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Investigating brain ageing with Magnetic Resonance Imaging

and Convolutional Neural Networks

Ksenia Sokolova

Abstract

Throughout human lifetime there are various ageing-related changes occurring. It has

been demonstrated that departures from the healthy ageing trajectory can be used as a

biomarker for several neurodegenerative conditions. Previous neuroimaging studies have

used deep learning algorithms to investigate structural biomarkers including volumetric,

microstructural and focal ones, using both cross-sectional and longitudinal cohorts. In

this thesis, I investigate deep learning methods for analysing structural Magnetic Reso-

nance Imaging (MRI) data. The methods developed are used to understand brain ageing

throughout human adulthood, by identifying population-wide brain ageing pro�les. In this

thesis such pro�les are de�ned by determining periods of the human lifetime which have

similar brain age-related features and studying the di�erences between the features char-

acterising each period. Brain ageing pro�les covering human adulthood are investigated

as brain ageing occurs during adulthood. Training dataset used in this thesis to train

brain age prediction algorithms is the largest up-to-date and, therefore, the algorithms

can be considered as generalisable as possible. Therefore, brain ageing pro�les are called

"population wide".

Population-wide brain ageing pro�les are derived and described by developing 5 main

contributions in this thesis:

1. A dataset comprising of 10,878 MRI T1-weighted scans acquired in healthy subjects

(17 � 96 years of age) was assembled from publicly available data.

2. The dataset was used to develop a convolutional neural network-based ordinal regres-

sion model for brain age prediction in order to re�ect accumulative nature of brain

ageing, using the imaging data with minimal preprocessing (rigid transformation and

resampling onto a template).

3. The distribution of predicted ages from both ordinal and metric models were lever-

aged to propose ageing pro�le by assuming that the distribution of age predictions

represents the distribution of age-related structural features. Ageing pro�les were
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obtained using 4 di�erent methods � 2 methods were applied for this purpose (Deep

Embedded Clustering (DEC) and Preference Ranking Organization METHod for

Enrichment of Evaluations (PROMETHEE) II) and 2 methods were developed for

this thesis (the method considering the distribution of predictions of a deep learning

model for brain age prediction and ordinal DEC). Ordinal DEC was proposed to

introduce the concept of ordinality into the standard DEC.

4. The issues of extracting brain ageing-related features describing brain ageing pro-

�les from MRI data were addressed. In order to understand which features of the

original inputs which correspond to ageing, �ve existing saliency mapping methods

(vanilla backpropagation, guided backpropagation, the Smoothgrad method, Gradi-

ent Class Activation Mapping (Grad-CAM), guided Grad-CAM) were compared, and

a methodology for applying such methods to ordinal methods was proposed. As all

the existing saliency mapping methods used were originally developed to work on

natural images, modi�cations were needed to adapt them to work on 3D input MRI

data.

5. Generalisability of the models presented in this thesis was examined. For this purpose

their performance was assessed on an independent clinical dataset - the Institute of

Psychiatry, Psychology & Neuroscience (IoPPN) dataset. Further, the performance

of brain age prediction models was observed on the Healthy Brain Ageing from Public

Sources (HBAPS) dataset with reduced resolution.

Accuracy of the ordinal model implemented for the task of brain age prediction was

compared to the deep learning model with metric regression. The ordinal and metric

models achieved Mean Absolute Error (MAE) of 3.62 and 3.87 years, respectively, on the

test data. On the same test data with repeat scans eliminated, i.e. excluding repeat

samples acquired from the subjects contained in the training data, ordinal and metric

models achieved MAE of 4.10 and 4.37 years. Both metric and ordinal models achieved

better results than previously published experiments using input data with the same level

of pre-processing. The performance of both models was shown not to be a�ected by the

fact that the dataset contained data collected using di�erent scanners and protocols. The

models' performance was, however, a�ected for the samples with labels for which the

number of samples in the training data was small.
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The pro�les obtained using the four methods, and both metric and ordinal models, all

agreed within models' accuracy de�ned by MAE achieved. This suggests that they are

all being driven by the same underlying brain features, and that these features may be

biologically meaningful.

In order to aid interpretation of the age-related features de�ning the ageing pro�les both

subject-speci�c and averaged importance maps were obtained. Further, the importance

maps were compared between the ones obtained using ordinal and metric models for brain

age prediction. All the results were also interpreted for biological signi�cance. The results

agree with existing knowledge on the biology of brain ageing. Among existing saliency

mapping methods the methods of guided backpropagation, Grad-CAM and guided Grad-

CAM are shown to be usable for studying brain ageing features from MRI data. Saliency

maps produced using proposed methodology for saliency mapping for ordinal models also

highlighted biologically interpretable features.

The overall aim of this work is not just to develop the methodologies and obtain

corresponding results, but also to consider the feasibility of such methods for future use in

a clinical setting, in light of the challenges outlined above.
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5.10 Box plot comparing predictions using the SENet-MR and SENet-OR models
with the distribution of true age labels in the HBAPS test dataset with
repeat scans excluded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.11 Plot of the SENet-MR predictions (metric) vs the SENet-OR predictions
(ordinal) for both whole HBAPS test dataset (A) and HBAPS test dataset
containing only independent subjects (B). Red line denotes the y = x func-
tion, blue line represents linear regression �t into the plot represented by a
function yo = aoym− bo, where ym and yo are predictions be the SENet-MR
and SENet-OR models respectively and ao and bo correspond to the slope
and intercept of the function. Green lines represent lower and upper bound
linear �t curves for the 95% con�dence interval. For the whole HBAPS test
dataset (A) linear �t takes the form yo = 0.984ym − 0.689 and for HBAPS
test dataset containing only independent subjects (B) - yo = 0.981ym−0.589.
Lower and upper bound linear �t curves for the 95% con�dence interval on
the whole HBAPS test dataset are represented by yo = 0.971ym−1.336 and
yo = 0.998ym − 0.042 respectively. For the HBAPS test dataset containing
only independent subjects the lower and upper bound linear �t curves are
yo = 0.962ym − 1.401 and yo = ym + 0.222. . . . . . . . . . . . . . . . . . . 127

5.12 Bland-Altman plot for the predictions of the SENet-MR and SENet-OR
models for the whole HBAPS test data (A) and HBAPS test data excluding
repeated scans (B). Di�erence on the y-axis is calculated by subtracting
the prediction by the SENet-MR model from the prediction by the SENet-
OR model. Red line indicates mean di�erence over all predictions. Green
lines indicate mean di�erence plus 1.96 standard deviations and minus 1.96
standard deviations respectively. . . . . . . . . . . . . . . . . . . . . . . . . 128
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6.1 Example of dividing age range Y into three intervals by considering the dis-
tribution of predictions of a brain age prediction model. Consider a dataset
of N MRI samples, {xi ∈X, yi ∈ Y }Ni=1, where xi is a MRI input sample
and yi ∈ Y = {a1, a2, . . . , a9}. a) First wall, w1, is chosen from a set of
ages � W1 = {a2, a3, . . . , a8}. b) Set �rst wall w1 = a6 and search for w2

to divide �rst bin including {a1, a3, . . . , a6} into two bins recursively. w2,
is chosen from a set of ages � W2 = {a2, a3, . . . , a5}. c) As the results
the age range Y = {a1, a2, . . . , a9} is divided into three bins, I = 3 and
B = {b1, b2, b3}. Then b1 = {a1, a2, a3}, b2 = {a4, a5, a6}, b3 = {a7, a8, a9}. . 139

6.2 Histogram representing the distribution of predictions by the SENet-MR
model for the subjects of age 76. Black line indicates normal distribution. . 140

6.3 Example of dividing age range Y into three intervals using the PROMETHEE
II method. As in previous section consider a dataset of N MRI samples,
{xi ∈X, yi ∈ Y }Ni=1, where xi is a MRI input sample, yi is the correspond-
ing age, Y ∈ {y1, y2, ..., y9} and y1 < y2 < ... < y9. Once PROMETHEE
II ranking is obtained, a cluster assignment is predicted for each sample by
considering its highest ranking. Mode cluster assignment is determined for
each age in Y . First wall is set at y3 as it is the �rst age label at which mode
cluster value changes. Mode cluster value also changes at y6 and second wall
is set at this age label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.4 Example of dividing age range Y into three intervals using DEC. Consider
a dataset of N MRI samples, {xi ∈X, yi ∈ Y }Ni=1, where xi is a MRI input
sample, yi is the corresponding age, Y ∈ {y1, y2, ..., y9} and y1 < y2 < ... <
y9. Once DEC is trained and a cluster assignment is predicted for each
sample in the test data. Mode cluster assignment is determined for each
age in Y . a) First wall is set at y4 as it is the �rst label at which mode
cluster value changes. b) DEC is trained on data samples having age labels
belonging to the second bin in the �rst step. Once DEC is trained on this
data and mode cluster assignment is determined for each age label in this
bin, the second wall is set at y4 as mode cluster assignment value changes
at it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5 a) Heaviside function with step value of 0.5 at a denoted by H(x − a). b)
Graph of the di�erence H(x − a) − H(x − b). c) Graph of the function
1− (H(x− a)−H(x− b)). . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.6 Graph of the approximation to the Heaviside function as given in Equation
5.3 for the values of C being equal to 1 and 10. . . . . . . . . . . . . . . . . 147

6.7 Means of predicted ages for the intervals of the pro�le obtained using the
distribution of predictions of SENet-MR model. Orange line denotes the
y=x function, blue � linear regression �t function, green � the lines rep-
resenting the lower and upper bounds of the 95% con�dence interval over
linear regression �t parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.8 Means of predicted ages by the SENet-MR model for the intervals of �xed
width of 5 years. Whiskers show 95% con�dence interval over a mean. The
last interval has length of 6 years to include the age of 92. Whiskers show
95% con�dence interval over a mean. Orange line denotes the y=x function,
blue � linear regression �t function, green � the lines representing the lower
and upper bounds of the 95% con�dence interval over linear regression �t
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
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6.9 Means of predicted ages for the intervals of the pro�le obtained using the
distribution of predictions of SENet-OR model. Orange line denotes the
y = x function, blue � linear regression �t function, green � the lines rep-
resenting the lower and upper bounds of the 95% con�dence interval over
linear regression �t parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.10 Means of predicted ages by the SENet-OR model for the intervals of �xed
width of 5 years. Whiskers show 95% con�dence interval over a mean. The
last interval has length of 6 years to include the age of 92. Whiskers show
95% con�dence interval over a mean. Orange line denotes the y = x func-
tion, blue � linear regression �t function, green � the lines representing the
lower and upper bounds of the 95% con�dence interval over linear regression
�t parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.11 Population-wide brain ageing pro�les. The pro�les extracted by considering
the distribution of predictions from the a) SENet-MR and b) SENet-OR
models. c) The pro�le extracted using the DEC method. Error bars around
each pro�le wall correspond to uncertainty around its value, i.e. 4 years as
this is the SENet-MR and SENet-OR models' MAE. The colour of each bin
corresponds to a slope calculated as 1/(interval length) � the darker the
bin is, the more rapid the change is in the underlying age-related features. 156

6.12 Results of Shamir and Long [6]: average predicted age with respect to 5-
years bins of true age labels. Figure used with author's permission. . . . . . 159

7.1 Schematic of the ordinal saliency mapping method. For the illustration of
how the method produces a saliency map a synthetic input of rank r2 out
of K ranks is present. An input is put through a convolutional feature
extractor and a fully-connected layer to produce an output from K − 1
binary classi�ers. Then a backward pass of a saliency mapping method of
choice is performed from all classi�ers. In order to construct a �nal saliency
map, the maps resulting from the classi�ers are subtracted such that the
ones corresponding to 0 output are subtracted from the ones corresponding
to 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2 Results of applying existing saliency mapping methods to the task of clas-
sifying natural images from the ImageNet dataset. The upper two input
examples denoted by green were the samples the network was the most con-
�dent about and the ones denoted by red are related to the largest uncer-
tainty in classi�cation. Uncertainty in sample classi�cation can be de�ned
as the di�erence between the maximum and minimum scores in an output
vector before the softmax function. These values were 24.57, 22.70, 2,93
and 2.88 respectively from the top to bottom samples. Predicted labels
were identi�ed correctly for all four samples. The second, sixth and tenth
columns show the saliency maps produced using vanilla backpropagation,
guided backpropagation and guided Grad-CAM method respectively. The
SmoothGrad method was applied using three di�erent values of standard
deviation in Equation 2.34 -σ2 ∈ {0.05, 0.15, 1.0}. For the Grad-CAM
method saliency maps were presented in grayscale and as heat maps (also
overlaid on original image). For the LRP method both the LRP-ε and LRP-
β rules were applied. The LRP-β rule was applied with three values of β -
β ∈ {0.05, 0.5, 0.95}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
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7.3 Results of applying existing saliency mapping methods to the task of brain
age prediction. Saliency maps are shown for the sample with the lowest
prediction error (0.0008 years) in the HBAPS testing data using the SENet-
MR model. The maps named ordinal are produced by applying ordinal
saliency mapping technique described in Section 7.3.2 with corresponding
method. These maps are produced using the SENet-OR model and SENet-
MR model is used otherwise. The leftmost column shows corresponding
planes in the input sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4 Results of applying existing saliency mapping methods to the task of brain
age prediction. Saliency maps are shown for the sample with the prediction
error approximately equal to the sum of MAE and standard deviation on
it, 9.55 years, in the HBAPS testing data using the SENet-MR model. The
maps named ordinal are produced by applying ordinal saliency mapping
technique described in Section 7.3.2 with corresponding method. These
maps are produced using the SENet-OR model and SENet-MR model is
used otherwise. The leftmost column shows corresponding planes in the
input sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.5 Results of applying existing saliency mapping methods to the task of brain
age prediction. Saliency maps are shown for the sample with the largest
prediction error (60.2 years) in the HBAPS testing data using the SENet-
MR model. The maps named ordinal are produced by applying ordinal
saliency mapping technique described in Section 7.3.2 with corresponding
method. These maps are produced using the SENet-OR model and SENet-
MR model is used otherwise. The leftmost column shows corresponding
planes in the input sample. Three planes are presented from the samples as
resulting saliency maps are less informative compared to the samples with
smaller assciated prediction error. . . . . . . . . . . . . . . . . . . . . . . . 175

7.6 Average saliency maps obtained as described in Section 7.3.3 for the pro�le
constructed using the distribution of predictions of the SENet-MR model
(details in Section 6.3.1). The maps are constructed using four saliency
mapping methods � guided backpropagation, SmoothGrad, Grad-CAM and
guided Grad-CAM. The rightmost column shows corresponding plane in the
MNI152 template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.7 Average saliency maps obtained as described in Section 7.3.3 for the pro�le
constructed using the DEC method (details in Section 6.3.3). The maps are
constructed using four saliency mapping methods - guided backpropagation,
SmoothGrad, Grad-CAM and guided Grad-CAM. The rightmost column
shows corresponding plane in the MNI152 template. . . . . . . . . . . . . . 176

7.8 Average saliency maps in transverse plane obtained as described in Section
7.3.3 for the pro�le constructed using the DEC method (details in Section
6.3.3). The maps are constructed using the Grad-CAM method. The right-
most column shows corresponding plane in the MNI152 template. . . . . . . 177

7.9 Average saliency maps in saggital plane obtained as described in Section
7.3.3 for the pro�le constructed using the DEC method (details in Section
6.3.3). The maps are constructed using the Grad-CAM method. The right-
most column shows corresponding plane in the MNI152 template. . . . . . . 178
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7.10 Average saliency maps in coronal plane obtained as described in Section 7.3.3
for the pro�le constructed using the DEC method (details in Section 6.3.3).
The maps are constructed using the Grad-CAM method. The rightmost
column shows corresponding plane in the MNI152 template. . . . . . . . . . 178

7.11 Average saliency maps in transverse plane obtained as described in Section
7.3.3 for the pro�le constructed using the distribution of predictions of the
SENet-MR model (details in Section 6.3.1). The maps are constructed using
the Grad-CAM method. The rightmost column shows corresponding plane
in the MNI152 template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.12 Average saliency maps in saggital plane obtained as described in Section
7.3.3 for the pro�le constructed using the distribution of predictions of the
SENet-MR model (details in Section 6.3.1). The maps are constructed using
the Grad-CAM method. The rightmost column shows corresponding plane
in the MNI152 template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.13 Average saliency maps in coronal plane obtained as described in Section
7.3.3 for the pro�le constructed using the distribution of predictions of the
SENet-MR model (details in Section 6.3.1). The maps are constructed using
the Grad-CAM method. The rightmost column shows corresponding plane
in the MNI152 template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.14 Average saliency maps in transverse plane obtained as described in Section
7.3.3 for the pro�le constructed using the distribution of predictions of the
SENet-OR model (details in Section 6.3.1). The maps are constructed using
the Grad-CAM method. The rightmost column shows corresponding plane
in the MNI152 template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.15 Average saliency maps in saggital plane obtained as described in Section
7.3.3 for the pro�le constructed using the distribution of predictions of the
SENet-OR model (details in Section 6.3.1). The maps are constructed using
the Grad-CAM method. The rightmost column shows corresponding plane
in the MNI152 template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.16 Average saliency maps in coronal plane obtained as described in Section
7.3.3 for the pro�le constructed using the distribution of predictions of the
SENet-OR model (details in Section 6.3.1). The maps are constructed using
the Grad-CAM method. The rightmost column shows corresponding plane
in the MNI152 template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.17 Example saliency maps produced using the Grad-CAM method represented
to visualise the subjects from three groups � young (up to 30 years of age),
middle aged (31 � 50 years of age) and older adults (51 and older). Subject-
speci�c saliency maps are presented based on their true and predicted ages
based on the predictions by the SENet-MR model. Saliency maps are shown
overlaid over corresponding plane in an input sample after preprocessing. . . 184

7.18 Example saliency maps produced using the guided backpropagation method
represented to visualise the subjects from three groups � young (up to 30
years of age), middle aged (31 � 50 years of age) and older adults (51 and
older). Subject-speci�c saliency maps are presented based on their true and
predicted ages based on the predictions by the SENet-MR model. . . . . . 185
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7.19 Example saliency maps produced using ordinal Grad-CAM method repre-
sented to visualise the subjects from three groups � young (up to 30 years
of age), middle aged (31 � 50 years of age) and older adults (51 and older).
Subject-speci�c saliency maps are presented based on their true and pre-
dicted ages based on the predictions by the SENet-OR model. Saliency
maps are shown overlaid over corresponding plane in an input sample after
preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.20 Average saliency maps obtained as described in Section 7.3.3 for the pro-
�le constructed using the DEC method (details in Section 6.3.3) and the
Grad-CAM method for saliency mapping. The rightmost column shows
corresponding plane in the MNI152 template. Brain regions a�ected by the
age-related changes are highlighted by arrows: blue arrows point to corre-
sponding regions in saliency maps and red � to the regions in the MNI152
template respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.1 Distribution of predictions of the SENet-MR model on whole HBAPS test
data with voxel size of 1× 1× 4 mm (A) and 1× 1× 5 mm (B). The brain
age predicted by the models on the testing data (y-axis) is plotted against
chronological age label (x-axis). Orange line denotes the y=x function,
blue � linear regression �t function, green � the lines representing the lower
and upper bounds of the 95% con�dence interval over linear regression �t
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.2 Distribution of predictions of the SENet-MR (A) and SENet-OR (B) models
on the HBAPS test data excluding the samples a�ected by preprocessing.
The brain age predicted by the models on the testing data (y-axis) is plotted
against chronological age label (x-axis). Orange line denotes the y = x func-
tion, blue � linear regression �t function, green � the lines representing the
lower and upper bounds of the 95% con�dence interval over linear regression
�t parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.3 Example of the HBAPS test data sample a�ected by the preprocessing stage.
Saliency maps are shown for the sample with the largest prediction error
(60.2 years) in the HBAPS testing data using the SENet-MR model. The
maps named ordinal are produced by applying ordinal saliency mapping
technique described in Section 7.3.2 with corresponding method. These
maps are produced using the SENet-OR model and SENet-MR model is
used otherwise. The leftmost column shows corresponding planes in the
input sample. Three planes are presented from the samples as resulting
saliency maps are less informative compared to the samples with smaller
associated prediction error. . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.4 Results of applying existing saliency mapping methods to the task of brain
age prediction. Saliency maps are shown for the sample with the lowest
prediction error (0.0008 years) in the HBAPS testing data using the SENet-
MR model. The maps named ordinal are produced by applying ordinal
saliency mapping technique described in Section 7.3.2 with corresponding
method. These maps are produced using the SENet-OR model and SENet-
MR model is used otherwise. The leftmost column shows corresponding
planes in the input sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
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8.5 Average prediction error for each true chronological age in the IoPPN dataset
by the SENet-MR (blue line) and SENet-OR (red line) models on healthy
(A) and diseased (B) subjects separately. . . . . . . . . . . . . . . . . . . . . 207

8.6 Box plots of the predictions on the IoPPN healthy subjects imaged using
T1-weighted sequence by the SENet-MR (A) and SENet-OR (B) models
with respect to the true age labels. . . . . . . . . . . . . . . . . . . . . . . . 208

8.7 Box plots of the predictions on the IoPPN diseased subjects imaged using
T1-weighted sequence by the SENet-MR (A) and SENet-OR (B) models
with respect to the true age labels. . . . . . . . . . . . . . . . . . . . . . . . 209

8.8 Comparison of the Grad-CAM saliency maps obtained for the samples from
the IoPPN test data consisting of healthy subjects and HBAPS test data
with 0 prediction error using the SENet-MR model. Both samples belong to
the subjects who are 28 years old. The two leftmost columns show planes of a
sample belonging to the IoPPN dataset and corresponding saliency map, the
third and fourth columns � for the HBAPS test data sample. The rightmost
column shows corresponding planes in the features describing whole brain
ageing pro�le obtained using the DEC method (described in Section 6.3.3).
The maps describing the pro�le are multiplied by the MNI152 head mask
for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8.9 Comparison of the Grad-CAM saliency maps obtained for the samples from
the IoPPN test data consisting of healthy subjects and HBAPS test data
with the prediction error equal to the sum of MAE and standard deviation
on it, 9.55 years, in the HBAPS testing data using the SENet-MR model.
Both samples belong to the subjects who are 22 years old. The two leftmost
columns show planes of a sample belonging to the IoPPN dataset and corre-
sponding saliency map, the third and fourth columns � for the HBAPS test
data sample. The rightmost column shows corresponding planes in the fea-
tures describing whole brain ageing pro�le obtained using the DEC method
(described in Section 6.3.3). The maps describing the pro�le are multiplied
by the MNI152 head mask for clarity. . . . . . . . . . . . . . . . . . . . . . 213

8.10 Comparison of the Grad-CAM saliency maps obtained for the samples from
the IoPPN test data consisting of healthy subjects and HBAPS test data
with prediction error of 20 years using the SENet-MR model. Both samples
belong to the subjects who are 29 years old. The two leftmost columns
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ing saliency map, the third and fourth columns � for the HBAPS test data
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describing whole brain ageing pro�le obtained using the DEC method (de-
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the MNI152 head mask for clarity. . . . . . . . . . . . . . . . . . . . . . . . 214
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8.11 Comparison of the Grad-CAM saliency maps obtained for the samples from
the IoPPN test data consisting of diseased subjects and HBAPS test data
with 0 prediction error using the SENet-MR model. Both samples belong to
the subjects who are 69 years old. The two leftmost columns show planes of a
sample belonging to the IoPPN dataset and corresponding saliency map, the
third and fourth columns � for the HBAPS test data sample. The rightmost
column shows corresponding planes in the features describing whole brain
ageing pro�le obtained using the DEC method (described in Section 6.3.3).
The maps describing the pro�le are multiplied by the MNI152 head mask
for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.12 Comparison of the Grad-CAM saliency maps obtained for the samples from
the IoPPN test data consisting of diseased subjects and HBAPS test data
with the prediction error equal to the sum of MAE and standard deviation
on it, 9.55 years, in the HBAPS testing data using the SENet-MR model.
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sponding saliency map, the third and fourth columns � for the HBAPS test
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tures describing whole brain ageing pro�le obtained using the DEC method
(described in Section 6.3.3). The maps describing the pro�le are multiplied
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8.13 Comparison of the Grad-CAM saliency maps obtained for the samples from
the IoPPN diseased subjects and HBAPS dataset sample with prediction
error of 20 years using the SENet-MR model. Both samples belong to the
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Chapter 1

Introduction

Developed countries currently face ageing of populations. According to the 2018 Ageing

Report by European Commission the old-age dependency ratio, i.e. the ratio of the number

of people aged 65 and older to the number of people aged 15 to 64 years old, will increase

by 21.6% in 2070 relative to 2016. In UK the old-age dependency ratio will increase

by 18.1% in this period [15]. This is expected to lead to an increase in the number of

patients with age-related neurodegenerative diseases, e.g. dementia, Parkinson's disease

etc. Dementia is a overarching term for a number of progressive diseases a�ecting patients'

cognitive abilities and behaviour and thus leading to decreased patients' ability to perform

day-to-day activities. Even though the most important risk factor for developing dementia

is age, dementia does not only a�ect older people. In up to 9% of dementia cases the onset

of symptoms occurs before the age of 65 years [16]. In 2015, there were approximately 47

million patients living with dementia worldwide. Due to population ageing, it is predicted

that the number of patients in the world with dementia will rise to 75 million by 2030

and to 132 million by 2050 [17]. All these trends in population ageing and prevalence of

neurodegenerative diseases highlight the importance of brain ageing research. The early

onset of some neurodegenerative diseases also highlights the importance of research of

whole brain ageing course over human lifetime.

Modern brain ageing research has three main directions: studying ageing at a cellu-

lar level and using genetic data in animals, studying human brain ageing by cognitive

assessments, and analysis of neuroimaging data. Animal studies of the cell and genetic

samples are performed to understand �hallmarks of ageing�. The term �hallmarks of age-

ing� describes the process of ageing in terms of its main determinants. The hallmarks of
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ageing include accumulation of genetic changes during the lifetime, dysfunction of inter-

cellular organoids and their communication, impairment of homeostasis and proteostasis,

and decline in the regenerative abilities of tissues [18]. Cognitive neuroscience of ageing

encompasses the behavioural research and studies of age-related neural changes. The tech-

niques of cognitive neuroscience study the relation of ageing related cognitive changes to

structural and functional brain changes [19]. Cognitive assessment measures include tests

of such cognitive abilities as memory, attention, manipulation of information and processing

speed [20]. Genetic determinants of ageing can be explored by analysing genetically mod-

i�ed animals in controlled experimental settings. Experiments in controlled environments

also help with understanding of genetic or epigenetic nature of ageing determinants [21].

Human gene studies of brain ageing have also been performed, to study risk factors [22],

heritability and relationship between ageing and neurodegenerative diseases [23]. Statis-

tical analysis of structural and functional data is another approach used to understand

human brain ageing [24, 25]. Structural Magnetic Resonance Imaging (MRI) data is fre-

quently used in academic research of human brain as it typically has higher contrast and

spatial resolution compared to Computed Tomography (CT) scans or other neuroimaging

techniques, and does not involve ionising radiation, making it particularly appropriate for

longitudinal studies.

In recent years machine learning methods has arisen among statistical methods for the

analysis of MRI data. Machine learning methods used for the MRI data analysis vary

from regression models to Deep Learning (DL) approaches. This has three main reasons.

Firstly, the Graphics Processing Unit (GPU), which was initially invented in 1970s to be

used in arcade games, was �rst introduced for use in machine learning for image recogni-

tion in 2009 [26]. This application was further developed by Cire³an et al [27]. Secondly, a

number of software libraries such as Torch [28], Pytorch [29] or Tensor�ow [30], has been in-

troduced and developed to ease the implementation of machine learning methods. Thirdly,

emergence of publicly available data-sharing initiatives, such as the Human Connectome

Project (HCP) [31] or Alzheimer's Disease Neuroimaging Initiative (ADNI) [32], allowed

the researchers all over the world to develop statistical models without actual MRI data

acquisition. Data-sharing initiatives are also supported by the development of data-sharing

platforms [33, 34].

As statistical methods were developed into machine learning methods, neural network-

based classi�ers can now be successfully used for brain age prediction from structural MRI
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scans [35, 36, 37, 38, 39]. Most of the existing approaches handle pre-processed MRI scans.

For example, Popescu et al [38] and Huang et al [40] trained brain age prediction classi�er

on MRI data segmented into white and grey matter. Huang et al [40] used a Convolutional

Neural Network (CNN) and reported a Mean Absolute Error (MAE) of 4.0 years. Feng et

al [39] applied an algorithm to extract the brain from a MRI scan before training. Both

CNN models and the models derived from CNNs are used to analyse preprocessed MRI

data. For instance, CNN can be also used to construct Gaussian Processes (GP) model.

Popescu et al [38] used Deep Gaussian Processes (DGP) for voxel-wise interpretation for

brain age. They reported their model's MAE as 3.85 years. To date, the lowest MAE

reported on MRI data with minimal preprocessing is 4.16 years by Cole et al [35].

However, the DL methods are so-called �black box� methods as their decision logic

cannot be traced by a human. For the DL methods to be applicable clinically the DL

model results should be as interpretable and explainable as human doctors' decisions are. In

order to improve the applicability of these models, various visualisation methods have been

proposed. One group of methods, based on t-distributed Stochastic Neighbour Embedding

(t-SNE) [41], visualises the distribution of output decisions in order to understand the

outliers. Other methods aim to visualise the features which were important in determining

the network's �nal output. Such methods are called "saliency mapping methods" [42, 43, 7,

5, 44, 45, 46, 47]. Saliency mapping methods take di�erent approaches for understanding

the importance of features in an input. Zeiler and Fergus [47] trace the path of features

backwards from a corresponding output by inverting convolutional layers. Another group of

authors [42, 43, 5, 45] consider a process of backpropagation, i.e. the process of adjusting

network's parameters during its training, and the data contained in these calculations.

Montavon et al [7] propagate relevance from an output layer-by-layer. Features extracted

using saliency mapping methods may be also useful for the insights they can provide into

the nature of tasks themselves. For example, age-related features extracted from a neural

network trained for the task of brain age prediction from structural MRI scans may provide

understanding of the process of ageing itself. However, the debate regarding the clinical

applicability has been deepened by showing that deep neural networks can be easily fooled

into producing high con�dence decisions from input which look like random noise to a

human observer [48, 49, 50].

In order to be applied clinically, the DL methods, which are usually trained either on

publicly available data collected for research purposes or limited clinical datasets, should be
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generalisable to clinical data and must capture the population-wide e�ects. Generalisability

is a complex issue, due to lack of availability of accurate labelling for most of the diagnostic

tasks. The necessary labelling of large datasets by experts may be both expensive and time

consuming. The need for labelling the data may be reduced by using unsupervised or semi-

supervised learning methods. Furthermore, however, for the models to be used clinically the

uncertainty over their decisions should be quanti�ed. There are two types of uncertainty

present in neural network predictions � epistemic and aleatoric. Epistemic uncertainty

arises from model's structure and parameters. It is caused by the lack of training data

or di�erences in the distributions between the training and testing datasets. Epistemic

uncertainty may lead to complications when a model trained on a research dataset is

applied clinically, for example. Aleatoric uncertainty on the other hand arises from noise

in the training data or missing data for some labels in the dataset. Currently available

MRI datasets, which can be used for studying brain ageing, su�er from large imbalances in

the amount of data available per label and this a�ects generalisability too. This needs to

be accounted for to avoid model biases, for example by incorporating measures to alleviate

imbalance into loss functions [4].

1.1 Thesis overview

This thesis describes developing deep learning methods for analysing structural MRI, with

the overall goal of understanding the process of brain ageing in the form of population-wide

brain ageing pro�les. In this context, I have de�ned a brain ageing pro�le by determining

periods of the human adulthood which have similar brain age-related features and studying

the di�erences between the features characterising each period. The overall aim of this

work is not just to develop the methodologies and obtain corresponding results, but also

to consider the credibility of such methods for future use in a clinical settings in light of

the challenges outlined above. The main contributions of this thesis are:

1. compiling a dataset of structural MRI scans from publicly available data,

2. implementing and optimising a classi�er for predicting brain age from MRI scans,

3. extracting a population-wide brain ageing pro�le using both existing methods and

with two new methods developed speci�cally for this purpose,
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4. obtaining age-related features based on the ageing pro�le intervals determined by

these methods and developing a saliency mapping method suitable for ordinal re-

gression classi�er,

5. testing the approach on data representative of that typically collected in a clinical

setting.

In order to achieve these goals, a MRI dataset comprising of 10,878 3D T1-weighted

MRI scans acquired in healthy subjects was constructed from 34 publicly available datasets.

All above mentioned contributions were developed on the dataset with minimal prepro-

cessing applied, i.e. registration using rigid transformation and resampling onto MNI152

template (detailed description in Section 4.2.3). There are three main reasons for using

data with minimal preprocessing in this thesis. Firstly, choosing minimal preprocessing

allows to make interpretable brain age predictions as this allows relating predicted brain

age to important MRI regions. Secondly, a linear registration is chosen as a non-linear

registration method would scale same regions in di�erent MRI scans to the same size.

Therefore, information on age-related atrophy of various brain regions would be lost in

preprocessing. For example, previous published research highlights ventriclular volume

increase with age [51] and non-linear registration is unsuitable for further extracting this

feature from MRI data. Thirdly, scull stripping was not used in the preprocessing pipeline

as that would not allow assessing the size of subarachnoid space and importance of this

feature was previously reported by Herent et al [52].

In this thesis population-wide brain ageing pro�les are investigated as the dataset col-

lated from public datasets is the largest up-to-date used for training. Therefore, the re-

sulting pro�les can be considered to be as generalisable as possible and in this thesis the

term "population-wide" is used as a shorthand to describe the pro�les investigated.

The MRI dataset constructed to study human brain ageing is described in Chapter 4

along with the synthetic datasets generated speci�cally to demonstrate the methods used

in this thesis. Chapter 5 describes the development of a classi�er for predicting brain

age from MRI scans using metric and ordinal regression. Chapter 6 describes extracting

population-wide brain ageing pro�les from the results obtained in Chapter 5. In order

to obtain age-related features based on these ageing pro�les, a range of existing saliency

mapping methods were implemented and compared; the features obtained are described

and compared to existing literature in Chapter 7. Finally, Chapter 8 describes testing of
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the approaches presented above on data more representative of the clinical setting, using an

independent, locally collected, dataset, in which two test data subsets are used consisting

of healthy controls and patients.

1.2 Approvals

1.2.1 Data approvals

Data usage approvals were obtained for all 32 public and 3 private datasets used.

1.2.2 Code approvals

This PhD uses a mixture of locally developed and publicly available software. All code is

used in accordance with the corresponding publisher's license. The source of the code used

in each section is detailed.

In Chapter 5 feature extraction of the brain age prediction classi�ers with both metric
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Chapter 2

Background

In this chapter the theory and related work useful to understand the content of this PhD

thesis are presented. Firstly, the context is set by describing essential imaging terminology.

Secondly, the concept of deep learning is introduced, along with the Convolutional Neural

Network (CNN) and autoencoder. Two speci�c aspects of deep learning methodologies, on

which the work in this thesis is based, � unsupervised clustering and saliency mapping - are

also discussed . Thirdly, the Preference Ranking Organization METHod for Enrichment of

Evaluations (PROMETHEE) is described, as it is also used in later chapters of the thesis.

Finally, a review is provided of existing knowledge on brain ageing.

2.1 Imaging terminology

In this section essential imaging terminology, which is used throughout the thesis, is de-

scribed. The terminology is �rst introduced in the context of natural images and then

terms speci�c to the description of medical images are considered.

Imaging data can be represented in space with more than two dimensions. One-, two-,

or three-dimensional spaces are denoted as 1D, 2D and 3D spaces respectively. In medical

imaging 4D spaces are used to re�ect changes of 3D data over time. The choice of space

is dependent on how many parameters are minimally required to describe each point in

the data. For instance, natural images are described in a 2D space, as two parameters (x

and y position) are required to state position of each element. Each element of a natural

image is a pixel. A pixel is the smallest unit of an image [58]. Image size can be de�ned in

terms of number of pixels - in 2D, the image's width and height. On the other hand, pixel

size is determined by image size and resolution as resolution de�nes how many pixels are
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needed to represent an image of given size at a particular level of detail. Natural images

can be either grayscale or colour. In grayscale images each element is represented solely by

its intensity, which is described by a single value. In colour images each pixel is described

by a colour model of choice. A colour model is a mathematical model de�ning colours as

sets of numbers [59]. For example, frequently used model is RGB colour model. In this

model each pixel is typically described by three values as every colour can be represented

by mixing three primary colours � red, green and blue [60]. These three values describing

each pixel are known as channels.

Medical images are typically acquired in the form of two- or three-dimensional data. 3D

medical images are often displayed and manipulated by considering 2D slices from 3D data

to ease visualisation and analysis, or reduce computational costs and time. Conversely, 3D

medical data are often created by stacking 2D slices, to allow reformatting in orientations

other than that of the original acquisition). 4D medical data is also used to capture changes

of 3D data over time. In this thesis we consider Magnetic Resonance Imaging (MRI) data

which are stored in 3D form, regardless of whether the original data acquisition was 2D or

3D. Each element of 3D data is known as a voxel, the 3D equivalent of a 2D pixel. A voxel

is the smallest unit of 3D data used to describe it. 3D data size is usually written as a

product referred to as the matrix size (e.g. 256× 256× 256). 3D data size can be de�ned

in terms of number of voxels used to represent a physical 3D volume. Voxel size and the

size of physical volume are related through �eld of view (FOV). Medical images are also

characterised by their FOV. FOV is the overall size, in physical space, of the region which

is captured in an image [61]; this is measured in cm or mm, and is typically quoted as 1,

2, or 3 numbers (e.g. 24cm; 24× 22cm; 24× 22× 16cm, with the �rst of these implicitly

implying either a 24× 24cm 2D image, or a 24× 24× 24cm 3D image, and so on).

