210] A. Finkelstein, “Water and nonelectrolyte permeability of lipid bilayer 

membranes,” J. Gen. Physiol., vol. 68, no. 2, pp. 127–135, Aug. 1976, doi: 

10.1085/jgp.68.2.127. 

[211] D. Sezer and T. Oruç, “Protonation Kinetics Compromise Liposomal Fluorescence 

Assay of Membrane Permeation,” J. Phys. Chem. B, vol. 121, no. 20, pp. 5218–

5227, May 2017, doi: 10.1021/acs.jpcb.7b01881. 

[212] K. F. Hermann et al., “Kinetics of lipid bilayer permeation of a series of ionisable 

drugs and their correlation with human transporter-independent intestinal 

permeability,” Eur. J. Pharm. Sci., vol. 104, pp. 150–161, Jun. 2017, doi: 

10.1016/j.ejps.2017.03.040. 

[213] R. E. Amaro and A. J. Mulholland, “Multiscale methods in drug design bridge 

chemical and biological complexity in the search for cures,” Nat. Rev. Chem., vol. 

2, no. 4, pp. 1–12, Apr. 2018, doi: 10.1038/s41570-018-0148. 

[214] S. D. Krämer, Absorption prediction from physicochemical parameters, vol. 2, no. 

9. Elsevier Current Trends, 1999, pp. 373–380. 

[215] D. Bemporad, J. W. Essex, and C. Luttmann, “Permeation of Small Molecules 



Appendices  166 

 

through a Lipid Bilayer: A Computer Simulation Study,” J. Phys. Chem. B, vol. 108, 

no. 15, pp. 4875–4884, Apr. 2004, doi: 10.1021/jp035260s. 

[216] J. Witek et al., “Interconversion Rates between Conformational States as 

Rationale for the Membrane Permeability of Cyclosporines,” ChemPhysChem, 

vol. 18, no. 23, pp. 3309–3314, Dec. 2017, doi: 10.1002/cphc.201700995. 

[217] N. Pokhrel and L. Maibaum, “Free Energy Calculations of Membrane Permeation: 

Challenges Due to Strong Headgroup-Solute Interactions,” J. Chem. Theory 

Comput., vol. 14, no. 3, pp. 1762–1771, Mar. 2018, doi: 10.1021/acs.jctc.7b01159. 

[218] K. Eyer et al., “A liposomal fluorescence assay to study permeation kinetics of 

drug-like weak bases across the lipid bilayer,” J. Control. Release, vol. 173, no. 1, 

pp. 102–109, Jan. 2014, doi: 10.1016/j.jconrel.2013.10.037. 

[219] S. J. Marrink and H. J. C. Berendsen, “Simulation of water transport through a 

lipid membrane,” J. Phys. Chem., vol. 98, no. 15, pp. 4155–4168, 1994, doi: 

10.1021/j100066a040. 

[220] T. X. Xiang and B. D. Anderson, “Liposomal drug transport: A molecular 

perspective from molecular dynamics simulations in lipid bilayers,” Advanced 

Drug Delivery Reviews, vol. 58, no. 12–13. Adv Drug Deliv Rev, pp. 1357–1378, 

Nov. 30, 2006, doi: 10.1016/j.addr.2006.09.002. 

[221] J. Ulander and A. D. J. Haymet, “Permeation Across Hydrated DPPC Lipid Bilayers: 

Simulation of the Titrable Amphiphilic Drug Valproic Acid,” Biophys. J., vol. 85, 

no. 6, pp. 3475–3484, 2003, doi: 10.1016/S0006-3495(03)74768-7. 

[222] R. W. Tejwani, M. E. Davis, B. D. Anderson, and T. R. Stouch, “DRUG DISCOVERY 

INTERFACE: Functional Group Dependence of Solute Partitioning to Various 

Locations within a DOPC Bilayer: A Comparison of Molecular Dynamics 

Simulations with Experiment,” J. Pharm. Sci., vol. 100, no. 6, pp. 2136–2146, Jun. 

2011, doi: 10.1002/jps.22441. 

[223] M. Paloncýová, K. Berka, and M. Otyepka, “Convergence of free energy profile 

of coumarin in lipid bilayer,” J. Chem. Theory Comput., vol. 8, no. 4, pp. 1200–

1211, Apr. 2012, doi: 10.1021/ct2009208. 

