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Abstract

Localisation microscopy enables imaging beyond the Abbé resolution limit and is based

on detecting randomly activated single molecules in a sequence of images. A super-

resolution image is then reconstructed using these localisations. Analysis of these points

can provide quantitative information about number, shape, and size of features. This

thesis presents novel approaches to clustering analysis, identification and characterisation

of specific features with a known shape, and confirming the presence of clusters in the

sample.

Clustering analysis can be used to both detect clusters, and to measure their size and

density. Analysis of localisation microscopy images of biological samples is challenging

because clusters are usually small and surrounded by relatively high noise. Here, the

Rényi divergence, which can be adjusted to the properties of the data was used. This

method provides a more precise measurement of the cluster size, than the commonly used

Ripley’s K function.

Biological samples are often highly structured, and the distribution of proteins within

these structures is of great interest. In this work a type of adhesive structure called

podosomes which consist of an f-actin core surrounded by a protein ring was investigated.

Custom written software identified podosome rings in images using a circular model and

calculated the relative positions of different ring proteins. This information was used to

build a model of podosome ring composition.

The appearance of podosome rings imaged with localisation microscopy depends on

the sample preparation and image analysis techniques used, sometimes appearing strongly

clustered and sometimes continuous. To attempt to distinguish whether the apparent
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clusters were due to fluorophore reappearance, a microscopy system was developed to

measure fluorescence resonance energy transfer with anisotropy.

The different analysis methods presented in this thesis illustrate the ways in which

data analysis and experimental methods can provide a better understanding of a biological

system.
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Chapter 1

Introduction

1.1 Light microscopy and Fluorescence

The microscope is an optical system used to investigate objects smaller than easily ob-

servable with, for example human eye. The emergence of microscopes was made possible

by improvements in lens production in the 17th century. Robert Hook presented the first

known etching of the microscope and extensive research report in Micrographia (1665).

Many of the first microscopes (including Hooke’s) were constructed using only two lenses:

a magnifying lens and an eye piece lens [Hooke, 1665; Lipson et al., 2011]. The micro-

scopes we use today still have these two basic components, with addition of other optics

elements for illumination and imaging control.

Microscopes enable imaging of small structures and samples such as cells. However,

many biological materials are largely transparent to light from the visible spectrum. There

are two most commonly used types of methods used to overcome this problem are dark

field microscopes (phase contrast and DIC) and marking the area of interest with stains

or fluorophores. The phase contrast microscopy is based on a contrast enhancement by

detecting phase change and displaying it as a variation in brightness. In phase-contrast

microscopy the phase change is caused by the difference in the refractive index in the sam-

ple. Structures with high refractive index bend light to greater angles than objects with

lower refractive index. Higher refractive index can also introduce delay in the light passage

16
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introducing the phase shift. Thus, in wide-field microscope, light which passed through

the high refractive index area in the sample will be pass trough the collecting lens further

from its centre than light passing through the area with low refractive index [Zernike,

1942a,b]. The differential interference contrast microscopy (or DIC microscopy) uses a

shearing principle to image difference in light paths of the light rays passing through

the sample. This microscope detect the difference in the light path of two perpendic-

ularly polarised beams by combining them with a second prism and analysed using a

polariser [Oldfield, 2001]. The second method of imaging transparent samples is to in-

troduce non-transparent substances to the sample to mark areas or structures of interest

and different types substances can be used to mark different proteins or organelles in the

samples. These substances can either absorb light or absorb and emit light with different

wavelength, in process called fluorescence. Substances absorbing light are called stains

and are visible as a coloration of the portion of the sample, for example, haematoxylin

and eosin stains are used in histology to mark nuclei and cytoplasm in tissue sections.

Staining is mainly used in transmission light microscopy and electron microscopy.

Substances can emit light using energy of their excited electrons, in process called

luminescence. Luminescent light emission can occur from different excited states: fluo-

rescence, occurring from a singlet excited state and phosphorescence from a triplet state.

Singlet state has a pair of electron of opposite spin in excited and ground states. Thus, the

return of the electron from the excited state to the ground state is allowed and it occurs

very fast. An average lifetime of fluorophores is 10 ns. Conversion from the triplet state

is spin forbidden, because the excited electron has the same spin orientation as its pair

electron in the ground state. Consequentially, the phosphorescence occurs slowly (from

milliseconds to seconds, but it can have even longer lifetime) [Lakowicz, 2006]. Energetic

states of fluorescent materials can be described visually using a scheme called Jablonski

diagram. A simplified version of this diagram is shown in Figure 1.1.

Molecules exhibiting fluorescence are called fluorophores. Fluorescent molecules are

typically organic and contain aromatic amino acids. The first identified fluorescent pro-

tein, observed in 1845, was quinine. It can be excited with UV light and emits light

with wavelength 450 nm. Similarly other naturally occurring fluorophores, tryptophan
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Figure 1.1: The Jablonski diagram. An electron in the ground state can be excited to the

excited singlet state S2 or triplet state T1 (excitation marked with navy). Excited electron

looses its energy to vibrational modes of the molecule in process of internal conversion

changing excited levels from S2 to S1 or T2 to T1 (also called radiationless de-excitation –

marked with yellow). Excited electron on the state S1 or T1 can return to the ground state

by emitting light or radiative decay (heat – marked with magenta arrows). Light emitted

by electron in singlet state is called fluorescence (marked with green) or from triplet state

phosphorescence (marked with light blue). Image adapted from: [Janson, 2016].

and tyrosine can excited by the UV light and their emission spectra are similar (the dif-

ference being in the spectrum spread, the spectrum of tyrosine is slightly more narrow

than spectrum of tryptophan). Tryptophan is very sensitive to changes in its environment

and spectral shift was observed as a result of for example ligand binding, protein-protein

association or protein unfolding [Lakowicz, 2006].

However, most substances do not exhibit natural fluorescence (for example DNA or

lipids). To image such materials they have to be labelled with different kinds of fluorescent

markers. The mode of imaging (fixed or live cells) or available methods of introducing

fluorescent markers (for example immunostaining or method of introducing fluorescent

molecule) limit the possible number of fluorescent labels that can be used to mark a given

sample. The first major division of fluorophores is based on the way they attach to the

sample through antibody labelling or are directly encoded by the protein DNA. The first
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group uses antibody labelling, where a fluorophore is attached to an antibody, either to

a secondary (which later attaches to a primary antibody) or directly to the primary an-

tibody marking the structure of interest [Hyatt and Wise, 2001]. Organic dyes such as

fluorescein and rhodamine are popular labels, and can be conjugated to antibodies and

used for sample labelling and in immunoassays [Matveeva et al., 2004]. Other examples

of widely used dyes are the Alexa Fluor, ATTO, or Cy dyes, their advantage is photosta-

bility compared to fluorescein and rhodamine [Hyatt and Wise, 2001]. More specialistic

probes are: probes used for DNA binding (for example ethidium bromide, or EB Hedley

et al. [1983]), membrane probes (for example insoluble in water, DPH, 1,6-diphenyl-1,3,5-

hexatriene [Kaiser and London, 1998]), or chemical sensing probes (for example probe

Fura-2 can be used to monitor levels of Ca2+ [Williams et al., 1985]).

The other group of fluorescent markers are the fluorophores directly expressed by the

protein of interest. Probes such as are green fluorescent protein (GFP) can generally be

found in jellyfish and in some species of coral [Dickson et al., 1997; Lakowicz, 2006; Tsien,

1998]. GFP is built with a β-barrel structure surrounding a chromophore in its centre.

The most important feature of GFP is that the chromophore forms during folding of the

polipeptide chain, which means that genes coding the expression of GFP can be inserted

directly into the sample DNA [Tsien, 1998]. GFP will be then synthesized directly in

the cells (it is even possible to create whole organism expressing GFP, for example GFP

transgenic zebra fish [Gong et al., 2001]). GFP is known for its good photostability and

relatively high quantum yield (lower than the quantum yield of organic dyes, but high

for the fluorophores). Now, mutants of GFP are more commonly used, they have better

stability and longer excitation and emission wavelengths [Kremers et al., 2010]. Also, a

broader range of different fluorescent proteins is now available. Their emission maxima

ranges from 448 to 600 nm (see Figure 1.2).
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Figure 1.2: Different types of fluorescent proteins. Image retrieved online from: [Tsien,

2016].

1.2 Fluorescence microscopy

Fluorescence microscopy is a type of optical microscopy using fluorescent molecules nat-

urally present or introduced to the sample and detecting only fluorescent light. The

most basic fluorescence microscope system is composed of the light source (for example

xenon arc lamp or mercury lamp), the excitation filter (which only transmits the required

wavelengths of light), the beam splitter, the emission filter (blocking non-fluorescent

light) [Lakowicz, 2006; Lipson et al., 2011].

Fluorescence microscopy is an extremely relevant tool to study transparent biological

systems. Many kinds of biological and non-organic specimens remain nearly transparent or

display very few details in light microscopy despite any contrast method used. Therefore,

a way to make the structures of interest visible is to introduce a fluorophore to the sample

(or use an endogenous fluorophore) and induce fluorescence. Use of more than one type of

fluorophore to mark different components of the sample reveals more information about

the relative positions of proteins building the imaged structure.

Ability to label specific protein in the sample is the main advantage of the fluorescence

microscopy. However, the fluorescence microscopy has also limitations connected to the

properties of fluorophores such as their spectral overlap, especially important when using

two types of fluorescent probes at the same time due to possible cross talk, or quantum

yield, or the efficiency of the fluorophore (the ratio between the number of exciting and
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emitted photons, usually smaller than 100%). Another example of a problem is photo-

bleaching. Electrons excited during imaging can damage the fluorophore, for example

due to non-radiative decay. Photobleaching is the main factor limiting the time for which

sample remains fluorescent post excitation. Photobleaching can be reduced by using

photoprotective substances such as p-phenylenediamine, n-propyl gallate [Longin et al.,

1993], or as in this study the ProLong® Gold embedding medium. Living samples can

be affected by phototoxicity caused by heating or build-up of to toxic chemicals during

imaging. Additionally, attaching or introducing fluorophore to the sample may disrupt

the structure of the sample. This effect can be observed both in immunolabelling (due

to weight of the antibody linker) and using transfected fluorophores, for example, Alexa

Fluor 647 weights 1.2 kDa, an antibody can weight between 150-900 kDa [Sigma-Aldrich,

2017], and mCherry weights 28 kDa. These weights are comparable or bigger with the

protein weight, for example the proteins discussed later in Chapter 3, such as vinculin

(117 kDa), paxillin (69 kDa), and talin (270 kDa). Lastly, fluorescence microscopy allows

only observation of the fluorescently labelled structures, others areas will be invisible.

1.3 Diffraction limit and point spread function

The image of any object imaged with optical system is broadened by diffraction. The

diffractional broadening can be described by measuring the light intensity distribution

on the image. The measured intensity distribution of a point source is also called point

spread function (PSF). In the process of imaging, the object function is convolved with

the PSF giving the image. The PSF depends on the imaging system and determines size

of features distinguishable on the image.

There are three different methods of defining the diffraction limit such as Abbé limit,

the Rayleigh criterion and the Sparrow condition. The resolution of any light based

imaging device is related to the wavelength of light used in imaging process. To be able

to separate two objects the distance between them needs to be greater than the resolution

limit (also known as Abbé limit). The maximum possible in plane (lateral) resolution

which can be obtained using wide-field light based techniques is given by equation 1.1
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and the axial (z-) resolution by equation 1.2 [Abbe, 1873; Gould et al., 2009]:

Rxy =
λillumination

2N.A.
(1.1)

and

Rz =
2λillumination

N.A.2
, (1.2)

where R is resolution, λ is the wavelength of the illuminating light and N.A. is the numer-

ical aperture of the optical device. The relation between the theoretical resolution and

the emitted wavelength of light used for imaging is shown in Figure 1.3. Structures with
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Figure 1.3: Theoretical in-plane and axial resolution limit calculated for three different

objectives used in fluorescence anisotropy imaging system in our lab (see Chapter 4).

Numerical aperture is marked on the graphs with different colours: N.A. 0.4 with black,

N.A. 0.8 with red, and N.A. 1.49 with blue. a) Theoretical in plane resolution for different

wavelengths of light for three N.A values. b) Theoretical axial resolution for imaging with

different wavelength for three N.A. values.

sizes smaller than the diffraction limit will not be distinguishable in the final image [Lip-

son et al., 2011]. For a typical light microscope with an objective 1.3 N.A, the in plane

resolution will be around 250 nm and axial resolution around 600 nm. The main limita-

tion of this resolution limit definition is that it was defined for an infinite object and it
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requires that full diffraction image is collected. Thus this definition of diffraction cannot

be used directly for scanning techniques or structured illumination microscopy [Lipson

et al., 2011].

The resolution limit can also be understood using the definition proposed by Rayleigh.

The Rayleigh resolution limit definition uses angular displacement of two or more objects

to define resolution and it is formulated for incoherently illuminated objects. Consider

two points separated by distance x or angular displacement θ (see Figure 1.4).

The normalized intensity of the diffraction pattern for the aperture diameter D is given

as:

I(θ) =

[
2J1

(
1

2
k0D sinθ

)/(
1

2
k0D sinθ

)]2
, (1.3)

where J1 is the first order Bessel function. According to the Rayleigh definition, two

equally bright points are distinguishable when they are separated by at least a distance

for which the central maximum of the diffraction pattern of the first object does not

coincide with the first minimum of the diffraction of the second object [Rayleigh, 1879].

The Bessel function J1(x) has it first zero at x = 3.83:

1

2
k0D sinθ1 = πD sinθ1/λ (1.4)

The angle θ1 is the minimal possible angle between two light sources in order for them

to be distinguishable. Also, the θ1 � 1 thus:

θ1 = 3.83λ/πD = 1.22λ/D (1.5)

The Rayleigh criterion has one major weakness: it is only defined for diffraction pat-

terns with no-well defined zero points (or the zero points are positioned far from the

central maximum).

The Sparrow condition does not depend on the zeros of the point spread function but

on the relative intensities of the imaged points [Lipson et al., 2011]. This condition is very

close to the method human eye uses to distinguish two object. According to the Sparrow
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Figure 1.4: The Rayleigh resolution criterion. Top: Two point light sources distanced by

x imaged with a lens. The light sources are in range R from the lens. Bottom: Image of

two point light sources.

definition two objects are seen as separate when the sum of their point spread functions

has a central minimum. For two points with equal intensity values the θmin is given as:

(
d2I

dθ2

)
θ=θmin/2

= 0. (1.6)

What after differentiation of Bessel function gives:

θmin =
0.95λ

D
(1.7)

In wide-field fluorescence microscopy λ is the wavelength of emitted light.

The Sparrow criterion limits the resolution for very similar values to the theoretical

Abbé limit. It is however, about 20% smaller than the Rayleigh resolution limit (see

Figure 1.5). Additionally both Rayleigh and Sparrow limits do not provide a definition

of resolution. They also do no take into account the number of photons detected from

two adjacent sources. Both of those definitions also do not include a finite limit to the

resolution (due to diffraction of light).
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Figure 1.5: The Rayleigh and Sparrow resolution criterion for incoherently illuminated

objects. Individual intensities of the light sources are shown with dash lines. The resulting

intensity (marked with black line) for a)the Rayleigh criterion and b) the Sparrow criterion.

Image adapted from: [Lipson et al., 2011].

1.4 Higher resolution microscopy

Obtaining higher resolution is crucial while imaging biological samples. Most animal and

plant cells have dimensions from 1 to 100 µm, thus they can be imaged with practically

any microscope. However, the intracellular and molecular structures smaller than 200 nm

cannot be imaged without introducing new imaging methods improving the resolution

below the diffraction limit. For example microtubules have a diameter of 25 nm [Lampe

et al., 2012]).

Achieving better resolution in an optical system is possible by improving its quality,

using shorter wavelength or increasing the N.A. of the objective lens. The Abbé theoretical

limit does not take into account, for example, out-of-focus light in thick samples, thus the

actual measurable resolution is lower than the theoretical limit. This can be improved

using optical sectioning method (see Section 1.4.1). Similarly, the quality of the images

can be improved using objective lens with higher N.A. The N.A. of an objective depends

on the refractive index of the medium in which the lens is working and this limits the

maximum possible numerical aperture. The mismatch between the immersion media and

sample refractive indexes causes aberrations. In practice, objectives with N.A. around
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1.45 are usually used for fluorescence microscopy. Lastly, a shorter wavelength of light

can be used for imaging. Resolution of acquired image is proportional to the wavelength

of light used for imaging, as the shorter the wavelength used the higher the resolution

according to the Abbé’s equations (see Section 1.4.2).

1.4.1 Confocal microscopy and deconvolution

The first approaches for increasing the resolution of optical instruments were based on

improving the design and manufacturing the lenses and optical system design. The res-

olution (calculated with equations 1.1 and 1.2) is the maximal possible resolution. In

practice the achievable resolution is affected by system or sample imperfections such as

for example optical aberrations, inhomogeneous refractive index, low signal-to-noise ra-

tio [Schermelleh et al., 2010].

Two examples of techniques commonly used to improve the quality of images are

confocal microscopy and deconvolution [Murray, 2011; Schermelleh et al., 2010]. Confocal

microscopy is a scanning technique. A laser beam is scanned through the sample spot by

spot and the fluorescent light from every illuminated spot is recorded by a light detector.

The image of the whole sample is not readily available but has to be recorded point

by point and rendered using a software. There are two types of scanning modes: laser

scanning, using two mirror system to shift beam in the x and y directions and sample

scanning, where sample is placed on a moving platform [Minsky, 1961, 1988].

Additionally, confocal microscopy systems use a pinhole, placed in such a way that

only a certain amount (a majority) of light from the in-focus plane passes through the

pinhole. Generally, the pinhole is placed at a distance of a focal length from lens collecting

light from in-focus plane. The out-of-focus light focused by the same lens will have

its focal point in different place than in-focus light. Consequentially, out-of-focus light

will be blocked, what enables optical sectioning and 3D imaging [Minsky, 1961, 1988].

The sectioning power depends on the pinhole size, for pinholes smaller than a single

Airy disk it is constant and for pinholes bigger the sectioning power is weaker [Wilson

and Carlini, 1987; Wilson, 1995]. However, the major advantage of using the pinhole is
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resolution improvement. By restricting the size of the pinhole to block the higher orders

of the diffraction pattern [Lipson et al., 2011]. Thus, the in-plane resolution of a confocal

microscope is approximately given as:

Rxy =
1.22λemitted

2N.A.
, (1.8)

where the λemitted is the wavelength of the emitted light. On the other hand introducing

a small size pinhole means that the number of photons detected from the sample is going

to be lowered. This can lead to a poor image contrast [Murray, 2011]. Other limitations

of confocal microscopy are long image acquisition time, which affects its applications to

image live cell samples [Schermelleh et al., 2010].

Deconvolution uses information about the diffraction broadening to reconstruct better

resolution images. In this method standard fluorescence microscopy images are compu-

tationally processed to improve their quality using a guess or estimate of the imaged

structure shape and PSF of the optical system. This process can be designed to model

other factors affecting the quality of the image for example out-of-focus light. The compu-

tation usually is performed until the estimate of imaged object does not change between

computational iterations. This technique can be used to improve images of both fixed

and living cells, as it is performed after the images were collected. The limitations of

deconvolution are mainly caused by using a single model of the PSF for whole image

area. This can introduce bias or amplify noise. Deconvolution methods also require a

certain signal-to-noise ratio in order to correctly process an image (usually more than

S/N 20) [Murray, 2011]. Lastly, both the confocal microscopy and deconvolution methods

are able to significantly improve resolution and quality of images, but they cannot provide

better than the resolution given by the Abbé limit [Lipson et al., 2011].

1.4.2 Short wavelength microscopy

Achieving higher resolution is also possible by using shorter wavelength light, e.g. ultra-

violet, soft x-rays and electrons as the illumination. Ultra-violet microscopy is mainly used

as a non-destructive way of imaging in semiconductors or in photolithography. X-rays
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are great tool for crystallography (the diffraction pattern is used to examine the crystal

structure of material). X-ray crystallography can be used on bio-molecules, which can be

crystallised. However, using x-rays for microscope built with glass lenses is not possible.

There are no available x-ray lenses to built a conventional microscope system1 [Lipson

et al., 2011].

The most prominent example of short wavelength of microscopy is electron microscopy,

where imaging is done using an electron beam. The wavelength of the electron beam can

be controlled by adjusting the energy of electrons (according to the de Broglie formula

λ = h
mv

, where h is Planck constant, m is electron mass and v is the electron velocity).

Since electron wavelengths are very short (for example: 2.5 pm at 200 keV), electron

microscopy can image with resolution of 50 pm [Erni et al., 2009]. There are two main

types of electron microscopy: scanning electron microscopy also called SEM (creating

surface images) and transmission electron microscopy or TEM (creating 3D images).

The main drawback of electron microscopy is its high cost and demanding sample

preparation which can change the sample properties. Samples for transmission electron

microscopy (TEM) need to be fixed (no live cell imaging). Fixation is performed either

with chemicals or cryotechniques. It appears that the rapid freezing of the sample can

better preserve sample integrity and cause less artefacts in the samples. However, use of

frozen samples can lower the achievable resolution. Scanning electron microscopy (SEM)

requires a vacuum environment in the imaging chamber, thus samples need to be dehy-

drated and fixed before imaging and imaging of live cells is not possible. Dehydration

of samples can further change their internal structure. Also, transmission electron mi-

croscopy is not able to collect true 3D images of the sample – most of the microscopes

can rotate the sample only by 60-70◦ [Pawley, 2008; Wilson and Bacic, 2012].
1Refractive index for wavelengths of x-rays is smaller than 1 for every material used to construct

standard lenses. Collecting x-rays is possible using Fresnel plates and recently a microscope was build
using Fresnel plates acting as lenses.
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1.5 Super-resolution fluorescence microscopy

The term super-resolution microscopy refers to the techniques which can image (and

spatially resolve) structures smaller than the diffraction limit. In the last 20 years super-

resolution microscopy techniques using wavelengths of light from the visible region of

the spectrum were developed. These techniques overcome the diffraction limit by taking

advantage of a non-linear response from the sample. Super-resolution techniques can be

divided into two groups: far-field and near-field methods. Generally, far-field methods

use waves which can propagate indefinitely (if they do not get absorbed, scattered or

refracted by their environment). Near-field methods use waves, also called evanescent

waves, which are limited to very short distances from their source. Therefore, the main

difference between far-field and near-field is the propagation distance of the light. In

reality, near-field methods usually also collect some portion of far-field light [Betzig et al.,

1986; Lipson et al., 2011; Schermelleh et al., 2010]. One of the drawbacks of near-field

microscopy is their limitation to be used on flat, 2D samples (because of its depth of field

around 30-200 nm). In comparison far-field techniques have broader applications because,

for example, they can be used for 3D imaging. The most prominent examples of these

techniques are:

1. Stimulated Emission Depletion (STED) – two light beams of different shape which

are used for imaging and de-excitation of the sample (see section 1.5.2),

2. Structured Illumination Microscopy (SIM), which uses moiré fringes to extract high

resolution information from the images (see section 1.5.3), and

3. Localisation Microscopy which uses randomly excited single molecules, detects them

and reconstructs a super-resolution image (see section 1.5.4).

1.5.1 Near-field microscopy

There are two near-field approaches which can provide super-resolution quality for optical

imaging of biological material surfaces. The most basic near-field technique is called total

internal reflection fluorescence microscope (TIRF). This technique uses an evanescent
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wave to illuminate and excite only a thin (up to 300 nm in depth) portion of the sample

located on the coverslip. This helps to improve the signal-to-noise ratio of the image

(since only signal from the surface of the sample is detected). TIRF microscopy enhances

only the axial resolution to 60-100 nm which makes it a perfect tool for examining, for

example the cell surface [Axelrod, 1981; Lakowicz, 2006]. A more complex approach is

used by the second technique, near-field scanning optical microscopy (SNOM/NSOM).

It works without an objective lens, using a small aperture for scanning purposes (the

aperture can be, for example, be positioned inside a glass tip – see Figure 1.6). The

axial resolution is improved by use of an evanescent wave for illumination. The in-plane

resolutions is improved by recording only small portions of the evanescent wave and

depends on the proximity to the sample and diameter of the tip [Betzig et al., 1986;

Schermelleh et al., 2010]. This approach can achieve a resolution of 20 nm when imaging

surface structures [Betzig et al., 1986; Lipson et al., 2011; Schermelleh et al., 2010]. The

main drawbacks of SNOM are long scanning times, the fact that scanning, with a tip or

objective, has to be done practically on the surface of the sample (a very small working

distance around 3-10 nm for objective and depth of field limited to 200 nm for the tip).

Figure 1.6: Near-field Scanning Optical Microscopy operation principle. Left: Large image

of the aluminium coated glass tip used for imaging. Right: Microscope system. NSOM

microscope has a standard scanning microscope set up. Image adapted from: [Lipson et al.,

2011].
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1.5.2 STED

Stimulated Emission Depletion (STED) microscopy is a far-field fluorescence scanning

technique. It uses two beams, one to excite and the other to de-excite regions of the

sample. The first beam excites and images fluorophores and has a Gaussian profile. The

second, de-exciting, beam is depleting fluorophores from the parts of the region activated

by the first beam. The de-exciting beam has a doughnut shape (the intensity in the

middle of this beam is close to zero – see Figure 1.8). Both beams are aligned so that

they have the same center point (that is the exciting beam is placed in the middle of

the de-exciting beam) [Hell and Wichmann, 1994]. This composite beam scans across the

sample. The structures which are in the center of the beam are imaged and all the other

(off-centred) are de-excited by the doughnut beam.

The composite beam for STED imaging can be built using pulse and continuous lasers.

In pulse-laser systems the light emission of the two laser sources is coupled [Hell and

Wichmann, 1994]. A fluorophore has a number of different energy levels: L0, L1, L2, and

L3 levels (see Figure 1.7). The vibrational relaxations lifetimes (L1 → L2 and L3 → L0)

are significantly shorter than the lifetime of spontaneous emission (L2 → L3) (around three

times the magnitude). However, the L2 is a very dynamic process thus it is advantageous

to use a shorter, picosecond light pulse to stimulate emission. Additionally, the delay

between the two pulses should also be selected to enable a temporal discrimination of

the two pulses. It is the most advantageous to emit the depletion pulse immediately

after the excitation pulse, because then the level L3 would not be populated [Hell and

Wichmann, 1994]. The exact desired length of the exciting and depletion beams can

be calculated using the methodology presented, for example, in [Hell and Wichmann,

1994]. In practice, the exciting pulse is usually around 80 ps and is followed by 300 ps

de-exciting pulse. This causes the main drawback of this approach, the laser pulses have

to be synchronised (additionally pulse lasers are more expensive) [Willig et al., 2007]. The

second approach uses continuous wave lasers and is much more cheaper and easy to align

than the pulse laser system. The continuous depletion beam has a high intensity which

influence the rate of fluorescence decay. The fluorescent molecules in the depletion zone



CHAPTER 1. INTRODUCTION 32

Figure 1.7: Four singlet energy states of an excited fluorophore. Image adapted from: [Hell

and Wichmann, 1994].

have a shorter lifetime than those in the excited region [Willig et al., 2007]. The main

drawback of this method is the fact that the continuous depletion beam requires a higher

power than the pulse laser, which increases the bleaching rate.

The resolution improvement in STED microscopy is achieved due to the use of a beam

with a smaller effective point spread function (see effective beam in Figure 1.8). The orig-

inal STED design only allows the lateral resolution improvement and the axial resolution

remains diffraction limited. Typically, STED microscopy can achieve in-plane resolution

of 30-80 nm in biological samples [Hell and Wichmann, 1994; Lipson et al., 2011; Scher-

melleh et al., 2010; Willig et al., 2007]. Recently, z resolution was improved by creating the

depletion beam using xy and z components combined with a beamsplitter [Schmidt et al.,

2008]. They had also reported collection of optical sections distanced by 22 nm in the

z direction [Schmidt et al., 2008]. Another method of 3D resolution improvement is use

of a 2-photon laser as a excitation beam and standard STED depletion beam (2-photon

excitation limits the excitation spot z dimension) [Ding et al., 2010].

The disadvantages of STED microscopy arise directly from its set-up. The composite

beam illuminates, with high power, a larger sample area than is actually imaged (since

only central beam of the illuminated area is imaged). This leads to high rates of bleaching
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Figure 1.8: Stimulated Emission Depletion Microscope operation principle. Left: Exciting

beam and its intensity profile. Similarly to standard scanning microscopes, exciting beam

induces fluorescence in the area of the sample it illuminates. Middle: Beam stimulation

depletion and its profile - this beam deactivates all the molecules apart from the centre

point. There will be no fluorescence registered from area illuminated by this beam. Right:

Effective exciting beam – only fluorescent light from the the effective exciting beam is going

to be registered. Image adapted from: [Bio-nanoscopy Lab, 2015].

and phototoxicity because the same areas are excited more than once. Also, building and

maintenance of a composite laser system can be costly [Gitai, 2009]. Lastly, STED is a

scanning microscope thus taking an image requires time, which is an disadvantage when

imaging live samples [Schermelleh et al., 2010].