Structural MRI data typically has only a single channel, and can be displayed as a

grayscale image. MRI data can di�er by the sequence type used in acquisition. MRI signal

is acquired by applying radio frequency pulses to a tissue to be imaged. The resulting signal

decays (usually exponentially) at a rate depending of a number of inherent parameters

determined by the tissue structure, with the overall signal intensity depending both on these

and on (operator selectable) sequence timing parameters. As a result, sequence parameter

settings can be used to change the contrast (i.e. the relative signal form two di�erent

tissues) of the resulting scans. For example, there are two frequently used parameter

settings, and thus the contrast of resulting scans � T1-weighted and T2-weighted MRI as
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shown in Figure 2.1. In T1-weighted scans of brain Grey Matter (GM) appears darker

compared to white, while in T2-weighted the relationship is the opposite. In T1-weighted

data Cerebrospinal Fluid (CSF) also appears darker compared to the T2-weighted data [62].

There are also many other sequences used. Here are some examples:

� Fluid-Attenuated Inversion Recovery (FLAIR) MRI sequence is used to suppress the

impact of CSF on resulting images and highlight the lesions [63],

� Susceptibility-weighted Imaging (SWI) sequence is used to image venous blood, iron

deposition and haemorrhage [64],

� Di�usion-weighted Imaging (DWI) sequence is used to image di�usion of water

molecules to study tissue structure [65].

Figure 2.1: Examples of T1-weighted (left) and T2-weighted (right) brain scans.

2.2 MRI data preprocessing

In this thesis, data preprocessing is described in Section 4.2.3 and comprises a registra-

tion process which involves rigid -body transformation and resampling onto the MNI152

template. Here the concepts of each these steps is described.

2.2.1 Registration

Registration of two MRI scans is a process aligning them such that common features

overlap, and the result also reveals di�erences between the two. The process of image

registration is a process of calculating the geometric transformation which minimises the

di�erence between the two images, as assessed by a cost function [66]. Figure 2.2.1 shows

an example of registration.
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Figure 2.2: Example of registration results. Top row: original MRI scan. Bottom
row: the same coordinates in the original scan registered onto MNI152 tem-
plate.

Rigid body transformation

The 3D rigid body transformation for a point (x1, x2, x3) into new coordinates (y1, y2, y3)

is de�ned by

y1 = m11x1 +m12x2 +m13x3 +m14

y2 = m21x1 +m22x2 +m23x3 +m24

y3 = m31x1 +m32x2 +m33x3 +m34,

where mij are the elements of transformation matrixM . Equation 2.1 can be represented

by matrix multiplication, y = Mx:



y1

y2

y3

1


=



m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44





x1

x2

x3

1


(2.1)

The form of transformation given in Equation 2.2 is useful, as M can be represented by

a combination of matrices corresponding to each part of a transformation � translation

and rotation. These transformations can be combined via multiplication of corresponding
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matrices. Pure rigid-body transformation involves only translation and rotation. Other

transformations may involve zoom and shear operations and such transformations are

a�ne.

Resampling

Resampling is a calculation of voxel intensities in resulting transformed image from corre-

sponding intensities in the original image. This involves interpolation between the voxels.

Classical interpolation methods convolve an image locally with a pre-de�ned interpolant

but can be generalised for more e�ective resampling. Generalised interpolation calcu-

lates the intensities in resulting image by considering a combination of pre-de�ned basis

functions. Frequently used basis functions for generalised interpolation are B-splines. In

resampling basis function coe�cients are �rst calculated for an input image. Resampling

for each voxel value is then a calculation of a linear combination of such basis functions.

B-splines form a family of basis functions [67]. Using B-splines of degree 0 or 1 is equivalent

to nearest neighbour or linear interpolation. B-spline of degree n is de�ned as

βn(x) =

n∑
j=0

(−1)j(n+ 1)

(n+ 1− j)!j!
max

(
n+ 1

2
+ x− j, 0

)n
. (2.2)

2.2.2 MNI152 template

The MNI152 template [68] is a digital brain template which is an anatomical representa-

tion of a brain. Such templates are used to allow transformation of the data collected from

di�erent subjects into a common (template) space, to allow comparison between equiva-

lent brain regions in each subject. The MNI152 template was developed by the Montreal

Neurological Institute (MNI) in 2001, using 3D brain MRI scans of 152 healthy subjects.

It was created using Automated Image Registration (AIR) algorithms. A target image was

chosen out of 152 data samples and all others were linearly registered onto it using a 9-

parameter a�ne transformation. Following this a non-linear registration was performed to

take into account anatomical variability among subjects in the shape and size of brain fea-

tures, and the di�erences in scan orientations. The �nal template thus created is provided

with a head mask, i.e. the result of a segmentation performed such that the template's

region corresponding to a head has maximum intensity and background has 0 intensity.

The MNI152 template was adopted by the International Consortium for Brain Mapping
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(ICBM) as a standard; it is used in many neuroimaging analysis tools and protocols, and

is included in the FMRIB Software Library (FSL) [69].

2.3 Deep learning

Machine learning (ML) is a family of algorithms having the ability to extract information

from input data that can be used for discovering relationships within the data. ML al-

gorithms can be considered to be predictive models capable of processing large datasets

of complex nature. The latter is a particular advantage of ML algorithms, as statistical

analysis of such datasets can be impractical. Another advantage of ML predictive models

is that they are built without needing prede�ned coding rules.

ML models consist of two main steps � feature extraction and prediction. Performance

of the prediction step is heavily dependent on the feature extraction. Feature extraction

is a process of extracting relevant information from an input dataset such that predictive

ability of a model can be maximised. Deep Learning (DL) has arisen as once common

approach to handling the problem of feature extraction in the ML models [70].

DL is a specialisation of ML represented by a family of algorithms consisting of multiple

layers of "arti�cial neurons" so called because of their ability to take one or more data input

and combine them to create set of outputs. Figure 2.3 shows a schematic of an arti�cial

neuron. Neurons can be combined into layers to form a Multi-Layer Perceptron (MLP).

A MLP is non-linear mapping algorithm from an input to an output [71]. These layers

of neurons are able to extract features from input data by passing information deeper

through an algorithm. As a DL algorithm "learns" the weights, i.e. parameters, of each

layer, the algorithm "learns" to generalise information presented in the input dataset. The

more complex is the task, the deeper algorithms are required and the larger should be the

training dataset to "learn" the weights and generalise to the data. Once the algorithm

is trained to perform a task, i.e. once learning is completed, the algorithm can make

predictions on new data present to it [72]. Recently there has been a rapid growth of

the DL �eld due to the development of optimization algorithms, improving hardware for

computations (invention of a Graphics Processing Unit (GPU)) and increasing numbers

of various public datasets available [73]. In 2012 the deep CNN algorithm emerged as

Krizhevsky et al [74] published the AlexNet CNN for natural image classi�cation [75].
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Figure 2.3: Schematic of an arti�cial neuron. A neuron receives a set of inputs,
{a1, a2, a3, ..., aN}, and combines them by applying a function, f , to produce
an output.

The algorithms of DL can be divided into two main classes � supervised and unsuper-

vised. In supervised learning some form of ground-truth, such as data labels, is available

for training and training aims to �nd a relationship for inferring these labels from the input

data. On the other hand, in unsupervised learning labels are not available, and training

aims to extract important features from data independently of data labelling [70].

Recently there has been a growth in data on patients with a range of diseases (plus

healthy controls) which has been, collected, systematically stored and made available for

additional research purposes. DL algorithms require large amount of data for training, and

the increase in available medical data has given rise to an increased DL usage in medical

research. This rapid rise in DL applications is also supported by the development of a

range of software libraries which provide DL algorithms "o�-the-shelf", such as Theano [76],

TensorFlow [30], Keras [77] and Pytorch [29].

The applications of DL in the medical �eld can be divided into 2 main categories

� acquiring and improving the data themselves and making decision based on the data.

Examples of DL applied at the stage of acquiring data include algorithms for optimizing

radiation and contrast dose and scanning time [78]. For the purpose of data preprocessing,

DL algorithms have been published for removing image artefacts, normalising the data

and improving its quality [79]. Examples of using DL algorithms for making decisions

once the data has been acquired include tools for detection [80, 81] and segmentation [82,

83] of anatomical structures and abnormalities, along with providing decision on their

correspondence to a particular diagnosis [73].
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In order to train for di�erent tasks, the DL algorithms take various forms. The three

main categories of the DL architectures of interest for this thesis are feed-forward Neural

Network (NN) (or MLP), the CNN and the autoencoder.

2.3.1 Feed-forward neural network

A NN is a ML model consisting of interconnected neurons or perceptrons [84]. The

schematic structure of a MLP NN or a Multi-Layer Feed Forward Neural Network

(MLFFNN) is presented in Figure 2.5. The MLP model has three components: an in-

put layer, one or more hidden layers and an output layer. In the MLP NN each neuron

receives an input either from input nodes or from other neurons, and passes it through

hidden and output layers. A schematic of interconnected neurons in a con�guration shown

in Figure 2.5 is called a fully-connected NN. In such a network the outputs of each neuron

are connected to all neurons in a succeeding layer. An output of a neuron is a weighted

sum of its inputs:

X =
N∑
i=1

wijai + bj , (2.3)

where

� N is the number of input nodes,

� wij is a neuron's weight connecting an ith input, ai, to an jth neuron,

� bj is a neuron's bias.

Figure 2.4: Schematic of a neuron. an is an nth input to a neuron, wij is a weight
connecting nth input and jth neuron, bj is a jth neuron's bias and σ is an
activation function. Adapted from [1].
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Figure 2.5: Schematic of a MLP with a single hidden layer and a data �ow within
it. an is an nth input into a MLP and yn is an nth output of a MLP. Adapted
from [1].

The output of a neuron propagated deeper into MLP is a result obtained by applying

Equation 2.3 put though a non-linear function, Y = σ(X). Such non-linear function is

called an activation function. Following activation functions (shown in Figure 2.6) will be

used in this thesis:

� logistic sigmoid function given by

σ (x) =
1

1 + e−x
, (2.4)

which maps real numbers into the range [0, 1];

� hyperbolic tangent function given by

σ (x) = tanh(x), (2.5)

which maps real numbers into the range [−1, 1];

� Recti�ed Linear Unit (ReLU) function given by

σ (x) = max (x, 0). (2.6)
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Figure 2.6: Plots of activation functions.

Training a MLP

Training a MLP involves inputting each item of a training dataset, in batches, passing

these values forward through the MLP and evaluating the output relative to the desired

value through a loss function. During optimisation, the error from a loss function is

backpropagated through the NN, i.e. the gradient of the error function with respect to

the weights is calculated for each layer, working backwards from the last to the �rst. The

parameters of a MLP are adjusted accordingly to reduce error and improve accuracy [85],

and the process continues iteratively until a stopping condition is met. A common stopping

condition is absence in validation set error changes. The network's inputs are put through

a network in batches for faster training as this approach allows for more weight updates

in each training epoch. Each step of the training process will now be described in detail.

Initialisation During training the MLP parameters are iteratively adjusted starting from

initial values. Initialisation of parameters is critical to network's performance. If all the

MLP's weights are initialised to the same value, then each update iteration would result

in the same values for all parameters. Therefore, several parameter initialisation methods

have been proposed. Krizhevsky et al [74] proposed to initialise the parameters with small

values drawn from a Gaussian distribution. Glorot et al [86] proposed Xavier initialisation.

In Xavier initialisation variance of each MLP neuron is normalised to 1 as the parameters

are drawn:

Wij ∼ U
[
− 1√

n
,

1√
n

]
, (2.7)

where
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� Wij is an element of 2D weight matrix,

� U [−a, a] is the uniform distribution de�ned on the interval (−a, a),

� n is the size of preceding layer or the number of columns of a weight matrix of

previous layer.

Further, He et al [87] modi�ed the Xavier initialisation approach to improve the perfor-

mance of networks, including the MLPs, by considering variance of layers' output. Bernal

et al [88] uses the notation of He et al in Equation 2.7 and replace ones in numerator by 2.

Optimisation During the MLP's training, or optimisation, its parameters are iteratively

adjusted by computing a loss function and backpropagating the resulting error values.

Backpropagation is implemented via gradient descent methods. The details of such meth-

ods are dependent on whether the data is presented to a network sample-by-sample, in

"mini-batches" or as a complete dataset at once. The gradient descent method for sin-

gle sample is called Stochastic Gradient Descent (SGD). The optimisation algorithm for

mini-batch presentation and whole dataset are, respectively, called mini-batch and batch

SGD. Updating values using the whole training dataset can be computationally expensive

or even impossible, depending on the size of training data. Therefore, mini-batch gradient

descent is typically used [88].

In the mini-batch SGD algorithm, at each iteration a mini-batch, B, of sizeM training

samples is put through a MLP in a forward pass and a backpropagation algorithm is

applied to the mini-batch in order to calculate the gradient of the loss function, L, with

respect to network's parameters, θ −∇θL. In practice, this computation is implemented

using the chain rule for partial derivatives, applying it backwards from the loss function

to the parameter of interest. The updated value of parameter vector θ at iteration t+ 1 is

given by:

θt+1 = θt − η∇θL|θ=θt (2.8)

where η is algorithm's learning rate (see below).

In NN training, mini-batch SGD is used by shu�ing the training dataset before the

training and then taking mini-batches consecutively from the shu�ed dataset. Once whole

dataset has been used in a number of iterations, a training epoch is completed, and the

training data is shu�ed again before the next epoch [1].
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In order to overcome the problem of SGD becoming trapped in local minima, the

learning rate is adjusted as the training progresses. The learning rate may be adjusted in

three ways � step, exponential and 1/t decays:

� in step decay, the learning rate is reduced by a constant factor every T epochs;

� in exponential decay, the learning rate is adjusted every N epochs according to

η = η0e
−kt, (2.9)

where

� η0 is previous learning rate,

� η is new learning rate,

� k is a hyperparameter of adjustment,

� t is an epoch number [89];

� in 1/t decay the learning rate is adjusted every N epochs according to

η =
η0

1 + kt
. (2.10)

2.3.2 CNN

Training a MLP requires a neuron for each element of the input data (in the context of

imaging, each pixel in a 2D image, or voxel in a 3D image). As the result, for 3D inputs the

number of parameters to be trained can be prohibitively large. Another issue with MLPs is

that they cannot take into account spatial relationships within an input which is essential

in order to fully capture the information content of an image. In order to overcome these

problems, a CNN architecture extends a MLP as explained below [90]. In order to reduce

the number of parameters a CNN uses convolutional layers which connect a neuron to a

part of an input as opposed to all of it. This part of an input is known as the neuron's

local receptive �eld. The layers of a CNN are discussed in detail further in this section.

The CNN architecture was �rst proposed by Fukushima [91]. However, the proposed

approach was not widely used as the computational resources required for such method

to be trained were not available at this time. Later, in 1998, Lecun et al [92] applied a

gradient-based learning strategy to a CNN. The CNN training methodology was further
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developed by Hinton et al [93, 94] and together with the development of GPUs this caused

a sharp growth in both the application of the CNN to wide range of tasks and further

development of its architecture.

CNNs are used for a wide variety of tasks including image recognition, image description

for caption generation, speech recognition, handwriting and text generation, prediction of

demographics and election results, computer robotics and self-driving vehicles [95]. Medical

applications of CNNs include lesion detection and evaluation, estimation of patient survival

and segmentation of medical images [85].

CNNs have a wide variety of applications in neuroimaging. At the image acquisition

stage CNN can be used for MRI reconstruction [96] and improving image quality [97]. CNN-

based techniques can also be used for segmentation of anatomical regions of interest [98,

99, 100]. In the diagnostic arena, CNNs have been used to detect Alzheimer's disease [101],

haemorrhage [102] and other neurological diseases [103].

There are several advantages of a CNN compared to a MLP. Firstly, a CNN has more

similarity to human's visual processing system and, therefore, is better suited for processing

images. Secondly, CNN consists of sparse connections with shared weights and this results

in smaller number of parameters to be trained compared to a MLP.

Figure 2.7 shows schematic of the CNN architecture. All CNN architectures can be

divided into two main parts � feature extraction and regression or classi�cation. An input

is passed through the feature extraction part of a network such that an input to each layer

is an output of a previous layer. The output of an individual layer is called a feature

map, and features extracted at higher-level are propagated to lower level layers. As the

features propagate through a network, from higher to lower level layers, the dimensions

of the features reduce. Conversely, as data propagates from higher to lower levels, the

number of feature maps increases. The feature extraction part of the network consists of

convolutional, max-pooling, batch normalisation and activation layers. All these layers are

discussed further below.

The output of the feature extraction part of a CNN forms the input into a regression

or classi�cation part. This part of the network is represented by a set of fully-connected

layers, which is a MLP. For a classi�cation NN the scores for each class for a given input

are calculated using a softmax function in the last layer. The building blocks of a CNN

will now be discussed individually, in detail.
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Figure 2.7: Schematic of an example CNN trained for a task of image recognition.
In a forward pass, a CNN takes a 2D image as an input and passes it through a
feature learning step �rst. Then the features are �attened and passed through
a classi�cation part of the CNN. Feature learning part of the CNN consistsof
convolutional, non-linear activation (ReLU) and pooling layers. Classi�cation
part �rst �attens a feature map output of the feature learning step and uses
fully-connected layers to produce an output. A soft-max layer produces the
output meaning a particular input class [2]. Permission to use illustration
obtained from the authors.

CNN layers

Convolutional layer Consider a CNN analysing a 2D data, e.g. a single-channel (grey-

scale) image, and denote an input as X ∈ Rh×w, where h and w are respectively height

and width of the input. Now let a convolution kernel matrix to be K ∈ Rn×m with n and

m being the kernel dimensions and bias to be denoted as b ∈ Rm. The convolution of an

input X and a kernel K is given by

X ′ab = σ

 n∑
i=1

m∑
j=1

KijXa+i−1,b+j−1 + b

 , (2.11)

where σ is one of the activation functions given in Equations 2.4 � 2.6 and X ′ab is ab
th

element of matrix resulting from a convolution operation. This process is then repeated,

with the kernel being shifted along the input direction by an amount known as the stride.

The principle of the convolution given by Equation 2.11 is illustrated in Figure 2.8 (for a

kernel of size 2× 2 and a stride of 1).
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Figure 2.8: 2D convolution operation with stride of 1. Input matrix elements are
denoted by xij and kij are kernel matrix elements, where i and j are row and
column indices respectively. oij denotes output matrix elements.

Equation 2.11 can be extended to describe the operation of a convolutional layer for a

3D input, again with a single channel, X ∈ Rh×w×d, using a kernel, K ∈ Rn×m×l, and a

bias vector, b ∈ Rl:

X ′abc = σ

 n∑
i=1

m∑
j=1

l∑
k=1

KijkXa+i−1,b+j−1,c+k−1 + b

 . (2.12)

Using the operation shown in Equation 2.12 for extracting features exploits the fact

that neighbouring regions of an input are more likely to be related to each other than more

separated input regions. This makes feature extraction more e�cient and prevents loss of

information. The convolution operation from Equation 2.12 is also translation invariant.

In a translation invariant operation, a kernel can be consistently applied to all input regions

and, therefore, the operation extracts information about important features independent

of their spatial position in an input [1].

Non-linear activation layers In a CNN non-linear activation layers are the same as for

the MLP discussed in Section 2.3.1.

Pooling layers A pooling layer performs down-sampling of input maps without changing

the number of input feature maps. While the convolution operation outputs higher val-

ues for the more important features found, dimensionality reduction should preserve the

maximum values in a feature map in order to ensure that the most important features are
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passed further down the network. Such an operation is called max-pooling and it is the

most frequently used type of pooling layer in a CNN. As it is demonstrated in Figure 2.9,

the max-pooling layer divides image into n ×m patches and returns the maximum value

for each of them. The degree of reduction in the dimensions of the input feature maps

depends on pooling kernel size and pooling stride (both de�ned in a manner analogous to

the convolutional layer). Reducing the feature map dimensions frees memory to be used

to allow more channels in the feature maps and thus obtain more higher-level features.

Therefore, a CNN consists of series of convolution layers separated by max-pooling layers.

The layers are repeated until a su�cient number of important features is extracted and

the feature map size is small enough to be processed by the fully-connected layers in the

regression part of the network [104, 1].

Figure 2.9: Example of applying max-pooling operation on a single channel 2D input
with stride 2 in both dimensions and kernel size of 2× 2.

Batch normalisation layer During CNN training the distribution of input values into

each layer changes on each iteration together with the parameters of a previous layer. This

complicates and slows down the training, requiring lower learning rates and making a CNN

sensitive to initial parameter choices. This combined e�ect is called internal covariate shift.

Using a batch-normalisation layers reduces the e�ect of covariate shift by normalising the

data inside a network during training [105]. Batch normalisation is de�ned by

X ′i = γX̂i + β ≡ BNγ,β (Xi) , (2.13)

where γ and β are the parameters of batch-normalisation and X̂i is the ith normalised

input sample from a mini-batch of size M de�ned as

X̂i =
Xi − µB√
σ2
B + ε

. (2.14)
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X is an input to a batch-normalisation layer, µB and σB are mean and variance de�ned

as

µB =
1

M

M∑
i=1

Xi (2.15)

and

σ2
B =

1

M

M∑
i=1

(Xi − µB)2 . (2.16)

Classi�cation or regression part of a CNN The output feature maps of the feature ex-

traction step are �rst "�attened" to reduce them to 1D vectors, as a MLP used in the

classi�cation or regression part of a network needs a 1D vector as an input. The �attening

operation is illustrated in Figure 2.10.

Figure 2.10: Flattening operation.

The �attened input is then fed into a MLP as de�ned in Section 2.3.1. In a classi�cation

network a layer known as a softmax layer is applied to the output vector to derive a

particular class for an input sample. The softmax function transforms an output vector into

normalised probability distribution. Each probability in the resulting vector is proportional

to the exponential of an output vector value:

σ (yi) =
eyi∑K
k=1 e

yi
for i = 1, . . . , K, (2.17)
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where an output vector is denoted by y = (y1, y2, . . . , yK) ∈ RK [106]. Output of a layer

before a softmax layer can include negative numbers or numbers greater than 1. In such case

the output does not sum to 1 and, therefore, cannot represent a probability distribution

over output classes. After applying the softmax operation as de�ned in Equation 2.17

each output element is positive and all output elements sum to 1. Once the distribution

of probabilities is obtained larger output values correspond to larger probabilities of an

output class [107].

Residual network

He et al [108] have shown empirically that as a CNN's depth increases, degradation of

network's performance becomes evident. Accuracy reaches an asymptote as number of

layers is increased. The experiments by He and Sun show that this degradation is not

due to over�tting as they have shown that adding more layers results in higher training

error [109]. In order to illustrate network performance degradation He et al [108] propose

an example. Consider two networks constructed such that the second one is a deeper

counterpart of the �rst one. Depth of the second network is increased by adding identity

mapping layers into the �rst network. In theory existing of such counterpart for the �rst

network means that the second network should achieve training error no higher than the

�rst network. In practice He et al have not found optimization solution to achieve training

performance of the �rst network [108] in the second network. In order to solve this problem

He et al [108] introduced a Residual Network (ResNet). In a ResNet "skip connections" are

introduced in a form of identity mapping. Skip connections are the connections of layers

skipping at least one layer. Identity mapping is used as it does not require additional

parameters.

A residual block is shown in Figure 2.11 and is de�ned by Equation 2.18:

yres = Fres(xres,Wi) + xres, (2.18)

where

� xres and yres are the input and output of a residual block,

� Fres(xres,Wi) is a residual mapping to be learned.

The operation Fres(xres) + xres is point-wise addition. For the layers which result in

Fres and xres of di�erent dimensions, e.g. convolutional layer, a linear projection, WS , is
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introduced as

yres = Fres(xres,Wi) +Wsxres. (2.19)

Figure 2.11: Schematic of a residual connection via identity mapping. An input,
xres, is put through residual module's layers, Fres. The output, Fres(xres),
is then added to the corresponding input.

ResNet architecture The ResNet architecture can be formed from any CNN architecture by

introducing residual modules which "jump" over convolutional blocks, as shown in Figure

2.11. Figure 2.12. shows convolutional part of the ResNet-50 architecture which consists

of 50 convolutional and max-pooling layers. In the convolutional part of the network,

convolutional and max-pooling layers are followed by 4 convolutional blocks which are

repeated 3, 4, 6 and 3 times respectively. Each block uses a convolutional layer with kernel

of size 1 × 1 to ensure that in the residual connection each input can be combined with

its output. Each convolutional layer is combined with a batch normalisation layer before

activation.

Figure 2.12: ResNet-50 architecture layout. The architecture consists of 50 layers.
Each convolutional block (shown by a orange rectangle) consists of three
convolutional layers and is repeated number of times shown below each block.
Convolutional layers (Conv) are shown by blue rectangles and a max-pooling
layer (MP ) � by green rectangle. For convolutional layers kernel dimensions
are followed by the number of channels in an output. Residual connection is
shown by a dark blue arrow.
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Squeeze-and-Excitation Network architecture

The Squeeze-and-Excitation Residual Network (SE-ResNet) is a CNN architecture in which

residual blocks are replaced by SE-Res blocks. Squeeze and excitation operation introduced

in a SE-block can explore dependencies between channels and "excite" useful features, while

suppressing others. This improves network's performance as receptive �eld of �lters in a

network decreases deeper into a network and they progressively loose context. In order

to describe the Squeeze-and-Excitation Network (SENet) architecture, consider a network

taking 2D inputs.

In order to describe the SENet architecture, consider a network taking 2D inputs.

First consider a SE-block for a 2D input with a one or more channels, as presented in

Figure 2.13. A SE-block performs feature recalibration in the following way. Consider

a transformation Ftr (which can be a single transformation or a set of transformations)

such that Ftr : X → U ,X ∈ RH′×W ′×C′ ,U ∈ RH×W×C , where X is an input and

H,W,C are height, width and a number of channels respectively. In order to demonstrate

squeeze operation let Ftr be a convolutional transformation, which learns a set of �lters

V = [v1,v2, . . . ,vC ] and a vector vC represents the parameters of cth �lter. Then an

output of the transformation U = [u1,u2, . . . ,uC ] is

uc = vc ∗X =

Ci∑
s=1

vsc ∗ xs, (2.20)

where ∗ denotes a convolution, vc =
[
v1
c ,v

2
c , . . . ,v

C′
c

]
and X =

[
x1,x2, . . . ,xC

′
]
. As the

result of the operation in Equation 2.20. uc is of size uc ∈ RH×W , i.e. uc has 1 channel.

vsc is a 2D kernel describing the relationship of channel c in vc with a channel s in X.

Output feature maps, uc, are produced by summation of results of convolution channel-

wise. Therefore, channel dependencies are encoded in vc. (For simplicity in this example

we do not consider the bias term of the convolution operation, but this can be added in

the usual way).

A convolutional layer has a local receptive �eld and its output, U , does not taking

into account the context of whole input X. The squeeze operation in a SE-block aims to

resolve this disadvantage by "squeezing" such contextual information into the description

of each channel in U . For this purpose, a "squeeze" operation is applied to U . The squeeze

operation produces a channel descriptor by extracting channel-wise statistics z ∈ RC , z =
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[z1, ..., zc, ..., zC ], as

zc = Fsq (uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j). (2.21)

In Equation 2.21 global average pooling over each channel of transformation output, U ,

is used to obtain the statistics zc. Such operation can also be interpreted as "squeezing"

the context of input's spatial dimensions H ×W through each channel c.

The "squeeze" operation is followed by the "excitation" step. The excitation operation,

Fex, uses information from squeeze step by applying following "gating" relationship:

s = Fex (z,W ) = σ (g (z,W )) = σ (W2δ (W1z)) , (2.22)

where

� σ denotes sigmoid function,

� δ - ReLU function,

� W1 ∈ R
C
r
×C ,W2 ∈ RC×C

r are weights.

The "gating" mechanism given in Equation 2.22 serves two purposes within the "excita-

tion" operation. Firstly, it is capable of learning non-linear relationships among channels in

U . Secondly, it allows further enhancement of the importance of multiple channels instead

of an emphasis on a single channel. Weights W1 an W2, along with the ReLU opera-

tion, form fully-connected layers to perform dimensionality reduction. The �nal SE-block

output is de�ned as

x̃c = Fscale (uc, sc) = sc · uc, (2.23)

where X̃ = [x̃1, x̃2, . . . , x̃C ] and scalar sc is combined with a feature map uc ∈ RH×W via

channel-wise multiplication. In that way U is rescaled with the activations sc.

Figure 2.13: A schematic of a SE-block. Arrows show operations applied to whole
input, dashed arrows � channel-wise operations. Adopted from Hu et al [3].
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For the network used in the experiments described in this thesis, we used SE-Res-blocks

to form a SE-ResNet. In a SE-Res-block, Ftr is the non-identity branch of a ResNet-block,

while squeeze and excitation operations are applied before the summation with identity

branch as shown in Figure 2.13. (Hu et al. 2017).

Figure 2.14: Schematic of a SE-Res-block used to form a SE-ResNet. An input,
xres, is put through residual module's layers, Ftr. The output, Ftr(xres), is
then forwarded though the squeeze and excitation operations and added to
the corresponding input to produce block output yres.

Pseudocode for the SE-block is shown in Algorithm 1. Input to the block is as described

above and output in step 8 of the pseudocode is de�ned by Equation 2.23. Global average

pooling in step 3 is de�ned by Equation 2.21. The view_as(·) and expand_as(·) are used

to ensure that the inputs into the element-wise multiplication in step 7 are of the same

size. The view_as(·) operation returns a tensor with the same number of elements as the

tensor it is applied to, but di�erent dimensions supplied as arguments. The expand_as(·)

operation repeats dimensions of the tensor it is applied to return a tensor with the dimen-

sions of the tensor passed as an argument. Fully-connected layer in step 5 is described by

Equation 2.22.

Algorithm 1 SE-block

1: Input: X of size B ×H ×W × C
2: Output: Y of size B ×H ×W × C
3: y ← global_average_pooling(X)
4: y ← y.view_as(B,C)
5: y ← FC(y)
6: y ← y.view_as(B,C, 1, 1)
7: y ← X ∗ y.expand_as(X)
8: return y
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2.3.3 Regression

While classi�cation models output a set of probabilities corresponding to a number of

classes, regression models output a quantity of interest. In a regression CNN, a set of fully-

connected layers in the regression part of a network models an output quantity, as described

by Equation 2.3. There are two types of regression � metric and ordinal. Equation 2.3

represents a model of metric regression, while an ordinal regression model takes into account

the relative order of output values, as described further below. Therefore, Equation 2.3

cannot directly represent ordinal regression.

Ordinal regression

Assume an ith input belongs to the input dataset as xi ∈ X with corresponding outcome

space yi ∈ Y = {r1, r2, . . . , rK}, where rK > rK−1 > . . . > r1 are ordered ranks. Solving

an ordinal regression problem is equivalent to �nding a mapping from the training dataset

D = {xi, yi}Ni=1 to the ranks h () : X → Y .

There are several ways to implement ordinal regression in the regression part of a

CNN. Herbrich et al [110, 111] proposed a modi�cation of the Support Vector Machine

(SVM) algorithm to take into account data ordinality. Crammer and Singer [112] analysed

the problem of ranking instances and proposed a generalisation of the online perceptron

algorithm for ordinal regression. The most relevant approaches for applying to a CNN

were proposed by Frank and Hall, Li and Lin, and Niu et al [113, 114, 4]. In all three

approaches ordinal regression is represented by a set of binary classi�ers.

Niu et al [4] transformed the problem of ordinal regression into a set of binary regression

problems: K ranks are represented by K − 1 binary classi�cation sub-problems. For each

rank rk ∈ {r1, r2, . . . , rK−1} a binary classi�er predicts whether for an ith sample yi > rk.

The architecture used by Niu et al [4] is shown in Figure 2.15.
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Figure 2.15: Schematic representation of the architecture used by Niu et al [4]. The
features of input images are �rst extracted using convolutional part of the
CNN. Resulting feature maps are then fed into a fully-connected layer, results
from which is fed into K − 1 binary classi�ers. Each of the K − 1 classi�ers
determines whether a label corresponding to an ith sample, yi, is greater than
a value, rk. Adapted from [4].

Then rank of an unseen sample is predicted based on the classi�cation results of K − 1

classi�ers. Three main steps of the approach are:

� From original dataset D = {xi, yi}Ni=1 construct a sub-dataset for each kth binary

classi�cation problem as Dk = {xi, yki , wki }
N
i=1, where

� yki ∈ {0, 1} is a binary classi�cation label indicating whether the rank of a

sample yi is larger than rk,

� wki = |Cy,k − Cy,k+1| is the weight of an ith sample taken from a cost matrix.

Cost matrix, C, is employed for measuring cost between predicted ranks and ground-

truth ranks. C is a K×K matrix where Cy,r is the cost of predicting a sample (x, y)

as rank r. Also Cy,y = 0 and Cy,r > 0 for y 6= r. Niu et al [4] used an absolute cost

matrix, with Cy,r = |y − r|.

� K − 1 binary classi�ers are trained.

� The rank for a sample x′ is predicted as

h
(
x′
)

= rq

q = 1 +

K−1∑
k=1

fk(x
′), (2.24)

where

� h (x′) is a predicted rank for a sample x′,
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� fk (x′) ∈ {0, 1} is the classi�cation result of the kth binary classi�er for a sample

x′.

Niu et al [4] used following loss function to combine the results of K − 1 classi�ers and

backpropagate:

L = − 1

N

N∑
i=1

K−1∑
k=1

λk1
{
oki = yki

}
wki log

(
p
(
oki

∣∣∣xi,W k
))
, (2.25)

where

� N � number of samples in the training set,

� oki � a network's output for the ith input and kth task,

� wki � a weight for the ith input in the kth task,

� W k � the kth task parameters,

� λk � an importance coe�cient for the kth task:

λk =

√
Nk∑K

k=1

√
Nk

(2.26)

with Nk being the number of samples of rank k in the training set.

2.3.4 Autoencoder

An autoencoder is an unsupervised learning algorithm aiming to encode the input to a

network and then fully reconstruct the input from this encoded representation. For sim-

plicity, consider an autoencoder consisting of fully-connected layers taking a 1D input. As

shown in Figure 2.16, an autoencoder consists of three main steps:

1. An input x is passed through a series of fully-connected layers described by Equation

2.3. This is the encoder stage.

2. A non-linear activation layer, which scales the encoded representation into range of

[0, 1] by applying one of the functions given by Equations 2.4 and 2.5. The activation

stage outputs a hidden representation h.

3. A decoder, which applies a linear layer given by Equation 2.1 wrapped into an acti-

vation function, outputting a decoded representation z.
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These three steps are applied iteratively during autoencoder's training. At each step

of the training an error is measured via the Mean Squared Error (MSE) loss function:

MSE =
1

N

N∑
i=1

(z − x)2 , (2.27)

where N is the number of input samples in a batch.

Figure 2.16: A schematic of a simple autoencoder. The encoder and decoder both
consist of one linear layer. Activation step is applied between the encoder
and decoder. σ and δ denote non-linear activation functions. The output, z,
represents reconstructed data. W , b and b′ are the autoencoder's weight and
biases respectively.

There are various modi�cations to the simple autoencoder shown in Figure 2.16. Addi-

tional constrains can be applied to the autoencoder training in order to exploit the internal

structure of the input data. One of such constraints is the sparsity constraint. In fully-

connected layers of an autoencoder, a neuron is considered "activated" if its output value

is close to 1. Conversely, a neuron with an output close to 0 is considered as inactive. In a

sparsely constrained autoencoder, a large proportion of neurons are forced to be inactive,

i.e. set to 0, most of the time.

In a sparse autoencoder given a batch input, X = [x1,x2, . . . ,xN ], the average activa-

tion value of the jth hidden unit, ρ̂j , can be de�ned as

ρ̂j =
1

N

N∑
n=1

[hj (xn)] . (2.28)

In a sparse autoencoder ρ̂j is set close to 0 and this forces most of the activations in

an autoencoder to be near 0, i.e. inactive. The constraint is implemented by adding a

regularization value to Equation 2.27:

Lsparse = LMSE + β

dh∑
j=1

KL(ρ||ρ̂j) = LMSE + β

dh∑
j=1

{
ρ log

ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

}
,

(2.29)
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where

� β is a hyperparameter of the sparse loss function,

� dh is the dimensionality of the jth hidden layer,

� KL(·) is a Kullback-Leibler (KL) divergence function.

Good data encoding needs to be able to robustly extract stable structures from unknown

distributions and to ensure that these structures are stable towards slight disturbances.

This can be achieved by training a denoising autoencoder such as that illustrated in Fig-

ure 2.17. An input is �rst partially disturbed by means of a stochastic mapping. Such

disturbance typically come from two distributions:

1. Binary noise: in each input a �xed number of values are set to 0.

2. Gaussian noise: for each input a �xed number of values are drawn from a Gaussian

distribution and added to the input.

Figure 2.17: A schematic of a denoising autoencoder. An input x is �rst corrupted
before being input to an encoder.

A Convolutional Autoencoder (CAE) extends the functionality of an autoencoder in

the same way that a CNN allows the spatial distribution of features in an input to be

taken into account better than a simple MLP. In a CAE, the features are extracted by

convolutional layers (de�ned by Equation 2.12) instead of fully-connected layers [115].

2.3.5 Unsupervised clustering

An important �eld within unsupervised learning is unsupervised clustering, which is the

process of grouping samples based on the similarity of features extracted. In unsupervised

learning, ground-truth labels are (by de�nition) not available and clustering aims to label

the data based on the clusters obtained instead. The clusters themselves, the metric of sim-

ilarity used and cluster validation methods may vary signi�cantly between implementation,

but relatively little work has been undertaken into the impact of these variations.
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The K-means clustering algorithm [116] uses Euclidean distance as a similarity metric.

