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Abstract

In this thesis we assemble recent results on BPS defect operators inN = (2, 0) and ABJM
theory. Following a brief review of prerequisite material, we first construct a locally 1/2-BPS
surface operator in the abelian N = (2, 0) theory, whose conformal anomaly we compute.
The comparison of the anomaly coefficients at N = 1 to the holographic result is suggestive
of a general linear relation between them, which we go on to prove using the framework
of defect CFT. We then show how this approach can be used to find an expansion of bulk
operators in terms of excitations of the defect. Along the way, we comment on surfaces with
conical singularities and derive some useful technical results regarding the representation
theory of certain superconformal algebras. Secondly, we revisit the known 1/6-BPS Wilson
loops in ABJM theory, which we reinterpret as deformations around a bosonic loop operator.
We proceed to adapt this construction to the N = 4 case, and show that supersymmetric
deformations of the 1/2-BPS Wilson loop yield a plethora of previously unknown operators
which preserve various amounts of super- and conformal symmetry.
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Chapter 1

Introduction

Almost a century after its inception, quantum field theory remains an intriguing subject
of study and despite substantial advances, many features continue to elude satisfactory de-
scription in a coherent framework. While for most purposes of high energy particle physics,
perturbative expansions in the coupling parameters, now understood in great detail, are
perfectly sufficient, the study of strongly coupled systems continues to pose serious mathe-
matical challenges. The most considerable progress towards understanding such systems has
been made for theories that are highly constrained by either conformal or supersymmetry,
such as naturally arise in the context of string and M-theory.

The most celebrated of these is maximally supersymmetric Yang-Mills theory in four
dimensions, which has seen successful application of a wide range of techniques, including
integrability [1], holography [2, 3], and the conformal bootstrap [4]. This theory has been
shown to enjoy conformal symmetry for all values of the coupling constant [5, 6], making it
a useful testing ground for methods relying on a large amount of symmetry.

On the other hand, the theory has often been cited as a reasonable toy model of quan-
tum chromodynamics, and much work has been expended in attempts to reformulate and
eventually answer open questions in nonabelian gauge theory in the language of N = 4
super-Yang-Mills theory. A prominent example is the problem of quark confinement. In
1974, Wilson had argued that whether or not a theory confines is indicated by the expecta-
tion value of the phase factor W , now known as the Wilson loop, picked up by a heavy probe
particle moving along a closed contour: In theories that confine, log 〈W 〉 scales like the area
enclosed by the contour, while for theories that do not, it scales like the perimeter [7]. While
a satisfactory description of the dynamics of confinement is still lacking, Wilson loops have
since been a central tool in the study of gauge theories, including super-Yang-Mills theory.
One of the most impressive results bridging the gap between weak and strong coupling is
the exact calculation of the expectation value of the 1/2-BPS circular Wilson loop using
supersymmetric localization, precisely matching the perturbative computation on one side
and the holographic result at strong coupling on the other [8–10].

This milestone result suggests the systematic study of defect operators preserving some
super- and conformal symmetry as a promising approach to superconformal theories in gen-
eral. BPS Wilson loops have since been constructed in three, four, and five dimensional
gauge theory [11–14]. In addition to Wilson loops, so called disorder line operators may be
defined by allowing bulk fields to be singular along a prescribed contour, and supersymmetric
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constructions have been considered in [15].
While N = 4 super-Yang-Mills may be understood as the worldvolume theory of a stack

of D3-branes in type IIB string theory, analogous constructions in M-theory give rise to
rather more exotic, but nevertheless very interesting theories that have received particular
attention in recent years. M-theory contains fundamental extended objects, membranes and
five-branes, whose respective worldvolume descriptions at low energies enjoy superconformal
symmetry and are commonly referred to as ABJM and, somewhat obscurely, N = (2, 0)
theory. However, in contrast to string theory, the explicit construction of these theories
has proven rather involved, especially for the M5-brane, where a Lagrangian description has
not been found. Instead of applying traditional methods with diminishing returns, one is
therefore well-advised to explore new approaches.

The great success with which the Wilson line has been leveraged in N = 4 super-Yang-
Mills suggests the study of defect operators in M-brane worldvolumes as one avenue towards
a better understanding of these theories. Since ABJM is a Chern-Simons gauge theory,
it admits Wilson loops, supersymmetric versions of which have been known as early as
2008 [16]. While Yang-Mills theory fails to be conformal in dimensions other than four, three-
dimensional Chern-Simons theory turns out to admit a surprising wealth of superconformal
Wilson loops [17–21]. Since then, these operators have been studied extensively in ABJM
and related theories, although a complete classification is still lacking. The correct way to
proceed is less obvious in the N = (2, 0) theory. The fact that there exist supersymmetric
configurations of M2- ending on M5-branes [22, 23] suggests the existence of surface rather
than line operators. Framed in holographic terms, these were first studied in [24, 25]. The
first attempts at an intrinsically field theoretic construction of these operators were made
in [26,27], but none of these preserve supersymmetry.

This thesis collects a number of results, obtained over the last four years, which grew
out of attempts to address some of these glaring gaps in our understanding of BPS defect
operators in M-brane worldvolume theories. It is structured as follows. Chapter 2 provides a
brief review of superconformal symmetry, the M-theory origins of the theories in questions,
as well as some standard constructions relating to defect operators and holography, both
to establish notation and terminology, as well as to assemble classical results that will be
used throughout the remainder of this work. The bulk of the thesis is concerned with
surface defects in the N = (2, 0) theory. In Chapter 3, a locally BPS surface operator is
defined for the abelian theory, and its conformal anomaly evaluated both in field theory and
holographically at large N . In the following chapter, the coefficients governing the couplings
of such defects to the stress tensor multiplet are extracted from the representation theory
of the preserved superconformal algebra, providing linear relations between the anomaly
coefficients at any N . These chapters are based on [28] and [29], respectively. Moving from
six to three dimensions, in chapter 5, based on Section 2 of [30], we present a new look at the
previously known supersymmetric Wilson loops in ABJM. We develop a formalism in which
these loops can be written uniformly as continuous deformations of a particular bosonic
loop, providing a natural construction of their moduli space. We then go on topresent the
preliminary results of ongoing work [31], in which we adapt and generalise these techniques
to N = 4 sCSM theories with arbitrary quivers, making progress towards a full classification.
We end with a short survey of possible extensions of this work and indulge in some rank
speculation regarding future directions.
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Chapter 2

Review

2.1 Superconformal Field Theory

2.1.1 Motivation

It is well known that, in the search for nontrivial extensions of Poincaré symmetry, one is
presented with the two options of conformal and supersymmetry [32]. Algebras that contain
either supersymmetries or conformal generators can be constructed in any spacetime dimen-
sion, and have been studied in great detail in the literature. Surprisingly, the requirement
that an algebra contain both super- and conformal symmetry proves much more restrictive,
and the space of theories with these symmetries is consequently rather more limited. How-
ever, it still includes many interesting theories that naturally arise in the study of string
theory or are otherwise of interest. The considerable degree of symmetry renders such the-
ories accessible to a wide array of methods and thus provides a great technical advantage,
balancing the potential drawback of limited applicability.

2.1.2 Superconformal algebra

In anticipation of the technical sections in Chapters 4 and 5, we briefly review the structure
and classification of superconformal algebras, following [33–35]. Since local field theories
only admit up to 16 supercharges [34], and algebras with more supersymmetry consequently
cannot arise as the symmetry algebras of interesting theories, we ignore them. Furthermore,
for simplicity, we consider only Minkowski spacetimes of dimension d ≥ 3. Since the structure
of the minimal spinor representation depends intimately on the number of space and time
dimensions, this overview is by necessity somewhat schematic.

The usual Poincaré algebra is spanned by d(d−1)/2 Lorentz transformations Mµν , which
form an so(1, d−1), and d translations Pµ transforming in its vector representation. The sim-
plest nontrivial (non-central) extension of this algebra is by a dilatation D, which commutes
with rotations and satisfies

[D,Pµ] = +Pµ. (2.1)

In other words, Pµ has scaling dimension +1. To extend to full conformal symmetry, we
adjoin another copy of the vector representation comprising the special conformal generators
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Kµ, which are assigned scaling dimension −1 and satisfy

[Pµ,Kν ] = 2 (Mµν − ηµνD) . (2.2)

We are left with a total (d+1)(d+2)/2 generators, which span the conformal algebra so(2, d).
A supersymmetric extension of the Poincaré algebra, on the other hand, is constructed

by adjoining N sets of fermionic operators QI
α, which each transform in a minimal spinor

representation of the Lorentz group and commute with translations. Their anticommutator
is taken to be of the form1

{QI
α,Q

J
β} = δIJ

(
γµC−1

)
αβ

Pµ. (2.3)

In addition, this algebra admits outer automorphisms RIJ , which rotate the N families of
supercharges.

In order to combine the super-Poincaré and conformal algebras, we must specify commu-
tators of D and Kµ with QI

α. From (2.1) it is easily seen that QI
α has scaling dimension +1

2
.

Similarly, using the Jacobi identity, we find that

[D, [Kµ,Q
I
α]] = −1

2
[Kµ,Q

I
α]. (2.4)

Since neither the conformal nor the super-Poincaré algebra include a generator of that scaling
dimension, we are required to add a generator SIα of scaling dimension −1

2
as a fermionic

counterpart to Kµ . The structure of the (anti-)commutators [P, S], [K,Q], {S, S} is then
largely fixed by the requirement that only terms of the correct scaling dimension appear:

[Pµ, S
I
α] ∼ (γµ) β

α QI
β, (2.5)

[Kµ,Q
I
α] ∼ (γµ) β

α SIβ, (2.6)

{SIα, SJβ} ∼ δIJ
(
γµC−1

)
αβ

Kµ. (2.7)

The sole remaining anticommutator is that of Q and S. By inspection of the scaling dimen-
sion, it can only contain M and D. However, it can be shown that this is insufficient to define
a closed Lie superalgebra. Indeed, it is necessary to include the R-symmetry generators RIJ

in the algebra as well such that the R-symmetry now becomes an inner automorphism.
The numerical coefficients in the (anti-)commutators can now be fixed by imposing the

(super) Jacobi identities. The structure of a superconformal algebra turns out to be very
restrictive, such that there are only 14 such algebras with at most 16 supercharges and d ≥ 3.
In particular, theories in spacetime dimension d > 6 do not admit superconformal symmetry.
We will be interested only in the cases d = 3, 6, where these algebras and their respective
bosonic subalgebras are given by:

d = 3 : osp(N|4) ⊃ so(2, 3)conf ⊕ so(N )R, N = 1, 2, 3, 4, 5, 6, 8

d = 6 : osp(8|N ) ⊃ so(2, 6)conf ⊕ so(2N + 1)R, N = 1, 2.
(2.8)

1Here, as in later sections, we largely follow the notation of [36], where C denotes the charge conjugation
matrix.
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While the space of available algebras itself is very rigid, their representation theory is
richer than that of the ordinary conformal algebra. In particular, the generic representation
will include more then one primary state. Highest weight representations are obtained by
acting with super-Poincaré charges Q on a superprimary, i.e. a state |J,R〉∆ annihilated
by every S (and, consequently, all Kµ), where J and R indicate the quantum numbers
with respect to Lorentz and R-symmetry. As in ordinary CFTs, enforcing nonnegativity
of the norm of the superdescendant Qn|J,R〉∆ at every level n places unitarity bounds
∆ ≥ ∆min(J,R) on the scaling dimension. Multiplets whose superprimaries saturate this
bound contain states of zero norm, which may therefore be consistently deleted, and are
therefore called short multiplets. However, for multiplets of superconformal symmetry, in
addition to the continuum there is a finite series ∆i < ∆min of allowed values for ∆. The
scaling dimensions of primaries sitting at these values therefore cannot receive quantum
corrections, and are thus protected.

An indispensable operator in a local field theory, which for the N = (2, 0) theory will be
studied in great detail in 4, is the stress tensor T µν , which is the conserved current associated
with translations:

Pµ =

∫
Xd−1

Tµν n
ν . (2.9)

Although it is itself not a superprimary, we can infer some of the structure of the corre-
sponding multiplet from the algebra itself. The commutator [Q,P] = 0 implies that acting
with Q on T µν gives a total derivative, i.e. a conformal descendant. The stress tensor is
therefore the highest level primary in the multiplet. Similarly, {Q,Q} ∼ P implies that the
supersymmetry current Jµα is, up to descendants, mapped to T µν under Q. Finally, the fact
that [R,Q] ∼ Q implies that the R-symmetry current jµ occupies the same multiplet as Jµα
and T µν .

2.2 M-brane worldvolume theories

The existence of superconformal algebras with stress tensor multiplets motivates the search
for field theories with exactly those symmetries. Such theories can be constructed by hand,
but their existence and many of their properties can also be inferred from brane construc-
tions in string and M-theory. In this thesis we will be concerned with the N = (2, 0) and
ABJM theory, which provide the settings for Chapters 3, 4, and 5, respectively, and whose
motivation as the low-energy description of M-branes we briefly review here. At low ener-
gies, M-theory is well known to be described by 11d supergravity. This theory has 32 real
supercharges and includes a four-form field strength F4 = dC3 whose equation of motion
reads

0 = d ∗ F4 + F4 ∧ F4. (2.10)

The second term is due to a Chern-Simons type self-interaction C3∧F4∧F4. It is instructive
to introduce a dual field strength F7 = ∗F4 + C3 ∧ F4. Equation (2.10) can then be recast
as dF7 = 0, implying that, at least locally, F7 = dC6. Clearly, F4 and F7 are sourced by
extended objects of dimension 3 and 6, respectively. In other words, F4 couples electrically
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to M2- and magnetically to M5-branes. In the simplest case, we expect these objects to
preserve some amount of supersymmetry. This suspicion is confirmed by the existence of
1/2-BPS soliton solutions to the supergravity equations of motion corresponding to such
sources [37, 38].

The charges of these objects can be computed by integrating the respective fluxes:

Q2 =

∫
X7

∗F4 + C3 ∧ F4, (2.11)

Q5 =

∫
X4

F4, (2.12)

where X4,7 are the boundaries of transverse volumes intersecting the branes in a single point.
These expressions allow us to deduce some simple results about their allowed interactions [22,
23]. Firstly, conservation of Q5 implies that M5-branes must be closed, since otherwise the
enclosing domain X4 may be continuously contracted to a point. However, the additional
term in the definition of Q2, which comes from the Chern-Simons interaction of F4 and is
needed to ensure homotopy invariance, allows for M2- ending on M5-branes. Concretely, for
an M2-brane with a boundary ∂M , X7 may be deformed to the product of an S3 surrounding
∂M and an S4 in orthogonal directions. The integral then picks up only the second term,
and we find

Q2 =

∫
S4

F4

∫
S3

C3 = Q5

∫
S3

C3. (2.13)

Clearly, charge conservation can be maintained as long as the boundary of the M2-brane
is entirely contained within an M5-brane. Such a configuration can be shown to preserve
up to 1/4 of the supersymmetry [22]. From the perspective of the M5-brane, the boundary
of the M2-brane forms a 1/2-BPS surface defect. The corresponding soliton solutions to
the M5-brane equations of motion have been studied in the literature under the moniker of
self-dual strings [39].

The low-energy degrees of freedom propagating on a brane are just the Goldstone modes
associated with the broken continuous symmetries. Specifically, the 16 broken supercharges
correspond to (on-shell) 8 fermionic zero modes, and since the excitations of the brane must
fall into multiplets of the preserved supersymmetry, we expect 8 bosonic zero modes as
well. These can be partially accounted for by the broken translational symmetry in the
10 − p directions transverse to the Mp-brane. For p = 2, the number of degrees of freedom
corresponding to small transverse displacements matches that of the fermionic zero modes.
By contrast, the M5-brane only admits five transverse excitations, and the remaining three
bosonic zero modes must be represented another way. The unique supermultiplet containing
the correct number of fields and five scalars is the tensor multiplet, where the the three
extra bosons make up a selfdual three-form field strength. At the IR fixed point, we expect
all higher modes to decouple, and the resulting theory describing the zero modes to be
superconformal.

2.2.1 M2-brane: ABJM

According to the arguments in the previous section, the low-energy degrees of freedom of a
single M2-brane should be described by a three-dimensional N = 8 SCFT. The theory in
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question turns out to be a Chern-Simons theory with gauge group U(1)×U(1) at respective
Chern-Simons level ±1 and coupled to bifundamental matter [40]. Note that the Chern-
Simons coupling is classically conformal, and that the presence of two gauge potentials in
addition to the Goldstone fields does not contradict our earlier counting, since Chern-Simons
fields do not represent propagating degrees of freedom.

While it can still be adapted to the description of two coincident M2-branes, the N = 8
theory does not generalise beyond that. In order to describe a stack of N M2-branes, the
supersymmetry has to be relaxed to N = 6, leading to ABJM theory, a super-Chern-Simons
matter theory with gauge group U(N)−k × U(N)k which describes N parallel M2 branes
probing a C4/Zk singularity in the transverse directions [41]. From there, the theory can be
generalised further, and indeed many of its interesting features are preserved in less restrictive
settings. In particular, in Chapter 5 we relax supersymmetry to N = 4 and consider more
general quiver gauge theories.

2.2.2 M5-brane: N = (2, 0)

An equally intriguing but much more elusive theory arises when one considers the world-
volume of an M5-brane instead. This theory enjoys N = (2, 0) superconformal symmetry,
which, as mentioned, is the largest possible amount of superconformal symmetry in the
largest spacetime dimension that still admits any superconformal algebras. It is therefore
tempting to view it as a “mother theory” which upon dimensional reduction gives rise to
lower dimensional theories preserving some portion of the superconformal symmetry. In-
deed, compactifying this theory on Riemann surfaces gives rise an intricate web of dualities
between 2d and 4d theories, termed the AGT correspondence [42].

An explicit definition of the theory even for a single M5-brane is, however, hard to come
by. The main difficulty is posed by the self-dual three-form field strength, for which a
satisfactory manifestly Lorentz invariant action without auxiliary fields, even in the abelian
case, has not yet been found (see [43, 44] for recent approaches). The situation is even
less clear for multiple M5-branes, owing to the intrinsic difficulty of describing nonabelian
gauge 2-forms. Furthermore, it is known that the theory does not admit exactly marginal
deformations, rendering the tool of perturbation theory, which has been deployed with great
success in the study of N = 4 SYM, all but useless [45]. One is therefore forced to adopt a
less direct approach. In Chapters 3 and 4, we probe the theory using 1/2-BPS surface defects,
computing, among other things, the conformal anomaly associated with such objects.

2.3 Defect Operators

Usually the most immediately accessible objects of study in quantum field theory are local
operators and their correlation functions. However, it has long been understood that the
spectrum of a given QFT may include nonlocal excitations supported on a submanifold of
spacetime as well. Perhaps the most obvious of these extended objects arise when considering
a spacetime with a boundary, which may be understood as a defect of codimension q =
1 [46, 47], but a wide variety of defect operators of various codimension have since been
described in the literature (see [48] and references therein for an overview). While these
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operators are interesting in their own right, they are particularly useful as a tool in the
study of theories which do not readily yield to a description in terms of local operators,
particularly if they preserve some amount of the bulk symmetry. Once one has good control
over a defect operator, varying the underlying submanifold on which it is supported supplies
a huge arsenal of operators one can use to probe the theory. Far and away the most famous
of these operators is the Wilson line of gauge theory, which we will use to illustrate some of
the salient features of defect operators. The pure Wilson line measures the holonomy of the
gauge connection along a prescribed contour C:

WC = P exp i

∫
C

Aµdxµ. (2.14)

For generic C, the Wilson line breaks all geometric bulk symmetries, but choosing C to be
a straight line (circle), WC preserves a translation (rotation). Similarly, WC can often be
modified to preserve additional symmetries enjoyed by the bulk theory. The most celebrated
example is the 1/2-BPS circular Wilson loop in N = 4 super-Yang-Mills theory, which
preserves rigid conformal symmetry along the circle as well as 8 supercharges and some
R-symmetry. These symmetries have been leveraged to compute its expectation value for
arbitrary ’t Hooft coupling λ and any rank of the gauge group N , providing a spectacular
interpolation between strong coupling results obtained holographically on one side and the
perturbative expansion on the other. This remarkable result suggests that superconformal
defects might be of some utility in less well understood settings as well. This is the point of
view we adopt throughout this thesis.

2.3.1 Defect CFT

Conformal symmetry in particular places powerful constraints on the excitations of a defect
and its interactions with the bulk, which we exploit in Chapter 4 for the case of surface defects
in the N = (2, 0) theory, and briefly introduce here. One of the key features of any conformal
defect is that its excitations are described by a structure very similar to a conformal field
theory. Indeed, the degrees of freedom supported by such a defect obey the axioms of a
CFT, with the exception of locality, as is to be expected, since the defect exchanges energy
with the bulk it is embedded in [46, 47]. In particular, these defect fields form multiplets of
the preserved conformal symmetry, and their correlation functions are subject to the usual
constraints. The most important example of these is the displacement operator Dm, which
encodes the defects response to an infinitesimal deformation of its supporting manifold. For
the Wilson loop, this can be expressed explicitly as an insertion of fields into the line:

δW

δxµ(τ)
= iP

(
Fµν ẋ

ν(τ) exp i

∫
Aµdxµ

)
= W [iFµν ẋ

ν ]. (2.15)

We conclude that, for a line in the x0 direction, Dm = iFm0. The conformal symmetry
preserved by the line now implies that

〈W [Dm(τ)Dn(0)]〉 =
CDδmn
τ 4

. (2.16)
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While in ordinary CFTs, the coefficient of the two-point function can be absorbed by a field
redefinition, this is impossible for a dCFT: The defect fields are defined in terms of the
bulk fields, and their normalisation is therefore fixed. Consequently, the coefficient CD is a
meaningful quantity characterising the defect.

Put another way, the breaking of translation invariance in the directions orthogonal to
the defect manifests as a correction to the conservation of the transverse components of the
energy-momentum tensor T µν localised on the defect. Splitting coordinates x = x⊥ + x‖
along directions orthogonal and perpendicular to the defect, we may write

∂µT
µm = δ(x⊥)W [Dm(x‖)]. (2.17)

This equation suggests a relation between the energy radiated by the defect, as given by
the normalisation of the one-point function of T 0m in the presence of W , and the dCFT
quantity CD, which is therefore sometimes called the Bremsstrahlung function [49]. However,
such relations have been proven only in settings with some supersymmetry [49, 50]. For
defects breaking other continuous bulk symmetries, (2.17) is easily generalised, and each
broken current gives rise to a defect field whose quantum numbers under the preserved
symmetries may be easily read off. In the superconformal case, the bulk R-symmetry and
supersymmetry currrents share a multiplet of the bulk superconformal algebra with the
energy momentum tensor, and this structure is mirrored in the displacement multiplet on
the defect side, whose members encode the breaking of the corresponding bulk symmetries
on the defect. In Chapter 4, we will use supersymmetry to derive linear relations between
the normalisation constants of their two-point functions, which, in turn, are related to the
conformal anomaly associated with a surface.

2.4 Conformal Anomaly

Like any other symmetry of a QFT, the classical conformal invariance of any given CFT may
be anomalous, i.e. spoiled at the quantum level. This manifests itself in the failure of the
theory to be Weyl invariant on arbitrary curved backgrounds. Concretely, consider a theory
defined on a (closed) d-dimensional spacetime with metric gµν . The partition function is a
nonlocal functional of the metric, Z ≡ Z[gµν ]. Under an infinitesimal Weyl transformation
gµν → (1 + ω)gµν , the free energy varies as

δ logZ

δω(x)
=

1

Z

δZ

δω(x)
=

1

Z

δZ

δgµν(x)
gµν(x) =

√
g
〈
T µµ (x)

〉
. (2.18)

While classically the stress tensor in a CFT must be traceless, this is generally no longer
true in an anomalous theory.

The expectation value of T µµ , sometimes referred to as the anomaly density A, is a local
functional of the metric gµν . Crucially, the total conformal anomaly

A =

∫
ddx
√
gA (2.19)

15



is itself a conformal invariant. To see this, note first that A measures the change of logZ
under a constant Weyl transformation:

δω0 logZ = ω0A. (2.20)

Then, the variation of A under a general infinitesimal Weyl transformation satisfies

ω0 δωA = δωδω0 logZ = δω0δω logZ

= δω0

∫
ddx
√
gAω

=

∫
ddx (A δω0

√
g +
√
g δω0A)ω,

(2.21)

where in the second step we used that any two Weyl transformations commute: [δω, δω0 ] = 0.
This is a special case of the Wess-Zumino consistency condition, which restricts the form of
general anomalies [51,52]. Each term contributing toA is a scalar constructed from m factors
of the metric gµν and n factors of its inverse gµν , both of which are dimensionless, as well as
derivatives ∂µ. Since the free energy, and therefore its variation under a Weyl transformation,
must also be dimensionless, there are precisely d derivatives in each summand. Furthermore,
in order for all indices to be fully contracted, 2n = 2m + d. It follows immediately that A
vanishes identically if d is odd. Although we have not derived the explicit form of A, we can
now compute its variation under constant Weyl transformations:

δω0A = ω0 (m− n)A = −d
2
ω0A. (2.22)

Noting that δω0

√
g = +d

2
ω0A, we find that the two terms in the last line of (2.21) cancel

and thus, for an arbitrary Weyl transformation,

δωA = 0, (2.23)

as claimed. This places strong constraints on the terms that can possibly appear in A.
Two types of anomaly terms may be distinguished, based on their behaviour under a Weyl
transformation: Type A anomalies are local functionals of the metric which change by a
total derivative, while type B anomalies are themselves Weyl invariants. In d = 2, A is
proportional to the Ricci scalar R, which is a type A anomaly; type B anomalies are absent.
In higher dimensions d = 2n, there is one type A anomaly, namely the Euler density, as well
as a number of type B anomalies which may be constructed by contracting n Weyl tensors.

These terms have been completely classified [52,53]. The anomaly density of a given CFT
is then specified by the respective anomaly coefficients multiplying the available anomaly
densities, which carry highly nontrivial information about the theory.

Beyond the bulk anomaly terms discussed above, defect operators may contribute to
the conformal anomaly as well. By the same arguments as above, they must integrate to
conformal invariants, and can therefore be enumerated explicitly. In particular, nonsingular
odd-dimensional defects do not exhibit a conformal anomaly. In addition to the induced
metric, the anomaly may now depend on additional geometric data associated with the
embedding of the defect, leading to a somewhat richer structure of anomaly terms than in
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the bulk. For a defect defined over a surface Σ, the available terms, regardless of codimension,
are the 2d Ricci scalar RΣ (type A) as well as the trace of the pulled back bulk Weyl tensor
TrW and the Willmore functional H2 + 4TrP , constructed from the mean curvature Hµ of
the embedding and the pullback of the bulk Schouten tensor Pµν (type B). Like the bulk
theory, the defect itself can then be characterised by its anomaly coefficients. It is these
numbers that we compute for surface operators in the two regimes at N = 1 and N � 1 in
Chapter 3 and constrain at any N in Chapter 4.