1.5.3 SIM

Structured Illumination Microscopy (SIM) is based on projecting a light pattern into the

sample (in the form of fringes). A SIM microscope is usually built using a wide-field

microscope with a grating pattern inserted into the illuminating light path (before the

sample). The grating pattern is usually a plate with a sinusoidal high frequency spatial
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pattern (it can also be created using interference of two or more beams). Light going

through the grating forms an illuminating pattern on the sample. The image captured

by the camera contains the grid pattern and the sample images (see Figure 1.9). Then

the illumination pattern displayed on the sample is translated or rotated (at least three

times [Neil et al., 1997]) and followed by image acquisition. Using the data collected in the

series a final image with enhanced resolution can be reconstructed using a methodology

presented, for example, in [Neil et al., 1997]. This method increases the resolution in both

the lateral and axial dimensions, and allows the creation of 3D images [Gustafsson et al.,

2008; Neil et al., 1997].

For further resolution enhancement saturation of the fluorophores can be used [Gustafs-

son, 2005; Heintzmann et al., 2002]. In a typical fluorescence event the intensity of emit-

ted light is linearly proportional to the intensity of emitted light. However, in case of

saturation the intensity of emitted light will also depend on the local concentration of flu-

orophore [Heintzmann et al., 2002]. This fact is used in SSIM, where the sample is imaged

with sinusoidal illuminating pattern with intensity equal or greater than the saturation

threshold, then the emission rate (per average fluorophore) is not sinusoidal and contains

higher harmonics. Use of higher harmonics enables acquiring higher resolutions. Satu-

rated structured illumination (SSIM) can achieve resolution about 50 nm [Gustafsson,

2005; Li et al., 2015; Lipson et al., 2011; Schermelleh et al., 2010].

The disadvantages of SIM microscopy are mostly caused by out-of-focus light. The

shot noise caused by the out-of-focus background is increased. The signal registered for

the illumination frequencies close to the highest recordable frequency is significantly re-

duced [Mertz, 2011], which can lead to loss in image quality. Lastly, the optical sectioning

power for imaging thick samples is much smaller for SIM than for example for confocal

systems [Chasles et al., 2007; Fu et al., 2013]
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Figure 1.9: Structured Illumination operation principle. a) Object image with high fre-

quency information. b) Vertical grid pattern with known spatial frequency. c) Image of

an object and overlaid grid pattern with visible moiré fringes. This beat pattern occur

at the spatial differences between spatial frequency of the pattern and spatial frequency

components of the sample. The resulting frequency can be low enough to be seen by eye or

imaging system, even if it was invisible before. High frequency components can be restored

from the moiré pattern. Image adapted from: [Zeiss, 2015].

1.5.4 Localisation Microscopy

Localisation microscopy is a super-resolution technique which uses information about po-

sitions of single molecules in the sample. Localisation microscopy is usually referred to

using one of the acronyms: STORM (Stochastic Optical Reconstruction Microscopy) [Bet-

zig et al., 2006] or PALM (PhotoActivated Localization Microscopy) [Hess et al., 2006].

Localisation microscopy is based on the principle of single molecule detection [Betzig et al.,

2006; Hess et al., 2006; Rust et al., 2006]. A single molecule can be localised with a higher

precision than the resolution of an imaging system. Usually, fluorescent molecules in a

sample have too high a density to localise individual molecules when they are emitting

light at the same time. Thus, photoswitchable/photoactivable fluorescent molecules in

the sample are randomly switched between bright and dark state with laser light [Hess

et al., 2006; Rust et al., 2006]. Consequently, only a limited, random number of molecules

are emitting light in each step, and to localise a high proportion of fluorescent molecules
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present in the sample a long sequence of images is required (as shown in Figure 1.10).

The final image is reconstructed using information about localisations from each image

in the series.

Figure 1.10: The localisation microscopy imaging principle using randomly activated dyes.

In each round a random set of fluorescent molecules is imaged. Then sequence of images

is analysed to recover positions of single molecules. The super-resolved image is then re-

constructed using list of single molecule localisations. Image adapted from: [Photometrics,

2014].

Localisation techniques, such as PALM and STORM, require fluorescent molecules

which can be switched between emitting and non-emitting states with laser light. Theo-

retically any photoswitchable/ photoactivable molecule is suitable for localisation imaging.

However, in practice the fluorophore needs to fulfil three conditions:

1. The photobleaching rate needs to be equal or higher than the activation rate (the

activation rate can be controlled by adjusting the laser power).

2. The typical number of detected photons from one molecule in one acquisition needs
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to be high enough to provide good localisation precision.

3. The background and inactive state fluorescence needs to be lower than the active

state fluorescence [Shroff et al., 2007].

Even if these conditions are met, the resolution of the reconstructed images is limited by

the ability to localise each fluorescent molecule in the sample [Rust et al., 2006]. The

accuracy of an localisation is practically limited by the sample and raw images quality.

Samples for localisation microscopy has to have an optimal labelling density. Such density

would allow to accurately image the sample structure, and at the same time would not

be too high to produce images with multiple fluorophore appearances in close proximity.

Additionally, fluorescent labelling can cause additional artefacts called false positives and

negatives, where the fluorescent marker is attached to a wrong structure or is missing from

the structure of interest. Lastly, the the noise in the raw images is the factor limiting the

accuracy of localisation. The noise is usually caused by the shot noise of the camera, high

density of labelling (fluorescent labels attached to wrong structures or free fluorophores

in the sample or in the buffer).

The super-resolution image is reconstructed using a software package. Positions of

imaged molecules can be calculated by fitting a function (Gaussian or theoretical PSF) to

the observable PSFs of each of the molecules or centroiding algorithms. The centroiding

algorithms use a weighting method: the centre is found by finding the "centre of mass"

of the intensity of pixels. The calculation used for this process are exactly the same as,

for example, for finding a centre of mass of a physical object. These methods suffer from

slightly longer running time than the centroiding methods (for example analysis of 20000

frames with ThunderSTORM centroding algorithm takes around 7 minutes, when analysis

of the same data set using Gaussian fitting takes between 15 to 24 minutes [Hirvonen et al.,

2015]). However, they are suppose to provide better accuracy of results, because are less

influenced by background [Small and Parthasarathy, 2014].

Thus, the accuracy of a single localisation is really limited by the number of photons

emitted by a fluorophore. Each molecule is localised with uncertainty dependent on num-

ber of photons detected and can be found using an approximated equation 1.9 [Thompson
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et al., 2002].

σ2
x =

r20 + q2/12

N
+

8πr40b
2

q2N2
, (1.9)

where r0 is the standard deviation of the PSF, N is the total volume of photons collected

during the acquisition, q is the size of the pixel in the image, and b is the background

noise per pixel. According to the equation 1.9, better localisation of a molecule is a result

of higher photon count or lower background. However, the main pitfall of this approach is

that it relies on the least-squares criterion, which is best suited for a Gaussian distributed

processes [Ober et al., 2004]. Another method of calculating the localisation accuracy had

been proposed by Ober et al. [2004]. This method was defined using a statistical measure

of a Fisher information matrix to measure the amount of information that single molecule

localisations provide about the unknown structure of the sample. The Ober localisation

accuracy limit is defined as:

δ =
λem

2πna
√
γAt

, (1.10)

where A is the photon emission rate of a single molecule, γ is the optical efficiency of

the detection system (γ ∈ [0, 1]), which quantifies the probability that an emitted photon

is going to be detected by the detector in acquisition time t. This accuracy testing

method is called fundamental because it does not take into account any effects hindering

the resolution such as pixelation or noise occuring in experimental systems [Ober et al.,

2004].

Depending on the type of fluorescent molecule used one can divide localisation mi-

croscopy methods into specific categories. PALM uses photoactivable dyes (for example

paGFP, pa-mCherry etc.) [Betzig et al., 2006] where STORM uses photoswitchable dye

pairs (for example Cy3-Cy5) [Rust et al., 2006]. Spectral Precision Distance Measurement

(SPDM) relies on high precision localisation usually of two fluorescent dyes (with differ-

ent colour) and measuring their fluorescent lifetime [Lemmer et al., 2008]. PALM with

Independently Running Acquisition or PALMIRA, in which due to use a rapid blinking
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fluorophores (e.g. rsFastLime, derived from Dronpa) there is no need for an activation

step [Egner et al., 2007]. Ground State Depletion and Individual Molecule rerun (GSDIM)

uses fluorophores which are more likely to remain in dark, non-emitting state after activa-

tion (for example cross to the triplet state) [Fölling et al., 2008]. directSTORM, usually

shortened to dSTORM, uses similar principle: single fluorescent dyes, for example Alexa

Fluor 647, are directly activated (in contrast to STORM which uses dye pairs). Upon

activation small amount of the fluorescent molecules are going to emit light, when a large

fraction of fluorophores will remain in long lived dark state [Heilemann et al., 2008].

However, localisation microscopy was originally established as a 2D technique, a num-

ber of approaches enable 3D imaging. All of the available 3D localisations methods take

an advantage of the z-dependency of the detected PSF of a single molecule. In biplane

illumination PALM the sample is illuminated at two z-positions, above and below the

plane in-focus. The image detected from the separate z-planes can be used to reconstruct

the actual z-position of the single molecule [Juette et al., 2008]. This approach achieves

an axial resolution of 75 nm and has imaging depth of 1 µm. Other 3D method uses

an astigmatic lens to distort the PSF of a single molecule. The detected PSF is ellipti-

cal and by analysing its x and y dimensions, the exact z position can be then recovered

computationally. The astigmatic method provides an axial resolution about 50 nm for

depth of 600 nm [Huang et al., 2008]. The third approach modifies the shape of PSF to a

double-helix using a phase mask (placed in the detection path) [Pavani et al., 2009], called

double-helix PSF imaging or DH-PSF, or using a glass wedge in technique known as phase

ramp imaging localization microscopy (PRILM) [Baddeley et al., 2011]. The PSF shape

in both of cases has a similar appearance with a lobe sections forming a double-helix.

The relative position and orientation of the sections of the PSF can be used to compute

the axial position of a single molecule, with resolution of 40 nm (depth of field up to

2 µm) [Baddeley et al., 2011; Pavani et al., 2009].

The disadvantages of localisation microscopy are mostly connected to the image ac-

quisition. A super-resolution image in localisation microscopy is reconstructed using long

sequences of images. Acquiring an image sequence takes time, which is a major challenge

when imaging live samples. Long acquisition times can also lead to drift artefacts in
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the reconstructed image. Another drawback of collecting long sequences of data is their

size. Also, super-resolution image reconstruction requires specialised programs and takes

time [Soeller and Baddeley, 2013]. Imaging samples stained with carbocyanine dyes (for

example Cy5, Alexa Fluor 647), generally requires use of an oxygen scavenging buffer,

which has an acidic pH that damages biological structures over time [Endesfelder et al.,

2011].

Lastly, localisation microscopy can be used along with other super-resolution tech-

niques to collect more complete information about the imaged sample. Generally, local-

isation microscopy provides the highest resolution improvement. However, it performs

worse than SIM or STED in other areas. For example imaging of live cell samples is

relatively easy and fast with SIM microscopy, possible using high density activation ap-

proaches for localisation microscopy, but nearly impossible using STED. Additionally,

localisation microscopy and STED require dedicated dyes with optimal properties (e.g.

long lived dark state for localisation methods or activation spectrum enabling high deple-

tion rate for STED), while SIM can be performed with any fluorescent labels. Another

major difference in performance of these techniques is an ability to image more than one

component of the sample. SIM microscopy can image more than two components and is

only limited by time and available light sources. In localisation microscopy and STED

usually imaging up to two different tagged structures is possible, but beyond two it is

challenging because it is hard to find fluorophores which would have good performance

characteristics. Lastly, 3D imaging is possible using all three techniques. STED and

localisation microscopy can provide similar resolution improvement (around 30 nm axial

resolution [Ding et al., 2010; Schermelleh et al., 2010; Schmidt et al., 2008]). 3D-SIM

usually has resolution of 250-300 nm [Schermelleh et al., 2010].
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1.6 Summary

Optical microscopy is a vital tool for examining small features in organic and inorganic

samples and is a essential tool for imaging of biological samples. However, many biological

structures are transparent in visible light. Thus, the invention of fluorescence microscopy

was important for biological imaging. Today, transparent structures are tagged with

fluorescent dyes and imaged with light from the visible spectrum. This enables imaging

of only the areas of interest, what with use of different types of fluorescent tags helps

to study physiology and dynamics of biological processes. The next important milestone

was overcoming the diffraction limit with methods called super-resolution microscopy.

Super-resolution microscopy enables imaging in sub-cellular level of live and fixed cells

and provides data for further qualitative and quantitative analysis.



Chapter 2

Clustering analysis for localisation

microscopy

2.1 Clustering: Introduction

Cluster analysis is a mathematical analysis method looking for groups of points in the

data. Depending on the chosen criteria the points can be grouped in a cluster due to

be similar position in space, sharing the same species, visual characteristics or function.

In localisation microscopy the structure of interest is reconstructed using single molecule

localisations and usually the features of interest appear as high density areas. The shape

of such aggregation can be different, for example clusters formed on the cell membrane

can be circular or elongated. Additionally, the distribution of points in clusters can also

differ depending on the type of structure or sample preparation. For example, clusters

can have a uniform distribution with sharp cut-off at the edge, as for example, for dis-

cussed later in this chapter DNA origami plates, Gaussian [Sengupta et al., 2011], or

Lorentzian/Cauchy [Pertsinidis et al., 2013]. Thus, the performance of our clustering

method will be tested on uniform and Gaussian circular clusters, and uniform rectangular

clusters.

Clustering analysis was also used for data analysis in other fields, for example, physiol-

ogy, biology, statistics, pattern recognition, information retrieval, and data mining [Stein-

42



CHAPTER 2. CLUSTERING ANALYSIS 43

bach et al., 2003]. One of the the first examples of the use of clustering analysis is

creation of taxonomy of animals by Carl Linnaeus1. More recently cluster analysis has

been famously used to analyse gene data in order to look for clusters of genes with similar

functions [Eisen et al., 1998; MacKay, 2003].

Analysis of localisation microscopy data was previously attempted using a number

of approaches. This chapter will discuss the basic operation of four most prominent

examples of clustering analysis used for localisation microscopy data. The most broadly

used method for this type of data is Ripley’s functions (see section 2.2.1), which can

detect clustering by comparing the data distribution with the random distribution. The

other three clustering methods, which are going to be discussed, are Density-Based Spatial

Clustering ANalysis (DBSCAN), which is based on detecting differences in density (see

section 2.2.2), k-means, where the data is partitioned into k clusters (see section 2.2.3),

and hierarchical clustering, which groups the data using a definition of similarity (see

section 2.2.3). Lastly, the strength and weaknesses of these four methods will be discussed

and compared with our method.

The main part of this chapter is dedicated to our method of clustering analysis based on

the Rényi divergence. The Rényi divergence uses a similar principle to Ripley’s functions

(see section 2.4). It compares the data distribution to the reference distribution (for this

study the reference distribution was selected to be a clustered distribution). However, its

main advantage arises from it robustness to noise due to a scaling coefficient, called α.

The scaling coefficient promotes clustered areas (with high density) over the noise (low

density areas, see section 2.6.2). Thus, selection of an α coefficient is vitally important for

accuracy and precision of the cluster size measurement and will be discussed extensively

later (see section 2.6.4).

The last part of this chapter presents results of cluster analysis performed with our

method and Ripley’s H function of simulated and microscopy datasets. The simulated

datasets were created to be similar to clusters present in the cell membrane (see for

example, [Owen et al., 2013; Williamson et al., 2011]). Because the exact shape and
1Linnaeus divided all living animals into six classes - clusters - of mammals, birds, amphibians, fish,

insects, and worms.
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distribution of points in these clusters is still unclear, two types of clusters were simulated

uniform and Gaussian distributed circles (with radius 8 or 16 pixels, see section 2.6.4).

Noise was also added to simulated data sets with varying density. For purpose of this

study the noise was modelled to originate from the false positive localisations (usually

the false positive localisations can arise from the free floating dye, non-specific binging

or cross-talk) and had uniform random distribution. Lastly, localisation microscopy data

of rectangular DNA origami plates were analysed (see section 2.6.5). The DNA origami

plates were selected because the information about their size is readily available. However,

the Rényi divergence and Ripley’s functions are not optimal tools to be used for non-

circular clusters (because they use a circular shape to measure clustering). Thus, both

methods were also tested on simulated data to account for their behaviour with different

shaped clusters.

It should also be noted that a number of images of simulated data in this chapter was

blurred to improve the visibility. This process was performed using a GIMP tool, called

Gaussian blur (symmetrical 5 pixel). Also, the most of the discussion of the clustering

in this chapter is performed for one type of cluster (namely disc clusters with radius of 8

pixels). Similarly, the Rényi divergence was calculated using a scaling coefficient α=70.

The same values were used intentionally for consistency and simplicity. Moreover, α=70

is a value high enough to provide a good filtering tool for the most of the noise levels

discussed here (it fails only when the density of noise is almost equal to the density of the

data distribution).

2.2 Clustering analysis for localisation microscopy

2.2.1 Ripley’s functions and the pair correlation function (CPF)

Ripley’s K function is an analysis method used to study point patterns by comparing

them to a uniform distribution. The function was defined by D. B. Ripley as the ratio of

the number of points inside a circle surrounding a central point and the average density
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of points on the image (see Figure 2.1), which can be written as:

K(r) = λ−1

[
N∑
i=1

N∑
j=1

I(dij < r)

]
/N (2.1)

where λ = N/A and is the average density of points on an image with area A. I is the

indicator function, which equal to 1 when the j th point is inside radius r around a central

point [Ripley, 1976]. The K function is usually normalised to a more useful form called

(a) (b)

Figure 2.1: The principle of Ripley’s K function. Simulated images of a) a clustered distri-

bution with noise and b) a uniform distribution. Ripley’s K function performs calculations

for every point in the data set. Every point in the data set will be treated as a centre point

of circular area with radius r (see red circle on image a)) and all the points positioned

inside of the circle will be counted. The final result of this calculation is a total number of

instances when two points of the data were positioned in or closer than a certain proxim-

ity. This number is then normalised by the number of points in the data and compared to

uniform reference distribution.

L(r) (which has a linear expected value)

L(r) =
√
K(r)/π. (2.2)
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The presence or absence of clustering can be deduced by comparing the value of the L(r)

function to the linear expected value. For a randomly distributed sample the L(r) function

is equal to the expected value. If the value of L(r) is higher than the expected value the

function is detecting clustering in the data (see Figure 2.2).

The L(r) function can be normalised to a function called H(r) which has an expected

value equal to 0 for randomly distributed points:

H(r) = L(r)− r. (2.3)
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Figure 2.2: Ripley’s K, L, and H functions calculated for simulated data with 10 circular

clusters (radius 8 pixels) and background noise. a) Ripley’s K function (black), exhibits a

small change in gradient of the curve around r=10 pixels, but no quantitative measurement

is possible. b) For Ripley’s L function (red), a linear function can be used to detect

clustering by comparing behaviour of the experimental L function with its the expected

value for a random distribution (black line). If the L function has values higher than the

expected value the data set is clustered. The L function values equal the expected value

are an indicator of a random data distribution. c) Ripley’s H function (blue) can be used

for measuring cluster radius using HMAX , or by detecting the sign change from positive

to negative of the first derivative of the H function.

The H(r) function can also provide information about the presence or absence of

clustering. A positive value of the H-function can indicate the presence of clustering

(a negative value means a random distribution) [Annibale, 2012; Deschout et al., 2014;
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Hess et al., 2005; Kiskowski et al., 2009; Scarselli et al., 2012]. A number of authors

also have used the radius for H(r)MAX to deduce the average number of molecules in

a cluster [Deschout et al., 2014; Sengupta et al., 2011; Zhang et al., 2006]. Information

about the degree of clustering can be deduced from the magnitude of the H(r) function and

used for a comparison between two or more datasets with different conditions [Deschout

et al., 2014; Hess et al., 2007].

There are two different methods of calculating the size of clusters using Ripley’s H

function. The maximum of the H(r) function can be used as a means to provide the cluster

domain size (the function has a maximum for the radius for which there is maximal point

density in the cluster) [Owen et al., 2013; Parton and Hancock, 2004; Zhang et al., 2006]

(see Figure 2.2). However, it has been noted that there could be some difference between

the radius of the biggest point density and the radius for which there is a maximum of

H(r) function [Kiskowski et al., 2009; Stoyan and Penttinen, 2000; Zhang et al., 2006].

In their paper Kiskowski et al. (2009) found that the maximum of the H(r) is a measure

of cluster separation rather than a measure of cluster size. Another study discussed

the issue of Ripley’s H function not providing an accurate measurement of the cluster

size [Shivanandan et al., 2015a]. Others have also suggested that there is a need for a

pre-processing step to account for limited localisation precision [Deschout et al., 2014;

Shivanandan et al., 2015b].

In their study, Kiskowski et al. (2009) claimed that the difference between the actual

cluster radius and the radius giving the maximal value of H(r) is caused by contributions

from points at shorter distances than the size of the cluster. This effect can be eliminated

by using the first derivative of the H(r) function to measure cluster radius, which is one

version of the pair correlation function (PCF). The radius is measured by detecting the

first negative value of the derivative (see Figure 2.3). However, for datasets with noise

the point for which the first derivative changes sign is strongly influenced by the noise

(see Figure 2.3b).

The Pair Correlation Function is another function derived from Ripley’s K function

and it measures clustering in rings instead of circles. In this method a smaller and a bigger

threshold are used to measure inter-point distances. The main difference between the PCF
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Figure 2.3: Cluster radius measurement using Ripley’s H function and artefacts caused by

noise. Ripley’s H function was calculated for three data sets with ten round clusters (radius

8 pixels) with noise. Noise was added to the signal with three different densities to create

data with a S/N 29 (marked with black dots), 22 (red squares), and 16 (blue diamonds).

a) Ripley’s H function was calculated for data sets with increasing noise levels. For the

higher noise level, the function has smaller values and its maximum is less pronounced.

According to the methodology presented in [Kiskowski et al., 2009] the radius was found

by looking for the sign change of the first derivative of Ripley’s H function (from positive

to negative). Radius values measured with this method are marked with black arrows.

The maximum of the H function is marked with red arrows. b) The first derivative of

Ripley’s H function calculated numerically using symmetrical equation (see section 2.6.1).

For higher noise levels the noise in the first derivative calculation starts to play significant

role in the crossing value and affects the measured cluster radius.

and Ripley’s function is that the PCF only considers a range of distances, looking at the

points inside of a ring instead of a circle (see Figure 2.4). The pair correlation function is

related to the Ripley’s K function by:

g(r) =
d

dr
K(r)/(2πr) for r ≥ 0. (2.4)

The pair correlation function can be calculated for any value of radius from zero to infinity.

The value of the pair correlation function g(r) for a completely random data set is equal
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Figure 2.4: The pair correlation function (PCF) operation mechanism. The PCF (right)

is calculated as a difference between two Ripley’s K functions values calculated for inner

and outer radius (left and middle).

to 1. If the value of the pair correlation function is larger than 1 then there is clustering

in the data. For large values of radius g(r)→ 1 [Stoyan and Penttinen, 2000].

The H(r) and PCF functions can be modified so they account for artefacts due to the

labelling and imaging process. For example, pair correlation PALM (PC-PALM) combines

the PCF function with an algorithm which attempts to distinguishes actual clusters from

multiple appearances of the same fluorophore. This approach assumes that a fluorescent

molecule can be activated repeatedly before is bleached permanently. Thus using an

experimentally obtained time parameter, td, after which molecule is likely to be bleached,

all molecule appearances in close proximity of a previous localisation within time td are

counted as reappearance of the same molecule. After time td all appearances close to the

previous localisation are counted as new molecules [Annibale et al., 2011; Annibale, 2012;

Sengupta et al., 2011]. Other modifications were made to account for curvature of 2D

samples in the z direction by creating a topographical image of the sample surface [Owen

et al., 2013]. In this work Owen (2013) also uses the Ripley’s function to find clusters in

3D images.
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2.2.2 DBSCAN

DBSCAN is a density based clustering algorithm which finds regions of high density

surrounded by regions with low density. The first step of the algorithm is to divide all

points in the image into three categories:

• core points – these points are positioned in the centre of the clusters; a point can be

called a core point if the density of points inside a set radius is higher than threshold

and the density outside that radius is smaller,

• border points – these points are separated by less than set radius from the core

point.

• noise points – is a point which is not a core point and is further away from the

closest core point than a set radius.

Then all noise points are eliminated from further examination. All core points which are

positioned closer to each other than a distance within the set radius are separated by a

border line (creating two separate clusters). The points forming the cluster are called

border points (these points are positioned across the whole area of the cluster not only

on the edges) are then assigned to the closest core point [Steinbach et al., 2003].

The most important strengths of DBSCAN are that it does not define cluster shape

and the number of clusters does not have be known in advance. DBSCAN is not highly

influenced by noise, because noise is removed in the beginning of the algorithm opera-

tion. The performance of the DBSCAN algorithm is shown in Figure 2.5 (image adapted

from the original DBSCAN paper [Ester et al., 1996]). The original paper [Ester et al.,

1996] also presented a test to asses DBSCAN performance compared with a k-mean type

algorithm, called CLARANS2, to underline its strengths: no cluster shape restriction and

improved speed (DBSCAN is more than 200x faster than CLARANS). The main drawback

of this method is that the all of the clusters in the data set have to have similar density

in order to be found. On a data set with two clusters, of which one has low density and
2A Clustering Algorithm based on Randomized Search (CLARANS) operation is based on looking

for clusters by dynamically selecting a portion of data to search and applying data partitioning around
means. K-means method is going to be discussed in section 2.2.3
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the second high, DBSCAN will only find one cluster and the second will be categorised

as noise. This issue is addressed by for example the OPTICS algorithm (Ordering Points

To Identify the Clustering Structure). OPTICS is a density based algorithm which does

not use a global definition of density3. The major disadvantage of the DBSCAN algo-

rithm, especially when imaging big data sets such as localisation microscopy data, is the

fact that it is hard to define density. Thus, analysis of big data sets may be expensive

computationally [Ankers et al., 1999; Steinbach et al., 2003].

Figure 2.5: DBSCAN performance test. Top row: Different data sets with clusters. The

clusters can be easily spotted by human eye. Middle: Clusters found in the data by an

algorithm based on k-means method (CLARANS). Bottom: Clusters found with DBSCAN

algorithm. Separate clusters found by algorithms are marked with different colours. The

noise is not included in any cluster and is marked with light grey dots in bottom right

figure. Image adapted from: [Ester et al., 1996].

The clustering analysis methods based on the DBSCAN principle have been used for

data analysis of localisation microscopy images, for example for analysis of β2-receptors
3All points in the data set are ordered by their distance to another point. These distances are stored

and are used for setting local density by creating histograms or by use of the hierarchical clustering
methods [Ankers et al., 1999].
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in HeLa cells [Annibale, 2012] or RNA polymerase organisation in Escherichia Coli [En-

desfelder et al., 2011]. However, in most cases a modification of DBSCAN is used where

the DBSCAN algorithm is parallelised using hierarchical clustering, providing faster anal-

ysis [Li and Xi, 2011]. The OPTICS algorithm has also been used to quantify the degree

of clustering and co-localisation of two types of synaptic molecules [Guo et al., 2013;

Pertsinidis et al., 2013].

2.2.3 Other methods of clustering analysis

K-means clustering

The k-means algorithm is an example of a iterative algorithm. One of the parameters

of the algorithm is the initial number of centroids k which needs to be set by the user.

The initial positions of centroids are usually selected randomly from the data points. All

points are assigned to the closest centroid position forming k clusters. Next, new centroid

positions are calculated. The last two steps are repeated until all centroid positions remain

in the same place. Sometimes a weaker stopping condition is defined, e.g. the algorithm

stops if less than 1% of points change their cluster affiliation in each iteration [MacKay,

2003; MacQueen, 1967; Steinbach et al., 2003]. An example of the k-means iteration cycle

Figure 2.6: K-means algorithm operation on three-cluster data set. Points belonging to

a different centroid are marked with squares, circles and triangles. Four iterations of the

algorithm for k = 3 are shown. The centroid positions are indicated with black crosses.

Image adapted from: [Steinbach et al., 2003].
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is shown in Figure 2.6. The first iteration in Figure 2.6a shows all the points are assigned

to the centroids placed around the middle point of the image. The new centroid positions

are calculated for all points in the clusters. In the second iteration all the data points are

reassigned to the new centroids shown in Figure 2.6 b). Iterations 3 and 4 are shown in

Figure 2.6 c) and d) are done in the same way.

The k-means algorithm requires a definition of the proximity function which quantifies

which points are the closest to the centroid. A standard measure for Euclidean data is

Euclidean distance (L2). For points p and q in n-dimensional Euclidean space this is given

by

L2 =
√∑n

i=1 (pi − qi)2.

