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Abstract

Wireless-connected Virtual Reality (VR) provides an immersive experience for VR users
from anywhere at anytime. However, providing wireless VR users with seamless connec-
tivity and real-time VR video with high quality are challenging due to its requirements in
high Quality of Experience (QoE), low VR interaction latency under latency threshold, and
privacy. To address these issues, in this thesis, we mainly focus on optimizing the uplink,
rendering, downlink, and privacy of wireless VR in 5G and terahertz (THz) networks.

If the viewpoint of the VR user can be predicted, the corresponding VR video frames
can be rendered and delivered in advance, which can reduce the VR interaction latency.
Thus, in the first chapter, we use offline and online learning algorithms to predict the
viewpoint of the VR user using a real VR dataset. For the offline learning algorithm, the
trained learning model is directly used to predict the viewpoint of VR users in continuous
time slots. While for the online learning algorithm, based on the VR user’s actual viewpoint
delivered through uplink transmission, we compare it with the predicted viewpoint and
update the parameters and input viewpoints of the online learning algorithm to further
improve the prediction accuracy. To guarantee the reliability of the uplink transmission,
we integrate the Proactive retransmission scheme of 5G into our proposed online learning
algorithm. Simulation results show that our proposed online learning algorithm with
the proactive retransmission scheme for wireless VR networks only exhibits about 5%
prediction error.

Rendering real-time VR videos with high quality demands a computing unit with high
processing ability. Thus, in the second chapter, we propose a mobile edge computing
(MEC)-enabled wireless VR network in 5G, where the field of view (FoV) of each VR
user can be real-time predicted using Recurrent Neural Network (RNN), and the rendering
of VR content is moved from the VR device to the MEC server with rendering model
migration capability. Taking into account the geographical and FoV request correlation,
we propose centralized and distributed decoupled Deep Reinforcement Learning (DRL)
strategies to maximize the long-term QoE of VR users under the VR interaction latency
constraint. Simulation results show that our proposed MEC rendering schemes and DRL
algorithms substantially improve the long-term QoE of VR users and reduce the VR
interaction latency compared to rendering at VR devices.
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In an indoor scenario, a high data rate over short transmission distances may be
achieved via the abundant bandwidth in the THz band. However, THz waves experience
severe signal attenuation, which may be compensated by the reconfigurable intelligent
surface (RIS) technology with programmable reflecting elements. Meanwhile, the low
VR interaction latency can be achieved with the MEC network architecture due to its
high computation capabilities. Motivated by these considerations, in the third chapter, we
propose an MEC-enabled and RIS-assisted THz VR network in an indoor scenario, by
taking into account the uplink viewpoint prediction and position transmission, the MEC
rendering, and the downlink transmission. We propose two methods, which are referred
to as centralized online gated recurrent unit (GRU) and distributed federated averaging
(FedAvg), to predict the viewpoints of the VR users. In the uplink, an algorithm that
integrates online long-short term memory (LSTM) and convolutional neural networks
(CNN) is deployed to predict the locations and the line-of-sight (LoS) or non-line-of-sight
(NLoS) statuses of VR users over time. In the downlink, we develop a constrained DRL
(C-DRL) algorithm to select the optimal phase shifts of the RIS under latency constraints.
Simulation results show that our proposed learning architecture achieves near-optimal QoE
as that of the genie-aided benchmark algorithm, and about two times improvement in QoE
compared to the random phase shift selection scheme.
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Chapter 1

Introduction

With the development of virtual reality (VR) technology, the interactions between VR users
and their world will be revolutionized. VR can connect users across global communities
within highly immersive virtual worlds that breaks geographical boundaries. This vision
has inspired the commercial release of various hardware devices, such as Facebook Oculus
Rift [56]. However, the poor user experience provided by traditional computer-supported
VR devices constrains the type of activities and experience of the VR user. One of the main
barriers of wired connected VR devices is the limited mobility of VR users. To overcome
this disadvantage, wireless connected VR devices can be a potential solution in providing
ubiquitous user experiences from anywhere at anytime, and also can unleash plenty of
novel VR applications. Nevertheless, there are some unique challenges in wireless VR
systems that do not exist in wired VR systems and traditional wireless video transmission
systems as identified in [69]. This includes how to provide seamless and real-time VR
video with high quality through unstable wireless channels, solve handover issues when
VR users are in mobility, and support the asymmetric and coupled traffic in the uplink and
downlink transmission [133, 51, 25]

Furthermore, in recent years, novel communication technology such as 5G, Millimeter
wave (mmWave), and terahertz (THz) can provide high transmission rate, low interac-
tion latency, and high transmission reliability. For example, the transmission rate of 5G,
mmWave, and THz can achieve 20 Gbps, 25Gbps, and 100 Gbps, respectively [17, 33, 11].
Thus, the requirement of the low latency of wireless VR can be guaranteed. Meanwhile,
some techniques in these novel communication technologies, such as proactive retransmis-
sion scheme in 5G and reconfigurable intelligence surface (RIS) in mmWave and THz, can
guarantee the high reliability of VR video streaming. In addition, cloud and edge artificial
intelligence (AI) can help the edge server predict the VR user preferences and render the
required VR video frames in advance, which decrease the VR interaction latency. Also,
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the edge server is equipped with high computation capability, which further decreases the
rendering latency.

In this chapter, we mainly focus on the related works of wireless VR and the background
knowledge used to optimize the wireless VR network, including 5G, terahertz, mobile
edge computing, and machine learning.

1.1 Related Works

In this section, related works on 5G VR networks, MEC-enabled wireless VR networks,
viewpoint prediction-assisted VR networks, THz VR networks, and RIS-assisted THz
networks are briefly introduced in the following five subsections.

5G VR Networks

In [42], the echo state network (ESN) was proposed to solve the resource block allocation
problem in both uplink and downlink wireless VR transmission to maximize the average
quality of service (QoS) of VR users. Extending from [42], the authors in [43] optimized
the resource block allocation using ESN to maximize the success transmission probability
accounting for the VR user data correlation. In [68] and [57], a Recurrent Neural Network
(RNN) based on long short-term memory (LSTM) was applied for viewpoint prediction.
In [62] and [95], the authors studied optimal multicast of tiled 360 VR video from one
base station (BS) to multiple VR users in OFDMA and TDMA systems, and focused on
downlink transmission via optimizing transmission power.

MEC-enabled wireless VR networks

In [131] and [52], a joint caching and computing optimization problem was formulated to
minimize the average transmission rate and maximize the average tolerant delay, respec-
tively. In [96], through effectively exploiting the characteristics of multi-quality tiled 360
VR videos and computation resources, the optimal wireless streaming of a multi-quality
tiled 360 VR video to multiple users in wireless networks was investigated to decrease the
energy consumption. In [92], a decoupled learning strategy was developed to optimize
the real-time VR video streaming in wireless networks, by taking into account the FoV
prediction and rendering MEC association. Through the design of centralized/distributed
deep reinforcement learning algorithms to select proper MECs to render and transmit
predicted VR video frames, the QoE was enhanced and the VR interaction latency was
reduced. However, the authors of [131, 52, 96] mainly used convex optimization to op-
timize the wireless VR network, which can not guarantee the long-term QoE of the VR
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users. The authors of [92] only considered the MEC association problem without using
real VR datasets.

Viewpoint prediction-assisted VR networks

The viewpoint prediction problem in wireless VR system has been studied in [85, 86, 92,
23, 22, 21]. The authors in [85] considered viewpoint prediction via constant angular
velocity and constant acceleration after every 20 ms. In [86], the authors proposed a double
exponential smoothing method to predict users’ head position and rotation after every
50 ms. In [92], the authors considered Brownian Motion to simulate the eye movement
and used RNN to predict viewpoint preferences in continuous time slots. However, the
methods in [85] and [92] were not data-driven, and prediction results obtained in [85] and
[86] would be unaligned with the viewpoint preference of VR users, which may not fit
for real-time VR video transmission. In [22], [23] and [21], the authors only used offline
Linear Regression (LR) [65] and Neural Network (NN) [105] to predict the viewpoints of
VR users in continuous time slots with real VR dataset, and assumed that all viewpoint
requests are available at the SBS, which is not possible without 100% reliable uplink
transmission. Based on such predictions in [22], [23] and [21], the authors minimized
the multicast bandwidth consumption by sending the predicted part of the spherical VR
videos.

THz VR networks

In [38, 36, 54, 37], the reliability, transmission rate, viewpoint rendering, and energy
consumption of a THz VR system were investigated. Specifically, in [38], the reliability of
VR services in the THz band was studied, and the theoretical analysis of the end-to-end
(E2E) delay was performed. In [36], a risk-based framework was proposed to optimize the
rate and reliability of THz-band for VR applications. In [54], through jointly optimizing the
viewport rendering offloading and downlink transmit power control, the long-term energy
consumption of a THz wireless access-based MEC system for high quality immersive VR
video services was minimized. In [37], the age of information (AoI) of AR services in
a THz cellular network with RISs was studied, and the cumulative distribution function
(CDF) of the AoI was derived for two different scheduling policies, which are the last come
first served (LCFS) queues and the first come first served (FCFS) queues. However, in
[38], [36], and [37], the authors mainly focused on the theoretical analysis of the reliability
and E2E delay of the THz VR. In [54], the authors mainly optimized the long-term energy
consumption via deep reinforcement learning, rather than the QoE and VR interaction
latency, without the consideration of RIS.
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RIS-assisted THz networks

In [99, 98, 75, 139, 79, 125, 39, 73, 74], the sum rate maximization problem in RIS-
assisted THz network was investigated. Specifically, in [99], based on channel estimation,
a deep neural network (DNN) was proposed to select the optimal phase shift configura-
tions to maximize the sum rate in the RIS-assisted THz multiple-input multiple-output
(MIMO) system. In [98], through optimizing the beamforming vector of the transmitter
and reflection coefficients matrix of the RIS, the coverage probability in indoor THz
communication scenarios was improved, and a low complexity phase shift search scheme
was used to achieve near-optimal coverage performance. In [75], energy-efficient designs
for both the transmit power allocation and the phase shifts of the RIS subject to downlink
multi-user communication were developed. In [139], the downlink of an RIS-empowered
multiple-input single-output (MISO) communication system was considered, where the
alternating least squares and vector approximate message passing methods were used
to estimate channels between the BS and the RIS, as well as the channels between the
RIS and users. In [79], RIS-assisted secure wireless communications were investigated,
and the successive convex approximation-based algorithm was used to solve the transmit
covariance matrix optimization problem, which maximized the secrecy rate. In [125], the
network architecture and spectrum access of AI-enabled Internet of Things in 5G and 6G
networks were proposed. In [39], a comprehensive roadmap outlining the seven defining
features of THz wireless systems that guarantee a successful deployment in future wireless
generations was proposed. In [73] and [74], a novel hybrid beamforming scheme for
multi-hop RIS-assisted communication networks was proposed to improve the coverage
range of THz networks. Nevertheless, in [99, 98, 75, 139, 79, 125, 39, 73, 74], the authors
mainly optimized the phase shift and beamforming vector to maximize the sum rate of
RIS-assisted THz networks using a DNN or non-learning based approaches.

1.2 Background

1.2.1 Wireless VR System

In wireless VR systems, wireless VR video streaming mainly includes three parts. First,
VR users transmit the tracking information, such as head and eye movements to the cloud
or edge server. Then, the cloud or edge server renders and encodes the required VR video
frames, and transmits them to the VR users through downlink transmission. Finally, the VR
users decode the received VR video frames and adjust them to the VR devices. If the cloud
or edge server can predict the VR user preferences, the corresponding VR video frames
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can be rendered and delivered in advance, which can further decrease the VR interaction
latency. The process of wireless VR is shown in Fig. 1.1.
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Fig. 1.1 Decomposition of end-to-end VR interaction latency in 5G and THz with
cloud/edge server.

1.2.2 Overview of 5G Technology

In recent three decades, concerning the transition from 1G to 4G, there is rapid growth in
the field of wireless network [27, 103]. The main reasons behind this are the requirements
of high bandwidth and low latency. Fortunately, 5G is able to provide high data rate, high
quality of service (QoS), low latency, high coverage, high reliability, and economically
affordable services. The services provided by the 5G are classified into three categories: (1)
Extreme mobile broadband (eMBB), it provides high-speed network connectivity, larger
bandwidth, and moderate latency. eMBB is designed for UltraHD streaming videos, VR,
and AR media [13]. (2) Massive machine type communication (MMTC), it provides
long-range and broadband machine-type communication at a very cost-effective price
with less power consumption. Also, it brings a high data rate service, low power, and
extended coverage via less device complexity through mobile carriers for IoT applications
[120]. (3) Ultra-reliable low latency communication (URLLC) offers ultra-high reliability,
ultra-low latency, and high QoS, which are not possible for traditional mobile network
architecture from 1G to 4G. URLLC is designed for real-time interaction such as remote
surgery, vehicle to vehicle (V2V) communication, industry 4.0, and smart grids [123].

Although 5G wireless networks provide ubiquitous coverage with high speed and low
latency, with billions of mobile devices connected to the network, 5G technology still faces
several significant challenges. First, with the increasing number of mobile devices access
to the network, they are easily vulnerable to be attacked from the Internet. Thus, privacy
and security are the most critical factors to be considered when promoting the development
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of 5G applications, such as VR and AR [82]. Second, when mobile applications in 5G
become popular, millions of mobile devices will operate and transmit data continuously
every day. As a consequence, a large amount of energy will be consumed every day. Thus,
energy-efficient communication solutions are a real challenge [34, 143].

1.2.3 Overview of Terahertz Communication

5G provides a high-speed internet facility from anywhere at anytime for everyone. However,
mobile data traffic has increased exponentially in the present decade, and the available
bandwidths are inadequate to meet the data rate demands of users with diverse bandwidth-
hungry applications. For example, future wireless local area networks (WLAN) and
wireless personal area networks (WPAN) require the data rate at least a couple of ten
multi-gigabits-per-second (Gbps) [126]. Meanwhile, the minimum data rate of some
wireless applications, such as VR and AR, is expected to be 10 Gbps. In addition, the
data rate of uncompressed ultra-high-definition videos and 3D videos will reach 24 Gbps
and 100 Gbps, respectively [76]. The present deployed 5G communications will find it
difficult to satisfy the data rates and ultra-low latency requirements of these applications.
To satisfy the requirements of the high data rate mentioned above, spectrum utilization will
move to the terahertz (THz) bands (0.1 - 10 THz), where multi-gigahertz (GHz) contiguous
bandwidth is available to enable Gbps and/or terabits-per-second (Tbps) rates [15].

Despite promising available bands in the THz spectrum, wireless signals in the THz fre-
quency range experience severe propagation attenuations and water-molecular absorption
losses because of the high frequency, which limits the propagation distance [16]. Further-
more, obstacles in the wireless communication environment can easily block THz signals
due to their poor diffraction and scattering capabilities [58, 108]. To address these issues,
smart wireless networks for the THz band have attracted significant attention recently,
which rely on the concept of reconfigurable intelligent surfaces (RISs) [24, 112–114, 158].
In particular, RIS consists of flat electromagnetic (EM) material surfaces with an array
of dispersive elements. Each element induces an amplitude and/or phase shift to THz
signals to enhance the received signal power and create a desirable multipath effect without
the need for complex coding and decoding schemes or additional frequency radio (FR)
operations [146, 147].

1.2.4 Mobile Edge Computing

In the last decade, cloud computing has emerged as a new paradigm of computing. The
resources in the clouds are leveraged to provide elastic computing capability and memory
to support resource-constrained mobile devices [156]. However, cloud computing has
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some challenges. First, cloud computing requires transmissions from end-users to the
cloud server with distances ranging from tens of kilometers, which can result in high
propagation delay. Second, cloud computing requires the delivered information to pass
through a radio access network and a backhaul network, where traffic control, routing, and
other resource management techniques can lead to extra delay. Finally, although cloud
computing has a huge computation capability, it has to be shared by a huge number of
devices. If the computation resource cannot be allocated properly, it can lead to high
computation latency [136].

To address the issues of cloud computing mentioned above, in recent years, a new
computing trend is happening with cloud computing moving towards the network edges,
so-called mobile edge computing (MEC) [2]. The main feature of MEC is to push mo-
bile computing, network control, and storage to the network edges, such as base stations
(BSs) and access points (APs), which enables computation-intensive and latency-critical
applications to be executed at the resource-constrained mobile devices [12]. Compare to
cloud computing, the MEC achieves lower latency. First, the transmission distances are
typically tens of meters, and no longer than one kilometer for general cases, which de-
creases transmission latency. Second, the traffic control, routing, and network-management
operations of the MEC are much easier than that of cloud computing, which decreases
the extra delay. Finally, the computation capability of a modern BS with edge computing
is powerful enough for running sophisticated computing programs, which may achieve
lower computation latency [118]. To sum up, with short transmission distances and simple
protocols, MEC has the potential of realizing tactile-level latency for latency-critical 5G
applications, such as VR and AR [124].

1.2.5 Machine Learning

Machine learning (ML) was born from pattern recognition and it is based on the assumption
that machines are endowed with artificial intelligence (AI), so that they can learn from
previous computations or adapt to their environment through experience [19, 130]. Because
of the rapid growth of data, especially in wireless networks, the need for intelligent data
analysis and the deployment of ML algorithms have become necessary and ubiquitous.
Through using ML algorithms to build models, system operators can predict dynamic
systems or make intelligent decisions without human intervention [18].

Deep Neural Network

Among ML algorithms, a deep neural network (DNN) is an artificial neural network (ANN)
with multiple hidden layers between the input and output layers [50]. DNN can learn any
nonlinear function and is capable of learning weights that map any input to the output.
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One of the main reasons behind it is the activation functions, which introduce nonlinear
properties to the network and help the network learn any complex relationship between the
input and output [14].