2.5 Holography

Over the last 20 years, the idea that d-dimensional CFTs are dual to quantum gravity on
a background geometry involving an AdSd+1 factor has gained widespread acceptance [2,3].
In Maldacena’s seminal paper, it was noted that the near-horizon geometry of the solution
to type IIB supergravity sourced by a stack of N D3-branes is AdS5 × S5, where the branes
sit at the boundary of AdS5 and the curvature radii of both AdS5 and S5 are given in terms
of the string coupling gs and length `s as R = `s(4πgsN)

1
4 . As long as R is much larger than

the string and Planck lengths (or, equivalently, gsN � 1, N � 1), one can reliably expand
around this solution. The same degrees of freedom should be described by the worldvolume
theory of the D3-branes, which is known to be N = 4 super-Yang-Mills theory with gauge
group SU(N) and coupling constant g2

YM = 4πgs, leading to the conjecture that, at large
’t Hooft coupling λ = g2

YMN and large N , the gauge theory is well-described by type IIB
supergravity.

In this thesis, we will be particularly interested in the holographic duals of defect op-
erators. Again, the analogy with Wilson loops is instructive. Under the AdS/CFT corre-
spondence, fundamental Wilson lines in N = 4 have been all but proven to correspond to
open strings in AdS5 × S5 whose worldsheets end on the contour at the conformal bound-
ary [2, 54, 55]. Since the string tension, measured in units of the curvature radius R−1,
becomes infinite in the limit we consider, the holographic dual of the Wilson loop expecta-
tion value is simply the exponential of the classical Nambu-Goto action, i.e. the area of a
minimal surface with suitable boundary conditions.

In the case of stacks of branes in M-theory which we are interested in, the 11d supergravity
solutions are very similar, and analogous arguments apply. Concretely, the near-horizon
geometry of a stack of M2-branes is AdS4×S7 [56,57], with their respective radii of curvature
given by

2LAdS4 = LS7 = (32π2N)
1
6 `P , (2.24)

while for M5-branes, we find AdS7 × S4 with

LAdS7 = 2LS4 = 2(πN)
1
3 `P . (2.25)

Note that the isometry algebras of these spaces are so(2, 3) ⊕ so(8) and so(2, 6) ⊕ so(5),
respectively, which precisely match the bosonic parts of maximal superconformal algebras in
3d and 6d listed in (2.8). Clearly, in the large N limit all of the curvature radii become very
large compared to the Planck length, and the supergravity approximation is valid. While in
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10d the string tension is a free parameter, the tension of M-branes is determined entirely by
the Planck length:

TM2 =
1

(2π)2`3
P

, TM5 =
1

(2π)5`6
P

, (2.26)

which, in turn, may be recast in terms of the curvature radii and N . We see that in either
of the two backgrounds described above, the tensions of both M2- and M5-branes become
infinite in units of the curvature radius L as N → ∞. This means that the appropriate
holographic dual of the expectation value of a defect operators in ABJM or N = (2, 0) is
the classical action of a brane extending into the AdS bulk and attached to the defect at
the conformal boundary. This is precisely the setup we will use in Chapter 3 to derive the
conformal anomaly of a surface operator at large N .
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Chapter 3

Locally BPS Surfaces in 6d N = (2, 0)

3.1 Introduction

In this chapter, closely based on our publication [28], we consider surface operators, the most
natural observables in the N = (2, 0) theory [39]. In some ways the surface operators in
six dimensions are analogous to Wilson loops in lower dimensional gauge theories: Wilson
loops are the boundaries of fundamental strings, which arise as the dimensional reduction
of M2-branes, and indeed one obtains Wilson loops in compactifications of the 6d theory
with surface operators. Wilson loops are not only interesting due to their physical impor-
tance, they are also accessible to many perturbative and non-perturbative calculational tools
in supersymmetric field theories: Feynman diagrams, holographic descriptions [54, 55, 58],
localization [10], the defect CFT framework and associated OPE techniques [59, 60], inte-
grability [61, 62], duality to scattering amplitudes [63] and more. See for instance a recent
survey of these techniques, as applied to supersymmetric Wilson loops in ABJM theory [30].

We do not expect all these techniques to apply equally to surface operators in six dimen-
sions, but it is worthwhile to examine which of them might. Here we take the first step in
such an examination, defining the notion of a “locally BPS surface operator” and studying
basic properties of their anomalies. This is mainly based on previous work [27,64–67], which
we modify and refine in several ways.

As reviewed in the next section, the expectation value of generic surface operators con-
tains logarithmic divergences, due to the conformal anomaly. The anomaly depends on the
geometry of the surface, as well as intrinsic properties of the operator which are captured by
three numbers, known as anomaly coefficients [53].

The “locally BPS” operator couples to the scalar fields via a unit 5-vector ni. This can
be viewed as a coupling to an R-symmetry background, and for non-constant ni we find a
new anomaly, proportional to (∂n)2, with its own anomaly coefficient.

We perform explicit calculations of the three geometrical and one R-symmetry back-
ground coefficients in both the free theory at N = 1 and the holographic description valid at
large N . An examination of our results reveals that the new anomaly coefficient matches (up
to a sign) one of the geometric ones in both regimes. We present here a simple argument,
relying on supersymmetry, why we expect this relation to hold for all N . A rigorous proof
of this relation based on the application of defect CFT techniques to surface operators is the
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given in Chapter 4.
Beyond the study of N = (2, 0) superconformal symmetry, surface operators in conformal

field theories have drawn interest within a number of different contexts. Recent work on
entangling surfaces in 4d [68–71] and theories with boundaries [72–74] uses some techniques
which apply in our case as well. In particular, the classification of local conformal invariants
of surfaces is independent of the codimension and translates to the 6d case [75].

Surface operators in the N = (2, 0) theory have been studied both from a field theory
perspective [27,65–67] and using holography [24,64]. Corresponding soliton solutions of the
M5-brane equations of motion have been discussed in the literature under the moniker of
self-dual strings [39].

The resemblance to Wilson loops is evident in both the field theoretic and the holographic
approach. In the abelian theory, as is studied in Section 3.3, we define the surface operator
in analogy to the Maldacena-Wilson loops [58] as

VΣ = exp

∫
Σ

(
iB+ − niΦivolΣ

)
, (3.1)

where B+ is the pullback of the chiral 2-form to the surface Σ and Φi are the scalar fields.
Since for N > 1 there is no realisation of the theory in terms of fundamental fields, we

cannot give an analogous definition of the surface operator. However, by analogy with Wilson
loops [54, 55, 58], in the large N limit, these operators in the fundamental representation
have a nice holographic dual as M2-branes ending on the surface and extending into the
AdS7 × S4 bulk, as discussed in Section 3.4. In the absence of a scalar coupling breaking
the so(5) R-symmetry, these would be delocalised on the S4 [76, 77]. At leading order, we
need only consider minimal 3-volumes [58,64] (similar to the minimal surfaces of interest in
the Wilson loop case [54, 55, 58]), and to find the anomaly, which is a local quantity, it is
enough to understand the volume close to the boundary of AdS. High-rank (anti-)symmetric
representations are dual to configurations involving M5 branes shrinking to the surface on
the boundary of AdS7 and have been considered in [78–81].

The definition in (3.1) includes BPS operators. Simple examples are the plane or sphere
with constant unit length ni. Other examples are briefly discussed in Section 3.3 and have
since been analysed in great detail [82]. We call operators with generic Σ and unit length ni

“locally BPS”, and show that they possess some nice properties, in particular that all power
law divergences cancel.

In the next section we recall the relation of surface operator anomalies to logarithmic
divergences and introduce the anomaly coefficients. We evaluate these anomaly coefficients
for the two known realisations of the N = (2, 0) theory; first as the theory of a single M5-
brane (N = 1) [83], for which the equations of motion are known [84], and second, using
holography (for the large N limit) from M-theory on the AdS7 × S4 background [2] found
in [56]. The resulting anomaly coefficients are presented in equations (3.37) and (3.64). After
performing the free field and holographic calculations, we address in Section 3.5 surfaces
with singularities. We discuss our results in Section 3.6 and offer a simple argument for
the relation between two of the anomaly coefficients. We collect some technical tools in
appendices. Our conventions can be found in Appendix A.1. Details of the geometry of
submanifolds are compiled in Appendix A.2. Appendix A.3 contains an alternative, more
geometric derivation of the field theory results in Section 3.3.
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3.2 Surface anomalies

The most natural quantities associated to surface operators in conformal field theories are
their anomaly coefficients. To understand their origin, note that, unlike line operators, the
expectation values of surface operators typically suffer from ultraviolet divergences, which
cannot be removed by the addition of local counterterms. The regularised expectation value
satisfies

log 〈VΣ〉 ∼ log ε

∫
Σ

volΣAΣ + finite, (3.2)

where ε is a regulator, AΣ is known as the anomaly density, and we suppressed possible power-
law divergences. AΣ is scheme independent and indicates an anomalous Weyl symmetry,
since for a constant rescaling g → e2ωg, the expectation value varies as

log 〈VΣ〉e2ωg − log 〈VΣ〉g = ω

∫
Σ

volΣAΣ , (3.3)

where the subscript 〈•〉g denotes the background metric.
As seen in Section 2.4, the anomaly is constrained by the Wess-Zumino consistency

condition [52, 53] to be conformally invariant. In dimensions d ≥ 3, the local geometric
conformal invariants for a 2d submanifold, which have been classified in [75], are

RΣ : The Ricci scalar of the induced metric hab on Σ.

H2 + 4 TrP : Hµ is the mean curvature, Pab the pullback of the bulk Schouten tensor (A.16).

TrW : Wabcd is the pullback of the bulk Weyl tensor.

As we allow for variable couplings to the scalars, parametrised by a unit 5-vector ni, we find
an extra potential type B Weyl anomaly associated with it:

(∂n)2 ≡ ∂ani∂ani.

This is (up to total derivatives) the only quantity of the correct dimension that can be
constructed using only n.

The anomaly density of a surface operator in any 6d N = (2, 0) theory then takes the
form

AΣ =
1

4π

[
a1R

Σ + a2

(
H2 + 4TrP

)
+ bTrW + c (∂n)2] . (3.4)

The anomaly coefficients a1, a2, b and c depend on the theory (on N , that is) and the type
of surface operator (which, at least at large N , is specified by the representation of the AN−1

algebra [85, 86]), but not on its geometry or n. Computing these coefficients is the goal of
this chapter.

Let us mention that there exists another commonly used basis where

AΣ =
1

4π

[
aRΣ + b1Tr ĨI

2
+ b2TrW + c(∂n)2

]
, (3.5)
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where ĨI
µ

ab is the traceless part of the second fundamental form (see (A.22)). These bases are
related through the Gauss-Codazzi equation (A.21). The relation between the coefficients is
then

a1 = −b1 + a , 2a2 = b1 , b = b2 + b1 , (3.6)

a = a1 + 2a2 , b1 = 2a2 , b2 = b− 2a2 . (3.7)

Some results about these anomaly coefficients are known for surface defects in generic
CFTs. The bound b1 < 0 was derived in [70] by showing that b1 captures the 2-point
function of the displacement operator, which is positive by unitarity. Similarly, it was shown
in [70,87] that b2 is calculated by the one-point function of the stress tensor in the presence
of the surface defect (this was also conjectured in [88]). Assuming that the average null
energy condition holds in the presence of defects leads to a bound b2 > 0 [71].

For the surface operators at hand, some of these anomaly coefficients were also calculated
previously. At large N , the first such result was obtained for the 1/2-BPS sphere [24], which

has total anomaly −4N , implying a
(N)
1 + 2a

(N)
2 = −2N to leading order at large N . This

was soon followed by the more detailed result a
(N)
2 = −N and a

(N)
1 = b(N) = 0 [64].

More recently, it was conjectured that N = (2, 0) supersymmetry imposes b = 0 (or
b1 = −b2) for any N [89], which we will prove in the next chapter. a and b2 were calculated
at any N > 1 (and for any representation) by studying the holographic entanglement entropy
in the presence of surface operators [71, 81,90,91]. This result is also supported by a recent
calculation based on the superconformal index [92], which suggests that it is exact.

To our knowledge, the anomaly coefficient c has not previously been discussed.

3.3 Abelian theory with N = 1

In this section we study the anomaly coefficients of the surface operator in the abelian
(2, 0) theory. This is the theory of a single M5-brane and the degrees of freedom form the
tensor supermultiplet of the osp(8∗|4) symmetry algebra. It consists of three fields [93, 94]
(see [95, 96] for an overview of superconformal multiplets in various dimensions):

• A real closed self-dual 3-form H = dB+.

• A chiral spinor ψαα̌ subject to the symplectic Majorana condition ψ̄ = −cΩψ (A.14)
where c and Ω are charge conjugation matrices, see (A.12).

• Five real scalar fields Φi.

These fields transform into each other under superconformal transformations as [83]

δεB
+
µν = ε(x)γµνψ , (3.8)

δεψ = −γµ∂µΦiγ̌iε̄(x) +
1

12
γµνρHµνρε̄(x) + 4Φiγ̌iε

1 , (3.9)

δεΦ
i = −ε(x)γ̌iψ . (3.10)

The parameter ε̄(x) is an antichiral spinor of the form ε̄α̇α̌(x) = ε̄0
α̇α̌ + (γ̄µ) β

α̇ xµε1
βα̌, where

ε̄0 and ε1 are constant spinors parametrising, respectively, the supersymmetry and special
supersymmetry transformations. Our spinor conventions are summarised in Appendix A.1.
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3.3.1 Surface operators and BPS condition

We define the surface operators VΣ of the abelian theory as in (3.1). We restrict to space-like
surfaces in flat 6d Minkowski space (with mostly positive signature). Null surfaces could
be interesting by analogy with null polygonal Wilson loops, which are dual to scattering
amplitudes in N = 4 SYM [63] (see for instance [97]), but lie beyond the scope of this work.

A surface operator is BPS provided that its variation under the supersymmetry trans-
formations (3.8) vanishes:

δεVΣ = −
∫
ε(x)

[
i

2
γµν∂ax

µ∂bx
νεab − niγ̌i

]
ψ volΣ VΣ = 0 . (3.11)

Since this is an integral over the insertion of an operator ψ along the surface, this is satisfied
only when the integrand vanishes at every point, leading to the projector equation

εΠ− = 0 , Π− =
1

2
− i

4
∂ax

µ∂bx
νεab

ni

n2
γµν γ̌i . (3.12)

If we impose that n2 ≡ nini = 1, then Π− is a half rank projector, otherwise it is a full rank
matrix. In the case of a planar surface with constant unit ni, this is a single condition, so
the surface preserves 16 supercharges, i.e. is 1/2-BPS.1

In analogy to Wilson loops in 4d theories, it is natural to discuss “locally BPS opera-
tors” [55], where the equations (3.12) admit a solution at every point along the surface, but
a global solution does not necessarily exist. This amounts to the requirement n2 = 1, and
as shown below, leads to the cancellation of all power-like divergences in the evaluation of
the surface operator.

One can also look for surfaces, other than planes, that preserve some smaller fraction of
the supersymmetry by relating ni(σ) to xµ(σ) and its derivatives. One simple way to realise
this is for surfaces with the geometry R × S, for some curve S ⊂ R1,4. Upon dimensional
reduction this becomes a Wilson loop in 5d maximally supersymmetric Yang-Mills (or 4d
upon further dimension reduction). Then one can choose ni to follow the construction of
globally BPS Wilson loops of [11] or [12] to find globally BPS surface operators. Indeed this
was realised recently in [98] (see also [99]).

There are further examples of globally BPS surface operators, which do not follow this
construction. The simplest is the spherical surface, but there are several other classes of
such operators [82].

3.3.2 Propagators

Since the abelian theory is non-interacting, the expectation value of VΣ reduces to

log 〈VΣ〉 =
1

2

∫ [
−
〈
B+(σ)B+(τ)

〉
+ 〈Φi(σ)Φj(τ)〉ni(σ)nj(τ)

√
h(σ)h(τ)d2σ d2τ

]
, (3.13)

1The BPS condition for a surface operator extended in the time-like direction can be obtained by Wick-
rotation to

V timelike
Σ = exp

[
i

∫
Σ

B+ − ΦvolΣ

]
.
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where h is the determinant of the induced metric on Σ. Evaluating this requires expressions
for the propagators of the tensor and scalar fields.

While one would preferably derive the propagators from an action, none is readily avail-
able. Many actions for the abelian N = (2, 0) theory have been proposed over the years, but
they all suffer from some pathologies regarding the self-dual 2-form (see [40,83,100–102] for
examples of available actions, and [43, 44, 103] and references therein for recent accounts of
the various approaches in the abelian theory). In any case, gauge fixing and inverting the
kinetic operator is not straightforward.

Tensor structure

We sidestep these obstacles by determining the propagators in other ways. The scalar prop-
agator in flat 6d is fixed by conformal symmetry to be

〈Φi(x)Φj(y)〉 =
CΦδij

|x− y|4
. (3.14)

The proportionality constant depends on the normalisation of the fields. It could be deter-
mined from an action, but in its absence it is fixed by supersymmetry below.

The more complicated question is the self-dual 2-form propagator. Let us start by con-
sidering an unconstrained 2-form field B with a free Maxwell type action

Stot ∝
∫

d6xBµν
(
−(δρµδ

σ
ν − δρνδσµ)∂2 + 4(1− α)∂µ∂

ρδσν
)
Bρσ , (3.15)

were α is a gauge fixing parameter. In Feynman gauge α = 1, this gives the propagator

〈Bµν(x)Bρσ(y)〉 =
CB(δρµδ

σ
ν − δρνδσµ)

|x− y|4
. (3.16)

Now we decompose the field into its self-dual and anti-self-dual parts Bµν = B+
µν +B−µν and

try to deduce the propagators for each component.
Since there is no covariant 4-tensor satisfying the self-duality properties of a mixed cor-

relator 〈B+B−〉, we can decompose

〈BB〉 = 〈B+B+〉+ 〈B−B−〉 . (3.17)

The two terms on the right hand side need not be identical, but the difference between them
should be parity-odd.2 The only such term of the right scaling dimension which we can write

2The two-dimensional analogue is instructive. The propagator of a free boson in complex coordinate z is
given by

〈φ(z)φ(0)〉 = log |z|2 ,

while for a (anti-)chiral boson one finds

〈φ+(z)φ+(0)〉 = log z , 〈φ−(z)φ−(0)〉 = log z̄ .

Indeed the sum reproduces the free boson propagator, but the two differ by a parity-violating imaginary
part.
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down is

〈B+B+〉 − 〈B−B−〉 ∝ εµνρσκλ
xκyλ

|x− y|6
. (3.18)

However, terms of this type do not contribute to (3.13), since the integration is symmetric
in x and y. Therefore, for the purpose of our calculation we can take 〈B+B+〉 = 〈BB〉/2.
Note that in curved space we can add to the right hand side a term proportional to the Weyl
tensor with all the required symmetries.

Normalisation

The normalisation of the tensor field propagator is fixed by the assumption that the surface
operator defined in (3.1) corresponds to a single unit of quantised charge. First, for any
closed surface Σ, we can rewrite the surface operator (without scalars) in terms of the field
strength as

exp

∫
Σ

iB+ = exp

∫
V

iH, (3.19)

where ∂V = Σ. In order for this to be well-defined, any two such V with the same boundary
must yield the same result. Equivalently, for every closed 3-manifold V∫

V

H ∈ 2πZ , (3.20)

and similarly for ∗H.
Now consider a flat surface operator in the (x1, x2) plane, which we view as a source for

the self-dual B field. The solution to the equations of motion would be given by convoluting
the propagator with this source. Using the expression in (3.16) and adding the factor 1/2 to
account for restricting to the self-dual sector, we get

Bµν(x) =

∫
R2

CB(δ1
µδ

2
ν − δ1

νδ
2
µ)

2|x− y|4
d2y . (3.21)

Again, because we don’t know the self-dual propagator, the field strength we obtain is not
self-dual, but the quantisation condition should still be satisfied. Imposing that the charge
enclosed in a transverse sphere is quantised leads to∫

S3

∗H = 2π3CB = 2π ⇒ CB =
1

π2
. (3.22)

The normalisation of the scalar propagator is then fixed by supersymmetry. A simple way
to implement that is to compare with the classical BPS solution of the self-dual string [39]
which gives3 2CΦ = CB. Overall, we are left with

〈Φi(x)Φj(y)〉 =
δij

2π2 |x− y|4
, (3.23a)

〈
B+
µν(x)B+

ρσ(y)
〉

=
δµρδνσ − δµσδνρ

2π2 |x− y|4
. (3.23b)

3The absence of power-law divergences in the calculation in the next section is also a hint that this is
indeed the correct proportionality.
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We emphasise that this normalisation is obtained by imposing a quantisation condition
on the self-dual sector of an unconstrained B-field. This follows the discussion in [100],
however some caution is warranted. A proper treatment of the quantisation of a self-dual
two-form could remove the factor 1/2 on the right hand side of (3.21), halving the resulting
anomaly coefficients.

The flat space propagators are sufficient to determine the anomaly coefficients a1, a2, and
c. The calculation of b, however, requires the curved space propagator, where the right-hand
side of (3.18) could pick up contributions whose integral does not vanish. Since we do not
know how to fix these terms, we cannot determine b.

Note though that we can calculate the contribution of the scalars to the anomaly coef-
ficient b. The propagator of a conformal scalar in a curved background can be expanded
in powers of the geodesic distance [27], and the contribution to the anomaly coefficient b is
read off as −1/3.

If we give up the requirement of self-duality, we can use the short-distance expansion of an
unconstrained 2-form propagator on curved space, which has been computed in [65,67], and
again, the Weyl tensor of the background explicitly contributes to the curvature corrections.
Halving that in order to account for self-duality and adding to it the contribution from the
scalars, one obtains b = −4/3 [27]. This is in disagreement with the conjecture b = 0 [89]
and should therefore be taken with a grain of salt.

3.3.3 Evaluation of the anomaly

With the propagators at hand, we can compute the expectation value of the surface operator
by evaluating the integrals in (3.13). Generically, these integrals are divergent and must be
regularised.

In this section we take a rather naive approach of placing a hard UV cutoff on the double
integral (3.13), so as to restrict |σ − τ | > ε (where the distance is measured with respect to
the induced metric), the same regularisation that is used in [65]. A different regularisation is
employed in [27], where the surface is assumed to be contained within a 5d linear subspace of
R6 and the two copies of the surface are displaced by a distance ε in the 6th direction. This
restriction to R5 must still yield the correct answer, since even for surfaces in 4d the geometric
invariants in the anomaly (3.4) are independent of each other. Still, in Appendix A.3 we
redo the calculation removing this assumption by displacing the two copies of the surface
along geodesics in the direction of an arbitrary normal vector field. That approach could be
important for the calculation of surface operators in four dimensions, where the restriction
to a 3d linear subspace does not allow to resolve all the anomaly coefficients.

To find the anomalies we only need the short-distance behaviour of the propagators, so
we use normal coordinates ηa about a point σ on Σ. The notations and required geometry
are presented in Appendix A.2.

Starting from the scalar contribution to (3.13), the integrand is

1

4π2

ni(σ)ni(τ)

|x(σ)− x(τ)|4
√
h(σ)

√
h(τ) . (3.24)

26



Using nini = 1 and (A.28), (A.26) we have

ni(σ)ni(τ) = 1− 1

2

(
∂an

i∂bn
i
)
ηaηb +O(η3) , (3.25)√

h(τ) = 1− 1

6
RΣ
abη

aηb +O(η3) , (3.26)

|x(σ)− x(τ)|2 = ηaηa −
1

12
IIab · IIcdηaηbηcηd +O(η5) . (3.27)

The integral computing the density of the scalar contribution to log 〈VΣ〉 is then

1

4π2

∫
d2η

|η|4

[
1−

(
1

6
RΣ
ab +

1

2
∂an

i∂bn
i

)
ηaηb +

1

6|η|2
IIab · IIcdηaηbηcηd +O(η3)

]
. (3.28)

Using polar coordinates ηa = η ea(ϕ), where e is a 2d unit vector, and the identities∫ 2π

0

dϕ eaeb = πδab,

∫ 2π

0

dϕ eaebeced =
π

4

(
δabδcd + δacδbd + δadδbc

)
, (3.29)

we are left with the radial integral, for which we introduce the cutoff ε

1

2π

∫
ε

dη

η3

(
1− η2

48

(
4RΣ + 12 (∂n)2 −H2 − 2IIab · IIab

)
+O(η3)

)
(3.30)

=
1

4πε2
+

1

32π

(
2RΣ −H2 + 4 (∂n)2) log ε+ finite. (3.31)

To get the expression in the second line we also used the Gauss-Codazzi equation (A.21).
The calculation of the contribution of the 2-form field is very similar. Expanding the

tensor structure, we have

1

2

〈
B+(σ)B+(τ)

〉
=

1

8π2

δµρδνσ
|x(σ)− x(τ)|4

dxµ(σ) ∧ dxν(σ)⊗ dxρ(τ) ∧ dxσ(τ) . (3.32)

In terms of ηa, the differential forms read (see (A.23))

dxµ ∧ dxν
∣∣
σ

= εabvµav
ν
b d2η , (3.33)

dxρ ∧ dxσ
∣∣
τ

= εcd
(
v

[ρ
c v

σ]
d + 2v

[ρ
c v

σ]
deη

e +
(
v

[ρ
cev

σ]
df + v

[ρ
c v

σ]
def

)
ηeηf +O(η3)

)
d2η . (3.34)

Collecting terms and introducing a radial cutoff as above, we find the contribution

− 1

4πε2
− 1

32π

(
−2RΣ + 3H2

)
log ε+ finite. (3.35)

Finally, combining (3.31) and (3.35) we find that the quadratic divergences cancel and
we are left with

log 〈VΣ〉 =
1

8π
log ε

∫
Σ

volΣ
[
RΣ −H2 + (∂n)2]+ finite. (3.36)
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Comparing to (3.4), we can read off the anomaly coefficients

a
(1)
1 = +

1

2
, a

(1)
2 = −1

2
, c(1) = +

1

2
. (3.37)

As discussed above, since we do not know the contribution of the Weyl tensor to the
B-field propagator, we cannot determine b(1). According to the conjecture of [89] however,
it should vanish.

Equation (3.36) differs from (3.4) by the absence of the TrP term, which vanishes in flat
space. Since H2 doesn’t vanish in flat space, it determines a2 unambiguously. In curved
space H2 is necessarily accompanied by 4TrP , as seen in Appendix A.3.

Finally, we reiterate that, depending on the form of the quantisation condition, the result
for the anomaly coefficients may be divided by 2, see the discussion following (3.23). In any
case, the abelian theory should have surface operators with an integer multiple of iB+−niΦi

in (3.1), and for all of them it is still true that a
(1)
1 = −a(1)

2 = c(1).

3.3.4 Generalising the scalar coupling

Note that the preceding calculation is applicable regardless of whether the operator is locally
BPS or not, so we may relax the condition n2 = 1. In that case the result for the anomaly
coefficients is

a
(1)
1 =

n2 + 1

4
. a

(1)
2 = −n

2 + 3

8
, c(1) =

1

2
. (3.38)

If we replace ni → ini, we recover the surface operator studied in [27]. An operator with
n2 = 0 was also studied in [65], but assuming a non-self-dual 2-form. The anomaly coefficients
computed in [27,65] are respectively twice and four times the ones we obtain by substituting
the values of n in (3.38), due to a difference in the overall normalisation of the propagator.