K-means is relatively simple and easy to use algorithm, and can be used for various

types of data e.g. to find pore complexes in nuclear envelopes of oocytes [Löschberger

et al., 2014]. K-means can find clusters in data with varying density and is time efficient.

The main issues of this algorithm are that it can only detect circular clusters (see middle

row of Figure 2.5) and the number of clusters in the data must be specified by the

user. Usually the latter problem is resolved by setting the number of clusters higher

than necessary [Purwar et al., 2011]. This results in localisation of actual clusters and

a number of false positives. False clusters can be removed manually or by the clustering

analysis software itself. Lastly the k-means algorithm can only be used for data which

has a defined mean value. Usually k-menoid4 does not have the same problem but it is

more costly computationally [Steinbach et al., 2003].

Agglomerative Hierarchical Clustering

Hierarchical clustering methods are relatively old compared to Ripley’s K function. How-

ever, they are still widely used for building visual clustering maps or trees underlying

similarities in data sets. There are two basic types of hierarchical clustering:

• agglomerative - algorithm starts by treating every data point as a single cluster.

Then it merges close points to one cluster. The algorithm requires an input param-
4K-menoid searches for the most representative point of a group of points. It can be applied to both

discrete and continuous data sets.
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eter defining cluster size (also called proximity), which is used to group points into

clusters;

• divisive - the reverse of the agglomerative clustering method. The analysis starts

with one big cluster containing all points. In each step the algorithm decides which

clusters to split. Analysis ends when all clusters contain a single point [Mooi and

Sarstedt, 2011; Steinbach et al., 2003].

Generally, the agglomerative hierarchical clustering methods are more commonly used to

analyse information.

The hierarchical clustering outcome depends on selecting two functions defining dis-

tance and proximity measures. Similarly to the k-means algorithm, hierarchical clustering

can use a range of distance measures. Then the proximity function is selected. The prox-

imity function is defined as the distance between two clusters and it is usually set taking

into account the type of the data. For example, the MIN function, shown in Figure 2.7,

finds a shortest link between two clusters and points in these clusters are equally im-

portant. Another example of proximity function is centroid link, where the proximity

is defined as a link between centres of mass of two clusters. The final outcome of the

Figure 2.7: Graph interpretation of MIN proximity function. The MIN proximity is also

called single link. Image adapted from: [Verma, 2015].

analysis depends on the selected proximity definition.

The particular features of hierarchical clustering are its lack of one global function

defining clustering and its ability to detect different sizes of clusters. The main feature

of this method is that there is no global clustering function, since all decisions about

cluster merging are taken on a local level (given by the proximity function). This allows
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the algorithm to avoid large scale optimization problems or selecting starting points.

Another issue with the algorithm is that once merged, clusters are merged permanently

(the information about previous steps is not saved). For some types of proximity function

the clustering properties of the algorithm are not affected by the cluster size. This is true,

for example, for Ward’s proximity, which is defined as the increase in the square error

caused by merging two clusters together [Steinbach et al., 2003].

The main applications of hierarchical clustering are connected to creating taxonomies,

for example in evolutionary biology. It has also been used as a secondary analysis tool

for characterising HIV infected HeLa cells [Lelek et al., 2012]. Clusters in localisation

microscopy images were identified by a home-written software5 and the morphology of

the identified clusters was further studied using the hierarchical clustering algorithm.

Similarly, DBSCAN has been aided by hierarchical clustering to analyse localisation mi-

croscopy images to identify insulin dependent clustering in RBL-2H3 cell line [Křížek

et al., 2014].

2.3 Clustering algorithms comparison

Clustering algorithms discussed in this chapter are best suited, depending on their strengths

and weaknesses, for analysis of different types of data. Clustering algorithms can be com-

pared using a number of criteria, for example, the running time, required input infor-

mation or preferred type of clusters they can successfully analyse (see Table 2.1). The

required input information varies a great deal between algorithms, for example DBSCAN

requires a density definition to successfully separate data into clustered and noisy points,

the k-means requires the number of clusters to be known in advance, where Ripley’s H

function and hierarchical clustering require no prior knowledge about the data. The re-

quired input information is a major drawback, due to the fact that it is usually hard to

provide accurate information about the cluster number or their density for localisation

microscopy data, which can contain a great number of small clusters, for example, see
5A random sample of cluster centre points was selected. For each centre point the algorithm calculated

the number of points which were closer to the central point than a set radius. Then the radius was
increased, and the analysis stopped when the number of points close to centre point was stabilised.
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clustering of adrenergic receptors in [Scarselli et al., 2012]. One of the most used approach

to overcome this limitation is to run DBSCAN or k-means by running tests with different

starting parameters (density or number of clusters), at a cost of longer total computation

time.

The cluster type and size also plays a role in the algorithm selection. Ripley’s H

function and k-means require circular clusters with similar size and density to provide

correct cluster detection. For example, analysis of non-circular clusters with k-means

algorithm can lead to incorrect cluster identifications (see Figure 2.5). DBSCAN can

analyse any shape and size, however their density needs to be similar. Usually in this

situation the lower density cluster will be classified as noise by DBSCAN. Similarly, the

noise sensitivity of these methods varies a great deal. DBSCAN has the highest noise

tolerance, because it removes the noise points from further consideration. Ripley’s H

function has a moderate noise resistance – generally low and medium noise causes this

method to produce non-precise cluster radius measurements. With high noise Ripley’s

H function is both imprecise and inaccurate (for example measuring cluster size smaller

than it actually is, see section 2.6.2). K-means and hierarchical clustering, both have

a low tolerance to noise. Noisy points will be treated as cluster border points and can

strongly influence the answer provided by the algorithms.

Lastly, speed of the algorithms is also an important factor to consider. The localisation

microscopy data usually contains thousands molecule localisations and the analysis of the

clustering present in the data needs to be fast for this amount of data. The fastest

from discussed here algorithms is Ripley’s H function, which takes seconds to run on

a typical microscopy data set (for example for data with 32,000 points it takes 16 s).

DBSCAN is a slow algorithm, its computation time is usually around minutes to hours for

localisation microscopy data. However, it is possible to better DBSCAN computation time

by presorting the data with hierarchical clustering. An example of such faster DBSCAN

based algorithm is OPTICS. K-means is usually two magnitudes slower than DBSCAN

(see section 2.2.2). Hierarchical clustering algorithms are often slow, however their speed

is limited by the number of decisions it needs to make to connect data into clusters.
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Table 2.1: Selected properties of clustering algorithms discussed in this chapter.

Ripley’s H
function DBSCAN k-means hierarchical

Input
information none cluster density number of

clusters none

Cluster size similar any similar any
Cluster shape circular any circular any
Cluster density similar similar similar any

Noise
sensitivity moderate high low low

Speed fast (seconds to
minutes)

slow (minutes
to hours) slow (hours) slow
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2.4 The Rényi divergence: General equation and prop-

erties

Divergence is a measure of difference between two distributions and is a type of statistical

distance measurement. Rényi proposed a divergence measure linked to his definition of

entropy, and as an extension of the Kullback–Leibler divergence (which was defined for

Shannon entropy). The Rényi entropy is defined as:

Hα = − 1

1− α
log

[∑
x

p(x)α

]
. (2.5)

The Rényi divergence is defined using two probability distributions, p(x) - the data dis-

tribution and q(x), a reference distribution to which the data distribution is compared:

Dα(p(x)||q(x)) =
1

α− 1
ln

[∫
x

p(x)

(
p(x)

q(x)

)α−1
dx

]
. (2.6)

It has following properties:

1. The Rényi divergence is non-negative for all distributions p(xi), q(xi), and for α

bigger than 0: Dα(p||q) ≥ 0,∀p,q,α>0

2. The Rényi divergence is equal to 0 only when distributions p(xi) and q(xi) are equal:

Dα(p||q) = 0 if p(x) = q(x)∀x∈R

3. The Rényi divergence for α = 1 is equal to the Kullback-Liebler divergence (DKL):

lim
α→1

Dα(p||q) = DKL(p||q).

The Rényi divergence value is strongly dependent on the selected value of the coefficient

α. If we consider the Rényi divergence calculated as with equation 2.17 we can see that

α acts as a scaling or weighting coefficient. That property of α can be explained by

considering how the calculations were made. For each central point the number of points

were inside of a given radius (radius is the variable) was counted. The number of points

inside a radius is then raised to the power (α − 1). This means that the higher density
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areas are going to be promoted over low density areas. With higher α values more dense

areas are going to be promoted even more.

2.5 Clustering analysis

Cluster analysis for localisation microscopy is based on continuous variables. The single

molecule localisation datasets calculated for localisation microscopy images are not pixe-

lated and have a continuous distribution. The Rényi divergence for continuous variables

is given as:

Dα(p(X)||q(X)) =
1

α− 1
ln

[∫
p(x)

(
p(X)

(q(X)

)α−1
dX

]
, (2.7)

where the data set is defined using variables X = {x1, x2, ..., xN}. For the purpose of

clustering analysis we use a sampling approximation on equation 2.7

Dα(p(xi)||q(xi)) ≈
1

α− 1
ln

[
1

N

N∑
i=1

(
p(xi)

q(xi)

)α−1]
(2.8)

where the probability distribution p(xi) is defined using a type of kernel estimation tech-

niques, called the Parzen window estimation [Parzen, 1962] as:

p(xi) =
1

N

N∑
j=1

I(dij < r)

πr2
, (2.9)

where N is the number of all data points, dij is the distance between points i and j, r is the

radius around the central point, and I(dij < r) is an indicator function. The probability

q(xi), for the purpose of clustering analysis, is defined using a Parzen window estimation

for all points being in one cluster:

q(xi) =
1

πr2Nc

, (2.10)
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where r is the radius of a cluster and Nc is the number of clusters. The Rényi divergence

has a general equation for α ∈ (1,+∞) and three special cases for α = 0, 1 and ∞. The

Rényi divergence for α = 0 returns the number of clusters in the dataset (provided that

there is no noise in the data). For α = 1 the term 1
α−1 has a zero in the numerator,

however it is equal to the Kullback-Liebler divergence in the limit. Lastly, for α =∞ the

divergence provides a maximum value of difference between two compared distributions.

2.5.1 The Rényi divergence for α ∈ (0,+∞) ∧ α 6= 1

Using the equation 2.8 and probability density functions as defined in equations 2.9

and 2.10:

Dα =
1

α− 1
ln

 1

N

N∑
i=1

(
1
N

∑N
j=1

1
πr2
I(dij < r)

1
πr2Nc

)α−1
 , (2.11)

which can be written as:

Dα −
1

α− 1
ln
(
Nc

α−1) =
1

α− 1
ln

 1

N

N∑
i=1

(
1

N

N∑
j=1

I(dij < r)

)α−1
 . (2.12)

Equation 2.12 can be rewritten by split exponentiation base ((ab)c = acbc) as:

Dα −
1

α− 1
ln
(
Nc

α−1) =
1

α− 1
ln

 1

N

N∑
i=1

(
1

N

)α−1 ( N∑
j=1

I(dij < r)

)α−1
 (2.13)

Then because number of points on the image N is constant and independent on sums

over i and j the equation 2.13 can be written as:

Dα −
1

α− 1
ln
(
Nc

α−1) =
1

α− 1
ln

( 1

N

)α N∑
i=1

(
N∑
j=1

I(dij < r)

)α−1
 , (2.14)
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which is an equivalent of:

Dα −
1

α− 1
ln
(
Nc

α−1) =
1

α− 1
ln


∑N

i=1

(∑N
j=1 I(dij < r)

)α−1
Nα

 . (2.15)

Equation 2.15 can be simplified:

Dα−
1

α− 1
ln
(
Nc

α−1) =
1

α− 1

ln

 N∑
i=1

(
N∑
j=1

I(dij < r)

)α−1
− ln (Nα)

 , (2.16)

which can be written using ln(ab) = b ln(a) as:

Dα−
1

α− 1
ln
(
Nc

α−1) =
1

α− 1

ln

 N∑
i=1

(
N∑
j=1

I(dij < r)

)α−1
− α ln (N)

 . (2.17)

The main purpose of transforming equation 2.12 to the form in 2.17 is to split the exponen-

tiation base. While operating a C++ program one needs to consider memory availability

allocated to a type of variable used to store the calculated divergence value (here variable

type double was used). Calculating the divergence with equation 2.17 returns smaller

values than calculation with a standard equation. Therefore, this form of the Rényi di-

vergence can still be used for calculation of datasets with 100 thousands of points and

with α values smaller than 200 with the memory allocated to the double-type variable.

Calculation with higher values of α is possible after using gmp library, a C++ library for

calculation on large numbers.

2.5.2 The Rényi divergence for α = 0

Using equation 2.8 and for α = 0 and p(xi) and q(xi) defined by 2.9 and 2.10:

D0 =
1

0− 1
ln

 1

N

N∑
i=1

(
1
N

∑N
j=1

1
πr2
I(dij < r)

1
πr2Nc

)−1 , (2.18)
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the equation can be simplified as:

D0 − ln (Nc) = − ln

[
N∑
i=1

1∑N
j=1 I(dij < r)

]
, (2.19)

and taking the exponential:

e−D0 −Nc =
N∑
i=1

1∑N
j=1(dij < r)

. (2.20)

This equation returns the number of clusters in the data set (Nc).

2.5.3 The Rényi divergence for α = 1

For α = 1 the Rényi divergence is equal to the Kullback-Leibler divergence for Shannon

entropy. Using the sampling approximation and probability functions p(xi) and q(xi) the

same as defined in section 2.5.2 the divergence is:

Dα→1 =
1

N

N∑
i=1

ln

[
1
N

∑N
j=1

1
πr2
I(dij < r)

1
πr2Nc

]
, (2.21)

which can be simplified to:

Dα→1 − ln (Nc) =
1

N

N∑
i=1

ln

[
1

N

N∑
j=1

I(dij < r)

]
. (2.22)

2.5.4 The Rényi divergence for α =∞

This case maximises the difference between two compared distributions. The divergence

is given by the natural logarithm of the maximal possible ratio of probability distributions

p(xi) and q(xi) and is given by equation:

D∞ = ln

(
ess sup

p(r)

q(r)

)
, (2.23)
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The essential supremum is defined for measuring theory or for functional analysis, which

often are used to consider statements which apply to only a subgroup of the analysed

data. The essential supremum, for the Rényi divergence should be understood as a max-

imal possible difference between the two distributions. It can be written using equa-

tions 2.9 and 2.10 as:

D∞ = ln

[
max

(
1

N

∑N
j=1 I(dij < r)

πr2
πr2Nc

)]
(2.24)

This can be simplified by cancelling the πr2 term and moving Nc (number of clusters)

outside of the sum and to the left side of equation giving:

D∞ − ln (Nc) = ln

[
max

(
1

N

N∑
j=1

I(dij < r)

)]
. (2.25)

2.5.5 The Rényi divergence for a uniform reference distribution

and its special case: Ripley’s K function

Ripley’s K function is a special case of the Rényi divergence for α = 2 and a uniform

reference distribution. The uniform reference distribution, indexed "U" for uniform, is

given as:

qU(xi) =
1

A
, (2.26)

where A is the image area. The Rényi divergence equation 2.8, for α = 2, a data dis-

tribution given by equation 2.9, and a uniform reference distribution (equation 2.26)

is equal to:

DU
α =

1

α− 1
ln

 1

N

N∑
i=1

(
1
N

∑N
j=1

1
πr2
I(dij < r)

1
A

)α−1
 . (2.27)

Both the uniform and previously discussed clustered reference distributions are point

independent (their value does not depend on the point they are calculated for). The
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uniform distribution is constant for the whole image and the clustered distribution de-

pends on the number of clusters in the whole image. Thus, one can separate equation

2.27 into a point-specific part and a point-independent part. This means that all of the

parameters which have no dependency on i and/or j can excluded from summation. The

Rényi divergence calculated for clustered reference distribution using equation 2.12 (for

α ∈ [0,∞)∧α 6= 1) can also be arranged into data constant and clustering counting parts:

Dα =
1

α− 1
ln
(
Nc

α−1)+
1

α− 1
ln

( 1

N

)α N∑
i=1

(
N∑
j=1

I(dij < r)

)α−1
 , (2.28)

where N is number of all points in the data set, I(dij < r) is an indicator function, πr2 is

area of a cluster, and Nc is the number of clusters. The term 1
α−1 ln

(
Nc

α−1) is constant
and provides an offset to the divergence function. The Rényi divergence defined for an

uniform distribution differs only by a constant value 1
α−1 ln

[(
A
πr2

)α−1]. Thus, the Rényi

divergence for a uniform reference distribution can be written as proportional to:

DU
α ∝

1

α− 1
ln

( 1

N

)α N∑
i=1

(
N∑
j=1

I(dij < r)

)α−1
 , (2.29)

Therefore, from the perspective of clustering calculations there is no difference between

using the Rényi divergence with a uniform or clustered distribution.

The Rényi divergence for α = 2, q(xi) = 1
A
, and p(xi) as defined in 2.9 gives Ripley’s

K function:

D2 =
1

2− 1
ln

 1

N

N∑
i=1

(
1
N

∑N
j=1

I(dij<r)

πr2

1
A

)2−1 , (2.30)

what can be written as:

πr2 exp(D2) = λ−1

[
N∑
i=1

N∑
j=1

I(dij < r)

]
/N, (2.31)

which is Ripley’s K function.
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2.6 Clustering analysis of simulated and localisation

microscopy data

2.6.1 Data simulation and clustering analysis software

The simulated data for cluster analysis was created using custom software written in

C++ using the libCVD library. The code created clusters and the noise separately. Its

operation started by creating a list of random cluster centre positions (each cluster was

placed at a distance from the image border so the whole cluster was visible on the image).

Then clusters were created around the centre points with a set density. Two types of

clusters were generated, but each dataset only had one of these types. A sharp edge

cut-off, disk-shaped clusters (which were created using random number generator) and

Gaussian shaped clusters (which were created using a Matlab mvnrnd() function to create

a random sample of points with a Gaussian distribution). Noise was randomly added with

a predefined density. The noise level was defined as a percentage of noisy pixels and also

as Signal-to-Noise (S/N), and calculated as S/N =
Isignal
Inoise

, where Isignal is the intensity of

signal and Inoise is the intensity of noise from the image patches with the same area. S/N

can be calculated in this manner for simulated data, because the true number of points

in the signal is known and noise is added to the data after simulating the signal. For the

microscopy data S/N was calculated as: S/N =
Isignal−Inoise

Inoise
. The intensities of the signal

and noise were estimated as a number of points in signal (here clustered points) and a

number of noise points. Examples of datasets of a range of noise levels created for cluster

analysis are shown in Figure 2.8.

The Rényi divergence analysis was performed using equation 2.17 which can be used

within the memory range of double variables in C++. The Rényi divergence was calcu-

lated for α equal to 0, 2 and 10-120 (with increments of 10). The flowchart presenting

the optimised software for the Rényi divergence and Ripley’s H function calculation is

presented in Figure 2.9. These results can be used to estimate the optimal α value for use

with the data. The first and second numerical derivatives of the Rényi divergence were

calculated using the symmetrical numerical derivative: f ′(x) = f(x+h)−f(x−h)
2h

. For each



CHAPTER 2. CLUSTERING ANALYSIS 66

(a) (b) (c)

(d) (e) (f)

Figure 2.8: Examples of simulated data sets for cluster analysis. Data sets with 10 clusters

with a radius of 8 pixels. Noise was added to each data set (a) 0.5% of pixels are noise,

which corresponds to a S/N of 29, (b) 0.74% – S/N 22, (c) 1.0% – S/N 16 , (d) 1.5% –

S/N 10, (e) 2.0% – S/N 7, and (f) 3.0% – S/N 6. For improved visibility the image was

blurred.

data set Ripley’s H function and its first derivative was also calculated. The derivatives of

the Rényi divergence and Ripley’s H function are going to be used for the cluster radius

measurement (see section 2.6.2).
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Figure 2.9: The cluster analysis software operation. The software will analyse the data

in a range of radius values defined with a maximal radius (RMAX) and radius increment

(∆r, step 1). Then the inter-point distances are calculated for every pair of points in the

data set (step 2) and code stores only those which are smaller than the maximal radius

RMAX (step 3 and 4). Then the Rényi divergence and Ripley’s H function are calculated

for a range of radius values using previously calculated inter-point distances (steps 5-7)

and saved to files for further analysis (step 8).
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2.6.2 Cluster radius measurements

The cluster radius was found by identifying a plateau in the Rényi divergence function.

If the Rényi divergence is calculated as a function of a radius then the function will have

plateau for radius equal (or approximately equal for noisy data) to the actual cluster

size. The Rényi divergence function counts all points inside the area defined by a given

radius (see Figure 2.10 where areas in which points will be counted are marked with red

circles). The Rényi divergence function has different behaviour when calculated for three

main groups of radius values. For radius values smaller than the cluster radius the Rényi

divergence will increase its value very rapidly (see Figure 2.11 divergence for α = 120,

radius values 0 to 8.2). Even a small change of the calculation radius includes more point

into the calculation (see Figure 2.10a). For radius values similar to cluster radius the Rényi

divergence function has a plateau (see Figure 2.11 divergence for α = 120 for radius values

8.2 to 10.4). The Rényi divergence value does not change with increasing radius as only

a small number of new points will be included in the calculation (see Figure 2.10b). For

radius values larger than the cluster radius the Rényi divergence value increases slowly as

the calculation radius includes more points from outside of the cluster (see Figure 2.10c).

This means that the radius can be found by looking for a saddle point (first and

second derivatives of the function need to be equal to 0). Figure 2.11 shows the divergence

calculated for a simulated data set with 10 clusters (radius 8 pixels) with 0.5% (S/N 29)

noise. The radius measurement identifies the first point in the plateau as the point at

which the first derivative is equal to zero within a set tolerance interval.

Radius measurements using Ripley’s H function were performed to compare the results

with the divergence method. The cluster radius was calculated using the methodology

presented in [Kiskowski et al., 2009] and identified by looking for the radius value for

which the first derivative changed sign from positive to negative. However, this method is

strongly affected by noise (see Figure 2.12b). Three possible methods for noise reduction

were tested: Gaussian kernel smoothing of the first derivative of Ripley’s H function,

consistency in negative values of the first derivative (where more than one point in a row

needs to have a negative value to define a cluster radius measurement), and looking for
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(a) (b) (c)

Figure 2.10: The origin of the plateaus in Rényi divergence function. The Rényi divergence

function counts all points inside a radius – here marked with red circles. a) The radius

for the calculation is smaller than the cluster size. Increasing the radius size will greatly

increase a number of points inside the new radius, which causes a sharp increase in the value

of the Rényi divergence function. b) Radius is similar to the actual cluster radius. Only

a limited number of new points are added with the radius increase. The Rényi divergence

function values does not change, forming a plateau. c) Radius is larger than cluster radius.

New points (from the background) are included inside the radius. The Rényi divergence

function has a small gradient.

the first negative point of the first derivative after the maximum of Ripley’s H function.

An example of Gaussian kernel smoothing is shown in Figure 2.12b. It should be noted

that the smoothing process introduced a new error into the measurements.

To compare the performance of different cluster radius measurement methods for Rip-

ley’s H function was compared, it was calculated for data sets created for Monte Carlo

testing (see section 2.6.3). These data sets had 10 clusters with 8 pixels radius with

varying noise levels (no noise, 0.5%, 0.74%, 1%, and 1.5%). The cluster radius was then

measured using four methods: standard, smoothing, consistency (at least three point in

a row), and maximum (detecting the first derivative sign change after maximum). The

average measured radius was calculated as a mean of the resultant distribution of the

cluster radius measurement. The standard deviation was also calculated to measure the

distribution spread.

The maximum and consistency methods provided an improvement of noise resistance
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Figure 2.11: The Rényi divergence function calculated for three values of α 0, 2 and 120.

The data set was created by the software described in section 2.6.1 with 10 clusters (8

pixels radius) and 0.5% noise (S/N 29). With a higher α value the function plateaus

appear for radius values approximately equal to the actual cluster radius. For example,

here for α =120 (marked with green) the plateau begins at radius 8.2).
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Figure 2.12: The first derivative of Ripley’s H function calculated for a data set of 10

clusters (radius of 8 pixels) with 0.5% noise (S/N 29). a) The first derivative of Ripley’s H

function (marked with black circles). b) The first derivative of Ripley’s H function (marked

with black circles) and Gaussian kernel smoothing curve (red solid line).

for cluster radius measurement. The most accurate cluster radius measurements were

achieved by detecting the first negative value of the first derivative after maximum in



CHAPTER 2. CLUSTERING ANALYSIS 71

Ripley’s H function (see Figure 2.13). In further studies the standard methodology as

presented in [Kiskowski et al., 2009] was used, because it is a well established method and

the comparison between our cluster analysis method based on the Rényi divergence and

the Ripley’s H function should be made using a widely used and published methodology.
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Figure 2.13: Comparison of noise influence on different methods of cluster radius measure-

ment for Ripley’s H function. Monte Carlo simulations were performed on data sets with

10 clusters (8 pixels radius). The cluster radius was measured for different noise levels

using: a standard method (black) as presented in [Kiskowski et al., 2009] by looking for

the point in which the first derivative changes sign from positive to negative, smoothing

(red) when the first derivative values were smoothed with a Gaussian kernel and used to

detect the sign change in the first derivative, the consistency method (green), which de-

tected the point for which the first derivative remains negative, and the maximum (blue),

which detects the first negative value of the first derivative after the maximum of Ripley’s

H function. The true radius of simulated clusters is marked with magenta line.
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Figure 2.14: Comparison of errors for testing the noise influence on different methods of

cluster radius measurement for Ripley’s H function. Errors were calculated as standard

deviation for different cluster radius measuring methods a) smoothing, b) consistency,

c) maximum and compared to the errors of the standard method.

2.6.3 Statistical analysis of cluster radius measurement

Monte Carlo testing

Monte Carlo methods can be used for testing the accuracy and stability of a given mea-

surement method. In this testing method the signal (here clusters) and noise are gen-

erated using the same general parameters but with different, random positions. Usually

the number of datasets simulated for the testing is selected either by a "pre-run" on the

data [Davidson and MacKinnon, 2000] or by adaptive choice during computation [Guo
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and Peddada, 2008]. For cluster analysis testing the number of repetitions were selected

using a "pre-run" method: the results distribution was evaluated and its mean and stan-

dard deviation calculated. The final number of repetitions was then set at a number for

which the distribution of results did not change its properties significantly (here defined

as a 1% change). An example of mean and standard deviations calculated for Monte

Carlo testing of distribution with 10 clusters (8 pixel radius with S/N 29) is presented in

Figure 2.15.
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Figure 2.15: Test accounting for the error introduced by the finite number of repetitions of

Monte Carlo simulations. The radius was measured with the Rényi divergence with α = 70

for a dataset with 10 clusters (8 pixels radius with S/N 29). a) mean and b) standard

deviation values measured for the results of the cluster size measurement distributions

created from a limited number of repetitions. For this type of data set around 30000

repetitions provided a less than 1% change in measured value compared with the last

measurement for 100000 repetitions.

The values of mean and standard deviation were strongly affected by the number of

repetitions used to create the results distribution. With a higher number of repetitions,

for this data set around 30,000, the mean and standard deviation have a relatively stable

value. The change measured as a percentage varies by less than 0.1% for mean and less

than 1% for standard deviation. The percentage change was calculated relative to the last

measured values. This testing was performed to find a suitable number of Monte Carlo
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repetitions, which would provide the most accurate and stable answer for a finite number

of repetitions. This also enabled us to perform the Monte Carlo testing with the smallest

possible number of repetitions shortening the computation time significantly. Here, only

an example of the stability testing for a finite number of repetition was discussed, however,

for each tested data type the same procedure was performed for both the Rényi divergence

and Ripley’s H function. Any change in either the number of clusters, size of clusters, or

noise level would require separate assessment of the stability of the Monte Carlo testing

and the error introduced to the measurement due to a finite number of repetitions.

The Monte Carlo simulations were used in this work to establish the mean, me-

dian, standard deviation, and quartiles of the radius measurements results for simulated

datasets. An example of the results for datasets generated with Monte Carlo methods

containing 10 clusters of 8 pixel radius and S/N 29, is shown in Figure 2.16. Monte

Carlo simulations were previously used by [Kiskowski et al., 2009], to simulate datasets

for performance testing of Ripley’s K function.

The results distributions for the Rényi divergence and Ripley’s H function have differ-

ent shapes. The results distribution for the Réni divergence is asymmetric and has long

tails, where the distribution for Ripley’s H has a Gaussian like appearance and is symmet-

ric. Examples of these results distributions are shown in Figure 2.17. Thus to investigate

if the Ripley’s function results were Gaussian distributed the skewness and kurtosis were

calculated and are presented in Table 2.2 and compared with the the values of a Gaussian

distribution. The kurtosis and skewness calculated for the Ripley’s H function results

were very close to the table values for a Gaussian distribution. The Rényi divergence

skewness and kurtosis have values were completely different. This also means that the

mean and median for the Rényi divergence distribution are going to have different values

- the median will indicate where the peak of the distribution is located. The position of

the mean will be influenced by higher values from the tails. The statistical parameters of

distributions presented in Figure 2.16 are collected in Table 2.3.

