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Financial Networks with Singleton Liability Priorities

Stavros D. Ioannidis, Bart de Keijzer, and Carmine Ventre

King’s College London

Abstract. Financial networks model debt obligations between economic firms.
Computational and game-theoretic analyses of these networks have been recent
focus of the literature. The main computational challenge in this context is the
clearing problem, a fixed point search problem that essentially determines insol-
vent firms and their exposure to systemic risk, technically known as recovery
rates. When Credit Default Swaps, a derivative connected to the 2008 financial
crisis, are part of the obligations and insolvent firms pay the same proportion of
all their debts, computing a weakly approximate solution is PPAD-complete [29],
whereas computing a strongly approximate solution is FIXP-complete [17].
This paper addresses the computational complexity of the clearing problem in
financial networks with derivatives, whenever priorities amongst creditors are
adopted. This practically relevant model has been only studied from a game-
theoretic standpoint. We explicitly study the clearing problem whenever the firms
pay according to a singleton liability priority list and prove that it is FIXP-
complete. Finally, we provide a host of NP-hardness results for the computation
of priority lists that optimise specific objectives of importance in the domain.

1 Introduction

The financial services industry has been very creative, with the constant introduction of
new products designed as investment and/or risk management tools. This makes the web
of liabilities between the different institutions in the market hard to track and oversee. It
is, in fact, this inherent complex structure of the evolving modern financial system that
has led to several somewhat unforeseen and deeply damaging crises, such as the Great
Financial Crisis (GFC) of 2008. There is, therefore, the need to mathematically model
and study this network of obligations among interconnected financial agents in order to
understand the impact of new products, regulations or even single contracts.

The main computational challenge in this context is the clearing problem introduced
in [6]: Given the banks’ funds and the face values of all the liabilities in the network,
compute for each bank its exposure to systemic risk, in the form of what is known as
its clearing recovery rate. It turns out that the complexity of this problem is closely
related to the class of financial products populating the network. In fact, in financial
networks where firms only subscribe simple debt contracts, clearing recovery rates can
be computed in polynomial time [6,25]. Whilst this setup makes up for an easy mod-
eling of networks as directed graphs with nodes standing for financial institutions and
edges representing debt obligations, this representation is too simplistic in that it does
not capture more advanced products, based on other existing contracts like mortgages,
loans, interest rates etc. These complex contracts are called derivatives. The addition
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of one such derivative, namely, Credit Default Swaps (CDSes), introduced to financial
networks in [28], makes the model more intriguing from a computational perspective.
A CDS involves three parties i, j, k, where k must pay an amount of money to j on the
condition that i cannot pay off all of its obligations. Since adding CDSes to a finan-
cial network may generate irrational clearing recovery rates [28,17], our interest turns
to finding approximate clearing recovery rates; it is proved that weakly (or “almost”)
approximate recovery rates are PPAD-complete to compute [29] and strong (or “near”)
approximate solutions are FIXP-complete to compute [17].

In this paper, we look at this problem from the perspective of the financial regula-
tor. We ask whether rules that determine how insolvent banks pay off their debts can
fundamentally change the computational hardness landscape above. The most-studied
payment scheme is the proportional payment scheme where each bank pays off its debts
proportionally to its recovery rate. However, defining priority classes amongst creditors
and pay proportionally in each class (with funds available at the current priority level) is
another widely adopted measure used in practice in the industry. For example, some reg-
ulatory regimes require employees to be prioritised over other creditors whereas some
advanced derivatives (such as, the renown Collateralized Debt Obligations leading to
the GFC) define their payoff via tranching (effectively a priority list) of the underlying
securities. Whilst priority payments have been studied under a game-theoretic frame-
work, see, e.g., [18,3,21], nothing is known about the computational complexity of the
clearing problem with this payment scheme in presence of financial derivatives.

Our Contribution. We study the clearing problem in financial networks with deriva-
tives under the priority list payment scheme. Specifically, we examine financial net-
works consisting of both debt and CDS contracts and address the complexity of com-
puting a clearing recovery rate vector whenever each bank has to pay its debts in the
following way. For each bank, we define a partition of its liabilities in priority classes.
With the funds available at a certain priority (i.e., after having paid all the liabilities
with higher priority), the liabilities at the current priority are paid proportionally – in
particular, this means that these are paid in full if the funds are sufficient. This notion
generalises the proportional payment scheme studied in related literature (i.e., consider
the case in which the partition contains one part) and the class of singleton priorities,
where each part is a singleton. We call this problem CDS-PRIORITY-CLEARING. Note
that without CDSes, CDS-PRIORITY-CLEARING is known to be in P, both for propor-
tional [6] and priority [18] payment schemes.

We observe here that whenever the partition defined by the priority list contains
at least of part of size 2 or more then CDS-PRIORITY-CLEARING is FIXP-complete.
FIXP [8] is a complexity class that captures the fixed point computations of total search
problems. In our context, it is important to observe that FIXP is defined in terms of
fixed-point functions defined upon the algebraic basis A = {+,−, ∗, /,max,min, k

√}.
It is not hard to see that the FIXP-completeness follows from the recent reduction given
in [17] where all gadgets adopted have maximum out-degree 2. 1 Therefore, the only
case left open is when all the parts of the priority list are singletons. We focus our
attention on this setup in our work. We then call CDS-PRIORITY-CLEARING the problem

1 We defer a more formal treatment of this case to the full version of the paper.
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of finding recovery rates for singleton priorities, i.e., each bank has an ordering of its
liabilities according to which its debts are paid off.

Our first contribution gives technical evidence that the financial regulator cannot
change the complexity of computing clearing recovery rates, by enforcing priority pay-
ments. Specifically, we prove that CDS-PRIORITY-CLEARING is at least as hard as the
square root sum (SQRT-SUM) problem [8,11,20,30] and that it is complete for FIXP.
We then give the full picture of the complexity for the clearing problem, under all pay-
ment schemes proposed in the literature. Whilst the proof of FIXP-completeness adopts
known approaches [17], our reduction introduces new financial network gadgets with
priority payments for the operations in A. In particular, our new multiplication gadget
highlights the flexibility of financial networks in handling arithmetic operations.

Whilst the regulator cannot ease the computational complexity of the problem, we
wonder whether one can efficiently compute the banks’ priority lists to optimise cer-
tain objective functions of financial interest. These include maximising the equity of a
specific bank, maximising the liquidity in the system, and minimising the number of
activated CDSes. As our second main contribution, we present a set of NP-hardness
results showing an interesting parallel with the known hardness of computing similarly
“optimal” solutions with proportional payments [22].

Related work. Clearing problems and mechanisms have been studied a lot in the lit-
erature [25,6,7,1,5,16,15,14,12]. Analysis of financial networks with CDSes as well as
their properties is a popular topic in the area [23,21,24,27,29,28,17]. A game-theoretic
approach to financial networks, the edge ranking game as well as other financial net-
work games are listed in [18,19,3,22]. The FIXP-complexity class was defined first
in [31,8,17], which established the FIXP-completeness of various fundamental fixed
point computation problems. There are various further recent papers that show FIXP-
completeness of a range of problems, including [17,13,10,9].

2 Model and Preliminaries

Financial Networks and Payment schemes. A financial network consists of a set of
financial entities (which we refer to as banks for convenience), interconnected through
a set of financial contracts. Let N = {1, . . . , n} be the set of n banks. Each bank i ∈ N
has external assets, denoted by ei ∈ Q≥0. We let e = (e1, . . . , en) be the vector of
all external assets. We consider two types of liabilities among banks: debt contracts
and credit default swaps (CDSes). A debt contract requires one bank i (debtor) to pay
another bank j (creditor) a certain amount ci,j ∈ Q≥0. A CDS requires a debtor i to
pay a creditor j on condition that a third bank called the reference bank R is in default,
meaning that R cannot fully pay its liabilities. Formally, we associate each bank i a
variable ri ∈ [0, 1], called the recovery rate, that indicates the proportion of liabilities it
is able to pay. Having ri = 1 means that bank i can fully pay its liabilities, while ri < 1
indicates that i is in default. In case a reference bankR of a CDS is in default, the debtor
i of that CDS pays the creditor j an amount of (1 − rR)c

R
i,j , where cRi,j ∈ Q≥0 is the

face value of the CDS. The value ci,j (cRi,j , resp.) of a debt contract (CDS, resp.) is also
called the notional of the contract. Finally, we let c be the collection of all contracts’
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notionals. We do not allow any bank to have a debt contract with itself, and assume that
all three banks in any CDS are distinct.