It would be interesting to study this system in the large n2 limit. This is similar to the
“ladder” limit of the cusped Wilson loop in N = 4 SYM in 4d first suggested in [104] which
is related to a special scaling limit of that theory, dubbed the “fishnet” model, a 6d version
of which was discussed in [105].

3.4 Holographic description at large N

The holographic calculation of the Weyl anomaly for surface operators was pioneered by
Graham and Witten in [64]. Here we present a rewriting of their argument, which we also
generalise slightly to include operators extended on the S4.

3.4.1 Surface operators

The N = (2, 0) theory is described at large N by 11d supergravity on an asymptotically
AdS7 × S4 geometry [2]

ds2 =
L2

y2

(
dy2 + g(0) + g(1)y2

)
+
L2

4
g

(0)

S4 +O(y2) , L = (8πN)1/3 lP , (3.39)
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such that g(0) is the metric of the dual field theory4 and g
(0)

S4 is the metric of S4. The
background includes N units of F4 flux

1

(2π)2 l3P

∫
S4

F4 = 2πN . (3.40)

The full form of the metric is determined by the supergravity equations of motion in
the presence of these fluxes and by requiring the geometry to close smoothly in the interior.
While the latter requires nonlocal information, the near-boundary expansion is fixed to the
required order by local information about the boundary. Following [106,107], the first term
in this expansion was found in [64] as

g(1)
µν = −P (0)

µν ≡ −Pµν
∣∣
g=g(0)

. (3.41)

At this order the S4 is round, so to leading order the solution to (3.40) is simply

F4 =
3

8
L3volS4 . (3.42)

The holographic description of the surface operators (3.1) is by M2-branes anchored along
Σ on the boundary of AdS [58]. Using Σ̂ for the world-volume of the M2-brane, it has a
boundary at y = 0 with ∂Σ̂ = Σ. The expectation value of the surface operators is then
given by the minimum of the M2-brane action, reading (in Euclidean signature and with all
fermionic terms suppressed) [108]

log 〈VΣ〉 ' −SM2 = −TM2

∫
Σ̂

(volΣ̂ + iA3) , TM2 =
1

4π2l3P
=

2N

πL3
, (3.43)

where TM2 is the tension of the brane, proportional to N . volΣ̂ is the volume form calculated
from the induced metric and A3 is the pullback of the 3-form potential.

3.4.2 Local supersymmetry

Before studying the M2-brane embeddings, let us note that the M2-brane minimizing (3.43)
is also locally supersymmetric. The supergravity fields appearing there sit in multiplet with
supersymmetry transformations

δAMNP = −3ε̄Γ[MNΨP ] , (3.44)

δΨM = DMε+
1

288

(
ΓPQRSM − 8ΓQRSδPM

)
FPQRSε , (3.45)

δEM̄
M = ε̄ΓM̄ΨM , (3.46)

where EM̄
M , ΨM and A3 are respectively the vielbein, gravitino and 3-form potential of F4

(M̄ = 1, . . . , 11 is the frame index). Using these transformations, the variation of (3.43) is

δεS = TM2

∫
Σ̂

ε̄

(
Γâ − i

2
εâb̂ĉΓb̂ĉ

)
ΨâvolΣ̂ = 0 . (3.47)

4Or in the same conformal class.
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We here denote the coordinates on the world-volume by σ̂â. The projector equation is then

ε̄Π− = 0, Π− =
1

2

[
1− i

6
εâb̂ĉΓâb̂ĉ

]
. (3.48)

The projector is again half-rank, so that the M2-brane locally preserves half of the supersym-
metries (16 supercharges). These supercharges can be shown to agree with the field theory
BPS condition (3.12) on Σ once we decompose xM into coordinates on the boundary of AdS,
xµ, and the S4 coordinates ni.

3.4.3 Holographic calculation

To find the saddle points of the action (3.43), we parametrise the M2-brane by y, σa where
σa are coordinates for Σ. We then use the static gauge to describe the embedding by
{ua′(y, σ), ni(y, σ)}, where ua

′
are the normal directions to the surface Σ at y = 0. In this

setup, the boundary conditions are ua
′
(y = 0, σ) = 0 and ni(y = 0, σ) = ni(σ) (where the

right hand side has the ni from (3.1)).
Because the metric (3.39) diverges at the boundary of AdS, the volume element on the

M2-brane diverges as y−3, which leads to divergences in the action. Finding the shape of the
embedding requires knowledge of the full surface and is generally a hard problem. But since
we are only interested in the logarithmically divergent part of the action, it is sufficient to
solve the equations of motion for small y. We do this perturbatively following [64], mirroring
the solution of the background supergravity equations above.

Using (3.41), the lowest order terms in the metric for our coordinates normal and tangent
to the surface, are

gab(y, σ, u) = hab − P (0)
ab y

2 + ∂a′g
(0)
ab

∣∣∣
u=0

ua
′
+O(y4, u2) , (3.49)

gaa′(y, σ, u) = O(y2, u) , (3.50)

ga′b′(y, σ, u) = g
(0)
a′b′

∣∣∣
u=0

+O(y2, u) . (3.51)

Here hab = g
(0)
ab

∣∣∣
u=0

is the metric on Σ. Note that away from y = 0, this metric depends on

ua
′

(for y 6= 0, generically ua
′ 6= 0), as in the first line.

To write down the M2-brane action we need the induced metric ĥab = ∂aX
M∂bX

NgMN

(including also the S4 directions). We expand the embedding coordinates as

ua
′
(y, σ) = O(y2) , (3.52)

ni(y, σ) = ni(σ) +O(y2) . (3.53)

It is easy to check that higher order terms are not required. Then the S4 metric can be
replaced with g

(0)

S4 = δijdn
idnj and the second fundamental form is IIa

′

ab = −1
2
ga
′b′∂b′gab.

Dropping the explicit O(y?) as well as the subscript |u=0 along with the superscript (0),
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since all the quantities are evaluated on the surface, we find

ĥyy '
L2

y2

[
1 + ∂yu

a′∂yu
b′ga′b′

]
, (3.54)

ĥay ' 0 , (3.55)

ĥab '
L2

y2

[
hab +

(
−Pab +

1

4
∂an

i∂bn
jδij

)
y2 − 2IIa

′

abu
b′ga′b′

]
. (3.56)

The determinant of the metric is then

det ĥ ' L6

y6

(
1 + ∂yu

a′∂yu
b′ga′b′ − 2Ha′ub

′
ga′b′ +

(
−TrP +

1

4
(∂n)2

)
y2

)
deth , (3.57)

while the pullback of the 3-form

A3 =
1

3!
Aijk dni ∧ dnj ∧ dnk ∼ O(y) , (3.58)

does not contribute to the divergences. We thus find the action

SM2 '
L3

(2π)2 l3P

∫
Σ

volΣ

∫
y≥ε

dy

y3

[
1 +

1

2

(
∂yu

a′
)2

−H · u+
(
−4TrP + (∂n)2) y2

8

]
. (3.59)

At order O(y2), we need only solve for ua
′
(y), which has the equation of motion

y3∂y

(
y−3∂yu

a′
)

+Ha′ ' 0 ⇒ ua
′ ' 1

4
Ha′y2 . (3.60)

The action evaluated at the classical solution is then

SM2 '
L3

(2π)2 l3P

∫
Σ

volΣ

∫
y≥ε

dy

y3

[
1− y2

8

(
H2 + 4TrP

)
+
y2

8
(∂n)2

]
, (3.61)

and we see that the anomaly indeed takes the form (3.4). The result is

log 〈VΣ〉 =
N

4π
log ε

∫
Σ

volΣ
[
−
(
H2 + 4TrP

)
+ (∂n)2] log ε+ finite, (3.62)

where we discarded an irrelevant term proportional to ε−2 (see the discussion below).
This result agrees with the original calculation of [64] and adds to it the coupling to

(∂n)2. It is also consistent with the explicit calculation of the 1/2-BPS sphere [24], for which
the anomaly is −4N . The anomaly coefficients at leading order in N are then

a
(N)
1 = O(N0) , b(N) = O(N0) , (3.63)

a
(N)
2 = −N +O(N0) , c(N) = +N +O(N0) . (3.64)

As in the case of Wilson loops in N = 4 SYM in 4d, we expect this holographic description
to be correct in the locally BPS case when the scalar couplings satisfy n2 = 1. Follow-
ing [76, 77], the case of n2 = 0 should be described by the same surface inside AdS7, but
completely smeared over the S4. In this case we find the same result for the geometric
anomaly coefficients as above, and, since the corresponding anomaly term vanishes identi-
cally, c(N) does not apply.
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Power-law divergence

Note that in addition to the log divergence in (3.62), (3.61) produces also a power-law
divergence

L3

(2π)2 l3P

Area(Σ)

2ε2
. (3.65)

While such divergences can be removed by the addition of a local counter-terms, in the
field theory result (3.36), they cancelled without extra counter-terms (for the locally BPS
operator).

A more elegant way of eliminating the power law divergences also in this holographic
calculation follows the example of the locally BPS Wilson loops [55]. A careful treatment of
the boundary conditions suggests that the natural action is a Legendre transform of (3.43),
which differs from the action we used by a total derivative. This modification does not
change the equations of motion, but gives a contribution on the boundary, where it precisely
cancels the divergence above.

By looking at the M5-brane metric before the decoupling limit, we can identify the
coordinate to use in the transform as ri = L3ni/2y2. Defining its conjugate momentum by
differentiating with respect to the boundary value of the coordinate (where y = ε)

pi(σ) =
δS[xµ, ri]

δri
= −ε

3ni

L3

δS[xµ, ni, ε]

δε
=
ε3ni

L3

L3

(2π)2l3P

(
1

ε3
+O

(
1

ε

))
. (3.66)

In the last equality we used the value of the classical action (3.61), undoing the integration,
so the classical Lagrangian density.

The Legendre transformed action is then

S̃
[
xµ, pi

]
= S

[
xµ, ri

]
−
∫

Σ

pir
ivolΣ = S

[
xµ, ni, ε

]
− L3

2(2π)2l3P ε
2

∫
Σ

volΣ . (3.67)

The last term exactly cancels the power law divergence in (3.65).

3.5 Surfaces with singularities

An interesting class of surface operators that has received some attention recently are surfaces
with conical singularities. For these surfaces, it was found that the regularised expectation
value typically diverges as [69, 109–111]

log 〈VΣc〉 ∼ A log2 ε+O(log ε) . (3.68)

Let us consider a conical defect (in flat space) of the form

xµ(r, s) = rγµ(s) , γ2 = 1 , ni(r, s) = νi(s) . (3.69)

We allow here also a “conical singularity” in the scalar couplings, which has s dependence
even as r → 0. It is possible to also allow xµ and ni to have higher order terms in r, but
since those lead to subleading divergences, they are unimportant.
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We can try to use the usual formula for the anomaly (3.4) by plugging in the geometric
invariants

RΣ = Ωδ(r) , H2 =
κ2 − 1

r2
, (∂n)2 =

(∂sν)2

r2
, (3.70)

where Ω is the deficit angle, and κ = γ̈2/|γ̇|2 is the curvature of γ. Plugging into (3.4), the
Ricci scalar gives a finite contribution, but H2 and (∂n)2 diverge as r → 0. Introducing a
cutoff ε̂ on the r integration, this gives

1

4π
log ε log ε̂

∫
γ

a2

(
1− κ2(s)

)
− c(∂sν)2ds+O(log ε) . (3.71)

This expression is somewhat naive, as we should treat all divergences on the same footing
and identify ε̂ = ε. But then we should not use (3.4) in the first place. Rather, we should go
back one step and regularise the divergences that gave rise to the original log ε divergence
while also applying it to the r integration. As we show below, this leads to the expression in
(3.71) with log ε log ε̂ → 1

2
log2 ε. In both the free field case and the holographic realisation

this factor of 1/2 is a simple consequence of the usual coefficient of the quadratic term in
the Taylor expansion, or, in other words, of an integral of the form

∫
log r d log r.

This factor of 1/2 was noticed already in the calculations of [69,109] and justified in [111]
by a careful treatment of the holographic calculation, which is repeated below. It was also
studied in the context of defect CFT in [70]. We think that the comparison of this to the
free-field calculation and the universal nature of our result further elucidates this mismatch
from the naive expectation. Our calculation is also more generic, for allowing arbitrary
conical singularities and incorporating singularities of the scalar coupling.

Beside this factor 1/2, it is interesting to compare the log2 ε divergence of surface opera-
tors to the log ε divergence of Wilson loops, the cusp anomalous dimension. In N = 4 SYM,
the cusp anomalous dimension is a complicated function of the opening angle φ. At small
angles, it is related to the Bremsstrahlung function, which encodes the radiation emitted by
heavy probe particles and depends on the ’t Hooft coupling λ and the rank of the gauge
group N . It is therefore an interesting quantity to compute, and the exact Bremsstrahlung
function has been obtained using supersymmetric localization in [49].

In constrast, here the functions a2 and c seem to be simple functions of N , and the
expression (3.74) is not an approximation for small angles, but the exact result. The re-
lation to physical quantities is unclear as well. It would be interesting to interpret it as a
Bremsstrahlung function, but computing the radiation emitted by a probe string in 6d would
require a more careful treatment of the self-dual field strength.

We should also note, as already noticed in [69], that surfaces with “creases”, i.e. co-
dimension one singularities, do not lead to additional log2 ε divergences and the expres-
sion (3.4) can be immediately applied to them.
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3.5.1 Field theory

Here we do not rely on (3.36), but go further back to where the log ε arises from an integral
of the form (3.31) ∫ ρ

ε

dη

η
= − log ε+ finite, (3.72)

where η is a radial coordinate around the point x, and ρ is an IR cutoff related to the overall
size of the surface, or at least a large smooth patch where we defined our local coordinate.
Near the cone the smooth patch is bounded by the distance from x to the apex, which we
denote by r. The integral instead gives∫ r

ε

dη

η
= − log

ε

r
. (3.73)

With this careful treatment of the log, we can go back to (3.4), plug in the expressions
from (3.70) and integrate over r and with the same UV cutoff to find

log 〈VΣ〉 = − 1

4π

∫
γ

ds

∫
ε

dr

r

[
a2

(
1− κ2

)
− c(∂sn)2

]
log

ε

r
+ finite (3.74)

=
1

8π
log2 ε

∫
γ

[
a2(1− κ2(s))− c(∂sν)2

]
ds+O(log ε) . (3.75)

3.5.2 Holography

The derivation in holography is similar. We first note that conformal symmetry fixes the
form of the solution as

y(r, s) = ru(s) (3.76)

To get to (3.62), we integrate over y, but the conformal ansatz suggests to impose the range
ε ≤ y ≤ rumax. Plugging the curvatures from (3.70) into equation (3.62) we arrive at

log 〈VΣ〉 = − 1

4π

∫
γ

ds

∫
ε

dr

r

[
a2(1− κ2)− c(∂sn)2

]
log

ε

rumax(s)
+ finite. (3.77)

which again gives the log2 ε divergence with the same 1/2 prefactor as in field theory (3.74).

3.5.3 Example: circular cone

As a simple example of a singular surface we compute explicitly the anomaly of a circular
cone. Denoting the deficit angle by φ (see figure 3.1) and including an internal angle θ for
the scalar coupling ni, we parametrise the cone as follows

γµ(s) =

cosφ sin s
cosφ cos s

sinφ

 , ni(s) =

sin θ sin s
sin θ cos s

cos θ

 , 0 ≤ r , 0 ≤ s < 2π . (3.78)
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The conformal invariants are explicitly

κ2 =
1

cos2 φ
, (∂sn)2 =

sin2 θ

cos2 φ
. (3.79)

The divergence is then

log 〈VΣ〉 = −a2 sin2 φ+ c sin2 θ

4 cosφ
log2 ε+O(log ε) . (3.80)

Notice that as long as the anomaly coefficients satisfy the relation a2 = −c, which we have
shown to hold in the abelian and large N case, the anomaly vanishes for configurations
θ = ±φ, which correspond generically to 1/8-BPS configurations.

φ

r

s

θ
s

Figure 3.1: On the left, the surface wraps a (circular) cone with a deficit angle φ. On the
right, the scalar coupling follows a circle at angle θ on S2. For a fixed r, we have a curve
that simultaneously traces the circles γ(s) and ni(s).

3.6 Discussion

Making all N conjectures based on the asymptotics is a fools errand. This is especially true
given that the abelian theory is not the same as the AN−1 theory at N = 1, since the latter
is the empty theory. Nevertheless, both in field theory and holography we see that a2 = −c,
and there is some previous evidence for this to hold generally. The argument is based on the
BPS Wilson loops of [11], where ni is parallel to ẋµ and which have trivial expectation values.
If we uplift them to the 6d theory we expect to find surface operators with no anomaly (and
vanishing finite part as well). These operators satisfy H2 = (∂n)2 and indeed they do not
contribute to the anomaly5 for a2 = −c. The rigorous proof of this relation, based on defect
CFT techniques, is the subject of the following chapter.

All our calculations are for a surface operator in the fundamental representation. It is
expected that 1/2-BPS surface operators are classified by representations of the AN−1 algebra
of the theory. At large N this is proven, since the asymptotically AdS7×S4 solutions of 11d
supergravity preserving the symmetry algebra of 1/2-BPS surface operators can be classified
in terms of Young diagrams [85,86,112].

5In the uplift we find only surfaces with trivial topology, so the anomaly vanishes regardless of a1.
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A calculation of anomalies of surface operators in arbitrary representations, based on
bubbling geometries and holographic entanglement entropy, was undertaken in [91]. If we
assume b = 0, then for the fundamental representation, their result reads

a
(N)
1 =

1

2
− 1

2N
, a

(N)
2 = −N +

1

2
+

1

2N
. (3.81)

This is supported by an independent calculation using the superconformal index [92]. In the
large N limit, this is indeed in agreement with our result.

The anomalies studied here are the most basic properties of surface operators, but their
calculation is only a first step in understanding these observables and the mysterious theory
they belong to. Planar and spherical surface operators preserve a part of the conformal
group (and, when endowed with appropriate scalar coupling, also half the supersymmetries),
such that their deformations behave like operators in a defect CFT. In the next chapter, we
study this dCFT in some detail.
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Chapter 4

The surface dCFT

4.1 Introduction

Having established a definition of locally BPS surface operators in the N = (2, 0) theory
in the previous chapter, we now study them in more detail, using the framework of defect
CFT. This chapter is a slightly edited version of our publication [29].

We adopt the approach of the conformal bootstrap program [113–118] and use the sym-
metries preserved by the surface operators to constrain their correlators with other bulk
operators, as well as local operator insertions on the surface. One of the virtues of this
description is that it does not rely on a field realisation and therefore is applicable at any N .

We focus on 1/2-BPS defects because they preserve the largest amount of symmetry.
These are surface operators defined over a plane and expected to be labeled by a represen-
tation of the ADE group of the N = (2, 0) theory [85, 86, 119]. We consider local operator
insertions into the defect, the simplest example encoding an infinitesimal geometric de-
formation of the plane itself. Because the plane preserves superconformal symmetry, the
correlators of local operator insertions are constrained and obey the axioms of a dCFT—the
2- and 3-point functions are fixed up to a small set of numbers defining the dCFT.

Explicitly, consider a correlator involving such a surface operator V . While translating
the plane along parallel directions leaves the correlator invariant, translations in directions
transverse to the plane do not. Instead, the stress tensor receives a contribution from a
contact term localised on the defect (at x = 0):

∂µT
µm(σ, x)V = V [Dm(σ)]δ(4)(x). (4.1)

The index µ = 1, . . . , 6 runs over all spacetime coordinates, while m = 1, . . . , 4 are the
coordinates transverse to the plane. We use the notation V [Ô(σ)] to denote the planar
surface operator with a defect operator Ô inserted at a point σ on the plane.

Equation (4.1) is an operator equation, so it holds inside correlation functions. It defines
D, known as the displacement operator. In addition, because V preserves some supersym-
metries, the displacement operator sits in a multiplet containing also contact terms for the
divergence of the broken super- and R-current, which we label Q and O, respectively.

It turns out that these defect operators play a pivotal role: not only are they highly
constrained by the residual symmetry (which includes the 2d rigid superconformal symme-
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try1), but they also correspond to interesting physical quantities [70, 87]. Indeed it is easy
to show that, as a consequence of (4.1), the insertion of a displacement operator D cor-
responds to small deformations of the plane, and thus captures the shape dependence of
surface operators.

This chapter revolves around two correlators that capture physical properties of the
defect. The first one is the 2-point function of displacement operators. Using the residual
conformal symmetry of the plane and reading off the conformal dimension ∆D = 3 from (4.1),
the 2-point function is constrained up to a single coefficient CD to be (the factor π2 is for
convenience):

〈V [Dm(σ)Dn(0)]〉 =
CDδ

mn

π2|σ|6
. (4.2)

The second operator we consider is the bulk stress tensor, which in the presence of the
defect acquires an expectation value. Both the components of the tensor along the defect
T ab and orthogonal to it Tmn can have a nonzero 1-point function, and they are fixed by
conformal invariance up to an arbitrary coefficient hT to be

〈
T ab(σ, x)V

〉
=
hTη

ab

π3x6
, 〈Tmn(σ, x)V 〉 = −hT (δmn − 2xmxn/x2)

π3x6
. (4.3)

T (σ, x) is inserted at a distance x from the defect, and obviously the correlators do not
depend on the coordinate σ by translation invariance along the plane. ηab = diag(−1, 1) is
the Minkowski metric.

In theories with only conformal invariance the coefficients hT and CD are independent
quantities [120], but in theories with enough supersymmetries one can use superconformal
Ward identities to relate them [50]. For our surface operators we show in Section 4.3 that

hT =
3CD

80
. (4.4)

To derive this result, we obtain the transformations of the stress tensor multiplet under
supersymmetry (4.19), which is also an important result of Section 4.3.

Analogous relations between hT and CD were first derived using the same techniques
for the 1/2-BPS Wilson loops of 4d N = 2 theories [50] and the 1/6-BPS bosonic loops of
ABJM [121], proving the conjecture of [122,123]. A similar analysis was also applied recently
to surface operators in 4d N = 1 theories [89]. All these different examples show how the
language of dCFT is a powerful and universal tool to study superconformal defects.

More than simply equating different constants, the relation (4.4) has an important phys-
ical consequence: In Section 4.4 we relate the conformal anomaly coefficients b1, b2, c asso-
ciated with the defect to CD, hT and an additional constant CO to be introduced in (4.9).
In the language of anomaly coefficients, the result (4.4) along with the relative normalisa-
tions (4.12) of the operators in the displacement multiplet can then be rephrased as

c = −b1/2 , b1 = −b2 , (4.5)

1Note that the dCFT is not expected to contain a conserved stress tensor [74] and the rigid conformal
symmetry is not necessarily enhanced to Virasoro symmetry.
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or equivalently, with respect to the basis (3.5),

c = −a2 , b = 0. (4.6)

We emphasize that these identities are a consequence of supersymmetry and hold for any
1/2-BPS operator of theN = (2, 0) theory and for any ADE group. In particular, the second
identity agrees with the explicit holographic calculations of [28,64,124] and was conjectured
to come from supersymmetry in [89]. The two remaining anomaly coefficients a and b1 were
calculated at N = 1 in [28] and for N > 1 using holographic entanglement entropy in the
presence of surface operators [71, 81,90,91], and the superconformal index [92].

Finally, in Section 4.5 we expand our scope and consider the analog of the operator
product expansion but for bulk operators in the presence of a defect—the defect operator
expansion (dOE) [46, 125]. This expansion allows us to represent bulk operators near the
defect in terms of insertions of defect operators. To understand what these defect operators
are more generally, we classify unitary multiplets of the algebra preserved by the defect2.
We then look at operators in the stress tensor multiplet and determine the short multiplets
arising in their dOE. We find a new marginal defect operator, which we associate with the
RG flow between the nonsupersymmetric and 1/2-BPS surface operator discussed in [124].3

In addition to this result, we find that the defect operator expansion provides a useful
framework and makes the constraints imposed by the preserved symmetries manifest. In fact,
in Section 4.5.4 we use the dOE and representation theory to give a different perspective
on the relation (4.4). Unlike in Section 4.3, where (4.4) follows from a technical calculation,
we are able to conclude directly that hT and CD must be related. This suggests a strategy
for determining the minimal amount of supersymmetry required in order for the conjecture
of [122], which relates these coefficients in the case of supersymmetric Wilson loops, to hold
(see also [70] and references therein for a similar conjecture in the context of entanglement
entropy).

Some auxiliary results are collected in appendices. Appendix A.1 summarises our con-
ventions and the gamma matrices used throughout. In Appendix A.4 we show how to
constrain correlators containing both bulk and defect operators using conformal symmetry.
Appendix A.5 reviews the 2 algebras appearing in this chapter: the osp(8∗|4) symmetry of
the bulk theory and the osp(4∗|2)⊕ osp(4∗|2) symmetry preserved by the defect.

4.2 Displacement multiplet

As far as defect operators go, the displacement operator is pretty universal. As (4.1) suggests,
any defect breaking translation symmetry contains that defect operator. For this reason, it
has appeared in many contexts: the prototypical example is the 1/2-BPS Wilson line in
N = 4 SYM, where the study of deformations and operator insertions was initiated in [127],
but many other examples have been studied over the years and follow the general analysis
of [120].

2In the last stages of preparation of the paper which this chapter is based on, theclassification of unitary
multiplets of osp(4∗|2) presented in Section 4.5.2 also appeared in [126].

3This is analogous to the flow of Wilson line operators introduced in [76,77].
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In the case of N = (2, 0), we are mostly interested in the multiplet which contains the
displacement operator. Of the full superconformal algebra osp(8∗|4), the 1/2-BPS plane
preserves a 2d conformal algebra so(2, 2)‖ in the directions parallel to the plane, along with
rotations of the transverse directions so(4)⊥ and an so(4)R R-symmetry. In addition, it also
preserves half the supersymmetries Q+ (and S̄+) such that Q+V = 0. These are obtained by
a half-rank projector Q+ = Π+Q whose explicit definition can be found in (A.71). The pre-
served generators form an osp(4∗|2)⊕osp(4∗|2) subalgebra [128], detailed in Appendix A.5.2.

Importantly, in direct analogy to (4.1), the Ward identities associated to the remaining
broken super- and R-symmetries also receive contributions localised on the defect, which
give rise to defect operators Q and Oi, encoding the nontrivial response of the defect to the
broken generators. Explicitly, the conservation laws associated with the R-current j and the
supercurrent J are broken as follows:

∂µT
µmV = V [Dm]δ(4)(x) ,

∂µ(Π−J
µ)V = V [Q]δ(4)(x) ,

∂µj
µi5V = V [Oi]δ(4)(x) .

(4.7)

In this equation, i = 1, . . . , 4 is the R-symmetry index of so(4)R. The spinor indices of Jµαα̌
and Qαα̌ are suppressed and follow the conventions outlined in appendix A.1 (see however
footnote 5). For the definition of Π−, see (A.71).