When solving an image recognition problem with DNN, the first step is to convert the
two-dimensional images into one-dimensional vectors. However, it has two disadvantages.
First, with the increasing size of the image, the number of neurons and weights of the
DNN increases drastically, which can occupy a large amount of memory and increase
training latency. Second, the DNN cannot extract the spatial features of an image, where
spatial features are the arrangement of pixels in an image. Thus, the learning accuracy
severely decreases if the DNN is used for image classification. In addition, the DNN
cannot capture sequential information of the input data especially when the input data is
time-correlated. To deal with these issues, two different learning architectures are proposed,
namely, convolution neural network (CNN) and recurrent neural network (RNN).

Convolution Neural Network

A CNN is a type of DNN for processing data that has grid patterns, such as images, which
is designed to automatically and adaptively learn spatial hierarchies of features [121]. The
CNN typically consists of three types of layers, which are convolution layer, pooling layer,
and fully connected layer. Convolution and pooling layers perform feature extraction,
and the fully connected layer maps the extracted features into the final output, such as
image recognition and classification. The convolution layer plays an important role in
CNN, which is consisted of a stack of mathematical operations, such as convolution. In
images, pixel values are stored in a two-dimensional grid, i.e., an array of numbers, and a
small grid of parameters called kernel (an optimizable feature extractor) is applied at each
image position, which makes the CNN highly efficient for image processing. As one layer
feeds its output into the next layer, extracted features can hierarchically and progressively
become more complex.
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Fig. 1.2 Recurrent neural network architecture.
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Recurrent Neural Network

RNN is a class of neural networks that allow previous outputs to be used as inputs
while having hidden states, which is adapted to work for time series data or data that
involve sequences [91]. Unlike the DNN, the neurons in different layers of the DNN are
compressed to form a single layer of the RNN, as shown in Fig. 1.2. In Fig. 1.2, x is the
input layer, h is the hidden layer, y is the output layer, and A, B, and C are the network
parameters used to improve the output of the model. At the tth time slot, the input is a
combination of input at the tth and (t − 1)th time slots. The output at each time slot is
then feedback to the input to improve the output. However, RNN is hard to train because
of two gradient problems, namely, vanishing gradient problem and exploding gradient
problem. The gradients carry information used in the RNN, and when the gradient becomes
too small, the weights updates become insignificant, so-called vanishing gradient, which
makes the learning of long-term data sequences difficult. When the slope of the gradient
tends to grow exponentially instead of decaying, so-called exploding gradient, there will
be large updates to the weights of the network model during the training process. These
gradient problems lead to a long training time, poor convergence performance, and low
learning accuracy. To solve the gradient problems, the most popular and efficient way is
deploying long short-term memory (LSTM) or gated recurrent unit (GRU).

Long Short-term Memory LSTM is capable of learning long-term dependencies and
uses a gating mechanism to control the memorizing process [66]. Information in the LSTM
can be stored, written, or read through opening or closing gates. There are three different
gates in an LSTM cell, which are a forget gate, an input gate, and an output gate. The forget
gate decides which information needs to be kept or ignored. The input gate decides which
relevant information can be added to the long-term memory and it only works with the
information from the current input and short-term memory from the previous steps. The
output gate determines the value of the next hidden state, where the hidden state consists
of information from previous inputs.

Gated Recurrent Unit GRU shares many properties of LSTM, and it still uses a gating
mechanism to control the memorizing process. Fortunately, GRU is less complex than
LSTM and faster to execute [47]. GRU has two gates, which are an update gate and a reset
gate. The update gate is responsible for determining the amount of previous information
that needs to pass along to the next state. The reset gate is used from the model to decide
how much of the past information is needed to ignore, which decides whether the previous
cell state is important or not.
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To sum up, compared with LSTM, GRU has fewer training parameters, occupies less
memory, and executes faster than LSTM. However, LSTM is more accurate on a larger
dataset. One can choose LSTM if dealing with large sequences and accuracy is concerned,
and GRU is used when you have less memory consumption and want faster results.

In contrast to the previously discussed learning models, such as CNN and RNN, that
need to be trained with labeled or unlabeled data, deep reinforcement learning (DRL) is
trained by the observations from the environment.

Deep Reinforcement Learning

Reinforcement learning (RL) is a learning model where an agent learns to make decisions
through feedback rewards. The problem is usually modeled as a Markov decision process
(MDP). At each time slot, an agent observes a state of the environment, selects an action,
receives a reward, and transitions to the next state. The agent attempts to learn an optimal
policy to maximize the long-term reward [70]. However, in many practical decision-
making problems, the state and action of the environment are high-dimensional and cannot
be solved by traditional RL algorithms. Thus, deep RL (DRL), where DNNs are integrated
with RL, is proposed to deal with this issue [81], which is shown in Fig. 1.3.
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Fig. 1.3 Deep reinforcement learning architecture.

Online Learning

Traditional ML algorithms usually work in an offline learning mode. Offline learning
can be divided into two phases, namely, the training phase and the testing phase. In the
training phase, the learning model is first trained by the training datasets until an optimal
set of hyperparameters for the learning model is obtained. In the testing phase, the trained
learning model is deployed for prediction or decision-making without performing any
further model updates. The offline training method suffers from expensive re-training costs
when dealing with new training data/environment so that they are poorly generalized to the
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unseen data in real-world applications, especially when the data grows and the environment
evolves rapidly.

Unlike offline learning, online learning includes an important family of ML algorithms
that are designed to learn models incrementally from data in a sequential manner. Online
learning overcomes the drawbacks of offline learning in that the learning models can be
updated constantly and efficiently when new training data arrives. Thus, online learning
models are much more efficient and scalable for large-scale ML tasks in real-world data
applications, where datasets are not only large but also updated frequently [67].
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Fig. 1.4 Federated learning architecture.

Federated Learning

The inevitable rise of edge computing enables many ML algorithms to effectively analyze
various types of data for resource management, interference management, autonomy, and
decision making in computer or wireless networks. However, because of the hardware
resource constraints, uncertain wireless environment, latency constraints, and privacy
challenges, the edge devices cannot transmit their entire datasets to the edge servers for
training their ML models centrally [157]. To guarantee the training data remaining trained
on personal devices and facilitate collaborative ML of complex models among distributed
IoT or mobile devices, a distributed ML model called federated learning (FL) was first
introduced in [102]. As shown in Fig. 1.4, in the FL, 1) each device uses its dataset to
train a local model; 2) they send their local models to the server for model aggregation; 3)
the server transmits the updated global model to these devices. These steps are repeated
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in multiple iterations until convergence. Compared to the traditional central learning
and the distributed learning that executes via exchanging raw data, the FL has following
advantages:

• In the FL, only the model weights are transmitted between the server and devices
rather than the datasets. Thus, less information is required to be delivered to the
server, which significantly decreases the transmission overhead and latency, and
relieves the burden on networks.

• The raw data of each device does not need to be exchanged or sent to the cloud
or edge, which can guarantee the user privacy and decrease the probability of
eavesdropping. Thus, more devices are willing to take part in the model training to
achieve a high learning performance.

Given the aforementioned advantages, the FL has obtained successes in many applica-
tions, including training predictive models for human trajectory or behavior via mobile
devices [128], automatically learning users’ behavior patterns via smart home IoT [151],
and diagnosis in health AI for cooperation among multiple hospitals and government
agencies [31, 110, 135].
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Fig. 1.5 Diagram of main contribution.

1.3 Contributions

In this dissertation, we integrate the machine learning into the wireless VR and focus on
optimizing four parts, which are uplink transmission, rendering, downlink transmission,
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and privacy. As shown in Fig. 1.5, predicting viewpoints of VR users by offline or
online learning can decrease uplink latency. Based on the predicted viewpoints, their
corresponding VR video frames can be rendered by MEC and transmitted to VR users in
advance. Thus, VR users can directly enjoy VR video frames without waiting. In addition,
to guarantee the privacy of required VR video frames, federated averaging is deployed to
predict VR video frames at VR devices, so that VR users do not need to exchange datasets
with the MEC. The main contributions are summarized as follows:

• To decrease uplink transmission latency, we consider offline and online learning for
viewpoint prediction in Chapter 2. Due to the fact that there are 16 VR videos in the
real VR dataset, we consider two learning schemes, which are 16 learning models
for these 16 VR videos, and only one learning model for all VR videos. For online
learning, we consider it in 5G and THz networks. To guarantee the reliability of
uplink transmission in 5G networks, we integrate a proactive retransmission scheme
into online learning. While for the THz VR networks, we use RIS-assisted THz
transmission in Chapter 4.

• To decrease rendering latency, we consider MEC to render the VR video frames
in Chapter 3 and 4. For the VR users who need the same VR video frame while
associated with different MECs because of their locations, the MEC with the highest
computation capacity is used to render the VR video frames and migrate to the other
MECs.

• To decrease downlink transmission latency, we consider multiple MECs in 5G
networks in Chapter 3 and a single MEC in THz networks in Chapter 4. For multiple
MECs in 5G networks, we consider centralized and distributed DRL to select proper
MECs for VR video frame rendering and performing downlink transmission. For a
single MEC in THz networks, we consider RIS-assisted THz to transmit VR video
frames for VR users in the NLoS area and use constrained DRL to select proper
phase shift elements of the RIS.

• To guarantee the privacy of VR users in viewpoint prediction, we consider federated
learning in Chapter 4, where the VR datasets are stored in VR devices, the learning
models directly predict the viewpoints of VR users over time, and then the VR users
transmit the updated learning models to the MEC for model aggregation.

1.4 Outline of the Dissertation

The outline of this dissertation is organized as follows.
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• The introduction is proposed in Chapter 1.

• Learning-based prediction and proactive uplink retransmission for wireless VR
network is considered in Chapter 2.

• Learning-based prediction, rendering and association Optimization for MEC-enabled
wireless VR network is proposed in Chapter 3, where the prediction methods of
Chapter 2 are deployed in Chapter 3.

• Learning-based prediction, rendering and transmission for interactive VR in RIS-
assisted terahertz networks is presented in Chapter 4, where the prediction methods
of Chapter 2 and rendering methods of Chapter 3 are deployed in Chapter 4.

• The conclusions and future works are described in Chapter 5.
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Chapter 2

Learning-based Prediction and Proactive
Uplink Retransmission for Wireless VR
Network

2.1 Introduction

When the VR user enjoys the VR video frame, it mainly focuses on a certain direction
at any given time slot. Based on the viewing direction, the corresponding portion of the
image, defined by the Field of View (FoV) [142], needs to be rendered and delivered. The
FoV determines the extent of the virtual environment that can be viewed. The center of
the FoV that the VR user is watching is called Viewpoint [22]. If the viewpoint of the VR
user is able to be well predicted, only its corresponding FoV is required to be rendered
and delivered in advance, rather than rendering and transmitting the whole spherical video,
which can further reduce the VR interaction latency [9].

2.1.1 Motivation

Because of the random nature of the head motion of VR users, viewpoint prediction based
on delayed uplink viewpoint transmission may be prone to error, and only using trained
linear regression (LR) and neural network (NN) cannot guarantee the highest prediction
accuracy and capture the complex dynamics viewpoint preference over time, which may
further degrade the quality of experience (QoE) [69] of VR users. To address this issue,
an RNN based on the state-of-the-art Long Short-Term Memory (LSTM) [66] or Gated
Recurrent Units (GRU) [47] architecture can be designed to predict the viewpoint of
the VR user. LSTM and GRU could be successfully applied to sequence prediction and
sequence labeling tasks due to their capability in dealing with the time-correlation tasks. It
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is important to know that they have the capability to learn the correlation of time-varying
inputs, and they are well-suited to classify, process, and predict time-series events. Also,
they can be used to deal with the exploding and vanishing gradient problem when training
traditional RNNs [129]. However, the trained LR, NN, LSTM, and GRU learning models,
namely, offline learning models, cannot adapt to the dynamic changing environment and
has poor adaptability to viewpoint prediction of new VR users.

In contrast to the offline learning algorithm, the online learning model is updated with
each FoV request received, and can automatically adjust the model itself according to
the change of the received data. In [92], through transmitting the FoV request to the
MEC-enabled SBS in the wireless VR network, the MEC was able to accurately predict the
required FoV of the VR user over time, and render and deliver the FoV in advance, which
could decrease the VR interaction latency and improve the QoE of the VR user. Therefore,
the online learning algorithm has the potential to learn and update the best predictor for
future FoV preference at each time slot and can be updated instantly once the FoV request
of a new VR user is received [67, 109, 153].

To update the hyper-parameters in an online fashion, the VR users need to transmit
its actual viewpoint to the SBS through uplink transmission, and the SBS will compare
the actual viewpoint with the predicted viewpoint to reduce the loss between them. In the
wireless VR network, due to the unstable wireless channels and the interference from other
VR users, it is possible that the uplink transmission between the VR user and the SBS
fails. Nevertheless, in the aforementioned wireless VR systems [85, 42, 43, 131, 86, 92,
23, 22, 21], the authors did not consider the potential uplink transmission failure caused
by the wireless fluctuation to the online training, and the potential uplink transmission
enhancement for better online training. To deal with this issue, the Proactive retransmission
scheme [7, 119, 154, 5] is first proposed for the uplink viewpoint transmission to achieve
ultra-reliable low-latency communication (URLLC) requirement for this type of small data
transmission.

2.1.2 Contributions

Motivated by above, in this chapter, we develop offline and online learning algorithms for a
wireless uplink VR system under proactive retransmission scheme to efficiently maximize
the viewpoint prediction accuracy of VR users. The main contributions can be summarized
as follows:

• Based on the historical and current viewpoint of the VR user in the real VR dataset,
we develop offline and online learning algorithms to predict the viewpoint of the VR
user in continuous time slots, in order to capture the dynamical viewpoint preference
of VR users over time.
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• There are 16 VR videos in the real VR dataset, each VR video has its own property,
and we first learn separate learning model for each VR video to predict the viewpoint
of its corresponding VR users. When the number of VR videos increases, one
learning model for each VR video may occupy much more computation resource and
memory of the SBS. Therefore, to evaluate the generality of the viewpoint prediction
model, we further propose one learning model for all VR videos. To ensure that
the FoV request of each VR user in the VR dataset has the opportunity to be tested
and avoid any biased performance, we use K Cross Validation to train the learning
model.

• According to [22], the viewpoint of each VR user has strong short-term auto-
correlation, which means that the viewpoint can be well predicted based on the
historical viewpoint of each VR user. For the offline learning algorithms, we train the
n-order Linear Regression (LR), Neural Network (NN), and Recurrent Neural Net-
work (RNN) based on the state-of-the-art Long-short Term Memory (LSTM)/Gated
Recurrent Unit (GRU) architecture to predict the viewpoint of the VR user over
time. However, the offline learning model cannot adapt to the dynamic changing
environment when new VR users exist.

• In the online learning algorithms, we take into account the effect of the failure
during the uplink transmission on viewpoint prediction. The uplink transmission
may fail because of the unstable wireless channels and interference, which result
in incomplete training data and input of the online learning algorithms, and may
decrease the prediction accuracy of the learning model. To guarantee the reliability
of the uplink transmission, we introduce the proactive retransmission scheme to
the uplink VR viewpoint transmission during the online learning. Interestingly, our
results shown that the online GRU algorithm for uplink wireless VR network with
the proposed retransmission scheme can achieve 95% prediction accuracy.

2.1.3 Organization

The rest of this chapter is organized as follows. The VR data description and analysis
are proposed in Section 2.2. The system model and problem formulation are presented
in Section 2.3. Learning algorithms for viewpoint prediction is proposed in Section 2.4.
The simulation results and conclusions are described in Section 2.5 and Section 2.6,
respectively.
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2.2 VR Data Description and Analysis

2.2 VR Data Description and Analysis

The VR dataset obtained from [4] includes 16 clips of VR videos with 153 VR users, and
969 data samples of the motion in three dimensions, pitch, yaw, and roll, namely, X , Y and
Z viewing angles, which are shown in Fig. 2.1. Each dimension is presented by an angle
(−180◦ to 180◦), and each data includes the X , Y , and Z viewing angles of each VR user
at each time slot.

Y

X

Z

Yaw

Pitch

Roll

Fig. 2.1 VR user viewing direction.

2.2.1 VR Video Description

The scene of the VR video is shown in Fig. 2.2. From Fig. 2.2, we can observe that the
VR videos can be divided into three categories: 1) 7 of them are sports content, including
Surfing, Basketball, Boxing, Football, Skiing, and Soccer; 2) 2 of them are Landscapes
content, including Grand Canyon, and Survivorman; and 3) 5 of them are Entertainment,
including Airplane flight, Underwater game, Roller coaster, Dancing girl, Flying Kite, and
Giant Dinosaur.

The 16 VR video clips are downloaded from YouTube. The duration of each VR video
is 30 seconds and each VR video is divided into 300 equal parts, which means that each
sample point of the VR video lasts for 0.1 seconds. Among these VR videos, 14 of them
are 4K resolution, one of them is 2K resolution, and one of them is 1080P. The detailed
attributes of each VR video are shown in Table 2.1.

In the experimental data, 153 VR users watched these VR videos, where 35 of them
enjoyed all 16 VR video clips, and 118 of them enjoyed 3 to 5 randomly selected VR video
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Fig. 2.2 VR video screenshot.
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Fig. 2.3 The detailed number of VR users watching each VR video.

clips. The detailed number of VR users watching each VR video is shown in Fig. 2.3. We
can obtain that each VR video is watched by an average of 60 VR users, with a minimum
of 46, and a maximum of 84. Meanwhile, the age distribution of all VR users is shown in
Fig. 2.4. From Fig. 2.4, we can see that more than half of VR users are between 20 and 30.
In addition, for all VR users, 38% VR users are female, and 34% VR users wear glasses.