The financial system F can therefore be represented as the triplet (N, e, c). Given
F , we let DCF denote the set of all pairs of banks participating in a debt contract in F .
Similarly, CDSF denotes the set of all triplets participating in a CDS in F . (We drop F
from the notation when it is clear from the context.)

The contract graph of F = (N, e, c) is defined as a coloured directed multigraph
GF = (V,A), where V = N and A = (∪k∈NAk) ∪ A0 where A0 = {(i, j) | i, j ∈
N ∧ ci,j ̸= 0} and Ak = {(i, j) | i, j ∈ N ∧ cki,j ̸= 0}. Each arc (i, j) ∈ A0 is coloured
blue and each (i, j) ∈ Ak orange. For all (i, j, R) ∈ CDS we draw a dotted orange
line from node R to arc (i, j) ∈ AR, denoting that R is the reference bank of the CDS
between i and j. 2 Finally, we label each arc with the notional of the corresponding
contract, and each node with the external assets of the corresponding bank.

All banks are obliged to pay off their liabilities according to a set of prespecified
rules, which we refer to as a payment scheme. If a bank has sufficient assets, then
the payment scheme is trivial and prescribes to simply make payments that correspond
exactly to each of the bank’s liabilities. If there are insufficient assets, on the other hand,
the payment scheme will determine for each of the outgoing contracts how much of it is
paid off. The most studied payment scheme is the proportional payment scheme, where
each bank i submits an ri proportion of each liability, leaving a (1−ri) fraction of each
liability unpaid. In this paper we study payments resulting from another rule, called the
singleton liability priority lists payment scheme. More specifically, given a financial
system F = (N, e, c), for each bank iwe define a total order over the arcs going out of i
inGF . We denote the singleton liability priority list of i as Pi = (i1 | i2 | ... | ioutdeg(i)),
where ik stands for the k-th element in the order, or kth priority of node i, and outdeg(i)
denotes the out degree of node i in GF . The payments under this scheme are now
formed through an iterative process where each bank pays off its liabilities, one after the
other, preserving the ordering in its priority list. We denote by cik the contract notional
of the ikth priority and denote by P = (P1, . . . , Pn) the profile of singleton liability
priority lists. We denote a financial system F endowed with a singleton liability priority
profile P as (F ,P). The next example illustrates the model.

Example 1. The financial system of Fig. 1 consists of six banks, N = {1, 2, 3, 4, 5, 6}.
Banks 2 and 5 have external assets e2 = e5 = 1 − c, for some constant c ∈ (0, 1),
while all other banks have zero external assets. The set of debt contracts is DC =
{(2, 3), (5, 4)} and the set of CDS contracts is CDS = {(2, 1, 5), (5, 6, 2)}. All contract
notionals are set to 1. For example, c2,3 = c52,1 = 1. Node 2 has two candidate singleton
liability priority lists, one is P 1

2 = ((2, 3) | (2, 1, 5)), where 21 = (2, 3) with contract
notional c21 = c2,1 = 1 and 22 = (2, 1, 5) with contract notional c22 = c52,1 = 1. The
other one is P 2

2 = ((2, 1, 5) | (2, 3)) where 21 = (2, 1, 5) with c21 = c52,1 = 1 and
22 = (2, 3) with c22 = c2,3 = 1. Symmetrically one can derive the lists for node 5.

We are interested in computing for a pair (F ,P), for each bank i, the proportion
of liabilities that it is able to pay. This proportion is captured by the recovery rate,
mentioned earlier: For each bank i we associate a variable ri ∈ [0, 1], that indicates the

2 Strictly speaking, this means that GF is a directed hypergraph with arcs of size 2 and 3.



Financial Networks with Singleton Liability Priorities 5

1 2 3
1 1

5 64
1 1

1− c

1− c

Fig. 1: Example of a financial network

proportion of liabilities that bank i can pay. Recall that, to define the liability generated
from a CDS contract, we need the recovery rate of the reference banks. Consequently
in order to define all liabilities of banks in a financial system, we need to be presented
with an a-priori recovery rate vector r = (r1, · · · , rn). So given a (F ,P) and assuming
a vector r ∈ [0, 1]n, we define the liabilities, the payments that each bank submits and
the assets for each bank as follows.

We denote by lik(r) the k-th liability priority of node i. If ik = (i, j) ∈ DC for
some j ∈ N , then lik(r) = ci,j and if ik = (i, j, R) ∈ CDS for some j, R ∈ N , then
lij (r) = (1− rR)cRi,j . The liability of bank i ∈ N to a bank j ∈ N is denoted by li,j(r)
and it holds that

li,j(r) = c∅i,j +
∑
k∈N

(1− rk)c
k
i,j . (1)

We denote by li(r) the total liabilities of node i, and it holds that

li(r) =

outdeg(i)∑
j=1

lij (r) =
∑
j ̸=i

li,j(r) =
∑

j∈N\{i}

ci,j + ∑
k∈N\{i,j}

(1− rk)c
k
i,j

 .

Node i can fully pay its kth priority only if he has sufficient assets left after pay-
ing off the liabilities corresponding to priorities i1, . . . , ik−1. We denote by pik(r) the
payment of node i to its k-th priority, and by ai(r) its assets, which are defined as the
external assets it possesses plus all incoming payments submitted from its debtors (see
below for a more formal definition). Under our singleton priority lists payment scheme:

pij (r) = max

0,min

lij (r), ai(r)− ∑
j′<j

lij′ (r)


 . (2)

Moreover, we denote by pi,j(r) the payment of node i to node j under recovery rate
vector r: Let Cj = {ij | ij is a contract with node j as the creditor}, then pi,j(r) =∑
ij∈Cj

pij (r). The total payment made by a node is the sum of its individual payments
to its priorities which is equal to the total sum of its payments to its creditors. Also, the
payment of node i needs to be equal to the proportion of its total liabilities it can pay
off. Therefore, the following equations hold.

pi(r) =

outdeg(i)∑
j=1

pij (r) =
∑
j∈N

pi,j(r) = rili(r). (3)
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The assets of a bank i are denoted as ai(r) and are the total amount of money it
possesses summing its external assets and all incoming payments made by its debtors.
It holds that

ai(r) = ei +
∑
j ̸=i

pj,i(r). (4)

We are interested in computing a specific recovery rate vector in [0, 1]n, such that
(3) holds (i.e., pi(r) = rili(r) for all i ∈ N ), under the singleton liability priority list
payment rule (just defined formally by (2) and (4)). Formally:

Definition 1 (Clearing recovery rate vector). Given a financial system and a single-
ton liability priority profile (F ,P), a recovery rate vector r is called clearing if and
only if for all banks i ∈ N ,

ri = min

{
1,
ai(r)

li(r)

}
if li(r) > 0, and ri = 1 if li(r) = 0. (5)

We illustrate the notions of the dynamics and the clearing recovery rate vectors (CR-
RVs) by reconsidering Example 1 and computing them for some priority profile P .

Example 1 (continued). Let c = 1/4 in Fig. 1. Let P = (P2 = ((2, 3) | (2, 1, 5)), P5 =
((5, 4) | (5, 6, 2))). Both nodes 2 and 5 receive no payment from any other node thus
their assets are defined as a2 = e2 = 1 − c and a5 = e5 = 1 − c. For node 2, given
P2, we get that l21 = l2,1 = c21 = c2,3 = 1 and l22 = l2,1 = (1− r5)c

5
2,1 = (1− r5),

thus the total liabilities for node 2 are l2 = l21 + l22 = 2 − r5. For node 5 we get
that l51 = l5,4 = c51 = c5,4 = 1 and l52 = l5,6 = c52 = (1 − r2)c

2
5,6 = 1 − r2,

thus the total liabilities for node 5 are l5 = l51 + l52 = 2 − r2. Let us compute the
CRRV. By (5) it must be r2 = min {1, a2(r)/l2(r)} = min {1, 1− c/2− r5} and
r5 = min {1, a5(r)/l5(r)} = min {1, (1− c)/(2− r2)}. After solving this system
we get that r2 = r5 = 1 −

√
c and since we assumed c = 1/4 we finally get that

r2 = r5 = 1/2. For the payments of node 2 , we know that a2 = 3/4 and it first
prioritises node 3 for which it has a liability of 1, thus it cannot fully pay off that liability
and submits all of its assets to node 3, namely p21 = p2,3 = 3/4 and p22 = p2,1 = 0.
The payments of node 5 are symmetrical.