It is very ine�cient to compare large 2D or 3D inputs by Euclidean distance, however, so

the feature extraction step and metric choice are both crucial.

Van der Maaten and Hinton [117] proposed minimizing the KL divergence between the

input data distribution and the latent representation to be used for dimensionality reduc-

tion. Van der Maaten and Hinton [117] also used a Deep Neural Network (DNN) for obtain-

ing a latent representation of the input data. Further some authors [118, 119, 120, 121, 122]

used DNNs along with KL error to develop architectures capable of simultaneous feature

extraction and clustering. Atul Shah and Koltun [118] used pairwise error measurements

in the calculations of a KL-based loss function. Caron et al [119] �rst extracted impor-

tant features using a CNN, and then performed clustering and input the result of this

clustering into a sample classi�cation function with known per class labels; the CNN was

then trained by backpropagation from the sample classi�cation function. Xie et al [122]

used a KL divergence loss based on cluster centres and referred to this approach as Deep

Embedded Clustering (DEC).

DEC

In order to describe the DEC approach consider the problem of clustering a set of N points,

{xi ∈X, yi ∈ Y }Ni=1, into K clusters, each represented by a centroid µj , j = {1, ...,K}. yi

is a feature of interest (for example, age). xi is �rst mapped into an embedding space,

fθ : xi → zi, where

� θ are learnable parameters,

� z denotes embedding of xi.

The DEC approach consists of two main steps. First an autoencoder is trained to

simultaneously encode and decode xi and predict yi. In this stage, the parameters θ of

function f are learned. In the second stage, the clustering capability of a network is trained.

Clustering is applied to the encoded representation of xi - zi.

Once an autoencoder has been pretrained (i.e. given a pretrained mapping, fθ, and

initial cluster centroids, {µj ∈ Z}K , j = {1, ...,K}), clusters are initialized by k-means

clustering and the cluster centres, {µj ∈ Z}K , j = {1, ...,K}, are then learned by iteratively

computing an auxiliary target distribution and minimizing the KL divergence. Training is

performed by iterating between two main steps. In the �rst step, a soft assignment between
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the embedded points and the cluster centroids is computed. In the second step, the deep

mapping, fθ, is updated and the cluster centroids are re�ned by learning from current high

con�dence assignments using an auxiliary target distribution. This process is repeated until

a convergence criterion is met (for example, a change in the error calculated on validation

dataset is below pre-set threshold for a pre-set of consecutive training epochs). Xie et

al [122] used the students t-distribution as a kernel to measure the similarity between the

embedded point, zi, and centroid, µj :

qij =
(1 + ‖zi − µj‖2)−1∑
j(1 + ‖zi − µj‖2)−1

(2.30)

where

� zi = fθ(xi) ∈ Z corresponds to xi ∈X after embedding,

� qij can be interpreted as the probability of assigning a sample i to a cluster j (i.e. a

soft assignment).

The model is trained by matching the soft assignment to the target distribution using a

KL divergence loss between qij and the auxiliary distribution pij as follows:

LC = KL(P | |Q) =
∑
i

∑
j

pijlog
pij
qij
, (2.31)

where P is the target distribution, de�ned as

pij =
q2
ij/
∑

i qij∑
j q

2
ij/
∑

i qij
. (2.32)

2.3.6 Saliency mapping

DL algorithms are well-suited for large amounts of healthcare data and perform better than

traditional statistical models at the expense of sacri�cing interpretability for predictive

power. For example, Choi et al developed a predictive DL-model for patient's status from

electronic health records. The model outperformed traditional statistical methods such

as logistic regression and MLP [123]. Popularity of the DL-based methods in medicine

is constantly increasing, but their "black-box" nature represents an adoption barrier as

interpretability and explainability should be �rst ensured [44]. Interpretability of DL-

methods was previously de�ned by Doshi-Velez and Kim as "the ability to explain or to
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present in understandable terms to a human" [124]. For this purpose, various visualisation

methods are used.

One of the approaches for ensuring interpretability and explainability of the algo-

rithms is understanding which regions of an input are of importance for making a de-

cision [125, 126, 7, 43, 44, 42, 45, 46, 127, 47, 5, 128]. Such methods either use input

occlusion techniques or apply calculations to the parameter gradients inside a network to

calculate an "importance" score to the input regions. The "importance" score of a region

corresponds to its in�uence on a network's output [45]. Methods applying the calcula-

tions to network's gradients are also called saliency mapping methods. Further, in this

thesis the terms "saliency map" and "importance map" are used interchangeably. A sub-

set of saliency maps are "occlusion maps" resulting from applying occlusion techniques.

Here, a number of methods relevant to this thesis are presented � gradient visualization,

SmoothGrad, guided backpropagation, Class Activation Mapping (CAM), Gradient Class

Activation Mapping (Grad-CAM), guided Grad-CAM, Layer-wise Relevance Propagation

(LRP) and Contrastive Layer-wise Relevance Propagation (CLRP).

Gradient Visualisation

The method of gradient visualisation for producing saliency maps was introduced by Si-

monyan et al [42]. Simonyan et al's [42] method creates class-speci�c saliency maps using

the gradient of input in a CNN. The hypothesis behind using a gradient in this way is

that a map of its magnitude indicates those pixels in the input which need to change least

to a�ect an output the most. Therefore, for a classi�cation problem, these regions of the

input correspond to the location of an object of interest.

In describing the method, a score function for class c is considered:

Sc (I) = wTc I + bc, (2.33)

where

� I is a vectorised input,

� wc and bc are weights and bias of the model respectively.

For such simple linear model it is clear that the weight, wc, de�nes importance of various

regions of an input for scoring. Further, a non-linear model, Sc, calculated for an input

sample, X, can be approximated by its �rst-order Taylor expansion: L(X) ≈ wX + b,
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where w is a derivative of loss function with respect to an input image and b is a bias

matrix such that

w =
∂L

∂L

∣∣∣∣
X

. (2.34)

Computing a saliency map For simplicity, consider a saliency map for a 2D grayscale input

I of size m× n and of class c. A saliency map corresponding to this class, M ∈ Rm×n, is

computed by �rst �nding w from back-propagation and then calculating

Mij = |wh(i,j)|, (2.35)

where h (i, j) is an index of the element of w representing saliency for the ith row and jth

column element of I.

SmoothGrad

Saliency maps produced by the gradient visualisation method su�er from noise, because the

score function Sc may change sharply for small magnitude changes in an input. This means

that a gradient forming a saliency map has meaningless variations, which result in the noise

observed. Such meaningless regions result from backpropagation through non-continuously

di�erential functions, e.g. ReLU, and making Sc non-continuously di�erentiable.

Smilkov et al [45] propose the SmoothGrad method to overcome this, based on the

fact that the meaningless regions in a saliency map can be reduced by average pooling of

such regions. This is achieved by combining a gradient kernel from Equation 2.35 with

a Gaussian smoothing kernel. The value of an element of a saliency map produced by

applying a smoothing kernel, M̂ij(x), can be de�ned as

M̂ij(x) =
1

N

N∑
n=1

Mij +N (0, σ2), (2.36)

where

� N sample values are taken from a neighbourhood of Mij ,

� N (0, σ2) de�nes a Gaussian distribution with 0 mean and σ2 standard deviation [45]).
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CAM

Producing a saliency map by �nding a CAM was proposed by Zhou et al [5]. A class

activation map for a particular category indicates the discriminative image regions used by

the CNN to identify that category. The architecture is presented in Figure 2.18. Global

Average Pooling (GAP) outputs the spatial average of the feature map of each unit at the

last convolutional layer. A weighted sum of these feature maps is used to generate the

�nal output with weights being corresponding parameters in the last fully-connected layer.

This has also been described for a CNN used for classi�cation and using a softmax layer

to output class probabilities. The same technique can be applied to regression and other

approaches.

Computing a saliency map Consider a saliency map for a given 2D input. fk(x, y) is

an activation of the last convolutional layer unit k at a pixel (x, y) of an input. The

global average pooling layer after the last convolution operation thus generates F k =∑
x,y fk(x, y). Thus for a given class c, the input to the softmax function is Sc =

∑
k w

c
kFk.

Therefore, Sc =
∑

x,y

∑
k wkFk and we can de�ne an activation map for prediction c as

Mc =
∑

k w
c
kfk(x, y).

Figure 2.18: Schematic of an example CNN classifying images into classes corre-
sponding to a dog pictured and an illustration of constructing a CAM. Figure
from Zhou et al [5].
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Grad-CAM

The CAM approach has a signi�cant disadvantage of being applicable only to the CNN

models without fully-connected layers in the classi�cation or regression step. An universal

approach including other architectures was proposed by Selvaraju et al [43], and is known as

Grad-CAM. Here, for simplicity, consider producing a saliency map for a network analysing

a 2D input. The Grad-CAM method de�nes a class-speci�c saliency map, LcGrad−CAM ∈

Ru×v, of dimensions u and v and for class c, as

LcGrad−CAM = ReLU

(∑
k

αckA
k

)
, (2.37)

where

� Ak is a kth feature map,

� αck is a weight representing an "importance" of kth feature map for a class c:

αck =
1

Z

∑
i

∑
j

∂yc

∂Akij
. (2.38)

Here ∂yc

∂Ak
ij

are gradients obtained from backpropagation, and the summation over i and j

represents a GAP operation. The Grad-CAM method is presented in Figure 2.19.

The ReLU operation in Equation 2.37 removes negative values which correspond to

classes other than c. Therefore, applying ReLU extracts the values which have positive

in�uence of choosing class c and whose values are expected to increase as the probability

of choosing class c increases.
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Figure 2.19: Grad-CAM method. In a forward-pass, an input is �rst put through
a convolutional part of a CNN, i.e. a feature extractor, to obtain feature
maps, which are input into a fully-connected layer to get an output vector
of the probabilities for each class. In a backward-pass, backpropagation is
performed from a class of interest, yc, to the feature maps. Then the gradients
are used to calculate the weights by GAP as de�ned in Equation 2.38. The
feature maps are multiplied by the weight, summed and put through a ReLU
as shown in Equation 2.37 to produce the �nal saliency map.

Guided Backpropagation

Guided propagation [46] is another method to obtain a saliency map for a given input. In

this approach, the authors modify the course of backpropagation through non-linear layers

such as ReLU de�ned in Equation 2.6. In backpropagation, the gradient at ReLU layer l

is de�ned as

Rli =
(
f li > 0

)
×Rl+1

i , (2.39)

where

� Rli = ∂fout

∂Rl
i

denotes an ith element of a backpropagation result for an output activation

out,

� f li is an i
th element of an input f to the lth layer.

In Equation 2.39 the �rst term indicates that only bottom signal, i.e. an input to a layer,

is taken into account during the backpropagation. In the deconvolution approach [47] the

backpropagation, on the other hand, considers only top gradient signal, i.e. gradient of a
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deeper layer (deeper meaning the layers closer to an output layer):

Rli =
(
Rl+1
i > 0

)
×Rl+1

i . (2.40)

The guided backpropagation approach combines Equations 2.39 and 2.40 and masks out

values for which bottom signal and/or top data values are 0:

Rli =
(
f li > 0

)(
Rl+1
i > 0

)
×Rl+1

i . (2.41)

The guided backpropagation approach includes additional guidance from top layers com-

pared to simple backpropagation alone, and only require storing the same information from

a forward pass as for the deconvolution approach [46].

Guided Grad-CAM

The Grad-CAM [43]) method produces saliency maps of size of the feature map resulting

from the last convolution, with maps then being scaled to the size of the input. In order to

produce saliency maps of better resolution, the Grad-CAM method can be combined with

the method of guided backpropagation, with the overall method being known as guided

Grad-CAM. This is represented in Figure 2.20.

An input is �rst put through a CNN feature extractor to obtain a set of feature maps,

which are input into a task speci�c part of the network to produce an output. In the

classi�cation output, the probability of the class of interest is then set to 1 while all other

probabilities are set to 0 and backpropagation is performed to the feature maps of interest

to obtain a Grad-CAM saliency map. Finally, this saliency map is combined via pointwise

multiplication with the result of guided backpropagation to obtain guided Grad-CAM

result.
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Figure 2.20: Schematic representation of the guided Grad-CAM method.

LRP

LRP exploits neural network's graph structure to produce salient explanations. The LRP

rules for producing saliency maps are derived analogously to the Kircho�'s law for electrical

circuits, as in a backward pass through the network a signal received by a neuron from an

upper layer, i.e. deeper layer meaning the one closer to an output layer, is redistributed to

the neurons down the network. Consider the neurons denoted by j and k in adjacent layers.

Rj propagates relevance from the neuron k, Rk, to the relevance on neuron j according to

the rule

Rj =
∑
k

zjk∑
j zjk

Rk, (2.42)

where zjk is a function modelling how much the contribution from k neuron in�uences j

neuron; it can be de�ned by a number of LRP rules, as described below. The denominator

in Equation 2.42 ensures the principle of signal conservation is preserved. In order to

produce saliency map, such a rule is applied consecutively layer-by-layer from the �nal

layer back to the input.

Basic LRP rule (LRP-0). Since neural network layers can be represented by the form

given in Equation 2.3, Equation 2.42, can be de�ned as

Rj =
∑
k

ajwjk∑
0,j ajwjk

Rk, (2.43)
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where aj is the activation of jth neuron and wjk is the weight connecting the aj . The sum

in the denominator includes 0 in order to take into account bias term in the layer of neuron

j. This rule is equivalent to computing a saliency map by masking an input by a gradient

with respect to it. In order to show this, rewrite the denominator as
∑

0,j ajwjk = ak and

consider a relevance score being propagated through two layers consecutively:

Ri =
∑
k

aiwij
aj

ajwjk
ak

Rk. (2.44)

Now assume k is the last layer and set ak = Rk such that the relevance of neurons in the

�nal layer is equal to its own activations. This leads to the following relationship between

Ri and Rk:

Ri =
∑
k

aiwijwjk. (2.45)

The relevance score in Equation 2.45 is equivalent to multiplying an activation ai by the

gradient of ak with respect to ai [44]. Unfortunately, the experiments by [7] show that

such saliency maps are a�ected by noise.

Epsilon LRP Rule (LRP-ε). As it can be seen in Equation 2.42 if (aj = 0) or (wj = 0) then

the relevance Rj will be 0. As the result of this the concepts of zero weight, deactivation,

and absence of connection lead to the same relevance score. In order to resolve cases such

as these for which the activations contributing to the k activation are weak or confusing,

Equation 2.42 is modi�ed as

Rj =
∑
k

ajwjk
ε+

∑
0,j ajwjk

Rk. (2.46)

For small values of ε, the formulation in Equation 2.46 will absorb weak contributions to

the k activation and, therefore, weak contributions do not continue to a�ect the �nal result.

As the ε value is increased, only more salient features will not be absorbed and saliency

map will become sparser and less noisy.

Gamma LRP Rule (LRP-γ). Salient features may be further enhanced by preferring

positive contributions over negative ones by reformulating Rj as

Rj =
∑
k

aj(wjk + γw+
jk)∑

0,j aj(wjk + γw+
jk)

Rk. (2.47)
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Rule Formula Layers to be used at

LRP-0 Rj =
∑

k
ajwjk∑
0,j ajwjk

Rk Upper

LRP-ε Rj =
∑

k
ajwjk

ε+
∑

0,j ajwjk
Rk Middle

LRP-γ Rj =
∑

k

aj(wjk+γw+
jk)∑

0,j aj(wjk+γw+
jk)
Rk Lower

LRP-αβ Rj =
∑

k

(
α

(ajwjk)+∑
0,j (ajwjk)+

+ β
(ajwjk)−∑
0,j (ajwjk)−

)
Rk Lower

Flat Rj =
∑

k
1∑
j 1Rk Lower

w2-rule Rj =
∑

k

w2
jk∑

0,j w
2
jk
Rk First

zB-rule Rj =
∑

k

xjwjk − ljw
+
jk − hjw

−
jk∑

j xjwjk − ljw
+
jk − hjw

−
jk

Rk First

Table 2.1: Summary of existing LRP rules. The righthand column shows the layers
of neural network the rule is most usable in the composite LRP method. For the
LRP-αβ following notation is used: (·)+ = max(0, ·) and (·)− = min(0, ·). α, β
are subject to conservation rule α+ beta = 1. In the zB-rule the parameters li
and hi are the domain constraints (∀j : lj ≤ xj ≤ hj). Lower layers correspond
to the shallower ones, i.e. close to the �rst layer, while upper layers are the
deeper ones, i.e. closer to an output layer [7].

The γ parameter controls the degree to which positive features are preferred over negative

ones. This makes resulting saliency maps more stable and less noisy. LRP-γ rule is the

basis of a family of LRP-αβ rules and the z+-rule, as shown in Table 2.1, which summarises

all the LRP rules.

Applying LRP to deep neural networks. Montavon et al [7] propose the method of com-

posite LRP for application to deep neural networks, by considering the properties of LRP

rules discussed above. In general, in the upper layers, i.e. deeper ones closer to the output

layer, of a CNN the features related to di�erent classes of inputs are entangled, i.e each

output feature of a convolutional part of a network is connected to each of the output

classes. LRP-0 is used to separate the target class from all the others in the upper layers

in relevance backpropagation. In order to illustrate this, consider an example � a network

for binary classi�cation. For a particular input the network outputs a vector [2.0 − 2.0].

According to Equation 2.43 denominator will be the same for calculating relevance score for

both output classes. Then relevance for the �rst class is 2D, where D =
∑

k
wjk∑

0,j ajwjk
Rk,

and for the second one - (−2D).

As the features are forwarded into shallower layers, in the middle layers on the network

the features of di�erent classes become progressively more separated and the LRP-ε can
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be applied to compute the relevance score. Finally, the LRP-γ rule is most appropriate for

the lower layers of a CNN, as it tends to spread the relevance score uniformly across an

importance map. While the same general principles apply to all networks, Montavon et al

note that the application of each LRP-rule should be manually adjusted for any particular

CNN [7].

Contrastive LRP

In order to describe CLRP [126], consider saliency mapping of a DNN trained for a classi-

�cation task. Such a DNN takes an input, X = {x1, x2, ..., xN}, and produces an output,

Y = {y1, y2, ..., yM}, where M is the number of classes present in the training dataset.

For each output neuron the network predicts an activation value, Sym , before the softmax

layer. Applying the LRP method to the network's output produces a set of relevance scores

for all input neurons, R = {r1, r2, ..., rN}. In LRP R is calculated by passing the relevance

backwards through the network from Sym of a target class to X. As a result, the values

of R are di�erent for di�erent target classes even if the inputs are the same, as the weight

connections for the classes will di�er. Conversely, for each target class, the patterns of

non-zero entries are similar in R for di�erent inputs, as calculations are starting from the

same value. Therefore, the LRP method generates similar importance maps for di�erent

output classes. The CLRP method introduces an additional calculation step into the LRP

method to avoid this disadvantage of LRP for classi�cation networks.

In a classi�cation network each class is described by a distinctive set of input neurons

such thatXdis ⊂X. The input neurons inXdis for the target class receive higher relevance

scores than the same neurons in R produced for all other classes. Therefore, the input

neurons in Xdis can be identi�ed by comparing the explanation corresponding to Xdis to

all the other explanations. In CLRP, a virtual class is constructed to represent all the

explanations not corresponding to the target class.

A schematic representation of the CLRP method is shown in Figure 2.21. Consider the

weights connecting the m-th class of output neuron to an input in a network consisting of

L layers - W = {W 1,W 2, . . . ,W L−1,W L
m}, where

� W L are the weights connecting the (L− 1)th layer and the Lth layer,

� W L
m are the weights connecting the (L − 1)th layer to the neuron in the Lth layer

corresponding to the mth class, ym.
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The LRP backward pass for an output neuron, ym, can be de�ned as R =

fLRP (X,W , Sym). Now de�ne a virtual concept O as the features of X which describe

the class m and are modelled by the neuron ym. Then a dual virtual concept Ō can be

de�ned as the features corresponding to all the classes except the target class. From this

de�nition it follows that the concept, Ō, is opposite to the concept O. For example, in

Figure 2.21. the concept O represents an object of class 2 and Ō models all other classes

(including classes 1 and 3). The concept Ō is described by LRP backward pass through the

following set of weights - W̄ = {W 1,W 2, ...,W L−1,W L
−m}, where W L

−m are the weights

connecting the (L− 1)th layer to the neurons in the Lth layer corresponding to all classes

except the mth class neuron, ym. In Figure 2.21 red lines represent the LRP backward

passes for all the classes except 2. LRP backward pass for the visual concept Ō can be

de�ned as Rdual = fLRP (X, W̄ , Sym). Then a relevance vector for the CLRP method can

be de�ned as

RCLRP = max (0, (R−Rdual)) , (2.48)

where the function max(0, ·) is used to ensure that all negative values are set to 0. Consid-

ering the di�erence R−Rdual in Equation 2.48 cancels the common features and ensures

that only most descriptive neurons are included in Xdis.

Figure 2.21: Schematic of the CLRP saliency mapping method. For the illustration
of how CLRP distinguishes between the features corresponding to di�erent
classes in a classi�cation network, a synthetic input containing the objects of
three classes are presented. The input is put through a convolutional feature
extractor and a fully-connected layer to produce an output. Then, from an
activation value, Sym , corresponding to each output class a LRP backward
pass is performed as described in Section 2.3.6. To obtain a CLRP map a
subtraction is then performed of the maps not corresponding to a target class
(2) from the map corresponding to that class.

2.4 PROMETHEE II method

PROMETHEE II is a widely used Multiple-Criteria Decision Analysis (MCDA) method.
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2.4.1 Multicriteria Problems

Consider a general multicriteria problem:

max{g1(a), g2(a), ..., gj(a), ..., gk(a)|a ∈ A}, (2.49)

where

� A � a �nite set of N alternatives, {a1, a2, ..., aN},

� G � a �nite set of K evaluation criteria, {g1(·), g2(·), ..., gK(·)}.

The objective of MCDA is to �nd an alternative optimising all the criteria. In most cases

it is an ill-posed mathematical problem as there is no single alternative which optimises

all criteria simultaneously. MCDA provides the methods to �nd an optimal solution in

such cases. In order to perform the optimization additional information is needed. Such

additional information can be divided into two categories � information between and in-

formation within the criteria.

2.4.2 Additional information

Information between the criteria is represented by the criteria importance weights which

form a �nite set asW = {w1, w2, ..., wK}. The weights are normalised such that
∑K

k=1wk =

1. The higher the weight of a criterion, the higher is its importance.

The PROMETHEE methods are ranking methods, i.e. they utilise pair-wise com-

parisons among the alternatives. A ranking is constructed by considering the di�erence

between evaluations of the alternatives for a particular criterion., i.e. information within

the criteria. To obtain the full ranking this comparison process is performed for all criteria.

Depending on the size of a pair-wise di�erence, a decision can be made � one alternative can

be preferred over another or not. The larger is the di�erence, the greater is the preference

of one alternative over the other. For convenience, the preference can be represented by a

real number varying from 0 to 1. overall, this can be described by the following function:

Pk(a, b) = Fk[dk(a, b)] ∀a, b ∈ A, (2.50)

where

� dk(a, b) = gk(a) − gk(b) is the di�erence between evaluations of two alternatives on

the same criterion,
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� Fk is a function to scale dk into an interval such that 0 ≤ PK ≤ 1.

A number of forms have been proposed for the Pk function including a constant function,

a Heaviside function and functions involving exponential decay [129]. In this thesis a V-

shaped function for PK is used as de�ned in Equation 2.51 and shown in Figure 2.22:

P (d) =


0 d ≤ 0

d−q
p−q q < d ≤ p

1 d > p

(2.51)

where p and q are the parameters to be set. One of the choices is to set q = min(g(a), g(b))

and p = max(g(a), g(b)) as d = g(a) − g(b). A V-shaped function is used as the only

constraint for the P (d) function is that larger d should lead to larger value of P (d). q and

p are chosen as discussed above for P (d) to vary from 0 to 1 for any distance d.

Figure 2.22: V-shaped form of the PK function. q and p are de�ned as in Equation
2.51.

2.4.3 PROMETHEE II method

In the PROMETHEE II method, an aggregated preferences index, π(a, b), describes the

overall preference across all criteria for alternative a over b. π(a, b) is de�ned for all a and

b as 
π(a, b) =

∑K
k=1wkPk(a, b),

π(b, a) =
∑K

k=1wkPk(b, a).

(2.52)

As can be seen from Equation 2.52 the greater the π(a, b), the greater is the preference of

a over b. This aggregated preferences index can thus be used to summarise the degree to

which one alternative is better than the others. The positive outranking �ow, ϕ+, de�nes
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how an alternative, a, is better than all the others:

ϕ+ =
1

N − 1

∑
x∈A

π(a, x). (2.53)

On the other hand, the negative outranking �ow describes how an alternative, a, is worse

than all the others:

ϕ− =
1

N − 1

∑
x∈A

π(x, a). (2.54)

Positive and negative outranking �ows can be used to obtain a complete ranking of all

alternatives [129], with the �nal ranking of each alternative being determined by the net

outranking �ow:

ϕ(a) = ϕ+(a)− ϕ−(a). (2.55)
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Chapter 3

Biology of brain ageing

Ageing can be de�ned as "time-dependent functional decline" [18]. Ageing e�ects on brain

and cognition are spread throughout the brain and have various manifestations. Ageing

a�ects brain on molecular and cellular levels as well as its vasculature, morphology and

human cognition. For instance, age-related morphological changes cause brain volume

to shrink. Vacsculature changes occurring with age lead to White Matter (WM) lesions,

i.e. the regions of demyelination of neural axons. Cognitive changes result in decline in

memory function [130]. Brain ageing is researched by studying cognitive abilities, genetics,

structural and functional changes in brain throughout human lifetime. Molecular and

cellular level ageing-related changes are also studied using animal models. In this chapter

mechanisms of brain ageing are discussed.

Studies of cognitive function show that ageing-related e�ects in older-subjects partic-

ularly a�ect memories of life experiences and situations, i.e. episodic memory. Episodic

memory is studied by presenting subjects with tasks considering retrieving non-verbal and

verbal material, i.e. list of words [131]. E�ect of ageing on cognitive abilities is also mea-

sured by evaluating the e�ect on human intellect. For that purpose intelligence theory

based on the concepts of crystallised and �uid intelligence is used. Crystallised intelligence

is a concept describing human knowledge accumulated as the result of educational and

cultural experiences and exposure to information. The concept of �uid intelligence refers

to cognitive abilities engaged in solving any new problem present to a human. Previous re-

search shows that crystallised and �uid intelligence are in�uenced by ageing-related changes

di�erently. Fluid intelligence starts to decline in early adulthood. Age-related changes in

�uid intelligence are measured by using cross-sectional and longitudinal data [132]. Fluid
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intelligence describes intellectual skills acquired during lifetime and among such skills speed

of information processing, working memory, visuo-spatial ability and abstract reasoning are

a�ected the most [133]. Crystallised intelligence is found to be either stable throughout

human lifetime or be a�ected by a small changes compared to the changes in �uid intelli-

gence on old age, after late sixties [132]. For example, certain aspects of semantic memory

representing knowledge about surrounding world and emotional regulation is not subject

to age-related e�ects. However, some aspects of semantic memory such as verbal abilities

are known to be even improving with age, but a decline is still observed in the very old

age [134]. Nyberg et al [135] used longitudinal cohort and identi�ed average decline of

episodic memory to be on average around the age of 60. Rönnlund et al [136] also studied

trajectories of cognitive changes based on changes in episodic and semantic memory both

on cross-sectional dataset and cohort-matched longitudinal dataset. The results obtained

on cross-sectional and longitudinal datasets did not agree. On cross-sectional data episodic

memory was found to be gradually declining with age, while on longitudinal data there was

not changes found in episodic memory before the age of 60. Semantic memory was studied

using longitudinal dataset and minor declines were found to occur before the age of 55

with decline slower in older ages compared to episodic memory. The authors explained the

discrepancies between the results obtained on cross-sectional and longitudinal datasets by

the di�erences in educational level of participants in these two datasets. Overall Rönnlund

et al highlight the need of retesting in cross-sectional and longitudinal datasets [136].

However, it should be noted that the research by Rahhal et al [137] has shown that the

magnitude of age di�erences observed in memory task studies is dependent on experimental

setup. Moreover, in studying brain ageing by observing cognitive trajectories di�erentiation

and dedi�erentiation hypotheses should be taken into account. Di�erentiation hypothesis

was stated by Garrett [138]: "abstract or symbol intelligence changes in its organization

as age increases from a fairly uni�ed and general ability to a loosely organized group of

abilities or factors". On the other hand, dedi�erentiation hypothesis states that cognitive

abilities become more and more interrelated during adulthood [139]. Recent advances

in the �eld of adult developmental theory, however, study dedi�erentiation hypothesis in

both cross-sectional and longitudal cohorts. The studies, however, produce mixed support

for the dedi�erentiation hypothesis [140]. Also recent systematic review of 37 studies of

cognitive ageing trajectories by Wu et al [141] showed that it is not possible to de�ne

speci�c cognitive trajectories for which di�erent studies would provide consistent evidence.
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Therefore, other experimental data sources are used to understand the mechanisms in brain

which underlie age-related cognitive changes [142].

In order to understand mechanisms of human brain ageing cellular and molecular mech-

anisms underlying it are studied. At a cellular level mitochondrial dysfunction is studied as

mitochondria are part of the cells which make up dendrites and axons of neurons in a brain.

Dendrites and axons are parts of nerve cells which serve the signal propagation between

the cells [143]. Mitochondria in dendrites and axons play important role as they are cell

"power plants" [144] and generate energy required for signal transmission, cell maintenance

and repair. Mitochondria are involved in several processes inside cells. Mitochondria are

capable of mitochondrial biogenesis (growth in size and division) and mitophagy (removal

of mitochondria by degradation). Mitochondria also play role in cell homeostasis and

apoptosis, which is one of the processes of programmed cell death [145] occuring in nor-

mal brain development and in pathological ageing. Mitochondrial changes associated with

ageing are studied by extracting mitochondria from animal brain tissue. For instance, the

studies on mice brain tissue show that most cell type in the brain accumulate dysfunctional

mitochondria with ageing [146, 147]. Since neurons are integrated into neuronal networks

throughout the lifetime of the organisms, the ability of cells comprising the neurons to

remove damaged and dysfunctional molecules is of importance. Experimental evidence,

however, also shows that this ability of cells also decays with age [148, 149, 150] [151].

Other molecular age-related changes include decline in brain aerobic glycolysis. Glucose

uptake in brain is found to be decreasing with age. As the result, glucose uptake decrease

exceeds oxygen use and decline in brain aerobic glycolysis occurs [152].

Brain ageing is also studied at the level of brain neuronal networks. During brain age-

ing integrity of neuronal networks' activity is increasingly perturbed. Neuronal networks

are a�ected by hyperexcitability and excitotoxic damage with ageing [151]. Excitotoxic

damage of nerve cells is present whenever the levels of neurotransmitters, which are safe

and necessary for the work of neuronal network, are pathologically high and this leads to

overstimulation of receptors [153]. Neurotransmitters are produced by nerve cells speci�-

cally for signal transmission [154]. Neurotransmitters are also important for following brain

functions - learning, memory, decision making and regulating mood. Thus dysregulation

of neurotransmitters can lead to cognitive decline in ageing individuals [155, 151].

There is also a number of other molecular mechanisms proposed in existing literature to

explain the course of human brain ageing. It should be noted that none of this mechanisms
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cannot fully explain the process of ageing, but some mechanisms are supported by extensive

experimental evidence. Here known mechanisms are brie�y presented. One of the theories

explains cellular damage in healthy ageing by increasing production of free radicals with

age. Free radicals are atoms and molecules with unpaired electrons in outer electron

shell [156]. Production of free radicals leads to mitochondrial dysfunction which has been

shown to be be related to brain ageing [157]. Existing literature also contains supportive

evidence for the calcium hypothesis of brain ageing. Ageing is related to changes in calcium

homoeostasis and it is involved in the number of cellular functions in brain including

neurotransmitter synthesis and release [29]. Another molecular theory explains ageing

by secretion of glucocorticoids. Secretion of glucocorticoids in�uences the process of brain

ageing as it a�ects hippocampus and hippocampus is related to the performance in learning

and memory tasks [158].

Study into molecular mechanisms explaining brain ageing also includes studies of age-

related gene expressions. Age-related gene expressions are studied by pro�ling over human

lifetime. This provides understanding of biological processes which are activated or sup-

pressed at various stages. In previous research it has been highlighted that genes regulating

neuroin�ammation and immune system performance are of particular importance in the

ageing process. Other gene expressions are found to be in�uencing synapses and this

leads to cognitive decline in older adults. There is also existing research into protective

genetic mechanisms. Studying gene expressions having both "negative" and "positive"

e�ect on the process of brain ageing allows to extract healthy and disease related ageing

trajectories [159]. Genetic studies of brain ageing also involve studies focused on telom-

ere shortening. Telomeres consists of repeated nucleotide (molecules, monomeric units of

DNA) DNA sequences at the ends of chromosomes. Human body cells are experiencing

telomere shortening and cell senescence in the process of ageing. As cells divide, telomeres

can shorten. During cell's interphase (the phase of cell's life, in which it spends most of its

life [160]) telomeric DNA is conserved by telomere-associated proteins. Excessive telomere

shortening disrupts the protection mechanism of telomeric DNA. This can lead to DNA

damage and further cell apoptosis or senescence. Since neurons do not perform mitosis

(division of a cell into two genetically identical cells [161]), neuron's cell telomeres cannot

shorten, but still can be damaged during neuron's life cycle. In mice models it was also

previously shown that de�cit of telomerase leads to the problems with spatial learning and

memory [151].
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Post-mortem studies are also used to study biochemical age-related changes such as iron

accumulation with age [162]. Another manifestation of biochemical age-related changes is

occurrence of Senile Plaques (SPs), which are extracellular protein deposits [163]. Evi-

dence in existing research shows that SPs appear both in the course of healthy ageing and

in neurodegenerative conditions such as Alzheimer's disease [164]. SPs are considered to

be of two types � dense and pale di�use SPs. These two types of SPs are originating from

di�erent biochemical processes. However, in existing research there is no de�nitive conclu-

sion whether SPs are related to normal ageing or not as con�icting results are published.

There are research results indicating that SPs are infrequent in subjects who died without

dementia symptoms [44]. Other results show occurrence of SPs is unavoidable in subjects

living long enough [165]. Biochemical age-related changes are also re�ected by changes

in Neuro�brillary Tangles (NFTs). NFTs mostly consist of tau protein which are known

to be associated with the ageing process [156]. NFTs are found to be accumulating with

age locally in healthy subjects, while in Alzheimer's disease patients NFTs accumulate in

whole brain cortex [166].

Post-mortem studies also investigate the changes in synaptic density with age. The

results of such studies show decline in synaptic density, but also indicate that synaptic loss

may be compensated [167]. In previous research one of the reasons named for such changes

are cerebrovascular changes. Cerebrovascular changes manifest themselves in decreasing

density of capillaries [168] and increasing microvasculature deformations. After 50 years of

age the amount of microvasculature deformations constantly increases [169].

Further, structural changes in brain have been studied to understand its ageing. Post-

mortem studies in humans are used to understand structural changes occurring with age.

Post-mortem studies of brain atrophy reveal 5% reduction in whole brain volume per

decade after 40 years of age [156]. Post-mortem studies also show that white matter is

a�ected more in healthy ageing compared to grey matter [170]. These �ndings of post-

mortem studies are in agreement with Magnetic Resonance Imaging (MRI) data studies

(for example, [51, 171]). Post-mortem study have also identi�ed to be in accordance with

the �ndings of studying cognitive ageing. Henstridge et al [172] found that morphological

and molecular changes associated with ageing occurred in brain regions associated with

cognition. This post-mortem study using the Lothian Birth Cohort 1936 also found that

synaptic structure is more preserved in healthy ageing compared to the subjects a�ected

by Alzheimer's diseases [172].
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A number of studies have investigated structural brain changes occurring with ageing

using MRI data acquired with T1-weighted sequences. All such studies use volumetric

measures to assess changes in brain structures during human lifetime. MRI data is �rst

segmented into separate brain regions for its volume to be assessed. Studies using both

longitudinal [51] and cross-sectional data exist [171]. The studies consistently report de-

cline in total brain volume, WM and Grey Matter (GM) with age, while ventricular and

Cerebrospinal Fluid (CSF) volumes increase [51, 173, 171, 173, 174, 175, 176]. Raz et

al [177] used longitudinal dataset with two data points per subject to also observe shrink

in brain region volumes. Review by Fama and Sullivan [178] describe thalamic volume

decreases with age and their relation to decline in cognitive performance. Salat et al [179]

also report cortical thinning occurring with age in all brain regions. Vinke et al [171] re-

ported volumetric decrease with age in putamen, amygalda, pallidium and caudate. Wei

et al [180] used T1-weighted MRI cross-sectional data in order to measure the changes in

Subcallosal Region (SCR) volume during adulthood. The authors found the volume of

SCR to be decreasing.

A number of studies also used T1-weighted sequences MRI data in order to investigate

which regions of the brain are associated with brain ageing, but instead of measuring

volumes of the brain regions used statistical methods. Some studies de�ned the ageing-

related regions by averaging important features over whole age range present in cross-

sectional dataset used. For instance, Fujimoto et al [181] and Kondo et al [182] have

reported that frontal association area, the Wernicke's area, the angularis gyrus and the

primary motor cortex are associated with the brain ageing process. Amoroso et al [13]

also found frontal gyrus to be important along with Heschl's gyrus, anterior cingulate

parahippocampal gyrus, cingulate gyri, precentral gyri and temporal lobe. Statistical

methods were also applied to derive age-related features in the form of trajectories, i.e.

separately for a number of age ranges over human lifetime. Feng et al [39] presented average

maps separately for each life decade from 20s to 80s. In these results the importance

of frontal lobes increased with age [39]. Bermudez et al [183] de�ned three age ranges

over adulthood and concluded that GM volume decreases with age in accordance with

volumetric studies. Detailed discussion on structural brain changes relating to age can be

found in Chapters 6 and 7.