Three probability density functions (pdf), Gaussian, Logistic, and t Location-scale,

were fitted to the cluster radius distributions acquired with the Rényi divergence. The

Logistic and t Location-scale distributions were chosen because they have heavy tails.
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Figure 2.16: Monte Carlo statistical testing of the Rényi divergence cluster analysis method

compared with Ripley’s H function. Data sets were simulated with 10 round clusters (radius

8 pixels) with S/N 29 (0.5% points in the image were noise). Radius measurement using

the Rényi divergence, α=70 are presented with blue bars, and Ripley’s H function results

are presented with orange bars.

Table 2.2: Skewness and Kurtosis calculated for the result distributions of cluster radius

measurement acquired using the Rényi divergence and Ripley’s H function. The results

distributions were acquired for Monte Carlo data sets (10 circular clusters, radius 8 pixels,

S/N 29). The kurtosis and skewness values of the results distribution acquired with Ripley’s

function are very close to the skewness and kurtosis values of a Gaussian distribution.

The skewness and kurtosis values for the results distributions acquired with the Rényi

divergence are suggesting that this result distribution is not Gaussian distributed.

Rényi divergence
(α = 70)

Ripley’s H
function

Gaussian
distribution

Kurtosis 11 3 1
Skewness 2.73 0.062 0
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(a) (b)

Figure 2.17: The cluster radius measurement results distributions acquired using the Rényi

divergence and Ripley’s H function with fitted probability distributions. a) Gaussian, Lo-

gistic, and t Location-scale distributions were fitted to the distribution of results of cluster

radius measurement acquired with the Rényi divergence (for distributions parameters see

Table B.1. b) Gaussian function was fitted to results distribution of cluster radius mea-

surement acquired using Ripley’s H function (see Table B.1).

Additionally, the t Location-scale distribution gives a Lorentzian (Cauchy) distribution

with a very sharp peak and heavy tails. However, the pdfs fitted to the Rényi divergence

results did not correspond to the data distributions optimally (see Figure 2.17a). A Gaus-

sian pdf was fitted to radius values acquired with Ripley’s H function and it provides a

good estimation of the results (see Table 2.2). The equations and properties of the pdf

fitted can be found in Appendix B.

Bootstrapping and noise resistance testing

Bootstrapping is a re-sampling test of accuracy of the parameter or hypothesis. It starts

with the creation of new sets (or subsets) using the original data. The new sets are

created by random selection of elements with replacement from the original set (each

element can be selected more than once) and the number of elements in a subset is equal

to the number of elements of original data. Bootstrapping can be used for testing and

creating confidence intervals for different parameters [Efron and Tibshirani, 1994]. Here
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bootstrapping was used to establish the mean, median, standard deviation, and quartiles

of the radius measurement distributions and as a validation for Monte Carlo simulations

results.

Noise resistance testing was performed to check how the answer the method provides

changes with noise. Data sets were simulated to include the same cluster number and

position. Background noise was added randomly with the same density to each data

set. For each data realisation the cluster radius was calculated according to procedures

described above in sections 2.6.1 and 2.6.2. The histograms presenting the results of the

radius measurement are shown in Figure 2.20.

Bootstrapping and noise resistance testing were performed for six data sets from those

generated for Monte Carlo testing. Data sets were selected to include these for which

the Rényi divergence provided an overestimated, an underestimated and four accurate

cluster size measurements (see Appendix A). For example the first dataset had a two

groups of "super-clusters" where the small clusters were grouped together to create bigger

clusters (see Figure A.1a). Similarly dataset four has uneven density of points through

the clusters (high density of points inside the clusters and a smaller density at the edge)

leading to underestimated measurement of the cluster size with the Rényi divergence (see

Figure A.1d). The resulting distributions of the bootstrapping testing are presented in

Figure 2.18.

The bootstrapping results confirm that the Rényi divergence is able to provide more

precise and accurate measurement of the cluster size than the Ripley’s H function. The

results distributions for the Rényi divergence are more compact (see standard deviation

values in Table A.1) and the mean and median of the Rényi divergence results distribution

are closer to the actual cluster size of 8 pixels, than the values measured with the Ripley’s

H function.

Noise resistance testing was also performed to asses the noise influence on the final

cluster size measurement. For this purpose data sets were generated with the same clusters

(signal) and the new background noise was added to each dataset. The same signal data

used for bootstrapping testing were used (see Figure A.1). Data sets were generated to

acquire S/N 29 ratio (the same noise density but with different random positions). The
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(a) (b) (c)

(d) (e) (f)

Figure 2.18: Results of bootstrapping tests of the stability of cluster radius measurements

for six different datasets. The Rényi divergence results are marked with blue bars and Rip-

ley’s H function with orange. The Rényi divergence distributions provide better estimation

of the true cluster size (actual cluster size 8 pixels) than the distributions for Ripley’s H

function. The statistical parameters of the results are collected in Table A.1. The actual

cluster size is 8 pixels, S/N 29.

results distributions for the six data sets tested are presented in Figure 2.19.

The result distributions had different shapes for the Monte Carlo and bootstrapping

testing. They consisted of a single (for the Rényi divergence) and multiple (for Ripley’s

H function) sharp peaks surrounded by relatively low tails. The appearance of sharp

peaks means that the method provided the same cluster radius measurement for different

realisations of background noise. The Ripley’s H function appears to be more affected by

changes in noise and thus is likely to provide a less accurate cluster radius measurement

for the same noise level (see standard deviation in Table A.2). For this testing method

the Rényi divergence provides more accurate measurement of the cluster size than the

Ripley’s H function (see mean and median values in Table A.2).

Bootstrapping and noise resistance result distributions were summed to create bulk
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(a) (b) (c)

(d) (e) (f)

Figure 2.19: Results distributions for noise resistance tests of the stability of cluster radius

measurements for six different datasets. The Rényi divergence distributions are marked

with blue and Ripley’s H function with orange. The Rényi divergence results distributions

generally have a single sharp peak and comparably weak tails. Ripley’s H function results

have a broader distributions.

results distributions for the six analysed data sets. To compare the results of these tests

with the Monte Carlo results bulk distributions were created. These distributions were

built by adding together distributions acquired with bootstrapping and separately in noise

resistance. These bulk distributions were then compared with the results distribution ac-

quired for Monte Carlo testing (see Figure 2.20). The parameters of the final distributions

(mean, median, standard deviation, and quartiles) for each test performed are collected

in Table 2.3.

The three tests performed (Monte Carlo, bootstrapping, and noise resistance) con-

firmed that the Rényi divergence provides more accurate and precise cluster radius mea-

surements than Ripley’s H function. For each of the statistical tests performed the value

of mean and median was closer to the real cluster radius when measured with the Rényi

divergence than with the Ripley’s H function. Also, interquartile distance (measured as
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(a) (b)

(c)

Figure 2.20: Comparison of results distributions for stability testing (Monte Carlo, boot-

strapping, noise resistance). Bulk distributions of six data sets were created by adding

results distributions for each data set for a) bootstrapping, b) noise resistance, c) Monte

Carlo results distribution. These cumulative distributions are broader than the Monte

Carlo distribution results, however, their mean and median were very similar these param-

eter values for Monte Carlo testing. Rényi divergence results are in blue bars and Ripley’s

H in orange.

distance between the 1st and the 3rd quartile) values were smaller for the distributions

measured with the Rényi divergence. Standard deviations calculated for distributions

in bootstrapping and noise resistance were bigger for the Rényi divergence. However, it

should be noted that the distributions for the Rényi divergence are asymmetric and the

right tail affects the standard deviation values.



CHAPTER 2. CLUSTERING ANALYSIS 81

Table 2.3: Statistical parameters of results distributions for stability testing with bootstrap-

ping, Monte Carlo and noise resistance. Mean, median, standard deviation and quartiles

(the 1st and the 3rd respectively) of the distributions of cluster radius measurement with

the Rényi divergence and Ripley’s H function on simulated data sets with 10 clusters, with

S/N 29 (noise level 0.5%) generated using bootstrapping, Monte Carlo and noise resistance

testing.

Monte Carlo Bootstrapping Noise resistance

R
én
yi

di
v. mean 7.80 8.63 9.30

median 7.80 8.20 9.00
st. dev 0.61 1.45 1.69
quartiles 7.60, 8.20 8.00, 8.80 8.40, 9.20

R
ip
le
y’
s
H mean 10.40 9.64 11.51

median 10.40 9.60 11.20
st. dev 0.46 1.33 0.83
quartiles 10.40, 11.00 8.80, 10.20 11.00, 12.00

The cluster measurement provided by the Rényi divergence is strongly dependent

on the quality of the signal. For example, cluster radius measured for data sets with

overlapping clusters is bigger and this leads to overestimation of cluster size. When

testing the influence of noise on the measurement in noise resistance testing the Rényi

divergence provides a stable radius measurement. This means that the quality of signal

is the limiting factor for the precise and accurate cluster radius measurement with the

Rényi divergence. Ripley’s H function is less affected by changes in signal and in noise

providing a broader and thus less specific results distributions during testing.

Simulated datasets with only background noise

As a validation of the quantitative accuracy the Rényi divergence was tested on data

sets with only background noise. The data sets for this testing were generated with

approximately 1800 points. The number of points to create these data was selected

to correspond to an average number of points (clusters + noise) in data sets with 10

clusters (8 pixels radius) with S/N 29. The average density of points for this data set was
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0.006 points per pixel. An example of a data set created for this testing is presented in

Figure 2.21.

Figure 2.21: An example of a data set containing only background noise. Because noise

was generated randomly small aggregations of points were present. For improved visibility

the image was blurred.

The data generated for this testing had a small degree of clustering (as seen in Fig-

ure 2.21) which means that the final result of the testing will depend on the selected

value of the increment of radius in calculations. Two values of increment were tested,

0.2 and 1 (sampling was set with increment of the radius for which the Rényi divergence

was calculated - meaning that for this data set radius increased by 1 or 0.2 pixel). For

an increment 1 there were no plateaus present in the Rényi divergence function and no

maximum in Ripley’s H function. Thus, there was no cluster radius measured.

Both the Rényi divergence calculated with α = 10 and α = 70 for sampling 0.2

provided a cluster identification and cluster radius measurement. The distribution for

smaller α values provided a range of possible cluster radius measurements (see Figure 2.22

for α = 10). The distribution was very broad (standard deviation 4.72) and without a clear

peak maximum (mean 9.13). For higher alpha the distribution was less broad (standard

deviation 0.79) and positioned around smaller values of radius (mean 1.42). Additionally

for higher α values the distribution had a bimodal distribution originating from small

groups of points in random distribution (see Figure 2.21 and 2.22). The results provided

by the Rényi divergence were completely different for data sets with only background
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Figure 2.22: Distribution of cluster radius measurements with the Rényi divergence with

α = 10 and α = 70 for datasets with only background noise.

noise from the data with clusters present. The Ripley’s H function measured sub-pixel

cluster sizes for sampling 0.2.

The sampling 0.2 was selected for noise testing because this sampling rate was used for

cluster radius measurement of clustered data sets (see section 2.6.4). The reason clustered

data required a higher sampling rate was caused by a inhomogeneous data density in these

datasets. The areas with clusters had a magnitude higher point density than the areas

with noise or background noise data. Thus to accurately detect cluster radius a higher

sampling was used.

2.6.4 Cluster radius measurement and α adjustment for different

sample properties

The properties of localisation microscopy data sets can vary a great deal. Usually a similar

noise level is present for similar samples and with an identical preparation and imaging

method. However, changing the sample preparation or using, for example, a new batch

of dye or antibody can influence the level of background noise. Thus, noise resistance is
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a requirement for a good cluster size measurement method for localisation microscopy.

Here, the accuracy and precision of the Rényi divergence and Ripley’s H function was

compared on simulated Monte Carlo data sets with the same number of clusters with

eight different noise levels (no noise, and S/N 29, 22, 16, 10, 7, 6, 3). For each noise

level Monte Carlo simulations were performed, by creating the same number of data sets.

Cluster radius measurements with the Rényi divergence and Ripley’s H function provided

distributions of results similarly to already discussed distributions in section 2.6.3.

The Rényi divergence behaviour is strongly dependent on the value of α. Generally,

the higher the noise level (or smaller the signal-to-noise ratio) the higher the α value

needs to be to precisely measure the cluster size. The easiest way to select the optimal

α value is to calculate the Rényi divergence for a rage of α values and select an α value

for which the measured cluster radius value and confidence levels start to have similar or

the same value. The cluster radius calculation was performed with the Rényi divergence

for α values in range of 10-120. This was performed on simulated datasets containing

ten round clusters with a uniform point distribution and a sharp edge (and a radius

of either 8, see Figure 2.24, or 16 pixels, see Figure 2.26) and Gaussian clusters (points

inside the clusters had a Gaussian distribution, with σ = 8, see Figure 2.28). A number of

different noise levels was added to those datasets to create images similar to those observed

for localisation microscopy. Depending on the properties of the cluster (size, type) and

background noise level, a different value of α was needed to accurately measure cluster

size. For example, the cluster radius was measured with increasingly higher precision

for α=10-30 (see Figure 2.23) and for α values higher than 30 there is no change in

measurement precision.

The distribution for measurements with the Rényi divergence is asymmetric and the

median provides a better measurement for the maximum of the distribution. Similarly, the

1st and 2rd quartiles carry more information about the distribution behaviour. However,

because the distribution of Ripley’s H function results are symmetrical and other studies

cited mostly the mean of the distribution (for example, [Kiskowski et al., 2009]) the mean

values for both methods were also calculated. Here, the mean and median of the Rényi

divergence and Ripley’s H function were compared to provide a broader understanding of
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the properties and shape of their results distribution.

As discussed above the α value determines the shape of the Rényi divergence function.

With higher α the influence of noise is minimised and cluster size is measured more

accurately. To illustrate that behaviour the cluster radius was measured using a range of α

values for datasets containing 10 round uniform clusters (radius 8 pixels and S/N 29). The

measured cluster size and α values used for the measurements are presented in Figure 2.23.
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Figure 2.23: Cluster radius measurement using different values of α on datasets with

S/N 29. Datasets were simulated using Monte Carlo methods (see Section 2.6.3) with

10 clusters (8 pixels radius and S/N 29). Here, for comparison, the average radius is

presented as a) mean with standard deviation (marked in red) and b) median (red) with

confidence levels established with the 1st and 3rd quartiles marked with blue and black lines

respectively. For this type of dataset a stable and accurate cluster radius measurement

was provided for α higher than 30.

The same investigation of the minimal α value for the cluster radius measurement was

performed for a Monte Carlo generated series of datasets. Each series of data had added

background noise (starting from no noise to S/N 3). An average cluster radius measured

for these noise levels using different α values is presented in Figure 2.24.

With increasing noise the minimal α value needed to provide an accurate answer

increases. Generally, the higher the noise the higher the α value needed to be. This rule

holds well up to the point when noise has a very similar density to the density of points
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Figure 2.24: Cluster radius measurement using different values of α on data sets with

increasing noise levels. Results of cluster radius measurements with the Rényi divergence

for Monte Carlo simulated datasets with 10 clusters (radius of 8 pixels) with various noise

levels. The results distributions were asymmetric thus a) mean and b) median were calcu-

lated for the results distribution. The cluster radius was calculated for measurements with

different α values for data sets with increasing levels of noise (noise levels were marked

with: no noise – black, S/N 29 (0.5%) – red, S/N 22 (0.74%) – green, S/N 16 (1.0%) –

blue, S/N 10 (1.5%) – turquoise, S/N 7 (2.0%) – magenta, S/N 6 (3%) – yellow, and S/N 3

(4%) – dark yellow). The Rényi divergence for this type of data set provides stable radius

measurement for noise levels smaller than 3.0% (S/N 6) and α values higher than 50.

in clusters (noise level S/N 3). For this type of data sets α value needs to be higher than

50 to provide accurate and precise measurements of cluster radius.

Results of cluster size measurements with the Rényi divergence were compared with

cluster sizes measured with Ripley’s H function using Monte Carlo simulations. The

Rényi divergence provided similar values of cluster radius measurement for noise levels

up to S/N 6, where Ripley’s H function provided a cluster radius measurement for noise

levels S/N 16 (1.0%) and higher. Cluster radius measurements with the Rényi divergence

for α = 70 and Ripley’s H function for simulated data sets with different noise levels

are shown in Figure 2.25. Comparison of the Rényi divergence with Ripley’s function

results suggested that the Rényi divergence provides both more accurate and more precise

measurement. Error bars shown in Figure 2.25 were calculated as standard deviations
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for the mean and interquartile distance for the median. Monte Carlo simulations were

performed according to the protocol presented in section 2.6.3.
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Figure 2.25: Comparison of cluster radius values measured with the Rényi divergence and

Ripley’s H function for simulated datasets with 10 clusters (8 pixel radius) and increasing

noise levels. The average cluster radius was measured as a) mean (error bars are standard

deviation) and b) median (error bars interquartile distance). The cluster radius size was

measured with the Rényi divergence (marked with black) and Ripley’s H function (red).

Ripley’s H function radius measurement was only possible for noise levels smaller than

1.0% or higher than S/N 16. The Rényi divergence provided radius measurement up to

3.0% noise (S/N 6) and provided both more precise and accurate measurements.

Similarly, the performance of the Rényi divergence and Ripley’s H function was as-

sessed for data with bigger clusters sizes (10 clusters, radius 16 pixels, with a uniform

distribution of points in the cluster with a sharp cut off). The cluster radius was mea-

sured for data sets simulated with Monte Carlo methods (see section 2.6.3) and α values

in the range 10-120. The cluster radius was measured as the mean (error measured as

standard deviation) and the median (error measured as interquartile distance) was used

to provide a more broad understanding of the distribution shape (see Figure 2.26) (the

same methodology was used as discussed above for data sets with 8 pixels radius).
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Figure 2.26: Cluster radius measurements with the Rényi divergence and Ripley’s H func-

tion for simulated clusters with 16 pixels radius with different noise levels. The results

distribution is asymmetric for the Rényi divergence, thus the average radius was presented

as a) & b) mean, and c) & d) median. Error bars are standard deviation for mean and

interquartile distance for median. The cluster size measured with the Rényi divergence was

closer to the real cluster size than the cluster radius measured with Ripley’s H function.

The results of cluster radius measurements on data with 10 clusters with 16 pixel

radius also suggest that the Rényi divergence α = 70 provided a more accurate and

precise measurement of cluster size. The mean and median of the results distribution of

cluster radius measurements were closer to the real cluster radius for the Rényi divergence

(α = 70) (see Figure 2.26b and d). While comparing the noise resistance the Rényi

divergence also performs better. The divergence measure provided a stable cluster radius
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measurement for different noise levels. The change in the value of cluster radius measured

was less than 10%, compared with 45% decrease in value measured with Ripley’s H

function. It should be also noted that Ripley’s H for the S/N lower than 6 measured

cluster size which was smaller than the actual cluster radius. This indicated that Ripley’s

function cannot separate clusters (or signal) from the background noise for this noise level.

Analysis of clusters with sharp defined edges provides some insight into the perfor-

mance of the Rényi divergence and Ripley’s H function. Unsurprisingly, the behaviour

of both methods was affected by the data quality and properties, for example size of

clusters. As discussed before the accuracy of the cluster radius measured using the Rényi

divergence is higher than when measured with Ripley’s H function based on analysis of

clusters with radius 8 and 16 pixels. For both of the analysed data set types the Rényi

divergence provides more accurate measurement of cluster size compared with Ripley’s H

function which overestimates the cluster size.

When considering the noise resistance the behaviour of the two methods was different.

The cluster size measured with the Rényi divergence increased slightly for higher noise

levels (see Figures 2.25 and 2.26). This was caused mostly by a very small difference

between the density of background and clusters, leading to overestimation of the cluster

size. In contrast, the value of cluster radius measured with Ripley’s H function decreased

to the point of detecting clusters smaller than the actual cluster size, as the noise level

increased (see Figures 2.25 and 2.26). This was caused by lack of any density filtering in

Ripley’s function. For larger clusters both methods were able to provide cluster radius

measurements even for higher noise levels. With smaller cluster sizes and higher noise

levels the measurement of size was less accurate for the Rényi divergence when Ripley’s

H function measured cluster size smaller than the actual cluster size.

The clusters discussed up to this point were simulated with a sharp cut-off at the

edge. However, the clusters in biological samples have been reported to have diffuse and

less pronounced edges or non-circular, elongated shape. A number of studies identified

clusters present in the localisation microscopy images to have shape of a Gaussian (for

example [Owen et al., 2013; Sengupta et al., 2011; Williamson et al., 2011]) or Cauchy-

Lorentz [Pertsinidis et al., 2013]. To test the performance of the Rényi divergence and
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Ripley’s H function against these types of clusters, we simulated data sets with 10 symmet-

rical Gaussian clusters with σ = 8 pixels. To account for varying conditions in localisation

microscopy background noise was added with increasing density. An example of a dataset

with Gaussian clusters and S/N 29 is shown in Figure 2.27.

Figure 2.27: An example of a dataset with Gaussian clusters. Datasets contains 10 Gaus-

sian (σ = 8 pixels) shaped clusters with S/N 29. The radius of Gaussian clusters was

modelled as half of the Gaussian FWHM and for this data it was equal to 9.4 pixels. For

improved visibility the image was blurred.

A symmetrical Gaussian function is defined by two parameters, mean and standard

deviation (σ), and has an infinite area. The size of a Gaussian it is usually estimated using

standard deviation (σ) or full width at half maximum (FWHM), given as FWHM =

2
√

2 ln 2σ. For clusters simulated for this testing the FWHM was equal to 9.4 pixels.

To measure the cluster radius a bigger increment of radius for calculation was used in

both the Rényi divergence and Ripley’s H function. Monte Carlo simulations were used

to simulate data sets with the same cluster properties and different noise levels. Here, the

results distributions were characterised using the mean, median and standard deviation

values (see Figure 2.28).

The comparison of accuracy of the cluster radius measurements for the Rényi diver-

gence and Ripley’s H function did not show a big difference in performance of these two
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Figure 2.28: Results of the cluster radius measurement for the Gaussian clusters (σ = 8)

with different noise levels using the Rényi divergence and Ripley’s H function. a) The

mean and c) median cluster radius measured using the Rényi divergence with different α

values. Different noise levels are marked with: no noise – black, S/N 29 – red, S/N 22 –

green, S/N 16 – blue, S/N 10 –turquoise, S/N 7 – magenta, S/N 6 – purple, and S/N 3

with dark yellow. Comparison of b) mean and d) median cluster radius measured using

the Rényi divergence (marked with black) and Ripley’s H function (marked in red). The

expected cluster radius is marked with a navy line. Error bars are the standard deviations.

methods. Both of the methods slightly overestimated the expected cluster size of 9.4 pix-

els. For the higher noise levels the measured cluster size started to be affected. Similarly

to already observed results for sharp-cut off clusters, the Rényi divergence measured clus-

ter radius to be bigger and Ripley’s H smaller than those measured with both methods for
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lower noise levels. The main difference in the results presented here, for Gaussian clusters,

is that the Rényi divergence measurements were less precise than the Ripley’s H function,

which was different from results discussed above for sharp-cut off clusters. This effect

can originate from the cluster morphology itself, it is harder for the Rényi divergence to

identify the point density change between the cluster and the noise especially for higher

noise levels. It should be also noted that because of higher increment of radius used for

the Gaussian clusters the results provided were less precise. To improve the quality of the

results the method of cluster radius measurement will have to be changed. The current

method of radius detection designed for high sampling rates, simply detects plateaus in

the function. For low sampling rates a two step approach can be used, the plateau can

be detected in low sampling data, and used to probe the data with higher sampling den-

sity to detect the starting point of the plateau in the function. These higher precision

calculations are currently in progress.
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2.6.5 Analysis of localisation microscopy images of DNA origami

samples

DNA origami are two or three dimensional structures formed by artificial folding of

DNA strands. These structures were first reported by [Rothemund, 2006] and various

shapes can be achieved. DNA origami structures (supplied by GATTAquant) were DNA

origami plates with known sizes and an approximately constant number of Alexa Fluor 647

molecules attached (around 20 molecules per plate, see a model of the plate in Figure 2.29).

The sizes of the ordered DNA origami plates were 30x30, 60x60 and 60x90 nm. Knowl-

edge about the actual size of imaged structure was particularly necessary to be able to

compare the accuracy and precision of the Rényi divergence and Ripley’s H function.

Figure 2.29: An example of DNA origami plate image supplied by GATTAquant. Here only

nine fluorescent molecules are attached to the plate. For the results shown in this section

DNA origami plates used to gather clustering information were labelled uniformly with

approximately twenty Alexa Fluor 647 molecules. Image adapted from: [GATTAquant,

2016].

The DNA plates were delivered in liquid form and samples for localisation microscopy

were made according to protocol supplied by GATTAquant. This protocol immobilised the

DNA origami on BSA-biotin-neutravidin surface. The first dish was washed three times

with PBS. Then the dishes were incubated with 200 µl of BSA-biotin solution (0.5 mg
ml

in

PBS) for 5 minutes. After incubation, the BSA-biotin solution was removed and dish was

washed three times with PBS. Next, the dish was incubated with the neutravidin solution

(0.5 mg
ml

in PBS). After 5 minutes the neutravidin solution was removed and the dish was
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washed three times with PBS. Then, DNA origami was diluted between 10 and 100 times

(0.5 µl of DNA origami solution + 5 to 50 ml of PBS) with PBS. The DNA plates (in

liquid) were placed in the dish and incubated for 5 minutes. The optimal dilution factor

was selected using guidelines provided in the sample preparation protocol, so the average

density of DNA plates on the sample surface has been ∼1/µm2. Lastly, the dish was

washed with PBS three times.

Imaging was performed at the Nikon N-STORM system. The exposure was set to

10 ms, and around 10000 images per imaged region were collected. The 647 nm laser

power was adjusted to provide the same number of single molecules appearances in each

frame (as far as possible). The 405 nm laser was used towards the end of the imag-

ing to shorten the subpopulation of molecules in a long lived dark state in Alexa Fluor

molecules. Post-processing and super-resolution image reconstruction was then performed

in quickPALM [Henriques et al., 2010].

Simulated DNA origami data sets

DNA origami plates are rectangular and the Rényi divergence and Ripley’s H function

provide optimal results for circularly shaped clusters. The DNA origami plates ordered

from GATTAquant had rectangular or square shapes (30x30, 60x60, 60x90 nm). Both

the Rényi divergence and Ripley’s H function use a circle to measure the local clustering

patterns, which means that the cluster size measured by these methods will be a radius

of a circle. Thus, the measured cluster radius will have a relation to the size of the

structure itself but it will not be its actual size. The potential values of the measured

radius can be estimated: the measured cluster will not be smaller than a circle fitting

inside the rectangle and not bigger than the circumcircle (see Figure 2.30). The lower

limit, or minimal expected radius was underestimating the cluster size, as a big part of

the cluster with high density of molecules is not included into a cluster. The minimal

radius was given as half of the length of the shorter side of the rectangle. The higher

limit and maximal expected radius for the measured cluster radius was a circumcircle

(see Figure 2.30) with radius given as half of the diagonal of the rectangle: r =
√
a2+b2

2
.

To account for the difference between the measured cluster radius and actual plate
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size, the rectangular plates were simulated. The rectangular DNA origami were created

to measure 16x24 pixels, this preserved the 2:3 length and width ratio of real 60x90 nm

plates. The square plates size of 16x16 pixels corresponded to 60x60 nm plates. Each

data set had 10 clusters with S/N 29.

Figure 2.30: Simulated DNA plate and cluster radius estimation (plate is a fragment of the

image Figure 2.32). Circle passing through DNA origami corners, radius of that circle can

be calculated as half of the diagonal and inner-circle radius is equal to half of the length

of the shorter side of the plate.

The simulations of the square and rectangular DNA origami allowed us to account for

the difference in the geometry of the sample. The square DNA origami plate area size

is more close to the circumcircle area than the rectangular plate (see Figure 2.30). Thus

it was expected that the percentage difference between the value of the measured cluster

radius and the maximal expected radius can be different for the two considered shapes

of plates. This hypothesis was checked by simulating square and rectangular plates and

comparing the measured cluster size with the maximal expected radius. The simulated

DNA origami data sets were analysed using the Rényi divergence and Ripley’s H function.

The comparison of the cluster radius measured by the Rényi divergence with the

maximal expected radius suggested that there is a small difference in measured cluster

radius for the two plate shapes. Figure 2.31 a and b present the measured cluster radius

(as mean and median respectively). The absolute difference between the measured radius

and maximal expected radius is bigger for the rectangular plate. However, the percentage

difference in measurements for both plates are similar (mean and median measurements
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Figure 2.31: The average cluster radius measured for the two analysed shapes of simulated

DNA origami plates. The average radius measured with the Rényi divergence for a range of

α values with a) mean and b) median for data sets with square and rectangular clusters. c)

Percentage difference between the measured cluster size and the maximal expected radius

for both plate shapes and measurement with mean and median.

were analysed separately, see Figure 2.31c). The percentage difference for measurements

with the Rényi divergence and Ripley’s H function was presented in Table A.3.