36



2.2 VR Data Description and Analysis

Table 2.1 VR Video Information

Video Number VR Video Scene Resolution Bitrate
(1) Airplane Flight 4k 13.04 Mbps
(2) Surfing 4k 23.2 Mbps
(3) Basketball Game 4k 9.2 Mbps
(4) Basketball Flying 4k 5.42 Mbps
(5) Roller Coaster1 4k 31.85 Mbps
(6) Boxing 4k 4.4 Mbps
(7) Dancing Girl 4k 6.58 Mbps
(8) The Underwater World 4k 23.47 Mbps
(9) Flying Kite 4k 10.98 Mbps

(10) Football Team 4k 8.24 Mbps
(11) Giant Dinosaur 1080p 1.35 Mbps
(12) Grand Canyon 2k 5.12 Mbps
(13) Roller Coaster2 4k 22.87 Mbps
(14) Skiing 4k 21.08 Mbps
(15) Soccer 4k 12.76 Mbps
(16) Survivorman 4k 29.1 Mbps

10-20

 36%

20-30

 54%
30-40

  4% 40-50
  4% 50-60  2%

Fig. 2.4 Age distribution of all VR users.

2.2.2 Viewpoint Distribution

In the VR dataset, most VR users have similar viewpoints when enjoying the same video.
We plot the viewpoint of all VR users for 16 VR videos in X , Y , and Z angles, respectively,
which are shown in Fig. 2.5, 2.6, and 2.7, respectively. The X-axis and Y-axis of the
viewpoint distribution figure are VR video playout time and degree of angles at each time
slot, respectively. From Fig. 2.5, 2.6, and 2.7, we can know that the viewpoint range of X ,
Y and Z angles are (-50◦, 50◦), (-150◦, 150◦) and (-50◦, 50◦), respectively.
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Fig. 2.5 X angle distribution of all VR users.
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Fig. 2.6 Y angle distribution of all VR users.

2.3 System Model and Problem Formulation

We consider a wireless VR system, where a small-cell base station (SBS) is connected to
the core network through a fiber link to serve KVR VR users via wireless links, as shown
in Fig. 2.8. The SBS is equipped with M antennas and each VR user is equipped with a
single antenna, respectively.

2.3.1 Uplink Transmission Model

In the uplink transmission, the VR system is a single-input-multiple-output (SIMO) system,
which means that the transmit signal of an antenna is transmitted to a receiver with multiple
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Fig. 2.7 Z angle distribution of all VR users.
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Fig. 2.8 Wireless VR network.

antennas. We use maximum ration combining (MRC) to combine the signals, so that the
uplink reliability can be enhanced [1, 35]. At the (t −1)th time slot, the SBS will predict
the viewpoint X̂k

t or Ŷ k
t or Ẑk

t of the kth VR user for the tth time slot. Then, at the tth time
slot, the VR user will transmit its actual viewpoint Xk

t or Y k
t or Zk

t to the SBS via uplink
transmission. The uplink transmission signal from the kth VR user to the SBS at the tth
time slot can be denoted as

yup
k,t = uH

k,thk,tx
up
k,t +

KVR

∑
i=1,i̸=k

uH
k,thi,tx

up
i,t +nup

t , (2.1)

where hk,t ∈ CM×1 is the uncorrelated Rayleigh fading channel vector between the kth VR
user and the SBS at the tth time slot, M is the number of antennas equipped at the SBS,
α is the large-scale fading coefficient, uk,t ∈ CM×1 is the beamforming vector at the SBS,
which can be denoted as uk,t =

hk,t
∥hk,t∥ [53], xup

k,t is the transmit message of the kth VR user
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at the tth time slot, ∑
K
i=1,i̸=k uH

k,thi,tx
up
i,t is the interference from other VR users at the tth

time slot, and nup
k,t ∼ CN(0,σ2) is the additive white Gaussian noise at the tth time slot.

Furthermore, at the tth time slot, the data rate between the kth VR user and the SBS
can be written as

Rup
k,t = log2

1+
|uH

k,thk,t |2

KVR

∑
i=1,i ̸=k

|uH
k,thi,t |2 +σ2

 . (2.2)

To guarantee the successful uplink transmission, the uplink transmission rate should larger
than a threshold Rup

th , namely, Rup
k,t ≥ Rup

th . However, the uplink transmission rate of the kth
VR user may be smaller than the threshold because of interference or poor channel state
information.

To guarantee the reliability of uplink transmission, we consider the proactive retrans-
mission scheme. If the actual viewpoint from the VR user is successfully transmitted via
the uplink transmission, the SBS will send an acknowledge (ACK) feedback, otherwise, it
will send a non-acknowledge (NACK) feedback.

According to the proactive scheme, the kth VR user will repeat the uplink transmission
in consecution transmission time intervals (TTIs) with a maximum number of Kre repe-
titions, but can receive the feedback after each repetition. The kth VR user is allowed to
stop repetitions once receiving positive feedback (ACK). We assume that the processing
time of the received viewpoint and feedback time at the SBS are one TTI, respectively.
For example, when Kre = 8, as shown in Fig. 2.9, we can observe that the kth VR user
is able to receive the 1st feedback in 4TTIs after the 1st repetition, which means that the
minimum round trip time is 4TTIs. Nevertheless, if the kth VR user cannot obtain the
ACK at the first round trip time, it will continue waiting for the ACK until (Kre +3)TTIs.
However, if the kth VR user cannot obtain the ACK during the initial transmission, it needs
to continue repetitions until either it receives ACK from the SBS, or the latency is larger
than the uplink transmission latency threshold. If the 1st successful uplink transmission of
the kth VR user occurs in the lth repetition during the first round trip, the uplink latency of
the kth VR user can be computed as

Tk,l = (l +3)TTIs, (2.3)

Furthermore, the latency after m round trips for the Proactive scheme with a maximum Kre

repetitions can be derived as

T m
k,l = (m−1)Tk,Kre +Tk,l (2.4)

= [(m−1)(Kre +3)+(l +3)]TTIs,

40



2.3 System Model and Problem Formulation

where (m−1)Tk,Kre means that the uplink transmissions in former (m−1) round trips are
not successful, and Tk,l denotes the successful uplink retransmission in the final mth round
trip given in (2.3).
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Fig. 2.9 Proactive retransmission scheme.

2.3.2 Viewpoint Prediction Methods

When the VR user enjoys the VR video frame, the viewpoint has three degrees of free-
dom (pitch, yaw, and roll) and is determined by the rotation angles in X , Y , and Z axis.
Therefore, predicting the viewpoint of the VR user is equal to predicting the X , Y , and
Z angles. We consider a sliding window to predict the viewpoint of the VR user over
time, which is shown in Fig. 2.10. According to Fig. 2.10, the future viewpoint of the
VR user is predicted based on the current and past rotation statuses. We assume that the
pitch, yaw, and roll angles of the VR user at the tth time slot are Xt , Yt , and Zt , respec-
tively. Furthermore, we use Xt:(t+d) = (Xt ,Xt+1, ...,Xt+d), Yt:(t+d) = (Yt ,Yt+1, ...,Yt+d),
and Zt:(t+d) = (Zt ,Zt+1, ...,Zt+d) to denote the continuous viewpoints in X , Y and Z angles
from the tth time slot to the (t +d)th time slot.

Prediction

Model

Input Data

Output Data

Actual Timeline

Prediction Timeline

Prediction Window

Sliding Window

t1 tn-Tw… … tn …

tn … tn+d

Fig. 2.10 Sliding window.

To predict the future viewpoint (Xt+d,Yt+d,Zt+d) at the tth time slot, we use previous
viewpoint X(t−Tw):t , Y(t−Tw):t , and Z(t−Tw):t , where Tw is the size of the sliding window.
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Then, the predicted viewpoint at the (t +d)th time slot can be presented as

X̂t+d = fx,t+d(X(t−Tw):t), (2.5)

Ŷt+d = fy,t+d(Y(t−Tw):t), (2.6)

Ẑt+d = fz,t+d(Z(t−Tw):t), (2.7)

where fx,t+d(.), fy,t+d(.), and fz,t+d(.) are prediction function.
To predict the viewpoint of the VR user accurately, we consider two learning algorithms,

namely, offline learning and online learning.

Offline Learning

In offline learning algorithms, we propose three methods, which are trained n-order Linear
Regression (LR), Neural Network (NN), and Recurrent Neural Network (RNN) based on
Long-short Term Memory(LSTM)/Gated Recurrent Unit (GRU) architecture to predict
the viewpoints of VR users. Through dividing the VR dataset into training and testing
datasets, the VR user data in the training dataset are used to train the models for three
offline methods, where the trained models are directly used to predict the viewpoints of
VR users. We assume that the offline learning model executed at the VR user side and the
input viewpoints of the offline learning model are correct at each time slot. Therefore, the
VR user does not need to transmit the actual viewpoints to the SBS, which decreases the
overhead and improves the communication efficiency between the SBS and the VR user.

Online Learning

In online learning algorithms, we still use n-order LR, NN, and LSTM/GRU algorithms.
Meanwhile, we use Mean Square Error (MSE) [28] as a cost function in the training step
to update the parameters of the online learning model, and predict the viewpoints of new
VR users. The MSE of the VR users at the tth time slot can be presented as

MSEt =
1

KVR

KVR

∑
k=1

(V̂ k
t −V k

t )
2. (2.8)

In (2.8), V̂ k
t can be X̂k

t or Ŷ k
t or Ẑk

t , and V k
t can be Xk

t or Y k
t or Zk

t . It is because viewing
directions can be predicted independently due to their strong auto-correlations [22]. We
assume that the online learning model is executed at the SBS, and the VR user needs
to transmit the actual viewpoints to the SBS. If the online learning model is executed at
the VR user side, the wireless VR device needs a computing unit with high computation
capability, which leads to heavy weight of the VR device, and it is inconvenient for the
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mobile VR user to enjoy the VR video with heavy VR device. Meanwhile, the online
learning model costs more energy, which can decrease the working hours of the battery
of the VR device. At the tth time slot, the SBS will predict the viewpoint of the VR user
for the (t +1)th time slot. At the (t +1)th time slot, the VR user will transmit the actual
viewpoint to the SBS via uplink transmission. Through comparing it with the predicted
viewpoint, the SBS will further update the trained learning model to improve the prediction
accuracy.

2.3.3 Rendering and Downlink Transmission Model

When the future viewpoint of the VR user is predicted via offline or online learning
algorithms, the SBS will render the predicted viewpoint and transmit it to the VR user
through downlink transmission in advance. Therefore, the VR interaction latency can be
reduced [92]. In the downlink transmission, the VR system is a multiple-input-single-
output (MISO) system, it ensures that a stronger signal arrives at the VR user. In this
chapter, we mainly focus on prediction and uplink retransmission in the wireless VR
system, which can be easily integrated into the rendering and downlink transmission in our
previous work [92].

2.3.4 Problem Formulation

For the viewpoint prediction, we use offline and online learning algorithms to minimize
the average prediction error of VR users, the optimization problem can be formulated as

min
1

T tot
i Ñi

T tot
i

∑
t=1

Ñi

∑
k=1

(V̂ k
t −V k

t )
2, (2.9)

where Ñi is the number of the VR users watching the ith VR video, and T tot
i is the total

time slots of the ith VR video.

2.4 Learning Algorithms for Viewpoint Prediction

In offline learning, we directly use the trained n-order LR, NN, and LSTM/GRU network
to predict the viewpoint of the VR user in continuous time slots. However, for online
learning, the VR user will deliver the actual viewpoint to the SBS via uplink transmission
in real-time to further update the models in the n-order LR, NN, and LSTM/GRU learning
algorithms and the input of the sliding window, which can improve the prediction accuracy.
If the actual viewpoint at a specific time slot has not been successfully delivered to the
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SBS, the learning algorithms will predict the viewpoint in the next time slot based on the
models trained in the previous time slots, and the input of the sliding window at the current
time slot is set to be null.

2.4.1 Offline Learning Algorithm

According to Fig. 2.3, the VR dataset contains dozens of VR users enjoying each VR
video, and there are 16 VR videos and 969 VR user samples. Therefore, we have enough
user samples to train and test the learning models. To train the learning model, we split the
data samples of the VR dataset into training and testing datasets. The training dataset is
used to train the learning model, and the testing dataset is used to validate it on data it has
never seen before. The classic approach is to do a simple 80%-20% [20], which means
that we randomly select 80% data samples of the dataset to construct the training dataset,
while the remaining 20% data samples of the dataset are the testing dataset. However,
with a simple 80-20 split, there is a possibility of high bias if we have limited data. More
importantly, we will miss some important information about the data samples which are
not used for training, which is able to get good or bad performance only due to chance. To
ensure that each data sample from the original dataset has the chance of appearing in the
training and testing dataset, we use K Cross Validation [116].

Through using the K Cross Validation to train the learning models in the VR dataset,
each VR user sample has the opportunity of being tested. We split the VR dataset into
Kcross datasets: one dataset is used for validation, and the remaining (Kcross −1) datasets
are merged into a training dataset for prediction learning model evaluation [111]. In our
VR dataset, there are 16 different VR videos. According to Fig 2.5, 2.6, and 2.7, the
viewpoint distribution of VR users in each VR video are different. Therefore, for each
VR video, we can use its corresponding VR user samples to train a viewpoint prediction
learning model. However, if the number of VR videos increases, training one model for one
VR video may cost much more energy and occupy much more computation resources and
memory of the SBS. Therefore, in order to evaluate the generality of the trained models,
we propose two viewpoint prediction learning models, namely, one for a single VR video,
and the other for all VR videos. The detailed K Cross Validation for the proposed two
viewpoint prediction schemes is introduced as follows:

(a) One Model for One VR Video: For each VR video, there are dozens of VR user
samples, and we assume that the number of VR user samples of the kth VR video is Ñk.
We split these dozens of VR user samples into Kk

cross datasets, where the number of VR
user samples in each sub-dataset is Ñk/Kk

cross, and randomly select (Kk
cross−1) sub-datasets

to train the learning model and one sub-dataset to test the trained learning model. Through
Kk

cross times of training and testing, we can obtain the average prediction error of the
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K-folder cross validation. For example, for the 8th VR video with 84 VR user samples,
when the number of VR users in each sub-dataset is 10, the VR user samples are divided
into 9 sub-datasets. To train the learning models, 8 sub-datasets will be randomly selected
to train the learning models and the remaining 1 sub-dataset will be used to test the trained
learning models. After 9 times of training and testing, we can obtain the average prediction
error.

(b) One Model for All VR Videos: For all 16 VR videos and 969 VR user samples,
we split these VR user samples according to the index of VR videos. Therefore, there
are 16 VR sub-datasets. At each training round of the K cross validation, 16/Kcross VR
sub-datasets are used for testing, and the remaining (16− 16/Kcross) VR sub-datasets
are merged into a training VR sub-dataset to train the viewpoint prediction model. For
example, in Fig. 2.11, we consider 4 cross validation, namely, Kcross = 4. At each training
iteration, 12 VR sub-datasets will be randomly selected to train the learning model, and
the remaining 4 VR sub-datasets will be used to test the trained learning model. After 4
training iterations, we can calculate the average prediction error of these 4 trained learning
models.

V1 V2 V3 V4 V13 V14 V15 V16V13 V14 V15 V16V9 V10 V11 V12V9 V10 V11 V12V5 V6 V7 V8V5 V6 V7 V8

V1 V2 V3 V4 V13 V14 V15 V16V13 V14 V15 V16V9 V10 V11 V12V9 V10 V11 V12V5 V6 V7 V8V5 V6 V7 V8

V1 V2 V3 V4 V9 V10 V11 V12V9 V10 V11 V12V13 V14 V15 V16V13 V14 V15 V16V5 V6 V7 V8V5 V6 V7 V8

V1 V2 V3 V4 V5 V6 V7 V8V5 V6 V7 V8V13 V14 V15 V16V13 V14 V15 V16V9 V10 V11 V12V9 V10 V11 V12
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Training Data Testing Data

Fig. 2.11 4 cross validation for training learning models.

2.4.2 Online Learning Algorithm

In the online learning algorithms, the learning model will first be trained via the training
dataset through the K Cross Validation described in Section IV-A 1. Then, for the VR
user samples in the testing dataset, at each time slot, each VR user will update its actual
viewpoint to the SBS through uplink transmission. The online learning algorithms are
introduced in detail as follows.

1Through K Cross Validation, the parameters of the proposed online learning algorithms are updated via
different sub-datasets, so that the online learning model can be adapted to new VR user samples. Thus, the
proposed online learning models can be applied to other datasets.
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n-order Linear Regression

n-order LR algorithm uses the least square function to model the nonlinear relationship
between the input sliding window and the predicted viewpoint. It is able to fit the nonlinear
relationship between the input and output and can be written as

V̂ = WLRgH +bLR, (2.10)

where WLR = [wLR
1 ,wLR

2 , ...,wLR
n ] and bLR are parameters of the n-order LR model. In

(2.10), g can be X(t−Tw):t or Y(t−Tw):t or Z(t−Tw):t), which includes the X or Y or Z viewing
angles in Tw time slots. Meanwhile, V̂t+1 can be X̂t+1 or Ŷt+1 or Ẑt+1, which is the predicted
viewing angles for the (t + 1)th time slot. The loss function of the n-order LR can be
calculated as

LLR
t =

1
KVR

KVR

∑
k=1

(V k
t −V̂ k

t )
2. (2.11)

Through gradient descent method [117], the parameters θθθ LR = {WLR,bLR} can be updated
as

θθθ
LR
t+1 = θθθ

LR
t −∆LLR

t (θθθ LR
t ), (2.12)

where ∆LLR(.) is the gradient of the loss function. The proposed Proactive retransmission
scheme integrated into the online n-order LR is illustrated in Algorithm 1.
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Fig. 2.12 Proposed multi-layer NN architecture.