[224] T. S. Carpenter, D. A. Kirshner, E. Y. Lau, S. E. Wong, J. P. Nilmeier, and F. C. 

Lightstone, “A Method to Predict Blood-Brain Barrier Permeability of Drug-Like 

Compounds Using Molecular Dynamics Simulations,” Biophys. J., vol. 107, no. 3, 

pp. 630–641, Aug. 2014, doi: 10.1016/j.bpj.2014.06.024. 

[225] C. H. Tse, J. Comer, Y. Wang, and C. Chipot, “Link between Membrane 

Composition and Permeability to Drugs,” J. Chem. Theory Comput., vol. 14, no. 

6, pp. 2895–2909, Jun. 2018, doi: 10.1021/acs.jctc.8b00272. 

[226] Q. Zhu et al., “Entropy and Polarity Control the Partition and Transportation of 

Drug-like Molecules in Biological Membrane,” Sci. Rep., vol. 7, no. 1, p. 17749, 

Dec. 2017, doi: 10.1038/s41598-017-18012-7. 

[227] H. A. L. Filipe et al., “Quantitative Assessment of Methods Used to Obtain Rate 

Constants from Molecular Dynamics Simulations - Translocation of Cholesterol 



Appendices  167 

 

across Lipid Bilayers,” J. Chem. Theory Comput., vol. 14, no. 7, pp. 3840–3848, 

Jul. 2018, doi: 10.1021/acs.jctc.8b00150. 

[228] C. T. Leahy, R. D. Murphy, G. Hummer, E. Rosta, and N. V. Buchete, “Coarse 

Master Equations for Binding Kinetics of Amyloid Peptide Dimers,” J. Phys. Chem. 

Lett., vol. 7, no. 14, pp. 2676–2682, Jul. 2016, doi: 10.1021/acs.jpclett.6b00518. 

[229] V. S. Pande, K. Beauchamp, and G. R. Bowman, “Everything you wanted to know 

about Markov State Models but were afraid to ask,” Methods, vol. 52, no. 1, pp. 

99–105, Sep. 2011, doi: 10.1016/j.ymeth.2010.06.002.Everything. 

[230] B. E. Husic and V. S. Pande, “Markov State Models: From an Art to a Science,” 

Journal of the American Chemical Society, vol. 140, no. 7. American Chemical 

Society, pp. 2386–2396, Feb. 21, 2018, doi: 10.1021/jacs.7b12191. 

[231] C. J. Dickson, V. Hornak, R. A. Pearlstein, and J. S. Duca, “Structure-kinetic 

relationships of passive membrane permeation from multiscale modeling,” J. 

Am. Chem. Soc., vol. 139, no. 1, p. jacs.6b11215, Jan. 2016, doi: 

10.1021/jacs.6b11215. 

[232] E. Rosta and G. Hummer, “Free energies from dynamic weighted histogram 

analysis using unbiased Markov state model,” J. Chem. Theory Comput., vol. 11, 

no. 1, pp. 276–285, Jan. 2015, doi: 10.1021/ct500719p. 

[233] W. C. Swope et al., “Describing protein folding kinetics by molecular dynamics 

simulations. 2. Example applications to alanine dipeptide and a β-hairpin 

peptide,” J. Phys. Chem. B, vol. 108, no. 21, pp. 6582–6594, May 2004, doi: 

10.1021/jp037422q. 

[234] S. Röblitz and M. Weber, “Fuzzy spectral clustering by PCCA+: Application to 

Markov state models and data classification,” Adv. Data Anal. Classif., vol. 7, no. 

2, pp. 147–179, May 2013, doi: 10.1007/s11634-013-0134-6. 

[235] C. D. Meyer, “An alternative expression for the mean first passage matrix,” Linear 

Algebra Appl., vol. 22, no. C, pp. 41–47, 1978, doi: 10.1016/0024-3795(78)90055-

1. 

[236] L. S. Stelzl, A. Kells, E. Rosta, and G. Hummer, “Dynamic Histogram Analysis To 

Determine Free Energies and Rates from Biased Simulations,” J. Chem. Theory 

Comput., vol. 13, no. 12, pp. 6328–6342, Dec. 2017, doi: 

10.1021/acs.jctc.7b00373. 

[237] L. S. Stelzl and G. Hummer, “Kinetics from Replica Exchange Molecular Dynamics 

Simulations,” J. Chem. Theory Comput., vol. 13, no. 8, pp. 3927–3935, Aug. 2017, 

doi: 10.1021/acs.jctc.7b00372. 