Our search problem. We define CDS-PRIORITY-CLEARING to be the search problem
that asks for a clearing recovery rate vector r given a pair (F ,P). The term CDS refers
to the fact that F may contain CDS contracts (the problem becomes polynomial time
computable without CDSes [18]) and the term PRIORITY indicates that banks pay ac-
cording to singleton liability priority list P . Similarly to [29,17], we assume that F is
non-degenerate. We will discuss this assumption in more details below.

Definition 2. A financial system is non-degenerate if and only if the following two con-
ditions hold. Every debtor in a CDS either has positive external assets or is the debtor
in at least one debt contract with a positive notional. Every bank that acts as a reference
bank in some CDS is the debtor of at least one debt contract with a positive notional.

Given an instance I ∈ CDS-PRIORITY-CLEARING we transform (1) into a function
defined on arbitrary recovery rate vectors r = (r1, · · · , rn) as:
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fI(r)i =
ai(r)

max{ai(r), li(r)}
. 3 (6)

From (6) we ascertain that r is a clearing recovery rate vector for I if and only if r
is a fixed point of fI , namely r = fI(r). Thus, solving CDS-PRIORITY-CLEARING
comes down to computing the fixed points of fI . We define CDS-PRIORITY-CLEARING
to contain only non-degenerate financial networks, for the analytical convenience that
non-degeneracy provides (note that a division by 0 never occurs in fI(r)i for these
instances). It is not hard to see that fI has fixed points, see, e.g., [21]. Moreover, there
exist instances of (F ,P) that admit multiple CRRVs, see Appendix A
Irrationality. As is the case for the proportional payments, the singleton liability pri-
ority list model contains instances that admit irrational CRRVs. Observation 1 below
provides such an example while Observations 2 and 3 present examples of how the
priority profile affects the payments in the network. These examples also provide in-
sights on an important difference between the two payment scheme: In the proportional
model, whenever the CRRV is irrational then the clearing payment vector must be ir-
rational as well. That is not the case in the singleton liability priority payment scheme,
where irrationality of a CRRV need not cause any irrationality in the payments.

Observation 1 There exist instances of (F ,P) that have irrational CRRVs. For in-
stance, we know that r2 = r5 = 1 −

√
c in Example 1. Thus, it is clear that for many

choices of c ∈ (0, 1) (e.g., c = 1/2) the CRRV is irrational.

Observation 2 There exist a pair (F ,P) with an irrational CRRV and irrational pay-
ments. Take again Example 1 and fix c = 1/3. We have e2 = e5 = 2/3, l2,3 =

l5,6 = 2/3 and r2 = r5 = 1 −
√

1/3. Now consider the singleton liability priority
lists P2 = ((2, 1, 5) | (2, 3)) and P5 = ((5, 6, 2) | (5, 4)). Since node 2 prioritises the
(2, 1, 5) contract, it has to pay an amount of 1 −

√
1/3 to node 1. Given that its total

assets are 2/3, it can fully pay this liability and so p2,1 = 1−
√
1/3 and what is left is

being paid to node 3. Symmetrically, one can compute that p5,6 = 1−
√
1/3.

Observation 3 There exist a pair (F ,P) with an irrational CRRV and rational pay-
ments. Consider Example 1 once more and fix c = 1/2. This yields e2 = e5 = 1/2,
l2,3 = l5,6 = 1/2 and r2 = r5 = 1 −

√
1/2. Consider the singleton liability priority

lists P2 = ((2, 1, 5) | (2, 3)) and P5 = ((5, 6, 2) | (5, 4)). Since node 2 prioritises the
(2, 1, 5) contract, it has to pay a amount of 1 −

√
1/2 to node 1 but only possesses

total assets of 1/2. Thus it cannot fully pay this liability, meaning that p2,1 = 1/2.
Symmetrically, we can compute that p5,6 = 1/2.

A primer on FIXP. A useful framework for studying the complexity of fixed point com-
putation problems is defined in [8]. Both exact and approximate computation of the so-
lutions to such problems are considered. We begin by defining the notion of approxima-
tion we are interested in. Let F be a continuous function that maps a compact convex set

3 Strictly speaking, fI(r)i is defined only for nodes i that are not sinks in the contract graph.
Sink nodes have recovery rate 1, cf. (5). Their exclusion simply allows to bypass potential
divisions by 0 in fI (e.g., take node 1 in Fig. 1 when c = 1) while preserving its continuity.
For notational simplicity, we will implicitly assume that we compute fI(r)i iff i is not a sink.
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to itself and let ϵ > 0 be a small constant. An ϵ-approximate fixed point of F is a point
x is within a distance ϵ near a fixed point of F , i.e., ∃x′ : F (x′) = x′ ∧∥x′ −x∥∞ < ϵ.
This notion is also known as strong approximation. 4 We now introduce the problems
we are focusing on. A fixed point problem Π is defined as a search problem such that
for every instance I ∈ Π there is an associated continuous function FI : DI → DI

—where DI ⊆ Rn (for some n ∈ N) is a convex polytope described by a set of lin-
ear inequalities with rational coefficients that can be computed from I in polynomial
time— such that the solutions of I are the fixed points of FI .

Definition 3. The class FIXP consists of all fixed point problems Π for which for all
I ∈ Π the function FI : DI → DI can be represented by an algebraic circuit CI over
the basis {+,−, ∗, /,max,min, k

√}, using rational constants, such that CI computes
FI , and CI can be constructed from I in time polynomial in |I|.

The class FIXPa is defined as the class of search problems that are the strong ap-
proximation version of some fixed point problem that belongs to FIXP.

The class Linear-FIXP is defined analogously to FIXP, but under the smaller arith-
metic basis where only the gates {+,−,max,min} and multiplication by rational con-
stants are used.

These classes admit complete problems. The completeness results in [8] in fact
show that it is without loss of generality to consider a restricted basis {+, ∗,max}
({+,max}) for FIXP (Linear-FIXP), and to assume that DI = [0, 1]n.5 Hardness of
a search problem Π for FIXP is defined through the existence of a polynomial time
computable function ρ : Π ′ → Π , for all Π ∈ FIXP, such that the solutions of I can
be obtained from the solutions of ρ(I) by applying a (polynomial-time computable)
linear transformation on a subset of ρ(I)’s coordinates. This type of reduction is known
as a polynomial time SL-reduction.

It is known that FIXPa ⊆ PSPACE and Linear-FIXP = PPAD [8]. An informal
understanding of the hardness of FIXP vis-a-vis PPAD is as follows. PPAD captures
a type of computational hardness stemming from an essentially combinatorial source.
FIXP introduces on top of that a type of numerical hardness that emerges from the
introduction of multiplication and division operations: These operations give rise to ir-
rationality in the exact solutions to these problems, and may independently also require
the computation of rational numbers of very high precision or very high magnitude.

3 Hardness of CDS-PRIORITY-CLEARING

We are interested in identifying the complexity of CDS-PRIORITY-CLEARING. Recall
that in Example 1, we presented an instance which under proper coefficients admits
only irrational clearing recovery rate vectors, which means that either one should study
this problem with respect to complexity classes compatible real-valued solutions, or

4 A weak ϵ-approximate fixed point of a continuous function F is a point x such that its image is
within distance ϵ of x, i.e., ∥x−F (x)∥∞ < ϵ. Under polynomial continuity, a mild condition
on the fixed point problem under consideration, a strong approximation is also weak [8].

5 We will make use of these facts in the proof of Theorem 1, below.
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one should redefine the goal of the problem along the lines of finding a rational-valued
approximation to a potentially irrational solution.