Neural Network

In the L-layer NN shown in Fig. 2.12, we assume that ΘNN = {θθθ NN
1 ,θθθ NN

2 , ...,θθθ NN
L } contains

L sets of parameters, and the parameters at the lth (1 ≤ l ≤ L) layer can be denoted as
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2.4 Learning Algorithms for Viewpoint Prediction

θθθ NN
l = {WWW NN

l ,bbbNN
l }, where WWW NN

l and bbbNN
l are the neurons’ weights and bias vector at the

lth layer. A feedforward NN with L layers describes a mapping function f NN(rNN,θθθ NN),
where rNN is the input vector. We can obtain the output of the NN through L iterative
processing steps, and the output of the lth layer in NN can be written as

rNN
l = f NN

l (rNN
l−1;θθθ NN

l ), l = 1,2, ...,L, (2.13)

where f NN
l (rNN

l−1;θθθ NN
l ) is the mapping function calculated by the lth NN layer.

At the tth time slot, we input the historical viewpoint of the VR user and obtain the
predicted viewpoint via the feedforward function in the L-layer NN. Then, we use the MSE
criterion among the predicted viewpoint and the actual viewpoint of the (t +1)th time slot
to compute the loss of the NN, which can be denoted as

LNN
t,l (θθθ NN

t,l ) = ∥φφφ
NN
t,l − φ̂φφ

NN
t,l ∥2, (2.14)

where φφφ NN
t,l is the desired output of the lth layer in NN, φ̂φφ

NN
t,l is the dependence of the

NN’s output to the lth layer’s parameters. To minimize the loss function, we adopt the
backpropagation method based on stochastic gradient descent (SGD) [29]. The parameters
of the lth layer can be updated as

θθθ
NN
t+1,l = θθθ

NN
t,l −λ

NN
∆LNN

t.l (θθθ NN
t,l ), (2.15)

where λ NN ∈ (0,1] denotes the learning rate of the NN and ∆LNN(.) is the gradient of the
loss function. The proposed Proactive retransmission scheme integrated into the online
NN is presented in Algorithm 1.

LSTM/GRU LSTM/GRU LSTM/GRU

Ot-T0+1 Ot-1 Ot[Ot-T0+1,…,Ot-1 ,Ot ]

Relu

Predicted 

Viewpoint

UnfoldingLSTM/GRU

Relu

Predicted 

Viewpoint

Fig. 2.13 Proposed LSTM/GRU architecture (left) with its unfolding structure (right).

Long-short Term Memory/Gated Recurrent Unit

To capture the dynamics in viewpoint of the VR user for the (t +1)th time slot, we use not
only the most recent observation Ot = {O1

t ,O
2
t , ...,O

K
t }, where Ok

t = {(Xk
t ,Y

k
t ,Z

k
t )} is the

actual viewpoint of the kth VR user at the tth time slot, but also the previous observations
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Ht = {Ot−To+1, ...,Ot−2,Ot−1}, where To is the size of the memory window. In order
to recognize the viewpoint in continuous time slots, we leverage an RNN model with
parameters θθθ RNN = {WWW RNN,bbbRNN}, where WWW RNN and bbbRNN are the neurons’ weights and
bias vectors of the RNN. The RNN is capable of capturing time correlation of the viewpoint
of the VR user, which can help learn the time-varying viewpoint for better prediction
accuracy.

The LSTM/GRU layer contains multiple standard LSTM/GRU units and receives
the current and historical observations [Ot−To+1, ...,Ot−1,Ot ] at the tth time slot and is
connected to an output layer with a Relu non-linearity activation function, which is shown
in Fig. 2.13. The Relu layer outputs the predicted viewpoint of the VR user for the (t+1)th
time slot. To update the model parameter θθθ RNN, we first use MSE to calculate the loss
function, and then use the standard SGD via BackPropagation Through Time (BPTT)
[141] to update parameters. At the (t +1)th time slot, θθθ RNN can be updated as

θθθ
RNN
t+1,l = θθθ

RNN
t,l −λ

RNN
∆LRNN

t,l (θθθ RNN
t,l ), (2.16)

where λ RNN ∈ (0,1] is the learning rate of the RNN, ∆LRNN
t,l (θθθ RNN

t,l ) is the gradient of the
loss function LRNN

t,l (θθθ RNN
t,l ) to train parameters of the RNN. LRNN

t,l (θθθ RNN
t,l ) can be computed

by the MSE as
LRNN

t,l (θθθ RNN
t,l ) = ∥φφφ

RNN
t,l − φ̂φφ

RNN
t,l ∥2, (2.17)

where φφφ RNN
t,l is the desired output of the lth layer in RNN, φ̂φφ

RNN
t,l is the dependence of the

RNN’s output to the lth layer’s parameters. The proposed Proactive retransmission scheme
integrated into the online RNN is presented in Algorithm 1.

2.4.3 Computational Complexity Analysis for Learning Algorithms

For the computation complexity of n-order LR, it can be computed as O(nKVR) [30],
where KVR is the number of VR users. For the NN and RNN based on the LSTM/GRU
architecture, they can be given by O(KVRm̂n̂ log n̂) and O(KVRm̃ñ log ñ), respectively.
Here, m̂ and m̃ are the number of layers of NN and RNN, and n̂ and ñ are the number of
units per learning layer of NN and RNN , respectively [49].

2.5 Simulation Results

In this section, we examine the effectiveness of our proposed offline and online learning
algorithms on the uplink viewpoint prediction of VR users under the Proactive retransmis-
sion scheme. We set the size of the sliding window as 10 time slots and the size of the
prediction window as 1 time slot. For the n-order LR, we consider n = 15. For the NN,
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2.5 Simulation Results

Algorithm 1 The Proactive retransmission scheme integrated into Online Learning Algo-
rithms with n-order LR, NN, and LSTM/GRU

1: Initialize the order n of LR, parameters θθθ LR or θθθ NN or θθθ RNN , and sliding window size
Tw.

2: Use K Cross Validation to train the parameters of the n-order LR, NN, and RNN
learning model.

3: for t = 1,...,T do
4: Get historical viewpoints from the (t−Tw)th time slot to the (t−1)th time slot from

the updated sliding window.
5: Use the updated online n-order LR, NN, LSTM/GRU to predict the viewpoint of

the VR user for the tth time slot.
6: The VR user transmits its actual viewpoint of the tth time slot via uplink transmission

with the Proactive retransmission scheme.
7: if the uplink transmission is successful then
8: Update parameters θθθ LR

t or θθθ NN
t or θθθ RNN

t of the n-order LR, NN and RNN learning
model via (2.12), (2.15) and (2.16).

9: Update the sliding window with the actual required viewpoint of the tth time slot.
10: else
11: θθθ LR

t−1 → θθθ LR
t or θθθ NN

t−1 → θθθ NN
t or θθθ RNN

t−1 → θθθ RNN
t .

12: Update the sliding window with null of the tth time slot.
13: end if
14: end for

we use the fully-connected NN with two hidden layers, where the first and second layers
have 12 and 10 neurons, respectively. While for the RNN, it has one hidden layer with 12
units. The learning rate for the learning algorithm is 0.001. For the uplink transmission,
we set M = 30, α = 3, TTI = 0.125 ms, Rup

th = 2 MB/s, σ2 =−110 dBm, and Kre = 8. If
the uplink transmission rate calculated by (2.2) is smaller than Rup

th , the viewpoint cannot
be transmitted successfully within one TTI. We consider the VR users in a limited square
area whose side length is 100 meters. The proactive uplink retransmission scheme is
standardized in 5G, thus, the selected VR center frequency for VR transmission is 5G band
[9], and the selected frequency band is from 5.15 GHz to 5.23 GHz [10, 6], which can
guarantee the latency and reliability of the VR uplink transmission. For simplicity, we use
“w/ Proac" and “w/o Proac" to represent “with Proactive Retransmission" and “without
Proactive Retransmission”, respectively. Meanwhile, in the Genie-aided scheme, the online
learning model is directly trained with the correct actual viewpoint of each VR user at
each time slot, which is the upper bound of the online learning algorithm with a proactive
retransmission scheme and cannot be reached in the practical wireless VR system.
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2.5 Simulation Results

2.5.1 VR Dataset Processing

We first save all VR user samples in a MATLAB file. Then, we use Python 3.6 to delete the
useless rows and columns, and import the VR user data into training and testing datasets.
According to [22], the motion of the VR user has strong short-term auto-correlations in
all three dimensions. Due to the fact that auto-correlations are much stronger than the
correlation between these three dimensions, the angles in each direction can be trained
independently and separately. According to Fig. 2.5, 2.6, and 2.7, we can obtain that the
range of Y angle distribution is much larger than that of X and Z. Therefore, for simplicity,
we use offline and online learning algorithms to predict Y angle of VR users in this section,
however, our algorithms can also be used for the prediction of X and Z angles. Meanwhile,
we use different VR user sample lists in Python to differentiate the training and testing
datasets.

2.5.2 Viewpoint Prediction

The simulation results of our proposed two viewpoint prediction learning models, namely,
one training model for a single VR video, and one training model for all VR videos, are
introduced as follows:

(a) One Training Model for One VR Video: In this scheme, for each VR video, we
use the VR user samples in the training datasets to train the offline and online learning
models to predict the Y angle of VR users in the testing datasets, and average the prediction
error of all VR videos.
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Fig. 2.14 Loss of offline NN, LSTM, and GRU algorithms of each epoch.

Fig. 2.14 plots the loss of offline NN, LSTM, and GRU algorithms of each epoch. It is
seen that the performance of the offline GRU algorithm outperforms that of LSTM and
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NN. This is because the structure of the LSTM is more complex than that of GRU so that
the parameters of the GRU can be trained faster and easier to be modified [32].
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Fig. 2.15 The number of viewpoint reception errors versus the number of repetition values
of the proactive retransmission scheme.

Fig. 2.15 plots the number of viewpoint reception errors versus the number of repetition
values of the proactive retransmission scheme. We can see that the number of viewpoint
reception errors decreases with the increasing number of repetition values. This is because
the success probability of the uplink transmission increases with the increasing number of
repetition values of the proactive retransmission scheme [94].
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Fig. 2.16 Average prediction error of offline/online learning algorithms via different size
of sliding window with a Proactive retransmission scheme.

Fig. 2.16 shows the average prediction error of offline/online learning algorithms via
different size of sliding window for uplink VR viewpoint transmission with a proactive
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Fig. 2.17 Average prediction error of different number of VR users in the training dataset
to train the learning model via offline/online 15-order LR, NN, LSTM, and GRU with a
Proactive retransmission scheme.

retransmission scheme. It is noted that the average prediction error of the offline/online
15-order LR, NN, LSTM, and GRU algorithms are not significantly affected by changing
the size of the sliding window due to their capability to adapt to the viewpoint preference.
When the size of the sliding window is 10, it can obtain the best performance.

Fig. 2.17 plots the average prediction error of different number of VR users in the
training dataset to train the learning model via offline/online 15-order LR, NN, LSTM,
and GRU for uplink VR viewpoint transmission with a proactive retransmission scheme.
For the offline learning algorithms, we observe that the average prediction error becomes
smaller with the increasing number of VR users. With the increasing number of VR users,
the offline learning algorithms can be trained to adapt to the viewpoints of VR users much
more accurately. It is also seen that the performance of the LSTM/GRU is better than that
of the NN. This is because the LSTM/GRU is able to capture the correlation of viewpoints
in continuous time slots. In addition, it can be seen that the average prediction error of
15-order LR algorithm is much higher than that of offline/online NN, LSTM, and GRU. It
is because the learning structure of the LR algorithm is simpler than that of NN, LSTM,
and GRU, and its ability to be fit for the nonlinear VR data is worse than that of the NN,
LSTM, and GRU. In addition, the LR algorithm may get overfit with so many VR users
training the LR model.

Meanwhile, for the proactive retransmission scheme integrated into the online learning
algorithms in Fig. 2.17, it is interesting to note that their average prediction errors
are much smaller than that of offline learning algorithms and change slightly with the
increasing number of VR users. This is due to that through updating the parameters in the
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Fig. 2.18 Average prediction error of different number of VR users in the training dataset
to train the learning model via online 15-order LR, NN, LSTM, and GRU with/without a
Proactive retransmission scheme.

trained learning models, the online learning algorithms are able to adapt to the viewpoint
preferences of new VR users over time. Thus, the prediction accuracy is improved.

Fig. 2.18 plots the average prediction error for various number of VR users in the
training dataset to train the learning model via online 15-order LR, NN, LSTM, and GRU
for uplink VR viewpoint transmission with/without a proactive retransmission scheme.
We can observe that the performance of the proactive retransmission scheme integrated
into the online learning algorithm is better than that without a proactive retransmission
scheme and is close to the performance of the Genie-aided scheme. In the uplink viewpoint
transmission without proactive retransmission, each VR user only transmits its actual
viewpoint to the SBS once even this transmission fails. This transmission failure is usually
because of the unstable channel state and interference from other VR users. To cope
with this, the proactive retransmission scheme is applied here to improve the success
transmission of uplink transmission [94], and the online learning algorithms are capable of
better capturing historical trends of viewpoint preference of the VR user, which can further
improve the prediction accuracy. While in the Genie-aided scheme, the online learning
algorithms are directly trained with actual viewpoints of VR users.

(b) One Training Model for All VR Videos: In this model, for all 16 VR videos, we
consider 4 Cross Validation shown in Fig. 2.11 and use VR user samples in the training
datasets to train offline/online 15-order LR, NN, and GRU learning models to predict Y
angle of VR users in testing datasets.

Fig. 2.19 plots the average prediction error of offline/online 15-order LR, NN and
GRU integrated with a proactive retransmission scheme in continuous time slots. For the
offline learning algorithms, it can be seen that the performance of the GRU is a bit better
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Fig. 2.19 Average prediction error of offline/online 15-order LR, NN and GRU with a
Proactive retransmission scheme in continuous time slots.
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Fig. 2.20 Average prediction error of the online GRU algorithm with/without a Proactive
retransmission scheme in continuous time slots.

than that of the NN. Meanwhile, it can be observed that at the beginning 30 time slots, the
performance of the 15-order LR is better than that of NN and GRU. It is because according
to Fig. 2.6, in the beginning, when the VR user watches the VR video, its viewpoint mainly
focuses on the zero point and the 15-order LR fits well at the beginning. However, after 50
time slots, the performance of GRU is much better than that of 15-order LR. This is due to
that after 50 time slots, the viewpoint of the VR user will change substantially as shown in
Fig. 2.6, and the GRU is able to capture the correlation of the viewpoint of the VR user
over continuous time slots.

Furthermore, it is also noted that at the beginning, there are large fluctuations in
the performance of the proactive retransmission scheme integrated into online learning
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algorithms. It is because the parameters in the online learning algorithms should be
modified to capture the viewpoint preference of the VR user. In addition, when the
viewpoint of the VR user changes over time, the online learning algorithms need to further
update their parameters to be fit for the viewpoint changing of VR users. Therefore, there
are small fluctuations in the performance of online learning algorithms.

Fig. 2.20 plots the average prediction error of the online GRU algorithm of uplink
viewpoint transmission with/without a proactive retransmission scheme in continuous
time slots. We can obtain that the performance of the proactive retransmission scheme
with the online GRU algorithm is still better than that of the scheme without a proactive
retransmission scheme. Meanwhile, it can be seen that the performance of the Genie-aided
online GRU algorithm slightly outperforms that of the online GRU algorithm with the
proactive retransmission scheme, while their gap is small.

2.6 Conclusions

In this chapter, offline and online learning algorithms for uplink wireless VR networks with
a proactive retransmission scheme were developed to predict the viewpoints of wireless
VR users with real VR datasets. Specifically, for the offline learning algorithm, K Cross
Validation was used to train offline n-order LR, NN, and LSTM/GRU learning algorithms
for each VR video and all VR videos. The trained offline learning algorithms were used to
directly predict the viewpoint of the VR user. In the online learning algorithms, the online
n-order LR, NN, and LSTM/GRU algorithms would update their parameters according to
the actual viewpoints delivered from new VR users through uplink transmission, which
could further improve the prediction accuracy. Meanwhile, a proactive retransmission
scheme was introduced to the online learning algorithms to enhance the reliability of
uplink transmission, which can correctly update the parameters and input viewpoints of
online learning models. Simulation results show that our proposed online GRU algorithm
with the proactive retransmission scheme can achieve the highest prediction accuracy.
Meanwhile, our results show that the one model for one VR video and one model for all
VR videos achieve 92% and 98% prediction accuracy, respectively. Thus, the proposed
learning models can be applied to other datasets, and our results are representative due to
the 16 diverse VR videos in our dataset.
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Chapter 3

Learning-based Prediction, Rendering
and Association Optimization for
MEC-enabled Wireless VR Network

3.1 Introduction

For real-time interactive VR applications, the latest 2D video contents need to be first
delivered to the VR device via wired/wireless communication, and then rendered to 3D VR
videos locally. In reality, human wearing VR device only watches a portion of observable
visual world at any given time, which is so-called Field of View (FoV). Rendering the
full 360-degree video in real-time can be costly both for downlink transmission and
computation. One potential solution is to only render the requested FoV each time based on
the uplink tracking information of VR users’ motions, including head and eye movements.
According to [3], the data size of the rendered FoV is 75% of that of the stitched 2D image,
which means that the size of data to be delivered via downlink transmission can be reduced
by 25% compared to delivering the stitched 2D images.

3.1.1 Motivation

Rendering real-time VR videos with high quality demands a computing unit with high
processing ability, so that the rendering latency can be reduced, unfortunately, the compu-
tation ability and battery capacity of wireless VR devices are limited. Recently, mobile
edge computing (MEC) has emerged to push mobile computing and network control to the
network edge, so as to enable computation-intensive and latency-critical applications at
the resource-limited mobile devices, which promise a dramatic reduction in latency and
energy consumption [101].
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3.1 Introduction

Shifting the FoV rendering task from the VR device to the MEC server can not only
alleviate the computation requirement at the VR device, but also potentially decrease the
VR interaction latency, especially for those VR users in the same virtual VR environment
requesting the same FoV. With MEC multicast to a group of VR users selecting the same
FoV, and unicast to a single VR user selecting a unique FoV, the downlink transmission cost
of the network can be further decreased. In practice, each MEC has a different computation
capability, it would be interesting to explore if we can obtain further gain for multiple VR
user groups selecting the same FoV but different MECs by performing rendering at only
one MEC, and then migrating the rendered FoV wired to other MECs, namely, rendered
FoV migration.