Functional imaging is used also to study brain ageing. For this purpose Single Pho-

ton Computed Emission Tomography (SPECT) [184] and Positron Emission Tomography
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(PET) [185, 186] imaging are applied. PET imaging was also used to identify decline of

cerebral blood �ow and metabolism in GM with age. However, PET technique studies

also identify no change in blood �ow in WM [156]. Functional imaging studies of cognitive

performance, memory in particular, show decline in older subjects compared to the young

ones [187]. In retrieval tasks, older subjects involve wider networks. This may be explained

by ine�ciency of networks leading to their widening [156]. Functional MRI (fMRI) is also

used to study brain ageing including vascular age-related changes [188]. One of the studies

using fMRI has identi�ed reduction in cerebral blood �ow responsiveness to visual stimuli

in healthy ageing [189]. Li et al have shown that regional brain activation in fMRI analysis

change with ageing and can be related to behavioural outcomes in research subjects. Older

subjects were found to have hypo-activation in the visual network and hyper-activation in

the frontoparietal and default networks (brain regions which show spontaneous activation

during passive periods in fMRI [190]) compared to younger ones [191].

In conclusion, it can be said that existence of age-related brain changes is evident from

previous research. Age-related brain changes a�ecting human cognition and behaviour

originate from the changes on intercellular and intracellular, molecular, tissue and organ

levels. However, the rate of change of these changes and the processes behind should be

studied further.
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Chapter 4

Datasesets

In this chapter the datasets used in subsequent chapters are described. In Section 4.1

the non-MR image datasets used are described and Magnetic Resonance Imaging (MRI)

datasets are presented in Section 4.2.

4.1 Image datasets

4.1.1 Mixed National Institute of Standards and Technology (MNIST)

The MNIST dataset consists of the images of handwritten digits [192]. The MNIST dataset

is widely used as a benchmark dataset in image recognition tasks for understanding algo-

rithms' performance. In the dataset each grayscale image of a handwritten digit of size

28×28 pixels is correspondingly labelled from 0 to 9, resulting in 10 classes. The examples

of images are given in Figure 4.1.

Figure 4.1: Examples of the MNIST dataset samples for each of 10 classes.

4.1.2 Ordinal MNIST

The Ordinal MNIST dataset was created by modifying the MNIST dataset such that

the images have two labels. The �rst label is taken from the MNIST dataset labelling
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convention. The second label is 0 for label 1 values from 0 to 2, 1 � from 3 to 5, 2 � from

6 to 9, resulting in 3 classes. All the images with second label 1 were multiplied by an

image drawn from normal distribution with mean 0 and standard deviation 0.25 of the

same size as MNIST samples. For the images with second label being 1 mean of a normal

distribution was 0.5 and for 2 � 1.0. Example of the images in the dataset are shown in

Figure 4.2.

Figure 4.2: Examples of the ordinal MNIST dataset samples.

4.1.3 Two-variable ordinal dataset

Two-variable ordinal dataset was created by generating images of a circle on black back-

ground with 2 labels each � one label corresponds to intensity of a circle in a grayscale

image and another to a circle radius. In this dataset �rst label has 14 classes which cor-

respond to constant change in circle radius from class to class. Second label has three

classes corresponding to a mean of normal distribution from which the values are drawn

to multiply white circle pixels by. In Table 4.1 the variable values corresponding to the

two labels are listed. Image size in the dataset is 100 × 100 pixels and a circle is drawn

with its centre at random position coordinates drawn from a 2D uniform whole number

distribution of range 100 − r for each dimension, where r is a radius corresponding to a

class of label 1. For each of the 14 classes 200 images were generated for training and 20

for testing. Example of the images in the dataset are shown in Figure 4.3.

Label 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Radius 2 4 6 8 18 20 22 24 34 36 38 40 42 44

Distribution mean 0.08 0.12 0.16 0.2 0.44 0.48 0.52 0.56 0.80 0.84 0.88 0.92 0.96 1.0

Label 2 1 2 3

Table 4.1: Variable values de�ning the classes for two labels in continuous ordinal
dataset. The classes corresponding to label 1 are de�ned by white circle radius,
while the classes corresponding to label 2 are de�ned by a mean of intensity of
normal distribution from which the values are drawn to multiply white circle
pixels by.
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Figure 4.3: Examples of the two-variable ordinal dataset samples. Red circles are
drawn for visualisation purposes in the classes 0 � 2 and are not present in the
dataset images.

4.1.4 ImageNet

ImageNet is a publicly available dataset consiting of over 15 million natural images having

over 22,000 labels. The images were collated from the web. Labels in the dataset were

chosen by humans through the Amazon's Mechanical Turk tool. The ImageNet-ILSVRC

dataset in a subset of the ImageNet dataset formed for the ImageNet Large-Scale Visual

Recognition Challenge (ILSVRC). The ImageNet-ILSVRC dataset consists of images with

1000 labels and over 1000 images per label [74]. Pytorch library [29] includes a number of

models, e.g. AlexNet model [74], pretrained on the ImageNet-ILSVRC dataset.

In this thesis a subset of the ImageNet-ILSVRC dataset was used. This subset included

the images with two labels, for which pretrained AlexNet model achieved the best accuracy

� "tiger" and "zebra". In original dataset images are of variable size. Pretrained AlexNet

resize each image �rst to the size 256×256 and then applies central crop to size 224×224.

Examples of images in this subset dataset are shown in Figure 4.4.

Figure 4.4: Examples of the subset of ImageNet-ILSVRC dataset samples. The sub-
set contains the images of two classes � �zebra� and �tiger�. Pretrained AlexNet
has the best accuracy on these two classes. Upper rows shows images �easier�
for classi�cation and bottom row � �harder�.
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4.2 MRI datasets

The datasets were obtained after seeking permission from data owners and agreeing to the

terms and conditions of data usage. The study protocols of all the datasets used include

obtaining informed consent from the participants both for the original use of the data,

and for data re-use in projects such as the current one, either as part of normal study

procedures, or as a separate, optional, step.

All MRI data is presented in this thesis using radiological convention.

4.2.1 Healthy Brain Ageing from Public Sources (HBAPS) dataset

Figure 4.5: The age distribution of samples (N = 10, 876) over the age range of 17
� 96 years in the HBAPS dataset. Blue corresponds to training data, green -
validation, orange - testing.

As shown in Table 4.2 the HBAPS dataset was compiled from 36 public and 2 non-public

datasets available through various data-sharing projects. The cohort consists of 8631 sub-

jects (male/female = 3732/4249, age range 17 � 96 years). In the HBAPS dataset there

are 2.8% of subjects with repeat scans. In order to increase the overall size of the dataset,

multiple scans from the same subject were considered as unrelated samples. There are sev-

eral reasons for this. Firstly, scans from the same subject acquired at di�erent times are

as representative of the population as scans from di�erent subjects. Secondly, the models

used in Chapter 5 do not contain information about interactions between scans acquired

from the same subjects at di�erent time. Thirdly, consider an "absurd" dataset, in which
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all samples are collected from the same subject. In this case a brain age prediction model

would only be capable of predicting brain age of that one subject. Therefore, if the brain

age predicting model is trained on the dataset, in which only some number of subjects have

repeat samples and number of such subjects is much smaller compared to the total number

of subjects, it can be considered that the brain age prediction model captures brain ageing

features as close to population-wide e�ects as big is the training dataset.

As 2.8% of the HBAPS dataset subjects have repeat scans, this results in 10878 scans

(male/female = 4876/5352, mean age = 42.1 ± 23.2 years, age range 17 � 96 years). 650

subjects belonging to the for2017 dataset do not have information on subjects' sex and

mean subject age for each sex is not given. The distribution of samples over the age range

is shown in Figure 4.5. All data were collected using either 1.5T or 3T scanners using

T1-weighted sequences (details are shown in Table 4.2).

Only healthy subjects were included in the dataset. Disease status of the subjects was

determined from information provided by each study. This information is summarised in

Table 4.3. For the 1000 FCP, ABIDE I, ABIDE II and NKI-RS datasets no protected

health information is provided in compliance with the Health Insurance Portability and

Accountability Act (HIPAA) statute. In United States the HIPAA statute regulates how

personal information should be handled in healthcare. For the DLBS, for2017, HNU,

IBATRT, IXI, SWU, VPT and XHCUMS datasets only information on healthy or diseased

status of subjects is available.
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Dataset Healthy subjects information

1000 FCP No protected health information is included [193].

ABIDE I No protected health information is included [194].

ABIDE II No protected health information is included [194].

ADNI See Table 4.4 .

AIBL

Inclusion criteria for healthy subjects: age >= 60 years, Mini-

mental State Examination (MMSE) score > 24, no history of

stroke/transient ischemic attack or serious head injury [195].

BNU 1
Healthy subjects have no history of neurological and psychi-

atric disorders [196].

BNU 2
Healthy subjects have no history of neurological and psychi-

atric disorders [197].

BNU Enhanced
Healthy subjects have no history of neurological and psychi-

atric disorders [198] .

BNU Eyes Open Eyes

Closed

Healthy subjects have no history of neurological and psychi-

atric disorders [199].

BNU Short TR
Healthy subjects have no history of neurological and psychi-

atric disorders [198] .

CamCAN

Inclusion criteria for healthy subjects: MMSE score > 24, no

MRI contraindications, no neurological or serious psychiatric

conditions, subjects meet hearing, vision, and English lan-

guage ability criteria necessary for completing experimental

tasks [200].
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COBRE

Inclusion criteria for healthy subjects: no history of neuro-

logical disorders, mental retardation, severe head trauma with

more than 5 minutes loss of consciousness, substance abuse or

dependence within the last 12 months. Diagnostic information

was collected using the Structured Clinical Interview used for

DSM Disorders (SCID) [201, 202].

DLBS - [203]

For2017

GSP

Exclusion criteria for healthy subjects: self-reported health in-

formation indicates current/past history of Axis I pathology

or neurological disorder, current psychotropic medication us-

age and/or acute physical illness or displayed atypical brain

anatomy [204].

HCP

Exclusion criteria for healthy subjects: age < 22 or > 35 years,

history of psychiatric disorder, substance abuse, neurological

or cardiovascular diseases, two or more seizures after age of 5 or

a diagnosis of epilepsy, any genetic disorder, multiple sclerosis,

cerebral palsy, brain tumour, stroke, head injuries, premature

birth, radiation or chemotherapy, claustrophobia. Other ex-

clusion criteria include pregnancy, MMSE score <= 25, unsafe

metal in body. Following treatments also lead to exclusion:

thyroid hormone treatment, diabetes treatment or using pre-

scribed medication in the past month [205].

HNU - [198]

IBATRT - [198]

IPCAS
Inclusion criteria for healthy subjects: no history of severe

physical or mental injuries [206].

IXI - [207]

NKI-RS No protected health information is included [208].
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PPMI

Healthy controls inclusion criteria: age >= 30 years. Healthy

controls exclusion criteria: current or active clinically signif-

icant neurological disorder, �rst degree relative with Parkin-

son's disease, Montreal Cognitive Assessment (MoCA) score

>= 26 [209].

SWU - [198]

VPT -

XHCUMS - [210]

Table 4.3: Information on inclusion and exclusion criteria for healthy subjects con-
tained in the 34 publicly available datasets used in the HBAPS dataset. For the
1000 FCP, ABIDE I, ABIDE II and NKI-RS datasets no protected health infor-
mation is included in compliance with t he HIPAA. The HIPAA is a United fed-
eral statute which describes handling personal information in healthcare [8]. For
the DLBS, for2017, HNU, IBATRT, IXI, SWU, VPT and XHCUMS datasets
information only healthy or diseased status of subjects is available. In the CO-
BRE study healthy or diseased status of subjects was determined using the
SCID [9] (DSM is Diagnostic and Statistical Manual of Mental Disorders - a
classi�cation of mentral disorders [10]). SCID is a diagnostic examination for
Axis I diseases [9]. According to DSM Axis I disorders include most common
psychiatric diseases [10]. In the AIBL and CamCAN studies cognitevely healthy
subjects are determined using the MMSE test, while in the PPMI study MoCA
test is used. MMSE and MoCA tests are used to detect cognitive impair-
ment [11, 12]. For the datasets for which inclusuion and exclusion criteria are
not stated only information on healthy or diseased status of subjects is avail-
able. The datasets for2017 and VPT are non-public datasets and information
on subjects' health is not accessible.
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General inclusion criteria

- Subjects' age >= 55 years and <= 90

- Geriatric Depression Scale score 6

- History of at least six grades of education or extensive work history to exclude signs of

mental retardation

- Hachinski Ischemic Score = 4

- Self-reported good general health, no history of disease known to impede the

study results

General exclusion criteria

- Baseline MRI scan revealing history of infection, infarction or any focal lesions

- History of lacunae in memory structures

- Contra-indications for MRI

- History of diagnosed major depression, bipolar disorder within the last year,

alcohol or substance abuse within the past 2 years and schizophrenia according

to DSM-IV

- History of psychotic features, agitation or behavioural problems within the last

3 months leading to subject's inability to participate in the study

- Any medical condition leading to subject's inability to participate in the study

- Any biochemical blood parameters which may impede the study results

- History of use of speci�c psychoactive medications which may impede the study results

- History of cancer in the last �ve years except of skin melanoma
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Inclusion criteria for CN

- No history of memory problems beyond the ones normal for given age (veri�ed by a

study partner)

- MMSE score = 24

- Clinical Dementia Rating = 0

- Memory Box score = 0

- Cognitively normal, no history of signi�cant cognitive impairment leading

to interruption of daily living activities

- Stable intake of the medication considered not interfering with the study

Exclusion criteria for CN

- History of signi�cant neurological diseases or head trauma leading to structural

brain abnormalities

Table 4.4: Information on inclusion and exclusion criteria for normal controls (CN),
i.e. healthy subjects, contained in the ADNI dataset. Geriatric Depression
Scale is a scale for self-reporting of the levels of depression in adults. Hachinski
Ischemic Score is a scale for di�erentiating di�erent types of dementia or its
absence. DSM-IV is a tool for classi�cation of mental disorders.

Preparing the HBAPS dataset for machine learning purposes

Machine learning models are de�ned by a set of parameters which control the models'

complexity. The models with higher complexity have higher discriminating power, but are

also more susceptible to over�tting. Over�tting occurs when the model does not generalise

well, i.e. the model performs well on training samples, but its performance on unknown

samples is much worse compared to training. During the training in order to �nd the

set of model parameters, which is balanced with respect to achieving the best possible

performance and not over�tting, the dataset is split into training, validation and testing

data. Training data is used to learn model parameters and validation data is used to assess

its performance in order to avoid over�tting during training. Validation set is used in the

process of training to measure model's performance. Model's accuracy can be assessed as
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validation samples originate from the same dataset as training data due to initial split, but

their labels are not known to a model. Therefore, predictions on the validation dataset

can be used to assess model's performance. As the result of training process, optimal

set of model's parameters is chosen corresponding to the lowest validation error based

on the errors obtained on the validation data. Latter selection of the optimal model is

called model selection. Testing data is used to measure optimal model's performance after

training. Testing data can originate from original dataset and be separated at the splitting

stage or be completely independent from the original dataset [211].

HBAPS dataset is split into training, validation and test data in the 80%− 10%− 10%

proportion. The same data split is also used in a number of similar published experiments,

e.g. Cole et al [35], Feng et al [39] and Ren et al [212]. This proportion is chosen

due to complexity and depth of the models used further in this thesis as described in

Chapter 5. HBAPS dataset is split using strati�ed strategy. In case of strati�ed split the

80% − 10% − 10% proportion for training, validation and testing data is maintained for

each label. For example, HBAPS dataset contains 147 samples labelled to be 18 years old

and with this label there are 116, 15, 16 samples in the training, validation and testing

data respectively. The distributions of samples per label for the split used are shown in

Figure 4.5. The same data split of the HBAPS dataset is used in all experiments in this

thesis involving this dataset.

The HBAPS dataset - testing data

Further in this thesis two representations of the testing data of the HBAPS dataset are

used - whole test data and test data only consisting of independent subjects, i.e. containing

only the samples originating from the subjects not presented in the training data. This is

motivated by the fact that although repeat scans acquired at di�erent times from the same

subject are not exactly the same, they are still more similar to each other than the scans

acquired from di�erent subjects. Therefore, excluding repeat scans from the HBAPS test

data is considered.

Whole HBAPS test dataset consists of 1071 subjects (male/female = 480/526, mean

age = 41.0 ± 22.4 years, age range 17 � 92 years). In order to increase the overall size of

the dataset, multiple scans from the same subject were considered as unrelated samples

resulting in 1140 scans (male/female =360/411, mean age = 42.0±23.0 years). HBAPS test

data only consisting of independent subjects contains 836 scans (mean age = 37.9.0± 20.3
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years). The subjects belonging to the for2017 dataset do not have information on subjects'

sex. The distribution of samples over the age range for both whole HBAPS test data and

HBAPS test data including only independent samples are shown in Figure 4.6.

Figure 4.6: The age distribution of samples in whole HBAPS test data (N = 1140,
blue histogram) and HBAPS test data including only independent samples
(N = 836, orange histogram) over the age range of 17 � 92 years.

4.2.2 Institute of Psychiatry, Psychology & Neuroscience (IoPPN)
data

The IoPPN dataset contains both healthy and diseased subjects. The samples in the

IoPPN dataset are also acquired using a number di�erent imaging sequences including

T1- and T2-weighted imaging, Di�usion-weighted Imaging (DWI), Susceptibility-weighted

Imaging (SWI) and Fluid-Attenuated Inversion Recovery (FLAIR) MRI. The sequences are

described in Section 2.1. These sequences result in di�erent appearance of the same type

of tissues in MRI scans. Since in this thesis the models for brain age prediction described

in Chapter 5 are trained using the HBAPS dataset consisting of T1-weighted samples

collected from healthy subjects, the two subsets of the IoPPN data are used further in

this thesis - only samples acquired with T1-weighted sequences from healthy and diseased

subjects respectively.

All scanners used for data collection were produced by General Electric � 2 were SIGNA

HDx 1.5T scanners and 2 were MR750 3.0T scanners. Information on the consent of

participants and data usage agreement is as stated for the HBAPS dataset.
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The subset of the IoPPN dataset containing only healthy subjects imaged using

T1-weighted sequences consists of 1347 subjects (male/female = 751/596, mean age =

28.2 ± 10.3, age range 17 � 80 years). For augmenting the data multiple scans from the

same subject were considered as unrelated samples resulting in 1799 scans (male/female =

995/804, mean age = 27.0±9.7, age range 17 � 80 years). The subset of the IoPPN dataset

containing only diseased subjects consists of 1887 subjects (male/female = 920/967, mean

age = 48.7± 19.6, age range 17 � 96 years). The same approach for sample augmentation

results in 1979 scans (male/female = 966/1013, mean age = 48.6 ± 19.6, age range 17

� 96 years) for the subset of diseased subjects who were also imaged using T1-weighted

sequences. The distribution of samples over the age range for both subsets of the IoPPN

dataset are shown in Figure 4.7.

Figure 4.7: The age distribution of samples in the subset of IoPPN data consisting
of healthy subjects (N = 1799, blue histogram) and the subset of IoPPN data
consisting of diseased subjects (N = 1979, orange histogram) over the age
range of 17 � 96 years. Blue corresponds to the subset of only healthy subjects
and green to the subset of samples originating from only diseased subjects.

4.2.3 Preprocessing of MRI data

Raw T1-weighted MRI scans underwent rigid transformation and resampling onto the

MNI152 template using FSL FLIRT software [213] as described in Section 2.2. After pre-

processing all samples in the dataset have the same orientation in three dimensions and

are of the same size - 196× 232× 188.
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Chapter 5

Deep ordinal regression on structural

MRI data for brain age prediction

5.1 Main contributions

In this chapter it is shown that a Convolutional Neural Network (CNN) with ordinal re-

gression as described in Section 2.3.3 with end-to-end learning of imaging features through

convolutional �lters can be used e�ectively for the task of brain age prediction on Magnetic

Resonance Imaging (MRI) scans with minimal preprocessing. In order to analyse ordinal

regression model on the brain age prediction task we compare it to the model based on

metric regression. Ordinal CNN model performance is studied in light of following aspects:

� the model accuracy comparable to the results published in literature can be achieved

with minimal preprocessing of input data;

� the model accuracy is not a�ected by the fact that the data comes from a number of

independent sources as described in Section 4.2.1;

� the model accuracy is not a�ected by non-homogeneous distribution of training data

over age range.

5.2 Introduction

It was previously shown that human brain age can be predicted from structural MRI

data [212, 35, 214, 215, 216, 24, 39, 38, 13, 23, 217, 218, 14, 219, 220, 221, 183, 36, 40,

222, 223]. This information can be used to calculate the brain age gap � the di�erence
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between subject's chronological age and predicted brain age. There are two main reasons

for calculating human brain age from MRI data and measuring brain age gap. Firstly,

studying brain age gap helps with understanding healthy brain ageing trajectory over

human lifetime. Secondly, brain age gap is a promising biomarker for a number of disesses

including Alzheimer's disease [224], epilepsy [225] and HIV [226].

All existing approaches for brain age prediction can be divided into two groups � the

ones that use Deep Learning (DL) approaches and the others that not. Here only previous

work using T1-weighted MRI data is presented. Previous works not using the DL methods

are summarised in Table 5.1. While some authors [24, 219, 220, 221] applied non-DL-based

machine learning methods such as Support Vector Machine (SVM) or Relevance Vector

Regression (RVR), Beheshti et al [222] used MRI data segmented into patches with cortical

labels as an input to a grading procedure to determine subject's brain age. Beheshti et al

derived brain age from cortical age metric measured by the grading procedure. Cortical age

metric was calculated by measuring similarity between the cortical labels of a test sample

and known cortical labels of a sample belonging to the training set. Latter was calculated

using a machine learning-based method. As it can be seen from Table 5.1 while most of the

published works using non-DL-based methods used the datasets with age range covering

adulthood, the datasets cannot be considered to represent population-wide ageing e�ects

due to size.

In Table 5.2 DL-based published works are presented. A number of works presented

in Table 5.2 [13, 14, 36, 40, 223] has achieved a Mean Absolute Error (MAE) comparable

to other works in the �eld, but due to the size of the dataset used the results cannot be

considered to study population-wide ageing e�ects. Due to vast anatomical variability and

variations in ageing trajectory over human lifetime present in the population, the size of

dataset used for training is a crucial aspect for both developing a clinical biomarker for

neurodegenerative conditions and understanding brain ageing. Both these research aims

also require the results to be interpretable, i.e. the model's output should be explainable

in terms of input data features. For the model output to be interpretable data should be

input into model with the fewest possible preprocessing. This would allow to connect the

output directly to anatomical features of a subject. The model's architecture should also

allow for the information inside it to be interpretable and visualisable. Ren et al [212]

used a model allowing for interpretability, but used GM maps as an input. In this case

the interpretation would only allow to assess GM degradation as the result of ageing.
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Popescu et al [38] used a deep GP model allowing for a voxel-wise brain age prediction

and, therefore, interpretation, but the input data was segmented into GM and WM and

this limited the interpretation. Bermudez et al [183] achieved MAE of 5.0 years on the

dataset with minimal preprocessing as described in Section 4.2.3. This may be due to

the fact that the dataset included subjects as young as 4 years old. As human brain of

such young subjects is still developing as opposed to ageing in subjects of age 94, which

were also included in the dataset, this may have a�ected CNN's training process. Peng

et al [227] achieved MAE of 2.71 years, but the dataset did not include subjects younger

than 44 years of age. This may have potential implications as previous research has shown

that �rst signs of brain ageing occur after 30 years of age.

All models shown in Tables 5.1 and 5.2 are metric regression models. Human brain

ageing, however, is an ordinal process, i.e. brain can only get older with time. Brain ageing

is also accumulative process and features related to every age does not appear on certain

point during human lifetime but develop continuously through it. Therefore, using a model

with ordinal regression may both improve model's interpretability and generalisability.

5.3 CNN for brain age prediction

The model for brain age prediction consists of convolutional and regression components.

The convolutional part takes as an input structural MRI scans of size 196×188×232 voxels.

In practice, the Squeeze-and-Excitation Network (SENet) was adopted, as described in

Section 2.3.2. The SENet architecture was chosen as the analysis of 3D MRI data presents

two main challenges. Firstly, the statistical contrast of age-related features in the MRI

data is likely to be low for the subjects of similar ages. Secondly, the analysis of 3D data

imposes computational and memory demands compared to the analysis of 2D data. Ren et

al [3] show on a number of computer vision tasks that the SENet uses statistics extracted

from the data inside a network for improving performance in a computationally cheap

manner.

In the SENet implementation used SE blocks are incorporated into the ResNet-50

network [14]. The basic principles behind the ResNet were presented in Section 2.3.2. The

convolutional component of the models consisted of 50 layers in which every convolutional

layer was followed by a batch normalization before a non-linear activation. In the networks

used in the experiments SE-Res block de�ned in Figure 5.1 was used to form SE-ResNet

de�ned in Table 5.4. The SE-Res block takes an input, X, of size N × C ×H ×W × Z,
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where N is a batch size, C is a number of channels, H, W and Z are height, width and

depth of a sample respectively. X is put through a set of layers as described in Table 5.3

Output of this branch is then multiplied with X to form block output X̃.

Figure 5.1: Schematic representation of a SE-Res block. Input, X, is put through a
set of layers and is then scaled to be added onto initial X to produce block's
output X̃. Fully-connected layer is denoted by FC, a recti�ed linear unit �
ReLU. (Based on Figure 3 in [3]).

Layer Output size

Global average pooling N × C × 1× 1× 1

FC N × C1 ×H × 1× 1

ReLU N × C1 ×H × 1× 1

FC N × C ×H × 1× 1

ReLU N × C × 1× 1× 1

Sigmoid N × C × 1× 1× 1

Scale N × C ×H ×W × Z

Table 5.3: The layers sequence applied to an input X in SE-Res block. After global
average pooling is applied a tensor is shaped as N×C. After sigmoid is applied
a tensor is �rst reshaped as N×C×1×1×1 and then expanded as N×C×H×
W × Z. The number of channels C1 is calculated as C divided by a reduction
factor set to 16 and rounding down to closest whole number.
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Output size Layer
H
2 ×

W
2 ×

Z
2 Conv , 7× 7, 64, stride 2

H
4 ×

W
4 ×

Z
4

Max-pooling , 3× 3, stride 2


Conv, 1× 1, 64

Conv, 3× 3, 64

Conv, 1× 1, 256

SE −Res, [16, 256]

× 3

H
8 ×

W
8 ×

Z
8


Conv, 1× 1, 128

Conv, 3× 3, 128

Conv, 1× 1, 512

SE −Res, [32, 512]

× 3

H
16 ×

W
16 ×

Z
16


Conv, 1× 1, 256

Conv, 3× 3, 256

Conv, 1× 1, 1024

SE −Res, [64, 1024]

× 3

H
32 ×

W
32 ×

Z
32


Conv, 1× 1, 512

Conv, 3× 3, 512

Conv, 1× 1, 2048

SE −Res, [128, 2048]

× 3

Model X Global average pooling

SENet-MR 1× 1 FC, [X, 1]

SENet-OR 2× (K − 1) FC, [X, 2× (K − 1)]

Table 5.4: SE-ResNet architecture. Output size for layer blocks are shown in terms
of initial input dimensions (H � sample height, W � width, Z - depth). Conv
denotes 3D covolutional layer and parameters are given in order � kernel size,
output channel and stride. Max-pooling parameters are kernel size and stride.
Repeated blocks are denoted by multiplication. SE-Res denotes a block de�ned
in Figure 5.1. Last fully-connected layers (FC ) are di�erent for the SENet-MR
and SENet-OR architectures. The SENet-MR architecture output is age (1×1).
The SENet-OR architecture outputs probabilities for K−1 binary classi�ers by
applying a logistic regression function (de�ned in Equation 2.4) to the output
of these binary classi�ers.
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5.3.1 Metric regression

The model with metric regression (SENet-MR) is implemented by attaching a fully-

connected layer after a convolutional part of the model, to output brain age prediction. In

this implementation the architecture is combined with the MAE loss function:

αMAE =
1

N

N∑
n=1

⌊
yn − y′n

⌋
, (5.1)

where yn and y′n are the target and predicted ages respectively, and N is the number of

samples in a batch.

5.3.2 Ordinal regression

The model with ordinal regression (SENet-OR) was implemented as described in Section

2.3.2. We trained a model on the Healthy Brain Ageing from Public Sources (HBAPS)

dataset described in Section 4.2.1, which has samples aged from 17 to 96 years old. There-

fore, each sample belonging to the data xi ∈ X has a corresponding outcome space

yi ∈ Y = {r1, r2, . . . , rK}, where r1 = 17 and rK = 96. Therefore, 80 age classes are

represented by 79 binary classi�cation sub-problems. In testing stage Equation 2.24 is

modi�ed to re�ect this range of samples as

h
(
x′
)

= rq

q = 17 +

79∑
k=1

fk(x
′), (5.2)

where

� h(x′) is a predicted rank of a sample x′,

� fk (x′) ∈ {0, 1} is the classi�cation result of the kth binary classi�er for a sample x′.

5.3.3 Classi�er implementation

Both classi�ers were trained with the same parameters. The network's weights were ini-

tialised using the approach described by He et al [87]. Optimisation was performed using

Stochastic Gradient Descent (SGD) with momentum 0.9 and a mini-batch size of 4 due to

Graphics Processing Unit (GPU) memory constraints. The initial learning rate was set to
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0.1 and decreased by a factor of 10 every 66 epochs. The initial learning rate and its rate of

decrease was set empirically by running "test" epochs making sure the model is training.

Models were trained for 200 epochs from scratch. The epoch with the lowest validation

MAE was used for testing. In the testing stage the input images were normalised as in the

training.

5.4 Results

After training the models, they were tested on whole HBAPS testing data and the distri-

bution of all predicted ages is shown in Figure 5.2 for both the SENet-MR and SENet-OR

models. Performance of the models is further examined by considering theHBAPS test

dataset with the subjects used in training data excluded. Details on HBAPS test data are

presented in Section 4.2.1. The distribution of predictions for both models on independent

test data is shown in Figure 5.3. MAE and the Pearson's correlation coe�cient, R, of

chronological and predicted ages for both models are presented in Table 5.5. In Table 5.5

models' performance is measured on whole HBAPS test dataset, HBAPS test data exclud-

ing repeat scans, i.e. the scans of subjects also included in the training data, and only

repeated scans contained in the HBAPS test data.

Model Test data MAE [years] R RMSE [years0.5] Error variance [years] σ [years0.5]

Whole 3.87 0.96 6.88 32.36 5.69

Independent

subjects
4.37 0.94 6.18 29.63 5.44

SENet-MR
Repeat

scans
2.48 0.97 7.36 37.35 6.11

Whole 3.62 0.97 5.91 21.79 4.67

Independent

subjects
4.10 0.95 2.02 23.65 4.86

SENet-OR
Repeat

scans
2.31 0.99 1.52 14.35 3.79

Table 5.5: MAE and the Pearson's correlation coe�cient, R, of chronological and
predicted ages, Root Mean Square Error (RMSE), error variance and standard
deviation on MAE, σ, for the SENet-MR and SENet-OR model predictions on
whole HBAPS test dataset, on HBAPS test dataset containing only independent
subjects, i.e. not used in HBAPS training data, and only repeat scans contained
in whole HBAPS dataset.

The linear regression �t for each model's predictions is shown by the dashed dark blue

line in Figures 5.2 and 5.3, along with the 95% intervals (dashed light blue-green lines) and

the line of identity (in orange). Parameters of the linear �t models for both SENet-MR
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and SENet-OR models are represented in Table 5.6 for both whole HBAPS test dataset

and the HBAPS test dataset with repeated subjects excluded.

95% con�dence interval

bounds on a

95% con�dence interval

bounds on c
Model Test data a

Lower Upper
pa c

Lower Upper
pc

Whole 0.928 0.911 0.944 0.0005 3.493 2.687 4.298 0.0005

SENet-MR Independent

subjects
0.898 0.876 0.920 0.0005 4.177 3.218 5.137 0.0005

Whole 0.951 0.936 0.965 0.001 1.174 0.481 1.867 0.0005

SENet-OR Independent

subjects
0.928 0.907 0.948 0.0005 1.747 0.867 2.628 0.0005

Table 5.6: Parameters of the linear regression �t into the distributions of predictions
by the SENet-MR and SENet-OR models for whole HBAPS test dataset and
the HBAPS test data with repeat scans excluded. Parameters of the linear
regression �t models are represented by a and c such that yp = a×yt+c, where
yp and yt are predicted and true sample ages respectively. For both a and c
values p−values are given corresponding to pa and pc along with 95% con�dence
interval lower and upper bounds.

For both SENet-MR and SENet-OR models MAE on only repeat scans from HBAPS

test data is lower than MAE on whole HBAPS test dataset for which MAE is lower com-

pared to MAE on HBAPS test data containing only scans independent from training data.

This is expected result as other scans from the subjects contained in the repeat scans from

HBAPS test data are also part of the HBAPS training data. Whole HBAPS test dataset

also contains repeat scans of subjects included in HBAPS training data. As the result, in

the testing stage the model is shown scans of the same subjects which are contained in

the HBAPS training data and MAE is lower compared to the HBAPStest data contain-

ing only independent subjects. Even though for both whole HBAPS test dataset and the

HBAPS dataset with excluded repeat scans the Pearson's correlation coe�cients for the

both models are very close, the SENet-OR model's linear regression �t and its 95% con�-

dence interval are closer to the line of identity than the SENet-MR model's �t. Therefore,

it can be concluded that while both models had similar overall performance, the SENet-OR

model generalised to the data better.

As it can be seen in Table 5.5 for both whole HBAPS test dataset and HBAPS test data

excluding repeated subjects, while the means of two error distributions from the SENet-

MR and SENet-OR models' predictions are close, their variances, and therefore, standard

deviations vary signi�cantly. The SENet-OR model predictions are more concentrated

around the mean. From Figures 5.2 and 5.3 it can be observed that SENet-OR performed
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better on the youngest subjects (younger than 22 years old) and speci�cally for the samples

with age of 17 years (only 4 of whom were present in the testing set). However, for the

subjects older than 87 years, the SENet-MR model had better performance. This is further

explored in Figures 5.4 and 5.5.

Figures 5.6 and 5.7 show the plots of prediction residuals by the SENet-MR and SENet-

OR models on the whole HBAPS test data and the HBAPS test data including only

independent subjects. Prediction residual is de�ned as a deviation of predicted age from

a linear �t into the plot of the corresponding model predictions vs true age. Coe�cients

for describing the �ts represented by blue lines are presented in Table 5.7.

Linear �t Quadratic �t
Model Test data

bl cl aq bq cq

Whole -0.049 2.797 0.000 -0.049 2.797

SENet-MR Independent

subjects
0.000 0.000 0.001 -0.078 1.428

Whole 0.000 0.000 0.001 -0.111 2.052
SENet-OR

Independent subjects 0.000 0.000 0.002 -0.169 3.118

Table 5.7: Parameters of the linear and quadratic regression �ts into the distribu-
tions of prediction residuals by the SENet-MR and SENet-OR models for whole
HBAPS test dataset and the HBAPS test data with repeat scans excluded. Pa-
rameters of the linear regression �t models are represented by bl and cl such
that yr = bl×yt+cl, where yr and yt are prediction residual and true sample age
respectively. Parameters of the quadratic regression �t models are represented
by aq, bq and cq such that yr = aq × y2

t + bq × yt + cq.
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Figure 5.2: Distribution of predictions of the SENet-MR (A) and SENet-OR (B)
models on whole HBAPS test dataset. The brain age predicted by the models
on this test data (y-axis) is plotted against chronological age label (x-axis).
Orange line denotes the y = x function, blue � linear regression �t function,
green � the lines representing the lower and upper bounds of the 95% con�dence
interval over linear regression �t parameters.
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Figure 5.3: Distribution of predictions of the SENet-MR (A) and SENet-OR (B)
models on HBAPS test dataset with excluded repeat scans. The brain age
predicted by the models on this test data (y-axis) is plotted against chronolog-
ical age label (x-axis). Orange line denotes the y = x function, blue � linear
regression �t function, green � the lines representing the lower and upper
bounds of the 95% con�dence interval over linear regression �t parameters.
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Figure 5.4: Box plot of the predictions by the SENet-MR (A) and SENet-OR (B)
models with respect to the true age labels for the whole HBAPS test data.
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Figure 5.5: Box plot of the predictions by the SENet-MR (A) and SENet-OR (B)
models with respect to the true age labels for the HBAPS test data including
only independent subjects.
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Figure 5.6: Distribution of the prediction residuals with respect to true age labels
for the SENet-MR (A) and SENet-OR (B) predictions on the whole HBAPS
test data. Prediction residual is de�ned as a deviation of predicted age from
a linear �t into the plot of the corresponding model predictions with respect
to true age. Orange line denotes the y = 0 function for reference and blue
line corresponds to linear (A) and quadratic (B) �ts into the plot of prediction
residuals with respect to true age labels. Coe�cients for describing the �ts
represented by blue lines are presented in Table 5.7. Linear �t is not shown
for the SENet-OR prediction residuals (B) as it was close to the y = 0 function.
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Figure 5.7: Distribution of the prediction residuals with respect to true age labels
for the SENet-MR (A) and SENet-OR (B) predictions on the HBAPS test
data including only independent subjects. Prediction residual is de�ned as a
deviation of predicted age from a linear �t into the plot of the corresponding
model predictions with respect to true age. Orange line denotes the y = 0
function for reference and blue line corresponds to quadratic �ts into the plot of
prediction residuals with respect to true age labels. Coe�cients for describing
the �ts represented by blue lines are presented in Table 5.7. Linear �t is not
shown on the graphs as it was close to the y = 0 function.
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As training dataset was highly unbalanced (see Section 4.2.1) it was important to

make sure that the models were able to make as accurate predictions as possible for all

ages present in the dataset. In Figure 5.8 the average prediction error for each age in the

dataset is plotted for each model, along with the corresponding number of samples in the

training dataset. In Table 5.8 the correlation coe�cient between the number of samples

and average of mean errors per age label along with variances over the average of mean

errors per age label are presented for both the SENet-MR and SENet-OR models and two

test datasets - whole HBAPS test dataset and HBAPS test data excluding repeat scans.