As an initial step, we first show that determining whether ri < 1 for a specific bank
i is at least as hard as solving the square root sum (SQRT-SUM) problem. An instance of
SQRT-SUM consists of n+1 integers d1, d2, ..., dn, k and asks whether

∑n
i=1

√
di ≤ k.

It is known that SQRT-SUM is solvable in PSPACE but it is unknown whether it is in
P, or even in NP. In [30] it is shown that it can be solved in polynomial time in the
unit-cost RAM model [30,26,2].

Lemma 1. For a given pair (F ,P), deciding whether a specific bank is in default is
SQRT-SUM-hard.

Proof. We prove the lemma by reducing CDS-PRIORITY-CLEARING to SQRT-SUM. Let
(d1, ..dn, k) be an instance of SQRT-SUM. Firstly, we note that in [4] it is shown that
checking whether

∑n
i=1

√
di = k can be done in polynomial time. We check whether

equality holds for our input first and proceed without loss of generality to the proof
without minding equality.

We construct a financial system F as follows, first we construct n financial subnet-
works which we refer to as square root gadgets and denote by gi,√. the ith square root
gadget. Whenever referring to a node k, belonging in a square root gadget gi,√., we
use the notation ki. The square root gadget gi,√. consists of the financial network we
presented in Fig. 1, augmented with two additional nodes xi, yi, and the CDS contract
(xi, yi, 2i). We let the external assets of nodes 2i and 5i be e2i = e5i = 1− di. We let
exi

= 1 and eyi = 0 and the CDS contract (xi, yi, 2i) has a notional of 1: c2ixi,yi = 1.
The n square root gadgets are all connected to a single node τ with eτ = 0, by n debt
contracts {(yi, τ) : i ∈ [n]}. There is one further node τ ′ to which τ is connected
through debt contract (τ, τ ′) with notional cτ,τ ′ = k. The construction is illustrated in
Fig. 2.

We claim that this resulting financial system has a clearing recovery rate vector
r with rτ = 1 if and only if

∑n
i=1

√
di ≥ k. From the analysis of Example 1, it

follows that under any clearing recovery rate vector r, the recovery rate of node 2i is
r2i = 1 −

√
di for all i ∈ [n]. Since node 2i is always in default(assuming all di ̸= 0)

the CDS (xi, yi, 2i) is activated and since node xi can fully pay its liabilities, node yi
receives a payment of 1 − r2i =

√
di. This implies that τ receives a total payment of∑

i∈[n]

√
di. Since τ has only one liability of k, it holds that rτ = 1 if and only if the

total payment that τ receives exceeds k, i.e., if and only if
∑
i∈[n]

√
di ≥ k, and this

proves the claim. ⊓⊔

Next we show that CDS-PRIORITY-CLEARING and its strong approximation vari-
ant are FIXP and FIXPa complete, respectively. Our hardness reduction does not start
from a particular FIXP-hard problem. Rather, we show that we can take an arbitrary
algebraic circuit and encode it in a direct way in the form of a financial system accom-
panied by a specific singleton liability profile. Hence, our polynomial time hardness
reduction works from any arbitrary fixed point problem in FIXP. The reduction is con-
structed by devising various financial network gadgets which enforce that certain banks
in the system have recovery rates that are the result of applying one of the operators in
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(a) The i square root gadget gi,√.

4i

5i

6i

1− di

1

1

1i

2i

3i

1− di

1

1

xi 1

yi
√
di

1

(b) The constructed financial system

g1,√. ... gi,√. ... gn,
√
.

τ

τ ′

1 1 1

k

Fig. 2: The financial system constructed from a given Square Root Sum instance

FIXP’s arithmetic base to the recovery rates of two other banks in the system: In other
words, we can design our financial systems and singleton liability priorities such that
the interrelation between the recovery rates mimics a computation through an arbitrary
algebraic circuit.

Theorem 1. CDS-PRIORITY-CLEARING is FIXP-complete, and its strong approxima-
tion version is FIXPa-complete.

Proof (sketch). Containment of CDS-PRIORITY-CLEARING in FIXP is immediate: The
clearing vectors for an instance I = (N, e, c) ∈ CDS-PRIORITY-CLEARING are the
fixed points of the function fI defined coordinate-wise by

fI(r)i =
ai(r)

max{li(r), ai(r)}

as in (6). The functions li(r) and ai(r) are defined in (1) and (4), from which it is
clear that fI can be computed using a polynomial size algebraic circuit with only
{max,+, ∗}, and rational constants. Note that non-degeneracy of I prevents division
by 0, so that the output of the circuit is well-defined for every x ∈ [0, 1]n.This shows
that CDS-PRIORITY-CLEARING is in FIXP and that its strong approximation version is
in FIXPa.

For the FIXP-hardness of the problem, let Π be an arbitrary problem in FIXP.
We describe a polynomial-time reduction from Π to CDS-PRIORITY-CLEARING. Let
I ∈ Π be an instance, let FI : [0, 1]n → [0, 1]n be I’s associated fixed point function,
and let CI be the algebraic circuit corresponding to FI . Our reduction is analogous to
the proof in [17], where the variant of the problem with proportional payments is shown
to be FIXP-hard: The proof consists of a “pre-processing” step (in which the algebraic
circuit is transformed into a specific form) followed by a transformation into a financial
network, where a set of financial subnetwork gadgets are interconnected, and each such
gadget corresponds to an arithmetic gate in the algebraic circuit. The pre-processing
step of this reduction is entirely equal to that of [17]: This step transforms CI into a
circuit C ′

I that satisfies that all the signals propagated by all gates in C ′
I and all the used

rational constants in C ′
I are contained in the interval [0, 1]. The transformed circuit C ′

I

may contain two additional type of gates: Division gates and gates that compute the
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absolute value of the difference of two operands. We will refer to the latter type of gate
as an absolute difference gate. The circuit C ′

I does not contain any subtraction gates,
and will not contain max and min gates either. The reader interested in the details of
this pre-processing step is referred to [17].

The second part of the proof (the transformation step) differs from [17] in that a
different set of gadgets needs to be used. For notational convenience, we may treat C ′

I

as the function FI , hence we may write C ′
I(x) = y to denote FI(x) = y.

Each of our gadgets has one or two input banks that correspond to the input signals
of one of the types of arithmetic gate, and there is an output bank that corresponds
to the output signal of the gate. For each of the gadgets, it holds that the output bank
must have a recovery rate that equals the result of applying the respective arithmetic
operation on the recovery rates of the input banks. Each gadget represents an arithmetic
gate of the circuit, and the output banks of a gadget are connected to input banks of
other gadgets such that there is a direct correspondence with the infrastructure of the
arithmetic circuit. For precise details on this correspondence, we refer the reader to the
proof in [17].

For defining our gadgets, we use our graphical notation for convenience. As stated,
our gadgets each have one or two input banks, and one output bank, where the output
bank is forced to have a clearing recovery rate that is obtained by applying a arithmetic
operation on the recovery rate of the input banks, so as to simulate the arithmetic basis
on which the algebraic circuit C ′

I is built.

As a simple example of one of these gadgets we define a straightforward addition
gadget, named g+, depicted in Fig. 3a. This gadget directly accounts for the addition
operation in the arithmetic basis. In our figures, input banks are denoted by black arrows
incoming from the left, and output banks correspond to black arrows pointing out of the
bank. The black arrows represent connections to other gadgets, and these connections
are always realised by a debt contract of unit cost, and are always from the output
node of a gadget to an input node of another gadget. Another slightly more complex
gadget example is the positive subtraction gadget, displayed in Fig. 3b, taking two
inputs r1, r2 and producing as output the value max{0, r1 − r2}. This gadget is in turn
used to form the absolute difference gadget, which can be constructed by combining
two positive subtraction gadgets with an addition gadget (as |r1 − r2| = max{0, r1 −
r2}+max{0, r2− r1}). It is also used in the construction of our multiplication gadget.

In the figures representing our gadgets, some of the nodes have been annotated with
a formula in terms of the recovery rates of the input banks of the gadget, subject to
the resulting values being in the interval [0, 1]. This can be seen for example in the
output node of our addition gadget in Fig. 3a. Such a formula represents the value that a
clearing recovery rate must satisfy for the respective node. It is straightforward to verify
that the given formulas are correct for each of our gadgets.