3.1.2 Contributions

As pointed out by [69], the Quality of Experience (QoE) of VR transmission is substantially
different from that of conventional video transmission, due to its unique requirements in
the VR interaction latency, and asymmetric uplink and downlink data rates. Motivated by
above, in this chapter, we focus on optimizing the QoE of VR users with interactive VR
applications in MEC-enabled wireless VR networks, and we develop a decoupled learning
strategy to efficiently optimize the QoE in wireless VR systems, which can improve the
training efficiency [77, 78]. The main contributions can be summarized as follows:

• We propose a MEC-enabled wireless VR network, where the field of view (FoV) of
each VR user can be real-time predicted, and the rendering of VR content is moved
from the VR device to the MEC server with rendering model migration capability.

• With the aim of optimizing the long-term QoE of VR users, we propose a decoupled
learning strategy. This strategy decouples the optimization by separately resolving
two-sub tasks, which are FoV prediction and rendering MEC association with
the help of Recurrent Neural Network (RNN) predictor and Deep Reinforcement
Learning (DRL) algorithms, respectively.

• In order to capture the complex dynamics of the FoV request from each VR device,
we propose the RNN model based on Gated Recurrent Unit (GRU) architecture at
the central controller to predict the requested FoV in the current time slot based on
those in previous time slots sent via uplink. Our results show that our proposed FoV
prediction based on GRU achieves 96% in prediction accuracy.

• Accounting for the geographical and predicted FoV request correlation, we propose
centralized and distributed DRL strategies based on Deep Q-Network (DQN) and
Actor Critic (AC) [40, 87, 41, 44, 127, 88, 122] to maximize the long-term QoE of
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VR users, via determining the optimal association between MEC and VR user group,
and optimal rendering MEC for model migration. By comparing with non-learning-
based nearest MEC association, our results on centralized and distributed DQN show
substantial gain in both QoE and VR interaction latency. Interestingly, the rendering
model migration further improves these gains.

3.1.3 Organization

The rest of this chapter is organized as follows. The system model and problem formulation
are proposed in Section 3.2. RNN-based FoV prediction and DRL-based MEC rendering,
migration, and association scheme are presented in Section 3.3. The simulation results and
conclusions are described in Section 3.4 and Section 3.5, respectively.

3.2 System Model and Problem Formulation

We consider a wireless VR system where multiple MECs are connected to a central
controller through a fiber link and serve KVR VR users via wireless links, as shown in
Fig. 3.1. The central controller is connected to the core network via fiber and can fetch
real-time 2D videos without distortion from the core network. According to [132], 2D
images can be captured by multiple unmanned aerial vehicles (UAVs) and transmitted to
the core network to render into VR videos. Therefore, we assume that the required 2D
images captured by UAVs or other equipment are available at the core network in real-time
1.
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Fig. 3.1 Wireless VR system in cellular network.

1In a real-time VR system, it is possible that the 2D pictures for the required VR video frames do not
exist in the MEC, and the MEC needs to obtain the required 2D pictures from the core network.
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Fig. 3.2 Brownian motion for FoV selection.

3.2.1 System Model

Our MEC-enabled wireless VR system consists of four main parts, including FoV selection
and prediction, uplink transmission, FoV rendering, and multi-group multicast and unicast
downlink transmission.

FoV Selection and Prediction

When VR users enjoy VR videos, because of the restricted area of vision in human eyes,
they usually watch only a portion of the VR video, namely, the Field of View (FoV)
[23, 8], which specifies a 150◦×135◦ (i.e., diagonal 200◦) FoV requirement. As the FoV
is part of the actual rendered 3D VR video, the MEC benefits from obtaining the tracking
information related to the viewport of the VR user, and uses the video characteristics such
as projection and mapping formats to generate FoV. If the VR system could know the
required FoV before transmission, it could render and deliver the FoV to VR users in
advance, which can decrease the latency.

Let us first denote the total number of FoVs of a VR virtual environment as NFoV.
When VR users enjoy the 360-degree video, they may randomly select the same or different
FoVs in the continuous time slots. When the VR user enjoys the VR video, it usually
focuses on the centre of the virtual environment, and slowly moves its eyes towards the
object where it wants to enjoy in the VR environment, and this is the so-called fixational
eye movement [48, 55]. The fixational eye movements have been widely assumed to be a
random uncorrelated process following Brownian motion [115]. Therefore, the Brownian
motion can be used to model the eye movement of each VR user corresponding to different
FoVs over time. To capture the FoV selection in the 3D VR scenario close to reality, we
map the 3D VR view into a large 2D view with NFoV FoVs at each time. When the VR
user’s eyes move inside the cubic in Fig. 3.2, the corresponding FoV will be selected.
According to Brownian motion [26, 80], the eye movement of the VR user at the tth time
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slot can be modeled by an independent Gaussian distribution with variance 2D(t) and zero
mean N(0,2D(t)). Thus, the eye movement of the kth VR user in a mapped 2D VR view
at the tth time slot can be expressed as

△Sk(t) = {N(0,2Dk(t)),N(0,2Dk(t))}. (3.1)

At one time slot, the selected FoV of the kth VR user is observed, which can be used
for FoV prediction in the next time slot. For example, we assume that there are 8 2D
FoVs in a VR virtual environment, as shown in Fig. 3.2. If the VR user selects the 2nd
FoV at a certain time slot, in the next time slot, it will select one of the FoVs among the
1,2,3,5,6,7th FoVs. If the VR user selects a boundary FoV, such as the 0th FoV at a
certain time slot, it can choose one FoV from the 0,1,4,5th FoVs in the next time slot.

Based on the historical FoV selection in the previous time slots, the wireless VR system
can predict the requested FoV of the kth VR user in the next time slot.

Uplink Transmission

For conventional wireless VR system without FoV prediction, each VR user needs to
deliver its actual request FoV to the MEC through uplink broadcast transmission. To
focus on the rendering and downlink transmission, at the tth time slot, we assume that the
received FoV F̂oV

t is equal to the actual requested FoV FoV
t following

F̂oV
t = FoV

t . (3.2)

For our proposed system with FoV prediction, the uplink received FoV FoV
t after prediction

will be used to check the correctness of predicted FoV F̃oV
t . We define the FoV prediction

accuracy as

PFoV =
N

F̃oV
t

NFoV
t

×100%, (3.3)

where N
F̃oV

t
is the number of correct FoV predictions and NFoV

t
is the total number of

required FoVs.

FoV Rendering

When a VR user requests to watch VR video frames, based on the predicted or uplink
received FoV, the corresponding portion of the sphere can be rendered at MEC or VR
device.

• As shown in Fig. 3.3 (a) and (b), when the rendering function is executed at the
MEC, a stitched 2D image, whose color mode is RGB, will be rendered into the
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Fig. 3.3 FoV rendering.

required FoV through equirectangular projection (ERP) mapping [8] for downlink
multicast or unicast transmission.

• When the rendering function is processed at the VR device, the stitched 2D pictures
will be first multicast or unicast to the VR users. Then, it will be rendered into the
required FoV via ERP mapping, which is shown in Fig. 3.3 (c).

Here, the number of pixels in the stitched 2D image is used to quantify the size of the
executed data during FoV rendering. To evaluate the best rendering strategy, we propose
three FoV rendering schemes as detailed below:

(a) MEC Rendering without Migration Scheme: In this scheme, the rendering from
stitched 2D image to 3D FoV occurs at each MEC with associated VR users.

(b) MEC Rendering with Migration Scheme: With different computational capabili-
ties at each MEC, VR users selecting the same FoV but associated with different MECs
only perform FoV rendering at only one MEC, and this selected MEC can migrate the
rendered FoV to other MECs via fiber links to save the computational resources.

(c) VR Device Rendering Scheme: This scheme is a conventional scheme for com-
parison, where the FoV rendering occurs only at the VR device, such that the stitched 2D
picture frames need to be transmitted to the VR device for rendering locally using ERP
mapping. Due to the fact that the computation ability of the VR device is much smaller
than that of the MEC, we expect that it may cost much more time for the VR device to
render the required FoV.

Multi-group Multicast and Unicast

Based on the received FoV in the uplink or the predicted FoV of each VR user, the VR
users with the same received/predicted FoVs can be grouped together. After FoV rendering,
the MECs will multicast the required FoVs to VR users selecting the same FoV, or unicast
a single VR user selecting a unique FoV, respectively. Let us consider a set of B ={1,
2,..., B} MECs, and each MEC is equipped with N transmit antennas. These B MECs
serve the downlink transmission for B VR user groups V= {V1,V2, ...,VB} with a single
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antenna. The B VR user groups can be multicast group, unicast group, or inactive group
with no VR users. Assuming that there are M multicasting groups and U unicasting groups
(M +U ≤ B), these M muslticast groups and U unicast groups can be denoted as the
sets Vmul = {Vmul

1 ,Vmul
2 , ...,Vmul

M } and Vuni = {Vuni
1 ,Vuni

2 , ...,Vuni
U }, respectively. With the

number of VR users in the kth multicasting group denoted as |Vmul
k |, the total number of

VR users can be calculated as KVR = ∑
M
k=1 |Vmul

k |+U . Note that each VR user can only
be assigned to just one group.

3.2.2 Mathematical Model

FoV Rendering Model

We denote the number of pixels as Np, and the size of each pixel is 8 bits. For the MEC
rendering schemes, at each time slot, the size of the FoV to be transmitted in the downlink
can be calculated as

C = 3×8×Np ×Np ×V = 48N2
p, (3.4)

where 3 presents the red, green and blue color in RGB mode, the single-eye resolution
is Np ×Np, and V is the number of viewpoints with V = 2 for two eyes. According to
[69], the resolution of the FoV is at least 1080p, and C can be very large when Np is high.
Usually, the FoV has to be compressed before downlink multicast or unicast. By assuming
the compression ratio as CR, the size of the compressed data for downlink transmission can
be calculated as C

CR
. In addition, through ERP mapping, 25 percent pixels of the stitched

2D image can be reduced [3], which means that the data size of the FoV is 75 percent
of that of the stitched 2D image. Thus, the data size of the stitched 2D image can be
calculated as M= 2

3C = 32N2
p, and 32N2

p bits data are required to be executed in the ERP
mapping step.

Downlink Transmission Model

For VR users in the multicast groups, the multicast signal between the bth MEC and the
kth VR user in the jth multicast group at the tth time slot can be written as

ymul
jk,b(t) = hH

jk,b(t)v
mul
j,b (t)x

mul
b (t)+ (3.5)

∑
Vmul

i ∈Vmul/Vmul
b ,m∈Vmul

i

hH
jk,i(t)v

mul
m,i (t)x

mul
i (t)+

∑
Vuni

l ∈Vuni,u∈Vuni
l

hH
jk,l(t)v

uni
u,l (t)x

uni
u (t)+n(t),
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where h jk,b(t) ∈ CM×1 ∼ CN(0,αIM) is the uncorrelated Rayleigh fading channel vector
between the bth MEC and the kth VR user in the jth multicast group, α is the large-
scale fading coefficient of the multiscast VR users. vmul

j,b (t) ∈ CM×1 and vuni
u,l (t) ∈ CM×1

are the multicast and unicast vectors from the bth and lth MECs connected to the VR
users in the jth multicast group and the uth VR user in the unicast group, respectively.
In (3.5), xmul

b (t) and xuni
u (t) are the multicast and unicast messages intended for the

VR users in the jth multicast group and the uth VR user in the unicast group, respec-
tively. We assume that xmul

b (t) and xuni
u (t) are independent from each other. Meanwhile,

∑Vmul
i ∈Vmul/Vmul

b ,m∈Vmul
i

hH
jk,i(t)v

mul
m,i (t)x

mul
i (t) and ∑Vuni

l ∈Vuni,u∈Vuni
l

hH
jk,l(t)v

uni
u,l (t)x

uni
u (t) are the

interference from the other MECs that provide FoVs for the VR users in other multicast and
unicast groups, respectively. In addition, n(t)∼ CN(0,σ2) is the additive white Gaussian
noise. Meanwhile, we do not consider transmit power control in downlink transmission.

Based on (3.5), the multicast transmission rate between the kth VR user in the jth
multicast group and the bth MEC at the tth time slot can be expressed as

Rmul
jk,b(t) = log2

(
1+

|hH
jk,b(t)v

mul
j,b (t)|

2

Imul
jk,b

(t)+σ2

)
, (3.6)

where
Imul

jk,b(t) = ∑
Vmul

i ∈Vmul/Vmul
b

m∈Vmul
i

|hH
jk,i(t)v

mul
m,i (t)|2+∑

Vuni
l ∈Vuni

u∈Vuni
l

|hH
jk,l(t)v

uni
u,l (t)|

2. (3.7)

For the VR users in the unicast groups, the unicast signal between the bth MEC and
the kth VR user at the tth time slot can be expressed as

yuni
k,b(t) = gH

k,b(t)v
uni
k,b(t)x

uni
b (t)+ (3.8)

∑
Vuni

i ∈Vuni/Vuni
b ,u∈Vuni

i

gH
k,i(t)v

uni
u,i (t)x

uni
i (t)+

∑
Vmul

l ∈Vmul,m∈Vmul
l

gH
k,l(t)v

mul
m,l (t)x

mul
l (t)+n(t),

where gk,b(t)∈CM×1 ∼ CN(0,β IM) is the uncorrelated Rayleigh fading channel vector be-
tween the bth MEC and the kth VR user in the unicast group, and β is the large-scale fading
coefficient for the unicast VR users. Meanwhile, ∑Vuni

i ∈Vuni/Vuni
b ,u∈Vuni

i
gH

k,i(t)v
uni
u,i (t)x

uni
i (t)

and ∑Vmul
l ∈Vmul,m∈Vmul

l
gH

k,l(t)v
mul
m,l (t)x

mul
l (t) are the interference from the other MECs that

provide service for VR users in the unicast and multicast groups, respectively.
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Based on (3.8), the unicast transmission rate between the kth VR user and the bth MEC
at the tth time slot can be written as

Runi
k,b(t) = log2

(
1+

|gH
k,b(t)v

uni
k,b(t)|

2

Iuni
k,b (t)+σ2

)
, (3.9)

where
Iuni
k,b (t) = ∑

Vuni
i ∈Vuni/Vuni

b
u∈Vuni

i

|gH
k,i(t)v

uni
u,i (t)|2+∑

Vmul
l ∈Vmul

m∈Vmul
l

|gH
k,l(t)v

mul
m,l (t)|

2. (3.10)
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Fig. 3.4 VR interaction latency of the proposed MEC and VR device rendering schemes.

VR Interaction Latency

As defined in [69, 9], the VR interaction latency T loop is the time starting from the VR
user’s movement to the time where the virtual environment responds to its movements.
It consists of four parts: 1) the time of the VR user to uplink its FoV request, and other
tracking information (T uplink); 2) the time of the FoV rendering at MECs or VR devices to
generate the predicted or uplink requested FoV (T render); 3) the time to migrate the rendered
FoV from one optimal MEC to the other MECs (T migration) with the VR users selecting the
same FoV via fiber; and 4) the time to transmit the rendered FoV or the stitched 2D picture
frames from the MEC to the VR user (T downlink) depending on rendering at the MEC or
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the VR device, respectively. Thus, the VR interaction latency T loop can be calculated as

T loop = T uplink +T render +T migration +T downlink, (3.11)

as shown in Fig. 3.4 (a).
Let us assume the execution ability of the GPU of the kth MEC or VR device as FMEC

k

and FVR
k , respectively. We use f MEC

k and f VR
k to represent the number of cycles required

for processing one bit of input data of the kth MEC or VR device, respectively. Here, the
number of cycles depends on the application type and the GPU architecture of the kth
MEC or VR device. For the MEC rendering scheme with migration, we assume that the
bth MEC is selected to be only rendering MEC with the same FoV request, the distance
between the kth MEC and the bth MEC is L̂k,b, and the transmission rate of the optical
fiber is Rfiber.

The VR interaction latency of the proposed MEC and VR device rendering schemes
are shown in Fig. 3.4 (b) and (c) and introduced in details as follows:

(a) MEC Rendering without Migration: a-1) Without prediction: At the tth time
slot, the VR user needs to deliver the actual FoV request of VR users FoV

t through uplink
broadcast transmission, and the rendering of received FoV F̂oV

t is executed at each MEC
with associated VR user. As shown in Fig. 3.4 (b1), at the tth time slot, if the kth VR user
is served by the kth MEC, the VR interaction latency can be calculated as

T loop
k = T uplink

k +T render
k +T downlink

k (3.12)

= T uplink
k +

f MEC
k M

FMEC
k

+
C

CRRdown
k,k

,

where Rdown
k,k ∈ {Rmul

k,k ,R
uni
k,k}, and Rmul

k,k and Runi
k,k are given in (3.6) and (3.9).

a-2) With prediction: As shown in Fig. 3.4 (b3), based on the uplink received FoVs
at the tth time slot F̂oV

t and several previous time slots, we predict the FoV preference of
each VR user at the (t +1)th time slot F̃oV

t+1. For the kth VR user directly served by the
kth MEC, the VR interaction latency with predicted FoV can be written as (3.12) with
T uplink

k = 0.
(b) MEC Rendering with Migration: b-1) Without prediction: For the VR users

requesting the same FoV F̂oV
t through uplink transmission, only one MEC is selected

for rendering, and the rendered FoV can be migrated to other MECs. As shown in Fig.
3.4 (b2), at the tth time slot, if the kth VR user directly served by the bth MEC performs
rendering itself, the VR interaction latency of the required FoV of the kth VR user can be
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presented as

T loop
k = T uplink

k +T render
k +T downlink

k (3.13)

= T uplink
k +

f MEC
b M

FMEC
b

+
C

CRRdown
k,b

,

where Rdown
k,b = Rmul

k,b and Rmul
k,b is given in (3.6).