Table 5.8 also shows that the variances of the average of mean errors per age label are

lower for the SENet-OR model predictions on both modi�cations of the HBAPS test data.

Model Test data Correlation Variance [years]

Whole -0.36 9.15

SENet-MR Independent

subjects
-0.39 9.41

Whole -0.44 6.74

SENet-OR Independent

subjects
-0.41 6.65

Table 5.8: Correlation coe�cient between the number of samples and average of
mean errors per age label and variance over the average of mean errors per age
label are presented for both the SENet-MR and SENet-OR models and two test
datasets - whole HBAPS test dataset and HBAPS test data excluding repeat
scans

Both the SENet-MR and SENet-OR models underperformed at the ends of the age

range, i.e. on the subjects younger than 19 years of age and older than 85 years of age

on both whole HBAPS test data and HBAPS test data with only independent subjects

included. It can also be seen from Figure 5.8 that in these test datasets there is very little

data for these parts of the age range � 20 and 18 samples in total are in the age ranges

younger than 19 years and older than 85 years respectively. As the result the largest

prediction outliers occur for the samples with the true age labels in range younger than

21 years of age. This can also be observed in Figures 5.2 and 5.3. Number of samples and

average of mean errors per age label for the prediction distributions by SENet-MR and

SENet-OR models for the two test datasets are summarised in Table 5.9. In whole HBAPS

test data in the age range from 20 to 39 years of age the total number of samples is 2.4
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and 2.6 times larger respectively compared to the age ranges of 40 to 69 years and 70 to

84 years of age. When repeat samples are excluded from the HBAPS test data the ratios

of number of samples for these true age label ranges are 2.48 and 4.7 respectively. The

ratios of average mean errors per age label of the SENet-MR and SENet-OR models for

the two test datasets in the age ranges presented in Table 5.9 are di�erent from the ratios

of number of samples present in these age ranges. For instance, the ratio of the average

mean errors per age label of the SENet-MR model on the HBAPS dataset not containing

repeat samples on the age ranges of 20 to 39 and 40 to 69 years of age is 0.72. The ratio of

the number of samples for the same age ranges is 2.48. From Table 5.9 it can be observed

that the performance of SENet-MR and SENet-OR models is comparable on both whole

HBAPS test data and HBAPS test data with repeat scans excluded. For both models the

di�erence in average of mean errors per age label increased with increased di�erence in the

number of samples for a given age range between whole HBAPS test data and HBAPS

test data containing only independent samples.

Test data Average of mean errors per age label [years]

SENet-MR SENet-OR
Number of

samples

in age range
Whole Independent subjects

Whole
Independent

subjects
Whole

Independent

subjects

20 to 39 550 452 4.61 4.62 3.96 3.98

40 to 69 232 182 5.99 6.42 5.91 6.44

70 to 84 214 96 3.04 4.82 3.13 4.49

Table 5.9: Number of samples and average of mean errors per age label for three
age ranges - 20 to 39, 40 to 69 and 70 to 84 years of age. Number of samples
is presented for two test datasets - whole HBAPS test data and HBAPS test
data containing only independent subjects. Average of mean errors per age
label is calculated using the distributions of predictions by the SENet-MR and
SENet-OR models.
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Figure 5.8: The number of samples per age in the whole HBAPS test data (con-
tinuous red line) and HBAPS test data including only independent subjects
(dashed red line) (right y-axis) is plotted against chronological age label (x-
axis). The average prediction error (left y-axis) for the SENet-MR (blue line)
and SENet-OR (green line) measured on whole HBAPS test dataset (contin-
uous line) and HBAPS test data with repeated scans excluded (dashed line)
are plotted against chronological age label (x-axis).

In Tables 5.10 and 5.11 mean error is presented for all data sources in the whole HBAPS

test dataset and HBAPS test data with repeat scans excluded for the predictions using the

SENet-MR and SENet-OR models (details on the data sources are presented in Section

4.2.1) together with summary statistics. For both whole HBAPS test dataset and HBAPS

test dataset including only independent subjects mean error did not correlate with the

number of samples provided by each data source. This indicates that the models did not

di�er in their ability to work on a dataset including data from multiple sources. It can

also be observed that averages over all mean errors for both models were similar. However,

for whole HBAPS test dataset the SENet-OR model predictions resulted in lower variance

over mean errors � 13.07 and 7.00 years respectively. For the HBAPS test dataset with

repeat samples excluded variance over mean errors for the SENet-OR model was higher

compared to the one for the SENet-MR model. The di�erence in variances was, however,

smaller compared to whole HBAPS test dataset.
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Model
Dataset Num. of samples

SENet-MR SENet-OR

1000 FCP 91 5.15 4.38

ABIDE I 24 14.88 11.88

ABIDE II 12 2.91 4.75

ADNI 152 1.66 2.08

AIBL 98 4.15 3.66

BNU1 10 1.94 2.20

BNU2 15 1.15 1.13

BNU Enhanced 20 2.21 1.55

BNU Eyes Open Eyes Closed 6 2.27 2.27

BNU Short TR 4 2.25 2.25

CamCAN 66 4.46 4.76

COBRE 6 5.29 8.67

DLBS 33 8.67 5.73

for2017 69 4.30 4.13

GSP 152 1.95 1.95

HCP 114 2.88 3.20

HNU 42 0.62 1.24

IBATRT 8 2.23 2.75

IPCAS 9 5.50 5.78

IXI 63 6.06 5.78

NKI-RS 41 6.74 6.46

PPMI 15 6.47 7.60

SWU 76 2.93 2.16

VPT 2 2.67 1.50

XHCUMS 12 14.33 5.92

Statistic

R -0.20 -0.21

Mean error [years] 4.55 4.15

Variance [years] 13.07 7.00

Table 5.10: Mean error was measured for all data sources in the whole HBAPS
test dataset for the predictions using the SENet-MR and SENet-OR models.
This is presented along with the number of samples coming from each data
source. Summary statistics is presented at the bottom. R denotes Pearson's
correlation coe�cient between the number of samples from a data source and
mean error. Details on the data sources are presented in Section 4.2.1.
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Model
Dataset Num. of samples

SENet-MR SENet-OR

1000 FCP 91 5.15 4.38

ABIDE I 24 14.88 11.88

ABIDE II 12 2.91 4.75

AIBL 86 4.31 3.66

BNU1 5 1.94 3.20

BNU2 4 1.02 1.00

BNU Enhanced 20 2.21 1.55

BNU Eyes Open Eyes Closed 6 2.27 2.27

BNU Short TR 4 2.25 2.25

CamCAN 66 4.46 4.76

COBRE 6 5.29 2.75

DLBS 33 8.67 5.73

for2017 69 4.30 4.13

GSP 152 1.95 1.95

HCP 114 2.88 3.20

IBATRT 4 2.23 2.57

IPCAS 6 5.50 6.17

IXI 63 6.06 5.78

NKI-RS 41 6.74 6.46

PPMI 7 8.72 10.14

SWU 21 1.49 1.57

VPT 2 2.67 1.50

Statistic

R -0.04 -0.08

Mean error [years] 4.51 4.60

Variance [years] 9.96 10.70

Table 5.11: Mean error was measured for all data sources in the HBAPS test dataset
with repeat scans excluded for the predictions using the SENet-MR and
SENet-OR models. This is presented along with the number of samples com-
ing from each data source. Summary statistics is presented at the bottom. R
denotes Pearson's correlation coe�cient between the number of samples from
a data source and mean error. Details on the data sources are presented in
Section 4.2.1.
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Figure 5.9: Box plot comparing predictions using the SENet-MR and SENet-OR
models with the distribution of true age labels in whole HBAPS test dataset.
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Figure 5.10: Box plot comparing predictions using the SENet-MR and SENet-OR
models with the distribution of true age labels in the HBAPS test dataset
with repeat scans excluded.
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Box plots and histograms in Figures 5.9 and 5.10 further show that both models well

captured true data distribution on both whole HBAPS test dataset and HBAPS test

dataset containing only independent subjects, but the SENet-OR model underperformed

in the older subjects compared to the SENet-MR model. For the subjects younger than 40

years of age both models predicted similar samples distribution comparable in shape with

true age distribution. The SENet-MR model predictions distribution for the age range of 40

to 60 years of age was close to uniform, while the SENet-OR model predictions resembled

true distribution more. The subjects from 78 to 80 years of age were predicted to be older

by the SENet-MR model. For the subjects older then 80 years of age the SENet-OR model

predicted all the subjects to be younger or of right age, but the resulting distribution from

the SENet-MR model followed the true distribution closer. Descriptive statistics for the

three distributions and two modi�cations of the test dataset are presented in Table 5.12.

On both modi�cations of the test dataset the predictions distributions for both models

captured well the distribution in testing dataset.

Test data

Whole
Independent

subjects

Distribution

Prediction Prediction

Statistic

SENet-MR SENet-OR
Actual

SENet-MR SENet-OR
Actual

Mean [years] 42.3 41.1 42.0 38.2 36.9 37.90

Median [years] 30.8 29.0 30.0 29.3 28.0 28.5

Minimum [years] 18.3 18.0 17.0 18.31 18.0 17.0

Maximum [years] 91.2 84 92.0 85.6 84 92.0

Range [years] 72.9 66.0 75.0 67.3 66.0 75.0

Interquartile range [years] 43.8 44.0 44.0 29.9 31.0 31.0

Variance [years0.5] 501.0 512.3 530.8 375.9 391.2 411.1

Standard deviation [years] 22.4 22.6 23.0 19.4 19.8 20.28

Table 5.12: Descriptive statistics for the predicted distributions by the SENet-MR
and SENet-OR models compared to the true distribution on whole HBAPS
test data and HBAPS test data with repeat scans excluded.

Figure 5.11 shows the SENet-MR model predictions plotted against the SENet-OR

predictions, for both whole HBAPS test dataset and HBAPS test dataset containing only

independent subjects. The correlation coe�cient for the two models' predictions was 0.973

and 0.962 for whole HBAPS test dataset and HBAPS test dataset excluding subjects from

the training data respectively. Parameters of the linear �t models for both SENet-MR
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95% con�dence interval

bounds on ao

95% con�dence interval

bounds on bo
Test data ao

Lower Upper
pao bo

Lower Upper
pbo

Whole 0.985 0.971 0.998 0.0005 -0.689 -1.136 -0.042 0.037

Independent

subjects
0.981 0.962 1.000 0.0005 -0.589 -1.401 0.222 0.155

Table 5.13: Parameters of the linear regression �t into the plot of the SENet-MR
predictions (metric) vs the SENet-OR predictions (ordinal) for both whole
HBAPS test dataset and HBAPS test dataset containing only independent
subjects. Linear regression �t into the plot is represented by a function yo =
ao × ym − bo, where ym and yo are predictions be the SENet-MR and SENet-
OR models respectively and ao and bo correspond to the slope and intercept
of the function. For both ao and bo values p−values are given corresponding
to pao and pbo along with 95% con�dence interval lower and upper bounds.

and SENet-OR models are represented in Table 5.6 for both versions of the HBAPS test

data. It should be noted that the upper bound linear �t 95% con�dence interval closely

follows line of identity in Figure 5.11 for the whole HBAPS test dataset and its subset

consisting of only independent subjects. Therefore, it can be concluded that predictions

by the SENet-MR and SENet-OR models are in agreement with each other.

However, from Figures 5.8 and 5.9 it is also clear that there is a di�erence in performance

by the SENet-MR and SENet-OR models for various age intervals. This can be further

explored using the Bland-Altman plots in Figure 5.12. Mean di�erence over whole age

range was 1.4 years for both versions of the HBAPS test data. Most of the samples with

prediction di�erence outside the range of µd± 1.96σd (µd � mean di�erence, σd � standard

deviation of di�erence) are the samples with mean predictions between 30 and 70 years,

while ages below and above this are in general predicted relatively well. It should be noted

that in the Bland-Altman plot for the whole HBAPS test dataset there are more samples,

for which prediction di�erence is outside the range of µd ± 1.96σd. Therefore, it can be

concluded that most of these samples are repeated scans.
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Figure 5.11: Plot of the SENet-MR predictions (metric) vs the SENet-OR predic-
tions (ordinal) for both whole HBAPS test dataset (A) and HBAPS test
dataset containing only independent subjects (B). Red line denotes the y = x
function, blue line represents linear regression �t into the plot represented by
a function yo = aoym − bo, where ym and yo are predictions be the SENet-
MR and SENet-OR models respectively and ao and bo correspond to the slope
and intercept of the function. Green lines represent lower and upper bound
linear �t curves for the 95% con�dence interval. For the whole HBAPS test
dataset (A) linear �t takes the form yo = 0.984ym − 0.689 and for HBAPS
test dataset containing only independent subjects (B) - yo = 0.981ym−0.589.
Lower and upper bound linear �t curves for the 95% con�dence interval on
the whole HBAPS test dataset are represented by yo = 0.971ym − 1.336 and
yo = 0.998ym − 0.042 respectively. For the HBAPS test dataset containing
only independent subjects the lower and upper bound linear �t curves are
yo = 0.962ym − 1.401 and yo = ym + 0.222.
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Figure 5.12: Bland-Altman plot for the predictions of the SENet-MR and SENet-OR
models for the whole HBAPS test data (A) and HBAPS test data exclud-
ing repeated scans (B). Di�erence on the y-axis is calculated by subtracting
the prediction by the SENet-MR model from the prediction by the SENet-
OR model. Red line indicates mean di�erence over all predictions. Green
lines indicate mean di�erence plus 1.96 standard deviations and minus 1.96
standard deviations respectively.
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5.5 Discussion and conclusion

In this chapter we assessed a CNN with ordinal regression on the task of brain age prediction

from MRI scans with minimal preprocessing. The ordinal regression model's performance

was compared to a metric regression model on the same task. Ordinal regression model

achieved comparable performance to metric regression model and both models achieved

comparable MAE with minimal preprocessing of input data up-to-date in comparison to

existing literature. Both models were also not a�ected by the fact that the dataset used

included data from 34 sources as described in Section 4.2.1.

Below, we additionally compare the ordinal model's performance with respect to the

literature. Here the literature considered should ful�l certain criteria for fair comparison.

First, the model described should be trained on a dataset of comparable size to that used

to train our SENet-MR and SENet-OR models, in order to ensure that the model captures

the population-wide ageing e�ects. This is important as in this thesis the dataset used for

training is the largest used up-to date and, therefore, the SENet-MR and SENet-OR models

can be considered to be capturing the ageing e�ects as close as possible to the population-

wide ageing e�ects. Secondly, the model for comparison should be trained on MRI data

which has been minimally preprocessed, with a pipeline similar to the one described in

Section 4.2.3. Thirdly, the model should have been trained on data collected from healthy

subjects only. Using such models for comparison also allows us to perform the comparison

without the need to re-implementing and training the model. From the works represented in

Table 5.1 three examples ful�l all the conditions � the model by Cole et al [35], Bermudez

et al [183] and Peng et al [227]. Cole et al [229] used the dataset with fewer samples

(N = 2001) compared to the HBAPS dataset (N = 10, 873), but the age range (18-90

years of age) was similar to the HBAPS dataset (17-96 years of age). The SENet-MR

and SENet-OR models achieved MAE comparable to the one achieved by the Cole et al's

model. The dataset used by Cole et al [229] was collated from the datasets not containing

any repeat scans, i.e , multiple scans collated from the same subject. As the result, the test

dataset (N = 200) used by Cole et al [229] did not contain the samples from the subjects

also present in the training data (N = 1601). Cole et al achieved MAE of 4.28 years, while

the SENet-OR model achieved MAE of 4.10 years on the HBAPS test data excluding

repeat samples. On the other hand, Cole et al used not residual and shallower CNN

compared to the SENet-MR and SENet-OR models. Residual connections are required to

enable training of deeper networks [108]. Cole et al have also reported networks inability
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to perform equally well on the data from di�erent acquisitions sources. Here for both the

SENet-MR and SENet-OR models standard deviation of average error over data sources

was 3.62 and 2.64 years respectively, while correlation between the number of samples in a

dataset used and average error was -0.20 and -0.21 respectively. On the HBAPS test dataset

excluding repeat samples standard deviation of average error over data sources was 3.16

and 3.27 years for the SENet-MR and SENet-OR models respectively, while corresponding

correlations between the number of samples in a dataset used and average error were -

0.04 and -0.08. Therefore, deeper residual network allows to perform training on larger

datasets collated from di�erent sources using di�erent acquisition protocols. Bermudez et

al [183] achieved MAE of 5.00 years using a dataset approximately half a size of the HBAPS

dataset. Bermudez et al also included subjects as young as 4 years old. Peng et al [227]

achieved MAE of 2.71 years using an ensemble model and 2.80 years using a single CNN

model. From this it can be concluded that using ensemble CNN models does not introduce

signi�cant performance gain. Peng et al used the UK Biobank dataset for training with the

age range of 44 to 88 years old. This may a�ect model's performance as �rst ageing signs

were reported to occur at age of 30. Finally, it can be said that both the SENet-MR and

SENet-OR models achieved performance comparable to the results previously obtained in

the �eld.

The HBAPS dataset used for training (described in Section 4.2.1) is highly unbalanced

over samples' age range. The SENet-MR model was trained using this raw data distribu-

tion. The SENet-OR model was trained using a sampling technique described in Section

2.3.3. Both models achieved similar MAE on both versions of the HBAPS test data, but

in Figure 5.8 it can be seen that average error was higher for the youngest and the oldest

subjects for both models. Also in Figure 5.8 it is shown that the ages for which average

error was higher, corresponded to those for which the number of samples was lower than

elsewhere. Therefore, two conclusions can be drawn. Firstly, sampling technique did not

have a signi�cant e�ect on the training process. Secondly, uneven sample distribution can

introduce additional bias to a model.

Also from the point of view of using such models in clinical environment the advantage

of training the models to achieve good performance by providing many examples in the age

range younger than 30 years of age is not particularly useful compared to middle aged and

older groups of subjects. From the Bland-Altman plot in Figure 5.12 it can be observed

that most of the samples, for which the predicted age was outside of the range of µd±1.96σd
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(µd � mean di�erence, σd � standard deviation of di�erence), are between the 30 and 70

years of age on both whole HBAPS test data and the HBAPS test data excluding repeat

samples. The average error per age did not, however, correlate with the number of data

sources contributing to this age. It can also be observed from Table 5.9 that average of

mean errors per age label was the largest from the age range from 40 to 69 years of age for

both metric and ordinal brain age prediction models on both versions of the HBAPS test

data, while the largest number of samples was present in the age range from 20 to 39 years

of age. However, the smallest number of samples was present in the age range from 70 to

84 years of age and this range also corresponded to the smallest average of mean errors

per age label for both brain age prediction models.

Feng et al [39] achieved MAE of 4.06 years using a shallower network without residual

connections on the dataset of comparable size with applied brain extraction. The SENet-

MR and SENet-OR models achieved MAE of 3.87 and 3.62 years respectively on whole

HBAPS test dataset with minimal preprocessing applied (as described in Section 4.2.3).

On the HBAPS test data including only independent subjects MAE achieved by the SENet-

MR and SENet-OR models was 4.37 and 4.10 years respectively. Feng et al [39] also used

data collected from 4 di�erent scanners, while in the HBAPS dataset the data originates

from 34 public data sources. In this work comparable MAE was achieved using more

heterogeneous dataset of less preprocessed data coming from a number of independent

sources compared to the work by Feng et al using, however, deeper and residual networks.

Jonsson et al [218] also concluded that residual networks improve performance. In the work

by Jonsson et al [218] the performance of the CNNs with and without residual connections

were compared on the brain age prediction task from skull-stripped MRI data non-linearly

registered onto the MNI152 template. This is, however, concluded on the data with much

more involved preprocessing procedure compared to the approach in this thesis.

It should be noted that further work is needed for brain age prediction model. Models'

generalisability can be further assessed using independent dataset. Further comparison

with Peng et al [227] work could also be useful and fruitful for improvements. For in-

stance, Peng et al used shallower CNN similar to Cole et al [35], but achieved signi�cantly

lower results compared to Cole et al. The SENet-MR and SENet-OR models could also

be examined using deconvolutional network approach introduced by Zeiler and Fergus [47]

to understand which network parts contributed the most to accurate predictions and what

have they detected at each step during a forward pass. This would allow making more
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educated choice of improved architecture as opposed to simply using shallower networks.

Once network could be made shallower and training would be less time-consuming, more

extensive network hyperparameter optimization would be possible for further results im-

provement.

In conclusion, the accuracy of both the SENet-MR and SENet-OR models achieved

better results compared to other published experiments on the input data with the same

level of pre-processing. The model was, however, a�ected by the small number of samples

for the age ranges of subjects younger than 20 and over 85 years of age even though the

SENet-OR model used the sampling technique to remove such bias from the model. The

models were not a�ected by the fact that the dataset was collated using 34 independent

sources.
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Chapter 6

Extracting population-wide brain

ageing pro�le

6.1 Main contributions

In this chapter a population-wide brain ageing pro�le is considered. A brain ageing pro�le

can be de�ned by determining periods of lifetime which have similar brain age-related

features. The resulting brain ageing pro�les are derived using the Healthy Brain Ageing

from Public Sources (HBAPS) dataset described in Section 4.2.1, which is the largest

dataset used to date for this type of analysis. Therefore, these brain ageing pro�les can

be considered to represent population-wide e�ects. As the subjects present in the HBAPS

dataset are at least 17 years old, brain ageing pro�les describe the changes related to brain

ageing during adulthood. The pro�les can be considered to be describe whole-brain e�ects

as age-related features are extracted from Magnetic Resonance Imaging (MRI) samples as

a whole using only minimal preprocessing.

In this chapter, four methods to derive a population-wide whole brain ageing pro�le

are presented:

� Firstly, a method considering the distribution of errors from an underlying assessment

of brain age is proposed.

� Secondly, application of the Preference Ranking Organization METHod for Enrich-

ment of Evaluations (PROMETHEE) II method for obtaining a pro�le is discussed.

The PROMETHEE II ranking is constructed based on the similarity of features ex-

tracted from the MRI samples. The features are extracted using a convolutional part
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of a Convolutional Neural Network (CNN) model trained on the task of brain age

prediction from MRI data.

� Thirdly, a pro�le is derived using the method of Deep Embedded Clustering (DEC)

described in Section 2.3.5. In order to extract the brain ageing pro�le using DEC it is

hypothesized that all features de�ning a brain age are contained in an MRI scan, and

that pro�le intervals can be de�ned by considering the similarity of such features.

� Finally, a modi�cation of DEC is proposed in order to create an ordinal DEC method.

The ordinal method is developed as DEC itself cannot take into account ordinal

nature of data. This is crucial for brain age prediction problem as brain ageing

process can only proceed in one direction.

6.2 Introduction

Structural brain changes during human lifetime are studied both for the purpose of under-

standing the healthy course of ageing and to examine the departures from it to understand

various diseases. Previous studies have investigated the trajectories of di�erent structural

biomarkers including volumetric, microstructural and focal ones, using both cross-sectional

and longitudinal approaches [230]. Nevertheless, the variability of onset age for age-related

brain diseases suggests that the e�ects of ageing on a human brain show signi�cant di�er-

ences both between individuals and during human lifetime. In this light, understanding of

the population-wide brain ageing trajectory is crucial.

The ageing trajectories created to date were derived by considering volumetric changes

of separate brain regions as well as that of a whole brain [51, 173, 231, 178, 180, 179,

171, 232]. Here only the approaches which analysed more global measures instead of

regional ones are discussed � White Matter (WM), Grey Matter (GM), Cerebrospinal Fluid

(CSF), ventricular and total brain volumes. The work discussed here is also restricted to

trajectories derived from MRI data. Such approaches can be divided into two main groups

� the ones using longitudinal datasets and the ones using cross-sectional data.

Kuo et al [51] assessed brain ageing trajectories using longitudinal data from the Bal-

timore Longitudinal Study of Aging (BLSA). The BLSA cohort consisted of 1581 subjects

who underwent assessment with a frequency dependent on their age � once every 4 years

for under 60 years of age, once every 2 years between 60 and 79 years of age, and yearly

after 80 years. Total brain volume, along with the volumes of WM, GM and ventricular
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volume, were calculated from the MRI data. The volumes were averaged for each decade

from 50 to 90 years of age. Kuo et al [51] found total brain, WM and GM volumes to be

linearly decreasing over lifetime, while ventricular volume increased. The rates of decline

of GM and increase of ventricular volume also increased with age. Fama and Sullivan [178]

also used longitudinal data collected from 122 subjects aged from 20 to 85 years of age.

The subjects were scanned 1 to 6 times over a period of between 1 and 8 years. The authors

identi�ed that brain ageing is associated with a reduction in thalamic volume, and that

this reduction accelerates after 60 years of age.

Good et al [173] inferred the trajectory using cross-sectional data from a cohort of 465

healthy subjects, using measurements of the volumes of WM, GM and CSF fromMRI scans.

Wei et al [231] described the Southwest University (SWU) cohort consisting of 494 subjects

aged from 19 to 80 years.1The authors calculated the correlation coe�cient between GM

volume and age and found them to be negatively correlated. This analysis was, however,

limited by the fact that a correlation can only identify a linear relationship. However, it

should be noted that other authors have also found an inverse linear relationship between

GM volume and age [51, 173]. Wei et al [180] assessed the relationship between the volume

of Subcallosal Region (SCR) and age in cross sectional dataset from a cohort including

112 healthy subjects in the age range of 19 to 72 years. The authors identi�ed an inverse

linear relationship between SCR volume and age, i.e. SCR volume decreased during human

lifetime. Salat et al [179] used a cross-sectional dataset consisting of 106 subjects in the

age range from 18 to 93 years to study cortical thinning in relation to age. Overall cortical

volume was found to decrease with age.

The biggest cohort among the published work on brain ageing trajectories to date was

used by Vinke et al [171]. Vinke et al performed the Rotterdam study consisting of 5286

subjects of which 57 had four MRI scans, 1921 � three scans, 1456 � two, 1852 � one (10755

scans in total). For the subjects for whom repeated scans were performed, the inter-scan

interval was 3 to 4 years. Therefore, the derived trajectories were based on longitudinal and

cross-sectional data simultaneously. The resulting trajectories described the relationships

between 45 and 95 years of age. The GM, WM and total brain volumes all decreased with

age. While GM volume had a linear relationship with age, for the WM and total brain

volumes the relationship was found to be non-linear, with the slope of the curve increasing

1
SWU cohort is also contained in the HBAPS dataset described in Section 4.2.1.
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with age. The volume of CSF also increased with age and rate of increase also grew with

age.

It should be noted that there are a number of additional articles in this �eld (for

example [174, 175, 176]) which are not discussed and compared to here as no meaningful

comparison can be made to the work described here due to di�erences in methodologies

and data used for the research. The articles not discussed here either use solely volumetric

measures to measure the ageing process, use small cohort datasets or present the results in

a way which makes the comparison with the results of this chapter complicated. For some

articles there is a combination of factors which resulted in complications for comparison.

For example, Pfe�erbaum et al [174] applied semiautomated segmentation on MRI data

collected from 73 males aged 21 to 70 years and used volumetric measures of separate brain

regions to assess the process of ageing. This means that it is not possible to meaningfully

compare these results to the results of this chapter as the cohort used by Pfe�erbaum et

al cannot be considered to represent population-wide e�ects and trajectories of separate

regions cannot be compared to whole brain measures used in this chapter. For the same

reason the results are not compared to the results of Lim et al [175] as only 8 subjects

were used and ageing process was assessed for separate brain regions. Comparison with

the results of Gur et al [176] was also not meaningful as they also used only 69 subjects

and focused on understanding the di�erences in ageing between men and women instead

changes over human lifetime. All these papers provide evidence of changes in brain features

over the human lifetime, but are not considered further here.

The approaches described above, i.e. assessing volumetric brain changes from MRI

data, have both advantages and disadvantages. The approaches using cross-sectional data

cannot be considered to produce true ageing trajectories (for which multiple measures on

the same individual are necessary), while longitudinal studies su�er from lack of availabil-

ity of consistent data over the complete human lifetime. Longitudinal studies to date also

su�er from attempting to describe the whole trajectory using at most 4 time points per

subjects [171]. For example, Raz et al [177] applied statistical methods to multiple brain

regions on MRI data, but limited the research to two time points. The studies analysing

volume changes in separate brain regions have advantages for understanding brain age-

ing in terms of its relationship to cognitive abilities of subjects, as separate regions are

known to be related to di�erent cognitive functions. Assessing brain ageing via consider-

ing anatomical brain regions has, however, a disadvantage of not representing the ageing as
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a process a�ecting whole brain. Longitudinal data, however, are hard to collect and only

a few datasets are available, for example the Alzheimer's Disease Neuroimaging Initiative

(ADNI) dataset [32].

Since derivation of an ageing trajectory per se is not possible from cross-sectional

data, Shamir and Long [6] proposed to instead derive a brain ageing pro�le. Shamir and

Long use a cohort of 416 subjects aged 18 to 96 years of age, with total 436 T1-weighted

MRI scans. The authors compute the pro�le by measuring similarity between MRI scans.

The feature extraction uses the Wndchrm software [233]. Wndchrm software extracts

features from images by considering the measures describing image content and image

transformations including compound image transformations. Wndchrm extracts 11 sets of

features including the ones extracted using Gabor �lters and Chebyshev statistics (full list

and details on feature extraction can be found in [233]). These features are then used to

choose the most descriptive ones and obtain a feature vector for each image which can be

used for similarity measurements. The pro�le is obtained by dividing the age range present

in the dataset into several intervals, calculating average predicted age for each interval and

plotting these values against the intervals. In such a plot, regions of slower and faster

changes may be identi�ed by considering the slope of a graph. The authors showed that

the two periods of most rapid age-related changes were around chronological age of 55 and

65 years [6]. Shamir and Long [6], however, did not use age-speci�c features and only used

a k-means clustering algorithm without extracting the ranking of samples.

In this thesis a population-wide brain ageing pro�le assessing whole-brain ageing e�ects

is considered instead of a brain ageing trajectory per se. A brain ageing pro�le can be

de�ned by determining periods of lifetime which have similar brain age-related features.

The resulting brain ageing pro�les, including the ones presented here as (which is derived

using the HBAPS dataset described in Section 4.2.1, which is the largest dataset used

to date for this type of analysis) can be considered to represent population-wide e�ects.

The pro�les presented here assess whole-brain e�ects, as features are extracted from MRI

samples as a whole, after minimal preprocessing.

In this chapter the terminology of an ageing pro�le consisting of intervals and bins is

used interchangeably.
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6.3 Methods

6.3.1 Obtaining a brain ageing pro�le using the error distribution of a
brain age prediction model

Brain age prediction models, SENet-MR an SENet-OR based on Squeeze-and-Excitation

Network (SENet) architecture described in Section 5.3, output an age for an input MRI

scan. Consider a dataset of N MRI samples, {xi ∈X, yi ∈ Y }Ni=1, where xi is a MRI input

sample and yi ∈ Y = {a1, a2, . . . , aK}, is the corresponding age, where {a1, a2, . . . , aK}

is the age range represented in the data.

The ageing pro�le bins are searched by iteratively moving the bin walls one-by-one

through the age range. The range is �rst searched to set the �rst wall. The �rst wall

is chosen from a set {a2, a3, . . . , aK−1}. Then each of the resulting bins is sub-divided

recursively until the model resolution, i.e. the smallest bin size, is reached. For each bin

B = {b1, ..., bI}, where I is the number of bins and each bin contains set of ages such that

bl = {a1, ..., aL}, where L is the bin length. Any bin can be sub-divided into two bins by

a wall, with a set of possible "walls" is considered such that Wl = {a2, ..., aL−1}. Figure

6.1 shows an example of age range being divided into three intervals. A bin B is divided

by a "wall" at ak by summing the probabilities for each sample to be classi�ed into an

incorrect bin (i.e. a bin to which its true age does not belong) given a wall at this position,

and then �nding the value of k which minimises these incorrect assignments. For example,

consider dividing the range of K ages (17 � 92 years) into 2 bins of the ageing pro�le. In

order to �nd the "wall" age it is iteratively moved from a2 to aK−1 (a2 = 18, a2 = 91).

For each sample the probability of predicting a sample age to be outside a bin, where its

true age label lies is assessed. Then the probabilities are summed over all samples in the

test dataset.
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Figure 6.1: Example of dividing age range Y into three intervals by considering the
distribution of predictions of a brain age prediction model. Consider a dataset
of N MRI samples, {xi ∈X, yi ∈ Y }Ni=1, where xi is a MRI input sample and
yi ∈ Y = {a1, a2, . . . , a9}. a) First wall, w1, is chosen from a set of ages �
W1 = {a2, a3, . . . , a8}. b) Set �rst wall w1 = a6 and search for w2 to divide
�rst bin including {a1, a3, . . . , a6} into two bins recursively. w2, is chosen
from a set of ages � W2 = {a2, a3, . . . , a5}. c) As the results the age range
Y = {a1, a2, . . . , a9} is divided into three bins, I = 3 and B = {b1, b2, b3}.
Then b1 = {a1, a2, a3}, b2 = {a4, a5, a6}, b3 = {a7, a8, a9}.

Two approaches were considered when calculating the probabilities needed to set the bin

"walls". In the �rst approach, the mean and variance of the predictions were calculated for

samples of each true age. Predictions for each true age were then assumed to be normally

distributed, and fully described by this mean and variance.

For some true ages the distribution of predictions strongly deviated from a normal one,

however, so a second approach was developed in which we considered the distribution of

predictions directly, without this normal approximation. An example of how the predic-

tions are distributed is presented in Figure 6.2 for the true age of 76 years. For each true

age, the prediction distribution was obtained by dividing the number of predictions for

each label in the test set by the number of samples with a given true age:

py,ŷ =
Nŷ

Ny
, (6.1)

where

� py,ŷ is the probability of predicting the samples with true age y to be of age ŷ,

� Ny is the number of samples with true age label y,

� Nŷ is the number of samples of true age label y predicted to have age of label ŷ.
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Figure 6.2: Histogram representing the distribution of predictions by the SENet-MR
model for the subjects of age 76. Black line indicates normal distribution.

Implementation

In order to obtain a population-wide ageing pro�le we used two trained models - SENet

with metric regression (SENet-MR) and SENet with ordinal regression (SENet-OR). A

detailed description of SENet is provided in Section 2.3.2. Both networks were evaluated

on the testing HBAPS dataset described in Section 4.2.1. The Mean Absolute Error

(MAE) achieved by the SENet with metric and ordinal regression was 3.6 and 3.8 years

respectively, giving a model resolution of 4 for both models. The smallest possible bin size

in the pro�le extraction procedure was therefore set to 4.

6.3.2 PROMETHEE II method

The PROMETHEE II method is a ranking method, i.e. it utilises pair-wise comparisons

among the inputs. Ranking is constructed by considering the di�erence in evaluations

of the inputs on a particular criterion. Depending on a pair-wise di�erence measured a

decision can be made � one sample can be preferred over another or not with respect to

a criterion depending on the size of a di�erence measured. The larger is the di�erence

measured, the larger is the preference of one alternative over another.

The PROMETHEE II method is described in Section 2.4.3. As in previous section

consider a dataset of N MRI samples, {xi ∈X, yi ∈ Y }Ni=1, where xi is a MRI input

sample and yi is the corresponding age. Then consider the features describing the samples

in X, Z = {z1, z2, ...,zN}, where zn is a set of features extracted from the nth sample by

a feature extractor. Each sample has a label from the set Y = {y1, y2, ..., yK}. In order
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to initialise the PROMETHEE II method k-means clustering is performed �rst on Z to

obtain M clusters, C = {c1, c2, ..., cM}. Based on these M clusters, M criteria can then

be stated such that G = {g1, g2, ..., gM} and G is a set of criteria. Relationship of a sample

xi and a criterion gm can be formulated in form of a question � "Does a sample xi belong

to a cluster cm?". Here the di�erences between the samples with respect to a criterion m

are quanti�ed using a following function:

Pm(d) =


0 dm ≤ 0

dm−q
p−q q < d ≤ p

1 dm > p

(6.2)

where

� dm(zi, zj) = gm(zi) − gm(zj) is a di�erence between evaluating the features of two

input samples, zi and zj , on criterion m with gm de�ned as

gm(zi) =
∑
zk∈cm

‖zi − zk‖ , (6.3)

‖·‖ denotes Euclidean distance between a pair of sample features. Equation 6.3

represents an evaluation of an alternative zi with respect to a criterion gm. It is rep-

resented by a sum over Euclidean distances calculated between a sample features of

interest and all other samples assigned to a corresponding cluster at the initialisation

step.