Since all signals inside C ′
I are guaranteed to be in [0, 1] for all input vectors, our

financial system gadgets can readily be used and connected to each other to construct a
financial system that corresponds to C ′

I , i.e., such that the clearing recovery rates of the
input and output banks of each of the gadgets must correspond to each of the signals
inside the circuit C ′

I .
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r1

r2

r1 + r2

1

1

(a) Addition gadget g+.

r2 1 2
1 1

3 4 5
1 1

r1 6 7

8 max{0, r1 − r2}1

1 1

1

P6 = ((6, 7, 4) | (6, 8))

(b) Positive subtraction gadget gpos−. Generates the value
max{0, r1 − r2} from the input recovery rates r1 and r2.
In this gadget node 6 pays according to the priority list
P6 = ((6, 7, 4) | (6, 8)) thus it submits to node 8 the
amount of r1 − r2 in case r1 > r2 and 0 otherwise

Fig. 3: Example gadgets from our reduction.

The remaining gadgets are displayed in Fig. 11 to 17, in Appendix C. Some of
our gadgets are composed of auxiliary gadgets, where in particular, the construction of
the division gadget is rather involved, and a separate discussion of how this gadget is
constructed is provided in Appendix C.1. Another notably non-trivial gadget is the mul-
tiplication gadget, as can be seen in Fig. 16, where the main challenge in its construction
is to ensure that non-degeneracy holds and that the expressions for the intermediate re-
covery rates inside the gadget are all contained in [0, 1]. ⊓⊔

4 Hardness of Deciding the Best Priority Profile

In a financial network, each node i can be assigned one of outdeg(i)! singleton liability
priority lists. Consequently the number of candidate priority profiles for a system is
exponentially large in terms of its input size. Next, we consider the setting where a
financial authority is able to determine which priority list each bank should get assigned,
and is interested in assigning these in such a way that a specific objective is optimised
for. We show that this problem is NP-hard for a set of natural choices of objective
functions:

1. Minimising the number of defaulting nodes.
2. Minimising the number of not fully paid liabilities.
3. Minimising the number of activated CDSes in the financial system.
4. Maximising the equity of a specific node.
5. Maximising the liquidity in the financial system.

We defer the proofs of Statements 3 and 5 to Appendix B.
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Lemma 2. Finding a priority list profile that minimises the number of defaulting banks
and finding a priority list profile that minimises the number of not fully paid liabilities
are both NP-hard problems.

Proof. We prove the lemma via a reduction from the satisfiability problem (SAT),
where we are given a boolean formula in conjunctive normal form, and have to deter-
mine whether there is a truth assignment to the variables that renders the formula true.

Let F =
n∧
i=1

Ci be a SAT instance, where C1, . . . , Cn are the clauses, and let VF be the

set of all variables that in F . We create a financial network from F as follows. For each
variable x ∈ VF we construct a gadget that is refereed to as the x-subnetwork. Each
x-subnetwork consists of four nodes, labeled as ix, x,¬x, jx, where eix = 1 and ex =
e¬x = jx = 0, and of four debt contracts, DC = {(ix, x), (ix,¬x), (x, jx), (¬x, jx)}
all with contract notionals equal to zero. Moreover, the constructed financial network
has n further nodes, labeled as C1, . . . , Cn, that correspond to each clause in F with
eC1

= · · · = eCn
= 0, and one terminal node labeled as τ , towards which each Ci

holds a debt contract of notional one, i.e cCi,τ = 1. Finally for each variable x of F , we
construct two nodes labeled as kx and k¬x respectively, where ekx and ek¬x are equal
to the number of occurrences of literals x and ¬x in F , respectively. Whenever a literal
l belongs to a clause Ci we construct the CDS (kl, Ci,¬l) with c¬lkl,Ci

= 1. An example
of a network induced from F = (x ∨ y) ∧ (y ∨ ¬y) is given in Fig. 4. We now map
a truth assignment T : VF 7→ {true, false} to a priority list profile PT as follows: If
T(x) = true, node ix prioritises node x, and otherwise it prioritises node ¬x. All kl
nodes posses enough external assets to fully pay their debts under any priority list, so
we can take an arbitrary list for those nodes, and all remaining nodes have at most one
liability. Conversely, from a priority list profile P we induce the truth assignment TP
as follows: if ix prioritises x then T(x) = true otherwise T(x) = false.

Let T : VF 7→ {true, false} be any truth assignment and consider the priority list
profile PT. In each x-subnetwork, node ix can fully pay only its first priority, thus in
each x-subnetwork there exist two defaulting nodes regardless of the choice of prior-
ity list of ix, meaning that the minimum number of defaulting nodes in the induced
financial system is 2|VF |. Similarly, each x-subnetwork has two not fully paid liabili-
ties regardless of the choice of priority lost of ix. The only additional defaulting nodes
might be the nodes C1, . . . , Cn, and the only additional not fully paid liabilities might
be on the n debt contracts in which one of C1, . . . , Cn is the debtor. Let us inspect
which of the latter set of nodes are defaulting and which of the latter liabilities are not
fully paid under PT. If clause Ci is a clause that is not satisfied under T, then none of
the CDSes involving node Ci are activated, and node Ci does not have any assets PT.
Since Ci has to pay 1 to τ , node Ci will be in default, and Ci’s liability of 1 will not be
paid. If clause Ci is a clause that is satisfied under T, then at least one CDS involving
node Ci is activated, and since the reference bank in this CDS has recovery rate 0, node
Ci will receive the CDS’s full notional of 1, with which it can fully pay its liability of
1. Hence, in the latter case, node Ci is not in default.

Hence, for a truth assignment T, under PT, the number of banks in default and
the number of not fully paid liabilities is are both equal to 2|VF | plus the number of
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unsatisfied clauses. Since we argued above that restricting to the profiles

{PT | T is a truth-assignment for F}

is without loss of generality, from finding the profile of priority lists minimising the
number of defaulting banks or minimising the number of not fully paid liabilities in the
constructed financial network, one can infer whether the formula F is satisfiable, which
proves our claim. ⊓⊔

F = {x ∨ ¬y} ∧ {y ∨ ¬y}

ix

x

¬x

jx

1

1

1

1

1

iy

y

¬y

jy

1

1

1

1

1

kx

C1

k¬y

1

1

1

2

C2

ky

1

1

τ

1

1

1

Fig. 4: The financial system corresponding to the formula F = {x ∨ ¬y} ∧ {y ∨ ¬y}.

Lemma 3. Finding a priority list profile that maximises the equity of a specific node is
NP-hard.

Proof. We prove the lemma via a reduction from KNAPSACK. Let us be given a knap-
sack instance with a knapsack of capacity B, a set S = {a1, . . . , an} of objects having
profit profit(ai) and size size(ai). Without loss of generality, we assume that size(ai),
for all ai ∈ S as well as B are integer numbers. We construct a financial network
F = (N, e, c) as follows: We introduce a node 0 with external assets ei = B and for
each object aj ∈ S we introduce a corresponding node j and let node 0 hold a debt
contract towards each node j with notional c0,j = size(aj). Moreover we introduce a
node τ with eτ = 0, and a node T with eT = 0, which we refer to as the terminal node.
We add a debt contract of notional size(aj) from each node j to node τ . For each node
j we moreover introduce a j-subnetwork, consisting of:

– two nodes yj and xj with eyj = 1, exj
= 0,

– a CDS contract (yj , xj , j) with notional cjyj ,xj
= maxaj∈S{size(aj)},

– a node zj towards which xj holds a debt contract of notional cxj ,zj = 1.
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– a node kj with ekj = profit(aj) and an outgoing CDS (kj , T, xj) with notional
profit(aj).