As mentioned previously, the (nonabelian) theory does not have a known field realisation,
so we cannot write these operators in terms of fundamental fields. We can however derive
some of their properties purely from representation theory. The full multiplet as derived in
Appendix A.5.2 reads

δ+Dm =
1

2
ε+γam∂

aQ ,

δ+Q = 2ε+γmDm − 2ε+γaγ̌i5∂
aOi ,

δ+Oi = −1

2
ε+γ̌i5Q ,

(4.8)

where δ+ = ε+Q+ is a variation with respect to the preserved supercharges and ε+ = ε+Π+.

4.2.1 Superconformal Ward identity

The 2-point functions of these operators are easily found. Both D and O transform as
scalars with respect to the 2d conformal symmetry, while Q is a spinor. Their conformal
dimensions can also be read off from (4.7) and are given by ∆D = 3, ∆Q = 5/2 and ∆O = 2.
Consequently, using the preserved bosonic symmetries, their 2-point functions are (up to
overall coefficients CD, CQ, CO):

〈V [Dm(σ)Dn(0)]〉 =
CDδ

mn

π2 |σ|6
,

〈V [Q(σ)Q(0)]〉 =
CQ (γaσ

aΠ−)

π2 |σ|6
,

〈V [Oi(σ)Oj(0)]〉 =
COδij

π2 |σ|4
.

(4.9)
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As Q is a 2d spinor, its 2-point function should be written in terms of the corresponding
2d gamma matrices. In order to emphasize the relation between the respective symmetry
algebras in 6d and 2d, we write these matrices as blocks of their 6d counterparts obtained
by the projector Π−.

We can now relate CO and CQ to CD using superconformal Ward identities associated
to the preserved supersymmetries. Apply the supersymmetry transformations (4.8) to the
vanishing correlator

〈
V [Qββ̌Oi]

〉
to find

−1

2
(γ̌i5) γ̌

α̌

〈
V [Qββ̌Qαγ̌]

〉
= 2 (γaγ̌j5Π−cΩ)αβα̌β̌ ∂

a
〈
V [OjOi]

〉
. (4.10)

Substituting the explicit 2-point functions (4.9), we obtain the linear relation CQ = −16CO.
In the same fashion, the Ward identity associated to

〈
V [Qββ̌Dm]

〉
leads to

2 (γnΠ−cΩ)αα̌ββ̌ 〈V [DnDm]〉 = −1

2
(γam) γ

α ∂a
〈
V [Qββ̌Qγα̌]

〉
, (4.11)

which serves to relate CD to CQ. Altogether, we find that the normalisations of the 2-point
functions obey

CD = −CQ = 16CO. (4.12)

4.3 Stress tensor correlators

Some of the most important operators in any theory are the stress tensor and its multiplet.
In the presence of the 1/2-BPS defect, their expectation values are highly constrained by the
residual symmetry: typically the so(2, 2)‖⊕ so(4)⊥⊕ so(4)R bosonic subalgebra of preserved
symmetries is powerful enough to fix them up a to a single constant (see e.g. (4.3)).

In addition to the constraints imposed by conformal symmetry, supersymmetry relates
correlators of different operators in the same multiplet. Adapting the strategy of [50,89,121],
the key to deriving (4.4) is to focus on the correlator 〈T µν(x)V [Dm(σ)]〉, which is entirely
fixed in terms of the constants CD and hT [120]. The kinematics of that correlator admit two
independent tensor structures with their own coefficients. They are related to CD by taking
the divergence

∂µ〈T µmV [Dn]〉 = 〈V [DmDn]〉 ∝ CD , (4.13)

and to hT by integrating the displacement operator over the surface, which simply translates
the defect ∫

R2

d2σ〈T µν(0, x)V [Dm(σ)]〉 = ∂m〈T µν(0, x)V 〉 ∝ hT . (4.14)

We stress that this does not provide in itself a relation between CD and hT , as can be checked
using the explicit form of the correlators (see equation (6.2) of [70]).

Instead, we should use superconformal Ward identites to relate this correlator to 〈Oi5V [Oj]〉,
where O is the superconformal primary of the stress tensor multiplet. Because the latter
admits only a single tensor structure, this would imply that CD and hT are related.
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In order to derive this result, we need the explicit supersymmetry transformations of the
stress tensor multiplet, which are summarised in (4.19). We also need the 1-point functions
of the stress tensor appearing on the right-hand side of (4.14), which are derived in Sec-
tion 4.3.2 (the 2-point functions of the displacement multiplet are given in (4.9)). Then, we
use the supersymmetric Ward identities associated with correlators of the form 〈OV [Ô]〉 to
derive (4.4).

4.3.1 Stress tensor multiplet

We begin by obtaining explicit supersymmetry transformations for the stress tensor multi-
plet, whose content is derived from representation theory and can be found in [93], where it is
presented as a massless graviton multiplet (see also [95,96] for an overview of superconformal
multiplets in various dimensions).

The primaries of any multiplet are labelled by their transformation under Lorentz sym-
metry [j1, j2, j3]su(4), R-symmetry (R1, R2)sp(2) as well as their conformal dimension ∆.4 In

the notation of [96], the stress tensor multiplet is the D1[0, 0, 0]
(0,2)
4 multiplet (with repre-

sentations written as [j1, j2, j3]
(R1,R2)
∆ ). Its primaries are

• T µν , the stress tensor ([0, 2, 0]
(0,0)
6 = 20). It contains a null state, since ∂µT

µν = 0, and
has 20− 6 degrees of freedom.

• Jµαα̌, the supercurrent ([1, 1, 0]
(1,0)
11/2 = 20 ·4). It also has a null state ∂µJ

µ
αα̌ = 0, satisfies

(γ̄µ) β
α̇ Jµ

ββ̌
= 0, and contains 80− 16 degrees of freedom.5

• jµ[IJ ], the R-current ([0, 1, 0]
(2,0)
5 = 6 · 10). It has a null state ∂µj

µIJ = 0, and contains
60− 10 degrees of freedom.

• HI
µνρ, a self-dual 3-form ([2, 0, 0]

(0,1)
5 = 10 · 5) containing 50 degrees of freedom.

• χIαα̌, a fermion ([1, 0, 0]
(1,1)
9/2 = 4 ·16) satisfying (γ̌I)

β̌
α̌ χI

ββ̌
= 0 and containing 64 degrees

of freedom.

• O(IJ), a scalar ([0, 0, 0]
(0,2)
4 = 14) with 14 degrees of freedom. It is the superprimary of

the multiplet.

Together with their descendants, these form an on-shell multiplet with 128 bosonic operators
(and a matching number of fermionic operators).

In addition to the operator content, we need below the explicit supersymmetry transfor-
mations, which have not been calculated before to the best of our knowledge. These can be

4These Dynkin labels are related to the usual so(1, 5) and so(5) labels by

[j1, j2, j3]su(4) = [j2, j1, j3]so(1,5) , (R1, R2)sp(2) = (R2, R1)so(5) .

5Note that J transforms in the [1, 1, 0] irrep. Since the tensor product of a vector and a chiral spinor
decomposes into [1, 1, 0]⊕ [0, 0, 1], we can write J with indices µ and α, provided we project out the antichiral

spinor by requiring (γ̄µ) β
α̇ Jµ

ββ̌
= 0.
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obtained in a variety of ways (e.g. oscillator constructions [93] and superspace transforma-
tions [34, 129]), but here we simply list the terms allowed by Lorentz and R-symmetry and
fix the coefficients by requiring closure of the algebra, i.e. imposing that on every operator
{Q,Q}Φ = 2PΦ. Importantly, imposing this condition is made easy because we already
know the operator content.

We start from the superprimary OIJ . Since Q transforms as [1, 0, 0]
(1,0)
1/2 , we know from

representation theory that the product QO can contain

[1, 0, 0]
(1,2)
9/2 ⊕ [1, 0, 0]

(1,1)
9/2 , (4.15)

but as [1, 0, 0]
(1,2)
9/2 does not appear in the multiplet, we remove it. The remaining term

[1, 0, 0]
(1,1)
9/2 can be constructed explicitly and is fixed up to a constant c1

Qαα̌O
IJ = c1(γ̌(IχJ))αα̌ . (4.16)

The transformation of χ is more complicated but the same analysis leads to

Qαα̌χ
I
ββ̌

= c2(γµνρ)αβ
(
γ̌IJ + 4δIJ

)
α̌β̌
HJ
µνρ + c3(γµ)αβ

(
γ̌IJK + 3δIJ γ̌K

)
α̌β̌
jµJK

+ d1(γµ)αβ
(
γ̌J
)
α̌β̌
∂µO

IJ .
(4.17)

It is easy to check that {
Qαα̌,Qββ̌

}
OIJ = 2c1d1(γµ)αβΩα̌β̌∂µO

IJ , (4.18)

so the algebra closes provided c1d1 = 1 (we identify Pµ = ∂µ, see (A.41)).
We can proceed this way for the full multiplet and build the supersymmetry transforma-

tions. Checking for closure of the algebra becomes a tedious (if straightforward) task and is
not very illuminating, so we omit the details. The end result is (with δ = εαα̌Qαα̌)

T µν

Jµαα̌

jµIJHI
µνρ

χIαα̌

OIJ

Q

δT µν =
1

2
εγρ(µ∂ρJ

ν) ,

δJµ = 2εγνT
µν +

2c2

5c3

(
6ηρµ

(
γνσλ + 3ησνγλ

)
− ηµνγρσλ

)
γ̌I∂νH

I
ρσλ

+
1

10
ε (γµνρ − 4ηµργν) γ̌IJ∂νjρIJ ,

δjµIJ = −1

2
εγ̌IJJ

µ +
1

5c3

εγµν∂ν γ̌[IχJ ] ,

δHI
µνρ =

c3

8c2

εγ̌Iγ[µνJρ] +
1

120c2

εγσγ̄µνρ∂
σχI ,

δχI = c2εγ
µνρ
(
γ̌IJ + 4δIJ

)
HJ
µνρ + c3εγµ

(
γ̌IJK + 3δIJ γ̌K

)
jµJK

+
1

c1

εγµγ̌J∂µO
IJ ,

δOIJ = c1εγ̌
(IχJ) . (4.19)

There are still some arbitrary constants ci that remain unfixed and can be absorbed into
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the normalisations of O,χ and H. On the other hand, the normalisation of the conserved
currents must match that of the algebra, so these operators cannot be rescaled. This can be
seen by checking that the variation of the currents reproduces the corresponding commutator
in (A.62). For example, the variation of jµ computed using (4.19) is∫

Qαα̌j
0
IJd5x = −1

2

∫ (
γ̌IJJ

0
)
αα̌

d5x = −1

2
(γ̌IJQ)αα̌ , (4.20)

which is indeed the correct normalisation for the commutator [Qαα̌,RIJ ] of (A.62).

4.3.2 Defect without insertions

Among the operators of the stress tensor multiplet, some can acquire an expectation value
in the presence of V . For the stress tensor, this happens when hT 6= 0 in (4.3), and we can
similarly constrain the 1-point functions of the other operators. This computation is done
explicitly in Appendix A.4 and the only nonvanishing correlators are

〈
T abV

〉
=
hTη

ab

π3x6
, 〈TmnV 〉 = − hT

π3x6

(
δmn − 2

xmxn

x2

)
, (4.21)〈

H5
01mV

〉
=
hHxm
π3x6

,
〈
H5
lmnV

〉
= −hHεlmnpx

p

π3x6
, (4.22)〈

O55V
〉

=
hO
π3x4

,
〈
OijV

〉
= − hOδ

ij

4π3x4
, (4.23)

where hO, hH , and hT are as yet undetermined constants. They are however related by
the supersymmetry transformations (4.19) derived above. Specifically, consider the Ward
identities associated with the preserved supersymmetries Q+ = Π+Q (with the projector Π+

defined in (A.71))

0 =
〈
Q+
αα̌(χ5

ββ̌
V )
〉

= −4

(
12c2hH +

hO
c1

)
[Π+γmx

mγ̌5]αα̌ββ̌
π3x6

,

0 =
〈
Q+
αα̌(Ja

ββ̌
V )
〉

= 2

(
hT +

36c2

5c3

hH

)
[Π+γ

a]αα̌ββ̌
π3x6

.

(4.24)

These equations fix

hO = −12c1c2hH =
5

3
c1c3hT , (4.25)

and the correlators in (4.21) are fixed up to a single constant hT .

4.3.3 Defect with an insertion

We are now in a position to derive the result (4.4) by relating 〈Oi5V [Oj]〉 to 〈T amV [Dn]〉
using superconformal Ward identities. There are two Ward identities one could consider,
〈Q+χV [O]〉 = 0 and 〈Q+JV [D]〉 = 0, but one can check that they yield the same constraint,
so we present only the first one.
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The correlators we need are derived in Appendix A.4 by using the constraints of conformal
symmetry. Importantly, the correlators 〈OV [O]〉, 〈χV [Q]〉 and 〈HV [O]〉 are related to hT by
integrated relations like (4.14), while 〈jV [O]〉 is related to CD by (4.13), as we show below.
They are

〈
Oi5V [Oj]

〉
=

COOδ
ij

x2(σ2 + x2)2
,

〈
χ5
αα̌V [Qββ̌]

〉
=
CχQ [γ̌5 (γaσ

a + γmx
m) Π−cΩ]αβα̌β̌

x2 (x2 + σ2)3 ,

〈
ji5a V [Oj]

〉
=

CjOδ
ijσa

x2(σ2 + x2)3
,

〈
ji5mV [Oj]

〉
=
CjOδ

ij(x2 − σ2)xm
2x4(σ2 + x2)3

, (4.26)

〈
H i

01mV [Oj]
〉

=
CHOδ

ijxm
x2(σ2 + x2)3

,
〈
H i
lmnV [Oj]

〉
=
CHOδ

ijεlmnpx
p

x2(σ2 + x2)3
.

Explicitly, the Ward identity is

0 =
〈
Q+
αα̌

(
χ5
ββ̌
V [Oi]

)〉
= 6c2

[
Π+γ

01m(γ̌5
J + 4δ5

J)
]
αα̌ββ̌

〈
HJ

01mV [Oi]
〉

+ 6c2

[
Π+γ

lmn(γ̌5
J + 4δ5

J)
]
αα̌ββ̌

〈
HJ
lmnV [Oi]

〉
+ 3c3 [Π+γ

µγ̌j]αα̌ββ̌
〈
j5j
µ V [Oi]

〉
+

1

c1

[Π+γ
µγ̌J ]αα̌ββ̌ ∂µ

〈
O5JV [Oi]

〉
+

1

2
(γ̌i5) γ̌

α̌

〈
χ5
ββ̌
V [Qαγ̌]

〉
.

(4.27)

Plugging in the explicit forms of these correlators (4.26), and demanding that the terms
proportional to γaσ

a vanish, we obtain a linear relation

0 = 3c3CjO +
4

c1

COO − CχQ . (4.28)

The terms proportional γmx
m give the same constraint.

Next, recall that O and Q respectively encode the action of a broken infinitesimal R-
symmetry or supersymmetry variation. Therefore we can relate

0 =
〈
Rj5(Oi5(x)V )

〉
= δij

〈
O55(x)V

〉
−
〈
Oij(x)V

〉
+

∫
d2σ
〈
Oi5(0, x)V [Oj](σ)

〉
. (4.29)

Using (4.21) and (4.26), we obtain

COO = − 5

4π4
hO = −25c1c3

12π4
hT . (4.30)

A slightly more involved but entirely analogous calculation yields

CχQ = −5 · 8
3π4

hT , CHO =
5c3

36c2π4
hT . (4.31)

Finally, CjO is related to the normalisation of the displacement operator multiplet by (4.7)

∂µ
〈
jµi5(σ, x)V [Oj(0)]

〉
=
〈
V [Oi(0)Oj(σ)]

〉
δ(4)(x) . (4.32)
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Plugging the correlator of jµi5 and Oj into the right hand side and integrating against a test
function allows us to fix

CjO = − 1

π4
CO = − 1

16π4
CD . (4.33)

Combining the above results into (4.28), we obtain

c3

π4
(3CO − 5hT ) = 0 =⇒ hT =

3CO

5
=

3CD

80
, (4.34)

which proves (4.4).

4.4 Relation to anomaly coefficients

In this section we explore the consequences of the relation between the coefficients CD and
hT (4.4) for physical observables. These pieces of dCFT data appear in the Weyl anomaly
of surface operators as defined in (3.5) and (3.5), and as we show below, the relations (4.12)
and (4.34) relate the anomaly coefficients as (4.5).

The relation between correlators and anomaly coefficients is not specific to 2d defects
in the N = (2, 0) theory, but applies for any surface operator in a CFT. The anomaly
coefficient b1 was first shown to be related to CD in [70], while the relation between b2 and
hT was obtained in [70,87]. Here we review their derivation and apply it to surface operators
in the (2,0) theory to prove c = −b1/2, b1 = −b2.

In a slightly different direction, the anomaly coefficients have also been discussed in the
entanglement entropy literature, see [68,70] and references therein.

4.4.1 Displacement operator

In order to isolate the contribution of CD to the anomaly coefficients, we separately switch on
each of the terms in (3.5). Since the displacement operator generates geometric deformations,
one expects that inserting sufficiently many Dm into the planar surface operator V leads to
a logarithmic divergence in the expectation value, signalling a conformal anomaly associated
to the curvature of the surface. Similarly, inserting Oi to sufficient order will allow us to
access the anomaly coefficient c associated with deformations in R-symmetry space.

To make this relation precise, we formally write deformations of the 1/2-BPS plane in
terms of operator insertions

Vξ,ω = exp

[∫
d2σξm(σ)Pm + ωi(σ)Ri5

]
V. (4.35)

Here Pm =
∫

d4x∂µT
µm generates translations transverse to the defect, while R-symmetry

rotations are generated by Ri5 =
∫

d4x∂µj
µi5. For constant parameters ξ, ω, the currents

can be freely integrated and we recover the standard action of the charges Pm and Ri5.
Equation (4.35) is generally a complicated expression involving contact terms like (4.1),

but also contact terms from Pm acting on defect operators and possibly other operators
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from the OPE. We can calculate its expectation value to quadratic order by expanding the
exponential and noting that the 1-point functions of defect operators vanish:

log 〈Vξ,ω〉 − log 〈V 〉 =
1

2

∫
R2×R2

(
〈V [DmDn]〉ξmξn + 〈V [OiOj]〉ωiωj

)
d2σ d2σ′ + cubic. (4.36)

We can discard log 〈V 〉 since for the 1/2-BPS plane in a flat background, all anomaly terms
vanish separately. Since the anomaly is quadratic in ξ and ω, it is related to the two point
functions written here and we can safely ignore the higher order terms in the expansion.

To extract the anomaly coefficients, we study the UV divergence of the integrals in (4.36).
The relevant correlators are found in (4.2) and (4.9). Fixing σ, the σ′ integral can be
evaluated explicitly by Taylor expanding ξm(σ′) and ωi(σ′) around σ. Starting with the
second integrand and substituting τ = σ′ − σ,

1

2

∫
R2

〈V [Oi(σ)Oj(σ
′)]〉ωi(σ)ωj(σ′) d2σ′

=
CO

2π2

∫
R2

δij

|τ |4
ωi(σ)

[
ωj(σ) + τa∂aω

j(σ) +
1

2
τaτ b∂a∂bω

j(σ) +O(τ 3)

]
d2τ.

(4.37)

While this integral leads to power law singularities as well, a logarithmic divergence arises
only from the term quadratic in τ . We adopt polar coordinates τa = τea where ea are
orthonormal vectors parametrised by an angle ϕ. Borrowing the identities (3.29) from the
previous chapter and dropping all but the logarithmic divergence, we obtain

CO

4π2
πηab

∫
ε

τ 3dτ

τ 4
ωi(σ)∂a∂bω

i(σ) =
CO

4π
(∂ω)2 log ε. (4.38)

To leading order, the R-symmetry transformation in (4.35) takes the 1/2-BPS plane to a
surface operator with ∂an

i(σ) = ∂aω
i, so we can read the anomaly coefficient as

c = CO. (4.39)

The logarithmic divergence of the first integrand in (4.36) can be evaluated in a similar
way, and arises only from the fourth order in the Taylor expansion of ξn

1

2

∫
R2

〈V [DmDn]〉ξmξnd2σ′

=
CD

2π2

∫
R2

δmn

|τ |6
ξm(σ)

[
· · ·+ 1

24
τaτ bτ cτ d∂a∂b∂c∂dξ

n(σ) +O(τ 5)

]
d2τ .

(4.40)

Performing the angular integral with (3.29) leads to

CD

48π2

3π2

4

∫
ε

τ 5dτ

τ 6
ξm(σ)(∂2)2ξm(σ) = − CD

64π
∂a∂bξm(σ)∂a∂bξ

m(σ) log ε . (4.41)

This is the trace of the squared second fundamental form of the deformed surface (see (A.18)),
which can be rewritten using the Gauss-Codazzi equation (A.21) as

∂a∂bξm∂a∂bξ
m = II2 = 2Tr ĨI

2
+RΣ − TrW . (4.42)
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Since we are on flat space, the Weyl tensor vanishes. The volume form for the deformed
surface gets corrected, but to leading order in ξ does not affect the calculation. Therefore
the contribution of this term to the anomaly density is

− CD

64π

∫
Σ

(
2Tr ĨI

2
+RΣ

)
volΣ log ε . (4.43)

Note that the integral of RΣ vanishes for small deformations of the plane. It therefore does
not contribute to the anomaly, and we find

b1 = −CD/8 . (4.44)

Using (4.12) along with (4.39) and (4.44) we find a relation for the anomaly coefficients

c = −b1/2 . (4.45)

4.4.2 Stress tensor

The relation between b2 and hT is derived in a similar fashion, but instead of deforming the
surface itself, we can relate the insertion of a stress tensor to a change in the background
geometry.6 The expectation value of the planar surface operator now receives a contribution
from the metric variation:

〈V 〉η+δg = 〈V 〉η −
1

2

∫
R2×R4

δgµν(σ, x)〈T µνV 〉ηd
2σd4x+O(δg2) . (4.46)

In this equation, the subscript 〈•〉g means the expectation value is calculated on a curved
background metric g.

Since the insertion of a stress tensor sources a metric perturbation of linear order δg, we
can only reproduce the anomaly to that order, which, expanding (3.5), is

A|δg =
1

4π

[
− b2

10

(
∂2
pδ
mn − ∂m∂n

)
δgmn +

3b2

20
ηab∂2

pδgab + ∂a(. . . )

]
. (4.47)

These two terms are respectively associated to 〈TmnV 〉 and
〈
T abV

〉
in (4.46), and the total

derivative drops out of the integral over the plane.
Using (4.21), we can evaluate the first term of (4.46). The logarithmic divergence arises

as∫
R4

δgmn〈TmnV 〉d4x = −hT
π3

∫
R4

d4xδgmn(σ, x)
δmn − 2xmxn/x2

x6
(4.48)

= −hT
π3

∫
R4

d4x

x6

(
· · ·+ 1

2
∂pqδgmn|x=0 x

pxq + . . .

)(
δmn − 2

xmxn

x2

)
.

6In the same way one can show that the bulk anomaly coefficients are related to the 2- and 3-point
functions of the stress tensor [130].
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In the second step we expanded δg(x) in a Taylor series and dropped powers of x not
contributing to the anomaly. We again switch to spherical coordinates xm = rem and take
note of the 4d analogue of (3.29)∫

volS3emen =
π2

2
δmn ,

∫
volS3emenepeq =

π2

12
(δmnδpq + δmpδnq + δmqδnp) . (4.49)

The integral then becomes

−2π2hT
2π3

2

3

∫
ε

dr

r
∂pqδgmn|x=0 (δmnδpq − δmpδnq) =

1

4π
log ε

[
2hT

3

(
∂2
pδ
mn − ∂m∂n

)
δgmn

]
x=0

.

(4.50)
Comparing against (4.47), we identify

hT =
3b2

10
. (4.51)

The calculation for
〈
T abV

〉
is similar and gives the same result.

With expressions for b1, b2, c in terms of CD and hT in hand, we can finally translate the
result of the previous section (4.34) into a constraint on the anomaly coefficients, and find

b2 = −b1 , (4.52)

as claimed.
A direct consequence of this relation (together with (4.45)) is that one only needs to cal-

culate two nontrivial surface operators to calculate all the independent anomaly coefficients,
for instance the sphere and cylinder.

4.5 Defect operator expansion

A useful tool in dCFT is the defect operator expansion (dOE), also known as the bulk-defect
operator product expansion [46,125] (see [117] for a recent review of some dCFT techniques,
including the dOE, in the context of the CFT bootstrap program). This is a convergent
expansion representing bulk operators in terms of insertions of defect operators

Oi(σ, x)V =
∑
k

CV
ik(x, ∂σ)

x∆i−∆̂k

V [Ôk(σ)] , (4.53)

where the sum is over defect primaries. The differential operators CV
ik(x, ∂σ) are fixed by

conformal symmetry. Their exact form can be obtained from the corresponding bulk-defect
2-point function of Oi and Ôk by equating〈
Oi(σ, x)V [Ôk(0)]

〉
=
∑
j

CV
ij (x, ∂σ)

x∆i−∆̂j

〈
V [Ôj(σ)Ôk(0)]

〉
=

1

x∆i−∆̂k

CV
ik(x, ∂σ)

CÔk

σ2∆̂k

, (4.54)

where we denote by CÔk
the numerator of the 2-point function of Ôk. Explicit expressions

for CV
ik can be found in [47,120], but are not needed here.
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The list of defect primaries appearing on the right-hand side of (4.53) can include the
defect operators of Section 4.3 (namely the defect identity and the displacement operator
multiplet), but it certainly includes more defect operators. This can be viewed as a conse-
quence of the associativity of the OPE: since (4.53) maps bulk operators to defect operators
and is valid in any correlator, all the CFT data of the bulk operators must be encoded, in
some way, in the OPE of defect operators. Hence there must be at least as many defect
degrees of freedom as bulk degrees of freedom.

Here we initiate the study of these other defect operators. We first classify the unitary
multiplets of defect operators in Sections 4.5.1 and 4.5.2. This allows us to find the decom-
position of the stress tensor multiplet in multiplets of the preserved algebra, see Figures 4.1
and 4.2.

After this detour into representation theory, we write the leading terms in the dOE
for some operators and discuss the appearance of a new marginal operator. We finally
comment on constraints imposed by supersymmetry and show how the dOE sheds light on
the derivation of Section 4.3.

4.5.1 Representations of osp(4∗|2)⊕ osp(4∗|2)

Defect operators sit in multiplets of the algebra preserved by the defect. For the 1/2-BPS
plane V , the preserved algebra consists of two copies of osp(4∗|2), so we are interested in
constructing representations of osp(4∗|2)⊕osp(4∗|2). The formulation of the algebra as a 2d
superconformal algebra is reviewed in the appendix A.5.2, along with its embedding inside
the bulk algebra osp(8∗|4).

As usual, we can label primaries by their representation under the bosonic subalgebra,
which here is

[sl(2)⊕ su(2)⊥ ⊕ su(2)R]⊕ [sl(2)⊕ su(2)⊥ ⊕ su(2)R] . (4.55)

The corresponding labels are [r1, r2]h[r̄1, r̄2]h̄, where r1 and r2 are the Dynkin labels for su(2)⊥
and su(2)R, and h is the conformal twist and labels representations of sl(2). The labels r̄1,
r̄2 and h̄ are similar, but for the second subalgebra. We note that while (4.55) is equivalent
to so(2, 2)‖ ⊕ so(4)⊥ ⊕ so(4)R, the factorisation above in terms of 2 algebras is dictated by
supersymmetry, see A.5.2 for more details. The joint representation has conformal dimension
∆̂ = h+ h̄ and spin s = h− h̄.