� q = min(gm(zi), gm(zj))

� p = max(gm(zi), gm(zj))

Once the di�erences between input samples are quanti�ed the ranking is constructed as

detailed in Section 2.4.3. Final cluster assignment for a sample is determined by a criterion

with respect to which the sample ranked the highest. The intervals of ageing pro�le are

determined by considering a mode cluster assignment for each label in Y . A wall is set at

the �rst age label (starting from the lowest) at which the mode interval label changes. An

example of de�ning intervals over age range Y is shown in Figure 5.3.
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Figure 6.3: Example of dividing age range Y into three intervals using the
PROMETHEE II method. As in previous section consider a dataset of N
MRI samples, {xi ∈X, yi ∈ Y }Ni=1, where xi is a MRI input sample, yi is
the corresponding age, Y ∈ {y1, y2, ..., y9} and y1 < y2 < ... < y9. Once
PROMETHEE II ranking is obtained, a cluster assignment is predicted for
each sample by considering its highest ranking. Mode cluster assignment is
determined for each age in Y . First wall is set at y3 as it is the �rst age label
at which mode cluster value changes. Mode cluster value also changes at y6

and second wall is set at this age label.

Implementation

The feature extractor used here is the convolutional part of the SENet-MR and SENet-OR

models trained on the task of brain age prediction from MRI data as described in Chapter

5. An ageing pro�le was obtained by applying the PROMETHEE II method to the HBAPS

dataset described in Section 4.2.1. The whole dataset could be used, including the subsets

which would usually be reserved for training, validation and testing, as training is not

required for the PROMETHEE II method and the parameters of a feature extractor are

not adjusted in the process.

6.3.3 DEC

The DEC method is described in Section 2.3.5. Consider a set of N MRI scans,

{xi ∈X, yi ∈ Y }Nn=1, where xn is an input MRI scan and yn is the true age, which we

wish to divide into I intervals, each represented by a centroid µi, i = {1, ..., I}. xn is �rst

mapped into an embedding space, fθ : xn → zn, where θ are learnable parameters of a

feature extractor f and zn denotes an embedding of xn.

The DEC approach consists of two main steps. First a feature extractor, f , is pretrained

to extracted features from age-related features from input MRI scans. This is achieved by

using a feature extractor from a model trained on the task of brain age prediction. As

the result the parameters θ of f are learned. In the second step, the DEC method learns

intervals contained in the data, i.e. the intervals de�ned over age range Y . The DEC

algorithm learns to sub-divide MRI scans into intervals based on corresponding ages by

considering age-speci�c features, zn, of each scan.
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Once the method is trained an interval assignment for a sample, xn, is determined by

�rst calculating the Students t-distribution based on similarity between its features, zn,

and an interval centroid, µi:

qni =
(1 + ‖zn − µi‖2)−1∑
i(1 + ‖zn − µi‖2)−1

(6.4)

where ‖·‖2 is a squared Euclidean distance. Then target distribution is calculated based

on qni:

pni =
q2
ni/
∑

n qni∑
i q

2
ni/
∑

n qni
. (6.5)

Finally, interval assignment is determined by applying argmax to an output of Equation

6.5, i.e. �nding an index of the maximum value of pni.

The DEC method does not inherently take into account data ordinality, but the brain

ageing pro�le being extracted here is inherently ordinal in nature. In order to enforce the

samples' ordinality, we therefore construct the intervals of brain ageing pro�le in a tree-

like structure. We �rst train a DEC model to divide a training set into 2 intervals. For

this purpose, whole dataset of N MRI scans is divided into training, validation and testing

data. The wall de�ning the two intervals is found by assigning each sample of a test data to

one of the two intervals. A subset of samples from the test set is then considered for which

prediction error on age label from the model, to which the feature extractor belongs to,

is smaller than a sum of the model's MAE and its standard deviation. For each age label

present in the range divided into 2 intervals a mode interval label is determined. A wall is

set at the �rst age label (starting from the lowest) at which the mode interval label changes

from 1 to 2. Examples of de�ning intervals over age range is shown in Figure 6.4. The

procedure described here for sub-dividing an interval into two is then applied recursively in

a tree-like structure. Each time the procedure is applied a dataset is extracted out of the

dataset used for �nding �rst two intervals such that only the data with labels belonging to

the bin to be sub-divided is used. As previously, the smallest interval is set by the MAE

of the feature extractor used, rounded to the closest integer.
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Figure 6.4: Example of dividing age range Y into three intervals using DEC. Con-
sider a dataset of N MRI samples, {xi ∈X, yi ∈ Y }Ni=1, where xi is a MRI
input sample, yi is the corresponding age, Y ∈ {y1, y2, ..., y9} and y1 < y2 <
... < y9. Once DEC is trained and a cluster assignment is predicted for each
sample in the test data. Mode cluster assignment is determined for each age in
Y . a) First wall is set at y4 as it is the �rst label at which mode cluster value
changes. b) DEC is trained on data samples having age labels belonging to
the second bin in the �rst step. Once DEC is trained on this data and mode
cluster assignment is determined for each age label in this bin, the second wall
is set at y4 as mode cluster assignment value changes at it.

Implementation

The DEC model was trained using a pre-trained SENet-MR classi�er, as described in

Section 5.3.1 and which is used as a feature extractor, fθ, here. This ensures that intervals

are based on age-related features. The training was performed using stochastic gradient

descent algorithm with initial learning rate 0.1 and momentum of 0.9. The number of

epochs for the training was set to 100, with a batch size of 4. The training was stopped

when less than 0.1% samples changed interval assignment between two adjacent epochs.

This was measured on the validation set by running interval assignment at the end of each

epoch. Training parameters were the same for all iterations as bins are searched for in a

tree-like structure.

6.3.4 Ordinal DEC

As noted above, the basic DEC method does not take advantage of the additional informa-

tion present in ordinal data (i.e. the fact that the data are known, a priori, to have an order

associated with them). In order to tackle this issue an additional training step for DEC

is proposed here. As previously, consider a dataset of N samples, {xi ∈X, yi ∈ Y }Ni=1,

where xi is an input sample and yi ∈ {r1, r2, ..., rK} is the corresponding label (i.e. age),

but where possible label values are now ordered such that r1 < r2 < ... < rK−1 < rK and

where K is the number of class samples or ranks.
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For the brain age prediction problem dividing the dataset into I intervals is based on

two factors - the similarity of samples within an interval and the ordinality of sample labels.

De�ning intervals is in�uenced by ordinality of labels as it means that for a trained method

a sample can be either assigned to an interval, where its true age labels belongs, or to one of

the adjacent intervals. Therefore, the sub-division should be performed such that the order

of ranks is conserved. The proposed method is to pretrain the method for grouping the

samples based on their similarity using DEC, and then train the method to learn the set of

the set of interval walls - ak, k ∈ {1, ..., I − 1}, which ensure ordinality of the bins created.

The task is thus to �nd I − 1 walls which divide Y into I intervals such that the �rst

interval, I, is i1 = {r1, .., rk}, where rk = a1 and the last interval is iK = {aI−1, ..., rK}.

Consider an example with Y = {1, 2, 3, 4, 5, 6, 7, 8, 9} and ak ∈ {2, 5, 7}. For this example

i1 = {1, 2}, i2 = {3, 4, 5}, i3 = {6, 7} and i4 = {8, 9}.

In order to achieve this, the following architecture is proposed: a feature extractor

pretrained with the DEC method is connected to fully-connected layers to output a vector

of interval walls - ai, i ∈ {1, ..., I − 1} for I intervals, i.e. in a forward pass through the

proposed architecture each batch of samples is put through the pretrained DEC to predict

the intervals the batch samples belong to. For training, the following loss function is

proposed:

L =
1

N

(
1−

(
H
(
yn − aim−1

)
−H

(
yn − aim

)))
, (6.6)

where

� aim−1 and aim are the interval "walls" predicted for yn by DEC,

� H(x) is a Heaviside function, which has a value of 0.5 at x, a value of 1 for all values

larger than x, and 0 otherwise (shown in Figure 6.5),

� the di�erence H(x− aim−1)−H(x− aim) is a rectangle function Π which is

Π(x) =


0 [x] > am and [x] < am−1

1
2 [x] ∈ am, am−1

1 am−1 < [x] < am

. (6.7)
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As the Heaviside function is not continuously di�erentiable, it is approximated by a con-

tinuous function in the training stage:

H(x− a) ≈ 0.5 + 0.5× tanh(C(x− a)), (6.8)

where a constant C is set empirically during the experiments. Figure 6.5 shows the Heav-

iside function and the di�erence between two Heaviside functions used in Equation 6.6.

The approximation to the Heaviside function given in Equation 6.8 is shown in Figure 6.6

for values of C = 1 and C = 10, showing how as C increases the approximation tends

towards the instantaneous step of the Heaviside function, while still remaining smooth

and therefore di�erentiable. C value is chosen such that a trade-o� between the form of

Equation 6.8 being close to the form of Heaviside function shown in Figure 5.5 and having

a di�erentiable function.

Figure 6.5: a) Heaviside function with step value of 0.5 at a denoted by H(x − a).
b) Graph of the di�erence H(x − a) − H(x − b). c) Graph of the function
1− (H(x− a)−H(x− b)).
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Figure 6.6: Graph of the approximation to the Heaviside function as given in Equa-
tion 5.3 for the values of C being equal to 1 and 10.

Implementation

Testing on synthetic data

The new ordinal DEC model was �rst trained and tested on the synthetic datasets de-

scribed in Sections 4.1.2 and 4.1.3. In order to pre-train the feature extractor, a Stacked

Autoencoder (SAE) (described in Section 2.3.4) was �rst trained on the training subset of

the synthetic data. In a SAE, each layer is �rst initialised by pretraining as a denoising

autoencoder (detailed description in Section 2.3.4), which learns to reconstruct the output

of the previous layer with random noise applied. In SAE the setup described in Figure

2.17 is modi�ed by inserting dropout layers between the corruption step and encoder, and

between the activation and decoder. The activation function used in both encoder and

decoder was Recti�ed Linear Unit (ReLU), as de�ned in Section 2.3.1. In SAE setup the

encoder and decoder each had 5 layers. Each layer was trained using the least-squares loss

function:

αls = ‖xi − yi‖2 , (6.9)

where

� xi denotes input to a layer,

� yi - output of a layer,

� ‖·‖2 � squared Euclidean distance.
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The layers are pre-trained using a Stochastic Gradient Descent (SGD) algorithm with

initial learning rate 0.01 and momentum of 0.9 for 300 epochs. In pre-training the layers

learning rate is multiplied by 0.1 every 100 epochs and batch size is 256. After all the layers

are pre-trained, the whole SAE is trained to �netune performance. The SAE's encoder is

then used as a feature extractor in the ordinal DEC model. K-means clustering is applied

to initialise the cluster centres [122]. In the ordinal DEC training, the initial number of

clusters was varied with respect to the experimental conditions as described further in

Section 6.4 as were the intial "wall" positions. The network training was performed using

a SGD algorithm with initial learning rate 0.01 and momentum of 0.9. The number for

epochs for the training was set to 100 with batch size of 256. The stopping condition was

the same as for the standard (non-ordinal) DEC (described in Section 6.3.3).

Testing on MRI data

For the MRI data, the feature extractor used in the DEC is the convolutional part of

the SENet-MR model trained on the task of brain age prediction (described in Section

6.3.3). This ensures that the similarity of the outputs is based on age-related features.

This pre-trained feature extractor is then used to obtain the interval "walls" using the

method proposed above.

K-means clustering is applied to initialise the cluster centres [122]. The initial number

of clusters was varied with respect to the experimental conditions as described further in

Section 6.4 as were the initial "wall" positions. The network training was performed using

a SGD algorithm with initial learning rate 0.01 and momentum of 0.9. The number for

epochs for the training was set to 100 with batch size of 4 due to GPU memory constraints.

The stopping condition was the same as for the standard (non-ordinal) DEC (described in

Section 6.3.3).

6.4 Results

Population-wide brain ageing pro�les were obtained using the methods described, and

are presented in Tables 6.2 � 6.5. In Tables 6.2 and 6.3, the intervals obtained from the

distribution of predictions for the SENet-MR and SENet-OR models are presented. The

model resolution was 4 for both models, as MAE achieved by the SENet with metric

and ordinal regression was 3.9 and 3.6 years respectively. In Tables 6.4 and 6.5, the
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intervals of the brain ageing pro�le obtained using the DEC and PROMETHEE II methods,

respectively, are presented.

In order to facilitate the comparison with the results of Shamir and Long [6], the pro�les

obtained using the distribution of predictions are presented in Figures 6.7 and 6.9 as plots

showing the means of the predictions for each pro�le interval found. Figures 6.8 and 6.10

show similar plots, but for intervals of �xed length of 5 years the same as used by Shamir

and Long [6].

In Figures 6.7 � 6.10, the linear �t is shown by blue line and the lower and upper bounds

on it are in green. Figures 6.7 and 6.9 show means of predicted ages plotted against the

intervals of the pro�les obtained using the distribution of predictions of SENet-MR and

SENet-OR models de�ned in Table 6.2 and 6.3 respectively. A linear regression for the

relationship between minimum age of an interval in the pro�le, imin,prof , and predicted

mean age for each interval, yprof,av, is described by yprof,av = aprof imin,prof + bprof =

0.91imin,prof + 6.27. The 95% con�dence interval for the bprof coe�cient is 1.24 to 11.39

(p = 0.0001). It should be noted that a line of identity falls into the 95% con�dence interval

of the linear �t in both plots.

Figure 6.7: Means of predicted ages for the intervals of the pro�le obtained using the
distribution of predictions of SENet-MR model. Orange line denotes the y=x
function, blue � linear regression �t function, green � the lines representing the
lower and upper bounds of the 95% con�dence interval over linear regression
�t parameters.
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For comparison with existing literature Figure 6.8 shows means of predicted ages by the

SENet-MR model plotted against 5-years-long intervals as de�ned in work by Shamir and

Long [6]. A linear regression for the relationship between minimum age of each 5-year inter-

val, imin,preset, i.e. imin,preset ∈ {15, 20, 25, ..., 90}, and predicted mean age for each interval,

ym,preset,av, is described by ym,preset,av = apresetimin,preset+bm,preset = 0.91imin,preset+6.17.

The 95% con�dence interval for the bm,preset coe�cient is 4.41 to 7.93 (p = 0.0001). It

should be noted that the upper bound linear �t 95% con�dence interval closely follows line

of identity in Figure 6.8.

Figure 6.8: Means of predicted ages by the SENet-MR model for the intervals of
�xed width of 5 years. Whiskers show 95% con�dence interval over a mean.
The last interval has length of 6 years to include the age of 92. Whiskers show
95% con�dence interval over a mean. Orange line denotes the y=x function,
blue � linear regression �t function, green � the lines representing the lower
and upper bounds of the 95% con�dence interval over linear regression �t
parameters.

For comparison with existing literature Figure 6.10 shows means of predicted ages by

the SENet-OR model plotted against 5-years-long intervals as de�ned in work by Shamir

and Long [6]. A linear regression for the relationship between minimum age of each 5-

year interval, imin,preset, i.e. imin,preset ∈ {15, 20, 25, ..., 90}, and predicted mean age

for each interval, yo,preset,av, is described by yo,preset,av = apresetimin,preset + bo,preset =

0.92imin,preset+4.04. The 95% con�dence interval for the bo,preset coe�cient is 1.49 to 6.60
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(p = 0.0001). It should be noted that the upper bound linear �t 95% con�dence interval

closely follows line of identity in Figure 6.10.

Figure 6.9: Means of predicted ages for the intervals of the pro�le obtained using the
distribution of predictions of SENet-OR model. Orange line denotes the y = x
function, blue � linear regression �t function, green � the lines representing the
lower and upper bounds of the 95% con�dence interval over linear regression
�t parameters.

The pro�les represented in Tables 6.2-6.4 are visualised in Figure 6.11. In Figure

6.11 interval colouring visualises a gradient calculated as 1/(interval length) � darker the

interval is coloured, steeper the gradient is. The gradient is calculated in order to facilitate

the comparison with published trajectories in existing literature, i.e. darker intervals have

a steeper slope and can be interpreted as the intervals corresponding to faster ageing

processes.
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Initialisation Dataset

Number of bins "Walls" Ordinal MNIST Two-variable ordinal

3 bins

Close to the true values [1,4] [2,6]

Not close to the true values [0,9] [0,13]

Fractional values [3.5, 7.8] [5.5, 10.2]

4 bins - [1,4,9] [1,6,12]

5 bins - [0,1,4,9] [0,1,6,12]

Table 6.1: "Wall" initialisations in the ordinal DEC method experiments on syn-
thetic datasets. Three di�erent "wall" position initialisations are tried with
true number of bins, i.e. 3 bins, contained in the ordinal MNIST and two-
variable ordinal datasets. Then 4 and 5 bins are set in the initialisation by
setting more "wall" positions.

Figure 6.10: Means of predicted ages by the SENet-OR model for the intervals of
�xed width of 5 years. Whiskers show 95% con�dence interval over a mean.
The last interval has length of 6 years to include the age of 92. Whiskers show
95% con�dence interval over a mean. Orange line denotes the y = x function,
blue � linear regression �t function, green � the lines representing the lower
and upper bounds of the 95% con�dence interval over linear regression �t
parameters.

The ordinal DEC method was �rst applied to the synthetic datasets described in Sec-

tions 4.1.2 and 4.1.3. In these datasets each sample has 2 labels - one for denoting sample

class and one for a bin the sample belongs to. In order to test algorithm's performance for

both datasets various "walls" position initialisations were used along with di�erent number

of clusters. These initialisations are summarised in Table 6.1. Wall search is performed
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among the sample classes, not the bin classes, as shown in Figures 4.2 and 4.3. For all

the initialisations the ordinal DEC method was able to recover original "wall" positions

corresponding to the classes 2 and 5 in the ordinal MNIST dataset and classes 3 and 7

in the two-variable ordinal dataset. The ordinal DEC method was also able to recover

original number of bins by only learning the true "wall" positions, i.e. for the number of

"walls" initialised to a larger number of "walls" the learned "walls" positions are repeated

to re�ect true number of bins.

The ordinal DEC method was also trained on the HBAPS dataset. Training was

performed with the hyperparameters tuned on synthetic data. The algorithm was, however,

not able to e�ectively learn on this dataset as validation loss was not consistently decreasing

during the training.
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6.5 Discussion and conclusion

Four methods are used in this chapter for the purpose of understanding the non-linear

nature of human brain ageing, i.e. identifying the periods of human adulthood when the

largest structural brain changes occur. Two methods (DEC and PROMETHEE II) were

based on descriptions in the existing literature and adopted for the task. The other two

methods (the method considering the distribution of model predictions and ordinal DEC)

are new and novel approaches proposed here for the �rst time.

As shown in Tables 6.2 and 6.3, the last four intervals for the oldest subjects produced

by the SENet-MR and SENet-OR models are in agreement to within the model's resolution.

SENet-OR grouped all the subjects younger than 30 years old into a single interval, while

SENet-MR separated this range into three intervals. While not particularly clear, one paper

suggested that cortical thinning, one of the structural markers of brain ageing, starts to

a�ect the brain at the age around 30 years old [177], suggesting that this result may be

of biological signi�cance. As shown in Table 6.4, the ageing pro�le obtained using DEC

agrees with the pro�le obtained using SENet-OR for the subjects older than 30 years old.

Overall, all three pro�les obtained agree within the accuracy achieved by the SENet-based

models suggesting that they are all being driven by the same underlying brain features,

and again suggesting that these features may be biologically meaningful.

The pro�les identi�ed by the PROMETHEE II method are presented in Table 6.5.

The method was applied with the number of clusters pre-set to 9, 10 and 12 clusters. The

method identi�ed 5 intervals in the age range for all three initialisations. The interval

walls found agree up to the SENet-MR model resolution with the walls found the method

considering prediction distribution from both the SENet-MR and SENet-OR models and

the DEC method. The PROMETHEE II method ranks the samples based on Euclidean

distance between the features extracted from the samples whereas other methods used

either consider the distribution of predictions or KL divergence based on Euclidean distance

between the features. Latter di�erence may explain the fact that the PROMETHEE II

method found 5 intervals compared to the 10 and 12 intervals found by the other methods.

The disadvantage of the PROMETHEE II method is that it uses a pre-set number of

intervals. However, the method is capable of identifying whether where are less intervals

than it was pre-set. The DEC method has the same feature with respect to the number

of intervals in the data. On the other hand, the method considering the distribution of
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model predictions has a disadvantage as it cannot de�ne a number of intervals in the age

range and this is only de�ned by a model resolution.

As there is no ground truth for either brain ageing pro�les or trajectories, the pro�les

are compared to each other and those available in existing literature. It is, however, not

possible to directly compare the results presented here to most of the existing trajectories

and pro�les, as existing publications do not assess whole brain ageing e�ects. Also, most

studies to date have used relatively small cohorts (112 to 1581 subjects) which are unlikely

to be comparable to the cohort described in Section 4.2.1 (a total of 8623 subjects), in

terms of representation of population-wide e�ects. Only one study, by Vinke et al [171],

reports the results of a similarly sized cohort of 10755 MRI samples. In terms of using

purely cross-sectional data to de�ne a brain ageing pro�le (as opposed to a trajectory),

only the work by Shamir and Long [6], who investigated a cohort of 416 participants, is

comparable to the current study.

Kuo et al [51] reported that degeneration of GM and increase of the CSF volume

accelerated with age. A comparison of the current study's results with those by Kuo et

al [51] can be performed by considering that in the pro�les derived here, shorter intervals

correspond to faster ageing-related changes. The trajectories for GM, WM and CSF found

by Vinke et al [171] are similar to those of Kuo et al [51]. In both works the results

indicate that changes accelerate with age. In this chapter the results presented in Figures

6.7 � 6.10 and Figure 6.11 indicate the rate of ageing-related changes throughout human

adulthood instead of the signi�cance of these changes. Therefore, smaller bins indicate

faster changes while larger bins � slower changes. As it can be seen from Figure 6.7, the

results of the current study do not match these results � the width of the bins does not

consistently gets smaller as age increases. In this chapter the whole brain ageing e�ects

were assessed and Kuo et al [51] and Vinke et al [171] assessed ageing on separate brain

regions using volumetric measures. This means that regional-based methods have greater

sensitivity compared to whole brain approach in measuring the rate of ageing.

There is a need for the method for extracting a brain ageing trajectory or pro�le to be

able to take into account the fact that the di�erence between the subjects of 30 and 50

years of age is not equivalent to the di�erence between the subjects of 60 and 80 years of

age [51]. Kuo et al addressed this limitation of ageing trajectories by considering linear

combination of measures describing age. In the current chapter, the features are extracted

using a convolutional part of a CNN pre-trained on the task of brain age prediction from
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MRI scans. This ensures that the features used further in the analysis are speci�c to ageing,

while allowing more complex trajectories to be investigated, as the feature extractor is a

non-linear model.

On the other hand, there are disagreements among the authors in existing literature

on the form of the trajectories. For instance, Good et al [173] found a linear decline in

GM over lifetime compared to the results by Kuo et al [51] and Vinke et al [171] which

identi�ed changes accelerating with age. The authors attributed this discrepancy to the

di�erence in segmentation and volume measurement techniques [173].

The only work in existing literature extracting a brain ageing pro�le using feature

extraction from cross-sectional data (rather than a trajectory from longitudinal data) was

performed by Shamir and Long [6]. Shamir and Long [6] plotted average predicted age for

each true age label present in the dataset, and considered the gradient between the points

on this graph as an indication of speed of ageing-related changes, i.e. a larger gradient

corresponds to faster changes. The plot by Shamir and Long is presented in Figure 6.12.

The authors found that the fastest changes occur from the age of 55 to 59 and from the

age of 65 to 69. Figures 6.8 and 6.10 can be used to compare the results of this chapter

to the results of Shamir and Long, as the distributions of predictions of the SENet-MR

and SENet-OR models are plotted with respect to the same 5 year intervals as used by the

authors. The authors used �xed intervals of 5 years and plotted means of predictions for

these intervals. When the means of predictions of the SENet-MR and SENet-OR models

are plotted with respect to the pro�les described in Table 5.1 and 5.2 as in Figures 6.7

and 6.9 respectively, the ageing process appears more linearised and driven by a constant

speed compared to the visualisation in Figure 5.12. When the means of predictions of

the SENet-MR and SENet-OR models are plotted with respect to the pro�le as de�ned

by Shamir and Long and shown in Figures 6.8 and 6.10 respectively, the process of brain

ageing appears to be even more linearised compared to Figures 6.7 and 6.9. This can also

be examined using the linear regression lines in Figures 6.7 � 6.10. For both the SENet-MR

and SENet-OR models 95% con�dence interval gets smaller for linear �t into the plot of

mean predictions with respect to the intervals used by Shamir and Long [6] compared to

the �t with respect to the intervals obtained in this chapter.

The pro�le presented in Figure 6.7 has fairly uniform slope over whole pro�le and the

greatest gradient is present in the last interval. This may be explained by the fact that

there are only three samples present in the HBAPS test dataset and this is also re�ected
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by a larger standard error bar on the mean of last interval. This absence of samples in

this range leads to the fact that both the SENet-MR and SENet-OR models predicted the

subjects in this interval to be younger. This is also a reason for the fact that the pro�le

shown in Figure 6.9 obtained using the distribution of predictions of the SENet-OR model

levels out the intervals containing younger subjects.

From the results of Shamir and Long [6] shown in Figure 6.12 and plotting the results

in this thesis with respect to their interval length (Figures 6.8 and 6.10) highlight a linear

nature of ageing can be deducted. On the other hand, the pro�les obtained in this chapter

and presented in Tables 6.2 � 6.5 and Figure 6.11. appear to highlight non-linear nature of

brain ageing as they represent the rate of changes at each interval instead of the amount

of changes.

Figure 6.12: Results of Shamir and Long [6]: average predicted age with respect to
5-years bins of true age labels. Figure used with author's permission.

In the results presented in the current chapter a gradient for each ageing interval

is also found by taking the inverse of the interval length. In Figure 6.11 the larger the

gradient over an interval, the darker is the colouring. In the pro�le obtained by considering

the distribution of predictions of the SENet-MR model, the interval corresponding to the

greatest gradient, i.e. fastest ageing, is the �rst one which includes subjects from 17 to

20 years of age. In this pro�le, the second fastest ageing occurred in three intervals -

from 27 to 30, from 47 to 50 and from 82 to 85. The pro�les obtained by considering the
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distribution of predictions of the SENet-OR model and of DEC have the same number

of intervals, and the second fastest ageing interval corresponds to the ages from 68 to 71,

while Shamir and Long [6] identi�ed the fastest changes between the ages of 65 and 69.

The di�erences between the results presented in this chapter and the results of Shamir

and Long [6] can be explained by two factors. Firstly, the cohort used by Shamir and

Long included 416 subjects. A number of authors [223, 227, 13] have reported that per-

formance of the brain age prediction models improves with increasing number of training

samples suggesting that brain ageing process is a�ected by anatomical variability in the

population. The cohort consisting of 416 subjects may not represent population-wide brain

ageing e�ects due to anatomical variability of brain ageing. Secondly, the speed of brain

ageing changes throughout human lifetime, i.e. the rate of ageing-related changes is larger

compared to young subjects. Therefore, the length of intervals de�ned over whole range

of ages would be varying. In this chapter rather the rate of changes is measured instead

of the amount of changes. Fixing interval length as in the work by Shamir and Long [6]

would a�ect model's ability to measure the rate of changes.

In conclusion, it should be noted that further work is needed to validate the pro�les.

Firstly, the DEC method can be further validated using longitudinal data. Longitudinal

cohort of the ADNI dataset can be used for this purpose. This cohort has a limited

number of healthy subjects and additional data collection may be needed. Data collection

can, however, be replaced with training a Generative Adversarial Network (GAN) for

augmenting data. The advantage of GAN is that it can be trained using a cross-sectional

dataset and be used to augment longitudinal data [234]. On longitudinal data interval

assignment can be performed and the samples' true labels can then be compared to the

pro�le obtained using the HBAPS test data. Secondly, Vinke et al [171] and Kuo et

al [51] have reported di�erences in ageing trajectories between men and women. In order

to further explore population-wide e�ects male and female pro�les could be extracted

separately. Population-wide e�ects could also be explored further by expanding the study

cohort.
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Chapter 7

Extracting brain ageing related

features

7.1 Main contributions

In this chapter extracting of the Magnetic Resonance Imaging (MRI) data features de-

scribing the process of brain ageing is described. The main contributions of this chapter

are as follows:

1. �ve existing saliency mapping methods (vanilla backpropagation, guided backpropa-

gation, the SmoothGrad method, Gradient Class Activation Mapping (Grad-CAM)

and guided Grad-CAM) are applied to be compared on the task of extracting brain

ageing-related featurs from MRI data as all the existing methods were adapted to

work on 3D MRI data,

2. the method of ordinal saliency mapping is also proposed for applying saliency map-

ping methods to ordinal Convolutional Neural Network (CNN) described in Section

7.3.2,

3. all the subject-speci�c maps extracted for the test data of the Healthy Brain Ageing

from Public Sources (HBAPS) dataset (details on the test data are provided in Sec-

tion 4.2.1) are studied by averaging over di�erent age ranges de�ned by the ageing

pro�les derived in Chapter 6 as brain ageing is a cumulative process,

4. saliency maps obtained using ordinal saliency mapping using ordinal CNN model are

compared to the ones obtained using metric model,
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5. all the results were interpreted for assessing biological signi�cance by considering

existing literature on brain ageing.

7.2 Introduction

In this thesis saliency mapping methods are considered for the task of brain age prediction

to extract the features characterising population-wide ageing pro�le. For the methods to

be used for this purpose, they should ful�l two conditions. Firstly, the methods should

be unsupervised since there is no ground truth data available to train supervised saliency

mapping methods. Secondly, the methods should be network architecture agnostic as

saliency mapping needs to be applied on previously trained models for brain age prediction

as described in Chapter 5.

In order to discuss the explicability of a network's output, consider a network for natural

image classi�cation (for example [74]). In the context of the natural image classi�cation a

"good" output explanation for a predicted class should have two main properties � class-

discriminativeness and high-resolution. An explanation being class-discriminative means

that it localises an object of the target class in an input. The explanation has high-

resolution if it can capture even �ne-grained details [43].

Gradient visualisation methods, which consider a gradient of an output with respect to

an input, [42, 45, 46], provide high-resolution maps as they are produced in the pixel-space

of the input, but experiments show that the explanations are not class-discriminative. The

Layer-wise Relevance Propagation (LRP) method was proposed to tackle this issue. The

LRP technique propagates relevance from an output towards the pixel-space of an input

by applying pre-speci�ed calculation rules [7]. Gu et al [126] have later shown that even

though LRP improves the quality of explanations overall, its class-discriminativeness on

the classi�cation tasks still su�ers due to the method of calculation in LRP. Localisation

methods, which consider feature maps inside a network, were proposed to improve class-

discriminativeness of the explanations. The �rst localisation method proposed was the

Class Activation Mapping (CAM) [5], which produced low resolution saliency maps by

considering a weighted sum of the last convolutional layer feature maps. As well as being

low resolution, the CAM method also only allowed explaining networks which do not con-

tain fully-connected layers. In order to make CAM applicable to any network architecture,

Selavaraju et al [43] proposed the Grad-CAM method. Following this, the resolution of the
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CAM and Grad-CAM explanations was improved by introducing the Guided Grad-CAM

method, combining guided backpropagation [46] with Grad-CAM.

Another family of saliency mapping methods applies occlusions, or perturbations, to a

network input. Zeiler and Fergus [47] proposed a method to "invert" a CNN, i.e. to create

a deconvolutional network, and to propagate the information backwards through it. In the

method by Zeiler and Fergus, a saliency map is computed by using the deconvolutional

network and an occlusion technique, i.e. systematically masking out regions within an

input in order to determine their signi�cance in determining the output. Zhang et al [235]

also used an occlusion approach to calculate saliency maps. They proposed a method of

excitation backpropagation, which passes information from an output towards an input,

i.e. top-down, using a probabilistic Winner-Take-All process. The main disadvantage of

such an excitation backpropagation method is that it is only applicable to the classi�cation

network. In addition, a disadvantages of all occlusion-based techniques is that producing

saliency maps is slower compared to gradient and feature map visualisation methods, as

backward pass through a network needs to be computed a number of times equal to the

number of input patches. A saliency mapping method exploiting perturbation was proposed

by Fong and Vedaldi [236]. The method identi�es the most important input regions by

understanding masking of which regions prevents a network from correct classi�cation of

an input. There are a number of issues associated with using the method. Firstly, it is

only applicable to classi�cation networks. Secondly, the masks produced by the method

have to undergo a quality check procedure, which involves manual setting of a threshold

to choose between the good and bad masks. Thirdly, the method requires additional

training and a hyperparameter search for the loss function used in this training stage.

Thibeau-Sutre et al [237] used this approach for identifying the regions corresponding to

the Alzheimer's disease in the inputs to the network trained to classify between healthy

and diseased subjects.

Saliency mapping methods have also previously been applied to the task of brain age

prediction. In the �rst attempts to identify the regions related to ageing, methods not

involving neural networks were used, many of which have internal parameters which can

be used to identify such regions. Beheshti et al [222] used a patch-based grading procedure

to calculate a measure to represent cortical ageing. In the calculation, Support Vector

Regression (SVR) is used and SVR weights are used to construct an importance map. In

this chapter the terms "importance map" and "saliency map" are used interchangeably.
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Kondo et al [182] and Fujimoto et al [181, 219] took similar approach and used Relevance

Vector Regression (RVR) weights to produce importance maps. Aycheh et al [220] pre-

processed data to extract cortical thickness, put the data through the Sparse Group Lasso

(SGL) algorithm and used its outputs as an input to the Gaussian Processes (GP) model

to estimate subjects' age. SGL coe�cients were then used to produce importance maps.

Amoroso et al [13] used a Multi-Layer Perceptron (MLP) to predict sample's brain age,

and in order to identify important brain regions the Gedeon method [238] was used. This

method produces importance maps by considering the weights connecting the input to the

�rst two hidden layers of a MLP.

Huang et al [239] used a deep learning model for brain age prediction and an occlusion

technique to produce saliency maps. The inputs to a network were occluded before being

entered into a trained network. The importance of a region was then taken to be propor-

tional to prediction error induced by occlusion. The authors tested two occlusion region

sizes - 10× 10 and 20× 20 pixels in 2D slices of MRI scans, and found that occlusion size

did not have an e�ect on the prediction error. Huang et al [239] used this information to

conclude that the network used had a robust performance with respect to an input MRI

scan quality. Popescu et al [38] developed a method for voxel-wise brain age prediction

using deep GP and, therefore, saliency mapping was intrinsic to their methodology. Nei-

ther Huang et al [239] or Popescu et al [38] analysed the brain regions detected and their

biological relevance for brain age prediction. Herent et al [52] used T1-weighted MRI data

segmented into Cerebrospinal Fluid (CSF), Grey Matter (GM) and White Matter (WM),

and then calculated average correlation maps with age predictions over segmented inputs.

The authors used a ridge regression model along with deep learning methods. This allowed

creation of weight maps from the ridge regression model.

All the above-mentioned attempts on understanding brain ageing-related features, how-

ever, su�er from representing the features over whole dataset, i.e. averaging saliency maps

over whole age range. Brain ageing, however, is an cumulative process and should be

studied longitudinally over the human lifetime. Herent et al [52] attempted to address this

by creating two average saliency maps - for the subjects younger than 30 and older than

60 years of age, using the method by Zeiler and Fergus [47]. Bermudez et al [183] used

the Grad-CAM method [43], which is described in detail in Section 2.3.6, to �nd most

important regions of the GM maps for brain age prediction. The authors produced subject

speci�c maps and averaged over all subject-speci�c maps to produce the map of regions
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most important for the network to produce an output. This does not, however, describe

age-speci�c features. Bermudez et al [183] also investigated change in averaged subject

speci�c maps for di�erent age groups.

The contents of this chapter address the issues of extracting brain ageing-related fea-

tures from MRI data. As both metric and ordinal CNN models described in Chapter 5

were trained on the data with minimal preprocessing, in this chapter it is possible to try

to understand the features of original inputs which correspond to ageing. In the above-

mentioned works, importance maps were generated using only one method in each study

and the results were not systematically compared to each other. All the methods used

were unsupervised, as there is no existing ground truth on structural features related to

brain ageing. As such, the methods can only be considered to be extracting biologically

relevant ageing features if a number of them consistently detect the same features, which

can be interpreted in terms of existing biological knowledge. In this thesis I have there-

fore compared �ve existing saliency mapping methods � vanilla backpropagation, guided

backpropagation, the SmoothGrad method, Grad-CAM and guided Grad-CAM. All the

results were also interpreted for biological signi�cance by considering existing knowledge

on brain ageing. The methods were adapted to work on 3D input MRI data, as all of them

were originally developed to work on natural images. In order to understand the features

in light of a fact that brain ageing is an cumulative process, subject-speci�c maps were

averaged over a number of age ranges, to produce the maps describing the ageing pro�les

obtained in Chapter 6. The method of ordinal saliency mapping was also developed to

apply saliency mapping methods to ordinal CNN described in Section 7.3.2. Subject spe-

ci�c importance maps were again obtained and averaged to describe the ageing pro�les.

Furthermore, the importance maps were compared to those generated using the metric

model for consistency.

7.3 Methods

7.3.1 Existing saliency mapping methods

In this thesis, �ve existing saliency mapping methods are applied to the task of brain

age prediction in order to extract MRI data features describing ageing. The methods

considered are vanilla backpropagation [42], guided backpropagation [46], the SmoothGrad

method [45], Grad-CAM [43] and guided Grad-CAM [43]. All the methods chosen are
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widely used for saliency mapping both on the tasks handling natural images or medical

data (for example, [237]).