The construction of the j-subnetwork is illustrated in Fig. 5.
Assume an optimal solution to the original Knapsack instance and let OPT be the

set of the objects aj contained in it. We know that
∑
ai∈OPT size(ai) ≤ B and that∑

ai∈OPT profit(ai), is the maximum profit that can fit in the knapsack. We define the
set N = {1, . . . , n}, and NOPT = {j | aj ∈ OPT} to be the set containing all nodes
in F that correspond to objects contained in the optimal solution. Fix the singleton
liability priority list for node i to be Pi = ({NOPT} | {N \NOPT}), meaning that i first
prioritises all creditors in NOPT in an arbitrary order and afterwards all other creditors
in N \ NOPT again in an arbitrary order. Next we prove that under this profile, node
T receives its maximum total assets. Observe that ∀j ∈ NOPT, p0j = size(aj) since∑
j∈NOPT

c0j =
∑
aj∈OPT size(aj) ≤ B = e0. Since every j node that corresponds

to an object aj ∈ OPT receives size(aj), it can fully pay node τ , so rj = 1. For all
creditors m ∈ N \ NOPT it holds that p0m < size(am) So, ∀j ∈ NOPT : rj = 1 while
∀m ∈ N \NOPT : rm < 1. Next we prove that for each j ∈ NOPT, pkj ,T = profit(aj)
and for each m ∈ N \NOPT, pkm,T = 0. Take a j ∈ NOPT, we know that rj = 1, which
implies that the CDS (yj , xj , j) is not activated thus rxj

= 0 which in turn activates the
CDS (kj ,T, xj) where node kj pays profit(aj) to node T . On the other side, for a m ∈
N \NOPT, it holds that rm < 1, which means that the CDS (ym, xm,m) is activated and
generates a liability of maxai∈S{size(ai)} · (1 − rm) for node ym. We prove that this
liability is at least 1: For an object am /∈ OPT, rm indicates the proportion of size(am)
that fits in the available knapsack area unoccupied by the objects in OPT. Obviously for
am /∈ OPT, size(am) > B − size(OPT), otherwise am ∈ OPT and rm · size(am) +
size(OPT) = B. Since by assumption B and size(aj) for all aj ∈ S are integers, it
holds that ∀am /∈ OPT, rm ≤ (maxak∈S{size(ak)}− 1)/(maxak∈S{size(ak)}, so the
generated liability for ym is:

lmym,xm
= max
ak∈S

{size(ak)}(1− rm)

≥ max
ak∈S

{size(ak)}
(
1− maxak∈S{size(ak)} − 1

maxak∈S{size(ak)}

)
= 1.

So eventually, ∀m ∈ N \ NOPT, pym,xm
= 1. Now rxm

= 1 thus the CDS
(km,T, xm) is not activated meaning that pkm,T = 0. From the above observations we
conclude that the equity of T is

∑
j∈NOPT

profit(aj): node T receives money from all
nodes that correspond to objects contained in OPT. We claim that this is the maximum
equity node T can receive. If there exist a higher equity for T , then this must be gen-
erated from another profile P ′

i that corresponds to a solution to the original Knapsack
instance with higher profit than the optimal one which is a contradiction.

For the opposite direction assume P0 to be the profile of 0 that maximises T ’s eq-
uity. Let A = {aj | p0j = size(aj)} be the set of objects that corresponds to creditor
nodes that 0 can fully pay. Obviously A can be computed in polynomial time from P0.
We claim that A is the optimal solution to the original Knapsack instance. Assume that
there exists another set A′ such that

∑
aj∈A′ size(aj) ≤ B and

∑
aj∈A′ profit(aj) >∑

aj∈A profit(aj). Now node 0 could rearrange its priorities by prioritising all cred-
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itors j for which aj ∈ A′. Doing so, 0 can fully pay all nodes j for which aj ∈
A′ since

∑
aj∈A′ size(aj) ≤ B = e0 and node T receives

∑
aj∈A′ profit(aj) >∑

aj∈A profit(aj), a contradiction to the original assumption that
∑
aj∈A profit(aj) is

the maximum equity for node T . ⊓⊔

0B j
size(aj)

τ
size(aj)

yj1 xj
0maxaj∈S{size(aj)}

z1

kj T

profit(aj)

profit(aj)

Fig. 5: The j subnetwork of the constructed financial system

5 Conclusions and Future work

Financial networks have emerged as a fertile research area in both computational com-
plexity and algorithmic game theory. It is paramount to understand systemic risk in
finance from both these perspectives. In this paper, we join both streams of work by
settling questions around the computational complexity of systemic risk for priority
payments, a scheme so far only studied from the game-theoretic point of view. In an
interesting parallel with the state of the art for proportional payments, we prove that
computing clearing recovery rates is FIXP-complete whereas it is NP-hard to compute
the priority lists optimising several measures of financial health of the system.

Our work paves the way for studying payment schemes in financial networks in
more detail. Is there a payment scheme for financial networks with derivatives that
makes the computation of systemic risk easy and/or that induces “nice” equilibria? We
also wonder the extent to which the flexibility of working with financial networks can
lead to a deeper understanding of FIXP; e.g., are there payment schemes that can be
proved complete for variants of FIXP defined upon a different basis?
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A Instance with multiple clearing recovery rate vectors

The financial network of Fig. 6 consists of three banks 1, 2, 3, two debt contracts, (1, 2)
and (2, 3), and one CDS contract, (1, 3, 2). All contract notionals are set to one. Let
node 1 pay according to the priority list P1 = ((1, 3, 2) | (1, 2)). For node 1 it holds
that e1 = 1 and l1(r) = l1,2(r) + l1,3(r) = c1,2 + (1 − r2)c

2
1,3 = 2 − r2, thus

r1 = 1/(2 − r2). Moreover 1 can fully pay any liability generated from the contract
(1, 3, 2) because e1 = 1 > 1− r2 = l1,3. This means that node 2 receives an incoming
payment of 1 − p(1,3,2) = 1 − (1 − r2) = r2. It is not hard to verify that the set of all
clearing recovery rate vectors are of the form r = (1/(2− r2), r2, 1), r2 ∈ [0, 1].

2

31

1 1

1
1

P1 = ((1, 3, 2) | (1, 2))

Fig. 6: A pair of a financial network and a singleton liability priority list that admits
multiple clearing recovery rate vectors. Whenever 1 pays according to P1 = ((1, 3, 2) |
(1, 2))) the clearing recovery rate vectors are of the form r = (1/(2− r2), r2, 1), r2 ∈
[0, 1].

B Proofs of Section 4

Lemma 4. Finding a prioritly list profile that minimises the number of activated CDSes
is NP-hard.

Proof. We reduce from the problem of minimising the number of defaulting nodes,
proved NP-hard in Lemma 2. Let F be a financial system and let m be the maximum
number of CDS contracts issued on the same reference bank, meaning that there exists
a node that is the reference bank in m CDSes and no other node is a reference bank of
more CDSes than that. We construct a financial network F ′, in which we maintain all
nodes and contracts, retain the same contract notionals, and add for each node i of F a
number ni of CDS contracts (α1

i , β
1
i , i), . . . , (α

ni
i , β

ni
i , i) with ciαi,βi

= 1 and eαi
= 1

which we call dummy CDSes (where αji , β
j
i , j ∈ [ni], are newly introduced nodes)

such that eventually all nodes in F ′ are reference banks to exactly m CDSes. Fig. 7
shows an example of this reduction.

By this construction, it is straightforward to see that if under any priority list profile
a set of banks default, then in F ′, for each of these banks i, exactly m distinct CDSes
activate in which i is the reference bank. Since the priority lists of F and F ′ are in one-
to-one correspondence with each other, we conclude that finding the priority list profile
minimising the number of activated CDSes in F ′ is equivalent to finding the priority
list profile minimising the number of defaulting banks in F . ⊓⊔
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1

2

3

F

1

2

3

α2

β2

α3 β3

F ′

Fig. 7: F and F ′

In [19], the authors define the term systemic liquidity as the total amount of pay-
ments that are being transacted among the economic firms in the financial system un-
der some clearing recovery rate vector. Given a financial system F we use the no-
tation LP

F (r) to denote the systemic liquidity of the system under the priority pro-
file P and assuming a clearing recovery rate vector r and is defined as LP

F (r) =∑
i∈N

∑
j∈N pi,j(r). Like the previous objectives it turns out that choosing the pro-

file that maximises the systemic liquidity in a financial network is NP-hard.

Lemma 5. Finding a priority list profile that maximises the systemic liquidity is NP-
hard.