If the kth VR user is served by the kth MEC, where the rendering is not performed by
itself, but by the bth MEC, the interaction latency of the kth VR user can be presented as

T loop
k = T uplink

k +T render
k +T migration

k +T downlink
k (3.14)

= T uplink
k +

f MEC
b M

FMEC
b

+
L̂k,b

Rfiber +
C

CRRdown
k,k

,

where Rdown
k,k = Rmul

k,k and Rmul
k,k is given in (3.6).

b-2) With prediction: As shown in Fig. 3.4 (b4), at the tth time slot, for the kth VR
user directly served by the bth MEC, the VR interaction latency with the predicted FoV of
the kth VR user can be denoted as (3.13) with T uplink

k = 0.
Otherwise, the predicted FoV will be migrated to the kth MEC from the bth MEC, and

the VR interaction latency of the predicted FoV of the kth VR user can be denoted as (3.14)
with T uplink

k = 0.
(c) VR Device Rendering: c-1) Without prediction: According to Fig. 3.4 (c1), at the

tth time slot, for the kth VR user served by the kth MEC without FoV prediction, the VR
interaction latency of the kth VR user can be written as

T loop
k = T uplink

k +T downlink
k +T render

k (3.15)

= T uplink
k +

M

CRRdown
k,k

+
f VR
k M

FVR
k

,

where Rdown
k,k ∈ {Rmul

k,k ,R
uni
k,k}, and Rmul

k,k and Runi
k,k are given in (3.6) and (3.9).

c-2) With prediction: As shown in Fig. 3.4 (c2), at the tth time slot, the FoV preference
of the VR users for the (t +1)th time slot will be predicted, and the VR interaction latency
with the predicted FoV of the kth VR user served by the kth MEC can be presented as
(3.15) with T uplink

k = 0.

VR Quality of Experience

The quality of the FoV can be influenced by many factors, such as blockiness, blur, contrast
distortion, freezing, color depth, and sharpness [138, 97]. To evaluate the performance
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of the proposed MEC rendering schemes, we focus on the objective of maximizing the
Peak Signal-to-Noise Ratio (PSNR) [84], knowing that it is the most common and simple
objective VR video quality assessment, and the PSNR is usually defined by the Mean
Squared Error (MSE) of the kth VR user between an initial FoV Ik and the distorted FoV
Dk. According to [45], to measure the QoE of the kth VR user based on the MSE, we
propose a binary function where Ik = 1 and Dk ∈ {0,1} to represent whether the FoV can
be rendered and delivered within the threshold of VR interaction latency of the kth VR user.
For real-time interactive VR applications, the delayed FoV will bring an unpleasant human
experience, thus, for the kth VR user, we revise the basic QoE model by incorporating
a maximum VR interaction latency requirement T th

k . More specifically, if Tk ≤ T th
k , the

rendered FoV is regarded as successfully delivered to VR device, then Dk = 1, otherwise,
Dk = 0. The MSE of the kth VR user can be written as

MSEk = (Ik −Dk)
2. (3.16)

According to [45, Eq. (2)], the PSNR of the kth VR user is defined as

PSNRk = 10log10
1

MSEk
. (3.17)

As can be seen from (3.17), for MSEk = 0, PSNRk → ∞. To avoid the infinite value of
PSNR, we introduce a positive number △ and modify (3.17) as

PSNRk = 10log10
1+△

MSEk +△
, (3.18)

where △> 0 and we set △= 1 in this chapter. Meanwhile, the value of △ will not affect
the learning performance.

3.2.3 Problem Formulation

To ensure that each requested FoV is rendered and transmitted within the VR interaction
latency, we aim to optimize the total QoE under fixed VR interaction latency constraint
via determining the optimal association between MEC and VR user group, and optimal
rendering MEC for model migration.

The proposed MEC rendering schemes aim at maximizing the long-term total QoE
under VR interaction latency constraint in continuous time slots with respect to the policy
π that maps the current state information St to the probabilities of selecting possible actions
in At . Therefore, based on the QoE of each VR user, an optimization problem (P1) is
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Fig. 3.5 Decoupled learning strategy for MEC rendering schemes in the wireless VR
network.

formulated as

(P1) max
π(At|St)

∞

∑
i=t

KVR

∑
k=1

γ
i−tEπ [PSNRi

k] (3.19)

Tk ≤ T th
k , (3.20)

where γ ∈ [0,1) is the discount factor which can determine the weight of the future QoE,
and γ = 0 means that the agent just concerns about the immediate reward. The state St

contains the index of the requested FoV, the location of each VR user, and the computation
ability of each MEC. The action At includes the optimal association between MEC and
VR user group, and optimal rendering MEC for model migration. In (3.19), π is the policy
deployed to maximize the long-term PSNR of VR users based on the state observed from
the network environment.

Since the dynamics of the wireless VR system is Markovian in continuous time slots,
this is a Partially Observable Markov Decision Process (POMDP) problem which is
generally intractable. Here, the partial observation refers to that the MECs can only know
the previous FoV requests and the location of each VR user in the environment, while
they are unable to know all the information of the communication environment, including,
but not limited to, the channel conditions, and the FoV request in the current time slot.
Furthermore, the traditional optimization methods may need global information to achieve
the optimal solution, which not only increases the overhead of signal transmission, but also
increase the computation complexity. Approximate solutions will be discussed in Section
2.3.
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3.3 Deep Reinforcement Learning-Based MEC Rendering
Scheme

Knowing the deep neural networks as one of the most impressive non-linear approximation
functions, DRL is an effective method to optimally solve POMDP problems [78]. In this
section, to solve (P1), a decoupled learning strategy is proposed for FoV prediction and
MEC rendering association, as shown in Fig. 3.5. Specifically, an RNN model based
on GRU is used to predict the FoV preference of each user over time. Then, four DRL
algorithms, including centralized DQN, distributed DQN, centralized AC, and distributed
AC, are proposed to select the FoV rendering MEC and the associated MEC for downlink
transmission.

3.3.1 FoV Prediction

Brownian Motion is used to simulate eye movements of VR users over time, and assuming

that the uplink received FoV preference of the kth VR user at the tth time slot is F̂oV
t

k
∈

{1,2, ...,NFoV}. In order to detect dynamics in FoV preference of each VR user, the
proposed learning scheme aims at utilizing not only the information presents in the most

recent observation Ot = {O1
t ,O

2
t , ...,O

KVR
t }, where Ok

t = {F̂oV
t

k
}, but also the historical

information in the previous observations Ht = {Ot−T0+1, ...,Ot−2,Ot−1} given a memory
window T0. To recognize FoV preference over time, an RNN model with parameters θθθ RNN,
and specifically a GRU architecture, is leveraged. θθθ RNN consists of both the GRU internal
parameters and weights of the softmax layer. We choose RNN due to its ability in capturing
time correlation of FoV preferences over time, which can help learn the time-varying FoV
preference for better prediction accuracy.

As shown in Fig. 3.5, the GRU layer includes multiple standard GRU units and
historical observations [Ot−T0+1, ...,Ot−1] are sequentially inputted into the RNN predictor.
For the kth VR user, the GRU layer is connected to an output layer which is consisted of a
softmax non-linearity with NFoV output values, which represents the predicted probability

P{F̂oV
t

k
= f̂ |[Ok

t−T0+1, ...,O
k
t−1],θθθ RNN} of the f̂ th FoV ( f̂ = 1, ...,NFoV) for the tth time

slot given historical observations [Ok
t−T0+1, ...,O

k
t−1].

To adapt the model parameter θθθ RNN, standard Stochastic Gradient Descent (SGD) via
BackPropagation Through Time (BPTT) [141] is deployed. At the (t +1)th time slot, the
parameters θθθ RNN of the RNN predictor can be updated as

θθθ
t+1
RNN = θθθ

t
RNN −λRNN∇LRNN(θθθ

t
RNN), (3.21)
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where λRNN ∈ (0,1] is the learning rate, ∇LRNN(θθθ
t
RNN) is the gradient of the loss function

LRNN(θθθ
t
RNN) to train the RNN predictor. LRNN(θθθ

t
RNN) can be obtained by averaging the

cross-entropy loss as

Lt
RNN(θθθ RNN)=−

t

∑
t ′=t−Tb+1

log
(
P{F̂oV

t ′
= F̃oV

t ′
|Ot

′

t ′−T0
,θθθ RNN}

)
, (3.22)

where
Ot

′

t ′−T0
= [Ot ′−T0+1, ...,Ot ′−1,Ot ′ ], (3.23)

and Tb is the randomly selected mini-batch size.
Through FoV prediction, MECs are able to know the FoV preference of each VR user

in advance. The VR users with the same predicted FoVs can be grouped together. After
FoV rendering, the MECs will multicast or unicast the required FoVs to VR users selecting
the same FoV, or a single VR user selecting a unique FoV, respectively.

3.3.2 Deep Reinforcement Learning

The main purpose of Reinforcement Learning (RL) is to select proper MECs for MEC
rendering schemes. Through a series of action strategies, MECs are able to interact with
the environment, and obtain rewards due to their actions, which help to improve their action
strategies. After plenty of iterations, MECs can learn the optimal policy that maximizes
the long-term rewards.

We define S ∈ S, A ∈ A, and R ∈ Re as any state, action, and reward from their
corresponding sets, respectively. According to the observed environmental state St at the
tth time slot, MECs choose specific actions At from the set A and receive rewards Rt ,
which are regarded as a metric to measure whether the selected actions are good. Thus, the
purpose of the RL algorithm is to find an optimal policy π which can maximize the long-
term reward for A = π(S). The optimization function can be formulated as < S,A,R >, and
the detailed descriptions of the state, action, and reward of the problem (P1) are introduced
as follows.

• State: At the tth time slot, the network state can be denoted as

St = (F̃oV
t ,Lt

k,i,F
MEC
i ) ∈ S, (3.24)

with F̃oV
t = {F̃oV

t
1
, F̃oV

t
2
, ..., F̃oV

t
KVR

},
Lt

k,i = {lt
k,1, l

t
k,2, ..., l

t
k,B,},

FMEC
i = {FMEC

1 ,FMEC
2 , ...,FMEC

B },
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where F̃oV
t

k
is the index of the predicted FoV of the kth VR user at the tth time slot.

lt
k,i is the distance between the kth VR user and the ith MEC at the tth time slot.

FMEC
i is the computation capability of the ith MEC.

• Action: The action space can be written as

At = {Ǎt
k,q,Á

t
k,i} ∈A, (3.25)

with Ǎt
k,q = {Ǎk,1, Ǎk,2, ..., Ǎk,NFoV},

Át
k,i = {Ák,1, Ák,2, ..., Ák,KVR},

where Ǎt
k,q ∈ {0,1} and Át

k,i ∈ {0,1} represent whether the kth MEC will render the
qth FoV and serve the ith VR user at the tth time slot, respectively. For instance,
if Ǎt

k,q = 1 and Ǎt
k, j = 0 , the kth MEC will render and migrate the qth FoV to the

jth ( j ̸= k) MEC choosing the same FoV. If Át
k,i = 1, the kth MEC will support the

downlink transmission of the ith VR user, otherwise, not.

• Reward: The immediate reward Rt is designed as

Rt(St ,At) =
KVR

∑
k=1

PSNRt
k. (3.26)

Thus, the discounted accumulation of the long-term reward can be denoted as

V (S,π) =
∞

∑
i=t

(γ)i−tRi(Si,Ai), (3.27)

where γ ∈ [0,1) is the discount factor.
When the number of MECs and VR users is small, the RL algorithm can efficiently

obtain the optimal policy. However, when a large number of MECs and VR users exist,
the state and action spaces will be scaled proportionally, which will inevitably result in
massive computation latency and severely affect the performance of the RL algorithm. To
address this issue, deep learning is introduced to RL, namely, deep reinforcement learning
(DRL), through interaction with the environment, DRL can directly control the behavior
of each agent, and solve complex decision-making problems. In DRL algorithms, two
methods can be used to obtain the optimal policy. One is called value-based optimization,
such as DQN, which indirectly optimizes the policy by optimizing the value function.
While the other is policy-based optimization, such as AC, which can directly optimize the
policy. In the following sections, four DRL algorithms are introduced in detail.
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Fig. 3.6 The DQN diagram of the MEC rendering scheme.

Centralized DQN

As a value-based DRL algorithm, DQN combines a neural network with Q-learning and
approximates the state-action value function via the deep neural network (DNN). Using
the DQN algorithm, a fraction of states is sampled and the neural network is applied
to train a sufficiently accurate state-action value function, which is able to effectively
solve the problem of high dimensionality in state space. Furthermore, the DQN algorithm
uses the experience replay to train the learning process of RL. When updating the DQN
algorithm, some experiences in the experience replay will be selected randomly to learn,
so that the correlation among the training samples can be broken and the efficiency of the
neural network can be improved. In addition, through averaging the selected samples, the
distribution of training samples can be smoothed, which avoids the training divergence.

As shown in Fig. 3.6, the action-state value function VDQN(S,A) in the DQN agent can
be parameterized by using a function VDQN(S,A;θθθ DQN), where θθθ DQN is the weight matrix
of the DNN with multiple layers. In the conventional DNN, the neurons between two
adjacent layers are fully connected, which is so-called fully-connected layers. The input of
the DNN is the variables in state St ; the hidden layers are Rectifier Linear Units (ReLUs)
through utilizing the function f (x) = max(0,x); the output layer is consisted of linear
units, which are all available actions in At . The exploitation is obtained by performing
propagation of VDQN(S,A;θθθ DQN) with respect to the observed state St . Moreover, the
parameter θθθ DQN can be updated by using SGD as

θθθ
t+1
DQN = θθθ

t
DQN −λDQN∇LDQN(θθθ

t
DQN), (3.28)

where λDQN ∈ (0,1] is the learning rate, ∇LDQN(θθθ
t
DQN) is the gradient of the loss function

LDQN(θθθ
t
DQN) utilized to train the state-action value function. The loss function can be
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defined as
LDQN(θθθ

t
DQN) = (V̂DQN −VDQN(Si,Ai;θθθ t

DQN))
2, (3.29)

where
V̂DQN = Ri+1 + γ max

A
VDQN(Si+1,A;θ̄θθ t

DQN). (3.30)

(Si,Ai,Si+1,Ri+1) are randomly selected previous samples for some i ∈ {t −Mr, ..., t} with
respect to a so-called minibatch. Mr is the replay memory. θ̄θθ

t
DQN is the so-called target

Q-network which is utilized to estimate the future value of the Q-function in the update
rule. Meanwhile, θ̄θθ

t
DQN is periodically copied from the current value θθθ t

DQN and kept
fixed for some episodes. The use of minibatch, rather than a single sample, to update the
state-action value function VDQN(S,A;θθθ DQN) is able to improve the convergent reliability
of value function.

Through deriving the loss function in (3.29) and calculating the expectation of the
selected previous samples in minibatch, V ∗

DQN(S,A) can be obtained. The DQN algorithm
is presented in Algorithm 2.

Distributed DQN

In the centralized DRL algorithm, it learns a single optimization policy centrally at the
central controller, which requires the global observations, rewards, and actions of each
MEC. When the number of MECs and VR users increases, the size of the proposed model
and parameters can expand exponentially. In this case, the GPU memory in the central
controller not only needs to hold the model and batch of data, but also the intermediate
outputs of the feedforward computation. With dense VR users, GPU memory can be
easily overloaded in practice, especially for the GPUs with lower computation capability.
Meanwhile, as the number of MECs and VR users scales up, the centralized DRL can
become inefficient due to the following issues. First, the training time is bound by the
gradient computation time, and the frequency of parameter updating grows linearly with
the increasing number of MECs and VR users. Second, as the frequency of parameter
updating grows, it could potentially slow down the optimization process and result in
problems with convergence [107].

Unlike the centralized DRL algorithm, the global objective in distributed DRL algo-
rithm is the combination of each agent’s local objective, and each agent needs to optimize
its objective. In the distributed DQN method, each agent learns independently from the
other agents. When one of the agents selects an action based on the current state, the other
agents can be approximated as part of the environment [60].

In our model, the central controller stores a copy of the model parameter θθθ DDQN.
The ith MEC obtains the latest model parameter θθθ DDQN from the central controller with
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Algorithm 2 DQN to dynamic decision-making and optimization of the MEC rendering
scheme

1: Initialize replay memory D to capacity N̂, learning rate λDQN ∈ (0,1] and discount
factor γ ∈ [0,1).

2: Initialize state-action value function VDQN(S,A;θθθ DQN), the parameters of primary
Q-network θθθ DQN and target Q-network θ̄θθ DQN.

3: for episode = 1,...,M do
4: Input the network state S of the MEC rendering scheme.
5: for t = 1,...,T do
6: Use ε-greedy algorithm to select a random action At from action space A.
7: Otherwise, select At = max

A∈A
V (St ,A;θθθ DQN).

8: The selected MECs render the predicted or uplink received FoVs and multi-
cast/unicast them to VR users according to the selected action At .

9: MECs observe reward Rt and new state St+1.
10: Store transition (St ,At ,Rt ,St+1) in replay memory D.
11: Sample random minibatch of transitions (S j,A j,R j,S j+1) from replay memory

D.
12: if j+1 is terminal then
13: ytarget

j = R j.
14: else
15: ytarget

j = R j+1 + γ max
A

VDQN(S j+1,A;θθθ DQN).

16: end if
17: Perform a gradient descent step and update parameters θθθ DQN according to (3.28).