The simplest nontrivial example of a multiplet of osp(4∗|2) ⊕ osp(4∗|2) is the familiar
displacement multiplet of section 4.2. Unlike our previous treatment however, here we label
operators according to (4.55). In order to match that decomposition, we can express the
superprimary Oi ∼ (γ̌i)α2α̇2Oα2α̇2 in spinor indices. In this notation, the indices α = 1, 2 are
all su(2) indices. We use α1, β1, . . . for su(2)⊥ and α2, β2, . . . for su(2)R; similarly for the
second set of su(2)’s, but with dotted indices.

The values of h and h̄ can also be read from (4.7), they are h = h̄ = 1 (O is a scalar of
dimension 2). The representation of O is therefore [0, 1]1[0, 1]1. Acting with Q and Q̄ (which
transform respectively as [1, 1]1/2[0, 0]0 and [0, 0]0[1, 1]1/2), one can build the full multiplet:
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Dα1α̇1

Qα1α̇2 Qα2α̇1

Oα2α̇2

Q Q̄

• Dα1α̇1 , which transforms in the representation [1, 0]3/2[1, 0]3/2.

• Qα1α̇2 and Qα2α̇1 are respectively in [1, 0]3/2[0, 1]1 and [0, 1]1[1, 0]3/2.
Together they form Qαα̌ in (4.7).

• Oα2α̇2 is in the representation [0, 1]1[0, 1]1.

The structure of the multiplet as a product of two representations of osp(4∗|2) is apparent
in the diagram above. Under the action of Q, the operators transform as two multiplets of
osp(4∗|2), for instance the lower diagonal is

Qα1α2Oβ2β̇2
= cεα2β2Qα1β̇2

, Qα1α2Qβ1β̇2
= ic−1εα1β1∂Oα2β̇2

, (4.56)

which is easily obtained from an ansatz as in Section 4.3.1 (the constant c is arbitrary). This
is the simplest representation of osp(4∗|2) and it contains the weights [0, 1]1 and [1, 0]3/2.
Because it is ubiquitous, it is convenient to introduce some notation here and denote it
B[0, 1], in anticipation of the results of Section 4.5.2.

4.5.2 Unitary multiplets of osp(4∗|2)

Since the algebra preserved by the defect factorises, we now turn our focus to general multi-
plets of a single copy of osp(4∗|2). Importantly, we can classify allowed multiplets by working
out the constraints imposed by unitarity.7 This follows the method described in [33] used to
classifiy multiplets in superconformal theories for d ≥ 3.

The idea is the following. In radial quantisation, any operator O defines a corresponding
state |O〉. While |O〉 has positive norm (by assumption), there is no guarantee that the norm
of all the other states of the multiplet is also positive, as required by unitarity. Demanding
that negative norm states are absent from the multiplet leads to a lower bound on the
conformal dimension of the superprimary h ≥ hA. In particular, as we show below, at
h = hA (4.59) some states become null, and the corresponding multiplets are the short
multiplets A. In addition, we find yet shorter multiplets B with superprimary of conformal
dimension hB (4.60).

Consider the state |O〉 of a superprimary operator in the representation [r1, r2]h. Unitarity
constrains the states Q|O〉 to satisfy

‖Q|O〉‖2 = 〈O|{S,Q}|O〉 = 〈O|D+ + σiTi(1) − 2σjTj(2)|O〉 ≥ 0 , (4.57)

where we use Q†α1α2
= Sα1α2 and the anticommutator (A.70), written in terms of su(2)⊥ and

su(2)R generators Ti(1,2). We suppress the indices of Q and |O〉, but the constraint should

hold for any choice of Q, |O〉, and linear combinations thereof.
The matrix elements 〈s|σiTi|s〉 are bounded by the eigenvalues of σiTi. Since σi is the

fundamental representation, the product σiTi can be decomposed as [1]⊗[r] = [r−1]⊕[r+1],
for both r1 and r2. The eigenvalues are expressed in terms of the quadratic Casimirs C2(j) =

7The same analysis was also done in [126], which appeared as this paper was finalised.
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j(j + 2)/4 (using e.g. equation (2.38) of [33]), so that (4.57) takes the form

h ≥ − (C2(j1)− C2(1)− C2(r1)) + 2 (C2(j2)− C2(1)− C2(r2)) , (4.58)

with j1 and j2 taking any values in r1 ± 1 and r2 ± 1. This assumes that both r1 > 0 and
r2 > 0, otherwise the tensor product decomposition is simply [1]⊗ [0] = [1] and j = 1.

For r1 > 0, we then find that the strongest bound on the scaling dimension implied
by (4.58) is

h ≥ hA = 1 +
r1

2
+ r2 . (4.59)

For r1 = 0, we should instead take j1 = 1 and we obtain

h ≥ hB = r2, if r1 = 0 . (4.60)

If these bounds are saturated, a subset of states become null and may be consistently removed
from the multiplet.

While (4.59) and (4.60) are necessary conditions for unitarity, there could be, in principle,
additional states whose norm becomes null (or negative), imposing further restrictions on
h. It would be tedious to perform the above calculation for all states, but fortunately the
conditions under which a representation is reducible (but not necessarily unitary) are listed
by Kac in [131] (see also [132]). These match precisely the values obtained for the 4 choices
of j1 and j2 in (4.58), which indicates that there are no further constraints.

We therefore conclude that for multiplets satisfying h ≥ hA, with hA given in (4.59),
there are no stronger constraints from requiring unitarity at higher levels. Generically, these
are long multiplets, and they thus contain 24(r1 +1)(r2 +1) operators. Multiplets saturating
the bound h = hA have a null state at level one,

∣∣[r1 − 1, r2 + 1]h+1/2

〉
, and their dimension

is reduced. The special case r1 = 0 still leads to a unitary multiplet, but in this case the
first null state is at level 2.

In the case hA > h ≥ hB (4.60) however, since h is below the unitarity bound hA, some
states in the multiplet would have a negative norm unless h = hB exactly: this is an isolated
multiplet. It has a null state at level one,

∣∣[1, r2 + 1]h+1/2

〉
.

These short multiplets A and B are important to our discussion. For example, the B[0, 1]
multiplet of Section 4.5.1 contains only 2 + 2 operators, so it is indeed a short multiplet.
From the argumentation above, the conformal dimension of its superprimary is thus fixed
by unitarity to h = hB = 1, in accordance with (4.7).

The broader question of determining the content of all short multiplets is interesting
but lies beyond the scope of this work. However, specific short multiplets play a role in
Section 4.5.3, and it is useful to know their content explicitly. It is sufficient for our present
purposes to construct some representations heuristically by taking the tensor product de-
composition of known multiplets. For instance, taking the product of two B[0, 1] multiplets,
the superprimary decomposes into 2 representations [0, 1]⊗[0, 1] = [0, 0]⊕[0, 2], so the tensor
product gives 2 multiplets, which we identify as

B[0, 1]⊗B[0, 1] = A[0, 0]⊕B[0, 2] . (4.61)

The multiplet A[0, 0] contains the weights [0, 0]1, [1, 1]3/2 and [2, 0]2, while the multiplet
B[0, 2] contains [0, 2]2, [1, 1]5/2 and [0, 0]3. Both of these representations appear as defect
operators, see Figures 4.1 and 4.2 below.
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4.5.3 The stress tensor dOE

Having gained some understanding of representations of the preserved algebra, we turn now
to the main goal of this section: constructing the dOE (4.53) for the bulk operators of our
theory. We focus on operators of the stress tensor multiplet (which should exist in any local
quantum field theory), but the same analysis could be applied to other multiplets.

A naive way of thinking about (4.53) is as branching rules for the breaking of symmetry
due to the presence of the defect. Indeed, it is natural to decompose, for example, the
bulk superprimary OIJ into representations of the preserved R-symmetry O55, Oi5 and Oij,
respectively the representations

[0, 0][0, 0] , [0, 1][0, 1] , [0, 2][0, 2] . (4.62)

The dOE (4.53) is particularly simple for a trivial surface defect, where it is just the Taylor
expansion of the bulk insertion:

O55(x)I = I[O55(0) + xm∂mO
55(0) + . . . ] , (4.63)

While this expression merely amounts to a rewriting of the bulk degrees of freedom, the
dOE becomes much more interesting if we consider a defect V which interacts with the bulk
nontrivially.

A first sign that the dOE for general V contains additional terms is that the bulk operators
couple to the defect identity 1V and the displacement multiplet (cf. for instance (4.21)
and (4.26)). It is clear that these operators do not appear in the branching rules and encode
additional interactions between bulk and defect degrees of freedom.

The second way in which the dOE is interesting is more subtle. The decomposition of
operators in terms of the preserved algebra can be performed, as above, for all the operators in
the stress tensor multiplet. The resulting representations can be organised in the multiplets
of Figures 4.1 and 4.2 and the displacement multiplet, leading to the branching rules under
the breaking of symmetry osp(8∗|4) → osp(4∗|2) ⊕ osp(4∗|2). The superprimaries of the
multiplets in Figure 4.1 are easily identified as the defect counterparts of the operators O55

and Oij by their representation, and with a bit of work this correspondence between bulk
and defect operators can be also established for all the other operators.

Observe that the conformal dimension of these defect operators is, in some cases, lower
than that of the corresponding bulk operators, leading to singular terms in the dOE. For
instance, the dimension of Ô55 is 2, whereas the dimension of O55 is 4. A similar behavior
occurs in the context of Wilson loops in 4d N = 4 SYM, where the 1/2-BPS line operator
takes the form

W ∼ TrP exp i

∫ (
Aτ + Φ6

)
dτ. (4.64)

In that case, the dOE of the stress tensor superprimary includes a defect operator of dimen-
sion 1, which can be understood as the insertion of Φ6 in the line. Here, we do not have a
field realisation of the N = (2, 0) theory but Ô55 plays an analogous role.

Consider then the dOE for O55. From Figures 4.1 and 4.2 we know some of the defect
operators that can appear on the right-hand side of (4.53). This leads to

O55(x)V =
1

x4
CV
O1V [1V ] +

1

x2
CV
OÔ

(x, ∂σ)V [Ô55] +
xm
x2
CV
OD(x, ∂σ)V [Dm] + . . . (4.65)
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Figure 4.1: On the left, the A[0, 0]A[0, 0] multiplet containing 32 + 32 degrees of freedom.
Its superprimary is Ô55. On the right, the B[0, 2]B[0, 2] multiplet also containing 32+32
degrees of freedom. Its superprimary is Ôij.
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Figure 4.2: Multiplets B[0, 1]A[0, 1] and A[0, 1]B[0, 1]. They both contain 32 + 32 degrees
of freedom.

The list of defect operators that may appear in this expansion is constrained by supersym-
metry and can be treated systematically, but we do not pursue this direction further.

Equation (4.65) can be made more precise. The coefficients of the defect primaries encode
the normalisation of bulk-defect correlators as in (4.54): 1-point functions such as (4.21)
compute the coefficient of 1V , 2-point functions such as (4.26) capture the coefficients of
other defect primaries. Explicitly, 〈O55(x)V 〉 calculates the defect identity component of the
dOE, such that

CV
O1 =

hO
π3
. (4.66)

The coefficient of the displacement operator can be found without computing 〈O55V [Dm]〉
explicitly, using the fact that the displacement operator is related to the broken translation
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symmetry. Integrating over the position of Dm, we can replace it by a derivative:∫
d2σ
〈
O55(x)V [Dm(σ)]

〉
= −∂m

〈
O55(x)V

〉
. (4.67)

The left hand side is easily computed from (4.65) and related to CD and CV
OD, while the right

hand side is given in terms of hO. Matching coefficients, we find

CV
OD(x, ∂σ) =

8hO
π4CD

(1 + . . .) . (4.68)

By contrast, the coefficient CV
OÔ

is not obviously related to the remaining coefficients, and
thus an independent piece of dCFT data.

4.5.4 Constraints from supersymmetry

We conclude this section by sketching an alternative derivation of the results of Section 4.3.
It turns out that the dOE provides a simple and elegant way to understand the origin of the
linear relations (4.24) and (4.28) without doing explicit calculations, by reframing them in
terms of coefficients of displacement primaries in the stress tensor dOE. Indeed, the method
we use can in principle be applied far more generally to obtain analogous constraints for the
remaining dOE coefficients.

To reproduce these results, consider the dOE of χ5. Following the analysis of Section 4.5.3,
we decompose χ5 into representations of the preserved algebra

[1, 1][0, 0]⊕ [1, 0][0, 1]⊕ [0, 1][1, 0]⊕ [0, 0][1, 1] , (4.69)

which we label χ5
α1α2

, χ5
α1α̇2

, χ5
α̇1α2

, χ5
α̇1α̇2

. We only need the dOE of χ5
α1α̇2

, which takes the
form

χ5
α1α̇2

V =
1

x2
CV
χQ(x, ∂σ)V [Qα1α̇2 ] + . . . (4.70)

Again, there are other terms that could be included in this expansion, but they don’t play a
role in what follows so we ignore them. We also emphasise that (4.70) is related to the dOE
of the stress tensor superprimary by supersymmetry.

We can now proceed as in Section 4.3 and find the constraints imposed by the preserved
supersymmetries. Consider first acting with Q on the bulk operator χ5

α1α̇2
to find

Qχ = H + j + ∂O , (4.71)

with some coefficients. (The exact expression can be obtained by restricting (4.19) to the
relevant representations of the preserved algebra.) Using the dOE on the right-hand side
and focusing on the defect identity component gives(

Qχ(x)
)
V ∼

(
H(x) + j(x) + ∂O(x)

)
V ∼ 1

x5
(CH1 + Cj1 + C∂O1)V [1V ] + . . . (4.72)

Note that Cj1 = 0 and C∂O1 can be obtained from (4.67). We call this the “bulk” channel,
since we calculate the action of Q on χ before taking the dOE.
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The expression (4.72) is to be contrasted with the “defect” channel, where we first
use (4.70) and then apply Q. Clearly, since 1V is not the variation of anything 1V 6= Q(. . . ),
the result does not have an identity component. Consequently, the identity component
of (4.72) must vanish as well, giving a linear constraint equivalent to (4.24) relating the
normalisations of the stress tensor 1-point functions.

Similarly, (4.28) can be reproduced by focusing on the scalar displacement component of
the same equation. The bulk channel gives schematically

QχV ∼ 1

x3

(
CV
HO + CV

jO + CV
∂OO
)
V [O] + . . . (4.73)

For the defect channel, we act on (4.70) with Q. From (4.56), we see that the variation
only leads to descendants like ∂O, and no primary. Since equality between defect and bulk
channel must hold at the level of each defect operator, we conclude that the contribution of
the displacement superprimary O to the bulk channel must vanish, and we obtain a linear
constraint on the dOE coefficients CV

jO, C
V
HO, C

V
∂OO, which is equivalent to (4.28). These two

relations are only the simplest examples of a much larger set of constraints obeyed by the
dOE coefficients. Indeed, equating the bulk and defect channel of any supercharge acting on
any primary dOE at the level of each defect operator, it is straightforward to derive further
such linear relations. These conditions greatly reduce the number of independent coefficients
of stress tensor dOE coefficients, until we are left with what we could call a super-dOE, i.e.
a set of dOEs which is fully consistent under the preserved supersymmetry.

4.6 Discussion

In this chapter, we studied insertions of local operators, including the displacement opera-
tor (4.1), into the 1/2-BPS plane. Other defect operators include excitations corresponding
to inserting bulk operators near the defect—they are captured by the dOE (4.53).

One of our results is the classification of unitary multiplets of osp(4∗|2)⊕ osp(4∗|2), the
algebra preserved by a 1/2-BPS defect, in Section 4.5.2. These multiplets are the building
blocks for discussing other aspects of the dCFT, like its spectrum, the OPE of defect oper-
ators and the dOE. While in this work we focus on the dOE, it would also be interesting to
pursue these other directions, for instance using the tools of the conformal bootstrap [117].

There are two important applications of the dOE (4.53) in our analysis: in Section 4.5.3
we use it to find new defect operators and in Section 4.5.4 we sketch how it makes the
preserved symmetries manifest.

First, we use it to give the example of how the bulk stress tensor multiplet decomposes
into defect multiplets. There are of course the operators D, Q and O of the displacement
multiplet, but also other defect multiplets whose operator content is shown in Figure 4.1
and 4.2. Although we focus on the stress tensor multiplet, this analysis could also be applied
to any other multiplet of the N = (2, 0) theory. In addition to the multiplets presented
above, the dOE can include additional terms, and it would be interesting to obtain the
selection rules as was done for 4d N = 4 SYM in [133], by treating systematically all the
superconformal Ward identities.

The important aspect of this decomposition of bulk operators is that it is convergent
and encodes all the information of the bulk OPE, which opens the possiblity of studying the
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N = (2, 0) theory from the point of view of a 2d defect CFT. This direction could lead to
additional constraints on the bulk theory, since the defect operators are not a trivial rewriting
of those in the bulk. This is manifested for instance by the appearance of divergences in the
dOE of O55 (4.65).

Instead, the dOE captures some important reorganisation of degrees of freedom in the
dCFT. For instance, in the expansion of the bulk operator O55 (4.65) we find a defect operator
which is of dimension 2 and therefore marginal (we expect it to be marginally irrelevant).
The analogous expansion of the superprimary of the stress tensor multiplet is well understood
in the context of Wilson loops in 4d N = 4 SYM: using the definition of the 1/2-BPS Wilson
loop (4.64) the marginal operator there corresponds to inserting Φ6 into the line defect [77].
Here the interpretation is similar: inserting the analog of Ô55 in the non-supersymmetric
surface operator triggers an RG flow which comes to a stop when Ô55 becomes marginal at
the conformal fixed point, which is the 1/2-BPS surface operator. This flow is verified at
large N in holography [124] and should hold more generally for all N = (2, 0) theories.

A second use of the dOE is to make the preserved symmetries manifest. As we sketch in
Section 4.5.4, we can explain the origin of the relation between hT and CD (4.4) simply by
looking at the structure of multiplets of defect operators. This is to be contrasted with the
derivation of Section 4.3, where the relation is the result of a calculation and not obvious
from the outset. We believe this approach could shed light on determining the minimal
amount of supersymmetry required to prove (4.4), that is whether it also holds for defects
of the N = (1, 0) theory, and more generally what are the necessary conditions to prove the
conjecture of [122].

Finally, there are other interesting directions which we haven’t explored here. For the
Wilson line, a point of confluence between different techniques is the cusp, whose anomalous
dimension at small angles is related to the Bremsstrahlung function [49] and can be calculated
using integrability [61, 62, 134] and supersymmetric localization [135]. Its analog here are
the conical singularities, which exhibit a log2 ε divergence, as discussed in Section 3.5. The
coefficient of the divergence is entirely fixed by the behavior of the surface near the singularity,
so it is natural to consider an operator inserting a conical singularity and to try and find its
interpretation in the dCFT.

Another possibility is to study further the OPE for BPS operators. The N = (2, 0)
theory contains a sector isomorphic to a chiral algebra [136] which can be used to calculate
for instance the 3-point functions of 1/4-BPS local operators. For 4d N = 2 SCFTs, it was
shown in [137] that the supercharges defining the cohomology are compatible with N = (2, 2)
surface defects, and it would be interesting to extend their construction to the N = (2, 0)
theory with 1/2-BPS surface defects. This could lead to exact results for a sector of the dOE
and defect OPE.

It would also be interesting to study BPS operators in the context of the AGT corre-
spondence. At large N one can use holography to calculate the expectation values, in the
presence of the defect, of operators in the traceless symmetric representation of so(5)R [25],
which contains in particular OIJ in the stress tensor multiplet. Since the AGT correpon-
dence can be used to calculate the expectation value of the stress tensor [92], it might also
calculate expectation values for this larger class of operators at finite N .
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Chapter 5

BPS Wilson loops in sCSM theories

Following our discussion of surface operators in the N = (2, 0) theory, we now move on to
the study of line defects in ABJM and related theories. Sections 5.1 and 5.2 are a modified
and slightly expanded version of Chapter 2 in [30]. The remainder of this chapter contains
material which will appear in an upcoming publication [31].

5.1 Background

While Wilson loops in gauge theories are important observables in general, they are of
particular interest in Chern-Simons theories. The holonomies of a pure Chern-Simons gauge
connection are topological and depend only on the homotopy class of the contours over which
they are defined, and to whose knot invariants they are closely related [138]. Once the gauge
sector is coupled to additional fields, the theory is no longer purely topological, and the
Wilson loops themselves acquire a richer structure.

In supersymmetric gauge theories, loops preserving some fraction of the bulk supercharges
may be constructed by explicitly coupling it to the superpartners of the gauge field. The
most famous example of such an operator is the 1/2-BPS Maldacena-Wilson loop of N = 4
super-Yang-Mills theory [54,58],

W = P exp

∫
dϕ
(
Aµẋ

µ + Φ6|ẋ|
)
, (5.1)

which may be defined either over a line or a circle. BPS Wilson loops can be defined over
more general contours, by allowing for couplings to multiple scalars which vary along the
contour in a way that is prescribed by ẋµ. The most important of these are the loops
of [11], which can be defined for completely arbitrary contours in R4, and those constructed
in [12], whose contours are confined to an S3; both of these classes are generically 1/16-BPS,
with SUSY enhancement if the contours are further restricted to suitable subspaces. The
classification of supersymmetric Wilson loops in N = 4 has since been completed [139].

The study of the analogous objects in three dimensions was initiated in [17], whose
authors judiciously coupled the ordinary Wilson loop of the N = 2 theory to the auxiliary
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scalar of the vector multiplet to obtain a 1/2-BPS circular line operator:

W = P exp i

∫
dϕ (Aµẋ

µ − i|ẋ|σ) . (5.2)

Analogues of this loop for N > 2 were constructed soon afterwards. In ABJM theory,1

integrating out σ recasts the Wilson loop in terms of a particular bilinear of the scalar
fields [16, 140,141]:

W = P exp i

∫
dϕ
(
A(1)
µ + 2πk−1M I

JCIC̄
J
)

(5.3)

where M = diag(−1,−1,+1,+1), and A(1) is the gauge field associated with one of the gauge
factors. An analogous construction for the remaining gauge factor yields an independent
loop where A(1) is replaced by A(2) and the order of the scalars is reversed. These Wilson
loops preserve four supercharges parametrised by θ±12 and θ̄12

± , accompanied by the special
supersymmetries fixed to2

ε12 = −iθ12
γ3

|x|
, ε̄12 = −i γ3

|x|
θ̄12, (5.4)

and are therefore 1/6-BPS. In addition, they preserve a 1d rigid conformal algebra sl2(R)
along the contour, a u(1) comprised of rotations of the transverse directions, as well as an
su(2)⊕ su(2) subalgebra of the full su(4) R-symmetry.

In order to construct loops preserving more supersymmetry, it is necessary to include
couplings to the fermions. In order to preserve some conformal symmetry, W cannot involve
dimensionful couplings, and therefore the fermions, which have scaling dimension ∆ψ = 1,
should enter linearly. On the other hand, they transform in the bifundamental of U(N1) ×
U(N2), while the respective gauge connections are valued in the adjoint representation of
either gauge factor. This puzzle was elegantly solved in [18], by promoting the modified
gauge connection to a U(N1|N2) supermatrix combining the two gauge fields, the scalar
bilinears, and the fermions, schematically of the form

L ∼

(
A

(1)
µ ẋµ + CC̄ |ẋ| ψ̄ |ẋ|

ψ |ẋ| A
(2)
µ ẋµ + C̄C |ẋ|

)
. (5.5)

The Wilson loop then takes the form

W = sTrP exp i

∫
Ldϕ, (5.6)

and the requirement that W preserve a given set of supercharges translates into conditions
on the coefficients, which we suppressed in (5.5). A 1/2-BPS solution was found in [18], while
further 1/6-BPS fermionic loops were first constructed in [19, 142]. While the discovery of
these operators opens many directions of research, key aspects of their construction remain

1Our conventions are summarised in Appendix B.2.
2These conditions can equivalently be stated in terms of θ34 = −θ̄12, see appendix B.2.
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riddled with intricacies. In particular, the coefficients of the fermions in the 1/2-BPS loop
are antiperiodic, and none of the fermionic loops have hitherto been written in a manifestly
gauge and reparametrisation invariant way.

By way of introduction to this chapter, we clarify some of these issues by providing a
new formulation of 1/6-BPS Wilson loops in ABJM theory, which first appeared in [30].
We find that, in this new language, the generic 1/6-BPS fermionic operator can be written
naturally as a deformation of a bosonic loop, shedding new light on how these loops preserve
supersymmetry and their moduli space. In the main part of this chapter, based on upcoming
work [31], we generalise our construction to the N = 4 case, and report some previously
unknown Wilson loops.

5.2 Deformation loops in ABJM

In order to give a unified account of the fermionic loops interpolating between the bosonic
and 1/2-BPS loops, we consider a superconnection

L = Lbos + ∆L, Lbos =

(
A(1)

bos 0

0 A(2)
bos

)
+
|ẋ|
4|x|

σ3, (5.7)

whereA(1,2) are the modified gauge connections leading to 1/6-BPS bosonic loops, as in (5.3),
and ∆Lmay be block off-diagonal. In the limit ∆L → 0, the constant term σ3 = diag(+IN1 ,−IN2)
can be exponentiated, and we recover the sum of the usual trace of bosonic connections.

In order for the loop defined by (5.7) to preserve supersymmetry, we require the super-
connection to transform under the preserved supercharges as δL = DϕG ≡ ∂ϕG− i[L, G] for
some G [18,143] (see appendix B.1). This relaxed notion of supersymmetry ensures that the
variation takes the form of a supergauge transformation, under which loops of the form (5.6)
are invariant. Consider then a deformation

∆L = i|ẋ|σ3 (δ+G+ i{G,G}) , (5.8)

where δ+ is parametrised by θ+
12, θ̄

12
+ (and ε+12, ε̄

12
+ are given by (5.4)). The variation of ∆L

with respect to δ+ assembles into a total derivative as required if

δ2
+G = −iσ3 (∂ϕG+ [Lbos, G]) , (5.9)

which is satisfied for G comprised of C1, C̄1 C2, C̄2, breaking one SU(2) of the residual
R-symmetry (here, α, ᾱ ∈ C2 are taken to be Grassmann odd and i, j = 1, 2)

G =

√
2πi

k

(
0 ᾱiCi

−αiC̄i 0

)
. (5.10)

Using (5.9) one can show easily that δ+L = DϕG. Invariance under δ− (parametrised by
the remaining parameters θ−12, θ̄

12
− ) is ensured because δ−G is related to δ+G by a gauge

transformation, so that δ−L also takes the form of a total derivative.
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The resulting family of 1/6 BPS loops is then parametrised by α, ᾱ and can be written
explicitly as

L =

 A(1)
√
−4πi

k
|ẋ|ραi ψ̄iα√

−4πi
k
|ẋ|ψαi ρ̄iα A(2)

 ,
A(1) = A(1)

bos − 2πi
k
|ẋ|∆M i

jCiC̄
j + |ẋ|

4|x| ,

A(2) = A(2)
bos − 2πi

k
|ẋ|∆M i

jC̄
jCi − |ẋ|

4|x| ,

(5.11)

ρi = 2
√

2ᾱjθ+
ijΠ+, ρ̄i = 2

√
2Π+θ̄

ij
+αj, ∆M i

j = 2ᾱiαj, Π± ≡
1

2

(
1± ẋµγµ

|ẋ|

)
.