Proof. We prove the lemma by a reduction from the problem in Lemma 2. Given a
financial system F we construct a modified financial system F ′ according to the fol-
lowing procedure:

– For each debt contract (i, j) ∈ DCF with contract notional ci,j : Erase the debt
contract (i, j). Add a new node denoted as τij with eτij = 0 and two new debt con-
tracts (i, τij) and (τij,j) each with contract notional ci,τij = cτij ,j = ci,j . Finally
add two new nodes αij and βij with eαij = 2ci,j and construct the CDS contract
(αij , βij , τij) with contract notional cτijαij ,βij

= ci,j . We refer to this construction
as the τij-gadget. It is illustrated in Fig. 8.

– For each CDS contract (i, j, k) ∈ CDSF with contract notional cki,j : Erase the
CDS (i, j, k). Add a new node denoted as τkij with eτk

ij
= 0 and construct the

CDS contract (i, τkij , k) with contract notional ck
i,τk

ij
= ckij and the debt contract

(τkij , j) with contract notional cτij ,j = cki,j . Finally we add two new nodes αkij and
βkij with eαk

ij
= 2cki,j and construct the CDS (αkij , β

k
ij , τ

k
ij) with contract notional

c
τk
ij

αk
ij ,β

k
ij

= 2ckij . We refer to this construction as the τkij-gadget. It is illustrated in

Fig. 9.
– For each node k ∈ NF : We add five new nodes χk, ψk, ζk, αk, βk with eχk

=
1/(2 | NF |), eαk

= 2 and construct the CDS (χk, ψk, k) with ckχk,ψk
= ∞6, the

debt contract (ψk, ζk) with cψk,ζk = 1/(2 | NF |) and the CDS (αk, βk, ψk) with
cψk

αk,βk
= 2. We refer to this construction as k-gadget. It is illustrated in Fig. 10.

6 Here we assume that a contract may have ∞ notional in the sense that whenever the debtor
defaults it must submit all of its remaining assets through this contract.
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For any priority profile P of F we define its ’natural extension’ priority profile denoted
as Pext of F ′ as follows: For a node i ∈ NF having a singleton liability priority list
Pi we substitute each priority that corresponds to some debt contract (i, j) ∈ DCF
with the debt contract (i, τij) ∈ DCF ′ and each priority that corresponds to some CDS
contract (i, j, k) ∈ CDSF with the CDS contract (i, τkij , k) ∈ CDSF ′ . For all other
nodes appearing in the constructed gadgets, the priority lists are uniquely defined since
they have only one outgoing edge. For example if some node i pays in F according to
Pi = ((i, j) | (i, j, k)) then it pays in F ′ according to Pext

i = ((i, τij) | (i, τkij , k)).
Next we prove three useful claims that we use in our reduction.

Claim 1 The ’natural extension’ priority profile does not affect the recovery rate of
nodes belonging in NF ∩NF ′ . Namely if node i has recovery rate ri under P in F then
it has recovery rate ri under Pext in F ′.

Proof. The amount of money transferred via a liability (i, j) in F under P are trans-
ferred from τij to node j under Pext in F ′, since node τij has an incoming payment of
at most ci,j , a liability of ci,j and zero external assets. Similarly the amount of money
that are being transferred via a CDS contract (i, j, k) in F under P are transferred from
τkij to node j in F ′ under Pext because τkij receives a payment of at most (1 − rk)c

k
i,j ,

has a liability of cki,j and zero external assets. Also by the way we constructed F ′ the
liabilities of all nodes appearing in F are unchanged. That means that the ’natural ex-
tension’ profile Pext of a profile P does not affect the assets and liabilities of nodes in
NF ∩NF ′ , thus their recovery rate is the same. ⊓⊔

Next we denote by F ′
τ the financial system that is constructed from F only by

adding the τij-gadget and τkij-gadget. We denote by Pτ the ’natural extension’ of any
priority profile P of F in Fτ . In the following claim we prove that the liquidity of F ′

τ

is the same under any priority profile and any clearing recovery rate vector.

Claim 2 For each priority profile P and each clearing recovery rate vector, LP
F ′

τ
(r) =

2
(∑

i,j∈NF
ci,j +

∑
i,j,k∈NF

cki,j

)
.

Proof. Assume a priority profile P of F and let Pτ be its ’natural extension’ profile in
Fτ . First we will prove that each (i, j) ∈ DCF generates liquidity of 2ci,j in (Fτ ,Pτ ).
Assume l ≤ ci,j to be the amount of money transferred via some debt contract (i, j) in
(F ,P). We discriminate two cases.

1. l < ci,j : The recovery rate for node τij is rτij = l/ci,j < 1 thus the CDS
(αij , βij , τij) is activated and node αij owes 2(1 − rτij )ci,j = 2ci,j − 2l to node
βij which can fully pay off. Edges (i, τij) and (τij , j) generate a liquidity of 2l thus
the generated liquidity in that case is 2ci,j − 2l + 2l = 2ci,j .

2. l = ci,j : The recovery rate of node τij is rτij = 1 thus the (αij , βij , τij) is not
activated. The generated liquidity in that case arises only from edges (i, τij) and
(τij , j) and is equal to 2ci,j .

Next we will prove that any CDS contract (i, j, k) ∈ CDSF generates a liquidity of
2cki,j in (Fτ ,Pτ ). Assume a clearing recovery rate vector r and let l ≤ (1 − rk)c

k
i,j to

be the amount of money transferred via some CDS (i, j, k) in (F ,P). We discriminate
three cases.
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1. l = (1− rk)c
k
i,j : The recovery rate for node τij is rτij = l/cki,j = 1− rk < 1 thus

the CDS (αkij , β
k
ij , τ

k
ij) is activated and node αkij owes 2(1 − rτk

ij
)cki,j = 2rkc

k
i,j ,

which can fully pay off. Since edges (i, τi,j) and (τij , j) generate a liquidity of
2(1− rk)c

k
i,j the total generated liquidity is 2rkcki,j + 2cki,j − 2rkc

k
i,j = 2cki,j .

2. l < (1 − rk)c
k
i,j : Again rτi,j = l/cki,j < 1 thus (αkij , β

k
ij .τ

k
ij) is activated and αkij

owes 2cki,j(1−(l/cki,j)) = 2cki,j−2l to βkij , which can fully pay. The total generated
liquidity is 2l + 2cki,j − 2l = 2cki,j .

3. rk = 1: From Claim 1, we know that the recovery rate of any node does not change
under Pext. It is not hard to see that the same holds under Pτ . If rk = 1 then
rτk

ij
= 0 and the (i, τkij , k) is inactive. So node αkij owes 2cki,j to βkij , which can

fully pay and the generated liquidity is 2cki,j . ⊓⊔

Notice that F ′ is actually Fτ with the addition of the k-gadgets, and since we proved
that the systemic liquidity of F ′ is always the same under any priority profile it must be
the case that the liquidity if F ′ depends on the generated liquidity in the k-gadgets.

Claim 3 The generated liquidity from a k-gadget under any clraring recovery rate vec-
tor is 1/(| NF |) whenever rk < 1 and 2 whenever rk = 1.