The vanilla gradients method is used as it is a baseline method of gradient-based

saliency mapping techniques. The method is described in Section 2.3.6. The method is

based on exploring raw gradients with respect to an input. However, it has been previ-

ously shown that the explanations, i.e. saliency maps, produced by purely gradient-based

methods are noisy. Therefore, a number of methods have been proposed to tackle the

issue. A gradient with respect to an input in Equation 2.35 de�ning the vanilla gradient

visualisation method may su�er from large �uctuations occurring due to small changes in

a network's output. Therefore, it can be hypothesised that noise in resulting maps may

originate from meaningless changes in derivatives with respect to an input. If the network

being subject to analysis uses Recti�ed Linear Unit (ReLU) activation function (de�ned in

Equation 2.6), then the gradient in Equation 2.35 will be discontinuous. The SmoothGrad

technique, which is also used in this chapter, tackles this issue of noise in vanilla gradients

as described in Section 2.3.6. Guided backpropagation was used instead of the deconvolu-

tional network approach by Zeiler and Fergus [47], as it does not require any information

about max-pooling to be saved on a forward pass.

From the localisation saliency mapping methods available, the Grad-CAM and guided

Grad-CAM methods were chosen for use in this chapter. The CAM technique was not used,

as Selvaraju et al [43] have previously shown that the Grad-CAM and guided Grad-CAM

methods produce better importance maps compared to the CAM.

The LRP method was not applied for extracting brain ageing related features, because

of its dependence on manually adjusted parameters. Due to the depth of the Squeeze-

and-Excitation Network (SENet)-based architectures, the composite LRP rule (described

in Section 2.3.6) is needed. In the calculations using the composite LRP rule at least three

rules would have to be applied to produce a saliency map. For example, a LRP-0 rule is

applied in the deepest layers, i.e. the ones closest to an output. Then LRP-ε is applied

to the middle layers, and LRP-γ in the shallower layers, i.e. the ones closest to an input

layer, and w2-rule for the �rst network layer. With this setup, the γ parameter must be

adjusted manually. Alternatively, the middle layers LRP-γ can be replaced by the LRP-

αβ and zB-rules instead of the w2-rule, but again there are free parameters that must be

adjusted manually. In tasks analysing natural images, the parameters can be adjusted for

each task as objects are detectable by eye. Since ground truth is not available for the task
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of brain age prediction, arbitrarily adjusting the parameters may lead to an ambiguity,

i.e. information either can be lost in saliency maps or they can become oversensitive and

display the features not related ageing.

Implementation and adaptation for 3D data

Local implementation of the existing saliency mapping methods is was based on the im-

plementation provided by Ozbulak [240]. The code for the guided backpropagation and

Grad-CAM methods was modi�ed to perform value masking in the ReLU layers as de�ned

in Equation 2.41. The modi�cations were required in order for the implementation to work

on the SENet architecture (described in Section 2.3.2), which has residual connections in-

cluding SE-blocks.

Implementing saliency mapping for natural image classi�cation As a preliminary test

of implementation, the saliency mapping methods described in Section 2.3.6 (speci�cally

vanilla backpropagation, guided backpropagation, Grad-CAM and guided Grad-CAM were

used) are �rst applied to the task of classifying natural images from the ImageNet dataset

described in Section 4.1.3. AlexNet [74] pretrained on ImageNet (available through the

Pytorch library [29] is used to predict one of the 1000 labels present in the dataset for each

image. The details of this architecture can be found in the work by Krizhevsky et al [74],

but are omitted here as they only relate to this initial testing and are not relevant for the

main body of MRI analysis. In order to compare the methods, the two classes with the

highest classi�cation accuracy ("tiger" and "zebra") were considered.

For the SmoothGrad method, three di�erent values were used for standard deviation in

Equation 2.36 - σ2 ∈ {0.05, 0.15, 1.0}. The LRP method was applied using the same rule

throughout the model. (This is acceptable for AlexNet, as this is shallow compared to the

SENet architecture used for the MRI analyses). There are 5 convolutional layers, three of

which are followed by max-pooling operation, and three fully-connected layers [74]. In the

MRI calculations either LRP-ε or LRP-β rules are applied. The LRP-ε and LRP-β rules

are described in Table 2.1 in Section 2.3.6. The LRP-β rule is de�ned as the LRP-αβ in

Table 2.1 but only β value is varied and α = 1− β. The LRP-β rule was used using three

di�erent β values - β ∈ {0.05, 0.5, 0.95}.
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Implementing saliency mapping for the task of brain age prediction Existing saliency

mapping methods including the methods of vanilla backpropagation, SmoothGrad, guided

backpropagation, Grad-CAM and guided Grad-CAM (described in Sections 2.3.6) were ap-

plied to the task of brain age prediction using the SENet-MR model (described in Section

5.3). The technique for saliency mapping of ordinal models is applied using the methods

of vanilla backpropagation and Grad-CAM and use the SENet-OR model as described in

Section 5.3.2.

7.3.2 Saliency mapping for an ordinal CNN

All the existing methods used in this chapter were originally proposed for the networks

producing a single output vector. In Chapter 5, an ordinal CNN model is used to predict

a sample as belonging to one of the K classes by combining the outputs of K − 1 binary

classi�ers. Therefore, a technique is proposed here in order to allow saliency mapping

methods to be applied to such an ordinal CNN. (The ordinal CNN itself is described in

Section 5.3.2).

Assume an ith input, which belongs to the input dataset as xi ∈ X with correponding

outcome space yi ∈ Y = {r1, r2, . . . , rK}, where rK > rK−1 > . . . > r1 are ordered

ranks. For each rank rk ∈ {r1, r2, . . . , rK−1} a corresponding binary classi�er out of K−1

classi�ers predicts whether for this ith sample yi > rk. In order to re�ect cumulative nature

of ageing the rank for a sample xi is predicted as

h (xi) = rq

q = 1 +

K−1∑
k=1

fk(xi), (7.1)

where fk(xi) ∈ {0, 1} is the classi�cation result of the kth binary classi�er for a sample

xi. Here a virtual concept O is introduced, which models the features corresponding to

all binary classi�ers for which output is 1, i.e. for which label, yi, of a sample xi is larger

than rk and fk(xi) = 1. The classi�ers for which output is 0 contribute to a dual virtual

concept Ō, which then models the features corresponding to all ranks for which rk > yi.

A schematic representation of the Contrastive Layer-wise Relevance Propagation

(CLRP) method is shown in Figure 7.1. Consider the weights connecting the kth clas-
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si�er output, cmaxk (cmaxk = max(ok), i.e. maximum value of kth output vector, to an input

in a network consisting of L layers - W = {W 1,W 2, ...,W L−1,W L
k }, where

� W L are the weights connecting the (L− 1)-th layer and the L-th layer,

� W L
k are the weights connecting the (L− 1)-th layer to cmaxk .

The backward pass of a saliency mapping method of choice for an output binary classi�er,

ck, can be de�ned as fkM (xi,W , ck). The virtual concept, O, which represents the features

of xi related to its label yi, can be then shown by a saliency map resulting from summing

over all maps from the classi�ers outputting 1, i.e. fk(xi) = 1:

R = fM (xi,W , cmaxk ) =
∑

k,fk(xi)=1

fkM (xi,W , cmaxk ). (7.2)

Furthermore, Ō, the dual virtual concept of O, models the features corresponding to

the classi�ers not contributing to predicted rank q, i.e. all the classi�ers outputting 0 and

fk(xi) = 0. The concept Ō is a concept opposite to O. For example, if there are K possible

ranks in the dataset and an ith sample has a predicted rank yi = rk. The concept O is

formed by applying saliency mapping to all classi�ers cl with 1 <= l <= k and Ō - by

applying it to all the classi�ers cl with l > k. The concept Ō represents features of xi not

related to the label yi and is represented by a saliency map resulting from summing over

all the saliency maps constructed by backpropagating from the binary classi�er outputting

0, i.e. fk(xi) = 0:

Rdual = fM̄ (xi,W , cmaxk ) =
∑

k,fk(xi)=0

fkM (xi,W , cmaxk ). (7.3)

In Figure 7.1 red line corresponds to the visual concept Ō. Then a saliency map for the

ordinal technique is de�ned as

Rordinal = R−Rdual. (7.4)

Considering the di�erence R − Rdual in Equation 7.4 cancels the common features and

ensures that only most descriptive neurons are included in resulting map.
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Figure 7.1: Schematic of the ordinal saliency mapping method. For the illustration
of how the method produces a saliency map a synthetic input of rank r2 out of
K ranks is present. An input is put through a convolutional feature extractor
and a fully-connected layer to produce an output from K−1 binary classi�ers.
Then a backward pass of a saliency mapping method of choice is performed
from all classi�ers. In order to construct a �nal saliency map, the maps re-
sulting from the classi�ers are subtracted such that the ones corresponding to
0 output are subtracted from the ones corresponding to 1.

7.3.3 Constructing saliency maps describing the population-wide
ageing pro�les

Here the pipeline is presented to obtain saliency maps describing the population-wide

ageing pro�les generated in Chapter 6. Such saliency maps describe average features

relating to each interval of ageing. We consider the pro�le as a set of intervals, each

containing a number of bins, I = [i1, .., iB], where B is the number of bins, and each

bin contains set of ages such that ib = {a1, ..., aL}, where L is the bin length. First,

the subject-speci�c maps, Sxi for xi ∈ Xtest, are generated for all the samples in the test

dataset Xtest (described in Section 4.2.1). Secondly, to produce a saliency map describing

bin ib, the subject-speci�c maps are averaged over all samples labelled with ages belonging

to that bin. Finally, the resulting map is multiplied by the MNI152 head mask in order to

remove noise in regions outside the brain. (This is possible as data preprocessing (described

in Section 4.2.3) included registering each sample onto the MNI152 template).

7.4 Results

7.4.1 Saliency mapping for natural image classi�cation

In Figure 7.2 the results are presented for the two samples with the highest and lowest

classi�cation con�dences for each label. All four input images have correctly predicted

labels. The best performance is shown by the methods of guided backpropagation, Grad-

CAM and LRP. On the images, which are hard to classify, i.e. for which the di�erence

between the maximum and minimum scores in an output vector before the softmax function

is small, the maps obtained by all the methods used identify the regions not related to
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the object of interest are highlighted. This may be explained by the fact that for both

"zebra" and "tiger" classes the network considered the stripes feature to be important. In

the samples with corresponding low classi�cation con�dence the stripes is detectable in the

input regions which do not correspond to the object of interest.

7.4.2 Saliency mapping for the task of brain age prediction

In Figures 7.3 � 7.5 the results of applying each saliency mapping method to the task of

brain age prediction are presented. Figures 7.3 � 7.5 show saliency mapping results for

samples with a range of high and low prediction errors. Figure 7.3 shows saliency maps

for the sample with the lowest prediction error for the SENet-MR model. The subject is

28 years old and prediction error achieved was 0.0008 years using the SENet-MR model

and 1 year using the SENet-OR model. Figure 7.4 shows saliency maps for a sample with

a prediction error approximately equal to the sum of Mean Absolute Error (MAE) of the

SENet-MR model and its standard deviation, 9.55 years. The subject is 52 years old,

and the prediction error achieved was 9.54 years using the SENet-MR model and 7 years

using the SENet-OR model. Figure 7.5 shows saliency maps for a sample with the largest

prediction error by the SENet-MR model. The subject is 18 years old and prediction error

achieved using the SENet-MR model is 60.2 years and 28 years using the SENet-OR model.

(This extremely large error is most likely because the image was a�ected by preprocessing

step (described in Section 4.2.3), which resulted in a size of 91 × 109 × 91 voxels rather

than the 196× 232× 188 for all other samples in the HBAPS dataset).
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Figure 7.3: Results of applying existing saliency mapping methods to the task of
brain age prediction. Saliency maps are shown for the sample with the lowest
prediction error (0.0008 years) in the HBAPS testing data using the SENet-MR
model. The maps named ordinal are produced by applying ordinal saliency
mapping technique described in Section 7.3.2 with corresponding method.
These maps are produced using the SENet-OR model and SENet-MR model is
used otherwise. The leftmost column shows corresponding planes in the input
sample.
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Figure 7.4: Results of applying existing saliency mapping methods to the task of
brain age prediction. Saliency maps are shown for the sample with the predic-
tion error approximately equal to the sum of MAE and standard deviation on
it, 9.55 years, in the HBAPS testing data using the SENet-MR model. The
maps named ordinal are produced by applying ordinal saliency mapping tech-
nique described in Section 7.3.2 with corresponding method. These maps are
produced using the SENet-OR model and SENet-MR model is used otherwise.
The leftmost column shows corresponding planes in the input sample.
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Figure 7.5: Results of applying existing saliency mapping methods to the task of
brain age prediction. Saliency maps are shown for the sample with the largest
prediction error (60.2 years) in the HBAPS testing data using the SENet-MR
model. The maps named ordinal are produced by applying ordinal saliency
mapping technique described in Section 7.3.2 with corresponding method.
These maps are produced using the SENet-OR model and SENet-MR model
is used otherwise. The leftmost column shows corresponding planes in the in-
put sample. Three planes are presented from the samples as resulting saliency
maps are less informative compared to the samples with smaller assciated pre-
diction error.

Figures 7.6 - 7.16 show average saliency maps for population-wide brain ageing pro�les

obtained in Chapter 6. Figures 7.6 and 7.7 show the results of using �ve saliency map-

pings methods (vanilla and guided backpropagation, SmoothGrad, Grad-CAM and guided

Grad-CAM) used to generate average saliency maps for pro�les produced using the Deep

Embedded Clustering (DEC) method and the method considering the distribution of pre-

dictions of the SENet-MR model. Average maps were produced as described in Section

7.3.3 and are shown with respect to a single representative plane in the MNI152 template.

Figures 7.8 - 7.10 and 7.11 - 7.13 show the transverse, saggital and coronal views of the

saliency maps produced using the Grad-CAM method for the pro�les produced using the

DEC method and the method considering the distribution of predictions of the SENet-MR

model. These two pro�les highlight the importance of ventricles in younger subjects and
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the importance of subarachnoid space in older ones. The pro�les extracted using these two

methods are very similar as the same feature extractor is used � convolutional part of the

SENet-MR model. The maps also highlight the importance of the frontal lobe region in

older subjects.

Figure 7.6: Average saliency maps obtained as described in Section 7.3.3 for the pro-
�le constructed using the distribution of predictions of the SENet-MR model
(details in Section 6.3.1). The maps are constructed using four saliency map-
ping methods � guided backpropagation, SmoothGrad, Grad-CAM and guided
Grad-CAM. The rightmost column shows corresponding plane in the MNI152
template.

Figure 7.7: Average saliency maps obtained as described in Section 7.3.3 for the pro-
�le constructed using the DEC method (details in Section 6.3.3). The maps
are constructed using four saliency mapping methods - guided backpropaga-
tion, SmoothGrad, Grad-CAM and guided Grad-CAM. The rightmost column
shows corresponding plane in the MNI152 template.

176



Ksenia Sokolova Chapter 7

Figure 7.8: Average saliency maps in transverse plane obtained as described in Sec-
tion 7.3.3 for the pro�le constructed using the DEC method (details in Section
6.3.3). The maps are constructed using the Grad-CAM method. The right-
most column shows corresponding plane in the MNI152 template.
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Figure 7.9: Average saliency maps in saggital plane obtained as described in Section
7.3.3 for the pro�le constructed using the DEC method (details in Section
6.3.3). The maps are constructed using the Grad-CAMmethod. The rightmost
column shows corresponding plane in the MNI152 template.

Figure 7.10: Average saliency maps in coronal plane obtained as described in Section
7.3.3 for the pro�le constructed using the DEC method (details in Section
6.3.3). The maps are constructed using the Grad-CAM method. The right-
most column shows corresponding plane in the MNI152 template.
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Figure 7.11: Average saliency maps in transverse plane obtained as described in
Section 7.3.3 for the pro�le constructed using the distribution of predictions
of the SENet-MR model (details in Section 6.3.1). The maps are constructed
using the Grad-CAM method. The rightmost column shows corresponding
plane in the MNI152 template.

Figure 7.12: Average saliency maps in saggital plane obtained as described in Section
7.3.3 for the pro�le constructed using the distribution of predictions of the
SENet-MR model (details in Section 6.3.1). The maps are constructed using
the Grad-CAM method. The rightmost column shows corresponding plane
in the MNI152 template.
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Figure 7.13: Average saliency maps in coronal plane obtained as described in Section
7.3.3 for the pro�le constructed using the distribution of predictions of the
SENet-MR model (details in Section 6.3.1). The maps are constructed using
the Grad-CAM method. The rightmost column shows corresponding plane
in the MNI152 template.

Figures 7.14 - 7.16 show average maps for the pro�le obtained by considering prediction

distribution of the SENet-OR model (details given in Section 6.3.1). The averaged maps

were produced using the technique for saliency mapping of ordinal models proposed in

Section 7.3.2. This pro�le also identi�es ventricle importance in younger subjects, but also

�nds the frontal lobe regions to be of importance in younger ages.
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Figure 7.14: Average saliency maps in transverse plane obtained as described in
Section 7.3.3 for the pro�le constructed using the distribution of predictions
of the SENet-OR model (details in Section 6.3.1). The maps are constructed
using the Grad-CAM method. The rightmost column shows corresponding
plane in the MNI152 template.
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Figure 7.15: Average saliency maps in saggital plane obtained as described in Section
7.3.3 for the pro�le constructed using the distribution of predictions of the
SENet-OR model (details in Section 6.3.1). The maps are constructed using
the Grad-CAM method. The rightmost column shows corresponding plane
in the MNI152 template.

Figure 7.16: Average saliency maps in coronal plane obtained as described in Section
7.3.3 for the pro�le constructed using the distribution of predictions of the
SENet-OR model (details in Section 6.3.1). The maps are constructed using
the Grad-CAM method. The rightmost column shows corresponding plane
in the MNI152 template.

Figures 7.17 � 7.19 show example subject-speci�c saliency maps presented for the three

age groups � young (up to 30 years of age), middle aged (31 � 50 years of age) and older
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Predicted Age

Young Middle Aged Older Adults

True Age

Young 28.0, 28.0 28.0, 42.0 -

Middle Aged 40.0, 28.5 40.0, 40.0 42.0, 57.4

Older Adults - 59.0, 26.2 82.0, 82.0

Table 7.1: True ages and predicted ages using the SENet-MR model for the samples
for which saliency maps are shown in Figure 7.17 � 7.18. For each sample true
age and predicted ages are separated by a comma.

Predicted Age

Young Middle Aged Older Adults

True Age

Young 21.0, 21.0 23.0, 33.0 -

Middle Aged 42.0, 27.0 41.0, 41.0 44.0, 53.0

Older Adults - 58.0, 43.0 68.0, 68.0

Table 7.2: True ages and predicted ages using the SENet-OR model for the samples
for which saliency maps are shown in Figure 7.19. For each sample true age
and predicted ages are separated by a comma.

adults (older than 51 years of age). Saliency maps are visualised based on the samples'

true ages and predicted ages. Figures 7.17 and 7.18 show saliency maps produced using the

Grad-CAM and guided backpropagation methods respectively, based on the predictions of

the SENet-MR model. Figure 7.19 shows saliency maps produced using the ordinal Grad-

CAM method based on the predictions of the SENet-OR model. In Figures 7.17 - 7.19

no examples are presented of the samples with true age in the young group and predicted

age in the old group and or vice versa, as it is shown in Figures 7.3 � 7.5 that the samples

with such large prediction error would almost certainly relate only to samples a�ected at

the preprocessing stage (such as the example shown in Figure 7.5). Tables 7.1 and 7.2

show true and predicted ages for each sample used in Figures 7.17 - 7.18 and Figure 7.19

respectively. In Tables 7.1 and 7.2. the true and predicted ages of samples are shown in

the same order as they are presented in corresponding Figures 7.17 - 7.18 and 7.19.
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Figure 7.17: Example saliency maps produced using the Grad-CAM method repre-
sented to visualise the subjects from three groups � young (up to 30 years
of age), middle aged (31 � 50 years of age) and older adults (51 and older).
Subject-speci�c saliency maps are presented based on their true and predicted
ages based on the predictions by the SENet-MR model. Saliency maps are
shown overlaid over corresponding plane in an input sample after preprocess-
ing.
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Figure 7.18: Example saliency maps produced using the guided backpropagation
method represented to visualise the subjects from three groups � young (up
to 30 years of age), middle aged (31 � 50 years of age) and older adults (51
and older). Subject-speci�c saliency maps are presented based on their true
and predicted ages based on the predictions by the SENet-MR model.
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Figure 7.19: Example saliency maps produced using ordinal Grad-CAMmethod rep-
resented to visualise the subjects from three groups � young (up to 30 years
of age), middle aged (31 � 50 years of age) and older adults (51 and older).
Subject-speci�c saliency maps are presented based on their true and pre-
dicted ages based on the predictions by the SENet-OR model. Saliency maps
are shown overlaid over corresponding plane in an input sample after prepro-
cessing.

7.5 Discussion and conclusion

7.5.1 Saliency mapping for natural image classi�cation

Saliency mapping methods were �rst applied to the task of natural image classi�cation.

Varying the value of standard deviation in Equation 2.36 governing the SmoothGrad

method a�ects the amount of noise applied to an input. As it can be seen in Figure

7.2, for too small or too large values of standard deviation (σ2 = 0.05 or σ2 = 1.0) the

noise applied dominates and saliency map's sensitivity su�ers. Conversely, it can be seen

that the SmoothGrad approach with standard deviation adjusted appropriately can signif-

186



Ksenia Sokolova Chapter 7

icantly improve sensitivity of maps produced using purely gradient-based methods such as

vanilla gradients method [45]. The method of guided backpropagation has, however, been

shown to produce sharper maps compared to the SmoothGrad method. From Figure 7.3 it

is also evident that combining guided backpropagation with the Grad-CAM method leads

to saliency maps which are dominated by the regions identi�ed by guided backpropagation.

In Figure 7.2 it can also be seen that using the LRP-ε rule β excludes certain features

from resulting maps compared to the LRP-β rule. This can be explained by noting that the

LRP-ε rule uses all model parameters with equal weight in backpropagating importance

scores (details in Table 2.1, Section 2.3.6). The LRP-β rule on the other hand is applied

on the product of layer input and its parameters, with the operators de�ned as (·)+ =

max(0, ·) and (·)− = min(0, ·). Results of these two operations are called positive and

negative saliency respectively. Using positive and negative saliency, two importance maps

are produced and combined using α = 1− β and β weights respectively. Since β regulates

the �ow of negative saliency in importance backpropagation, a higher β value leads to

more features in the resulting map which appear to simply represent noise. This can also

be observed in Figure 7.2. The di�erence between LRP maps produced using the two

di�erent rules, and di�erent β values, was less evident for samples with lower certainty in

the underlying classi�cation decision.

Overall, the best quality maps for the task of natural image classi�cation were produced

using the LRP method. It can also be observed that the quality of saliency maps falls for

the inputs with less con�dent classi�cation decision. It is also evident that stripes in

samples of classes "tiger" and "zebra" were important for classi�cation. In input images

with smaller classi�cation con�dence saliency maps detect stripes on objects not related

to actual image class.

7.5.2 Saliency mapping for the task of brain age prediction

Figures 7.3 � 7.5 show the results of applying existing saliency mapping methods and

applying the technique for ordinal saliency mapping introduced in Section 7.3.2. The vanilla

backpropagation method is applied both to the SENet-MR and SENet-OR models. As it

was observed for the task of natural images classi�cation for saliency mapping the models

for brain age prediction vanilla backpropagation lacks sensitivity, i.e. it identi�ed part of

an input corresponding to head, but not speci�c brain regions. Vanilla backpropagation

applied to the ordinal model is more a�ected by noise compared to applying it on the
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metric model. The SmoothGrad method has better sensitivity and is less a�ected by

noise compared to pure vanilla backpropagation, but produced worse results compared to

the method of guided backpropagation. All gradient-based saliency mapping methods are

a�ected by a dot-pattern artifact. The artifacts appear with a �xed distance between them

which suggests that the models for prediction do not use all input voxels equally e�ciently.

Hui and Binder have demonstrated this e�ect experimentally by measuring relevance layer-

wise using the LRP method on ResNet-50 architecture (detailed description in Section

2.3.2). In ResNet architecture residual connections also involve downsampling. They have

shown that the dots in resulting maps originate from the downsampling operation as it

limits the propagation of relevance to the regions a�ected by sampling [241]. The Grad-

CAM method uses last convolutional feature maps in a model to produce a saliency map

and does not su�er from dot artefacts. Feature maps are also less a�ected by noise, i.e. the

features not of interest, compared to the gradients and resulting maps show more distinct

regions of interest compared to the gradient-based methods. It can also be observed that in

the guided Grad-CAM method the contribution from guided backpropagation dominates

and, therefore, the maps produced using the methods of guided backpropagation and

guided Grad-CAM are similar. It should be noted, however, that the method of guided

backpropagation ignored the features describing whole brain atrophy occurring with age,

i.e. increasing subarachnoid space (see Figure 7.20). Therefore, these features are detected

by the Grad-CAM method, but not by the guided Grad-CAM method.

Figure 7.20: Average saliency maps obtained as described in Section 7.3.3 for the
pro�le constructed using the DEC method (details in Section 6.3.3) and the
Grad-CAM method for saliency mapping. The rightmost column shows cor-
responding plane in the MNI152 template. Brain regions a�ected by the
age-related changes are highlighted by arrows: blue arrows point to corre-
sponding regions in saliency maps and red � to the regions in the MNI152
template respectively.

Figure 7.17 shows sample examples grouped by their true and predicted ages. In

Figure 7.17 saliency maps are constructed by considering the predictions by the SENet-
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MR model using the Grad-CAM method. The �gure demonstrates that older predicted

age corresponds to more features in an input sample being used by the model to make a

prediction. Figure 7.18 shows saliency maps constructed using the guided backpropagation

method for the same bins and model as in Figure 7.17. From Figure 7.18 it can be concluded

that the SENet-MR model uses less features of an input sample to predict a sample's age to

be in the same group as its true label lies, than for samples predicted to be in a di�erent,

younger or older, group. Therefore, a sample may be predicted to belong to a group,

di�erent from where its true label belongs, due to the SENet-MR model extracting the

features not related to the sample's true label. Figure 7.19 shows saliency maps examples

obtained using the SENet-OR model and ordinal Grad-CAM method. Comparing this to

Figure 7.18, it can be seen that the SENet-OR model used more input sample's features in

subjects who are or are predicted to be young and middle aged compared to the SENet-MR

model. On the other hand, the SENet-OR model uses much less input features compared

to the SENet-MR model in the old subjects who are predicted to be old.

The variability over the population of the brain ageing process cannot be investigated

using subject-speci�c saliency maps. Therefore, in Figures 7.6 � 7.7, average saliency

maps for the brain ageing pro�les extracted in Chapter 6 are shown. In Figure 7.6 average

saliency maps for the pro�le obtained by considering the distribution of predictions of the

SENet-MR model are presented. Figure 7.7 shows average saliency maps produced for the

DEC pro�le which used SENet-MR model's feature extractor. For these two pro�les, out

of the gradient-based saliency mapping methods, the method of guided backpropagation

was the least a�ected by noise, i.e. detected the least amount of features not related to

brain age prediction such as background or parts of head instead of brain regions. In both

pro�les, the method of guided backpropagation found ventricular features to be the most

important for the model to make predictions. Since combining the methods of Grad-CAM

and guided backpropagation results in saliency maps with features dominated by guided

backpropagation, average saliency obtained using the guided Grad-CAM method for both

pro�les again found the ventricles to be the most important feature. While it would

be interesting to directly and quantitative compare the maps, preliminary investigations

showed that direct approaches to voxel-wise spatial correlations did not give interpretable

results due to the high levels of background noise in the maps produced using the method of

guided backpropagation. Further work is needed to determine whether other metrics might

be able to directly compare the methods. For the methods of guided backpropagation and
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Grad-CAM, in these pro�les the intensity of important features increased with age [171, 6].

Saliency maps constructed using the Grad-CAM method for both pro�les highlighted the

importance of ventricle features in younger subjects (up to 30 years of age) and increasing

importance of whole brain atrophy with age, i.e. increasing subarachnoid space. In Figure

7.20 the regions a�ected by the age-related changes are highlighted. These results are

consistent with previously published volumetric trajectories for various brain regions, as

it has previously been found that rate of volumetric changes increases with age and that

brain volume does not change signi�cantly in young subjects [171].

Below, the results are compared to existing literature. However, comparison with all

existing works is not possible due to fundamental di�erences in methods or datasets used.

Comparison with the works by Fujimoto et al [181, 219] and Kondo et al [182] is not

possible due to the way in which their results are represented, for example: in these works

the regions of interest were presented by assessing the importance of areas of brain cortex

rather than regions of the whole brain parenchyma. The maps were also averaged over the

whole dataset. While both Kondo et al [182] and Fujimoto et al [181] collected data from

subjects covering a similar age range to those presented here, they included much smaller

subject numbers, again potentially making comparison problematic. Comparison with

maps presented by Beheshti et al [222] is also not meaningful, due to their measurements

of importance again being performed only on cortical areas, and them being averaged over

78 subjects aged from 21 to 60 years of age. For the same reasons a work by Aycheh et

al [220] is also not used for comparison. Popescu et al [38] constructed Deep Gaussian

Processes (DGP) model for voxel-wise brain age prediction, which allowed saliency maps

to be produced directly out of the model. Direct comparison with their results, however, is

not possible as the model used data segmented into GM and WM as an input. Therefore,

only whether insula region, but not ventricles and subarachnoid space, is a�ected can be

assessed. The authors also only presented saliency map for a single subject. Similarly,

comparison with the results by Huang et al [239] cannot be performed as in this work only

GM importance maps are presented, and these are averaged over 318 subjects.

Amoroso et al [13] used the Gedeon method to identify the most important features and

produced average saliency map over 484 subjects aged 7 � 80 years. The features detected

relate to whole brain atrophy, but do not identify changes in ventricular size. This may

be related to the fact that the saliency maps presented were averaged over the range of

samples' ages spanning whole lifetime, whereas my results show clear di�erences in the
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degree of ventricular involvement with age. Amoroso et al found the inferior frontal gyrus

to be involved in structural ageing process. The features describing the pro�les obtained

using the DEC method (features are shown in Figures 7.8 - 7.10) also highlight this region in

subjects older than 68 years of age. In the pro�le obtained by considering the distirbution

of SENet-MR model's predictions the region of inferior frontal gyrus becomes of importance

in the intervals containing the subjects older than 63 years of age (see Figures 7.11 - 7.13).

Heschl's gyrus was found to be important in the DEC method pro�led after 52 years of age,

while in the pro�le derived from the SENet-MR model's error distirbution it is highlighted

for the subjects over 57 years of age. The importance of the regions of inferior frontal gyrus

and Heschl's gyrus are not, however, highlighted in the pro�le extracted by considering

the distribution of errors of the SENet-OR model (Figures 7.14 - 7.16). Any of the three

pro�les identi�es the regions of anterior cingulate parahippocampal gyrus, cingulate and

precentral gyri to be related to ageing for any of the intervals, while Amoroso et al described

them as age-related. Amoroso et al also note that teporal lobe plays the role in ageing. In

the DEC pro�le and the pro�le derived from the distribution of errors of the SENet-MR

model the temporal region is of importance for the subjects older than 68 and 51 years of

age respectively. The di�erences between the features shown in Figures 7.8 � 7.16 and the

features identi�ed by Amoroso et al, may also be explained by the fact that the saliency

mapping methods presented in this chapter either use backpropagation from an output to

an input, i.e. gradient-based methods, or from an output to the last convolutional feature

maps, i.e. Grad-CAM, while the Gedeon method used by Amoroso et al used the considers

only two last fully-connected layers in a MLP model for brain age prediction [13].

Feng et al presented average maps separately for each life decade from 20s to 80s. Feng

et al found that frontal lobes are particularly a�ected by ageing. The pro�les obtained

using the DEC method and by considering the distribution of errors of the SENet-MR

model in Figures 7.6 � 7.13 also highlight the importance of frontal lobe features and

its importance increases with age [39]. Frontal lobe was not, however, identi�ed to be

important by the pro�le based on the distribution of predictions of the SENet-OR model.

Bermudez et al [183] presented the test data in three groups based on their age labels:

young (0 � 30 years of age), middle age (30 � 50 years of age) and older adult subjects

(50 � 96 years of age). The authors presented saliency maps based on samples' true and

predicted ages in the same way as I have in Figures 7.17 � 7.19. The authors randomly

chose 10 samples for each category and presented average saliency maps. Bermudez et
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al used Grad-CAM method and observed that the most important features for the model

were ventricular size, cerebral cortex and head size, and subarachnoid space. Head size

measure is not relevant for comparison to the current dataset as the youngest subject in

the HBAPS dataset is 17 years old and after that age head circumference does not change

signi�cantly [242]; the other features highlighted by Bermudez et al are largely consistent

with those I found, however. Changes in the subarachnoid space are signi�cant during

human lifetime, as it has previously been shown than whole brain volume as well as GM

volume [171] decrease with age. Bermudez et al found that intensity and amount of impor-

tant features increases with age. This can is consistent with the fact that ageing accelerates

during lifetime [171, 6]. As can be seen in both subject-speci�c and average saliency maps

for each pro�le represented in Figures 7.6 � 7.16, the maps generated using the Grad-CAM

and ordinal Grad-CAM methods identi�ed subarachnoid space and ventricular size to be

important features. For the subject-speci�c maps and average saliency maps obtained us-

ing the SENet-MR model, the intensity of important features also increased with age, again

consistent with the results of Bermudez et al. For the average saliency maps constructed

using ordinal Grad-CAM method for the pro�le considering the distribution of predictions

of the SENet-OR model, the intensity of the features does not increase with age (Figures

7.14 - 7.16), but the maps nevertheless highlight the importance of ventricular size and

subarachnoid space. The reason why in the current dataset intensity decreases rather than

increases in the ordinal pro�le shown in Figures 7.14 - 7.16 needs to be further investigated.

Herent et al [52] used three approaches to assess the features important for brain

ageing in MRI data. First, the authors constructed correlation maps of GM and CSF with

predicted brain age averaged over test data, produced using GM and CSF segmentation

masks. Secondly, the authors represented importance map visualising the weights of the

ridge regression model trained on the task of brain age prediction. Thirdly, Herent et al

constructed saliency maps using the occlusion method of Zeiler and Fergus [47] on a CNN

model for brain age prediction trained on 2D inputs . Two maps were presented � average

maps for the subjects younger than 30 years of age and the subjects older than 60 years

of age. Correlation maps of GM and CSF with predicted brain age constructed by the

authors indicated positive correlation with age of the subarachnoid space and ventricular

features. Importance map visualising weights of the ridge regression model highlighted the

importance of the ventricles and grey matter atrophy with age. The results of this chapter

are in agreement with all of these �ndings, as discussed above. Results of Herent et al also
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showed that average occlusion maps for the subjects reveal the importance of insula as

a feature for brain age prediction. Saliency maps for the pro�les presented in the Figure

7.6 � 7.13 also show importance of insula features. The pro�le constructed by considering

the distribution of predictions of the SENet-MR model and using the DEC method also

identi�ed the importance of insula features whose importance increased with age, which

is also consistent in the results by Herent et al. Popescu et al [38] have also detected the

importance of insula features in relation to brain ageing. In the pro�le constructed by

considering the distribution of predictions of the SENet-OR model shown in Figures 7.14 -

7.16, the importance of insula features is also evident, but the importance decreases with

age.

In conclusion, I have shown that the methods of guided backpropagation, Grad-CAM

and guided Grad-CAM are usable for studying brain ageing features from MRI data with

minimal preprocessing. Average maps derived for the whole brain ageing pro�les extracted

in Chapter 6 appear to be of biological signi�cance, as features are in accordance with

previous research and existing knowledge on the biology of brain ageing. Saliency maps

produced using proposed methodology for saliency mapping for ordinal models also high-

lighted biologically interpretable features.

Further research is, however, needed in order to extend current knowledge on human

brain ageing even more. Firstly, further investigation is needed to understand why the

pro�le extracted using the ordinal saliency mapping method and averaging over the in-

tervals obtained from the SENet-OR model did not show the important features to be

increasing in intensity with age. This may be explained either by the properties of the

ordinal saliency mapping methodology, which need to be studied, or the properties of the

SENet-OR model. Secondly, it can be observed in Figures 7.6 � 7.7 that the features related

to left ventricles appear more important than the ones related to right ventricles and the

features describing whole brain atrophy lie more in the right hemisphere compared to the

left one. A number of studies have previously reported structural hemispheric asymmetries

and their relation to the process of brain ageing (for example, [243]), but this is still an

open discussion whether any of the hemispheres ages faster [244]. For example, Esteves et

al [244] used functional MRI in order to study hemispheric asymmetries and found that

the subjects of older age with present hemispheric asymmetries performed better in the

presented tasks [244]. This may be explained either by the fact that most data samples are

collected from left-handed individuals, but could also indicate biases in the underlying MR
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images caused by data acquisition or preprocessing issues. This could be investigated by

computing separate average maps for left- and right-handed subjects, by comparing data

from di�erent sources, or by investigating alternative pre-processing steps (for example

a di�erent template for the registration). Investigating separate average maps for male

and female subjects could also provide additional insights into the process of brain ageing.