(5.12)

We note that (5.11) is related to the operators of [18,19] by a gauge transformation

exp iΛ, Λ =

(
π

8
− φ

4

)
σ3 (5.13)

where 0 < φ < 2π is the polar angle and π/8 accounts for different conventions for ρ, ρ̄. The
fields transform as

A(1) → A(1) − |ẋ|
4|x|

, A(2) → A(2) +
|ẋ|
4|x|

, ψ →
√
−ie−iφ/2ψ, ψ̄ →

√
ieiφ/2ψ̄ ,

(5.14)
where the right-hand side reproduces the original formulation. The discontinuity of Λ at 2π
yields a delta function term which, upon integration, exchanges the supertrace for a trace.

We stress that in contrast to previous formulations, this loop is manifestly reparametri-
sation invariant. It is also gauge invariant without the need for an additional twist matrix
(see for instance [144]), since the couplings ρ, ρ̄ and M + ∆M are periodic by construction.
This comes, of course, at the expense of introducing a constant piece in the connection Lbos,
whose physical interpretation remains unclear.

We obtain the moduli space of 1/6 BPS deformations (5.8) by noting that any rescaling α
and ᾱ such that their product ∆M is unmodified can be absorbed by a gauge transformation.
The resulting space is the conifold. This construction matches Class I of [19], while Class II
is obtained by breaking the other SU(2), i.e. coupling to C3, C̄3, C4 and C̄4 in G. These
two branches intersect at the origin singularity, i.e. Lbos.

At particular points where ∆M has eigenvalues 2 and 0, the full matrix M + ∆M has
enhanced SU(3) symmetry. It is easy to see that commuting the 4 preserved supercharges
with this SU(3) symmetry gives rise to 12 supercharges, so these operators are 1/2-BPS,
and we recover the loops of [18], as may be checked explicitly by performing the gauge
transformation used above.

5.3 Deformation loops in N = 4

Various generalisations to the above construction have been proposed. In [20,21], the defor-
mation point of view was extended to theories with fewer supersymmetries and more general
quivers. This setting allows for much more general superconnections: Instead of just 2 × 2
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blocks, as is appropriate for the two-node quiver of ABJM theory, one may introduce a gauge
connection, together with the appropriate scalar bilinears, for each node in the quiver, with
fermions on the off-diagonal for every edge connecting two nodes, and scalar bilinears in each
off-off-diagonal block corresponding to a pair of nodes separated by two edges.

A further generalisation, explored in [21], is achieved by deforming around a more general
bosonic loop. Indeed, one can replace the sum of two ordinary bosonic loops with the sum
of two bosonic loops incorporating ϕ-dependence. In the language of ABJM theory, such
loops take the form

Aθbos = Aµẋ
µ + 2πk−1 + (M + ∆M θ)IJCIC̄

J , (5.15)

∆M θ =


0 0 0 0
0 1− cos θ 0 −e−iϕ sin θ
0 0 −1 0
0 −e+iϕ sin θ 0 −1 + cos θ

 . (5.16)

It is not hard to show that this loop is generically 1/12-BPS [145], and as θ → 0, we recover
the ordinary 1/6-BPS bosonic loop used in (5.7). The moduli spaces of deformations of
either type of bosonic loop are quotients of Cn by a suitable group action of C×, of which
the conifold we found in the previous section is only the simplest example.

In this section, we will modify the above construction of supersymmetric Wilson loops
in yet another way. Working in N = 4 theory, we take as our point of departure a 1/2-
BPS loop W1/2, which we modify with respect to an arbitrary linear combination of the
preserved supercharges. This construction reproduces the ”hyperloops” of [21], but gives
many additional loops preserving different amounts of super- and conformal symmetry. We
take our Wilson loops to sit at a great circle of S3 parametrised by ϕ and, throughout, adopt
the notation of [21], summarised in Appendix B.4.

5.3.1 Preliminaries

While the supersymmetry variation of the bosonic loops considered above under any pre-
served supercharge vanishes identically, this is no longer the case for fermionic loops. Indeed,
for the 1/2-BPS loop,

QL1/2 = σ3D
L1/2
ϕ H, (5.17)

with H a nonvanishing supermatrix. Deformations around W1/2 will, in addition to a super-
matrix G and a supercharge Q, also depend on H associated with Q. We therefore begin by
computing H and deriving some of its properties.

The superconformal algebra on S3 is osp(4|4), with bosonic subalgebra so(1, 4)conf ⊕
su(2)L⊕ su(2)R (see appendix B.3). Consider a 1/2-BPS loop coupling only to two adjacent
nodes and hypermultiplets charged under at least one of them. Each 1/2-BPS loop must
preserve either su(2)L or su(2)R. We are of course free to choose either, and in the following
it should be understood that we are looking only at one branch of the moduli space. We will
ignore issues related to such finite degeneracies. We pick the loop preserving su(2)L, whose
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superconnection is given by

L1/2 =

(
AI −iᾱψI1̇−

iαψ̄1̇
I+ AI+1 − 1

2

)
. (5.18)

where3

AI = Aϕ,I −
i

k

(
−νI + 2µ̃ 1̇

I 1̇

)
, AI+1 = Aϕ,I+1 −

i

k

(
−νI+1 + 2µ̃ 1̇

I+11̇

)
, (5.19)

and the parameters α and ᾱ satisfy αᾱ = 2i/k. Note that the Wilson loop does not depend
on α, ᾱ. Instead of fixing its value, we leave it as a constant gauge parameter. One can
introduce a ϕ-dependence in α, ᾱ at the expense of adding a U(1) gauge field at the bottom
right entry: AI+1 − 1

2
→ AI+1 − 1

2
− iα−1∂ϕα.

The eight supercharges preserved by (5.18) are

Q2̇a
α , Q1̇a

ᾱ , (5.20)

where α takes values l, r and ᾱ is l̄, r̄. An explicit computation using the anticommutation
relations in B.3 shows that the bosonic part of the superalgebra spanned by these charges is
given by sl2(R)‖ ⊕ su(2)L ⊕ u(1)M̃⊥ . In other words, in addition to half of the R-symmetry,
the loop defined by (5.18) preserves full conformal symmetry along the contour, generated by
rotations M‖ along the ϕ-direction and two of the four special conformal generators, which
we denote T±, as well as a linear combination of R̄3 and transverse rotations M⊥, which we
denote M̃⊥. The preserved superalgebra is sl(2|2).

A general superposition of the supercharges in (5.20) can be covariantly written as

Qη = ηαaQ
2̇a
α + η̄αa (σ1) β̄

α Q1̇a
β̄ . (5.21)

The anticommutator of two supercharges reads

{Qη,Qρ} = i
[
η̄αa ρ

β
b + ρ̄αaη

β
b

]
·

[
εab
(
T+ M‖
M‖ T−

)
αβ

+ εabεαβM̃⊥ +
i

2
εαβR

ab

]
. (5.22)

In order to reduce clutter in the following, we use shorthand

Πab = η̄αa

(
e+iϕ 1

1 e−iϕ

)
αβ

ηβb , λab = εαβ η̄
α
a η

β
b , (5.23)

as well as Π = Π−e
−iϕ + Π0 + Π+e

+iϕ ≡ εabΠab and λ = εabλab. In these terms, the square of
a single supercharge takes the natural form

Q2 = iΠ− T− + iΠ0 M‖ + iΠ+ T+ + iλ M̃⊥ −
1

2
λab R

ab. (5.24)

It will be convenient to define rotated scalars

r1 ≡ (ηv̄)aq
a , r2 ≡ (η̄v)aq

a , r̄1 ≡ −εab(η̄v)aq̄b , r̄2 ≡ εab(ηv̄)aq̄b , (5.25)

3Note that µ̃ 1̇
I 1̇

= −µ̃ 2̇
I 2̇

, as these are by definition traceless, see Appendix B.4.
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where vα = (e+iϕ, 1)α, v̄α = (1, e−iϕ)α. Note that this rotation is invertible if and only
if Π 6= 0. We will later see that supercharges with Π = 0, i.e. whose square does not
contain any of the conformal generators, behave quite differently from those that do. The
supersymmetry transformations of the rotated scalars take the rather simple form

Qr1 = Πψ2̇+ , Qr2 = −Πψ1̇− , Qr̄1 = Πψ̄2̇
− , Qr̄2 = −Πψ̄1̇

+ . (5.26)

The supersymmetry condition QW1/2 = 0 can now be rewritten as a system of equations
for the (off-)diagonal parts of L1/2 (see app B.1):

QLdiag
1/2 = i{Loff

1/2, H}, (5.27)

QLoff
1/2 = D

Ldiag
1/2

ϕ H. (5.28)

Here, H is a matrix whose only nonzero entries are offdiagonal and Grassmann even. In
terms of the coefficients η, η̄, it reads

H =

(
0 −ᾱr2

−αr̄2 0

)
, (5.29)

and, consequently,

H2 = ᾱα

(
r2r̄2 0

0 r̄2r
2

)
. (5.30)

Using (5.26), it is now easily verified that

QH = −iΠLoff
1/2. (5.31)

Acting with Q one more time, and using equation (5.28), we find

Q2H = −iΠD
Ldiag
1/2

ϕ H

= −iD
Ldiag
1/2

ϕ (ΠH) + iH ∂ϕΠ.

(5.32)

5.3.2 General deformation

We want to systematically study continuous deformations L around L1/2 which share some
supersymmetry with the latter. We first note that the only fermions whose supersymmetry
variation under any of the supercharges (5.20) gives derivatives in the ϕ-direction are those
appearing on the RHS of (5.26). As long as Π 6= 0, all of these can be obtained by taking
supersymmetry variations of the rotated scalars, and without loss of generality we may
therefore write

L = L1/2 + QG+B + C, (5.33)

using a supercharge Q and an off-diagonal matrix G incorporating the rotated scalars

G =

(
0 β̄ar

a

βar̄a 0

)
, (5.34)
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as well as a block-diagonal matrix B comprised of scalar bilinears, and a diagonal numerical
matrix C. Since contributions proportional to 1(N |M) commute with everything else, they
may be immediately exponentiated. Without loss of generality, we ignore such terms and
take the constant contribution to be C = diag(0, c). The requirement that the loop defined
by the deformed connection preserve the same supercharge Q takes the form

QL = σ3DLϕ (H + ∆H) . (5.35)

Using (5.27), these translate into a system of equations

0 = QB − i{Loff
0 ,∆H} − i{QG,H + ∆H}, (5.36)

0 = Q2G−DL
diag
0

ϕ ∆H + i[B + C,H + ∆H]. (5.37)

The second of these equations allows us to compute ∆H. To that end, note that Q2G can
be decomposed into a total covariant derivative, a term linear in scalars, and a cubic term
as (see Appendix B.5)

Q2G = −iDL
diag
0

ϕ (ΠG) +
(
Q2G

)
linear

+
(
Q2G

)
cubic

. (5.38)

Comparing the terms involving covariant derivatives, we can immediately read off ∆H =
−iΠG. Plugging this back into (5.36) and eliminating ΠLoff

1/2 using (5.31), we find

0 = Q
(
B − i{G,H} − ΠG2

)
. (5.39)

Unless Π = 0, Q does not annihilate any scalar bilinears, and we conclude that

B = i{G,H}+ ΠG2. (5.40)

Equation (5.36) is now identically satisfied. Turning to the offdiagonal part of the su-
persymmetry condition, i.e. equation (5.37), and plugging in our above results as well as
(Q2G)cubic = −[H2, G] (see app B.5), we obtain

0 =
(
Q2G

)
linear

+ [C, iH + ΠG]. (5.41)

Using the expressions for (Q2G)linear derived in Appendix B.5, equation (5.41) may now
be recast as four first order ODEs for the coefficient functions b1,2, b̄1,2:

0 = ∂ϕ(Πb1)− i(c− 1)Πb1 ,

0 = ∂ϕ(Πb2)− ic(α + Πb2) ,

0 = ∂ϕ(Πb̄1) + i(c− 1)Πb̄1 ,

0 = ∂ϕ(Πb̄2) + ic(−ᾱ + Πb̄2) .

(5.42)

While for the unrotated scalars qa, q̄b we would have obtained four coupled equations, our
choice of basis (5.25) diagonalises this system, which is now readily integrated. Denoting by
ĉ(ϕ) the antiderivative of c(ϕ) and integration constants by β1,2, β̄1,2, the four independent
solutions are:

Πb1 = β1e−iϕ+iĉ , Πb2 = β2e+iĉ − α , Πb̄1 = β̄1e
+iϕ−iĉ , Πb̄2 = β̄2e

−iĉ + ᾱ . (5.43)
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Note that these functions are periodic if and only if ĉ(ϕ+ 2π)− ĉ(ϕ) ∈ 2πZ, or, equivalently,
if the 0-th Fourier coefficient of c(ϕ) is an integer.

To summarise: For Π 6= 0, the most general supersymmetric deformation of L1/2 pre-
serving a common supercharge Q is given by

L = L0 + QG+ i{G,H}+ ΠG2 + C, (5.44)

where the coefficient functions in G are given by (5.43). It is instructive to compare this
expression to our previous deformation (5.8). Equation (5.44) now contains a term linear in
G, while the quadratic term comes with a prefactor Π.

This construction, as well as the moduli spaces swept out by these deformations is the
subject of upcoming work [31]. Without presuming to give a full classification of the resulting
loops here, we conclude this chapter by remarking on two cases in particular.

5.3.3 Bosonic loops

Note that (5.31) implies that, as long as Π 6= 0, we are free to make the choice G =
−iΠ−1H, whose supersymmetry variation will precisely cancel the fermionic part Loff

1/2 of

the undeformed connection. Using (5.32) it is not hard to verify that this choice indeed
satisfies the supersymmetry condition (5.41). Indeed, it does so even for arbitrary C, as
is to be expected: As, by construction, bosonic superconnections are block-diagonal, they
will commute with any choice of C, which can then be exponentiated directly, and we
will therefore ignore. Physically, this freedom corresponds to the decoupling of the two
connections in the diagonal blocks: While previously the supersymmetry variation of the
compound superconnection was a total derivative, for block-diagonal connections it must
vanish outright for each block, and the corresponding Wilson loops preserve Q independently.

Consequently, the moduli space associated with each supercharge preserved by W1/2 that
satisfies Π 6= 0 contains a bosonic loop. The explicit form of the superconnection, up to C,
is readily obtained from (5.44) and (5.30):

Lbos = Ldiag
1/2 + Π−1H2 =

AI,ϕ + 2i
k

(
M b

a µ
a
I b − µ̃ 1̇

I 1̇

)
0

0 AI+1,ϕ + 2i
k

(
M b

a µ
a

I+1b − µ̃ 1̇
I+1 1̇

)
− 1

2

 ,

(5.45)

where the couplings to the scalars of the untwisted hypermultiplet are governed by

M b
a = Π−1Πacε

cb. (5.46)

Note that by tracelessness of the µ’s, M b
a may be freely shifted by a multiple of δba. For

specific choices of Q, this reproduces familiar operators previously described in the literature.
Consider for instance the supercharge Q = Q2̇2

l + Q1̇1
l̄

. It is easy to check that the only
nonzero component Πab is Π12 = 1, and the corresponding coupling matrix is easily seen to
be M b

a = −1
2
δ1
aδ
b
1 + 1

2
δ2
aδ
b
2, which exactly reproduces the N = 4 equivalent of the bosonic

loops (5.3) arising from the construction of Gaiotto and Yin [17]. More generally, we can
turn on explicit ϕ-dependence in a controlled fashion by considering a supercharge

Q = cos
θ

2
Q1̇1
l̄ + sin

θ

2
Q1̇2
r̄ + cos

θ

2
Q2̇2
l − sin

θ

2
Q2̇1
r . (5.47)
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After a brief calculation, we find

M = −1

2

(
cos θ sin θe−iϕ

sin θe+iϕ − cos θ

)
, (5.48)

and the resulting loops are just the bosonic latitudes (5.15).
However, while certainly the simplest application of the above technique, this construc-

tion of bosonic loops already yields some previously unknown operators: In general the
couplings to the scalar bilinears will be rational functions of e±iϕ, which have not previously
appeared in the literature.

5.3.4 Π = 0

So far, we have carefully avoided the case of supercharges Q which satisfy Q2 ∈ su(2)L ⊕
u(1)M̃⊥ , since in that case Π = 0. While (5.44) continues to yield supersymmetric loops for
these Q’s, it is no longer the most general deformation available to us. The reason for this is
threefold. Firstly, there are now fermionic terms which satisfy Qψ ∼ ∂ϕ q (as required), but
which cannot be written as ψ = Q q. Secondly, the rotation to the new frame r1, r2, r̄1, r̄2

for the scalars is no longer invertible. The third and perhaps most interesting reason is the
fact that Q now annihilates some scalar bilinears, specifically QH2 = 0, as implied by (5.31).
Therefore (5.39) no longer uniquely specifies the term B in our deformation. Instead, we find
that inserting completely arbitrary profiles of H2 into any loop preserving Q does not break
Q. These peculiar results warrant a closer look at the supercharges in question. From (5.22),
it is easy to translate the requirement Π = 0 into the conditions on η, η̄.

Indeed, the contributions of T± to Q2 vanish iff

0 = εabηlaη̄
l
b, 0 = εabηraη̄

r
b , (5.49)

or, in other words, if ηl, η̄l and ηr, η̄r, respectively, are linearly dependent:

ηla = tlwa , ηra = trza , (5.50)

η̄la = t̄lwa , η̄ra = t̄rza . (5.51)

Without loss of generality we can take v, w to be normalised. We find that

Π = (εabzawb) (εαβ t̄
αtβ),

λab = (εαβ t̄
αtβ)z(awb) +

1

2

(
0 1
1 0

)
αβ

t̄αtβ(εcdzcwd)εab.
(5.52)

If in addition we demand that Q2 does not contain any M‖, we must impose Π = 0.
By (5.52), there are two possibilities:

Π = 0 ⇐⇒

{
0 = εabzawb =⇒ λab = λba, Q2 ∈ su(2)L, or

0 = εαβ t̄
αtβ =⇒ λab = −λba, Q2 ∈ u(1)M̃⊥ .

(5.53)

a) Q2 ∈ su(2)L. Without loss of generality we can let z = w. We then have

Q2 ∼ wawb R
ab. (5.54)
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b) Q2 ∈ u(1)M̃⊥. In this case,

Q2 ∼ εabzawb M̃⊥. (5.55)

We see that Π can vanish in two distinct ways. While we no longer have the most
general supersymmetric deformations at our disposal, there are explicit examples of loops
continuously connected to W1/2, which are associated with either of these cases. Indeed, the
loops defined by superconnections

L1/8 = L1/2 + t∆L1/8, (5.56)

∆L1/8 =

(
−2i

k
νI i

(
ᾱψI1̇− − ᾱ′ψI2̇+

)
−i
(
αψ̄1̇

I+ + α′ψ̄2̇
I−

)
−2i

k
νI+1 + 1

)
, (5.57)

with parameters ᾱ′α′ = 2i/k are 1/8-BPS for all values of t. The preserved supercharges

Q
1/8
1 ≡ αQ1̇1

l̄
− α′Q2̇1

l and Q
1/8
2 ≡ αQ1̇2

l̄
− α′Q2̇2

l generate su(2)L,

{Q1/8
1 ,Q

1/8
1 } = −αα′R+, (5.58)

{Q1/8
1 ,Q

1/8
2 } = αα′R3, (5.59)

{Q1/8
2 ,Q

1/8
2 } = αα′R+, (5.60)

and therefore correspond to case a). Note that this deformation is linear, as is the one
obtained from (5.44) when setting Π = 0. Furthermore, a close comparison with (5.18)
shows that at t = 1, we obtain another 1/2-BPS loop preserving the same supercharges as
W1/2.

By a slight modification of this deformation, we find a 1/4-BPS linear deformation real-
ising case b): The loops associated with

L1/4 = L1/2 + t∆L1/4, (5.61)

∆L1/4 =

(
−2i

k
νI i

(
ᾱψI1̇− − ᾱ′e+iϕψI2̇+

)
−i
(
αψ̄1̇

I+ + α′e−iϕψ̄2̇
I−

)
−2i

k
νI+1

)
(5.62)

preserve the supercharges

Q
1/4
1 ≡ αQ1̇1

l̄ − α
′Q2̇1

r ,

Q
1/4
2 ≡ αQ1̇2

l̄ − α
′Q2̇2

r ,

Q
1/4
3 ≡ αQ1̇1

r̄ − α′Q2̇1
l ,

Q
1/4
4 ≡ αQ1̇2

r̄ − α′Q2̇2
l ,

(5.63)

whose only nonvanishing anticommutators are

{Q1/4
1 ,Q

1/4
4 } = −{Q1/4

2 ,Q
1/4
3 } = αα′M̃⊥. (5.64)

Like before, at t = 1, we obtain a 1/2-BPS loop, but in a gauge where phases are introduced
in the fermionic components.
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5.4 Discussion

The machinery presented in Section (5.3.2) yields a cornucopia of new supersymmetric Wil-
son loops. The first challenge that the further study of this space poses is to find some
criteria along which to classify these operators. For supercharges with Π 6= 0, the moduli
space is a finite dimensional cone which contains bosonic loops, not dissimilar to the spaces
studied in [21, 30]. By contrast, for supercharges with Π = 0 the moduli space is infinite
dimensional and the precise structure of the correct deformation is as of yet unclear. An
interesting set of questions arises in the intermediate case where Π does not vanish identi-
cally, but has one or more zeros on the unit circle. At these points, the coefficients in the
deformation become singular, and the notion of a continuous deformation itself breaks down.
It is therefore tempting to guess that the supercharges preserved by L1/2, and, by extension,
the associated Wilson loops, should be properly classified based on the analytic structure of
Π, concretely whether the two zeros of Π(z = e+iϕ) lie within or outside of the unit circle.

An ostensibly unrelated problem is that of symmetry enhancement. The generic loop
we have constructed is 1/16-BPS, but we expect large subspaces where supersymmetry is
enhanced to 1/8 or even 1/4-BPS, as happens for instance for the bosonic latitude and the
two examples given in Section 5.3.4. The simplest strategy for finding these loops is to
carefully examine the bosonic symmetries preserved by a loop, and to explicitly compute
the commutators with the preserved supercharge. While loops preserving some amount of
R-symmetry are easy to spot, the situation is more involved for special conformal and mixed
symmetries. A somewhat more abstract geometric approach is to consider intersections
of the moduli spaces constructed above for different supercharges. Ultimately, it would
be desirable to entirely classify the possible subalgebras of the 1/2-BPS algebra (2|2) and
establish a correspondence with classes of Wilson loops preserving them.

These and related questions are the subject of ongoing work [31], which we hope to report
progress on soon.

69



Chapter 6

Conclusion

A recent surge of interest in the world of defect operators in supersymmetric field theories
notwithstanding, there still remain many blank spots on the map, ripe for exploration. The
efforts at unraveling the space of BPS defects have been continuously progressing both in
breadth and in depth: On one hand, many more such operators have been found in recent
years, and an algebraic classification of superconformal defects, while at this stage still in
its infancy, is now underway [126]. On the other hand, the study of individual defects
has seen great advances, and various methods that were previously used to study specific
defects have gradually been developed into a set of tools that may be applied to defects of
any codimension. The work presented in this thesis is intended to foray, along these two
paths, into two distinct areas which, while far from uncharted territory, have only recently
become navigable terrain. Firstly, we established an important supply route for the study
of defects in the N = (2, 0) theory by giving an explicit definition of a locally BPS surface
operator in the abelian case, whose conformal anomaly we computed. In order to bridge the
chasm between the abelian theory and the holographic result at large N , we then provided
a more algebraic characterisation of these objects in terms of its dCFT, which relies only
on the preserved symmetry algebra and applies at all N , and whose results agree with
the explicit computations. Secondly, we elucidated the structure of known circular Wilson
loops in ABJM theory and its less supersymmetric cousins by giving a unified description
of their construction and identifying the moduli space formed by these operators. We then
proceeded to generalise our deformation approach to the N = 4 case, obtaining many new
line operators preserving various amounts of superconformal symmetry, and paving the way
for a full classification of these objects in the future.

Comparing these two approaches, there are many immediate extensions of this work,
many of which are already being pursued. For one, globally BPS defects in the N = (2, 0)
theory were constructed from our definition by choosing the underlying surface and scalar
coupling judiciously, revealing a rich spectrum of operators preserving different amounts of
superconformal symmetry [82]. In the same work, the M2-brane configurations dual to these
operators in the fundamental representation were given. By analogy with Wilson loops in
N = 4 super-Yang-Mills theory, whose holographic duals in the antisymmetric representation
are given by D5-branes rather than strings [146], it has been argued that the analogous
holographic duals to surface operators in high-dimensional representations are given by M5-
branes, which are stabilised in the interior of AdS7 × S4 by the four-form flux associated
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with the supergravity solution and which locally resemble AdS3 × S3, with the three-sphere
shrinking towards the conformal boundary. Computing the conformal anomaly according to
this prescription would provide a vital data point in understanding the behaviour of these
operators for more general representations.

Similar questions arise for Wilson loops in ABJM and related theories. In particular, the
existence of a continuous, and, indeed, in some cases infinite dimensional moduli space of
Wilson loops suggests a continuum of dual brane configurations, which until now have not
been properly understood, even for the fundamental representation (see [30] for an account
of the state of the art). Furthermore, while dCFT techniques have been applied with some
success to both the bosonic and the 1/2-BPS loop [121, 147], a systematic treatment is still
lacking. It may be illuminating to reexamine the deformations of superconnections we have
considered in this work through the lens of coherent insertions of defect operators. A more
intrinsic geometric understanding of the moduli spaces themselves is also desirable: The
form of the deformation Q(·) + {H, ·} + (·)2 is suggestive of a “supercovariant derivative”
structure associated with translations along the moduli space, which would be interesting to
develop further.

Finally, throughout this thesis, we have adopted a point of view that treats defects as
nondynamical external probes, which are at most subject to infinitesimal excitations. This
paradigm for instance allows us to interpret a Wilson loop as encoding the forces acting
on, and energy radiated by, a heavy quark dragged along a given path, and is therefore
heuristically useful. The defect operators we have considered in this thesis are, however,
worth considering in their own right, as integral constituents of the theories they live in.
In particular, it has long been hypothesized that the worldvolume of a stack of M5-branes
supports a theory of selfdual strings, corresponding to M2-branes stretching between the
M5’s [22, 39, 148], of which the surface defects considered here are merely the large tension
limit. The nature of these strings is still more obscure than that of the N = (2, 0) theory
itself, but gradually our improved understanding of surface defects may allow us to color in
some parts of the map.
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Appendix A

Surfaces

A.1 Conventions

In Chapters 3 and 4 we work in Minkowski space with mostly positive signature. We make
use of the following indices:

Index Usage
M = 1, . . . , 11 11d spacetime vector XM

A = 1, . . . , 32 11d spinors
µ = 1, . . . , 6 6d spacetime vectors xµ

α (α̇) = 1, . . . , 4 6d chiral (antichiral) spinors
i = 1, . . . , 5 R-symmetry vectors
α̌ = 1, . . . , 4 R-symmetry spinors
a′ = 1, . . . , 4 spacetime vectors orthogonal to the surface
a = 1, 2 worldsheet coordinates σa

â = 1, 2, 3 worldvolume coordinates σ̂â

Our usage of spinors is restricted to the supersymmetry transformations (3.8) and (3.46)
but we include our conventions for completeness. In general we follow the NW-SE convention
for index contraction:

Φ̄Ψ ≡ Φ̄AΨA . (A.1)

The conjugate and transpose act as

(ΨA)∗ = (Ψ∗)A ,
(
CAB

)T
= CBA . (A.2)

Below we detail the properties of gamma matrices in d = 11 and d = 6, and we state the
reality condition on spinors. More details can be found in [83] and references therein.