[238] H. Wu, F. Paul, C. Wehmeyer, and F. Noé, “Multiensemble Markov models of 

molecular thermodynamics and kinetics,” Proc. Natl. Acad. Sci., vol. 113, no. 23, 

pp. E3221–E3230, 2016, doi: 10.1073/pnas.1525092113. 

[239] V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling, 

“Comparison of multiple amber force fields and development of improved 

protein backbone parameters,” Proteins: Structure, Function and Genetics, vol. 



Appendices  168 

 

65, no. 3. Proteins, pp. 712–725, Nov. 15, 2006, doi: 10.1002/prot.21123. 

[240] D. A. Case et al., “The Amber biomolecular simulation programs,” Journal of 

Computational Chemistry, vol. 26, no. 16. NIH Public Access, pp. 1668–1688, Dec. 

2005, doi: 10.1002/jcc.20290. 

[241] C. J. Dickson et al., “Lipid14: The amber lipid force field,” J. Chem. Theory 

Comput., vol. 10, no. 2, pp. 865–879, Feb. 2014, doi: 10.1021/ct4010307. 

[242] J.-P. P. Ryckaert, G. Ciccotti+, H. J. C. C. Berendsen, G. Ciccotti, and H. J. C. C. 

Berendsen, “Numerical integration of the cartesian equations of motion of a 

system with constraints: molecular dynamics of n-alkanes,” J. Comput. Phys., vol. 

23, no. 3, pp. 327–341, Mar. 1977, doi: 10.1016/0021-9991(77)90098-5. 

[243] A. Kells, A. Annibale, and E. Rosta, “Limiting relaxation times from Markov state 

models,” J. Chem. Phys., vol. 149, no. 7, p. 072324, Aug. 2018, doi: 

10.1063/1.5027203. 

[244] H. Träuble, “The movement of molecules across lipid membranes: A molecular 

theory,” J. Membr. Biol., vol. 4, no. 1, pp. 193–208, Dec. 1971, doi: 

10.1007/BF02431971. 

[245] D. Bemporad, C. Luttmann, and J. W. Essex, “Behaviour of small solutes and large 

drugs in a lipid bilayer from computer simulations,” Biochim. Biophys. Acta - 

Biomembr., vol. 1718, no. 1–2, pp. 1–21, Dec. 2005, doi: 

10.1016/j.bbamem.2005.07.009. 

[246] M. Orsi, M. G. Noro, and J. W. Essex, “Dual-resolution molecular dynamics 

simulation of antimicrobials in biomembranes,” J. R. Soc. Interface, vol. 8, no. 59, 

pp. 826–841, Jun. 2011, doi: 10.1098/rsif.2010.0541. 

[247] R. Sun, J. F. Dama, J. S. Tan, J. P. Rose, and G. A. Voth, “Transition-Tempered 

Metadynamics Is a Promising Tool for Studying the Permeation of Drug-like 

Molecules through Membranes,” J. Chem. Theory Comput., vol. 12, no. 10, pp. 

5157–5169, Oct. 2016, doi: 10.1021/acs.jctc.6b00206. 

[248] M. Orsi and J. W. Essex, “Permeability of drugs and hormones through a lipid 

bilayer: Insights from dual-resolution molecular dynamics,” Soft Matter, vol. 6, 

no. 16, pp. 3797–3808, Aug. 2010, doi: 10.1039/c0sm00136h. 

[249] B. De Nijs et al., “Smart supramolecular sensing with cucurbit[: N] urils: Probing 

hydrogen bonding with SERS,” Faraday Discuss., vol. 205, no. 0, pp. 505–515, 

Dec. 2017, doi: 10.1039/c7fd00147a. 

[250] R. Suardíaz, P. G. Jambrina, L. Masgrau, À. González-Lafont, E. Rosta, and J. M. 

Lluch, “Understanding the Mechanism of the Hydrogen Abstraction from 

Arachidonic Acid Catalyzed by the Human Enzyme 15-Lipoxygenase-2. A 

Quantum Mechanics/Molecular Mechanics Free Energy Simulation,” J. Chem. 

Theory Comput., vol. 12, no. 4, pp. 2079–2090, Apr. 2016, doi: 

10.1021/acs.jctc.5b01236. 



Appendices  169 

 

 

 