The Rényi divergence measure of cluster size is more closely related to the actual size

of the objects than the Ripley’s H function. The absolute value of measured radius and

the percentage difference indicate that Ripley’s H function overestimated the maximal

expected radius by 30%.

Additionally, the noise resistance was evaluated for rectangular DNA plates in order
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to provide a guideline for localisation microscopy imaging. For this testing datasets were

simulated with 10 clusters, 16x24 pixel plates with S/N 29, 16 and 7. An example of

simulated DNA origami data set is shown in Figure 2.32. For the simulated plates the

minimal expected radius was 8 pixels and the maximal radius 14.4 pixels.

Figure 2.32: Simulated DNA origami plate dataset with 10 clusters and S/N 29. The length

of the sizes of the simulated plates corresponded to the ratio of the width and length of

the actual plates (DNA origami plates dimensions were 60x90 nm and simulated 16x24

pixels).

Results of the cluster radius measurements suggest that the Rényi divergence provides

a more accurate cluster radius measurement than the Ripley’s H function (see Figure 2.33).

The measured cluster radius distribution for the Rényi divergence has an asymmetrical

shape (see Section 2.6.3), thus the mean and median were used to provide information

about the results. The cluster radius measured with the Rényi divergence was closer

to the cluster size set by the limits discussed above and the measured cluster size was

smaller than the radius of the circle passing through the rectangle corners. The Ripley’s

H function overestimated the cluster size and the measured cluster size was bigger than

the cluster itself. The cluster size measured with Ripley’s H function for higher noise

levels is closer to the estimated upper limit of circumcircle – this is caused by the noise

influence.



CHAPTER 2. CLUSTERING ANALYSIS 98

 

m
ea

su
re

d
 c

lu
st

er
 r

ad
iu

s 
[p

ix
el

s]

13

14

15

16

17

 

alpha
0 20 40 60 80 100 120

29 S/N
16 S/N
7 S/N
Maximal expected radius

(a)

 

m
ea

su
re

d
 r

ad
iu

s

10

12

14

16

18

20

 

noise level [S/N]
30 25 20 15 10 5

Renyi divergence alpha=70
Ripley's H function
Maximal expected radius

(b)

 

m
ea

su
re

d
 c

lu
st

er
 r

ad
iu

s 
[p

ix
el

s]

13

14

15

16

17

 

alpha
0 20 40 60 80 100 120

29 S/N
16 S/N
7 S/N
Maximal expected radius

(c)

 

m
ea

su
re

d
 r

ad
iu

s

10

12

14

16

18

20

 

noise level [S/N]
30 25 20 15 10 5

Renyi divergence alpha=70
Ripley's H function
Maximal expected radius

(d)

Figure 2.33: Cluster radius measurements with the Rényi divergence and Ripley’s H func-

tion for simulated DNA origami datasets with increasing noise levels. Radius measurement

for simulations of DNA origami data sets a & b) radius measured as mean, and c & d)

median. Error bars are standard deviation for mean and 1st and 3rd quartiles for median.

The cluster size provided by the Rényi divergence measured as mean and median was closer

to the real cluster size, than one provided by Ripley’s H function.

Localisation microscopy images of DNA origami

The DNA origami localisation microscopy data sets of 30x30, 60x60, and 60x90 nm plates

samples were prepared, imaged and analysed. An example of localisation microscopy

image of 60x90 nm plates is shown in Figure 2.34. There was some variation in the

number of attached dye molecules per plate. This results in a variation in brightness and

shape of the images of the plates. It should be also mentioned that the three sizes of
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plates mentioned here only correspond to the area where dyes were attached. The size of

the folded DNA was the same for the three types and equal to 60x90 nm.

Figure 2.34: Localisation microscopy image of three DNA origami rectangular plates, size

60x90 nm. Different numbers of Alexa Fluor 647 molecules attached to each plate resulting

in small variations in brightness of the clusters and accounts for their non-square shape.

Scale bar 300 nm.

The DNA origami data were analysed using the Rényi divergence and Ripley’s H

function to measure the average cluster size for these structures. As discussed above,

for the simulated data the cluster radius is not going to be directly equal to the plate

dimension, but will be limited by the maximal and minimal expected radius (circumcircle

and circle fitting inside the plate). The maximal and minimal expected radius values for

imaged plates are collected in Table 2.4. The measured cluster radius for three sizes of

plates analysed are presented in Figures 2.35 and 2.36.

The Rényi divergence provided very similar values of the cluster size for all the three

types of plates. This result was partially caused by the quality variation in the samples.

The 30x30 nm plates were very bright and hard to bleach during imaging. The 60x60

plates were dim and bleached quickly. It was very challenging during imaging to capture

the same number of frames as for the 30x30 or 60x90 plates. The 60x90 nm plates were

bright and had an intermediate bleaching rate. Another possible reason is that the dyes

were attached to the folded DNA origami via covalent bonding to a designated sites.

We conclude that either the labelling of these plates has incorrect or the stability of the

sample was compromised. This will be subject of future investigation.
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Figure 2.35: Cluster radius measured for localisation microscopy datasets of DNA origami

plates. Different values of α were use to measure the cluster size in three types of plates

30x30, 60x60, and 60x90 nm (marked in black, red and blue respectively). For each plate

the maximal expected radius was marked with a dash line of the same colour as of the

results. Values presented here are an average of at least 10 different regions in three or

more samples.

The 30x30 plates were brighter than the other imaged plates producing reconstructions

with features bigger than these for 60x60 and 60x90 nm plates. A variation in structural

stability of different batches of DNA origami structures was also observed. Thus, the

30x30 nm images should be treated with caution.

The 60x60 and 60x90 nm plates behaviour during imaging was comparable of typical

behaviour of a labelled sample and other DNA origami structures imaged in our lab. The

localisation microscopy data for these plates were analysed using the Rényi divergence
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Figure 2.36: The average cluster radius measured for the three analysed DNA origami

plates. Cluster radius measured with the Rényi divergence (using different α values) for

three types of plates: a) 30x30 nm, b) 60x60 nm and 60x90 nm. For each imaged plate

type at least 10 regions from three or more samples were analysed. The error bars are the

standard deviations.

and Ripley’s H function (see Table 2.4 and Figure 2.36). The measured cluster radius

had very similar values for these structures. However, for both of those plates it was

positioned in the range set by the minimal and maximal expected radius (as discussed for

simulated DNA origami). The Ripley’s H function measured the cluster radius to be on

average three times bigger than the maximal expected radius.
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Table 2.4: The cluster radius measured with the Rényi divergence and Ripley’s H function

for 30x30, 60x60, and 60x90 nm plates. The minimal and maximal expected radius for

each plate and the number of data sets used to create the average is also given.

plate 30x30 60x60 60x90

expected radius min 15 30 30
max 21 42 54

measured radius Rényi divergence 43±9 42±9 43±9
Ripley’s H function 148±21 142±19 151±21

number of data sets analysed 58 30 45

Analysis of 60x90 nm DNA origami plates with added background noise

To test the influence of noise on the data sets 60x90 nm plates were imaged with added

solution of Alexa Fluor 647 to the buffer. This test was only performed for the 60x90 nm

plates because this structure was the most stable (see discussion above). The 60x90 nm

plates were prepared according to the standard protocol and imaged without background

noise added to the sample. Then 60 µl of 30 nM solution of Alexa Fluor 647 in PBS was

added to the sample and left at room temperature for 30 minutes. Before imaging the

sample was washed with 800 µl of PBS. After collecting images from 10 randomly selected

areas on the sample, it was again washed with PBS. The washing was repeated after each

imaging step to create background noise levels with different density (see Figure 2.37).

The cluster radius measured for sample after adding the liquid solution of Alexa Fluor

647 changed with the number of washes performed. The change can be quantified for

both for the Rényi divergence and Ripley’s H function by comparing the measured value

with the value of measured radius for a sample without added background (see Table 2.5).

The difference in measured cluster size is biggest for two washes following the addition of

Alexa Fluor 647 solution to the sample.

The change in the cluster radius measured for the same sample with different stages of

washing out floating dye can be explained by considering the 3D architecture of the sam-

ple. The DNA origami was immobilised on biotin-neutravidin coated glass slides. Thus

after addition of the free floating dye, it may have congregated around the DNA origami
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(a) (b) (c)

(d) (e)

Figure 2.37: Fragments of localisation microscopy images of DNA origami plates 60x90.

a) Imaged without adding any background. After adding 60 µl of 30 nM solution of Alexa

Fluor 647 sample was washed b) one, c) two, d) three, and e)four times. Small clusters are

especially visible in c and d). Scale bar: 1 µm.

creating slightly bigger clusters. Then, dye molecules, aided by washing steps, could have

crossed to the biotin layer. Biotin may have created a mesh network where dye molecules

were trapped and moving in a limited space. This could lead to appearance of artificial

clustering visible on the localisation images (see Figure 2.37b-d). The cluster radius mea-

sured for different noise levels in the sample was lowered by the artificial clusters (see

Figure 2.38).

The cluster radius measured with the Ripley’s H function was less precise and accurate.

However, it should be noted that it also displayed the same behaviour with the addition of

free dyes in the sample (slightly higher radius measured after the first wash, lower values

after the second and the third, and after the fourth the cluster radius had the same value

as in the beginning).
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Table 2.5: Percentage change in cluster radius measured with the Rényi divergence and

Ripley’s H function. The change in measured cluster size was calculated in respect to the

measured cluster radius for DNA origami sample without background solution added. For

"+" values the measured cluster size was bigger and for "−" smaller than the original

measurement.

Number of
washes

the Rényi
divergence
α = 70

Ripley’s H
function

1 +5.05% +1.13%
2 -6.36% -3.33%
3 -2.64% -4.30%
4 +0.33% +0.38%
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Figure 2.38: The cluster radius of localisation microscopy images of 60x90 nm DNA origami

plates measured for samples with added background noise. a) the cluster radius measured

with the Rényi divergence for different α values. The measured cluster size for DNA

origami sample without added background is marked with black. After adding solution

with Alexa Fluor 647 the cluster size increase by a small amount (marked with purple).

After two and three washes the measured cluster size decreased due to presence of false

clusters (marked with green and blue). Imaged after four washes the measured cluster

radius value has risen to the value before the background was added. b) Comparison of

the cluster radius measured with the Rényi divergence α = 70 and Ripley’s H function.

The maximal expected radius for this data set is marked with olive (green) line.
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2.7 Discussion and Outlook

Clustering analysis for localisation microscopy data can provide a lot of very important

information about imaged structure. The structure presence, density or size can be eval-

uated and used for further study. Here, only the cluster size measurement was discussed.

The main goal of this work was to evaluate the precision and accuracy of a new method

of cluster analysis developed using the Rényi divergence. The results acquired with our

method were compared with the well established Ripley’s H function, and provided bet-

ter accuracy in measurement of actual cluster size for both Gaussian and disk clusters.

However, the precision of the Rényi divergence was worse than precision of the Ripley’s

H function for Gaussian clusters. Some properties of the Rényi divergence and Ripley’s

H function are collected in Table 2.6.

Some consideration should be also given to the selection of the scaling coefficient α.

In this work the α was selected to be 70 for all of the analysed datasets mainly for

consistency. This value was selected because it provided a stable radius measurement

for different data types and noise levels analysed here. Generally, the α value should be

selected using a pre-run on the data (similarly as in section 2.6.4) and set to a value for

which the measured cluster radius does not change between different datasets which are

going to be analysed.

One of the future aims is to use the Rényi divergence for analysis and study of locali-

sation microscopy data of biological structures. This will require a prior knowledge about

the actual size of the imaged structure. This condition is usually hard to meet. However,

new advances have enabled imaging of biological structures with both fluorescence and

electron microscopy. Correlative microscopy can provide information about the size of

clusters with nearly unbiased electron microscopy precision and a localisation microscopy

image of the sample structure.

Additionally, the high precision cluster radius measurement provided by the Rényi

divergence could be used to develop analysis tools quantifying different properties of

clusters present in the images. The already existing cluster analysis software can be

changed to facilitate cluster counting or cluster density calculation. This can provide
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even more complete set of information about the analysed structure.

Lastly, it is possible to change the cluster model shape and data estimation to accom-

modate different clusters shapes. This may be important especially for elongated, rod like

clusters when the round shape of model cluster will cause underestimation of cluster size.

Table 2.6: Comparison of properties of the Rényi divergence and Ripley’s H function. The

calculation of both, the Rényi divergence and Ripley’s H function was performed simulta-

neously by a single software. Both of these cluster analysis methods are the most suitable

for analysis of circular clusters. Next, the Rényi divergence provides better accuracy of the

cluster measurement than Ripley’s H function. The precision of the cluster size measure-

ment is different and depends on the cluster type: the Rényi divergence performs better

for disk clusters and Ripley’s function for Gaussian ones. Lastly, the Rényi divergence is

much more noise resistant than Ripley’s H function.

the Rényi divergence Ripley’s H function

running time fast(16 s for 32,000 point data set) fast(16 s for 32,000 point data set)
cluster shape circular circular
accuracy high low
precision high to medium medium to low

noise resistance high low



Chapter 3

Modelling protein arrangements in the

podosome ring

3.1 Introduction

Podosomes are discreet structures formed at the cell surface and form adhesive links to the

extracellular matrix. They were first identified on the surface of bone cells (osteoclasts)

in 1983 [Zambonin-Zallone et al., 1983]. In the first images of podosomes, they appear as

bright dots surrounded by a microfilament web. These bright dots were identified, at the

time, as actin clusters [Zambonin-Zallone et al., 1983]. These actin rich structures were

finally named ’podosomes’ after repeated analysis of the samples prepared with the same

cell line, reviewed in [Murphy and Courtneidge, 2011]. Podosome presence was later con-

firmed in a range of different cell types: monocytes [Calle et al., 2004, 2006; Linder et al.,

1999], dendritic cells [Calle et al., 2004, 2006; Meddens et al., 2014], stimulated endothe-

lial cells [Rottiers et al., 2009; Seano et al., 2014], smooth muscle cells [Gimona et al.,

2008], Src-transformed fibroblasts [Courtneidge et al., 2005], megakaryocytes [Schachtner

et al., 2013a], microglia [Siddiqui et al., 2012], trabecular mesh work cells [Aga et al.,

2008; Han et al., 2013], trophoblasts [Patel and Dash, 2012], and neural crest cells [Mur-

phy and Courtneidge, 2011; Santiago-Medina et al., 2015]. The presence of podosomes or

their analogues invadopodia, in a range of cell types indicates that these protein struc-

108
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tures play an extremely important role in many physiological processes such as tissue

invasion [Foxall et al., 2016].

Podosomes are build with an actin-rich core and a protein ring, which is the main fo-

cus of this chapter. The ring consists of integrins and integrins-associated proteins, such

as vinculin, paxillin, and talin. The integrins-associated proteins are thought to form

concentric circles around the podosome core [Meddens et al., 2013] and occupy different

zones in the ring [Cox et al., 2012; Meddens et al., 2013]. However, previous investigations

of the protein arrangement in the podosome ring were either based visual assessment of

podosome rings in super-resolution images Cox et al. [2012] or on confocal studies [Med-

dens et al., 2013] (see section 3.1.1). Therefore, to investigate the protein arrangement

further, we designed a pipeline for podosome identification and protein position measure-

ment. The exact operation of this pipeline and proof of concept results are going to

be discussed in sections 3.4, 3.4.1, and 3.5.1. The work presented in this chapter was

published in [Staszowska et al., 2016].

3.1.1 Structure

Podosomes consist of three main components: a core surrounded by a ring structure and a

cap placed on top of the core. The core is rich in F-actin and actin associated proteins, for

example Wiskott-Aldrich Syndrome Protein (WASP) [Schachtner et al., 2013a]. WASP

plays an important role in podosome formation through activation of Arp2/3, a major

actin filament generator [Schachtner et al., 2013b]. The podosome ring consists of integrins

and integrin associated proteins including vinculin, paxillin, and talin. The ring moderates

and maintains the adhesion to the extracellular matrix (discussed in section 3.1.2) [Calle

et al., 2006; Murphy and Courtneidge, 2011]. Recently, a number of studies reported a

cap-like structure positioned on top of the podosome core [Bhuwania et al., 2012; Wiesner

et al., 2014] (see Figure 3.1). This cap was reported to interlock with the core structure and

only a limited number of proteins building it were identified for example supervillin, (see

Figure 3.1) [Wiesner et al., 2014]. It was confirmed that the actin filaments connecting

individual podosomes are branching from the cap [Bhuwania et al., 2012; Linder and
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Wiesner, 2015]. However, the exact role of this structure is not yet understood [Linder

and Wiesner, 2015].

Figure 3.1: 3D structure of podosome. The core (red) is surrounded by the ring structure

(green). The cap (blue) is positioned on top of the cove above the ring. Right: A model

of podosome reconstructed using confocal images of podosomes. Vinculin from the ring is

seen surrounding F-actin core (red). F-actin core is topped with the supervillin built cap.

Image adapted from: [Wiesner et al., 2014].

The size of podosomes varies from 0.5 µm to 2 µm in diameter and 0.6 µm to 1 µm

in depth (the core usually has a diameter of 0.5 µm and height of 0.5 µm [Meddens

et al., 2014]). Their lifetime is limited to a few minutes [Linder and Kopp, 2005; Veil-

lat et al., 2015]. Until recently, the shape of the podosome ring was believed to be

round [Monypenny et al., 2011]. Recent studies of the podosome ring based on analysis

of super-resolution microscopy images, present two conflicting models of the ring struc-

ture. The ring was reported to have a hexagonal shape when imaged with high density

localisation methods using live and fixed cells expressing fluorescent proteins [Cox et al.,

2012]. An opposing model was presented in a study using primary/secondary antibody

labelling with low density activation localisation microscopy. Here, the rings were seen as

sparse collections of protein clusters [van den Dries et al., 2013; Meddens et al., 2014].
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Because of the conflicting observations, the arrangement of proteins in the podosome

ring is still unknown. It was, however, confirmed that the different proteins in the po-

dosome ring occupy discrete spaces in the ring [Cox et al., 2012; Meddens et al., 2014].

This led to speculation about possible arrangements of proteins in the podosome rings.

One possible configuration of proteins in the ring is shown in Figure 3.2. The protein

arrangement was also assessed visually using localisation microscopy images, finding talin

to be closer to the podosome core than vinculin [Cox et al., 2012]. A complete model of

podosome ring structure was proposed in Meddens et al. [2013], however it was based on

basic confocal images of podosomes. Development and preliminary results of a quantita-

tive pipeline for analysis protein arrangement in the ring will be discussed in section 3.3.

Development of a model for protein arrangement of the proteins in the podosome ring

could provide an insight into podosome dynamics and functions.

The main difference between podosomes and other types of adhesions is that po-

dosomes have an actin core which plays a part in the matrix degradation process. Po-

dosomes also contain WASP protein. Detection of WASP helps to distinguish podosomes

from focal adhesions [Calle et al., 2004; Linder et al., 1999] (see Figure 3.2).

Podosomes associate as groups inside cells. They are interconnected by myosin cables

and form structures such as clusters or belts [Veillat et al., 2015]. Veillat et al (2015) also

present several other types of podosome organisation in cells shown in Figure 3.3. This

organisation behaviour usually depends on the type of cell forming podosomes and their

physiological function. For example, an array of podosomes is formed in moving cells.
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Figure 3.2: Podosome structure: a schematic representation of podosome structure. In-

tegrin proteins control binding to the extracellular matrix (ECM). The actin cables link

the ring structure with the core. Talin and paxillin are linked to the integrins and vin-

culin provides a link to the actin cables branching from the core. Note that this is only a

model of one possible arrangement which has been proposed for the proteins in the ring.

The actin core is attached to the cell membrane by Cdc42-activated WASP and Arp2/3

complex. Image adapted from: [Schachtner et al., 2013b].

Figure 3.3: Examples of podosome organisation in different cell types and life states.

Starting from the left, single podosomes are present in stationary macrophage cells and

arrays in moving cells. Podosome rosettes are present in TGFβ-induced endothelial cells.

Clusters can be found in immature dendritic cells. Podosome rings and belts are present

in osteoclasts. 3D podosomes organisation present in cells embedded in gelled collagen

matrix. Image adapted from: [Veillat et al., 2015].
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3.1.2 Main functions

Adhesion

Adhesion is one of the essential functions of podosomes. Podosomes form when there

is contact between a cell and the substratum. It was recently confirmed that podosome

rings are in a very close proximity to the extracellular matrix material [Schachtner et al.,

2013a]. Theoretically, any of the extracellular matrix proteins can be used to form an

adhesion site, however some proteins are used more than others [van den Dries et al.,

2012]. For example, fibronectin is a preferred substratum for macrophage podosomes and

vitronectin for osteoclast podosomes [Veillat et al., 2015]. Although the actual signalling

pathway for podosome assembly is not yet known, a number of studies have reported on

the order in which proteins are recruited to the forming podosome. It was confirmed that

the podosome core appears before the podosome ring and later induces its formation [Lux-

enburg et al., 2012]. The first protein recruited to the ring in osteoclasts is paxillin (one

of the podosome ring proteins) [Veillat et al., 2015].

Once podosomes are made they then play a role in podosome mediated tissue re-

modelling. In bone remodelling, podosomes form a tight adhesion junction what enables

bone resorption by osteoclasts (followed by remodelling the bone tissue by osteoblasts).

Podosomes are also responsible for creating new capillary vessels from existing blood ves-

sels, they induce the outgrowth and creation of new capillaries (this process is known as

angiogenesis) [Seano et al., 2014].

Mechanosensing

Podosomes can sense and adjust to the geometry and stiffness of the extracellular matrix

(ECM). The mechanosensory ability of podosomes was discovered by observing how the

stiffness of the matrix influences podosomes [Veillat et al., 2015], and was recently con-

firmed by detecting myosin II and actin fibres in podosomes [Burgstaller and Gimona,

2004; Meddens et al., 2014]. The mechanosensing mechanism is driven by actin polymeri-

sation, moving the actomyosin fibres connecting the extracellular matrix to the integrins

in the ring [van den Dries et al., 2013]. An other example of this function is a mechanosens-
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ing mediated relation between the topography and composition of the extracellular matrix

and the lifetime and shape of the podosome. Another example of mechanosensing in po-

dosomes is probing the 3D architecture of the substrate present in immature dendritic

cells (see Figure 3.3: showing a cell displaying podosomes in 3D environment) [van den

Dries et al., 2012]. The same probing property is used by the podosomes to form protru-

sion sites. The protrusion formed to aid tissue transmigration, forms in places offering

the least resistance. In cultured cells this was seen on porous hard substrate filled with

softer substance, for example gelatin (see Figure 3.4) [Veillat et al., 2015].

Figure 3.4: Model of a podosome forming a protrusion to the softer environment. Cell was

planted on a porous substrate. Podosome forms on the softer substrate (here gelatin) to

form a protrusion site. For comparison protrusion formed by the cell (on the right). Image

adapted from: [Gawden-Bone et al., 2010]

The ability of podosomes to form protrusions is used in two different processes to

find sites for the cell to cross a barrier in processes called extravasation and cell invasion.

Extravasation is the process of crossing between capillaries and tissue. Immune response

to inflammation is based on leukocyte movement between infected tissues and lymphatic

system. The process of extravasation is enabled by podosomes, which form protrusions in

and between endothelial cells to find suitable crossing site [Carman, 2009; Veillat et al.,

2015].
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3.1.3 Pathology

Any disturbance in podosome formation and motility can cause malfunction in cell func-

tion leading to disease. The most well-known disease connected to abnormalities in po-

dosome formation is Wiskott-Aldrich syndrome [Calle et al., 2004]. It is an immunode-

ficiency syndrome caused by mutation of the WASP gene [Thrasher and Burns1, 2010].

Macrophages and immature dendritic cells, collected from the patients suffering from this

condition, are unable to form podosomes [Jones et al., 2002; Zicha et al., 1998]. Lack

of podosomes affect the ability macrophages to move in the body [Blundell et al., 2008].

Other example of podosome related disease is an autoimmunitive desease known as PAPA

syndrome (pyogenic sterile arthritis, pyoderma gangrenosum, and acne). In this condition

podosomes formed by macrophages are malformed and have much stronger adhesive and

matrix degrading abilities [Veillat et al., 2015].

Metastatic cancer is an another example of disease state in which podosome-like struc-

tures, called invadopodia, play a crucial role. The cancer cells in HNSCC (head and neck

squamous cell carcinoma), breast carcinoma and melanoma cells all assemble invadopo-

dia (as opposed to healthy cells). Invadopodia are believed to facilitate cancer metasta-

sis [Murphy and Courtneidge, 2011]. Despite their similarity to podosomes, invadopodia

differ in few aspects. Firstly, invadopodia have higher protrusive and matrix degrada-

tion abilities. They are also bigger, have a longer life and are located in the centre of

a cell [Foxall et al., 2016]. Another difference is that there are no connections linking

individual invadopodia in the same cell and as a result, they seem not to associate with

one another.

3.2 Imaging podosomes at super-resolution

3.2.1 Podosome sample preparation

Live and fixed samples of macrophage podosomes were prepared by Elizabeth Foxall,

a PhD student in Gareth Jones group, according to the protocol presented in [Vijayakumar

et al., 2014]. For a complete protocol see Appendix C.
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3.2.2 Tandem dyes for two colour imaging

Tandem dye pairs were used for two colour localisation microscopy imaging. These pairs of

dyes are composed of two fluorescent dyes covalently bonded to an antibody. One of these

dyes acts as an activator and the other as an acceptor. A tandem dye pair behaves as a dye

which has the excitation characteristics of the donor dye and emission properties of the

acceptor. This arises because of Förster resonance energy transfer (FRET), a contactless

process of energy transfer (see section 4.2 for more details) [Bates et al., 2007].

For the purpose of two-colour imaging three tandem dye pairs were used: Alexa Fluor

405-Alexa Fluor 647, Cy2-Alexa Fluor 647, and Cy3-Alexa Fluor 647. During imaging

the activator dye (Alexa Fluor 405, Cy2, and Cy3) was excited using relevant wavelength

of laser light (405, 488, 561 nm respectively). The read-out was performed using by

exciting Alexa Fluor 647 dye, photoswitching of which was facilitated using the activator

dye [Bates et al., 2007]. To label sample with tandem dyes, they were conjugated to

the secondary antibody. The dye was handled and conjugated by Oleg Glebov, using a

protocol provided by Nikon (see Appendix D).

The main disadvantage of tandem dyes is cross-talk when using them for two colour

imaging [Dani et al., 2010]. Some portion of activator dyes are activated by laser light

with wavelengths different than the wavelength of maximum absorption. For example

Cy2 will have maximum efficiency when activated with 488 nm wavelength light, and will

be less sensitive to activation with 405 or 561 nm laser light. However, it can be still

excited by 405 or 561 nm light [Bates et al., 2007]. This means that dyes can be activated

by laser light used to image a second dye pair leading to miss-identification of tandem

pairs attached to different proteins.

The amount of cross-talk can be measured in cross-talk experiments. In this test sam-

ples are labelled with only one different tandem dye pair. Then the imaging is performed

as for sample labelled with two different dye pairs. The amount of cross-talk is measured

as a ratio between the number of localisations measured for the optimum activation and

number of localisations for the second channel (used in two colour imaging to activate the

second dye pair) [Bates et al., 2007; Dani et al., 2010]. Another problem is smaller than
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100% efficiency of FRET, which depends on the distance between donor-acceptor pair (it

is ∝ 1
r6
) and is reduced by acceptor quenching [Fiori and Meller, 2010]. The amount of

quenching depends on the tandem dye pair used [Fiori and Meller, 2010]. Lastly, tan-

dem dye pairs, as any other fluorophores, can be damaged by photobleaching and oxygen

radicals.

3.2.3 Imaging

The localisation microscopy imaging was performed using the Nikon N-STORM system

at the Nikon Imaging Centre at King’s College London. The Nikon system is built with

an Eclipse Ti-E Inverted Nikon Microscope with TIRF 100x objective, N.A. 1.49, an

Andor DU-897 camera, laser and LED light sources (laser wavelengths and powers: 405

nm, 30 mW; 488 nm, 90 mW; 514 nm, 50 mW; 561 nm, 90 mW, and 647 nm, 170

mW) and operated with NIS Elements software. The laser power was adjusted during

the acquisition to compensate for the bleaching rate so a similar number of counts was

acquired in every frame (as far as possible). During acquisition the 405 nm laser was used

induce population of fluorophores in the dark state to re-enter the emitting state. This

was important towards the end of the acquisition when the sample started to become

bleached. The 405 nm laser power was used at the end of the acquisition was usually

smaller than 12 mW (40% of the maximal laser power). To improve the signal-to-noise

ratio of the acquired images, the imaging was performed in TIRF (or near-TIRF). This

restricted excitation to the sample surface, so only fluorophores on the sample surface (up

to 200 nm) emitted light. This was particularly advantageous when imaging structures

like podosomes, which form on the sample surface. In this mode fluorescent molecules

attached to different parts of the cell were not illuminated.