A.1.1 d = 11 Clifford algebra

The 11d Clifford algebra is generated by the set of matrices (ΓM) B
A satisfying

{ΓM ,ΓN} = 2ηMN . (A.3)
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Here for readability M is used for flat spacetime, unlike (3.46) where it denotes curved
spacetime.

The matrices may be chosen such that Γ†0 = −Γ0 is antihermitian while the others are
hermitian Γ†M = ΓM (M 6= 0). In addition, there is an orthogonal, real anti-symmetric

matrix CAB such that ΓMC = − (ΓMC)T . C naturally defines a real structure by relating Ψ
and Ψ† as

Ψ̄ ≡ −iΓ0Ψ† = C†Ψ. (A.4)

This is the Majorana condition.

A.1.2 d = 6 Clifford algebra

An easy way to construct the 6d Clifford algebra is to decompose ΓM = {Γµ,Γi} by intro-
ducing a chirality matrix Γ∗ = Γ0Γ1Γ2Γ3Γ4Γ5. The matrices are then (in the chiral basis)

Γµ =

(
0 γ̄µ
γµ 0

)
⊗ I4 , Γi =

(
−I4 0

0 I4

)
⊗ γ̌i , Γ∗ =

(
−I4 0

0 I4

)
⊗ I4 , (A.5)

where the algebra is

γ̄µγν + γ̄νγµ = 2ηµν , γµγ̄ν + γν γ̄µ = 2ηµν , {γ̌i, γ̌j} = 2δij . (A.6)

Since γµ and γ̌i commute, they define independent spinor representations. Explicitly, we

decompose A = (α̇ ⊕ α) ⊗ α̌, so that the indices are (γµ) β̇
α , (γ̄µ) β

α̇ and (γ̌i)
β̌
α̌ . The chiral

and antichiral representations are related through

γ̄†µ = γ0γ̄µγ0 ⇒
{
γ̄†0 = −γ0 ,
γ̄†µ = γµ , µ 6= 0 .

(A.7)

The chirality operator gives 2 additional constraints

γ012345 = I , γ̄012345 = −I , (A.8)

with γµν...ρ ≡ γ[µγ̄ν . . . γρ] the antisymmetrised product of γ-matrices.1 The charge conjuga-
tion matrix takes the form

CAB =

(
0 cα̇β
cαβ̇ 0

)
⊗ Ωα̌β̌ , c ≡ cα̇β , (A.9)

and is used to lower (or raise) spinor indices. The matrix Ωα̌β̌ is the real, antisymmetric
symplectic metric of sp(4) and c is unitary:

c†c = cαα̇cα̇β = δβα , c∗cT = cα̇αcαβ̇ = δβ̇α̇ , Ω†Ω = Ωα̌β̌Ωβ̌γ̌ = δα̌γ̌ . (A.10)

They satisfy

(γµc) = − (γµc)
T ,

(
γ̄µc

T
)

= −
(
γ̄µc

T
)T

, (γ̌iΩ) = − (γ̌iΩ)T . (A.11)

1(Anti-)symmetrisation is understood with the appropriate combinatorial factors, i.e. A[ab] = 1
2Aab−Aba.
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A representation of this algebra is given by

γ0 = γ̄0 = iI2 ⊗ I2 , γ1 = −γ̄1 = −iσ1 ⊗ I2 , γ2 = −γ̄2 = −iσ2 ⊗ I2 ,

γ3 = −γ̄3 = iσ3 ⊗ σ1 , γ4 = −γ̄4 = iσ3 ⊗ σ2 , γ5 = −γ̄5 = −iσ3 ⊗ σ3 ,

γ̌1 = σ1 ⊗ σ2 , γ̌2 = σ2 ⊗ σ2 , γ̌3 = σ3 ⊗ σ2 , γ̌4 = I2 ⊗ σ1 , γ̌5 = I2 ⊗ σ3,

c = −cT = σ1 ⊗ iσ2 , Ω = iσ2 ⊗ I2 . (A.12)

A.1.3 Symplectic Majorana condition

In 6d the spinor Ψ decomposes into a chiral and an antichiral 6d spinor as

ΨA =

(
χ̄α̇α̌
ψαα̌

)
, Ψ̄A ≡

(
−i(ψ†)αα̌(γ0) α̇

α −i(χ̄†)α̇α̌(γ̄0) α
α̇

)
≡
(
ψ̄α̇α̌ χαα̌

)
. (A.13)

The Majorana condition on Ψ then translates to

χαα̌ = (c†Ω†χ̄)αα̌ = (cΩχ̄)αα̌ , ψ̄α̇α̌ = (c∗Ω†ψ)α̇α̌ = −(cΩψ)α̇α̌ , (A.14)

where in the second equality we use the properties of our representation. The inclusion of
the symplectic form Ω in (A.14) is the reason these equations are known as the symplectic
Majorana condition. The spinors ε̄0, ε1, and ψ in (3.8) are of this type.

A.2 Geometry of submanifolds

In this appendix we assemble the geometry results used throughout Chapters 3 and 4 as
well as in Appendix A.3. Sections A.2.1 and A.2.2 contain our conventions for Riemann
curvature and the definition of the second fundamental form of an embedded submanifold
as well as some standard results relating the two. In Section A.2.3 the second fundamental
form is related to the coefficients of the normal coordinate expansion of the embedding.

A.2.1 Riemann curvature

We adopt the convention where the Riemann tensor is defined as

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµνρ + ΓµρλΓ

λ
νσ − ΓµσλΓ

λ
νρ . (A.15)

It is convenient to split it into a conformally invariant Weyl tensor Wµνρσ and the Schouten
tensor Pµν ,

Pµν =
1

d− 2

(
Rµν −

R

2(d− 1)
gµν

)
, (A.16)

Wµνρσ = Rµνρσ − gµρPνσ + gµσPνρ + gνρPµσ − gνσPµρ . (A.17)
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A.2.2 Extrinsic curvature

We define the second fundamental form to be

IIµab =
(
∂a∂bx

λ + ∂ax
ρ∂bx

σΓλρσ
)

(δµλ − gκλ∂
cxκ∂cx

µ) . (A.18)

The second part is the projector to the components orthogonal to the surface (defined by
its embedding xµ(σ)), while the first part is the action of the covariant derivative on the
(pullback) of xλ(σ). The mean curvature vector is then

Hµ = hab IIµab . (A.19)

These invariants are related to the intrinsic curvature of Σ and M by the Gauss-Codazzi
equation

RΣ
abcd = RM

abcd + 2IIµa[b II
ν
c]dgµν . (A.20)

Contracting twice with h−1 and expanding the Riemann tensor in terms of the Weyl and
Schouten tensors, we obtain(

H2 + 4TrP
)

= 2RΣ + 2Tr ĨI
2
− 2TrW , (A.21)

where ĨI
µ

ab is the traceless part of the second fundamental form

ĨI
µ

ab = IIµab −
Hµ

2
hab . (A.22)

A.2.3 Embedding in normal coordinates

Using these standard geometry results, we now derive the expressions needed for (3.27)
and (3.33). Unlike in Section 3.3, we state here the result for a generic curved spacetime M .
This allows us to perform the calculation in Appendix A.3 on curved space.

Let xµ and ηa be Riemann normal coordinates on M and Σ about the same point. In
terms of these, the embedding Σ ↪→M may be expanded as

xµ (η) = xµ(0) + ηavµa +
1

2
ηaηbvµab +

1

6
ηaηbηcvµabc +O(η4) . (A.23)

These coefficients are constrained by the condition that straight lines in normal coordinates
correspond to geodesics. In particular, a curve on Σ given by a straight line in η has constant
speed and its curvature in M is normal to Σ at every point, which gives the constraints

δab = va · vb ,
0 = vab · vc ,
0 = 3 vd · vabc + vab · vcd + vac · vbd + vad · vbc .

(A.24)

Using (A.18) one easily checks that the second order coefficient equals the second fundamen-
tal form

IIµab|η=0 = vµab . (A.25)
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The geodesic distance between ξ(η) and the origin of the normal frame is found from (A.23)

|x(η)− x(0)|2 = ηaηa −
1

12
IIab · IIcdηaηbηcηd +O(η5) . (A.26)

Furthermore, in normal coordinates, the metrics take the form

gµν = δµν −
1

3
RM
µρνσξ

ρξσ +O(ξ3) ,

hab = δab −
1

3
RΣ
acbdη

cηd +O(η3) ,
(A.27)

which yields an expansion for the volume factor√
h(η) = 1− 1

6
RΣ
abη

aηb +O(η3) . (A.28)

A.3 Geodesic point-splitting

In this appendix we present an alternative regularisation of (3.13), essentially point splitting,
displacing one copy of the surface operator by a distance ε in an arbitrary normal direction
ν. This regularisation is used in [27,67], but there the vector ν is taken to be a constant, and
therefore the method is only applicable if the operators are restricted to a codimension-one
subspace.

The technology used to define this regularisation scheme applies for generic smooth em-
bedded surfaces in a Riemannian manifold, and we present here a curved space calculation,
as opposed to Section 3.3.3, where for brevity we restricted ourselves to flat space. However,
we still have to restrict to conformally flat backgrounds, since otherwise we do not have
a short-distance expansion for the propagator and therefore still cannot infer the anomaly
coefficient b.

As expected, we recover the result (3.36) exactly, and thus verify scheme-independence.

A.3.1 Displacement map

We can regularise the integral (3.13) by displacing a copy of the surface a distance ε along
a unit normal vector field ν. Under that map, which we denote by T , the geodesic distance
admits an expansion of the form

|T (xµ(σ))− xµ(σ + η)|2 = ε2 + η2 +
∞∑
k=3

k∑
l=0

f
(k)
l ηlεk−l . (A.29)

We can combine the terms of fixed k in terms of degree k polynomials f (k)

k∑
l=0

f
(k)
l ηlεk−l = εkf (k)(η/ε) . (A.30)
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We calculate the higher order terms in (A.29) explicitly in (A.35), but first we note that the
only terms contributing to the divergent part are f (3) and f (4). To see that, the integrals
computing the expectation value take the form

ρ∫
0

ηm+1dη

|T (xµ(σ))− xµ(σ + η)|4
, (A.31)

where ρ is an arbitrary but fixed IR cutoff. We can evaluate (A.31) by expanding the
integrand in ε. Writing s ≡ η/ε, we obtain

εm−2

ρ/ε∫
0

sm+1

(1 + s2)2

[
1− 2f (3)(s)

1 + s2
ε+

(
3(f (3)(s))2

(1 + s2)2
− 2f (4)(s)

1 + s2

)
ε2 +O(ε3)

]
ds . (A.32)

By application of Faà di Bruno’s formula one checks that the terms in brackets of order
εn contribute to the divergence only if m + n ≤ 2. We can therefore safely ignore higher
orders in ε. Only a finite number of terms remains to be computed and we find that the only
divergent integrals (A.31) are:

m = 0 :
1

2ε2
− 1

8ε

(
4f

(3)
0 + πf

(3)
1 + 4f

(3)
2 + 3πf

(3)
3

)
+
(
−3(f

(3)
3 )2 + 2f

(4)
4

)
log ε , (A.33a)

m = 1 :
π

4ε
+ 2f

(3)
3 log ε , (A.33b)

m = 2 : − log ε . (A.33c)

The relevant coefficients can be read off of the expansion of the geodesic distance up
to combined order of 4 in η and ε. The second term on the left hand side of (A.29) can
be expanded simply using the embedding (A.23). For the first term, we solve the geodesic
equation order by order in the displacement ε to obtain

T (xµ) = xµ + ενµ − ε2

2
Γµκλν

κνλ +
ε3

6

(
−∂νΓµρσ + 2ΓµνλΓ

λ
ρσ

)
νννρνσ +O(ε4) . (A.34)

Combining these expressions, and writing ηa = ηea(ϕ) as in (3.29) and onwards, the only
two non-vanishing relevant coefficients read

f
(3)
2 = −eaeb IIab · ν ,

f
(4)
4 = − 1

12
eaebeced IIab · IIcd .

(A.35)

The first contributes to a scheme-dependent divergence ε−1, while the second contributes to
the anomaly.

A.3.2 Evaluation of the anomaly

With the displacement map (A.34) in hand, we can evaluate (3.13). The propagators on
a conformally flat background can be obtained by considering curved space actions for a
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conformal scalar and a Maxwell-type 2-form and inverting the kinetic operators order by
order, following [27] and [65]. We find:

〈Φi(x)Φj(x+ ξ)〉 =
δij

π2 |ξ|4

[
1 +

1

3
Pµνξ

µξν +O(ξ3)

]
, (A.36)

〈
B+µν(x)B+

ρσ(x+ ξ)
〉

=
1

4π2 |ξ|4
[
δρµδ

σ
ν − δρνδσµ (A.37)

− 4

3

(
4P

[µ
[ρ δ

ν]
σ]δλτ + Pλ[ρδ

[µ
σ]δ

ν]
τ + δλ[ρP

[µ
σ] δ

ν]
τ

)
ξλξτ +O(ξ3)

]
.

To apply our regularisation, we should replace ξ by (A.29) in the denominator of the propaga-
tors before performing the integral over η. A priori, we should also perform the displacement
in the numerator, since a term of orderO(ε) can contribute to the ε−1 divergence by multiply-
ing (A.33a). However, one easily checks that the only terms of that order are accompanied
by nonzero powers of η, and therefore do not contribute to the divergence of (3.13). We
therefore drop the ε in the numerators of the propagators.

The expansion of the numerators is then assembled, as before, from (3.27) and (3.33),
but in addition, since we are working on curved space, we obtain an additional term at
O(η2) explicitly involving TrP from the propagators (A.36). Collecting terms in analogy to
Section 3.3.3, and integrating out the angular coordinate using (3.29), we obtain the scalar
contribution

1

2πε2
+
H · ν
4πε

+
1

16π

(
2RΣ −

(
H2 + 4TrP

)
+ 4 (∂n)2) log ε+ finite, (A.38)

while the tensor field yields

− 1

2πε2
− H · ν

4πε
− 1

16π

(
−2RΣ + 3

(
H2 + 4TrP

))
log ε+ finite. (A.39)

Combining these terms, we find

log 〈VΣ〉 =
1

4π
log ε

∫
Σ

volΣ
[
RΣ −

(
H2 + 4TrP

)
+ (∂n)2]+ finite, (A.40)

which agrees exactly with (3.36). Note that the scheme dependence, which is present in the
simple pole of both (A.38) and (A.39), cancels in the final result, and the terms H2 and TrP
combine to an anomaly term as in (3.4), as required.

A.4 Conformal Ward identities for defect correlators

In this appendix, we derive explicit expressions for the structure of the expectation values of
stress tensor primaries in the presence of a flat conformal surface defect. Up to overall nor-
malisation constants, which we further constrain in Section 4.3 using supersymmetry, these
correlators are completely fixed by the bosonic symmetries (conformal and R-symmetry)
preserved by the defect. We consider both defects with an insertion of a single primary of
the displacement operator multiplet, and defects without such insertions. For brevity, we
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do not give an exhaustive list of such correlators and instead focus on those we require in
the main text. More specifically, we compute only the expectation values of the primaries in
the stress tensor multiplet, and some 2-point functions involving low-level primaries, namely
OIJ , χIαα̌, H

I
λµν in the stress tensor, and Oi,Qαα̌ in the displacement multiplet. The remaining

correlators can of course be calculated using the same method.
We proceed in two steps. First, we fix the dependence on σ and x by implementing the

Ward identities associated with the conformal symmetry preserved by the defect as well as
transverse rotational symmetry. For clarity, in this calculation we suppress the R-symmetry
indices of the operators and leave the scaling dimensions general. Indeed, as much of the
kinematics is easily generalised to defects of dimension p in arbitrary spacetime dimension
d = p + q, we state the more general result wherever we can do so without obscuring
the results we presently need. Secondly, we fix the R-symmetry tensor structure of these
correlators by demanding invariance under the residual so(4)R symmetry. Throughout, we
denote generic operators in the bulk O and on the defect Ô.

Many of the kinematical results have been obtained by different methods in the past. In
particular, the embedding space formalism allows for the efficient computation of bosonic
correlators [120]. However, it is not straightforwardly applicable to correlators involving
fermions.

A.4.1 Defect without insertions

We want to solve the constraints that the residual conformal symmetry places on expectation
values of the form 〈OV 〉 with O a bulk operator of scaling dimension ∆. The representation
of the conformal algebra (A.60) acting on O is given in terms of the representation of O
under Lorentz transformations Sµν and is

Pµ = ∂µ, Mµν = 2x[µ∂ν] + Sµν , D = −xµ∂µ −∆ ,

Kµ = x2∂µ − 2xµ(xν∂ν + ∆) + 2xνSνµ.
(A.41)

Treating separately the coordinates along the plane σa and tranverse xm, translation invari-
ance on the plane implies that 〈O(σ, x)V 〉 is a function of xm only. The other Ward identities
can be cast into the form:

0 = Sab〈OV 〉 ,
0 = (xm∂m + ∆) 〈OV 〉 ,
0 = xmSam〈OV 〉 ,
0 = (xm∂n − xn∂m) 〈OV 〉+ Smn〈OV 〉 .

(A.42)

These constraints are now straightforwardly solved. We focus on scalars O, vectors jµ,
selfdual 3-forms Hλµν and traceless symmetric 2-tensors Tµν , as operators of those types
make up the bosonic degrees of freedom of the stress tensor multiplet, while the correlators
of fermionic operators with a scalar defect vanish identically.

For a Lorentz scalar O, all Sµν vanish and the conformal Ward identities (A.42) are
immediately solved to give

〈O(σ, x)V 〉 =
hO
x∆

, (A.43)
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with hO an as yet undetermined constant.
The transformation law for a vector reads

(Sµνj)ρ = δµρjν − δνρjµ , (A.44)

which, plugged into (A.42) eventually leads to2

〈jaV 〉 = 〈jmV 〉 = 0. (A.45)

For higher spin bosonic operators, each Lorentz index separately transforms as (A.44).
For a 3-form Hλµν , the Ward identities (A.42) imply that the only components with nonva-
nishing expectation value in the presence of V are Habm and Hlmn, and furthermore restricts
the available terms for their one-point functions to

〈Habm(x)V 〉 ∼ εabxm
x∆+1

, 〈Hlmn(x)V 〉 ∼ εlmnpx
p

x∆+1
. (A.46)

In this work, we are concerned with 3-forms which come with a selfduality condition, which
serves to relate the proportionality constants in (A.46). We are left with

〈Habm(x)V 〉 = hH
εabxm
x∆+1

, 〈Hlmn(x)V 〉 = hH
εlmnpx

p

x∆+1
. (A.47)

Lastly, we repeat the same analysis for a symmetric traceless 2-tensor. Exactly the same
line of argument as above yields

〈Tab(x)V 〉 =
hT
x∆

δab , 〈Tam(x)V 〉 = 0 ,

〈Tmn(x)V 〉 =
hT
x∆+2

(
2xmxn − x2δmn

)
.

(A.48)

We are now in a position to construct the correlator of V with any bosonic primary in the
stress tensor multiplet. To that end, recall that, under the unbroken so(5)R, OIJ and HI

λµν

transform as a symmetric traceless 2-tensor and a vector, respectively, while the stress tensor
Tµν is an R-symmetry singlet.3 Without explicitly applying the Ward identities associated
with the preserved so(4)R, we can fix the R-symmetry structure of the 1-point functions by
writing down the available terms and, for OIJ , implementing tracelessness. Plugging in the
correct scaling dimensions ∆O = 4, ∆H = 5, and ∆T = 6, we find the only nonvanishing
1-point functions of stress tensor primaries in the presence of V are (4.21).

2More generally, for a p-dimensional defect in a spacetime of dimension d = p+ q, one obtains

〈ja(x)V 〉 = 0 , (q − 2)〈jm(x)V 〉 = 0 .

Indeed, for q = 2, the transverse components of j can take the form

〈jm(x)V 〉 ∼ εmnx
n

x∆+1
,

which is compatible with conservation.
3The R-symmetry current jIJµ transforms as an antisymmetric tensor, but as seen above, its 1-point

function vanishes identically regardless of the R-symmetry structure.
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A.4.2 Defect with an insertion

We now repeat the above discussion for correlators
〈
O(σ, x)V [Ô(σ′)]

〉
involving a defect

with an insertion of a displacement multiplet primary. The kinematical analysis is more
involved than, but technically very similar to, the previous subsection. We use translation
invariance to center Ô at σ′ = 0 and suppress the arguments of O(σ, x). The conformal
Ward identities may be cast into the form:

0 =
(

(σa∂b − σb∂a) + Ŝab + Sab

)〈
OV [Ô]

〉
,

0 =
(

(xm∂n − xn∂m) + Ŝmn + Smn

)〈
OV [Ô]

〉
,

0 =
(
σa∂a + xm∂m + ∆ + ∆̂

)〈
OV [Ô]

〉
,

0 =
(

2xmSam + 2σbSab + 2∆̂σa + (σ2 + x2)∂a

)〈
OV [Ô]

〉
.

(A.49)

For the simplest case of a scalar O on the defect and a scalar O in the bulk, (A.49) become
particularly simple, and imply4

〈O(σ, x)V [O]〉 =
COO

x∆−∆̂(σ2 + x2)∆̂
, (A.50)

with COO some normalisation constant.
For a defect scalar O and a bulk vector jµ we obtain:

〈ja(σ, x)V [O]〉 =
CjOσa

x∆−∆̂−1(σ2 + x2)∆̂+1
,

〈jm(σ, x)V [O]〉 =
CjO(x2 − σ2)xm

2x∆−∆̂+1(σ2 + x2)∆̂+1
.

(A.51)

Indeed, these correlators are exactly the same for defects of generic dimension and codimen-
sion. It is easily checked that (A.51) is compatible with conservation of j in the bulk if and
only if ∆ = d− 1 and ∆̂ = p, which is indeed satisfied by the displacement superprimary Oi

and the bulk R-symmetry current jIJµ . The conservation equation

∂µ〈jµ(σ, x)V [O]〉 = 〈V [O(σ)O(0)]〉, (A.52)

then allows us to fix CO in terms of COj in equation (4.33). For the remaining required bosonic
correlator, consider a defect scalar O and a bulk 3-form Hλµν . The conformal Ward identities
(A.49) imply that the only components of the correlator that do not vanish identically are

〈Habm(σ, x)V [O]〉 =
hHεabxm

x∆−∆̂+1(σ2 + x2)∆̂
,

〈Hlmn(σ, x)V [O]〉 =
hHεlmnpx

p

x∆−∆̂+1(σ2 + x2)∆̂
,

(A.53)

4In particular, inserting for O the defect identity operator 1V , we recover the form of (A.43), as expected.
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where, as for the 1-point function, we have used the selfduality of Hλµν to relate the two
normalisation constants. Lastly, we compute the only correlator of fermions that we require
in our analysis. Consider a bulk chiral spinor χα and a defect chiral spinor Qα.5 Their
transformation laws are familiar:

(Sµνχ)α =
1

2
(γµν)

β
α χβ , (SabQ)α =

1

2
(γab)

β
α Qβ , (SmnQ)α =

1

2
(γmn) β

α Qβ .

(A.54)
In order to apply the Ward identities (A.49), we expand 〈χαV [Qβ]〉 in terms of antisym-
metrised products of gamma matrices. The only such matrices with the appropriate chirality
properties are γµ and γµνρ (we can omit γµνρστ since it is related to γµ by duality):

〈χαV [Qβ]〉 = aµ (γµc)αβ +
1

3!
bλµν

(
γλµνc

)
αβ
. (A.55)

Writing out and simplifying the conformal Ward identities explicitly then leads to

〈χα(σ, x)V [Qβ]〉 =
cχQ [(σaγ

a + xmγ
m)c]αβ

x∆−∆̂
√
σ2 + x2

1+2∆̂
. (A.56)

Having completed the kinematic analysis, we can now restore the R-symmetry structure
in order to construct the full bulk-defect 2-point functions. The Ward identities associated
with the generators of so(4)R decouple from the kinematics, and therefore take a purely
algebraic form (with R, R̂ the representations of O, Ô)

0 =
(
Rij + R̂ij

)〈
OV [Ô]

〉
. (A.57)

Among the bosonic 2-point functions we consider, the only nonvanishing ones are (we again
suppress coordinate dependence and Lorentz indices):〈

Oi5V [Oj]
〉
∼ δij ,

〈
ji5V [Oj]

〉
∼ δij ,

〈
H iV [Oj]

〉
∼ δij . (A.58)

To restore the correct R-symmetry structure of the fermionic 2-point function, recall that
χIαα̌ transforms in the tensor product of the vector and spinor representation of so(5)R and
is subject to a constraint γ̌Iχ

I = 0, while Qαα̌ transforms as an ordinary R-symmetry spinor
but obeys a constraint Π+Q = 0 mixing Lorentz and R-symmetry. Since we only need the
correlator involving χ5

α̌, we make the ansatz〈
χ5
α̌Qβ̌

〉
∼
(
γ̌5
)
α̌β̌
, (A.59)

which is indeed compatible with (A.57).
With the kinematical data and R-symmetry structure in hand, we can now assemble the

full 2-point functions. Plugging in the correct defect operator scaling dimensions ∆O = 2
and ∆Q = 5/2, we obtain (4.26).

5Since ultimately we are interested in a defect operator defined in terms of a chiral fermionic bulk current,
we take Q to transform as a spinor under both parallel and transverse rotations, and consider only chiral
objects.
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A.5 Algebras

In this appendix we collect some results on the algebras osp(8∗|4) and osp(4∗|2)⊕ osp(4∗|2).
For a general reference on Lie superalgebra, see [149,150] and references therein.