Overall, however, it appears that appropriately created saliency maps can provide us with

information that may be of interest at both the individual and group level, and which may

reveal biologically meaningful changes over the human lifespan.
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Chapter 8

Examining brain age prediction

models' generalisability

8.1 Main contributions

In this chapter generalisability of the brain age prediction models presented in Chapter 5

is examined. In order to examine models' generalisability a dataset more representative of

data collected in clinical setting is used along with modi�ed Healthy Brain Ageing from

Public Sources (HBAPS) test data. Generalisability of the brain age prediction models is

studied in light of following contributions:

� the models' accuracy comparable to the results achieved in Chapter 5 is also measured

on test data from the HBAPS dataset with resolution of its samples reduced;

� test data more representative of the clinical setting, using an independent, locally

collected, dataset (the Institute of Psychiatry, Psychology & Neuroscience (IoPPN)

dataset described in Section 4.2.2) is collated and preprocessed in order to analyse

the performance of brain age prediction methods on this type of data; two subsets of

the IoPPN dataset are used consisting of Magnetic Resonance Imaging (MRI) data

acquired using T1-weighted sequences - one consisting of healthy subjects and one

containing the samples acquired from diseased subjects;

� saliency maps are extracted for each prediction on the IoPPN test data;

� HBAPS test data is also used to investigate saliency mapping methods for the purpose

of outlier detection.
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8.2 Introduction

Using brain age prediction models as a biomarker for various brain diseases has been

studied by academic researchers. Developing a putative biomarker from a brain age pre-

diction model can be achieved by training the model on healthy subjects and using the

model to predict the age of clinical patients. Then if predicted brain age is greater than

patient's chronological age by a number of years greater than model's Mean Absolute Er-

ror (MAE), this can be interpreted as occurrence of accelerated ageing in the patient's

brain. Authors have investigated such di�erences between healthy subjects and patients

with a number of diseases [245] � Alzheimer's disease [224], traumatic brain injury [246],

HIV [226], epilepsy [225], Down's syndrome [228] and diabetes [247]. Brain ageing process

is in�uenced by many complex factors, however, including both heritable factors [35] and

ones that change during an individual's lifetime [248]. While clearly an oversimpli�ca-

tion, representing this process by a single measure, as a di�erence between predicted and

chronological age, allows development of a straightforward biomarker [35].

However, clinical usage of brain age prediction-based biomarker should be studied fur-

ther as its reliability and ability to capture population-wide variation in the ageing process

needs to be further validated. In Chapter 5 I have discussed the task of brain age prediction

from MRI data � existing research in this �eld is presented along with results of this thesis

by discussing both Deep Learning (DL)-based and non-DL-based approaches. However,

all the works discussed there, including the results of this thesis, use either datasets col-

lected purely for research purposes or limited clinical datasets, and do not fully represent

population-wide e�ects nor variations in the quality of clinical data.

In this chapter generalisability of the models presented in Chapter 5 is �rst examined

by measuring their performance on test data from the HBAPS dataset, after deliberately

reducing its resolution. Such experiments explore the brain age predicting models from two

perspectives. Firstly, usability of these models in clinical environment, where MRI data is

acquired with varying resolution, not always with the highest technically possible, due to

temporal and �nancial constraints is studied. Such experiments also allow understanding

of how much information is needed in an MRI scan to make a brain age prediction with

accuracy comparable to that from the whole, high resolution, scan.

In this chapter the approaches presented in Chapters 5 and 7 are also tested on data

more representative of the clinical setting, using an independent, locally collected, dataset,

in which both healthy controls and patients are present � the IoPPN dataset described in
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Section 4.2.2. The aim of this section of the chapter is to apply the methods presented in

this thesis to a more clinically-representative dataset and analyse the performance of such

methods on this type of data. First, the Squeeze-and-Excitation Network (SENet)-MR

and SENet-OR models (described in Chapter 5) are used on the dataset for brain age

prediction. Then saliency maps are extracted for each prediction, using the Gradient Class

Activation Mapping (Grad-CAM) method as it had the best performance among existing

methods described in Chapter 7. Saliency mapping is also investigated for the purpose of

outlier detection.

8.3 Methods

8.3.1 Studying the performance of the brain age prediction models on
the HBAPS test data

In order to study robustness of the brain age prediction models with respect to input

data resolution, i.e. whether model accuracy measured by MAE is a�ected by test data

resolution, the HBAPS test data resolution was needed to be reduced. Then brain age can

be predicted for each sample using pre-trained SENet-MR model as described in Chapter

5.

Shi et al [249] have proposed a methodology for simulating low resolution images from

higher resolution ones. The authors described a two-stage procedure for lowering resolution.

First, the samples are blurred using a Gaussian kernel parametrised by a standard deviation

of 1 voxel. Secondly, blurred samples are then down sampled to imitate the partial volume

e�ect [249].

The HBAPS data described in Section 4.2.1 was preprocessed as detailed in Section

4.2.3. As part of this preprocessing stage, the MRI scans are resampled and registered

onto the MNI152 template and resulting samples have voxel size of 1 × 1 × 1 mm, i.e.

a digital resolution of 1 mm. In this chapter, low resolution data is produced from the

HBAPS test data in order to examine brain age prediction model robustness with respect

to resolution. Here, a simpli�ed approach for lowering sample resolution is considered �

the planes are repeated along the head-to-foot direction, simulating the anisotropic voxel

dimensions typical of 2D MRI acquisitions, rather than the higher, and near isotropic,

resolution typical of 3D acquisitions. As the result, the HBAPS test data is used with two

voxel sizes in this chapter: 1×1×4 mm and 1×1×5 mm. For example, for achieving voxel

size of 1× 1× 4 mm every forth plane is extracted from the original data sample and then
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used to create four identical adjacent planes in the head-to-foot direction in resulting data

sample. The approach taken in this thesis for simulating low resolution MRI data is similar

to the approach described by Savio et al [250]. Savio et al averaged the intensities of three

consecutive planes in a data sample originally having 1× 1× 1 mm voxel size to simulate

the samples with 3 mm resolution along the head-to-foot direction. In this Chapter the

robustness of the brain age prediction models with respect to input data resolution is

examined on the 1 × 1 × 4 mm and 1 × 1 × 5 mm voxel sizes as these resolutions are

recommended for clinical trial protocols in brain tumour studies by U.S. Food and Drug

Administration (FDA) and National Institutes of Health of the United States Department

of Health and Human Services (NCI). As one of the aims of this chapter is to test the

performance of brain age prediction algorithms on data more representative of the clinical

setting, the resolutions recommended for clinical studies are used in this experiment on

lower resolution data.

8.3.2 Studying the performance of brain age prediction models and
saliency mapping on the IoPPN test data

For brain age prediction on the IoPPN dataset, pretrained SENet-MR and SENet-OR

models are used as described in Section 5.3. The SENet-MR and SENet-OR models are

pretrained on T1-weighted MRI data collected from healthy subjects and in this chapter

they are tested on T1-weighted data from healthy and diseased subjects separately. For

each prediction a saliency map is then produced using the Grad-CAM method as detailed

in Section 7.3.1.

8.4 Results

8.4.1 Performance of the Se-MR model on reduced resolution data

Robustness of the SENet-MR model (details in Section 5.3) is tested with respect to low

resolution data using whole HBAPS test data with lowered resolution as described in Sec-

tion 8.3.1. The distributions of predicted ages for the HBAPS testing data with voxel size

of 1× 1× 4 mm and 1× 1× 5 mm are shown in Figure 8.1. MAE and the Pearson's corre-

lation coe�cient, R, of chronological and predicted ages at both resolutions are presented

in Table 8.2 along with the SENet-MR model's performance on the original HBAPS test

data (i.e. 1× 1× 1 mm).
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The linear regression �t for the SENet-MR model's predictions on data with di�erent

voxel sizes is shown by the dashed dark blue line in Figure 8.1, along with the 95% intervals

(dashed light blue-green lines) and the line of identity (in orange). The parameters into

linear �ts into the plots in Figure 8.1 are presented in Table 8.1. From Table 8.1 it also

can be noted that for linear �ts into the predictions on HBAPS data with two di�erent

resolutions (1× 1× 4 mm and 1× 1× 5 mm) intercepts di�er by less than 1.

95% con�dence interval

bounds on a

95% con�dence interval

bounds on b
Voxel size a

Lower Upper
b

Lower Upper

1× 1× 4 mm 0.928 0.911 0.944 3.493 2.687 4.298

1× 1× 5 mm 0.916 0.898 0.933 4.237 3.392 5.082

Table 8.1: Parameters of the linear regression �t into the plot of the SENet-MR
predictions with respect to true age labels for both whole HBAPS test dataset
with di�erent voxel size. Linear regression �t into the plot is represented by a
function yp = a × yt − b, where yt and yp are true age labels and the SENet-
MR model predictions respectively, while a and b correspond to the slope and
intercept of the function. For both a and b values 95% con�dence interval lower
and upper bounds are stated. p = 0.0005 for both �ts and for all slope and bias
values.

The SENet-MR model's performance on the test data with voxel size of 1×1×4 mm is

the same as on the data with original resolution, as it can be seen in Table 8.2. On the test

data with voxel size of 1 × 1 × 5 mm the performance on the SENet-MR model is worse,

but only slightly, i.e. MAE is higher by 0.27 years and Pearson's correlation coe�cient, R,

is lower by 0.01.

Voxel size [mm] MAE [years] R RMSE [years0.5] Error variance [years] σ [years0.5]

1× 1× 1 3.87 0.96 6.88 32.36 5.69

1× 1× 4 3.87 0.96 6.88 32.36 5.69

1× 1× 5 4.14 0.95 7.28 35.94 5.99

Table 8.2: MAE and the Pearson's correlation coe�cient, R, of chronological and
predicted ages, Root Mean Square Error (RMSE), error variance and standard
deviation on MAE, σ, for the SENet-MR model predictions on the HBAPS test
data with three di�erent resolutions.
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Figure 8.1: Distribution of predictions of the SENet-MR model on whole HBAPS
test data with voxel size of 1× 1× 4 mm (A) and 1× 1× 5 mm (B). The brain
age predicted by the models on the testing data (y-axis) is plotted against
chronological age label (x-axis). Orange line denotes the y=x function, blue �
linear regression �t function, green � the lines representing the lower and upper
bounds of the 95% con�dence interval over linear regression �t parameters.
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8.4.2 Detecting outliers on the HBAPS dataset

In Section 7.4.2 an example was given of a sample being a�ected by incorrect preprocess-

ing, resulting in a smaller size (91 × 109 × 91 voxels instead of 196 × 232 × 188). The

brain age prediction models described in Chapter 5 failed to extract important features

and this resulted in large prediction error. Therefore, gross outliers can be detected by

identifying the samples with an unexpected size after preprocessing. Hence the distribu-

tions of predicted ages for the HBAPS testing data excluding the preprocessed samples of

size 91 × 109 × 91 voxels (16 samples) are shown in Figure 8.2. MAE and the Pearson's

correlation coe�cient, R, of chronological and predicted ages for the HBAPS test data

with and without the a�ected samples are presented in Table 8.4.

The linear regression �t for the SENet-MR and SENet-OR models' predictions on data

without the samples a�ected by preprocessing is shown by the dashed dark blue line in

Figure 8.2, along with the 95% intervals (dashed light blue-green lines) and the line of

identity (in orange). Parameters of the linear regression �t into the plots presented in

Figure 8.2 are shown in Table 8.3. From Table 8.3 it can be observed that the di�erence

between 0 and the constant term of linear �t into the SENet-OR model's predictions is

not statistically signi�cant, while the constant of linear �t into the SENet-MR model's

predictions does not statistically signi�cantly deviate from 0.

95% con�dence interval

bounds on a

95% con�dence interval

bounds on b
Model a pa

Lower Upper
b pb

Lower Upper

SENet-MR 0.928 0.0005 0.911 0.944 3.493 0.0005 2.687 4.298

SENet-OR 0.916 0.0005 0.898 0.933 4.237 0.145 3.392 5.082

Table 8.3: Parameters of the linear regression �ts into the plot of the SENet-MR and
SENet-OR models' predictions with respect to true age labels for whole HBAPS
test dataset excluding the samples a�ected at the preprocessing stage. Linear
regression �ts into the plots are represented by the function yMR,wap = a×yt−b
and yOR,wap = a× yt− b for the SENet-MR and SENet-OR models' predictions
respectively. yMR,wap and yMR,wap are corresponding predictions by the SENet-
MR and SENet-OR models, while yt is a true age label. a and b correspond to
the slope and intercept of the function. For both a and b values p−values are
given corresponding to pa and pb along with 95% con�dence interval lower and
upper bounds.
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HBAPS samples Model MAE [years] R RMSE [years0.5] Error variance [years] σ [years0.5]

All
SENet-MR 3.87 0.96 6.88 32.36 5.69

SENet-OR 3.62 0.97 5.91 21.79 4.67

Without

preprocessing

outliers

SENet-MR 3.43 0.97 5.30 16.32 4.04

SENet-OR 3.37 0.98 5.06 14.27 3.78

Table 8.4: MAE and the Pearson's correlation coe�cient, R, of chronological and
predicted ages, Root Mean Square Error (RMSE), error variance and standard
deviation on MAE, σ, for the SENet-MR and SENet-OR model predictions on
the whole HBAPS test dataset and without the samples a�ected by preprocess-
ing.

As expected, once the samples a�ected at the preprocessing stage were removed the

MAE was reduced and Pearson's correlation coe�cient, R, increased for both prediction

models. Here in Figure 8.3 a sample with large prediction error (60.2 years) is presented

along with corresponding saliency map which is di�erent from a HBAPS test data sample

with 0 prediction error presented in Figure 8.4.
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Figure 8.2: Distribution of predictions of the SENet-MR (A) and SENet-OR (B)
models on the HBAPS test data excluding the samples a�ected by preprocess-
ing. The brain age predicted by the models on the testing data (y-axis) is
plotted against chronological age label (x-axis). Orange line denotes the y = x
function, blue � linear regression �t function, green � the lines representing the
lower and upper bounds of the 95% con�dence interval over linear regression
�t parameters.
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Figure 8.3: Example of the HBAPS test data sample a�ected by the preprocessing
stage. Saliency maps are shown for the sample with the largest prediction
error (60.2 years) in the HBAPS testing data using the SENet-MR model.
The maps named ordinal are produced by applying ordinal saliency mapping
technique described in Section 7.3.2 with corresponding method. These maps
are produced using the SENet-OR model and SENet-MR model is used oth-
erwise. The leftmost column shows corresponding planes in the input sample.
Three planes are presented from the samples as resulting saliency maps are
less informative compared to the samples with smaller associated prediction
error.
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Figure 8.4: Results of applying existing saliency mapping methods to the task of
brain age prediction. Saliency maps are shown for the sample with the lowest
prediction error (0.0008 years) in the HBAPS testing data using the SENet-MR
model. The maps named ordinal are produced by applying ordinal saliency
mapping technique described in Section 7.3.2 with corresponding method.
These maps are produced using the SENet-OR model and SENet-MR model is
used otherwise. The leftmost column shows corresponding planes in the input
sample.
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8.4.3 Brain age prediction on the IoPPN dataset

In order to further analyse the performance of brain age prediction models described in

Chapter 5 they are applied to the subsets of IoPPN dataset - healthy and diseased subjects

imaged using T1-weighted sequence (described in Section 4.2.2). MAE and the Pearson's

correlation coe�cient, R, of chronological and predicted ages from the IoPPN dataset are

presented in Table 8.5. In Figure 8.5, the average prediction error for each age in the

IoPPN dataset is plotted for the SENet-MR and SENet-OR models and for the healthy

and diseased subjects separately.

IoPPN data Model MAE [years] R Error variance [years] σ [years0.5]

SENet-MR 21.41 0.37 147.13 12.13
Healthy

SENet-OR 31.26 0.29 175.21 13.24

SENet-MR 14.89 0.57 126.46 11.25
Diseased

SENet-OR 20.53 0.53 191.75 13.85

Table 8.5: MAE and the Pearson's correlation coe�cient, R, of chronological and
predicted ages, error variance and standard deviation on MAE, σ, for the SENet-
MR and SENet-OR models predictions on healthy and diseased subjects of the
IoPPN dataset.
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Figure 8.5: Average prediction error for each true chronological age in the IoPPN
dataset by the SENet-MR (blue line) and SENet-OR (red line) models on
healthy (A) and diseased (B) subjects separately.
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Figure 8.6: Box plots of the predictions on the IoPPN healthy subjects imaged using
T1-weighted sequence by the SENet-MR (A) and SENet-OR (B) models with
respect to the true age labels.
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Figure 8.7: Box plots of the predictions on the IoPPN diseased subjects imaged
using T1-weighted sequence by the SENet-MR (A) and SENet-OR (B) models
with respect to the true age labels.

In Figures 8.6 and 8.7 box plots representing the predictions distributions for the SENet-

MR and SENet-OR models on the IoPPN dataset healthy and diseased subjects are shown.

The SENet-MR model's predictions are more concentrated around mean compared to the

SENet-OR models' predictions on the samples from both healthy and diseased subjects.

The SENet-OR model's MAE was lower for both the healthy and diseased subjects in
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the IoPPN dataset compared to the SENet-MR model's MAE. The SENet-OR model's

predictions were also more tended towards the largest true age label available in the HBAPS

training data used for training the SENet-OR model.

No "gross failures" of preprocessing were found in the IoPPN test data. Figures 8.8

� 8.13 show saliency mapping results for samples with a range of high and low prediction

errors:

� Figure 8.8 shows saliency maps for the samples from the IoPPN and HBAPS datasets

with 0 prediction error using the SENet-MR model. Both samples are acquired from

the healthy subjects who were 28 years old.

� Figure 8.9 shows saliency maps for the samples with associated prediction error equal

to the sum of MAE of the SENet-MR model and its standard deviation, 9.55 years.

The subjects are healthy and 22 years of age.

� Figure 8.10 shows saliency maps for the samples with prediction error of 20 years by

the SENet-MR model. The subjects are healthy and 29 years old.

� Figure 8.11 shows saliency maps for the sample from the IoPPN test data diseased

subject and for the sample from HBAPS test data healthy subject with 0 predic-

tion error using the SENet-MR model. Both samples are acquired from the healthy

subjects who were 69 years old.

� Figure 8.12 shows saliency maps for the samples with associated prediction error

equal to the sum of MAE of the SENet-MR model and its standard deviation, 9.55

years. The subjects are 52 years of age. IoPPN test data sample is diseased, while

HBAPS test data sample is healthy.

� Figure 8.13 shows saliency maps for the samples with prediction error of 20 years

by the SENet-MR model. The subjects are 69 years old. IoPPN test data sample is

diseased, while HBAPS test data sample is healthy.

From Figures 8.8 � 8.10 it can be observed that the features extracted from the sam-

ples belonging to the IoPPN dataset's healthy subjects are similar to the ones extracted

from the HBAPS test data samples with the same associated prediction error. The fea-

tures extracted are also in agreement with the average features describing whole brain

population-wide pro�le extracted using the Deep Embedded Clustering (DEC) method.
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In the samples associated with the prediction error of 20 years the SENet-MR model used

more features from original sample for both healthy subject from HBAPS and IoPPN test

data. From Figures 8.11 - 8.13 it can be seen that for the diseased subjects from the IoPPN

dataset are associated with features di�erent from those extracted from the healthy test

subjects from the HBAPS dataset.

In order to further examine performance of the brain age prediction models on the

IoPPN dataset in Figure 8.14 saliency maps for a T2-weighted sample from the IoPPN

dataset are presented for comparison. The subject presented is 30 years old but predicted

age by the SENet-MR model is 65.4 years. It should be noted that saliency maps for a

T2-weighted sample presented in Figure 7.8 are di�erent from the saliency maps for T1-

weighted samples shown in Figures 8.8 � 8.10. The model used more input sample features

from the T2-weighted sample compared to the T1-weighted samples.
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Figure 8.8: Comparison of the Grad-CAM saliency maps obtained for the samples
from the IoPPN test data consisting of healthy subjects and HBAPS test data
with 0 prediction error using the SENet-MR model. Both samples belong to
the subjects who are 28 years old. The two leftmost columns show planes of a
sample belonging to the IoPPN dataset and corresponding saliency map, the
third and fourth columns � for the HBAPS test data sample. The rightmost
column shows corresponding planes in the features describing whole brain age-
ing pro�le obtained using the DEC method (described in Section 6.3.3). The
maps describing the pro�le are multiplied by the MNI152 head mask for clarity.
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Figure 8.9: Comparison of the Grad-CAM saliency maps obtained for the samples
from the IoPPN test data consisting of healthy subjects and HBAPS test data
with the prediction error equal to the sum of MAE and standard deviation on
it, 9.55 years, in the HBAPS testing data using the SENet-MR model. Both
samples belong to the subjects who are 22 years old. The two leftmost columns
show planes of a sample belonging to the IoPPN dataset and corresponding
saliency map, the third and fourth columns � for the HBAPS test data sample.
The rightmost column shows corresponding planes in the features describing
whole brain ageing pro�le obtained using the DEC method (described in Sec-
tion 6.3.3). The maps describing the pro�le are multiplied by the MNI152
head mask for clarity.
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Figure 8.10: Comparison of the Grad-CAM saliency maps obtained for the samples
from the IoPPN test data consisting of healthy subjects and HBAPS test data
with prediction error of 20 years using the SENet-MR model. Both samples
belong to the subjects who are 29 years old. The two leftmost columns show
planes of a sample belonging to the IoPPN dataset and corresponding saliency
map, the third and fourth columns � for the HBAPS test data sample. The
rightmost column shows corresponding planes in the features describing whole
brain ageing pro�le obtained using the DEC method (described in Section
6.3.3). The maps describing the pro�le are multiplied by the MNI152 head
mask for clarity.
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Figure 8.11: Comparison of the Grad-CAM saliency maps obtained for the sam-
ples from the IoPPN test data consisting of diseased subjects and HBAPS
test data with 0 prediction error using the SENet-MR model. Both sam-
ples belong to the subjects who are 69 years old. The two leftmost columns
show planes of a sample belonging to the IoPPN dataset and correspond-
ing saliency map, the third and fourth columns � for the HBAPS test data
sample. The rightmost column shows corresponding planes in the features
describing whole brain ageing pro�le obtained using the DEC method (de-
scribed in Section 6.3.3). The maps describing the pro�le are multiplied by
the MNI152 head mask for clarity.
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Figure 8.12: Comparison of the Grad-CAM saliency maps obtained for the samples
from the IoPPN test data consisting of diseased subjects and HBAPS test
data with the prediction error equal to the sum of MAE and standard devia-
tion on it, 9.55 years, in the HBAPS testing data using the SENet-MR model.
Both samples belong to the subjects who are 52 years old. The two leftmost
columns show planes of a sample belonging to the IoPPN dataset and corre-
sponding saliency map, the third and fourth columns � for the HBAPS test
data sample. The rightmost column shows corresponding planes in the fea-
tures describing whole brain ageing pro�le obtained using the DEC method
(described in Section 6.3.3). The maps describing the pro�le are multiplied
by the MNI152 head mask for clarity.
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Figure 8.13: Comparison of the Grad-CAM saliency maps obtained for the samples
from the IoPPN diseased subjects and HBAPS dataset sample with prediction
error of 20 years using the SENet-MR model. Both samples belong to the
subjects who are 29 years old. The two leftmost columns show planes of a
sample belonging to the IoPPN dataset's diseased sample and corresponding
saliency map, the third and fourth columns � for the HBAPS test data sample.
The rightmost column shows corresponding planes in the features describing
whole brain ageing pro�le obtained using the DEC method (described in
Section 6.3.3). The maps describing the pro�le are multiplied by the MNI152
head mask for clarity.
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Figure 8.14: Example of the saliency maps obtained for a non-T1-weighted sam-
ple from the IoPPN dataset, with prediction error of 35.4 years using the
SENet-MR model. The subject is 30 years old. The method of saliency
mapping is Grad-CAM. The rightmost column shows corresponding planes
in the features describing the whole brain ageing pro�le obtained using the
DEC method (described in Section 6.3.3). The maps describing the pro�le
are multiplied by the MNI152 head mask for clarity.
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8.5 Discussion and conclusions

In this Chapter the methods for brain age prediction and extracting age-related features

presented in Chapter 5 and 7 were �rst also examined on robustness with respect to input

resolution. The brain age prediction models were also examined on robustness with respect

to input resolution. The models were not a�ected by input resolution, but their perfor-

mance was a�ected by variable quality of images, i.e. variability of acquisition sequences

(and potentially by the disease status of subjects).

In Figure 8.1 and Table 8.2 the performance of the SENet-MR model on the HBAPS

test data with lowered resolution is presented. It can be observed that the data resolution

did not a�ect model's performance up to voxel size of 1× 1× 4 mm. With the voxel size

of 1 × 1 × 5 mm, the model's MAE increased by 7%. Accurate comparison with existing

literature is not possible. For instance, Feng et al [39] have demonstrated that a single

plane from a 3D MRI data can be used to achieve comparable performance to using whole

MRI scan. Feng et al trained a network equivalent to the network used for analysing 3D

MRI data, but taking 2D slices as an input. The MAE achieved by considering a single

MRI slice in sagittal plane from the test samples was 5.5 years, compared to 4.06 years

achieved on whole MRI scans [39]. The experiment by Feng et al is di�erent from the one

in this chapter. In the experiment here the brain age prediction model uses an input an

array of data with lowered resolution, while in the experiments by Feng et al a single plane

of higher resolution data is used.

Further to this, the brain age prediction models' performance is studied with respect to

identifying prediction outliers. Firstly, as was shown in Chapter 7, the HBAPS test data

contained the samples a�ected at the preprocessing stage. As a results of preprocessing, a

number of samples have smaller overall data size compared to most of the samples. These

samples also have much higher associated prediction error and the features identi�ed in

saliency maps related to predictions are not highlighting any biologically relevant regions.

Example of the HBAPS test data sample a�ected by the preprocessing stage is repeated in

Figure 8.15 for convenience. Table 8.4 and Figure 8.2 present the performance of the SENet-

MR and SENet-OR models on whole HBAPS test data with the samples corrupted by

preprocessing being excluded. As expected, the models' measured performance improved -

MAE decreased by 12.8% and 7.4% for the SENet-MR and SENet-OR models respectively.

After removing the corrupted samples, it can also be observed that the predictions of
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SENet-OR model are more concentrated within the 95% con�dence interval of the linear

�t than the SENet-MR model predictions.

Figure 8.15: Example of the HBAPS test data sample a�ected by the preprocessing
stage. Saliency maps are shown for the sample with the largest prediction
error (60.2 years) in the HBAPS testing data using the SENet-MR model.
The maps named ordinal are produced by applying ordinal saliency mapping
technique described in Section 7.3.2 with corresponding method. These maps
are produced using the SENet-OR model and SENet-MR model is used oth-
erwise. The leftmost column shows corresponding planes in the input sample.
Three planes are presented from the samples as resulting saliency maps are
less informative compared to the samples with smaller associated prediction
error.

Finally, the robustness of the SENet-MR and SENet-OR models' predictions was exam-

ined using the independent IoPPN dataset, which is more representative of the variability

expected in a true clinical dataset. For the testing purposes two subsets of the IoPPN

dataset consisting of only the samples acquired using T1-weighted sequences are used.

One subset consists of only healthy and one consisting of only diseased subjects as detailed

in Section 4.2.2. The MAE of the SENet-OR model was larger compared to the SENet-

MR model on both healthy and diseased subjects from the IoPPN dataset by 46.0% and

37.9%. The increase in MAE for both brain age prediction models can be explained by the

fact that the samples in the IoPPN dataset are of varying quality and were acquired us-
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ing di�erent imaging protocols while the HBAPS training data consisted of data acquired

using research study protocols which are mostly based on the Alzheimer's Disease Neu-

roimaging Initiative (ADNI) protocol. It should be noted that for both the SENet-MR and

SENet-OR models the MAE was lower on diseased subjects compared to the healthy ones.

This is due to the fact that for many samples acquired from diseased subjects prediction

error was as low as for healthy subjects. This highlights the need of collecting longitudinal

datasets as this would allow to benchmark the changes of individual subjects with respect

to their previous scans taken in younger age and/or before the disease. This also supports

the importance of collecting longitudinal samples in clinical practice for using brain age

assessment as a biomarker for neurodegenerative conditions. MAE was lower on diseased

subjects also possibly due to the fact that there are more diseased subjects in the IoPPN

dataset compared to healthy ones.

In Figure 8.5 average prediction error is presented for each age label in the IoPPN

dataset for the SENet-MR and SENet-OR models and both healthy and diseased subjects.

In Chapter 5 it is shown that the brain age prediction models underperformed on the

youngest and the oldest subjects in both whole HBAPS test data and HBAPS test data

containing only independent subjects. As can be observed in Figure 8.5 on a larger but less

"clean" dataset such as the IoPPN dataset these e�ects are more apparent for the healthy

and diseased subjects. The in�uence of variability in a dataset may be also observed in

the box plot of the SENet-MR and SENet-OR predictions in Figures 8.6 and 8.7. From

Figures 8.6 and 8.7 it can be noted that the SENet-OR model's predictions were also more

tended towards the largest true age label available in the HBAPS training data used for

training the SENet-OR model. This may indicate that the SENet-OR model may be biased

towards older subjects and further investigation of the model is needed.

Performance of the SENet-MR and SENet-OR models on the IoPPN dataset could also

be in�uenced by the biases introduced by the HBAPS dataset used for training of the mod-

els. HBAPS dataset consists of healthy controls determined mostly by their self-assessment

and self-reporting of their conditions. Such datasets are also acquired by collecting data

from volunteers. As the result such datasets are not representative of whole population.

Among older subjects healthier subjects tend to volunteer in the research studies as this

requires physical and mental e�ort. This also may introduce a bias. For instance, older

subjects with mobility di�culties are less likely to participate even they are cognitively
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not a�ected by ageing. As the result subjects contained in the research datasets contain

more homogeneous subjects compared to population.

Comparison of the features extracted from healthy IoPPN subjects' samples and the

HBAPS test data samples with the same associated prediction error shows that these

highlight the same regions, as shown in Figures 8.8 � 8.13. Therefore, the brain age

prediction models presented in this thesis appear to be capable of extracting consistent

(and therefore likely relevant) age-related features from the samples of variable quality.

For comparison in Figure 8.14 saliency maps from a T2-weighted sample from the

IoPPN dataset are presented. The features are presented in comparison to those describ-

ing the corresponding interval in the whole brain population-wide pro�le extracted using

the DEC method. The clear di�erences in the features extracted from a T2-weighted sam-

ple show that variability of acquisition sequences has a�ected brain age prediction models'

performance, but also that such di�erences can potentially be detected and used as part

of a quality control process to exclude outliers, or highlight them for further manual inves-

tigation.

In conclusion, it should be noted that further work is needed to understand the reasons

for models' performance on clinical datasets. Firstly, it would be needed to investigate the

tendency of ordinal model's prediction towards the largest true age label present in the

data used for training. The SENet-OR model uses K− 1 binary classi�ers (K is a number

of true age labels in training data) after the feature extraction step in order to predict brain

age as described in Section 5.3.2. Saliency mapping can be used in order to identify the

bias by constructing saliency maps separately from each binary classi�er and comparing

the di�erences. Possible existence of the bias in ordinal model may also be investigated by

deconvolutional network approach introduced by Zeiler and Fergus [47]. Deconvolutional

network approach can be used to identify which of the binary classi�ers contributed the

most to accurate predictions. As the result of this investigation, a modi�cation to the loss

function could be introduced to reduced the bias towards older age labels. For example,

in Section 5.3.2 it is described that all binary classi�ers were equally contributing to the

loss during the training. Investigation of the binary classi�er could allow to introduce non-

equal weighting for reducing the bias. Secondly, information about the diseased subjects

could be obtained in order to understand the brain age prediction models' performance on

the samples acquired from these subjects. This could allow to understand why for many

diseased subjects prediction error was as low as 0. Thirdly, testing the models described in
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this thesis on clinical dataset containing longitudinal data would also bene�t the analysis

of such models' ability to be used as a biomarker in clinical setting. In such analysis the

data used for a single subject could be collected also at younger ages and/or before the

disease onset.

Nevertheless, I have shown that it is possible to use the models described in this thesis

on clinical data if data quality control measures are in place, i.e. the acquisition sequences

are the same as the one used to acquire the data for training. Therefore, there is also need

for further research into the methods for outlier detection. Saliency maps produced for

brain age predictions represent useful candidate for outlier detection method.
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Conclusion

This thesis has presented novel methods for the analysis structural Magnetic Resonance

Imaging (MRI) data with the aim of understanding human brain ageing. A deep learning

model is developed for the purpose of brain age prediction. The methods are proposed to

extract whole brain population-wide ageing pro�les and understand the features describ-

ing them. In this thesis clinical applicability of brain age prediction algorithms is also

discussed. In the �nal chapter, the key contributions of this thesis are summarised and

their limitations are discussed along with possible further developments.

9.1 Key contributions

Chapter 4 describes �rst contribution of this thesis - compiling a dataset of structural

MRI scans from publicly available data. The Healthy Brain Ageing from Public Sources

(HBAPS) dataset consists of 10,878 MRI T1-weighted scans acquired in healthy subjects

was constructed from 34 publicly available datasets with the age range from 17 to 96 years

of age.

The second contribution is developing deep ordinal regression model for predicting brain

age from MRI scans in order to take into account accumulative nature of brain ageing.

Ordinal regression model was compared to the metric regression model also implemented

and trained. Ordinal regression model achieved the lowest Mean Absolute Error (MAE) on

MRI data with minimal preprocessing data up-to-date in comparison to existing literature.

The model's performance was also not a�ected by the fact that the training data used was

compiled from 34 data sources.
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Further in Chapter 6 the models for brain age prediction are used for extracting a

population-wide brain ageing pro�les. For this purpose two existing methods (the methods

of Deep Embedded Clustering (DEC) and Preference Ranking Organization METHod

for Enrichment of Evaluations (PROMETHEE) II) were applied and two new method

were developed (the method considering the distribution of predictions of the brain age

prediction model and ordinal DEC). All the pro�les obtained agree within the accuracy

achieved by the brain age predictions models suggesting that they are all being driven

by the same underlying brain features, and again suggesting that these features may be

biologically meaningful.

In Chapter 7 age-related features describing the whole brain population-wide ageing

pro�les are obtained and this another contribution of this thesis. For this purpose, the age-

related features were obtained using �ve existing saliency mapping methods and in order

to take into account accumulative nature of ageing the methodology for saliency mapping

ordinal models was developed. Among existing saliency mapping methods the methods

of guided backpropagation, Gradient Class Activation Mapping (Grad-CAM) and guided

Grad-CAM were shown to be usable for studying brain ageing features from MRI data with

minimal preprocessing. Average maps derived for the whole brain ageing pro�les extracted

in Chapter 6 are of biological signi�cance as features are in accordance with previous

research and existing knowledge on biology of brain ageing. Saliency maps produced using

proposed methodology for saliency mapping for ordinal models also highlighted biologically

interpretable features.

In Chapter 8 �nal contribution of this thesis is discussed, i.e. examining generalisability

of the models for brain age prediction presented in Chapter 5. This is studied by measuring

their performance on test data of the HBAPS dataset with reduced resolution. Further, the

methods discussed above are applied to a clinical dataset. For this purpose independent,

locally collected, dataset, in which two subsets of Institute of Psychiatry, Psychology &

Neuroscience (IoPPN) test data are used - one consisting of healthy subjects and one from

diseased ones.

9.2 Limitations of this work and further developments

First, limitations of this work originate from the limitations of the HBAPS dataset. The

HBAPS dataset is highly unbalanced as 50% of the samples lie in the range from 17 to 30

years of age and there are few samples available for the samples labelled to be 17 years old
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and for the samples labelled to be older than 82 years old. The samples labelled to be of age

36 to 47 years are also underrepresented. In order to achieve more uniform data distribution

more data should be added to the dataset for the age labels which are underrepresented.

As this may be problematic to use MRI data collected from real subjects, especially in older

subjects, data augmentation should be used. Recently, Generative Adversarial Network

(GAN) was proposed for MRI data augumentation and head MRI data in particular (for

example the work by Kazuhiro et al [251]).

Improving the HBAPS dataset would improve the quality of brain age prediction mod-

els. The brain age prediction model can also be further developed by improving their

architecture. For this purpose the deconvolutional network approach by Zeiler and Fer-

gus [47] can be used to understand which network parts contributed the most to accurate

predictions and what have they detected at each step during a forward pass. Then more

educated choice of improved architecture would be possible. This would allow to remove

unnecessary layers and training would be less time-consuming. Then more extensive net-

work hyperparameter optimization would be possible for further results improvement.

Data augmentation would also allow to validate and improve the whole brain

population-wide ageing pro�les as in this thesis a cross-sectional dataset is used. Lon-

gitudinal data samples can be �rst assigned to the ageing intervals using a pretrained

method and the samples' true labels can then be compared to the pro�les obtained using

the HBAPS test data. In order to further explore population-wide e�ects male and female

pro�les could be extracted separately. Population-wide e�ects could also be explored fur-

ther by expanding the study cohort. Main methodological contribution needed further to

develop extracting brain ageing pro�les is �ne-tuning training the ordinal DEC method

proposed in this thesis to be trained on MRI data after successfully implementing it on

synthetic data. Advantage of DEC-based method is that once the method is trained it

can be used to analyse new samples to study in which pro�le interval they belong. The

ordinal DEC method proposed in this thesis allows to also take into ordinality of samples

in problems such as brain age prediction.

Extracting age-related features for the ageing pro�les extracted also had a number limi-

tations. The features extracted resulted in asymmetrical maps. In order to understand this

property of the features extracted computing separate average maps for male and female

subjects and left- and right-handed subjects would be needed. Another important limita-

tion is that the pro�le features extracted using the method for ordinal saliency mapping
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proposed in this thesis did not reveal important features to be increasing in intensity with

age. This is not in accordance with the feature pro�les extracted using existing saliency

mapping methods and known biological course of structural brain changes. Understanding

the cause of this discrepancy between the features related to ageing pro�les is out of scope

of this thesis. Therefore, further work is needed to understand whether these di�erences

are explained by the properties of the ordinal saliency mapping methodology, which need

to be studied, or the properties of the ordinal brain age prediction model.

Further work is also needed to make the brain age prediction models described in this

thesis usable in clinical environment. This would need further research into the methods of

outlier detection, i.e. identifying input samples which are a�ected either at the acquisition

or preprocessing stages. In this thesis it was shown that saliency mapping methods are

good candidate for developing outlier detection methods.
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