18: Update parameter θ̄θθ DQN of the target network every K̄ steps.
19: end for
20: end for

θ̃θθ i = θθθ DDQN. Based on the observed state Si
t , it will select an action Ai

t in all available
actions in Ai. As a result, the environment will make a transition to the new state Si

t+1 and
a reward Ri

t will be generated and fed back to the ith MEC. During training process, the
parameter θ̃θθ i of the ith MEC can be updated as

θ̃θθ
t+1
i = θ̃θθ

t
i −λDDQN∇Li(θ̃θθ

t
i), (3.31)

where λDDQN ∈ (0,1] is the learning rate, Li(θ̃θθ
t
i) is the loss function of the ith MEC, which

can be denoted as
Li(θ̃θθ

t
i) = (V̂DDQN −VDDQN(Si

j,A
i
j;θ̃θθ

t
i))

2, (3.32)

where
V̂DDQN = Ri

j+1 + γ max
Ai

VDDQN(Si
j+1,A

i; ¯̃
θθθ

t
i). (3.33)
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(Si
j,A

i
j,S

i
j+1,r

i
j+1) are randomly selected previous samples for j ∈ {t −Mr, .., t} of the

ith MEC. ¯̃
θθθ

t
i is the target Q-network which is used to estimate the future value of the

state-action value function in the update rule. Furthermore, through deriving the loss
function in (3.32) and computing the expectation of the selected samples, V ∗

DDQN(S
i,Ai)

can be obtained. In addition, the updated parameter θ̃θθ i of the ith MEC will be transmitted
to the central controller and the model parameter θθθ DDQN can be updated as

θθθ DDQN =
1

KMEC
DDQN

KMEC
DDQN

∑
i=1

θ̃θθ i, (3.34)

where KMEC
DDQN is the number of the MECs associated with the VR user groups.
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Fig. 3.7 The Actor-Critic diagram of the MEC rendering scheme.

Centralized AC

In the DQN algorithm, the optimal policy of the MEC rendering scheme is indirectly
obtained through optimizing the state-action value function. However, unlike the DQN
algorithm, AC algorithm is able to directly optimize the policy of the MEC rendering
scheme.

The core idea of the AC algorithm is to combine the advantages of Q-learning (value-
based function) and the policy-gradient (policy-based function) algorithms. Consequently,
the fast convergence of the value-based function and the directness of the policy-based
function are all taken into consideration [61, 140]. As shown in Fig. 3.7, the AC network
consists of two independent networks, namely, an actor network and a critic network.
Through learning the relationship between the environment and the rewards, the critic
network is able to get the potential rewards of the current state. Then, the critic network
will guide the actor network to select proper actions and update the actor network in each
epoch. Therefore, the AC algorithm is usually developed as a two-time-scale algorithm,
including the critic updating step and actor updating step, which leads to slow learning
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Algorithm 3 Actor-Critic to dynamic decision-making and optimization of wireless VR
system

1: Initialize learning rate λcritic ∈ (0,1], λactor ∈ (0,1] and discount factor γ ∈ [0,1).
2: Initialize parameters θθθ AC and wwwAC for the actor and critic network, respectively.
3: Input the network state S of the MEC rendering scheme.
4: for t = 1,...,T do
5: According to π(A|St ;θ), select the action A ∈A.
6: The selected MECs render the required FoVs and multicast/unicast them to VR

users due to the selected action At .
7: MECs calculate the immediate reward Rt and obtain the environment state St+1.
8: Calculate TD error δt according to (3.35).
9: Update the parameters wwwAC of the critic network via (3.36).

10: Update the parameters θθθ AC of the actor network via (3.37).
11: end for

efficiency. A parameterized policy π(At |St ;θθθ AC) is learned to select actions according to
the current environment state. Then, the critic network will obtain the reward feedback from
the environment and use the state-value function VAC(St ;wwwAC) to evaluate the performed
action. Meanwhile, a time-difference (TD) error is generated to reflect the performance of
the performed action.

In particular, after performing action At based on St with policy π , the critic network
uses TD error to evaluate the action under the current state, which can be expressed as

δt = Rt + γVAC(St+1;wwwt
AC)−VAC(St ;wwwt

AC). (3.35)

Then, wwwt
AC can be updated as

wwwt+1
AC =wwwt

AC +λcriticδt∇wwwACVAC(St ;wwwt
AC). (3.36)

where λcritic ∈ (0,1] is the learning rate of the critic network.
Meanwhile, in the actor network, the policy gradient method is usually adopted, which

directly selects actions via parameterized policy. The parameter θθθ t
AC can be updated as

θθθ
t+1
AC = θθθ

t
AC +λactorδt∇θθθ AC logπ(At |St ;θθθ t

AC), (3.37)

where λactor ∈ (0,1] is the learning rate of the actor network.
Correspondingly, the parameters in the actor and critic network will be iteratively

updated to maximize the objective function. The detailed AC algorithm of the MEC
rendering scheme is proposed in Algorithm 3.
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Distributed AC

Unlike the centralized AC algorithm, the agent in the distributed AC algorithm performs an
action and obtains reward based on its own observed state. For the critic network in each
agent, it shares its estimate of the value function with others through the central controller.
While for the actor network in each agent, it performs individually without the need to
infer the policies of others [155].

In our model, the ith MEC obtains the latest critic model parameter wwwDAC from the
central controller, and let its own critic parameter w̄wwi

t =wwwDAC. At the tth time slot, according
to the current environment state Si

t obtained by the ith MEC, a parameterized policy
πi(Si

t ;θ̄θθ
i
t) is learned to select action Ai

t . Then, the critic network in the ith MEC will
receive the reward feedback by the environment and evaluate the state-value function
VDAC(Ai

t |Si
t ;w̄ww

i
t). Similarly, the TD error δ i

t of the ith MEC can be calculated to judge the
performance of the performed action Ai

t , and the parameter w̄wwi
t of the critic network of the

ith MEC can be updated as

w̄wwi
t+1 = w̄wwi

t + λ̄criticδ
i
t ∇w̄wwiVDAC(Si

t ;w̄ww
i
t), (3.38)

where λ̄critic ∈ (0,1] is the learning rate of the critic network, and

δ
i
t = Ri

t + γVDAC(Si
t+1;w̄wwi

t)−VDAC(Si
t ;w̄ww

i
t). (3.39)

Furthermore, for the parameter θ̄θθ
i
t of the actor network of the ith MEC, it can be updated

via
θ̄θθ

i
t+1 = θ̄θθ

i
t + λ̄actorδ

i
t ∇

θ̄θθ
i logπ(Ai

t |Si
t ;θ̄θθ

i
t), (3.40)

where λ̄actor ∈ (0,1] is the learning rate of the actor network. In addition, the updated
parameter w̄wwi

t in the critic network of the ith MEC will be sent to the central controller and
the critic model parameter wwwDAC can be updated as

wwwDAC =
1

KMEC
DAC

KMEC
DAC

∑
i=1

w̄wwi, (3.41)

where KMEC
DAC is the number of the MECs associated with the VR user groups. Correspond-

ingly, the parameters in the actor and critic network will be iteratively updated to maximize
the objective function.
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(a) (b)

Fig. 3.8 (a) Total reward of FoV prediction of each epoch via GRU with 8 VR users and 8
FoVs. (b) FoV prediction accuracy of GRU with 8 and 24 VR users for varying number of
FoV.

3.3.3 Computational Complexity and Implementation Analysis

For the computation complexity of the RNN based on the GRU architecture, it can be
computed as O(m̃ñ log ñ), where m̃ is the number of layers, and ñ is the number of units
per learning layer. The computational complexity of the centralized DQN/AC algorithm,
which includes DQN/AC learning architecture, the MEC migration scheme, and the uplink
and downlink transmission, are given by O(mn logn+Nmigration +NMECKVR). Here, m is
the number of layers, n is the number of units per learning layer, Nmigration is the number
of MECs selected for rendering migration, and NMEC and KVR are the number of MECs
and VR users, respectively. For the distributed DQN/AC algorithm, the computational
complexity of algorithms can be given by O(NMECm̂n̂ log n̂+NMECKVR), where m̂ is the
number of layers in each MEC, and n̂ is the number of units per layer in each MEC 2 [49].
For the implementation of the proposed algorithms, according to Fig. 3.5, at the tth time
slot, the RNN-based FoV predictor will predict the FoV preference of each VR user for
the (t +1)th time slot. The centralized and distributed DRL algorithms will select proper
MECs to render and transmit the required FoVs to VR users based on the observed state.

3.4 Simulation Results

In this section, we examine the effectiveness of our proposed schemes with learning
algorithms via simulation. For the learning algorithms, we set the learning algorithms to

2The proposed decoupled learning strategy is an online learning strategy. It can effectively adapt to the
dynamic wireless VR environment through observing the state of the network at each time slot, which can be
used for real-time control in VR video streaming.
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Table 3.1 Simulation Parameters of Wireless VR Network

LSTM memory size 20 Minibatch size 64
RNN learning rate 0.005 Number of MECs 8

Number of VR users 8 NFoV 8
D(t) 3 σ2 −110 dBm

γ 0.9 α,β 3
λDQN 0.05 λactor 0.005
λcritic 0.05 T th 30 ms

Np 1080p CR 200
FMEC

max 5 GHz FMEC
min 4 GHz

FVR 2 GHz f MEC, f VR 1000 Cycles/bit
Rfiber 10 Gb/s Side length of the limited square 100 meters

use a fully-connected neural network with two hidden layers and each layer has 128 ReLU
units. The simulation parameters are summarized in Table 3.1.

Fig. 3.9 Total reward of the MEC rendering with prediction and migration scheme of each
epoch via centralized/distributed DQN/AC learning algorithms.

3.4.1 FoV Prediction

In the FoV prediction scheme, Brownian motion is deployed to simulate the eye movement
of VR users. To obtain high accuracy in predicting the FoV preference of each VR user in
continuous time slots, an RNN model based on GRU architecture is deployed. Fig. 3.8 (a)
plots the total reward of FoV prediction of each epoch via GRU with 8 VR users and 8
FoVs, and Fig. 3.8 (b) plots the FoV prediction accuracy of GRU with 8 and 24 VR users
for varying number of FoVs. It is observed that the prediction accuracy decreases with
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Fig. 3.10 Average VR interaction latency of various MEC and VR rendering schemes via
centralized DQN algorithm for varying uplink transmission latency.

increasing number of FoVs. This is because the eye movements follow Brownian motion,
and the randomness of FoV selection increases with increasing number of FoVs, which
reduces the prediction accuracy. We also observe that the prediction accuracy changes
slightly with the same number of FoVs for a different number of VR users. This is because
RNN utilizes a memory window with a length of 20 for each VR user to store the input
observations, which can capture the FoV preference of VR users over time.

3.4.2 MEC Rendering Scheme

Four DRL algorithms, including centralized DQN, distributed DQN, centralized AC, and
distributed AC, are proposed to select proper MECs to render and transmit the required
FoVs to VR users. For simplicity, we use “w/ Pred", “w/o Pred", “w/ Migra", and “w/o
Migra" to represent “with prediction", “without prediction", “with migration", and “without
migration" in figures, respectively. To guarantee the fairness of each VR user, we use
average QoE and VR interaction latency in the performance results.

Fig. 3.9 plots the total reward of the MEC rendering with the prediction and migration
scheme of each epoch via centralized/distributed DQN/AC learning algorithms. Each
result is averaged over 100 training trails. It is observed that the total reward and the
convergence speed of these four DRL learning algorithms follow: Centralized DQN >

Distributed DQN > Centralized AC > Distributed AC. This is due to the experience replay
mechanism and randomly sampling in DQN, which use the training samples efficiently
and smooth the training distribution over the previous behaviors. As the model parameters
in the AC algorithm are updated in two steps, including the critic step and the actor
step, the convergence speed of the AC algorithm is lower. Apparently, the convergence
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Fig. 3.11 Average VR interaction latency of the MEC rendering with prediction and
migration scheme and the VR rendering scheme via centralized/distributed DQN/AC
learning algorithms for varying uplink transmission latency.

speed of the centralized learning algorithms is faster than that of the distributed learning
algorithms. This is because distributed learning needs more time to learn from each agent
with only local observation and reward, whereas centralized learning can learn from global
observations and rewards.

Fig. 3.10 plots the average VR interaction latency of various MEC and VR rendering
schemes via a centralized DQN algorithm for varying uplink transmission latency. We
observe that all MEC rendering schemes outperform that of the VR device rendering
schemes, with around 40 ms gain. This is because the processing ability of the MECs is
much higher than that of the VR devices, and the data size of the FoV is smaller than that of
the stitched 2D picture, which jointly decreases the rendering and downlink transmission
latency. We also observe that the average VR interaction latency of the MEC rendering with
prediction and migration scheme remains the same with increasing uplink transmission
latency, as the MECs do not need to wait for the uplink transmission of requested FoV
from the VR devices before performing rendering.

In Fig. 3.10, we also compare our proposed learning-based schemes with those without
learning. By comparing the MEC/VR rendering scheme with the nearest association
scheme plotted using dash lines, we see our proposed learning-based MEC/VR rendering
schemes achieve a substantial gain in terms of VR interaction latency. This is due to that in
the non-learning scheme, the VR user needs to transmit its requested FoV through uplink
transmission and is always associated with the nearest MEC. Thus, it is possible that the
MEC with low processing ability is selected to render the required FoV, which can increase
the rendering latency.
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(a) (b)

Fig. 3.12 Average QoE and VR interaction latency of MEC rendering with prediction
with/without migration schemes via centralized/distributed DQN/AC learning algorithms
with increasing number of VR users.

Fig. 3.11 plots the average VR interaction latency of the MEC rendering with pre-
diction and migration scheme and the VR rendering scheme via centralized/distributed
DQN/AC learning algorithms for varying uplink transmission latency. It is observed that
the MEC rendering scheme achieves much lower latency (about 40 ms) compared to the
VR rendering scheme. It is also seen that for the same rendering scheme, either the MEC
or VR, the centralized DQN algorithm can achieve the minimum average VR interaction
latency. This can be explained by the fact that the centralized learning algorithm learns a
single policy common to the whole wireless VR system based on the global observations,
while in the distributed learning algorithm, each agent only learns its own policy based on
local observation.

Fig. 3.12 plots the average QoE and VR interaction latency of MEC rendering with
prediction with/without migration schemes via centralized/distributed DQN/AC learning
algorithms with increasing number of VR users, respectively. With increasing number
of VR users, the average QoE of VR users first decreases then becomes nearly stable as
shown in Fig. 3.12 (a), whereas the average VR interaction latency first increases, then
becomes nearly stable as shown in Fig. 3.12 (b). This is because with increasing number of
VR users, more MECs are activated to provide downlink transmission for more requested
FoVs, which increase the interference among those transmissions. As the number of VR
users becomes too large, all MECs become active to serve all VR users to render most of
FoVs, and the rendering latency and interference among VR users become stable.

Interestingly, we notice that for both centralized DQN and AC algorithms, we can
see the performance gain of the MEC rendering with migration scheme over that without
migration scheme in Fig. 3.12 (a) and (b). This is because the MECs with higher computing
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(a) (b)

Fig. 3.13 Average QoE and VR interaction latency of MEC rendering with prediction
with/without migration schemes via centralized/distributed DQN/AC learning algorithms
with increasing number of MECs.

ability will be selected to render the same required FoV for migration, which decreases the
rendering latency. Importantly, all learning-based MEC rendering with prediction schemes
substantially outperform the conventional non-learning-based MEC rendering with the
nearest association scheme.

Fig. 3.13 plots the average QoE and VR interaction latency of MEC rendering with
prediction with/without migration schemes via centralized/distributed DQN/AC learning
algorithms with increasing number of MECs, respectively. With increasing number of
MECs, the average QoE of VR users first increases, then becomes nearly stable as shown
in Fig. 3.13 (a), whereas the average VR interaction latency first decreases, then becomes
nearly stable as shown in Fig. 3.13 (b). This is because as the number of MECs increases,
the VR users will have more MEC choices to be selected, thus, nearer MECs with higher
execution ability can be utilized to render the required FoVs, which reduces the rendering
and downlink transmission latency. However, as the number of MECs becomes too large,
all MECs may be activated for rendering and downlink transmission, which leaves little
gain for improvement.

3.5 Conclusions

In this chapter, a decoupled learning strategy was developed to optimize real-time VR
video streaming in wireless networks, which considered FoV prediction and rendering
MEC association. Specifically, based on GRU architecture, an RNN model was used to
predict the FoV preference of each VR user over time. Then, based on the correlation
between the location and predicted FoV request of VR users, centralized and distributed
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DRL strategies were proposed to determine the optimal association between MEC and
VR user group, and optimal rendering MEC for model migration, so as to maximize the
long-term QoE of VR users. Simulation results show that our proposed MEC rendering
with prediction and migration scheme based on RNN and DRL algorithms substantially
improved the long-term QoE of VR users and decreased the VR interaction latency.
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Chapter 4

Learning-based Prediction, Rendering
and Transmission for Interactive VR in
RIS-Assisted Terahertz Networks

4.1 Introduction

Wireless virtual reality (VR) can be a potential solution in breaking geographical bound-
aries, providing the VR users with a sense of total presence and immersion under VR
interaction latency, and may unleash plenty of novel VR applications [25]. To achieve this
vision, we still face unique challenges, including how to support real-time VR interaction
under low interaction latency (in the order of tens of milliseconds), high resolution 360-
degree VR video transmission under high data rates, seamless connectivity for moving
VR users even under unstable wireless channels, and satisfy the asymmetric and coupled
uplink and downlink requirements [69].