A.5.1 The algebra osp(8∗|4)

The quaternionic orthosymplectic algebra osp(8∗|4) = D(4, 2) is a 6d superconformal algebra
containing 38 bosonic and 32 fermionic generators.6 Its bosonic part so(2, 6)⊕so(5) contains
a 6d conformal algebra

[Mµν ,Mρσ] = 2ησ[µMν]ρ − 2ηρ[µMν]σ , [Pµ,Kν ] = 2 (Mµν + ηµνD) ,

[Mµν ,Pρ] = 2P[µην]ρ , [Mµν ,Kρ] = 2K[µην]ρ ,

[D,Pµ] = Pµ , [D,Kµ] = −Kµ ,
(A.60)

along with an so(5) R-symmetry

[RIJ ,RKL] = 2δK[IRJ ]L − 2δL[IRJ ]K . (A.61)

The fermionic generators Q and S̄ form a representation under that bosonic algebra and obey

[Mµν ,Qαα̌] = −1

2
(γµνQ)αα̌ ,

[
Mµν , S̄α̇α̌

]
= −1

2

(
γ̄µν S̄

)
α̇α̌

,

[Kµ,Qαα̌] =
(
γµS̄
)
αα̌

,
[
Pµ, S̄α̇α̌

]
= (γ̄µQ)α̇α̌ ,

[D,Qαα̌] =
1

2
Qαα̌ ,

[
D, S̄α̇α̌

]
= −1

2
S̄α̇α̌ ,

[RIJ ,Qαα̌] =
1

2
(γ̌IJQ)αα̌ ,

[
RIJ , S̄α̇α̌

]
=

1

2

(
γ̌IJ S̄

)
α̇α̌

.

(A.62)

Finally, the anticommutator of Q generates a translation P, while the anticommutator of S̄
generates a special conformal transformation K{

Qαα̌,Qββ̌

}
= 2 (γµc)αβ Ωα̌β̌P

µ ,
{
S̄α̇α̌, S̄β̇β̌

}
= 2

(
γ̄µc

T
)
α̇β̇

Ωα̌β̌K
µ ,{

Qαα̌, S̄β̇β̌
}

= 2

[(
D +

1

2
γµνM

µν + γ̌IJR
IJ

)
cTΩ

]
αβ̇α̌β̌

.
(A.63)

All the other commutators vanish.
Note that this algebra has a natural structure in terms of supermatrices. This point of

view, along with its relation to the 6d algebra presented above, is elaborated in [83]. We also
note that the so(5) generators can be expressed in terms of sp(2) generators by the relation

Uα̌β̌ =
1

2
(γ̌IJΩ)α̌β̌ R

IJ , RIJ = −1

4

(
Ω†γ̌IJ

)α̌β̌
Uα̌β̌ . (A.64)

The appropriate commutators are then[
Uα̌β̌,Uγ̌δ̌

]
= 2Ωα̌(γ̌Uδ̌)β̌ + 2Ωβ̌(γ̌Uδ̌)α̌ ,[

Uα̌β̌,Qαγ̌

]
= 2Qα(α̌Ωβ̌)γ̌ ,

[
Uα̌β̌, S̄α̇γ̌

]
= 2S̄α̇(α̌Ωβ̌)γ̌ .

(A.65)

6More precisely, it is a real form of D(4, 2) given by P†µ = Kµ (which also implies (Qαα̌)† = Sαα̌) and
compatible with radial quantisation in Euclidean space. Hermitean generators can be obtained by redefining
all generators P→ iP.
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A.5.2 The subalgebra osp(4∗|2)⊕ osp(4∗|2)

In the presence of the plane, the original symmetry osp(8∗|4) is reduced to the subalgebra
osp(4∗|2)⊕ osp(4∗|2) [128], a real form of D(2, 1, α)⊕D(2, 1, α) with α = −1/2. Each copy
of the osp(4∗|2) is a (rigid) 1d superconformal algebra, whose bosonic part is

[P+,K+] = 2D+ , [D+,P+] = P+ , [D+,K+] = −K+ ,[
Ti(a),T

j
(b)

]
= −iδ(ab)ε

ijkTk(b), (a) = 1, 2.
(A.66)

In addition to the 1d conformal algebra, there are 2 additional su(2). Together, they form the
“chiral” part of the so(2, 2)‖⊕ so(4)⊥⊕ so(4)R preserved by the plane, with the “antichiral”
part (denoted by a “−” subscript) given by the other osp(4∗|2). They are related to the bulk
generators by

P± =
1

2
(P0 ± P1) , D± =

1

2
(D±M01) , K± =

1

2
(−K0 ± K1) , (A.67)

where for definiteness we assume that the plane spans the directions x0,1. The decomposition
of so(4)⊥,R is given by the ’t Hooft symbols

Ti1(1) =
i

4
ηi1mnM

mn , Ti2(2) = − i
4
ηi2ijR

ij , (A.68)

and similarly for T̄ in terms of the antichiral ’t Hooft symbols η̄.
In addition to these generators, the algebra includes supersymmetries Qα1α2 and special

supersymmetries Sα1α2 charged under both su(2). These satisfy

[K+,Qα1α2 ] = −iSα1α2 , [P+, Sα1α2 ] = iQα1α2 ,

[D+,Qα1α2 ] =
1

2
Qα1α2 , [D+, Sα1α2 ] = −1

2
Sα1α2 ,[

Ti1(1),Qα1α2

]
=

1

2
(σi1) β1

α1
Qβ1α2 ,

[
Ti1(1), Sα1α2

]
=

1

2
(σi1) β1

α1
Sβ1α2 ,[

Ti2(2),Qα1α2

]
=

1

2
(σi2) β2

α2
Qα1β2 ,

[
Ti2(2), Sα1α2

]
=

1

2
(σi2) β2

α2
Sα1β2 ,

(A.69)

where σi are the Pauli matrices. They anticommute to

{Qα1α2 ,Qβ1β2} = 2iεα1β1εα2β2P+ , {Sα1α2 , Sβ1β2} = 2iεα1β1εα2β2K+ ,

{Qα1α2 , Sβ1β2} = 2
[
εα1β1εα2β2D+ + (σi1ε)α1β1εα2β2T

i1
(1) − 2εα1β1(σ

i2ε)α2β2T
i2
(2)

]
.

(A.70)

The ratio α = −1/2 between the coefficients of T(1) and T(2) is a specific case of the excep-
tional Lie algebra D(2, 1;α) (see [151] for the algebra with general α and its Kac-Moody
extension).

The precise embedding of these supercharges inside Qαα̌ is obtained by restricting to the
preserved supercharges Π+Q = Q, where the projector is [28]

(Π±) ββ̌
αα̌ =

1

2
[1± γ01γ̌5] ββ̌

αα̌ , (Π±) β̇β̌
α̇α̌ =

1

2
[1∓ γ̄01γ̌5] β̇β̌

α̇α̌ , (A.71)
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which has a different expression acting respectively on chiral and antichiral representations.
This projector decomposes as

1

2
[1 + γ01γ̌5] =

1

2
[1 + γ01]

1

2
[1 + γ̌5] +

1

2
[1− γ01]

1

2
[1− γ̌5] , (A.72)

which gives, respectively for the two terms, two anticommuting supercharges Q̄α̇1α̇2 and
Qα1α2 . Their chirality is derived from the projector: (1 + γ01) projects onto the positive
chirality component, which is correlated with the positive chirality under so(4)⊥ since γ01 =
γ2345.

Subalgebra as an embedding inside osp(8∗|4)

Lastly, in Section 4.2 and 4.3 it is convenient to discuss the subalgebra directly within the
larger osp(8∗|4). Here we decompose some of the commutators of osp(8∗|4) into preserved
and broken generators directly with the projector. We make use of the following identities

Π†± = Π±, (Π±C)T = −Π±CT ,
[Π±,Γa] = [Π±, γ̌5] = 0 , (A.73)

Π±Γm = ΓmΠ∓, Π±Γi = ΓiΠ∓ .

Note that here we don’t differentiate between the action of Q and Q̄ for simplicity.
Using these properties, one can easily derive the induced subalgebra and its representation

by acting with Π±. The only nontrivial part of the preserved algebra is for the supercharges,
which now obey{

Q+
αα̌,Q

+
ββ̌

}
= 2 (γaΠ+cΩ)αβα̌β̌ P

a ,
{
S̄+
α̇α̌, S̄

+

β̇β̌

}
= 2

(
γ̄aΠ+c

TΩ
)
α̇β̇α̌β̌

Ka ,{
Q+
αα̌, S̄

+

β̇β̌

}
= 2

[(
γ̌ijR

ij + D +
1

2
γmnM

mn +
1

2
γabM

ab

)
Π+c

TΩ

]
αβ̇α̌β̌

.
(A.74)

The broken generators satisfy

Pm

Q−

Ri5Mam

S̄−

Km
Q+

Pa

[
Q+
αα̌,Pm

]
= 0,{

Q+
αα̌,Q

−
ββ̌

}
= 2 (γmΠ−cΩ)αβα̌β̌ P

m,[
Q+
αα̌,Ri5

]
= −1

2

(
γ̌i5Q

−)
αα̌
,[

Q+
αα̌,Mam

]
=

1

2

(
γamQ

−)
αα̌
,{

Q+
αα̌, S̄

−
β̇β̌

}
= 4

[(
γ̌i5R

i5 +
1

2
γamM

am

)
Π−c

TΩ

]
αβ̇α̌β̌

,[
Q+
αα̌,Km

]
= −

(
γmS̄

−)
αα̌
.

(A.75)

These transformations are related to (4.8) using (4.7) to write the displacement operator as
contact terms in the presence of the defect:

Ri5V =

∫
R2

d2σV [Oi(σ)] . (A.76)
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We can recover the full representation by acting with Q+, e.g.,∫
R2

V [Q+Oi(σ)]d2σ =
[
Q+,Ri5

]
V = −1

2
γ̌i5Q

−V = −1

2

∫
R2

d2σV [γ̌i5Q−(σ)] . (A.77)

The action of Q+ on Q can similarly be read from (A.75), but it misses the descendant.
These are fixed instead by requiring closure under the Jacobi identity as in (4.18) (see also
for instance the discussion in Section 2 of [152]).
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Appendix B

Loops

B.1 SUSY Condition

In this appendix, we derive the SUSY condition

QL = σ3DLϕH (B.1)

for a Wilson loop defined in terms of a superconnection L.
Given a connection L (super or otherwise) and a closed contour parametrised by ϕ ∈

[0, 2π], we write the generalised gauge holonomy

WL = P exp i

∫ 2π

0

dϕL(ϕ), (B.2)

where we take the path ordering to be right-to-left, i.e.

PL(ϕ1)L(ϕ2) =

{
L(ϕ1)L(ϕ2), if ϕ1 > ϕ2,

L(ϕ2)L(ϕ1), if ϕ1 < ϕ2.
(B.3)

It is well established that WL behaves naturally under an insertion of an integrated covariant
derivative1

DLϕH̃ = ∂ϕH̃ − i[L, H̃]. (B.4)

We have

WL[

∫ 2π

0

dϕDLϕH̃] = [WL, H̃0], (B.5)

where H̃0 ≡ H̃(0) = H̃(2π). If L and H̃ are purely bosonic, the trace of the commutator on
the RHS vanishes, and TrWL is unaffected by such insertions.

Now consider a superconnection L = Ldiag +Loff which is an even supermatrix, such that
Ldiag is bosonic and Loff is fermionic. First, note that the ordinary trace is not cyclic when

1The opposite choice for path ordering would change the sign of the commutator term in the covariant
derivative.
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applied to products of supermatrices, such that the natural object to consider is instead
sTrWL. Further let L = Ldiag − Loff . Then expand

WL =
∞∑
n=0

in
∫
ϕk>ϕk+1

dϕ1 . . . dϕnL1 . . .Ln, (B.6)

where we wrote Lk = L(ϕk). Now act with a supercharge Q on the loop. Note that since Q
anticommutes with Loff , we have Q(L1L2) = QL1 · L2 + L1 · QL2 and so on. We find (the
n = 0 term is annihilated by Q)

QWL =
∞∑
n=1

in
∫
ϕk>ϕk+1

dϕ1 . . . dϕn

n∑
m=1

L1 . . .Lm−1 · QLm · Lm+1 . . .Ln. (B.7)

For the next step, note that Lσ3 = σ3L. Introducing a factor of 1 = σ2
3 in front of Q and

commuting one of the σ3’s to the front, we find

QWL = σ3

∞∑
n=1

in
∫
ϕk>ϕk+1

dϕ1 . . . dϕn

n∑
m=1

L1 . . .Lm−1 · (σ3QLm) · Lm+1 . . .Ln. (B.8)

This expression now naturally splits as

QWL = iσ3

∫ 2π

0

dϕW2π,ϕ · (σ3QL(ϕ)) ·Wϕ,0 (B.9)

= iσ3WL[

∫ 2π

0

dϕσ3QL(ϕ)]. (B.10)

In light of (B.5), we require

σ3QL = DLϕH̃. (B.11)

Comparing Grassmann degrees in this equation, we see that H̃ must be an odd supermatrix,
i.e. one with bosonic components on the offdiagonal and vice versa. Furthermore, by counting
scaling dimensions, in our case the diagonal (i.e. fermionic) components of H̃ are zero.
Finally, check that the supertrace of QWL vanishes. Rewrite

sTrQWL = i sTr
(
σ3[WL, H̃0]

)
= i Tr

(
[WL, H̃0]

)
, (B.12)

which is readily shown to vanish. Expand

Tr
[
W, H̃0

]
= Tr

(
w12h̃21 − h̃12w21 ∗

∗ w21h̃12 − h̃21w12

)
= Tr

(
w12h̃21 − h̃12w21 + w21h̃12 − h̃21w12

)
.

(B.13)

Since h̃12, h̃21 are bosonic, there are no issues in using the cyclicity of the trace, and we find
that, indeed,

sTrQWL = 0. (B.14)
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Actually, we will work in the main text with H = σ3H̃. The supersymmetry condition
written separately for diagonal and off-diagonal parts then reads

QLdiag = i{Loff , H}, (B.15)

QLoff = DLdiagϕ H. (B.16)

If one prefers working instead with bosonic variations, introduce a Grassmann unit ξ and
write δ = ξQ. The analogous susy condition reads

δL = DLϕ(ξH). (B.17)

B.2 Conventions and SUSY Transformations in ABJM

We mostly adopt the conventions of [144] and denote the gauge group of ABJ(M) theory as
U(N1) × U(N2). In addition to the gauge fields A(1) and A(2) transforming in the adjoint
of their respective gauge group, the theory contains scalars CI and C̄I and fermions ψαI and
ψ̄Iα in the bifundamental, such that CC̄ and ψ̄ψ (C̄C and ψψ̄) transform in the adjoint of
U(N1) (U(N2)), with the R-symmetry index I transforming in the fundamental of su(4).
These fields assemble in a single supermultiplet satisfying

δA(1)
µ = −4πi

k
CIψ

α
J (γµ)α

βΘ̄IJ
β +

4πi

k
Θα
IJ(γµ)α

βψ̄IβC̄
J ,

δA(2)
µ =

4πi

k
ψαI CJ(γµ)α

βΘ̄IJ
β −

4πi

k
Θα
IJ(γµ)α

βC̄Iψ̄Jβ ,

δψ̄Iβ = 2i(γµ)β
αΘ̄IJ

α DµCJ +
16πi

k
Θ̄
J [I
β C[JC̄

K]CK] − 2ε̄IJβ CJ ,

δψβI = −2iΘα
IJ(γµ)α

βDµC̄
J − 16πi

k
Θβ
J [IC̄

[JCK]C̄
K] − 2εβIJC̄

J ,

δCI = 2Θα
IJ ψ̄

J
α ,

δC̄I = −2ψαJ Θ̄JI
α ,

(B.18)

for a (Euclidean) superconformal transformation parametrised by ΘIJ = θIJ + εIJ(x · γ) and
Θ̄ = θ̄IJ− (x ·γ)ε̄IJ . The parameters are related by θ̄IJα = −1

2
εIJKLθβKLεβα (likewise ε̄IJα ), but

unlike in Minkowski space there is no reality condition (i.e. θ̄ 6= θ†). Omitted spinor indices
follow the NW-SE summation convention. A review of the theory in these conventions along
with an action can be found in [153].

B.3 N = 4 Superconformal Algebra on S3

The symmetries of an N = 4 superconformal field theory in 3d form the algebra D(2, 2) =
osp(4|4). Its bosonic subalgebra is (in the Euclidean case) so(1, 4)conf ⊕ su(2)L ⊕ su(2)R.
Although S3 and R3 are conformal to each other, and therefore their conformal algebras
agree, in the main text we specialise to the case of an S3 of radius r embedded in R4
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and parametrised by 4d coordinates xi, i = 1, 2, 3, 4. Explicitly, the algebra of geometric
symmetries is spanned by vector fields

Mij = xi∂j − xj∂i, (B.19)

Ti = r∂i − r−1xix
j∂j ≡ rPi + r−1Ki, (B.20)

where the rotations Mij make up the S3 isometry algebra so(4) and the Ti generate conformal
maps. Their commutators are easily computed:

[Mij,Mkl] = −δikMjl + δilMjk + δjkMil − δjlMik, (B.21)

[Mij,Tk] = −δikTj + δjkTi, (B.22)

[Ti,Tj] = Mij. (B.23)

The conformal algebra can be written more compactly by introducing indices µ, ν = 0, 1, 2, 3, 4
and defining M0i = Ti. The commutators then become

[Mµν ,Mρσ] = −ηµρMνσ + ηνρMµσ + ηµσMνρ − ηνσMµρ, (B.24)

where η = diag(−,+,+,+,+). This makes the so(1, 4) structure of the conformal algebra
manifest. The R-symmetry algebra is spanned by two independent sets of su(2) generators
RI , R̄I with the usual commutators

[RI ,RJ ] = 2iεIJKRK , [R̄I , R̄J ] = 2iεIJKR̄K . (B.25)

It is convenient to use instead the symmetric contractions Rab =
(
σI
)ab

RI and similarly for
R̄ab, where we raised one fundamental su(2) index with εab. The commutation relations then
take the form

[Rab,Rcd] = εacRbd + εadRbc + εbcRad + εbdRac, (B.26)

[R̄ȧḃ, R̄ċḋ] = εȧċR̄ḃḋ + εȧḋR̄ḃċ + εḃċR̄ȧḋ + εḃḋR̄ȧċ. (B.27)

Furthermore, the algebra contains 16 supercharges which transform as spinors of so(1, 4)conf

and fundamental doublets of both su(2)L,R. They therefore each carry a spinor index A and

two R-symmetry indices a, ȧ. Using 5d gamma matrices (Γµ) B
A , the Lorentz transformation

law of the supercharges reads

[Mµν ,Q
ȧa
A ] = −1

2
(Γµν)

B
A ,Qȧa

B . (B.28)

while under the R-charges we have

[RI ,Q
ȧa
A ] = Qȧb

A (σI)
a
b , [R̄I ,Q

ȧa
A ] = Qḃa

A (σI)
ȧ
ḃ , (B.29)

or, equivalently,

[Rbc,Qȧa
A ] = εbaQȧc

A + εcaQȧb
A , [R̄ḃċ,Qȧa

A ] = εḃȧQċa
A + εċȧQḃa

A . (B.30)
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Finally, we must specify an anticommutator for the supercharges. Symmetry under the
simultaneous exchange of the R-symmetry and spinor indices as well as the requirement that
the super-Jacobi identity be satisfied fixes all coefficients up to an overall normalisation,
which we may absorb into the definition of Q, and we find2

{Qȧa
A ,Q

ḃb
B} = εȧḃεab

(
ΓµνC−1

)
AB

Mµν + εȧḃC−1
ABR

ab + εabC−1
ABR̄

ȧḃ. (B.31)

B.4 3d N = 4 sCSM theories

B.4.1 Quiver Structure

We consider an N = 4 Chern-Simons-matter theory defined by a quiver which we take to be
either linear, or circular with an even number of nodes. Locally, the quiver has the following
structure:

AI−1 AI AI+1

k −k k

q̄I−2 a, ψ̄
ȧ
I−2

qaI−2, ψI−2 ȧ

q̃I−1 ȧ, ψ̃
a
I−1

¯̃qȧI−1,
¯̃ψI−1 a

q̄I a, ψ̄
ȧ
I

qaI , ψI ȧ

q̃I+1 ȧ, ψ̃
a
I+1

¯̃qȧI+1,
¯̃ψI+1 a

Figure B.1: The quiver and field content of the N = 4 theory.

Each node corresponds to a gauge factor U(NI) and comes with an associated gauge
field AI . The edges carry hypermultiplets (qa, ψȧ) and twisted hypermultiplets (q̃ȧ, ψ̃

a),
alternately. These matter multiplets can be decomposed into pairs of chiral multiplets.
Figure B.2 shows the chiral scalar in this decomposition explicitly. As usual, the orientation
of the arrows indicates the representation under the two gauge factors. For instance, the field
q2
I is in the (�, �̄) of U(NI)×U(NI+1) and q̄I 1 is in the conjugate representation. Note that

scalar bilinears comprising barred and unbarred q’s transform in the adjoint. Concretely,
qaI q̄I b is in the adjoint of U(NI), q̄I,aq

b
I is in the adjoint of U(NI+1), and similarly for the

twisted hypermultiplets.

AI−1 AI AI+1

k −k k

q̄I−2,1

q2
I−2

q̃I−1,1̇

¯̃q2̇
I−1

q̄I,1

q2
I

q̃I+1,1̇

¯̃q2̇
I+1

Figure B.2: The decomposition of theN = 4 matter multiplets into pairs of chiral multiplets.

It is convenient to decompose the scalar bilinears as 2L ⊗ 2R = 3 ⊕ 1. Concretely, we

2Here, C is the 5d charge conjugation matrix. Note that in 5d the charge conjugation matrix (and its
inverse) are always antisymmetric, as is ΓµC

−1, while ΓµνC
−1 is always symmetric.
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recast the bilinears in the adjoint of U(NI) in terms of traceless tensors µI and scalars νI as3

µI
a
b = qaI q̄I b −

1

2
δab q

c
I q̄I c , jaḃI = qaI ψ̄

ḃ
I − εacεḃċψI ċq̄I c , (B.32)

µ̃I
ȧ
ḃ

= ¯̃q ȧI−1q̃I−1 ḃ −
1

2
δȧ
ḃ
¯̃q ċI−1q̃I−1 ċ , ̃ ḃaI = ¯̃q ḃI−1ψ̃

a
I−1 − εḃċεac

¯̃ψI−1 cq̃I−1 ċ , (B.33)

νI = qaI q̄I a , ν̃I = ¯̃q ȧI−1q̃I−1 ȧ . (B.34)

Similar bilinears (with the appropriate replacement of hypermultiplets and twisted hyper-
multiplets) exist also for the other nodes. For example, for the I + 1 node one can define
νI+1 = q̄Iaq

a
I .

B.4.2 The SUSY transformations for N = 4 on S3

The supersymmetry transformations of this theory on S3 were shown in [21] to be

δAµ I =
i

k
ξaḃγµ(jaḃI − ̃ ḃaI ) ,

δqaI = ξaḃψI ḃ ,

δq̃I−1 ḃ = −ξaḃψ̃
a
I−1 ,

δq̄I a = ξaḃψ̄
ḃ
I ,

δ ¯̃q ḃI−1 = −ξaḃ ¯̃ψI−1 a ,
(B.35)

δψI ȧ = iγµξbȧDµq
b
I + iζbȧq

b
I −

i

k
ξbȧ(νIq

b
I − qbIνI+1) +

2i

k
ξbċ
(
µ̃I

ċ
ȧq
b
I − qbI µ̃I+1

ċ
ȧ

)
, (B.36)

δψ̄ȧI = iγµξbȧDµq̄I b + iζbȧq̄I b −
i

k
ξbȧ(q̄I bνI − νI+1q̄I b) +

2i

k
ξbċ
(
q̄I b µ̃I

ȧ
ċ − µ̃I+1

ȧ
ċ q̄I b

)
,(B.37)

δψ̃aI−1 = −iγµξaḃDµq̃I−1 ḃ − iζ
aḃq̃I−1 ḃ +

i

k
ξaḃ(q̃I−1 ḃν̃I − ν̃I−1q̃I−1 ḃ) (B.38)

− 2i

k
ξbċ (q̃I−1 ċµI

a
b − µI−1

a
b q̃I−1 ċ) , (B.39)

δ ¯̃ψI−1 a = −iγµξaḃDµ
¯̃q ḃI−1 − iζaḃ ¯̃q

ḃ
I−1 +

i

k
ξaḃ(ν̃I

¯̃q ḃI−1 − ¯̃q ḃI−1ν̃I−1) (B.40)

− 2i

k
ξbċ
(
µI

b
a
¯̃q ċI−1 − ¯̃q ċI−1µI−1

b
a

)
. (B.41)

Here, ξaḃ are the Killing spinors and ζaḃ = 1
3
γµ∇µξaḃ.

Specifically, each supersymmetry parameter ξaḃ is a linear combination of four Killing-
spinors on S3. We label them as ξl, ξ l̄, ξr, ξ r̄ and they obey

∇µξ
l,l̄ =

i

2
γµξ

l,l̄ , ∇µξ
r,r̄ = − i

2
γµξ

r,r̄ . (B.42)

Along the circle we may take γϕ = σ3 and these reduce to [14]

ξlα =

(
1
0

)
, ξ l̄α =

(
0
1

)
, ξrα =

(
e−iϕ

0

)
, ξ r̄α =

(
0
eiϕ

)
. (B.43)

From this one finds ζ l,l̄
aḃ

= i
2
ξl,l̄
aḃ

and ζr,r̄
aḃ

= − i
2
ξr,r̄
aḃ

. We take the gamma-matrices, (γµ) β
α ,

to be the Pauli matrices. As usual, spinor indices are contracted according to the NW-SE
convention.

3The SU(2)L × SU(2)R R-symmetry indices a, b = 1, 2 and ȧ, ḃ = 1̇, 2̇ are raised and lowered from the
left using ε12 = ε21 = 1.

92



B.5 Covariant form of Q2G [20/08]

Firstly, denote

N =

(
νI 0
0 νI+1

)
. (B.44)

Consider then the matrices spanning the space of G’s:

ga =

(
0 qa

0 0

)
, ḡa =

(
0 0
q̄a 0

)
. (B.45)

Using the supersymmetry transformations, it is tedious but straightforward to prove4

Q2ga = −iεbc(η̄V η)bcDAϕ ga

− εabλcbgc +
1

2
εbcλbcg

a − i

2
∂ϕ(εbc(η̄V η)bc)g

a

− 2i

k
εab(η̄V η)bc[N, g

c]− εbc(η̄V η)bc[B0, g
a],

(B.46)

Q2ḡa = −iεbc(η̄V η)bcDAϕ ḡa

− εbcλbaḡc +
1

2
εbcλbcḡa −

i

2
∂ϕ(εbc(η̄V η)bc)ḡa

+
2i

k
(η̄V η)baε

bc[N, ḡc]− εbc(η̄V η)bc[B0, ḡa].

(B.47)

Expanding G = β̄ag
a + βaḡa, it is then straightforward to derive that

Q2G = −iDL
diag
0

ϕ (ΠG) +
(
Q2G

)
linear

+
(
Q2G

)
cubic

, (B.48)

where (
Q2G

)
linear

=

[
iΠ∂ϕβ̄a +

1

2
(λ+ Π + i∂ϕΠ) β̄a + λabε

bcβ̄c

]
ga

+

[
iΠ∂ϕβ

a +
1

2
(λ− Π + i∂ϕΠ) βa + εabλbcβ

c

]
ḡa,

(B.49)

(
Q2G

)
cubic

= −[H2, G]. (B.50)

4Here, V =

(
e+iϕ 1

1 e+iϕ

)
, such that (η̄v)a(ηv̄)b = (η̄V η)ab = Πab.
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