During imaging samples were placed in an imaging buffer to control the density of

active fluorophores by inducing a long lived dark state. The basic imaging buffer contains

an oxygen scavenging system and reducing agent. The oxygen scavenging is performed

by two buffer ingredients: glucose oxidase and glucose. Glucose is oxidised by glucose

oxidase and the oxygen from air is reduced to hydrogen peroxide (H2O2) in this reaction.
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This creates an relatively oxygen free environment around the sample. Hydrogen peroxide

is a strong oxidising and corrosive compound. In order to control its concentration the

imaging buffer contains catalase enzyme. Catalase breaks down the hydrogen peroxide

into to water and oxygen. The third active ingredient is a reducing agent, usually a

thiol, for example β-Mercaptoethylamine (MEA). The role of reducing agent is to quench

the triplet state [Dave et al., 2009; Heilemann et al., 2005; Rasnik et al., 2006]. The

basic imaging buffer recipe was based on the protocol supplied by Nikon [Nikon, 2015].

Recently a number of studies reported resolution improvement through improving buffer

recipes [Dave et al., 2009; Olivier et al., 2013]. According with the methodology presented

in [Dave et al., 2009] Cyclooctatetraene (COT) was added to the methanolamine (MEA)

buffer to final 2mM concentration. The recipe for the imaging buffer can be found in

Appendix E.

3.3 Quantitative model of the podosome ring structure

Localisation microscopy images are reconstructed from a collection of points, thus the

structures of interest must be identified manually or by a software. It is possible to

try to detect recurring shapes without a model of what the shape should be but this

is computationally expensive. Thus it is easier to identify features using a model of

the structure. In order to identify podosome rings, a model of the ring structure was

created. Podosomes rings were modelled as circular (see localisation microscopy images

of the podosome rings in fixed cells in Figure 3.5). The circle centre and radius can be

found analytically using coordinates of three points positioned on that circle. The circular

model is a good method to identify potential podosome centres and radius values even if

the actual podosome structure is hexagonal (a circle can be passed through corners of a

hexagon an it will have the same centre point and radius of a half of the hexagon diagonal)

or elongated (when a bigger range of possible podosome centres is returned, for example,

see podosome centre identifications in Figure 3.8c). The protein positions were later

investigated using the podosome centre identifications. After podosome identification

the relative protein positions were calculated. Since the podosome size varies between
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different podosomes and some of the podosomes have an elongated shape and are not

actually circular the protein positions were calculated relative to each other (the average

position of one protein was subtracted from the average position of the second).

(a) (b)

Figure 3.5: Example of images of podosome rings imaged with localisation microscopy

and 3B. a) Podosomes imaged with localisation microscopy. Podosome ring proteins were

stained with tandem dye pairs: vinculin (green) with Cy2-Alexa Fluor 647 and paxillin

(red) with Cy3-Alexa Fluor 647. b) Podosome rings imaged with 3B method. Talin was

transfected with mCherry-talin construct (green) and vinculin labelled with Alexa Fluor

488 (red). Scale bar: 1 µm.

The circular model of podosome ring can be easily implemented computationally.

A circle passing through three non-collinear points (x1, y1), (x2, y2), and (x3, y3) can be

found either geometrically, by finding the crossing point between lines perpendicular to

the segments connecting the points (see Figure 3.6), or by solving the equation of the

circle:

(x− x0)2 + (y − y0)2 = r2, (3.1)

where the (x0, y0) is the centre point of the circle and r is the radius. The equation 3.1

was solved for three points positioned in the same circle and the centre point was found.

The radius was calculated as the distance between the centre point and any of the three

points positioned on that circle.
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Figure 3.6: A geometrical construction of a circle passing through three points. If we draw

two perpendicular lines crossing the segments connecting the points, then their crossing

point will be the centre of the circle.

3.4 Podosome identification algorithm

The potential locations of podosome rings in localisation microscopy images were found by

random sampling of the localisation microscopy dataset and fitting these random samples

a circular model of the podosome ring structure. The equation of the circle fitted to

the three randomly selected points was found using equation 3.1. To ensure that the

points selected were suitable, the software randomly selected three points separated by

small enough distances that they could belong to the same podosome (step 1 in Figure

3.7) [Fischler and Bolles, 1981]. Then the circle centre and radius were calculated (step 2 in

Figure 3.7). The fitted circle parameters had to have biologically sensible values: the circle

radius had to have a similar value to an actual podosome ring radius (500–1000 nm) and

the inside of the circle had to have a very small number of protein localisations (less

than 10 localisations in the centre, because there should be no fluorophores present in

the podosome cores). Lastly, the overlap between the fitted circle and actual podosome

structure was evaluated by examining the localisations surrounding the fitted circle in the

proximity of 400 nm which corresponds to an actual podosome ring thickness. The values

used for this step were based on experimental values acquired for a typical podosome ring
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from a localisation microscopy image ( usually for a good overlap the density of points

should be approximately uniform, step 3 in Figure 3.7). If the criteria were met the

parameters of the fitted circle were saved (step 4 in Figure 3.7), and if not they were

discarded. Next the new set of three points was selected and fitting steps were repeated

(steps 1-3 in Figure 3.7). Usually, circles were found across the whole image, however the

density of identification in the area with podosomes was much higher.

The software ran for a predefined number of repetitions, set to be 100x higher than

the number of points in the data. This was smaller than the number of all possible

combinations of selecting three point from the data, for typical podosome data it provided

around 3000 circle fittings for an image of a cell with around 20 podosomes, and multiple

circles were fitted to the same podosome (after the filtering step). Additionally, the

lower number of repetition shortened time of the computation significantly. The filtered

circle fittings were saved and plotted in an image for reference (see Figure 3.8b). The

podosome centres were then found by convolving a Gaussian function with the centre

points of the fitted circles and finding the local maxima (images created in convolution

process and identified podosome centres were also saved, see Figure 3.8). The maxima are

localised around the true podosome centres, as the fitted circle centres were more densely

localised in these areas (step 5 in Figure 3.7). Compared with the visual assessment of the

images, the software had an 80% success rate (the remaining 20% were false positives and

negatives). This success rate is comparable with other methods of podosome identification

reporting 75% success rate [Meddens et al., 2013].



CHAPTER 3. PROTEIN ARRANGEMENT IN PODOSOMES 122

start

3 points chosen 1

circle centre &
radius calculation 2

filtering:
meets

criteria?
3

save localisation

repeat

4

Gaussian
convolution 5

podosome centre
identification 6

stop

no

yes

Figure 3.7: The podosome localisation software operation. 1) The three points are selected

randomly from the localisation microscopy data. 2) The radius and a center of circle passing

by three points are calculated. 3) Filtering step checking if the circle fit is close to the

biological properties of the podosome ring. If the filtering criteria are met the circle centre

is saved (step 4) the steps 1-3 are repeated. Otherwise a new set of points is chosen (back

to step 1). 5) The circle center positions are convolved with the Gaussian and saved as

image. 6) The podosome centres are find by looking for a local maxima on the Gaussian

image from step 5.
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(a) (b)

(c) (d)

Figure 3.8: Podosome identification in localisation microscopy images. a) Image of po-

dosome rings with vincullin (green) stained with Cy2-Alexa Fluor 647 and paxillin (red)

with Cy3-Alexa Fluor 647. b) Filtered circle centres found using the algorithm (image

was blurred for improved visibility). c) All possible centre points were convolved with the

Gaussian function. The actual centres of podosomes were found as local intensity maxima.

d) Identified podosome centres displayed as white squares displayed over the localisation

microscopy image of a cell displaying podosomes. Scale bar 1 µm.
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3.4.1 Protein distance calculation

The ring protein positions were calculated by subtracting average position of one protein

from average position of the other protein. This method of calculation helped to minimise

bias introduced by different podosome size and the ring elongation (see Figure 3.10). The

podosome centres found in the previous step (see section 3.4) were used for the protein

distance calculations. The boundary of the podosome ring was hard to define computa-

tionally due to close proximity of other podosomes and background noise. However, the

ring boundaries can be easily distinguished by human eye. Thus to define the bound-

aries, a black-and-white mask image was created showing the areas with podosomes in

white and background in black (step 1 in Figure 3.9). Creating the mask images had

two additional advantages of excluding areas where the relative positions of the proteins

in the ring might be different (for example parts of the ring shared two podosomes) and

removing false positive podosome identifications.

The podosome ring shape can sometimes be elongated, thus the proteins in the ring

may not be equally spaced from the podosome centre. The calculations of the relative

positions were performed for small sections of the rings. The angular increment for cre-

ating these sections was set to 0.1 radian – this value was selected to provide on average

about ten localisation of each protein per segment. For easier computation the coordinate

system was changed to polar coordinates (where the angular increment is easy to define,

step 2 in Figure 3.9). The calculated average difference in positions of the two protein

in each segment was then weighted by the number of points in given segment – so the

regions with small numbers of localisations would not influence strongly the end result

(step 3 in Figure 3.9).
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Figure 3.9: The operation of the program for calculating positions of proteins in the

podosome rings. The program iterates through the list of podosome centres provided

by the podosome identification software and for every podosome centre the points which

belonged to the same podosome are identified using the mask image (step 1). Then the

coordinate system is changed from Cartesian to polar coordinates (step 2), with the current

podosome centre becoming the centre of the polar coordinate system. Each point belonging

to the podosome is described by the distance to the centre and its angular position. For

details of the coordinate conversion see appendix F. The relative distance between two

proteins was calculated and saved (step 3).
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Figure 3.10: The relative protein position calculation. The average position of each ring

protein is calculated in a segment (α). The average position of the first protein (marked

with black dots) is subtracted from the average position of the second (red dots). The

positive value of the relative distance means that the first protein is closer to the podosome

centre than the second, the negative means that the second protein is closer. This method

of protein distance measurement provides values unbiased by difference in podosome size

and ring elongation.
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3.5 Results

3.5.1 Quantitative arrangement of the protein in the podosome

ring

The methodology developed for podosome ring analysis was used to perform calculations

of protein positions in the podosome ring. The relative positions of the vinculin-paxillin

pair were calculated for samples stained with tandem dye pairs (and imaged using the

Nikon N-STORM system). The talin-vinculin pair was imaged using samples prepared

with mCherry-talin construct, and vinculin stained with Alexa Fluor 488 (imaging and

super-resolution analysis was performed by Susan Cox, for details see [Cox et al., 2012]).

These two types of sample preparation methods were chosen because they suggested

a completely different podosome ring shape. Thus models built with different sample

preparation model could be compared, leading to a better understanding of both structure

and shape of the podosome ring. The relative positions of two proteins in each pair were

calculated (see section 3.4.1) and the resulting distributions are shown in Figure 3.11. To

create these distributions around 380 podosomes (data collected from four samples, see

Figure 3.11a) for the vinculin-paxillin pair and 9 podosomes from a single data set for the

talin-vinculin pair were analysed (see Figure 3.11b).

The distribution for the vinculin-paxillin pair has a very sharp peak and relatively

heavy tails. Mean, median, standard deviation and the 1st and 3rd quartiles were calcu-

lated for the vinculin-paxillin distribution (see Table 3.1). Both mean and median of this

distribution suggest a very small difference between positions of vinculin and paxillin.

The mean value is equal to 4 nm and median to 1 nm, suggesting that the paxillin is

located further away from the podosome centre than vinculin. These values were to small

to provide a definitive answer about the arrangement of these two proteins. Both the

mean and median were smaller than the proteins size (see the minimal protein size in

Table 3.3).

Additionally a Gaussian and t-location scale pdfs were fitted to the vinculin-paxillin

relative distance distribution. The resulting fit is shown in Figure 3.12 and parameters
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(a) (b)

Figure 3.11: Histograms of the position difference between pairs of proteins from the po-

dosome ring. a) The relative position of vinculin in respect to paxillin (results acquired

with standard localisation microscopy). The relative positions were calculated by sub-

tracting an average position of one protein from the second. For positive positive values

paxillin is closer to the podosome centre, and for negative vinculin is closer. b) The relative

positions of talin and vinculin (results for 3B analysed images). For positive values talin

is closer to the centre, while for negative vinculin is closer.

Table 3.1: Statistical parameters of distributions of the relative protein distance calcula-

tions for vinculin-paxillin and vinculin-talin protein pairs.

protein pair

mean
relative
distance
[nm]

median
relative
distance
[nm]

Standard
deviation quartiles

vinculin-paxillin 4 1 110 (-40,30)
vinculin-talin 61 75 99 (0,140)

are collected in Table 3.2. Neither of the fitted pdfs provided a good fit for the results for

vinculin-paxillin pair. There was no fitting performed for the talin-vinculin pair because

this results distribution has a bimodal shape and no readily available probability density

function has this shape has this shape.

An analysis of nine podosome rings provided an indication of the relative positions

of talin and vinculin in the podosome ring. A data set with two of the podosome ring
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Figure 3.12: Fitting of Gaussian and t Location-scale pdf to the histogram of the relative

positions of the vinculin-paxillin pair. However, neither of these functions provided a good

fit for the results (see Appendix B for distribution equations and further details).

Table 3.2: Fitting parameters of Gaussian and t Location-scale probability functions fitted

to the relative protein distance measurements results for vinculin-paxillin pair.

Function µ σ ν

Gaussian 3.68(0.59, 0.59) 110.24(0.42, 0.42)
t Location-Scale 2.49(0.48, 0.47) 74.58(0.56, 0.57) 3.25(0.068, 0.070)

proteins vinculin stained with Alexa Fluor 488 and talin encoded with mCherry-talin

construct was imaged and analysed by Susan Cox [Cox et al., 2012]. The relative position

measurements indicated that on average talin was 60 nm closer to to the podosome centre

than vinculin (see Table 3.1). When considering the median value the relative distance is

75 nm. Similarly, the absolute distances measured for the two considered proteins from

the podosome centre suggest that the talin is closer to the podosome centre than vinculin

(see Figure 3.13 and Table 3.4).
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Table 3.3: Minimal sizes of podosome ring proteins calculated using methodology presented

in [Erickson, 2009]. The minimal volume of space occupied by protein with a certain mass

can be calculated using equation Rmin[nm] = 0.066M
1
3 ,where M is the mass of the the

protein, measured in Daltons [Erickson, 2009] (for full explanations see Appendix G).

protein mass [kDa] Rmin [nm] notes

vinculin 117 3.23 circular only in inactive state
paxillin 69 2.71
talin 270 4.27

Table 3.4: Statistical parameters of the absolute position distributions of talin and vin-

culin. Mean, median, standard deviation and quartiles were calculated (the 1st and 3rd

quartiles were calculated to account for spread around the median and asymmetry of the

distributions).

mean [nm] median [nm] standard dev. quartiles

vinculin position 571.84 575.11 85.87 (520, 620)
talin position 511.05 466.04 151.99 (400, 500)

The absolute distances of the proteins from the podosome centre can be calculated

and compared for datasets with podosomes with similar size. However, to provide a

statistically significant answer a larger number of data sets would have to be analysed.

This is especially important when considering the distribution of talin absolute distances

which had a large standard, deviation indicating broad distribution. Analysis of the talin

absolute distance provided a bimodal distribution (see Figure 3.13). This may indicate

two stable conformational states of talin (this matter will be investigated further).

Two protein labelling for localisation microscopy is challenging and requires dedi-

cated method of imaging or sample preparation. Samples must be stained with specially

prepared dyes, for example tandem dye pairs or imaged and analysed by high density

methods when using fluorescent proteins (for example 3B [Cox et al., 2012]). Use of

conventional dyes (e.g. Alexa Fluor 488, 561, or 647) is possible only using high power

laser to induce a high enough rate of random switching between emitting and dark state
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Figure 3.13: Histogram of the absolute positions of talin and vinculin in podosome rings.

The absolute protein positions in each segment were calculated measuring the average

distance of each protein from the podosome centre.

and requires chromatic realignment. Another possibility is imaging with a buffer with

free-floating dyes, which are imaged only after they attach to a protein of interest. This is

done using technique known as point accumulation for imaging in nanoscale topography

(PAINT) [Sharonov and Hochstrasser, 2006]. However, there are drawbacks to each of

the two-colour methods. The tandem dye pairs have to be conjugated by hand and are

unstable (stability depended on the batch of dyes and varied between two weeks to a

month). Also each new batch of tandem dyes has to be evaluated for cross-talk between

channels (see Appendix D). The high density methods using fluorescent proteins require

advanced post-processing and are time consuming. Use of Alexa Fluor dyes (other than

Alexa Fluor 647) was not possible at the time because lasers available in our lab were

not powerful enough for the dyes to be randomly activated. Using two organic dyes has

also an another potential issue connected to an imaging buffer. Imaging buffer is usu-

ally optimised to ameliorate performance of a single dye. This means that for two dye

imaging it is going to perform better for one dye than the other. Lastly, the PAINT

method might suffer from a higher background than methods with stationary fluorescent
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probes [Giannone et al., 2008].

The varying quality of images acquired with different super-resolution techniques un-

derlines that the sample preparation, imaging and post-processing have a direct impact

on the accuracy of the quantitative measurement and interpretation of results. In locali-

sation microscopy an important sources of error is the labelling error caused among others

by the method used to tag proteins. The primary/secondary antibody labelling separated

the organic dye from the protein [Tanaka et al., 2010]. The organic dyes size is usually

∼0.5 nm [Resch-Genger et al., 2008] and the combined length of the two antibodies is

∼10 nm [Ries et al., 2012]. This means that the position of the protein can differ up

to 9 nm from the localisation [Shivanandan et al., 2014]. For this study the proteins

of interest were stained with tandem dye pairs in primary/secondary antibody labelling

which could potentially introduce even bigger distance between the protein of interest

and the probe. Another issue is that although the monoclonal primary antibody used for

staining does attach to a specific location on the protein, the information about the exact

attachment spot is not available. Additionally, in primary/secondary antibody labelling

there can be clustering artefacts, as more than one secondary antibody can attach to each

primary antibody and more than one fluorophore can be attached to a secondary anti-

body. Lastly, each localised molecule position is estimated using information delivered by

photons coming from the molecule. Thus, the molecule position is estimated with uncer-

tainty caused by a limited number of photons detected. This uncertainty is proportional

to a square root of the number of photons detected. Assuming a Gaussian model for the

uncertainty, the standard deviation of each localisation is given as: σ = σPSF√
N

[Thompson

et al., 2002]. For Alexa Fluor 6471 the uncertainty is ∼ 12 nm when using the Nikon

STORM system.

Use of fluorescent proteins expressed directly by the protein of interest can remove the

issue of the labelling error due to minimising the distance between the detected fluorescent

marker and the protein of interest. However, the quantum yield of the fluorescent proteins

is smaller than that of the organic dyes, resulting in lower intensity and in higher density
1with FWHM = 230 nm – σPSF = 97 nm – and considering number of photons detected to be around

100
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data sets. Analysis of denser data sets usually requires more time and dedicated analysis

methods (for example 3B [Cox et al., 2012]). However, overcoming the drawbacks of the

fluorescent proteins provides images with much smaller labelling errors and much more

precise reconstruction of the actual sample structure.

Overall, the analysis method presented here can provide an accurate measurement of

the absolute and relative protein positions in the ring. The accuracy of any quantitative

measurement strongly depends on the quality of data. This can be achieved by ensuring

that the labelling error is minimised. Here, the labelling error was decreased due to

use expression of fluorophore directly to one of the protein of interest. Use of more

than one organic dye can lead to even more precise measurement. The main source of

localisation error, due to two antibodies to attach fluorescent tag, would be removed by

directly expressing fluorophores into the desired protein for the cost of lower photon count,

impaired biological function or overexpression.

3.5.2 3D SIM images of live cells displaying podosomes

Podosomes consist of three separate structures called the core, ring and cap. These three

structures are thought to have a distinctive position in the podosome structure. However,

little is known about 3D podosome architecture during podosome assembly and turnover.

Observation of physiological processes in cells requires live cell imaging. Structured illu-

mination microscopy (SIM) is a wide-field technique enabling fast imaging of live cells. It

also provides a resolution improvement when compared with wide field methods. However,

it main advantage over other super-resolution techniques is its acquisition speed, which is

much faster. Additionally, SIM optically sections the image and provides a stack of images

with different vertical positions (these images can later be used for 3D reconstruction of

the imaged object).

This study focused on the 3D arrangement of the podosome ring and core. Podosome

samples were prepared using THP-1 cells by Elizabeth Foxall, a PhD student in Gareth

Jones group (see Appendix C). Two proteins were imaged. Talin from the podosome

ring was transfected with mCherry-talin construct and WASP-interacting protein (WIP)
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present in the podosome core was transfected with GFP-WIP. Samples were imaged using

Nikon N-SIM super-resolution system with Nikon objective 60x (water, N.A. 1.27) and

an EM-CCD camera (Andor Ixon) was used to collect images. Eleven sections were taken

to create 1.2 µm z-stack (with step size 0.12 µm). The exposure time was set to 400 ms

for GFP and 300 ms for mCherry (because of its faster bleaching rate). The super-

resolution images were reconstructed using the Nikon software with raw images captured

with fifteen angular grid pattern positions. An example of reconstructed z sections is

shown in Figure 3.14 and 3D reconstruction is presented in Figure 3.15.

The resulting images did not provide desired resolution improvement for creating clear

3D images of podosomes. 3D reconstructions of podosomes displayed a very thick ring sur-

rounding the core – in reality the podosome ring is a flat construct (see Figure 3.1, [Wies-

ner et al., 2014]). The poor quality of the resulting images was caused by a number of

reasons. Firstly the expression levels of fluorescent proteins in the sample were variable –

only a number of cells were bright and visible in two colour channels. The mCherry-talin

transfection was performed after the WIP-GFP. The mCherry-talin construct was intro-

duced after the WIP-GFP and not all of the cells were expressing it. Additionally, the

sample was very dim, which was addressed by elongating the exposure time with smaller

laser power. However, the longer acquisition time elongated total acquisition time up to 6

minutes, which introduced drift to the system. Such a long acquisition time is compara-

ble with the acquisition time of localisation microscopy providing much better resolution.

Use of higher laser power was also limited due to very fast bleaching of the cells. An

additional problem was caused by instability of the system calibration. The SIM system

is usually used at room temperature and when the heating chamber is activated for live

cell imaging, the calibration of the system is affected (the grid pattern position was not

stable). The calibration of the system affect its ability to optically section images leasing

to out of focus light to be detected. All of those issues were responsible for the high noise

levels visible in Figures 3.14 and 3.15.

Imaging of live cell samples is challenging because of a number of factors. Cells need to

be placed in optimal conditions (37°C and buffer not affecting cells). The heating elements

controlling the temperature in the immediate surroundings of the sample radiate heat,
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which can affect metal elements of microscope. The heat introduced expansion affects

the calibration of grid pattern in Structured Illumination Microscope so that it had to be

calibrated before each imaging session and during imaging. Additionally, local heating

also affects optical components of the microscope, for example, the objective. The SIM

system in the Nikon Centre at King’s College was recently refurbished and is more stable

during imaging at 37°C and images of live cell samples displaying podosomes with a better

signal-to-noise ratio were taken by members of Jones Group (King’s College London).

Despite the limited resolution improvement the Structure Illumination Microscopy can

still provide an insight into podosome dynamics with 3D images.
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(a) +600 µm (b) +480 µm (c) +360 µm

(d) +240 µm (e) +120 µm (f) plane in focus

(g) -120 µm (h) -240 µm (i) -360 µm

(j) -480 µm (k) -600 µm

Figure 3.14: Reconstructed structured illumination images of z-sections of live cell dis-

playing podosomes. Cells were transfected with WIP-GFP and mCherry-talin constructs.

Eleven sections were recorded with interval 0.120 µm (five sections were taken above the

plain of focus indicated with "+" and five below with "-"). Talin is displayed in red and

WIP with green. Scale bar 6 µm.
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

(a)



(b)

Figure 3.15: 3D reconstruction of z-plane projections from Figure 3.14. a) a xy-plane

projection of reconstructed 3D image, b) an z-projection of 3D reconstruction displaying

cone shaped podosome cores - marked with green and the ring structure with a shape of

red cloud. The x-axis direction is marked with the white arrow. Scale bar 6 µm.
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3.6 Discussion and Outlook

Podosomes are formed by a range of cells mainly to facilitate the cell motility. They are

small (∼ 1 µm) structures formed on the the cell surface. Because of their small size,

imaging of podosomes in detail was made possible with emergence of super-resolution

microscopy. These super-resolution techniques allowed study structure and physiology of

the podosomes.

The podosome ring is a complex structure which forms on the cell surface and con-

trols the podosome function. Quantitative analysis and modelling of the podosome ring

structure would lead to a better understanding of its role in podosome dynamics. The

methodology presented here could be used to build such a model of protein positions. This

would include collecting more data for analysis. For example, comparing position of talin

with vinculin and then talin with paxillin would help to build a relative model of the ring

structure. For a better quality of images using at least one fluorescent protein marking

the protein of interest to minimise labelling errors. Also the number of datasets will have

to be bigger than presented here and include data from at least a hundred podosomes

collected from at least three samples to provide reliable statistics. It is also possible to

use software presented here to identify other structured which can be approximated as

circular rings (for example the nuclear pore complex). Identification of structures with

a shape other than circular is also possible, however, that would include building a new

model of the structure of interest.
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Fluorescence anisotropy

4.1 Fluorophore reappearance and clustering artefacts

in localisation microscopy

Localisation microscopy provides a great improvement of resolution for imaging nano-

scale biological structures. Single molecule localisations can also provide quantitative

information about the sample. Usually, quantitative analysis is connected with finding

the structure of the imaged sample (for example, using a model shape, see Chapter 3),

measuring clustering in the data to characterise the size and/or number of features (see

Chapter 2), or counting single particles for stoichiometric purposes (for example in gene

expression studies [Raj and van Oudenaarden, 2008]). However, accuracy of such informa-

tion is affected by two main factors: different sample preparation and analysis methods

affect the fluorophore positions which will be identified, and under- or overcounting of

fluorophores resulting in differences between the numbers of molecules localised and these

actually present in the sample1.

In particular, fluorophore reappearances can introduce clustering artefacts to localisa-

tion microscopy images. This has been discussed in a number of studies [Annibale et al.,

2011; Annibale, 2012; Coltharp et al., 2012; Deschout et al., 2014; Sengupta et al., 2011].
1There are two main reasons for errors in molecule counting: undercounting caused by limited detection

efficiency and overcounting – detecting the same fluorophore more than once [Deschout et al., 2014]
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Minimising and accounting for the influence of over-counting is crucial to produce an ac-

curate and precise measurement of imaged structures. Many fluorescent molecules have a

long lived dark-state, from which they cross to the active state and emit light [Annibale

et al., 2011; Annibale, 2012; Deschout et al., 2014]. It has previously been suggested that

it is possible to remove multiple appearances in a post-processing step by using a time

threshold, discarding localisations from subsequent frames in the area surrounding the

first localisation. This threshold needs to be selected manually for each fluorescent probe

used and depends on labelling density and localisation uncertainty [Deschout et al., 2014].

Thus, the final results depend on the length of the time threshold used.

Similarly, different methods of sample preparation and analysis are known to influence

the resulting appearance of the imaged structure. For example, podosome rings (previ-

ously discussed in Chapter 3), the shape detected using fixed labelled and transfected

samples is different. In fixed samples where the excitation density of fluorophores is low

the ring appears to be a collection of sparse clusters [van den Dries et al., 2013] whereas

it appears as a continuous hexagon for fixed cell imaging with encoded fluorescent pro-

teins using high density analysis, 3B [Cox et al., 2012]. The use of antibody labelling

may be responsible for clustering artefacts, for example, more than one secondary anti-

body can attach to the primary antibody [Tanaka et al., 2010]. This suggest that the

observed clustering in podosome rings may be an artefact caused either by staining or flu-

orophore reappearance. However, it is still unclear if the observed clustering corresponds

to clustering of the labelled proteins. This chapter discusses design and initial testing

of a microscope system which can be used to investigate this phenomenon by detecting

an effect of energy transfer between two fluorescent molecules of the same type, allowing

areas where fluorophores are in close proximity to be identified.

4.2 Förster Resonance Energy Transfer

Flörster Resonance Energy Transfer (FRET) is a contactless process of energy transfer

between two fluorophores [Gell et al., 2006]. FRET results from the interaction between

dipoles of two fluorophore molecules. Energy transfer occurs when the emission spectrum
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of the donor molecule overlaps with the absorption spectrum of the acceptor molecule and

results in light emission from the acceptor molecule. The strength of the FRET interaction

depends on the donor-acceptor pair and the distance between them (the strength is pro-

portional to 1
r6
, the molecules need to be separated by 2-10 nm for FRET to occur) [Lidke

et al., 2003].

Förster resonance energy transfer is usually observed for two types of donor-acceptor

pairs: these where the donor and acceptor are different (called heteroFRET) and those

where the donor and acceptor are the same type of fluorophore (homoFRET or emFRET).