Proof. Assume some node k and let a clearing recovery rate vector with rk = 1 in F
under some profile P . Again from claim 1 we get that rk = 1 in F ′ under Pext, thus
the CDS (χk, ψk, k) is inactive which means that rψk

= 0 and node αk owes 2 to node
βk which it can fully pay off and the generated liquidity in that case is 2. If rk < 1
then the CDS (χk, ψk, k) is activated and since ckχk,ψk

= ∞ node χk must submit all
of its assets to ψk. Now ψk can fully pay off ζk thus the (αk, βk, ψk) is inactive and the
generated liquidity is 1/ | NF |. ⊓⊔

Next we provide the reduction based on the above three claims. Assume P is the
priority profile of F under which the number of defaulting nodes is minimised and let λ
be that number. We construct the financial system F ′ as described above and consider
the priority profile Pext. We will prove that under Pext the liquidity in F ′ is maximised.
From Claim 1 we know that the recovery rate of each node in F under Pext is unchanged
thus if a node is in default in F under P for some clearing recovery rate vector then it is
in default in F ′ under Pext. That means that there exist exactly λ k-gadgets, which by
Claim 3 generate liquidity λ/ | NF |, which (taking into consideration Claim 2) means
that

LPext

F ′ (r) = 2

 ∑
i,j∈NF

ci,j +
∑

i,j,k∈NF

cki,j

+
λ

| NF |
+ 2(| NF | −λ).
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Assume there exists another profile Qext such that LQext

F ′ (r) > LPext

F ′ (r). This means that
there must exist another λ′ such that

2

 ∑
i,j∈NF

ci,j +
∑

i,j,k∈NF

cki,j

+
λ′

| NF |
+ 2(| NF | −λ′) >

2

 ∑
i,j∈NF

ci,j +
∑

i,j,k∈NF

cki,j

+
λ

| NF |
+ 2(| NF | −λ),

which is true if and only if λ′ < λ. This means that the natural extension of the priority
profile that minimises the number of defaulting nodes in F maximises the systemic
liquidity in F ′ and vice versa. ⊓⊔

i j
cij

i τij j
cij cij

αij2ci,j βij
2ci,j

Fig. 8: Transformation of an (i, j) contract that appears in F to a τij-gadget appearing
in F ′

τ and F ′

i j
cki,j

k
i τkij j
cki,j cki,j

k

αk
ij βk

ij

2cki,j
2ci,j

Fig. 9: Transformation of an (i, j, k) contract that appears in F to a τkij-gadget appearing
in F ′

τ and F ′

k

χk ψk

∞
ζk

1
2|NF |

αk βk
2

2

1
2|NF |

k

Fig. 10: Addition of the k-gadget in F ′ for every node k of F
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C Financial System Gadgets

r 1

3

2
1

1 4 1− r

1

1 1

Fig. 11: Inversion gadget ginv: Computing 1− r from r.

r 1 r
11

21 3
1

5c 6 c · r1

4
1

c

Fig. 12: Duplication (and multiplication-by-constant) gadget gdup: This gadget outputs
two values: r and cr, where c ∈ [0, 1] is a rational constant. Choosing c = 1 yields a
duplication gadget that takes the input recovery rate r and outputs r as the two recovery
rates of the output nodes. We may also denote this gadget by gc·r, for c ∈ [0, 1] in case
this gadget is used to multiply the input by a constant c.

r2 1 2
1 1

3 4 5
1 1

r1 6 7 min{r1, r2}

8

1 1

1

1

P6 = ((6, 7, 4) | (6, 8))

Fig. 13: Minimum gadget gmin, computing min{r1, r2}. In this gadget we assume node
6 pays according to the priority list P6 = ((6, 7, 4) | (6, 8)). Node 6 has a liability of r2
and an incoming payment of r1 thus since it prioritises the contract (6, 7, 4) it submits
to node 7 the min{r1, r2}.
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ginv(r2)

ginv(r1)

gmin(ginv(r1), ginv(r2))

1

1
ginv(gmin(ginv(r1), ginv(r2)))

1
max{r1, r2}1

Fig. 14: Maximum gadget gmax, computing max{r1, r2}. This is a compact represen-
tation where the nodes labeled with a subscripted g have to be replaced by copies of the
respective gadgets, in order to obtain the full financial system defining the gadget. This
gadget exploits the fact that max{a, b} = 1−min{1− a, 1− b}. for a, b ∈ [0, 1]

gpos−(r1, r2)

gpos−(r2, r1)

g+ |r1 − r2|

1

1
1

Fig. 15: Absolute difference gadget gabs: This is a compact representation where the
nodes labeled with a subscripted g have to be replaced by copies of the respective gad-
gets, in order to obtain the full financial system defining the gadget. The recovery rate
of the output node is |r1 − r2|, where r1 and r2 are the recovery rates of the input
nodes. The gadget is formed by first applying two gpos− gates, the first on input (r1, r2)
and the second on input (r2, r1). The two positive subtraction gadgets gpos− compute
max{r1−r2, 0} and max{r2−r1, 0}, after which these two maxima are added together
using g+, resulting in the desired output |r1 − r2|.

C.1 Construction of the Division Gadget

To obtain our division gadget, we will essentially get rid of division gates altogether in
C ′
I , and replace each of them by a set of alternative operations that achieve the same

result. We thus make a few modifications toC ′
I . The first modification is that we alter the

sub-circuit T , which is used in the pre-processing step to generate the value t = 1/22
d

,
which scales all the signals in the circuit so that each signal is in [0, 1] irrespective of
the input vector. Here, d is a polynomial time computable value that satisfies that every
signal in the original circuit CI is at most 22

d

. We adapt T such that the scaling factor
it outputs is 1/(21+2d) instead of 1/22

d

. This can be done by adding one additional
multiplication gate at the end of T . Let the output of the modified T be t′ = t/2. After
this modification, it holds that all signals inside the circuit are in [0, 1/2].

We now make use of the fact that division gates are used in a very limited way in
C ′
I (with T modified as above).

– First, division is used for dividing by c, where c is a given explicit constant in the
original circuit CI . For such divisions, we can simply use our constant multiplica-
tion gadget gdup to multiply by 1/c, which is equivalent to dividing by c.

– Secondly, division is used to divide certain outputs of gates by t′ (previously t),
where t′ = 1/21+2d . This type of division happens in two cases.
1. At every point in the circuit where two scaled signals t′a and t′b with a, b ≤

22
d

are multiplied with each other, resulting in the value t′t′ab. This value is
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P27 = ((27, 28) | (27, 29))

P6 = ((6, 9) | (6, 7, 4))

Fig. 16: Multiplication gadget g∗: This gadget’s construction is rather involved and
makes use of various instances of multiplication-by-constant gadgets and positive sub-
traction gadgets. The function of nodes 1 to 15 is to compute 1/(1 + r2), which is
subsequently transformed into the expression r1/4 + r1r2/4 + 1/32 + 1/32r2 in node
27. After node 27, it is then straightforward to extract the term r1r2 from the latter
expression by making use of multiplication-by-constant gadgets and positive subtrac-
tion gadgets. Some of the constants appearing in this gadget (particularly the factor 1/4
and the external assets of 1/32 in node 20) have the function to keep the expressions
(marked in red) small enough so that they remain in the interval [0, 1] and can thus take
the form of a valid recovery rate. The presence of positive external assets at node 20
is also needed to ensure non-degeneracy, and this is also the reason for the presence of
some of the debt contracts in this gadget.
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P7 = ((7, 8) | (7, 9)), P10 = ((10, 12) | (10, 11))

Fig. 17: Square Root gadget g√.: On input r the recovery rate of the output node is
√
r.

The gadget works as follows, nodes 4 and 6 receive a payment of 1 − r from nodes 3
and 5 respectively and pass them on to nodes 7 and 10 respectively. From figure 1, we
know that r7 = r10 = 1−

√
r, thus generating a liability of

√
r to node 13 which it can

fully pay off, so that the terminal node receives a payment of
√
r.

divided by t′ in order to generate the signal t′ab, i.e., a scaled version of the
signal ab in the original circuit.

2. At the end of the circuit, where a scaled signal t′a is divided by t′ to produce
an output signal of the original circuit, which is in [0, 1].

In the first case, let x = t′ab and in the second case, let x = a, so that in both
cases a number t′x is divided by t′ to result in x, and in both cases it holds that
x ∈ [0, 1]. We replace the division t′x/t′ by a sequence of d gates that compute the
square root of its input, followed by a multiplication by 2, followed by a sequence
of d successive squaring multiplication gates, followed by a final multiplication by
2. This results in the correct value

((t′x)1/2
d

· 2)2
d

· 2 = (t′1/2
d

x1/2
d

· 2)2
d

· 2 = t′x · 22
d

· 2 =
1

2
x · 2 = x.

It is furthermore straightforward to verify that, due to the order in which we apply
our arithmetic operations, all of the values throughout this computation stay in the
interval [0, 1]. We note that the adapted scaling factor t′ = t/2 is needed because of
the multiplication by 2 that is executed after the successive square roots and before
the successive squaring.

The resulting circuit has no division gates anymore, so we do not need a division
gadget in our reduction. Instead, now we need a square root gadget, which is presented
in Fig. 17.
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