HeteroFRET requires the presence of two different fluorescent molecules and it can be

detected either by observing an increase of polarisation of the donor, decrease of the fluo-

rescence lifetime of the donor, or the increase in emission of the donor probe after photo-

bleaching the acceptor [Yan and Marriott, 2003]. HeteroFRET can be used to studies of

colocalisation or signalling in cells [Clayton, 2009]. HomoFRET can be used for observing

interactions of the same type of protein for example, the formation of dimers [Lidke et al.,

2005; Yan and Marriott, 2003], or to observe protein congregation and clustering in the

sample. HomoFRET does not change the intensity or the lifetime of the detected fluo-

rescence. The fluorescence lifetime remains unchanged because in the energy transfer the

excitation energy is transferred between the same types of fluorophore [Yan and Marriott,

2003]. However, it can be detected by observing polarisation changes of the emitted light.

This is because an energy transfer can occur between molecules with non-parallel dipoles.

Since the dipole direction controls the direction of the polarisation of the emitted light

is less polarised than the excitation light (see Section 4.3). The depolarisation caused by

homoFRET mechanism is shown in Figure 4.2.
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4.3 Fluorescence anisotropy: principles

In general, fluorophores emit fluorescent light with the same polarisation properties as

the exciting beam – the light polarization is maintained. This is observed because the

fluorophores in the sample will absorb light only if their dipole moment2 is parallel to

the electric vectors of the light beam (in a process is called photoselective excitation).

As a result, in an isotropic solution only fluorophores oriented along the direction of the

electrical vector of the exciting light beam are excited, and thus only these molecules emit

polarised light (see Figure 4.2).

In an experimental situation, some of the polarisation is lost due to, for example,

rotation of the fluorescent molecule or energy transfer (this is going to be discussed is

section 4.4). The polarisation loss can be accounted for using a measure called fluorescence

anisotropy, which is defined as:

r =
I‖ − I⊥
I‖ + 2I⊥

, (4.1)

where I⊥ is the intensity of the light detected with polarisation perpendicular to the po-

larisation of the exciting light (perpendicular polarization channel) and I‖ is the detected

intensity of light with polarisation direction parallel to the polarisation of the in the par-

allel polarization channel (parallel polarisation channel). In practice equation 4.1 needs to

be corrected to account for any differences in camera detection efficiency between the par-

allel and perpendicular polarisation channels, with a calibration factor called the G factor.

The G factor depends only on the camera properties and is sample independent [Tramier

et al., 2000]. This factor is given by:

G =

√
I‖1 · I⊥2
I⊥1 · I‖2

. (4.2)

2The dipole moment (also called transition dipole moment) is an electric dipole moment connected
to the transition between an initial and a final state. It is a vector property, the direction of which
determines how the system will react with light of a given polarization.
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Thus the anisotropy can be calculated using [Lidke et al., 2005]:

r =
I‖ −GI⊥
I‖ + 2GI⊥

(4.3)

where G is the scaling factor due to camera properties.

The definition of fluorescence anisotropy can be derived for a single molecule. For the

purpose of this definition the absorption and emission moments of this unmoving molecule

will be considered as parallel. Consider a fluorescent molecule in an xyz coordinate system

(see Figure 4.1). The molecule is positioned at an angle θ to z axis and φ to y axis.

The electric field created by the molecule excited with polarised light (polarised parallel

to the z axis) is given by:

E(θ, φ) = E0
sin θ

r
θ̂, (4.4)

where E0 is the amplitude, r is the distance between the fluorophore and the unit vector

θ̂. The emitted light intensity is proportional to the square of the electric field created by

the fluorophore and given by:

I(θ, φ) = I0
sin2θ

r2
r̂, (4.5)

where I0 is the amplitude, r̂ is a unit vector in direction of light propagation [Lakowicz,

2006].

Using information about the electrical field E(θ, φ) and intensity I(θ, φ) of light emit-

ted by a fluorescent molecule we can write equations for projections of the field and

intensity to the axis of the coordination system. The z and y components of the electric

field are equal to: Ez(θ, φ) = E0 cos θ and Ey(θ, φ) = E0 sin θ sinφ. The Iz and Iy com-

ponents of intensity are equal to the square of the corresponding components of electrical

field. In this case, since the molecule was excited with light polarised parallel to the z

axis, the intensity components can be also written as I‖ for z component and I⊥ for y
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Figure 4.1: A model of a single molecule represented by an arrow in "xyz" coordinate

system. The molecule is positioned to z axis on angle θ and to y axis on φ. Image based

on image from: [Lakowicz, 2006] pp.356.

[Lakowicz, 2006]:

I‖(θ, φ) = I0cos2θ (4.6)

and

I⊥(θ, φ) = I0sin
2θ sin2φ. (4.7)

In real samples fluorophores are oriented randomly, thus the resulting intensity is

an average of intensities from excited molecules. Molecules in the sample are photoselec-

tively excited with light polarised parallel to the z axis, which results in a population of

molecules positioned at angle by φ to the y axis which are going to be excited. For a set
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of randomly oriented molecules the φ angle has an equally-probable value in range from

0 to 2π. Thus, we can average over the angle φ [Lakowicz, 2006]:

< sin2 φ >=

∫ 2π

0
sin2 φdφ∫ 2π

0
dφ

=
1

2
. (4.8)

I‖ is independent of φ, but I⊥ can be written as:

I⊥(θ) = I0
1

2
sin2 θ. (4.9)

Similarly, the angle θ can be averaged because of photoselective excitation. The prob-

ability that a molecule is going to be excited depends on the cos2θ (θ is the angle between

the molecule dipole moment and z axis, see Figure 4.1). This results in a population

of excited molecules, which are symmetrically oriented around the z axis. In a random

sample of fluorophores the proportion of molecules at an angle between θ and θ + dθ is

proportional to sin θdθ. The probability distribution of molecules excited by single photon

polarised light is given as [Lakowicz, 2006]:

f(θ)dθ = cos2θ sin θ dθ. (4.10)

Using a probability distribution function given by equation 4.10, one can calculate the

measured fluorescence intensity [Lakowicz, 2006]:

I‖ = I0

∫ π/2

0

f(θ) cos2θ dθ = I02

∫ π/2

0

cos2θ sin θ dθ = I0 < cos2θ > (4.11)

and

I⊥ = I0
1

2

∫ π/2

0

f(θ) sin2θ dθ = I0
1

2

∫ π/2

0

cos2θ sin θ sin2θ dθ =
I0
2
< sin2θ >, (4.12)

where k is constant. Using equations 4.11 and 4.12 the measured anisotropy for this
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sample as can be written as [Lakowicz, 2006]:

r =
3 < cos2θ > −1

2
. (4.13)

Thus the anisotropy value depends on the average of cos2θ. For a single molecule the

value of anisotropy measured simply depends on the angle θ. The highest anisotropy

r = 1 will be measured for θ = 0. However, in practice the measured anisotropy is always

smaller than 1, because absorption and emission dipoles are rarely parallel. However, the

anisotropy measured from a sample with more than a single fluorescent molecule is usually

even smaller due to random distribution of fluorophores and photoselection. To calculate

the measured anisotropy for a sample containing a large number of fluorescent molecules,

one needs to average cos2θ for angles between 0 and π/2 using equation 4.10 [Lakowicz,

2006]:

< cos2θ >=

∫ π/2
0

f(θ) cos2θ dθ∫ π/2
0

f(θ) dθ
=

2
∫ π/2
0

cos2θ sin θdθ∫ π/2
0

cos2θ sin θdθ
=

3

5
(4.14)

The maximum possible measured fluorescence anisotropy for a sample labelled with many

fluorophores can be calculated using the average value of cos2θ (as calculated in equa-

tion 4.14) and equation 4.13:

rMAX = 0.4. (4.15)

In practice observing a value of exactly 0.4 is unusual – it is only possible when there are

no processes lowering the polarisation in the sample (for example Brownian motion, ho-

moFRET, light scattering, or due to use of high N.A. optics in the microscope) [Lakowicz,

2006].

Fluorescence anisotropy and photoselection has also been used to acquire super-resolved

images. The principle is similar to that of localisation microscopy, but using photos-

elective activation of fluorescent probes with polarised light to randomly activate fluo-

rophores [Hafi et al., 2014]. This means that any type of fluorophore can be used for
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imaging with this technique. To activate all molecules in the sample the polarisation

of the exciting light beam is changed over time. The resolution achievable with this

technique was reported to be ∼ 50 nm. However, it is very challenging to image biolog-

ical structures using polarisation nanoscopy, as any rotational diffusion will hinder the

imaging [Hafi et al., 2014].

4.4 Practical measurements of fluorescence

anisotropy

There are two main processes which can be detected by a decrease in the anisotropy value

– rotational diffusion and homoFRET. Rotational diffusion causes spinning of the fluores-

cent molecules which changes the direction of their dipole moments and results in emission

of light of random polarisation (light from each single molecule is still polarised but the di-

rection of its electrical vector is random) – this behaviour is shown in Figure 4.2 [Lakowicz,

2006; Lidke et al., 2003]. The measured anisotropy value strongly depends on the rota-

tional speed of the molecules – for higher speeds the measured anisotropy is lower [Gautier

et al., 2001; Keating and Wensel, 1991; Lakowicz, 2006; Tramier et al., 2000] and can be

used for measurements of rotational diffusion (see Appendix H). Time resolved fluores-

cence anisotropy measurements of rotational diffusion can be used to provide information

about viscosity in of the sample and binding or denaturation of molecules [Siegel et al.,

2003]. Rotational diffusion studies have also been used to provide an estimation of polar-

isation loss and subsequent lowering of anisotropy value in the microscopy system due to

the use of a high N.A. objective.

Förster energy transfer between molecules decreases the anisotropy value (i.e. the

presence of FRET causes decrease in anisotropy) [Yan and Marriott, 2003]. Although in

FRET the donor molecule is photoselectively excited with polarised light3 the acceptor

molecule is oriented randomly4. Thus, light emitted by an acceptor will not have the
3The direction of molecule transition moment is parallel to the direction of electrical vector in the

polarized light
4The direction of transition moment of the acceptor molecule can be random.
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Figure 4.2: Homo FRET and rotational diffusion as factors lowering the anisotropy value.

Two molecules in solution (marked 1, 2) have dipole moments oriented according with

direction of polarised light (dipole moments marked with red arrows). Activated molecule

1 passes its energy to molecule 3 in the process of fluorescence resonance energy transfer

(FRET). Molecule 3 is the same type of fluorophore molecule as 1, but it has different

orientation of the dipole moment, which causes a depolarisation to be detected. Other

process causing the depolarisation of emitted light is rotational diffusion. Molecule 2 is

excited with polarised light and it is rotated before it emits light. The rotational diffusion

causes rotation of the molecule dipole moment (in a random direction). This results in

depolarised emission of light. Light emitted by the molecule no longer has the same

direction of polarisation as of the excitation light. The activation and emission light beam

and their polarisation directions are marked with blue arrows.

same polarisation as the light which can be emitted by a donor [Gautier et al., 2001;

Lidke et al., 2003]. The mechanism of homoFRET transfer is shown in Figure 4.2.
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4.4.1 Fluorescence anisotropy imaging

Fluorescence anisotropy microscope

The fluorescence anisotropy imaging microscopy system was build for this project. It was

based on an inverted Zeiss microscope, with a 63x, 1.4 N.A. objective, with a laser light

source, wavelength 473 nm, power 50 mW, and 90% light polarisation. The power of the

laser light source was controlled using a natural density filter (N.D.). To achieve fully

polarised light, the laser beam was transmitted through a linear polariser. A telescopic

beam expanding system was used to create a beam with bigger spot size for better il-

lumination (the magnification of the telescopic system was 1.33). Then the light passed

through a λ/2 wave plate which was used to create linearly polarised light with horizontal

and vertical polarisation directions. The effect of the λ/2 wave plate operation depended on

the angular orientation of the plate axes to the polarisation direction of linearly polarised

light. For a polarisation direction oriented along the axis of the plate the polarisation

direction remained unchanged, and for an angle 45◦ between the polarisation direction

and the plate axis, the polarisation direction of the beam was rotated by 90◦.

The light was then collected by a tube lens (f=400 mm). The most important part of

the set up was the OptoSplit II (Cairn research). This component acted as a polarising

beam splitter dividing the light from the sample into two polarisation channels: parallel

and perpendicular with respect to the excitation beam (images were spatially translated

and appeared in different positions on the camera chip) (see Figure 4.3). Image acquisition

was performed using emCCD camera (Cascade II: 512, Photometrics) controlled with

Micro-manager 1.4 software5 with exposure time 0.2 s. The scheme of the microscope

system is shown in Figure 4.3. The linear polariser and λ/2 wave plate positions were

adjusted to find the position of polariser which transmits maximal intensity of light and

the axis of the half-wave plate.

The fluorescence anisotropy imaging cycle consisted of a number of steps. Firstly the

image of the area of interest was captured with horizontal polarization of the exciting

light. Then, to calculate the anisotropy for each pixel in the image the two sub-images
5Freeware software based on ImageJ, documentation available at http://valelab.ucsf.edu/ MM/MMwiki/
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Figure 4.3: The fluorescence anisotropy imaging system. The laser light λ=473 nm (power

of the laser light was adjusted by addition of a N.D. filter) was transmitted via a linear

polariser to create linearly polarised light (laser was 90% polarised before this step). The

light beam was expanded using a telescope two lens system (focal lengths f1=75 mm and

f2=100 mm, resulting magnification 1.33). The expanded light beam passed through a

λ/2 plate which could change the direction of polarisation by 90◦. The light was passed

to the microscope via the tube lens 1 (f=400 mm). An inverted Zeiss microscope with

objective (63x, N.A. 1.4) was used for imaging (the tube lens 2 is a part of the microscope).

Fluorescent light from the sample (marked with blue) was transmitted to OptoSplit system

which consisted of a polarising beam splitter separating the fluorescent light into parallel

and perpendicular polarisations. The light with different polarisations was then reflected

by a system of mirrors inside of the OptoSplit and imaged by the camera chip (emCCD

camera, Photometrics).

(images of the two polarization channels) were aligned. This adjustment was done using

code provided by dr Fox-Roberts. The code interpolated one of the sub-images to the

position of another using a bright group pixels or small object from the top right corners

of the sub-images and corrected for the rotation of sub images. The alignment of the sub-

images is important in fluorescent imaging as imperfect alignment can lead to detecting

a incorrect anisotropy value [Siegel et al., 2003]. The G factor, which characterizes the

difference in detection of different light polarisation was calculated using equation 4.2.
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The G factor was calculated separately for each imaging session, since the positions of

the sub-images on the camera chip change slightly over time (the positions of the sub-

images was controlled via adjustment of the mirror system in the OptoSplit). Finally, the

anisotropy value was calculated using equation 4.3.

Polarisation optics adjustment

The linear polariser and λ/2 wave plate were adjusted to provide light with optimal po-

larisation properties. The linear polariser was used to achieve linear polarisation of the

laser light. The λ/2 plate was used to control the direction of the light polarisation (de-

pending on the orientation of the plate the direction polarisation of light passing through

the plate, can be either be unaffected or rotated by 90°). To check the correct operation

of the system the linear polariser in the system was rotated and the light intensity was

measured for λ/2 wave plate set to pass light with unchanged polarisation direction or

rotated by 90°.

The measured light intensity varied sinusoidally with the input polarisation. A sine

function was fitted to find the maxima points of the intensity profiles:

y = y0 + A sin

(
π
x− α
p

)
(4.16)

where A is amplitude of the sine function, α is the phase shift, y0 is offset, and p is half of

the period of the function. The point for which the fitted sine function has its maximum

can be calculated using the equation:

xMAX = α +
p

2
, (4.17)

where α is the phase shift and p is the half of the periodicity value.

The linear polariser was placed in close proximity to the laser light source (see Fig-

ure 4.3) and mounted in Thorlabs mount with angular scale (see appendix I). The in-

tensity of light detected in both channels changed along with the polariser rotation. The

resulting intensity profiles are shown in Figure 4.4. The sample used for imaging was 2 ml
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of 1 µM solution of Rhodamine 6G in Ethanol (low viscosity of ethanol, around 1 cP,

provided an isotropic sample, see section 4.4). The exposure time was set to 50 ms and

no N.D. filter was used. This measurements were performed without the λ/2 plate in the

optical system.
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Figure 4.4: Light intensity variation for parallel and perpendicular polarisation channels

measured when rotating the linear polariser (imaging with 63x, N.A. 1.4 objective, without

λ/2 plate in the system). The sine function (equation 4.16) was fitted to the intensity

distribution (because the shapes of the fitted functions were very similar, for simplicity

only the function fitted to the parallel intensity distribution is shown, marked with red

line). The fitting parameters of both fits are presented in table 4.1.

Table 4.1: Properties of the sine function (equation 4.16) fitrd to the light intensity profiles

detected for linear polariser rotation.

y0 A α P R2 χ2

parallel 754±3 705±4 114.55±0.17 89.99±0.14 0.9974 640
perpendicular 763±7 679±9 114.89±0.45 89.00±0.35 0.9826 4000
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The optimal angular position of the linear polariser was measured as the first local

maximum of the intensity profile (calculated using equation 4.17, see table 4.2). The first

Table 4.2: The first intensity maxima for parallel and perpendicular polarisation directions

for linear polariser calibration. Values were manually read from the intensity distribution

and calculated using equation 4.17.

manual read [°] calculated [°]

parallel 172 160
perpendicular 172 159

maximum calculated for the fitted sine function was used to set the linear polariser to the

optimal position for providing the highest light intensity with linear polarisation.

After calibrating the linear polariser, the λ/2 wave plate was introduced to the system

(see Figure 4.3 and placed in a ThorLabs mount with 360◦ scale, see appendix I). To find

the axes of the plate it was rotated, and the light intensity profile captured in the parallel

and perpendicular polarisation channels. A clean slide was used as a sample, a 2.0 N.D.

filter was used to decrease the intensity of the laser light, and the exposure time was set

to 10 ms.

Table 4.3: Properties of the sine function fitted to the light intensity profiles detected when

rotating the λ/2 plate. The sine function fitted to the data is given by equation 4.16).

y0 A α P R2 χ2

parallel 114±1 88±1 114.64±0.30 45.11±0.11 0.9732 100
perpendicular 62±1 -46±1 115.87±0.53 45.18±0.19 0.9227 90

The λ/2 plate had to be set in two positions providing an unchanged and rotated

polarisation directions with respect to the polarisation direction of the laser light. To find

these positions the first local maximum was estimated and calculated for the fitted sine

function using equation 4.17 for the light intensity distribution (see table 4.4).

The polarisation of light does not change its direction when passed through the λ/2 plate,

when the optical axis of the plate is parallel to the polarisation direction. The λ/2 plate
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Figure 4.5: Light intensity variation for parallel and perpendicular polarisation channels

measured for different values of rotation of the λ/2 plate. The sine function (equation 4.16)

was fitted to the parallel and perpendicular intensity distributions – marked with red and

black lines respectively. Fitting parameters are presented in table 4.3.

rotates the polarisation direction by 90° when its optical axis is positioned at a 45° angle to

the polarisation direction. Thus the difference between two subsequent maxima of parallel

and perpendicular channels is 45°. For the microscope system in our lab the difference

between the two channels is 44° and for the fitted sine function is 46. The difference

between the theoretical and measured values is probably due to a small polarisation loss.

Also the angular scale on the plate mount was given with 2° precision. The calculated

angular positions were then used to set the λ/2 plate to control the polarisation direction

of polarised light.

Lastly, the correct operation of the system was validated by testing the light intensity

detected for two polarisation directions of the excitation light (horizontal and vertical

created with the λ/2 plate) when the linear polariser in the system was rotated. The λ/2

plate was positioned to rotate the polarisation direction by 90◦ and then to transmit

light with polarisation direction unchanged (these two positions are marked as rotated
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Table 4.4: The first local intensity maxima for parallel and perpendicular polarisation

directions for the λ/2 plate calibration. Values were manually read from the intensity

distribution and calculated using equation 4.17.

manual read [°] calculated [°]

parallel 48 47
perpendicular 92 93

and unchanged). For each of the polarisation directions of the excitation light the linear

polariser was rotated by 360◦ with increments of 2◦. The sample was made with 3 ml of

1 µM solution of Rhodamine 6G in ethanol and placed in a glass dish (µl-Dish, Ibidi®).

Exposure time was 20 ms and no N.D. filter was used.

Table 4.5: Properties of the sine function fitted to the light intensity profiles detected

in perpendicular and parallel polarisation channels. The λ/2 plate was positioned to ro-

tate polarisation direction by 90◦ (denoted by R), and to transmit light with polarisation

unchanged (denoted by U). A sine function was fitted to the data (given by equation 4.16).

y0 A α P R2 χ2

parallel R 511±2 475±3 22.17±0.34 90.42±0.18 0.9958 470
perpendicular R 574±2 576±3 23.69±0.25 89.92±0.13 0.9977 380
parallel U 518±5 478±6 111.83±0.43 88.26±0.33 0.9837 1900
perpendicular U 530±4 489±6 111.60±0.42 88.47±0.32 0.9847 1800

The points for which the fitted sine function reaches the first local maximum were

calculated using equation 4.17 and are shown in Table 4.6. The maximum intensity of light

measured without and with the λ/2 plate (set to not change the polarisation direction of

excitation light) had similar values. This confirms that the λ/2 plate is operating correctly

in the system. The difference between the positions of first local maximums for rotated

and unchanged polarisation directions is between 87 and 89°. This is very close to the

theoretical value of 90°for polarisation change using the λ/2 plate.
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Figure 4.6: A validation test to confirm correct operation of polarisation optics. The linear

polariser in the system was rotated by 360◦ and the λ/2 plate was set to two positions in

which the polarisation direction of the activation light was a) rotated by 90◦ (marked as

rotated) and b) unchanged (marked unchanged) polarisation direction. a) and b) Sine

functions (equation 4.16) were fitted to the intensity distributions, the fitting parameters

are presented in table 4.5. Fitted sine functions are displayed as: parallel rotated with

black line, perpendicular rotated with red line, parallel unchanged with blue line, and

perpendicular unchanged with magenta line. c) Intensity variation for linear polariser

rotation for rotated and unchanged polarisation directions.

Anisotropy–viscosity calibration

Anisotropy viscosity calibration measurements were performed to estimate the polarisa-

tion loss due to the use of high N.A. optics in the system. The influence of the rotational

diffusion was measured using a viscosity model sample. Thirteen water/glycerol solutions
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Table 4.6: The first local intensity maximum of polarised light measured using λ/2 plate

to control polarisation direction of excitation light while rotating the linear polariser by

360°. Values were manually read from the intensity distribution and calculated using

equation 4.17. The position of the first local maximum of intensity corresponds to the

values estimated and calculated for polariser rotation (see table 4.2), confirming correct

operation of the polarisation system.

manual read [°] calculated [°]

parallel rotated 70 67
perpendicular rotated 70 69
parallel unchanged 150 156
perpendicular unchanged 150 156

were prepared with different concentrations of glycerol (24, 37, 49, 56, 65, 74, 83, 84, 87,

89, 92, 93, and 94%) and 1 ml of 10 µM Rhodamine 6G (in water) was added to each

solution. The viscosity was found for each of the concentrations using the concentration-

viscosity table from [Sheely, 1932]. Measurements of the fluorescence anisotropy were

performed with the FluoroMax-4, a spectrofluorometer built without lens components

(Horiba), and using the fluorescence anisotropy microscope system.

The anisotropy measurements using the FluoroMax were performed for 2 ml of glycerol

solutions placed in a 3 ml cuvette (integration time was set to 0.5 s). The anisotropy

calculated for the FluoroMax measurement are shown in Figure 4.7a. The anisotropy-

viscosity calibration for the microscope system (using a 63x, N.A. 1.4 objective) was

performed with a micro-well plate. Each glycerol Rhodamine 6G solution was placed in

three wells of the plate. The mean intensity values from the images of three wells images

were used to calculate the anisotropy for each solution. The G factor was also calculated.

The anisotropies for each solution were then plotted against the viscosity (see Figure 4.7b).

The viscosity of the solution is a factor limiting rotational diffusion of the molecules as

discussed in section 4.3. Thus for higher viscosities a higher anisotropy values should be
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measured. The first order exponential decays were fitted using a function:

y = y0 + A · exp(−x/t), (4.18)

to the experimental data using QtiPlot 0.9.8.8 software.
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Figure 4.7: Fluorescence anisotropy measurement for Rhodamine 6G glycerol solutions

with increasing viscosity. a) Fluorescence anisotropy measurement made using spectroflu-

orometer. b) Imaged with anisotropy microscopy system, with 63x, N.A. 1.4 objective.

Fitted exponential decay function is given with equation 4.18.

Table 4.7: The fitting parameters for the viscosity-anisotropy calibration.

FluoroMax microscope system

y0 0.354 ±0.012 2.6408±0.0014
A -0.322±0.013 -2.4281±0.0034
t 90±10) 2±2
R2 0.98422 0.99890

The anisotropy value should change for solutions with different viscosity. For higher

viscosities the anisotropy value is expected to be higher (because molecules in the solution

are rotating more slowly), as was discussed in section 4.3. The anisotropy-viscosity depen-

dency was expected to be exponential [Lakowicz, 2006]. Measurement of anisotropy for a

given sample can be then used to find the rotational speed of the molecules in the solution
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with the Debye-Stokes-Einstein model6. The anisotropy values for the high viscosity Rho-

damine solutions were very similar to the theoretical value of maximal anisotropy (0.4).

The anisotropy measured with the microscopy system was significantly lower than the one

measured with the spectrofluorometer. Quantification of polarisation loss is an important

part of the calibration process and can be used to provide a guidance for the error for

microscope ran anisotropy imaging.

Bleaching and its influence on measured anisotropy value

Photobleached samples exhibit an increase in the fluorescence anisotropy value compared

with non bleached state. Photobleaching decreases the number of molecules which are

available as homoFRET acceptors in the sample. Thus the depolarisation caused by

homoFRET is decreased (homoFRET and its effect on anisotropy were discussed in sec-

tion 4.2). Several studies reported similar anisotropy increases after a portion of the

available homoFRET acceptors was photobleached [Cottet et al., 2013; Varma and Mayor,

1998; Yeow and Clayton, 2007].

Here, the photobleaching and simultaneous anisotropy measurements were used to

confirm the correct operation of the fluorescence anisotropy imaging system. Three sam-

ples were prepared using different concentration of Rhodamine 6G in ethanol (10 µM,

100 µM and 1 mM) and left to dry on clear glass slides. The imaging was performed for

10 arbitrary selected areas on the sample surfaces (20 ms exposure). The anisotropy was

calculated for every image in the time series (see Figure 4.8a-c). An average anisotropy

value increase due to photobleaching is presented in Figure 4.8d.

Three samples were examined, which displayed similar increases in anisotropy values

after photobleaching. For all imaged samples the anisotropy values rose by approximately

30% after bleaching. The measured increase in the anisotropy values confirmed that our

optical system is sensitive enough to indicate the presence of homoFRET.

6The Debye-Stokes-Einstein model of the rotational diffusion quantifies the rotational velocity of
molecules and is given by: θ = 4πa3η

3kT , where η is the viscosity of the solvent, a is the radius of the
molecule, k is the Boltzmann constant, and T is the temperature [Siegel et al., 2003]
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Figure 4.8: Anisotropy value increase caused by photobleaching of the homoFRET accep-

tors. Ten regions were with a uniform intensity were imaged. Anisotropy was calculated

each region for a) 10 µM, b) 100 µM, and c) 1 mM concentration of Rhodamine 6G. d)

An average anisotropy gain during the photobleaching.

4.5 Epithelial cell-cell junctions anisotropy maps

Epithelial cell-cell junctions play an important part in many biological processes, for

example embryonic development, tissue homoeostasis, and inflammation. Disruption of

the dynamics of cell-cell junctions has been linked to illness and cancer [Morton et al.,

2013]. The cell-cell junctions are contain transmembrane proteins which form and control

the junction. An example of these proteins is, the Coxsackie- and adenovirus receptor

(CAR), a 46 kDa protein, which is present in cell-cell junctions in respiratory epithelial

cells. The exact role of the CAR protein in maintaining the cell-cell junctions is not yet

fully understood [Morton et al., 2013]. However, it was confirmed that it is important for
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the correct operation of the epithelium, for example in respiratory epithelium (knockout

of CAR proteins resulted in changes in lung morphology [Cohen et al., 2001; Morton et al.,

2013]). Additionally, CAR expression was shown to correlate with progression of epithelial

derived cancers (for example lung cancer) [Morton et al., 2013]. Thus understanding the

role of the CAR protein in forming the epithelial junctions is very important. We planned

to investigate the CAR-CAR interactions in the junctions by detecting homoFRET (using

fluorescence anisotropy). If the CAR proteins interact in the junction then the level of

homoFRET should be higher in areas of higher concentration.

4.5.1 Sample preparation

Biological samples were prepared by Dr Penny Morton (Parsons Group, Randall Division).

The cell line used was Human Bronchial Endothelial Cells (HBEC). Cell were cultured

so that they formed cell-cell junctions. The CAR protein which takes part in junction

forming was genetically encoded with GFP and the cells were fixed. The samples were

mounted with ProLong® Gold (Life Technologies) embedding medium which functioned

as bleaching protectant.

4.5.2 Preliminary results – homo FRET and anisotropy decrease

The CAR protein assembly in cell-cell junctions was studied by monitoring the anisotropy

value in the junctions. A higher concentration of GFP in the junction results in a higher

probability of FRET (since the presence of FRET leads to depolarisation of emitted light,

and lowers the anisotropy value). The images of endothelial cells were thresholded prior

to the anisotropy calculation, so that only areas where the cell-cell junctions were present

were analysed (the light intensity collected from the junctions was the highest in the centre

of the junctions, because the most of the tagged proteins congregate in the junction area).

This behaviour can be observed in anisotropy maps presented in Figure 4.9. There is a

variation of anisotropy values in the junction, but generally the anisotropy value in the

junction centre is smaller than value in the edge of the junctions. For each image the

mean anisotropy value and standard deviation were calculated (see Table 4.8).
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(a)

(b)

(c)

Figure 4.9: Fluorescence anisotropy imaging of the junctions between endothelial cells.

Left: Perpendicular polarized light channel. Center: Parallel polarized light channel.

Right: The anisotropy map. The image is displayed in false color scale. The colour

scale is displayed to the right of each map. Scale bar 20 µm.

Table 4.8: The mean anisotropy values calculated for anisotropy maps which are shown in

Figure 4.9.

Figure 4.9 Mean anisotropy value Standard deviation

(a) 0.117 0.024
(b) 0.152 0.026
(c) 0.149 0.025
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4.6 Discussion and outlook

The main purpose of using the anisotropy system was to be able to detect FRET and its

effect on polarisation of emitted light. This behaviour was tested using samples prepared

with epithelial cells. Epithelial cells form cell-cell junctions which are built with CAR pro-

teins. Here, anisotropy maps of cell-cell junctions were presented, with lower anisotropy

values towards the centre of the junctions, where the homo FRET rate is highest. To

confirm the actual anisotropy lowering an additional test was planned to be performed on

mutant cells not displaying cell-cell junctions. The anisotropy measured for cells without

cell-cell junctions should be higher than for the cells without.

In the future the anisotropy values for epithelial cells which form cell-cell junctions

will be compared with anisotropy values for mutant cells which are unable to form the

junctions. In absence of tagged-protein congregations the anisotropy value would be

higher than for the cells not displaying cell-cell junctions, because there is less probability

of energy transfer (FRET) between fluorophores.

The anisotropy system has not yet been used with localisation microscopy. The mi-

croscopy system (see Section 4.4.1), was equipped with a single light source. 473 nm laser

light can be used to excite a number of fluorophores types, however, their blinking prop-

erties and high power required make them not ideal choices for localisation microscopy

imaging of biological samples. A number of data sets for samples prepared with dried

Rhodamine 6G displaying random blinking were collected. However, Rhodamine is not

an optimal probe to be used with biological samples of interest in our group. Thus, the

microscopy system was equipped with a second light source – 647 nm laser light (see

Appendix J). The 647 nm laser source has not yet been joined with polarisation optics

(the work on the system expansion are still in progress). 647 nm laser light can be used

with Alexa Fluor 647 dye, which was previously used for imaging of biological samples

in other projects (for example podosomes and DNA origami see Chapters 2 and 3). An

investigation of small scale clustering in podosome rings could help to resolve the issue of

their shape: whether it is continuous or a sparse collection of clusters.



Chapter 5

Conclusions and Outlook

Localisation microscopy provides resolution beyond the diffraction limit and recovers

super-resolution information using single molecule localisations. The super-resolved, re-

constructed images are generally used for qualitative study of various structures. How-

ever, the single molecule localisations can be also used to provide quantitative information

about the structure of interest. These analysis methods can characterise the shape and

size of the imaged structure, leading to a better understanding of biological processes.

This work presents two analysis methods for gaining extra information and an approach

to validate accuracy of localisation microscopy data.

Clustering analysis is an example of a technique which can be used to analyse local-

isation microscopy data. In localisation microscopy the super-resolution image is recon-

structed using single molecule localisations. This means that the structure of interest is

usually preserved as a group of points with density higher than the area surrounding it.

Clustering analysis helps to identify such higher density regions and can measure their

properties (for example as it was discussed in Chapter 2 the size of the cluster). This work

presented a new analysis method based on the Rényi divergence and compared its perfor-

mance with well established Ripley’s H function. In the future the analysis presented here

will be extended to measure more information about clustering, for example the number

of clusters or an average density of points in the cluster. The clustering analysis will also

be used for the analysis of biological data sets with known size such as the nuclear pore
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complex or viruses. These could be a used as a test subject because they have relatively

similar and known sizes across the samples.

Localisation microscopy images can also be analysed to reveal information about pro-

tein colocalisation. As was discussed for clustering analysis, the structures of interest

in localisation microscopy are visible as a collection of discrete single molecule localisa-

tions. Here, the podosome rings were imaged using two fluorescent probes to mark of

different proteins in the podosome ring. Custom software identified podosomes in the

images using a model of their structure and calculated the relative distance of different

pairs of molecules present in the rings. In the future to create a complete podosome ring

model more data sets with different proteins labelled will have to be collected and anal-

ysed. Lastly, the pipeline developed here can be used for the analysis of any ring shaped

structures present in the localisation microscopy data. It can also be adjusted to include

models for structures with different shapes and so could become a more widely useful tool

for testing the relative distribution of different proteins.

The quality of the localisation microscopy data is the main factor limiting the accuracy

of quantitative measurements. Samples labelled with organic dyes using primary and sec-

ondary antibodies often exhibit some degree of clustering, attributed to the fluorophore

reappearance or clustering of the secondary antibody on the primary. It is not generally

possible to distinguish the cause of the clustering, meaning it is not possible to know

whether it is related to the underlying biological structure being studied. Here, a system

to perform fluorescence anisotropy was constructed, which should be able to distinguish

clustering due to multiple fluorophore reappearances from actual clustering of the fluo-

rophores. Fluorescence anisotropy detects the change between the polarisation of exciting

beam and that of the emitted light. One of the processes causing a detectable change in

polarisation is Föster energy transfer, which occurs in areas with a higher density of dye

molecules. Our preliminary results are promising, and in the future the system is going to

be equipped with a more powerful laser source more suitable for localisation microscopy

imaging.



Appendix A

Additional results and data sets for

clustering analysis
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(a) (b) (c)

(d) (e) (f)

Figure A.1: Datasets used for bootstrap and noise resistance testing of the Rényi divergence

and Ripley’s H function. Data sets presented here were simulated for Monte Carlo testing,

each simulated data set has 10 clusters with radius of 8 pixels and S/N 29 (noise was 0.5%

of the number of pixels in the image). For improved visibility the images were blurred.

Scale bar: 30 pixels
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Table A.1: Statistical parameters for bootstrap testing of cluster radius measurements

with the Rényi divergence α = 70 for six data sets containing 10 circular clusters with a

radius of 8 pixels (S/N 29). The original datasets used for this testing are presented in

Figure A.1. The cluster radius value measured for this dataset with the Rényi divergence

and Ripley’s H function is called the ’original radius’.

No original
radius mean median Standard

deviation quartiles

Rényi divergence

a 13.20 11.14 11.20 1.56 (10.20, 12.20)
b 8.00 8.17 8.20 0.72 (8.00, 8.60)
c 8.20 8.07 8.00 0.72 (7.80, 8.40)
d 6.80 8.14 8.20 0.82 (7.80, 8.60)
e 7.80 7.99 8.00 0.67 (7.60, 8.40)
f 8.40 8.25 8.40 0.68 (8.00, 8.60)

Ripley’s H function

a 13.80 11.37 11.60 1.34 (10.40, 12.40)
b 10.20 9.75 10.00 0.88 (9.60, 10.20)
c 11.00 9.04 9.20 1.07 (8.40, 9.80)
d 11.40 9.09 9.00 1.29 (8.40, 10.20)
e 9.80 9.21 9.40 0.80 (8.40, 9.60)
f 10.80 9.40 9.40 0.79 (9.20, 9.80)
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Table A.2: Statistical parameters for noise resistance testing of cluster radius measurements

with the Rényi divergence α = 70 and Ripley’s H function for six data sets with 10 circular

clusters with a radius of 8 pixels (S/N 29). The cluster radius value measured for this

dataset with the Rényi divergence and Ripley’s H function is called the ’original radius’.

This ’original radius’ value can be compared with the mean and median values of the

results of the noise resistance testing.

No original
radius mean median Standard

deviation quartiles

Rényi divergence

a 13.20 12.73 13.0 0.81 (13.00, 13.00)
b 8.00 8.69 8.60 0.19 (8.600, 8.80)
c 8.20 9.06 9.00 0.23 (9.00, 9.20)
d 6.80 8.33 8.40 1.08 (6.80, 9.20)
e 7.80 8.11 7.60 0.59 (7.60, 8.60)
f 8.40 8.87 9.00 0.41 (8.60, 9.00)

Ripley’s H function

a 13.80 12.98 12.80 0.57 (12.40, 13.60)
b 10.20 11.38 11.20 0.42 (11.20, 11.80)
c 11.00 11.01 11.00 0.58 (10.40, 11.20)
d 11.40 11.50 11.60 0.48 (11.00, 12.00)
e 9.80 11.14 11.00 0.40 (10.80, 11.60)
f 10.80 11.06 11.00 0.36 (10.80, 11.40)
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Table A.3: The comparison of the cluster radius measured with the Rényi divergence

and Ripley’s H function for rectangular and square simulated clusters. For each simulated

rectangular cluster the radius was measured with both methods. The percentage difference

between the measured radius and the maximal expected radius is given ( "-" indicates that

the measured radius was smaller than the maximal expected radius, "+" that it was bigger).

the Rényi divergence α = 70 Ripley’s H function

16
x1

6

max expected r. 11.31 11.31
mean 10.68 14.81
median 10.00 14.80
st. dev 1.84 0.53

difference mean -4.64% +31.06%
difference median -11.50% +30.97%

16
x2

4

max expected r. 14.42 14.42
mean 13.85 9.64
median 12.80 9.60
st. dev 2.21 1.33

difference mean -3.11% 22.66%
difference median -11.23% +24.82%
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Probability density functions and their

properties

The Gaussian probability density function (pdf) is given as:

f(x, µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, (B.1)

where µ is mean and σ is standard deviation. The Logistic pdf is defined as:

f(x, µ, σ) =
exp

(
x−µ
σ

)
σ
(
1 + exp

(
x−µ
σ

))2 , (B.2)

where µ is mean and σ is scale parameter. The logistic pdf is used for growth models and

in logistic regression. It has longer tails and a higher kurtosis than the normal distribution

pdf. The t Location-scale pdf is given as:

f(x, µ, σ, ν) =
Γ(ν+1

2
)

σ
√
νπΓ(ν

2
)

[
ν +

(
x−µ
σ

)
ν

]−( ν+1
2 )

, (B.3)

where Γ(x) = (x − 1)! is the gamma function, µ is the location parameter, σ is the

scale parameter, and ν is the shape parameter. The t Location-scale pdf similarly to

the Logistic pdf has heavier tails than the Gaussian. The heaviness of tails is controlled

by parameter ν and the t location scale approaches the normal distribution pdf for the
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ν =∞, the smaller values of ν introduce tails to the distribution.

Table B.1: The fitting parameters of the Gaussian, Logistic, and t Location-scale pdfs

fitted to the Rényi divergence and Ripley’s H function cluster radius measurements results.

Parameters of the Gaussian pdf fitted to results of cluster radius measurements acquired

with Ripley’s H function.

Function µ σ ν

Rényi div.
Gaussian 8.7500

±(0.0075,0.0075)
1.2140

±(0.0053,0.0053)

Logistic 8.5089
±(0.0049,0.0049)

0.4891
±(0.0027,0.0028)

t Location-Scale 8.3673
±(0.0025,0.0025)

0.2878
±(0.0026,0.0027)

1.237
±(0.014,0.014)

Ripley’s Gaussian 10.9004
±(0.0039,0.0040)

0.6361
±(0.0028,0.0028)
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Fixed and live cell sample preparation

The THP1 cells (THP1 is a human monocytic cell line derived from a male leukaemia

patient) were purchased from ATCC cell bank. Cells were maintained in the Roswell Park

Memorial Institute medium (rpmi medium) and supplemented with 10% Fetal Calf Serum.

The THP1 cells were seeded on fibronectin (fibronectin is a dimer glycoprotein and can

be found in the extracellular matrix. It binds to integrin proteins and the extracellu-

lar matrix components, for example collagen or fibrin) coated coverslips (µl-Dish, glass

bottom, Ibidi®). To induce the podosome growth the TGF-β1 (Transforming growth

factor beta is a protein which controls the cell growth, proliferation, cell specialization

(differentiation), and other cell functions) was introduced to the sample (for 16 hours).

Samples were fixed with 3.6% paraformaldehyde in PBS (for 20 minutes). The cells

were washed in PBS (3x), permabilised in 0.1% Triton X-100 in PBS (for 3 minutes) and

again washed in PBS (3x). After that they were blocked in 3% bovine serum albumin

(BSA) in PBS (for 30 minutes), the primary antibody was added (for paxillin Paxillin an-

tibody produced in rabbit, Novus Biologicals, #NBP1-19833 and for vinculin Monoclonal

Anti-Vinculin antibody produced in mouse, clone hVIN-1, Sigma Aldrich, #V9131-.2ML,

diluted in 3% BSA in PBS for 1 hour) and washed (4x for 5 minutes with PBS). Subse-

quently, the secondary antibody was added (for paxillin AffiniPure Donkey Anti-Rabbit

IgG, #711-005-152, and for vinculin AffiniPure Donkey Anti-Mouse, #715-005-151 from

Jackson ImmunoResearch Europe, diluted in 3% BSA in PBS for 30 minutes) and the
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sample was washed (4x for 5 minutes). Samples were then stored in PBS in the dark at

4◦C.

Live cell preparation is divided into three stages: transfecting and harvesting the virus

vector from substrate cells followed by lentiviral transfection of THP-1 cells. The virus for

transfecting podosome displaying cells was prepared using the HEK293T cell line (a highly

transfectable derivative of human embryonic kidney 293 cells). HEK cells were seeded on

a plate and trypsinised. The HEK cell culture medium was added to the plate and the

cells were then counted. After spinning down at 1200 rpm for 3 minutes the cells were

divided into separate wells into a 12-well plate (3− 6× 105 cells per well with 1 ml of the

HEK cell culture media) and were grown over night. Transfection of cells was performed

using the transfection media (in an eppendorf tube, A, prepare 90 µl OptiMEM and 10 µl

Polyethylenimine (PEI) and incubate for minimum 5 minutes in room temperature and in

a second tube, B, add 90 µl OptiMEM to plasmid mix – see Table C.1). The contents of

Table C.1: The plasmid mix properties.

Plasmid Stock solution Mass µl/well

pD8.91 0.2 µg µl 1.3 µg 6.5
pMD.G 0.2 µg/µl 0.42 µg 2.1
pLNT/Sffv 0.5 µg/µl 1.74 µg 3.5

tube A was added to tube B and incubated for 15 minutes at room temperature. 320 µl of

OptiMEM was added to the mix. The HEK cells were washed with 500 µl of OptiMEM

and the transfection mix was added to the cells. The cells and transfection mix were

incubated at 37°C for 4 hours. After that time the transfecting mix was removed and

cells were placed in 1 ml of cell culture media for 48 hours.

The virus for the transfection of the THP-1 cells was extracted from the HEK cells.

The HEK cells trasfected in the previous step were transported into falcon tubes con-

taining the fresh cell culture media. Falcon tubes were then spin down at 2000 rpm for

5 minutes. The supernatant from the spin down mixture was filtered to a 50 ml falcon

with 2% solution of Virkon (one falcon per infection). Lastly, 2
3
ml of the Virkon and
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supernatant solutions were placed in empty falcons and used it for transfection of THP-1

cells. The remaining virus was frozen (in cryotubes at -80°C).

The THP-1 cells were transfected with the virus acquired in the previous step of the

protocol. 105 THP-1 cells per transfection in 600-700 µl of media were used. The cells in

the media were spun down at 1200 rpm for 3 minutes. The cells were then re-suspended

in the new medium in separate wells of a 12-well plate. To each well 1 µl of the polybrene

solution was added (solution 4 µg/ml). Around 300-400 µl of the virus was added to each

well (so that the final volume in the well added to 1 ml). A well plate with the cells

was then incubated at 37°C for 48-72 hours. If the infections were successful (expression

of fluorescence proteins in the cells was observed), cells in solution from the well plate

were placed into 15 ml falcon with 4 ml of PBS. Falcons were subsequently spin down at

2000 rpm for 5 minutes. The supernatant was removed and was placed in culture flasks

(T25) with 4 ml of cell culture media.

Live cell samples were placed on fibronectin coated glass bottomed dishes (Ibidi) and

imaged with colourless media to minimise background introduced by the imaging medium.

The colourless media were prepared using: 10% Fetal Bovine Serum (FBS), 100 mM B-

mercaptoethanol, 10 mM HEPES, and OptiMEM.



Appendix D

Tandem dye conjugation protocol

1. To aliquot the Alexa Fluor dyes, dissolve 1.0 mg in anhydrous DMSO and aliquot

again into tubes for a final 0.02 mg amount of dye per tube. For the Cy dyes,

dissolve one dye into sufficient amount of anhydrous DMSO to allow distribution

into 10 new aliquots.

2. Using evaporator, remove all DMSO.

3. Store aliquots at -20°C.

4. For labelling with an activator-Alexa Fluor 647 pair, dissolve one activator (Alexa

Fluor 405, Cy2 or Cy3) aliquot in 10 µl anhydrous DMSO and one Alexa Fluour

647 aliquot in 10 µl anhydrous DMSO.

5. Recommended labelling mixtures:

Labelling with an activator-Alexa Fluor 647 pair: Mix 50 µl secondary antibody

(1.25 mg/ml in PBS) with 6 µl of 1 M NaHCO3, 1.5 µl Cy3 (or 4 µl Alexa Fluor

405 or 5 µl Cy2) and 0.6 µl Alexa Fluor 647.

6. Allow the reaction to proceed for 30 minutes at room temperature, wrapped in foil

or otherwise protected from light, on a shaking platform.

7. During the reaction equilibrate NAP-5 gel filtration columns, one per labelling re-

action, by running three column volumes of PBS.
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8. Bring the reaction volume up to 200 µl with PBS (add ∼140 µl) and gently vortex.

9. Add the entire volume to the center of the column.

10. Allow the sample to enter the column and after the last drip, add 550 µl PBS to

wash.

11. Add 300 µl PBS and collect the eluent into a 1.5 ml Eppendorf tube.

12. Measure absorbance of the labelled secondary antibody using the UV/Visible spec-

trophotometer.

Recommended Labelling Ratios

Labelling with an activator-reporter pair. The concentrations of activator dye, anti-

body, and reporter dye have to be in the ratio:

Activator Dye : Antibody : Reporter Dye = 2.0-3.0 : 1 : 0.6-1.0

The labelling ratios were calculated using antibody, activator dye and reporter dye

concentrations. Concentrations c were calculated using the Beer-Lambert’s Law:

A = log10

I0
I

= εlc, (D.1)

where A is the absorbance, I0 is the incident intensity, I is the transmitted intensity, ε is

the molar extinction coefficient, l is the length of solution light passes through (in cm),

and c is the molar concentration. For purpose of comparing concentrations of different

compounds of the same solution, the Beer-Lambert’s Law can be written as:

A ∝ εc. (D.2)

Concentration of antibody was calculated using corrected value of antibody absorbance

(measured absorbance from the antibody needs to be corrected to account absorbance by

activator and reporter dyes):

Aactual280,Antibody = Ameasured280,Antibody − CF280,Activatordye × Ameasuredλactivator

− CF280,Reporterdye × Ameasuredλreporter ,
(D.3)
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where CF280,Activator/reporterdye are correction factors at 280 nm for labelling dyes,

Ameasuredλactivator/reporter is measured absorbance of the dye. The concentration of antibody is

calculated using the actual absorbance of the antibody:

cAntibody =
Aactual280

ε280
. (D.4)

Concentration of fluorescent dyes can be calculated using equation D.5.

cdye =
AλMAX

ε
, (D.5)

where AλMAX is the measured maximum of absorbance and ε is the extinction coefficient

for relevant dye.

Measurements of absorbance were performed using NanoDrop 1000, a spectrophotome-

ter (Thermo Scientific). For each tandem dye pair characterised three values of absorbance

were measured: for activator dye (Cy2 at 488 nm, Cy3 at 560 nm, and Alexa Fluor 405

at 405 nm), reporter dye (Alexa Fluor 647 at 650 nm), and antibody (AffiniPure Donkey

Anti-Rabbit and AffiniPure Donkey Anti-Mouse). Calculation of the molar extinction

coefficients and correction factors (CF280) for dyes used for conjugation and antibody are

presented in Table D.1.

Table D.1: Molar extinction coefficients and correction factors at 280 nm (CF280) for dyes

and antibody used for tandem dye conjugation.

ε CF280

antibody 210,000
Cy2 150,000 0.15
Cy3 150,000 0.08

Alexa Fluor 405 34,000 µl 0.7
Alexa Fluor 647 239,000 0.03



Appendix E

Reducing-Oxidizing Imaging Buffer

recipe for Localisation Microscopy

Imaging

The blocking buffer recipe is shown in Table E.1 and it is given in the Nikon N-STORM

system Protocol-Sample Preparation manual. Some of the ingredient are complex and

were made from scratch in the lab (dilution buffer, MEA, and GLOX) and kept at 4◦C –

recipes are shown in Table E.1 in comments. Glox solution can be stored up to 2 weeks

and MEA for 4 weeks.

According to findings presented in [Dave et al., 2009], the final concentration of COT

in the imaging buffer was 2 mM. The recipe for imaging buffer with added COT is shown

in Table E.2.
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Table E.1: The basic imaging buffer for localisation microscopy imaging

recipe.

ingredient volume comments

distilled water 800 µl
dilution buffer 200 µl recipe: 10mM Tris + 50 mM

NaCl
MEA 200 µl recipe for 1 ml: 77 g Cysteamine

(MEA) + 1.0 ml 1M HCl
GLOX 20 µl recipe for 250 µl: 14 mg Glu-

cose Oxidase + 50 µl Catalase
(17mg/ml), + 200 ml Bufer A
(10mM Tris + 50 mM NaCl)

Table E.2: The imaging buffer for localisation microscopy imaging.

ingredient volume comments

basic buffer 1 ml made according to recipe from
Table E.1

COT solution 250 µl recipe for ∼1 ml: 1ml DMSO +
1.4 µl COT



Appendix F

Cartesian and polar coordinate systems

The polar coordinates are related to Cartesian coordinates as:

x = r cosφ

y = r sinφ.
(F.1)

The Cartesian coordinates can be calculated from polar coordinates as:

r =
√
x2 + y2

φ = atan2(y, x),
(F.2)

where

atan2(y, x) =



arctan( y
x
), if x > 0

arctan( y
x
) + π, if x < 0 and y ≥ 0,

arctan( y
x
)− π, if x < 0 and y < 0,

π
2
, if x = 0 andy > 0,

−π
2
, if x = 0 andy < 0,

undefined if x = 0 andy = 0,

(F.3)
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Appendix G

The minimal radius of the protein

molecule

Proteins are rigid structures mostly impenetrable to water, with elasticity that can be

compared to hard-plastic [Erickson, 2009]. For the purpose of estimating the molecule

size one can use an estimation of the protein density as 1.37 g
cm3 [Erickson, 2009]. The

inverse value of the protein density, called the partial specific volume or v2 is usually used

for the protein size calculations. The partial specific volume has values between 0.70 and

0.76 cm3

g
(an average value of 0.73 cm3

g
was used for further protein size calculation). Using

the partial specific volume v2, the volume of the molecule can be approximated as:

V [nm3] =
v2 × 1021

NA

×M, (G.1)

where NA is the Avogadro constant (6.023×1023 Da
g
) and M is the mass of the the protein,

measured in Daltons. The equation G.1 can be written as:

V [nm3] = 1.212× 10−3 ×M. (G.2)

182



APPENDIX G. THE MINIMAL PROTEIN SIZE 183

Approximating protein shape to be spherical, the minimal radius of the protein (for

minimal volume containing the mass of the protein) can be calculated as:

Rmin[nm] =

(
3V

4π

) 1
3

= 0.066M
1
3 , (G.3)

where M is the mass of the the protein, measured in Daltons [Erickson, 2009].



Appendix H

Perrin equations

The anisotropy measurements can be used to calculate the average rotational diffraction

speeds using Perrin equations. The anisotropy values indirectly depends on the viscosity

of the the sample and is higher for the high viscosity liquids (molecules are rotating slower)

than for the low viscosity liquids. The anisotropy loss due to the rotational diffusion is

given by the Perrin equations H.1 and H.2 [Lakowicz, 2006].

r =
r0

1 + (τ/θ)
(H.1)

or it can be written as displaying direct link to the rotational diffusion [Clayton et al.,

2002]:

r0
r

= 1 + τ/θ = 1 + 6Dτ (H.2)

where r0 is the anisotropy that would be measured in the absence of rotational diffusion,

θ is the rotational correlation time for the diffusion process, D is the rotational diffusion

coefficient, and τ is the fluorescence lifetime [Lakowicz, 2006; Siegel et al., 2003].
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List of optical components used to

build Fluorescence Anisotropy System

Following optical components were used for building the fluorescence anisotropy system:

1. ThorLabs

• Four aluminium mirrors �1", PF10-03-G01, with clear edge mounts KM1CE,

• Plano-Convex lens f = 75 mm, with no coating, LA1608-A, �1",

• Plano-Convex lens f = 100 nm, with no coating, LA1509-A, �1",

• Tube lens f = 400.0 mm, �1", Unmounted, Visible Achromat, AntiReflective-

Coating: 400-700 nm, AC254-400-A1,

• Threaded Manual Beam Shutter, SM1SH1,.

• Unmounted linear polariser for 480 – 550 nm, �25.0 mm, LPVISA100,

• Mounted Zero Order, 1/2 Waveplate 473nm, WPH05M-473,

• Two Rotation Mount for �1" Optics, RSP1C/M,

• Reflective filters, N.D. 1.0 and 2.0, ND510A and ND520A (respectively),

2. Zeiss

• Plan-Neofluor, 10x, N.A. 0.3,

185



APPENDIX I. LIST OF OPTICAL COMPONENTS 186

• EC Plan-Neofluor, 20x, N.A. 0.5

• Plan-Apochromat 63x, N.A. 1.4, Oil,

• Axiovert 200, inverted microscope,

3. Photometrics

• Cascade II, 512x512, emCCD camera,

4. Cairn Research

• OptSplit II LS, Image Splitter



Appendix J

Fluorescence anisotropy imaging

system with two light sources

The fluorescence anisotropy imaging system with two light sources was based on a single

light source system (see Figure 4.3). The second light source was added to the system, a

647 nm laser diode (700 mW, Optoelectronics). The diode emitted light with an astigmatic

profile, what was adjusted using by characterising beam profile with Beam view (Coherent

Inc.) and two astigmatic lenses (see Figure J.1). Because the spot size of the 647 nm beam

was similar to size of 473 nm laser, no beam expansion system was used. Polarisation

optics (linear polariser and λ/2 plate) are going to be for this light source to control the

polarisation properties of the laser light (the linear polarisation and polarisation direction).

Polarisation optics would need to be calibrated to find optimal angular positions of the

polarisation optics (see Section 4.4.1). The 647 nm light would be passed directly to a

dichroic mirror, reflecting 647 nm light (at angle 45°) and transmitted 473 nm light, thus

enabling two colour imaging if needed.

1. Components of 473 nm light system were discussed in Section 4.4.1 and Appendix I

2. Thorlabs

• Molded Glass Aspheric lens (mounted)f = 4.03 mm, N.A. = 0.64, C340TMD-B,

• Plano-Convex Cylindrical lens f = 200 mm, H = 30 mm, L = 32 mm, N-BK7,
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• TE-Cooled Mount for Dia=5.6 mm and Dia=9 mm Lasers, TCLDM9

• General-Purpose Plate Holder, FP01

• Benchtop Laser Diode/TEC Controller, 1 A / 96 W, ITC4001

3. Optoelectronics

• Laser diode 647 nm, 700 mW, HL63193MG

4. Comar

• Dichroic mirror 40 x 25 mm, 495 IB 125

5. Chroma

• Filter set for Alexa Fluor 647, 49913
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Figure J.1: Fluorescence anisotropy imaging system with two light sources. The design

of light source 473 nm was discussed in Section 4.4.1. A 647 nm laser light source has

an aspheric shape and was collimated using to astigmatic lenses. Similarly as in 473 nm

light source set up, linear polariser and a λ/2 plate will be added to the system to control

the polarisation properties of the laser beam. Then light was reflected by a dichroic plate

and passes to an inverted Zeiss microscope with objective (63x, N.A. 1.4). After imaging

the sample fluorescent light was divided into separate polarisation channels (parallel and

perpendicular in regards to polarisation of exciting beam) and imaged with an CCD camera

(Photometrics).
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