4.1.1 Motivation

To address the above challenges, terahertz (THz) communication can be a promising
enabler for high rate, high reliability, and low VR interaction latency [16]. However,
the THz transmission suffers from severe propagation attenuation and water-molecular
absorption loss because of its high frequency, which limits the propagation distance [64].
That is the reason why the THz communication system is usually deployed in an indoor
scenario. Note that the indoor environment can be complex with physical obstacles, such
as walls and furniture, which may block the line-of-sight (LoS) communication links
[58, 108].
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To address the severe path attenuation of THz and support transmission for users in
non-line-of-sight (NLoS) areas, reconfigurable intelligent surface (RIS) can be an effective
approach to create a second virtual LoS path and enhance the coverage [24, 112, 114,
113, 158]. The RIS is a planar surface that consists of a number of small-unit reflectors,
and is equipped with a low-cost sensor and controlled with a simple processor. Each
reflecting element of the RIS can reflect incident electromagnetic waves independently
with an adjustable phase shift. Through deploying the RIS in the THz network and smartly
adjusting the phase shift of all elements, the THz signals between the transmitters and
receivers can be reconfigured flexibly to support the THz transmission for the users in
NLoS areas [148, 71, 137].

It is important to note that the VR interaction latency, which is composed of the uplink
transmission latency, the rendering latency, and the downlink transmission latency, is also
one of the key requirements in VR service. Violating the VR interaction latency constraint
can lead to motion sickness and discomfort [69]. Rendering real-time high-quality VR
videos via a computing unit with high processing capabilities can be a potential solution
to reduce the VR interaction latency. To do so, mobile edge computing (MEC) can be
introduced to shift the heavy VR video computation load from the VR device to the MEC
server [101].

4.1.2 Contributions

Motivated by the above, in this chapter, we focus on optimizing the QoE of VR users in a
MEC-enabled and RIS-assisted THz VR network in an indoor scenario, and we develop a
novel learning strategy to efficiently optimize the long-term QoE in THz VR systems. The
main contributions are summarized as follows:

• We propose a MEC-enabled and RIS-assisted THz VR network in an indoor scenario,
taking into account the uplink transmission, MEC rendering, and downlink VR video
transmission.

• In the uplink, we use a two-ray uplink transmission to deliver the actual viewpoints
or learning models to the MEC. Based on the historical and current viewpoints
of the VR user from real VR datasets [4], we propose two methods, which are
referred to as the centralized online Gated Recurrent Unit (GRU) algorithm and
the distributed Federated Averaging (FedAvg) algorithm, to predict the dynamical
viewpoint preference of VR users over time. By doing so, the predicted field of view
(FoV) can be rendered and transmitted in advance, with the aim to reduce the VR
interaction latency.
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• We also propose an algorithm that integrates online Long-Short Term Memory
(LSTM) and Convolutional Neural Networks (CNN) to predict new positions of VR
users based on their historical positions delivered via the uplink, which are then used
to predict the LoS or the NLoS statuses of VR users.

• With the predicted viewpoint and the LoS/NLoS status of each VR user as inputs,
we propose a constrained Deep Reinforcement Learning (C-DRL) algorithm to
optimize the long-term QoE of VR users under VR interaction latency constraints,
by selecting the optimal phase shifts of the RIS reflecting elements. Through
comparison with non-learning-based methods, we show that our proposed ensemble
learning architecture with GRU, LSTM, CNN, and C-DRL achieves near-optimal
QoE similar to that offered by an exhaustive-search algorithm, and enhances about
two times the QoE compared to the random phase shift selection scheme.

4.1.3 Organization

The rest of this chapter is organized as follows. The system model and problem formulation
are proposed in Section 4.2. The learning algorithms for THz VR systems are presented
in Section 4.3. The simulation results and conclusions are described in Section 4.4 and
Section 4.5, respectively.

4.2 System Model and Problem Formulation

We consider an indoor scenario, where an RIS that comprises N reflecting elements is
deployed to assist the uplink and downlink transmission between a MEC and KVR VR
users, as shown in Fig. 4.1. The MEC operating over THz frequency is equipped with M
antennas1 and each VR user is equipped with a single antenna, respectively. The indoor
scenario is assumed to be a square with length W of each side. The RIS is connected
to a smart controller that communicates with the MEC via a wired link for cooperative
transmission and information exchange, such as channel state information (CSI), and phase
shifts control of all reflecting elements [147]. Due to the substantial path loss in THz
transmission, we only consider the THz signal reflected by the RIS for the first time and
ignore the signals that are reflected twice or more times following [144].

4.2.1 VR User Mobility

We present a mobility model based on the VR user movements in the indoor VR scenario,
which is the so-called virtual reality mobility model (VRMM) [152]. The VRMM includes

1Physically, the MEC and SBS are co-located in one location.
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Fig. 4.2 Illustration of THz network in the presence of obstacles.

the following parameters: start location, destination location, speed, and moving direction.
We assume that there are four directions for the VR user to select, namely, up, down, left,
and right. We split the indoor area into W ×W grids. When the VR user is at the start
location, it sets its destination location, speed, and moving direction, and transmits its
current location at each time slot to the MEC server through uplink transmission. Note
that the location of the VR user for the next time slot is determined by the location of the
current time slot rather than the locations in previous time slots, so that the mobility of the
VR user in the indoor area follows the Markov property. When the VR user arrives at the
destination location, it sets a new destination location and moves forward to it with a given
speed.
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Fig. 4.3 Illustration of a single THz transmission link in the presence of blocker via other
VR user with higher height.

4.2.2 Indoor Blockage

Due to the severe signal attenuation and narrow wave spread in THz frequencies, the THz
transmission is very sensitive to the presence of obstacles [149]. When the VR users are
moving in an indoor scenario, the blockage between the MEC and the kth VR user can
be caused by an obstacle and the other VR users with higher heights that are located near
the kth VR user. For simplicity, we map the 3D indoor scenario into a 2D image. In Fig.
4.2, when VR users are behind the obstacle, they are directly blocked by the obstacle. As
shown in Fig. 4.3, we assume that the height of the MEC is hA, the height of the VR user
2 is hB (hB < hA), the height of the VR user 1 is hU (hU < hB), the distance between the
VR user 2 with height hB and the MEC is l, and the distance between the VR user 1 with
height hU and the MEC is x.

Definition 1: When the MEC server, the VR user 2, and the VR user 1 are located in
the same line in the 2D plane, the VR user 1 will be blocked by the VR user 2 if their
distance in the 2D plane is less than (hA−hU )l

hA−hB
.

Proof. According to Fig. 4.3, the coordinates of the MEC, the VR user 2, and the VR
user 1 in the 2D plane are denoted as (0,hA), (l,hB), and (x,hU), respectively. Applying
slope-intercept equation, we can calculate the line equation across the point (0,hA) and
(l,hB) as

y =
hB −hA

l
x+hA. (4.1)

For y = hU , x is computed as (hA−hU )l
hA−hB

. Thus, the distance between the VR user 2 and the

VR user 1 is computed as (hB−hU )l
hA−hB

.
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Due to the blockage caused by the obstacles, such as pillars, walls, or other VR users,
the THz transmission between the MEC server and the VR users can be enhanced by the
RIS, where each passive reflecting element can change the phase shift of the THz wave
[98]. In our model, we define the MEC-VR user link as the line-of-sight (LoS) link, and the
MEC-RIS-VR user link as the non-LoS (NLoS) link. It is important to note that through
obtaining the current and historical locations and LoS/NLoS statuses of the VR users, the
MEC server can predict the LoS/NLoS statuses of the VR users at each time slot.

4.2.3 THz Uplink Transmission

At the start of each time slot, the VR user transmits its actual viewpoint and location to the
MEC via uplink transmission. Because of the mobility of the VR user, it may enter the
LoS or NLoS region. To guarantee the reliability of the uplink transmission, we consider a
two-ray uplink transmission. One ray is the LoS link, and the other is the NLoS link. For
the VR user in the LoS region, the received signals include the ones from LoS and NLoS
links. While for the VR user in the NLoS region, the received signal only includes the
signal from the NLoS link. For the kth VR user, the transmitted two-ray signals through
the uplink transmission at the tth time slot are denoted as

yup
k (t)=uH

k (t)h
up
k (t)xup

k (t)+ (4.2)

uH
k (t)G

up(t)ΘΘΘup(t)gup
k (t)xup

k (t)+

KVR

∑
i=1,i̸=k

uH
k (t)h

up
i (t)xup

i (t)+

KVR

∑
i=1,i̸=k

uH
k (t)G

up(t)ΘΘΘup(t)gup
i (t)xup

i (t)+nup(t),

where uH
k (t) ∈ C1×M is the beamforming vector of the kth VR user at the tth time slot,

which can be denoted as hup
k (t)+Gup(t)ΘΘΘup(t)gup

k (t)
∥hup

k (t)+Gup(t)ΘΘΘup(t)gup
k (t)∥ [145]. In (4.2), hup(t) ∈ CM×1 is the

channel vector between the MEC and the kth VR user at the tth time slot, xup
k (t) is the

transmitted data symbol of the kth VR user, and is set as discrete random variable with
zero mean and unit variance, gup

k (t) ∈ CN×1 is the channel matrix between the kth VR
user and the RIS, Gup(t) ∈ CM×N is the channel matrix between the RIS and the MEC,
and nup(t) is the additive white Gaussian noise with zero mean and σ̂2 variance. Mean-
while, ∑

KVR

i=1,i̸=k uH
k (t)h

up
i (t)xup

i (t) and ∑
KVR

i=1,i̸=k uH
k (t)G

up(t)ΘΘΘup(t)gup
i (t)xup

i (t) are the inter-
ferences from the LoS and NLoS links of other VR users, respectively. Let θθθ = [θ1, ...,θN ]

denote the selected phase shift set of N reflection elements, where θn ∈ [0,2π] denotes the
phase shift of the nth reflecting element of the RIS, which can be carefully adjusted by an
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RIS controller. Here, the reflection coefficients matrix ΘΘΘ
up(t) is presented as

ΘΘΘ
up(t) = diag(e jθ up

1 (t), ...,e jθ up
N (t)). (4.3)

For practical implementation, we assume that the phase shift of each element of the RIS
can only take a finite number of discrete values. We set b as the number of bits used to
indicate the number of phase shift levels L̂, where L̂ = 2b. For simplicity, we assume
that such discrete phase-shift values can be obtained by uniformly quantizing the interval
[0,2π). Thus, the set of discrete phase shift values at each element is given by

F = {0,△θ , ...,(L̂−1)△θ}, (4.4)

where △θ = 2π/L̂ [144]. Now, the uplink transmission rate of the kth VR user at the tth
time slot is calculated as

Rup
k (t)=log2

(
1+

|uH
k (t)(h

up
k (t)+Gup(t)ΘΘΘup(t)gup

k (t))|2

Iup
k (t)+ σ̂2

)
, (4.5)

and

Iup
k (t)=

KVR

∑
i=1,i̸=k

|uH
k (t)(h

up
i (t)+Gup(t)ΘΘΘup(t)gup

i (t))|2. (4.6)

According to (4.5), the uplink transmission rate of the VR user in the LoS area is determined
by both the LoS and NLoS links. The uplink transmission rate of the kth VR user in the
NLoS area is only affected by the NLoS link, and uH

k (t)h
up
k (t) = 0.

4.2.4 VR Viewpoint Prediction

By predicting the viewpoint preference of the VR user with a centralized online GRU
algorithm or distributed FedAvg algorithm, the corresponding FoV can be rendered and
transmitted in advance in order to decrease the VR interaction latency. When the VR user
watches the VR video frames, the viewpoint is determined by three degrees of freedom,
which are X , Y , and Z axes. Thus, predicting the viewpoint of the VR user can be converted
to predicting the X , Y , and Z angles. We consider a sliding window to predict the viewpoint
of the VR user in continuous time slots. The future viewpoint of the VR user can be
predicted according to the current and past rotation statuses. To guarantee prediction
accuracy, we use the online GRU algorithm to predict the viewpoint of the VR user at
each time slot. Specifically, we use Mean Square Error (MSE) as a cost function in each
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training step to update the parameters of the online GRU model, which is calculated as

MSEk
t =

1
KVR

KVR

∑
k=1

(V̂ k
t −V k

t )
2, (4.7)

where V̂ k
t can be X̂k

t or Ŷ k
t or Ẑk

t and V k
t can be Xk

t or Y k
t or Zk

t are the predicted and actual
viewpoints of the kth VR user at the tth time slot, respectively. At the (t −1)th time slot,
the MEC or the VR device will predict the viewpoint V̂ k

t of the kth VR user for the tth
time slot. Then, the kth VR user will transmit its actual viewpoint V k

t or the learning
model to the MEC via uplink transmission. By comparing it with the predicted viewpoint,
the parameters of the online GRU algorithm are updated, which can further improve the
prediction accuracy.

4.2.5 MEC Rendering

When the VR users enjoy the VR video frames, the corresponding portion of the sphere is
rendered at the MEC based on the predicted viewpoint. Through equirectangular projection
(ERP) mapping [8], a stitched 2D image with RGB color mode is rendered into the required
FoV. We assume that the resolution of the FoV is Np ×Nv, and the size of each pixel is 8
bits. The size of the FoV in RGB mode is calculated as

C = 3×8×Np ×Nv ×V, (4.8)

where 3 represents the red, green, and blue color in RGB mode, and V = 2 is the number
of viewpoints for two eyes. We assume that the execution ability of the GPU of the MEC
is FMEC, and the number of cycles required for processing one bit of input data in the MEC
is fMEC. The MEC rendering latency is calculated as

Trender =
fMECC
FMEC

. (4.9)

From (4.9), we can obtain that the rendering latency for all VR users is the same.

4.2.6 THz Downlink Transmission

In the THz downlink transmission, it is possible that VR users may be blocked by the
obstacles or VR users with higher heights, as shown in Fig. 4.2 and Fig. 4.3. For the VR
users that are not blocked by obstacles and other VR users, the MEC directly performs
transmission in the LoS channel, otherwise, it is served by the NLoS channel aided by the
RIS [72, 59, 106].
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We consider a multi-input single-output (MISO) THz channel. We use the sets VLoS

and VNLoS to denote the LoS and NLoS VR user groups, respectively. For the kth VR user
in the LoS group, the received signal from the MEC at the tth time slot is denoted as

yLoS
k (t) = hH

k (t)v
LoS
k (t)xLoS

k (t)+

∑
i̸=k,i∈VLoS

hH
k (t)v

LoS
i (t)xLoS

i (t)+

∑
j∈VNLoS

hH
k (t)v

NLoS
j (t)xNLoS

j (t)+n(t), (4.10)

where hk(t) ∈ CM×1 is the channel vector between the MEC and the kth VR user,
vLoS

k (t) ∈ CM×1 and vNLoS
j (t) ∈ CM×1 are the beamforming vectors of the kth VR user in

the LoS group, and the jth VR user in the NLoS group, respectively. In (4.10), vLoS
k (t)

can be denoted as hk(t)
∥hk(t)∥

, and xLoS
k (t) and xNLoS

j (t) indicate the transmitted data sym-
bol for the kth VR user in the LoS group and the jth VR user in the NLoS group,
respectively, and are defined as discrete random variable with zero mean and unit vari-
ance. We assume that xLoS

k (t) and xNLoS
j (t) are independent from each other. Meanwhile,

∑i̸=k,i∈VLoS hH
k (t)vLoS

i (t)xLoS
i (t) and ∑ j∈VNLoS hH

k (t)vNLoS
j (t)xNLoS

j (t) are the interferences
from the MEC. In addition, n(t)∼ CN(0,σ2) is the additive white Gaussian noise at the
kth VR user in the LoS group. The transmission rate between the MEC and the kth VR
user in the LoS group at the tth time slot is expressed as

RLoS
k (t) = log2

(
1+

|hH
k (t)vLoS

k (t)|2

ILoS
k (t)+σ2

)
, (4.11)

where
ILoS
k (t)= ∑

i∈VLoS,i̸=k
|hH

k (t)v
LoS
i (t)|2 + ∑

j∈VNLoS

|hH
k (t)v

NLoS
j (t)|2. (4.12)

For the VR users in the NLoS group, the signal between the MEC and the bth VR user
at the tth time slot is presented as

yNLoS
b (t) = gH

b (t)ΘΘΘ
down(t)Gdown(t)vNLoS

b (t)xNLoS
b (t)+

∑
j ̸=b, j∈VNLoS

gH
b (t)ΘΘΘ

down(t)Gdown(t)vNLoS
j (t)xNLoS

j (t)+n(t), (4.13)

where Gdown(t) ∈ CN×M is the channel matrix between the MEC and the RIS, gb(t) ∈
CN×1 is the channel matrix between the RIS and the bth VR user, vNLoS

b (t) ∈ CM×1 is
the precoding matrix for the bth VR user in the NLoS group, which can be written as

Gdown(t)HΘΘΘ
down(t)gk(t)

∥Gdown(t)HΘΘΘ
down(t)gk(t)∥

, xNLoS
b (t) is the transmitted data for the bth VR user, ΘΘΘ

down(t) is the
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Fig. 4.4 Illustration of THz channel model in the presence of obstacles.

reflection coefficients matrix of the RIS. Note that ΘΘΘ
down(t) is written as

ΘΘΘ
down(t) = diag(e jθ down

1 (t), ...,e jθ down
N (t)). (4.14)

In (4.13), ∑ j ̸=b, j∈VNLoS gH
b (t)ΘΘΘ

down(t)Gdown(t)vNLoS
j (t)xNLoS

j (t) is the interference from
the RIS. Then, the downlink transmission rate of the bth VR user in the NLoS group is
written as

RNLoS
b (t) = log2

(
1+

|gH
b (t)ΘΘΘ

down(t)Gdown(t)vNLoS
b (t)|2

INLoS
b (t)+σ2

)
, (4.15)

where
INLoS
b (t) = ∑

j ̸=b, j∈VNLoS

|gH
b (t)ΘΘΘ

down(t)Gdown(t)vNLoS
j (t)|2. (4.16)

4.2.7 THz Channel Model

The THz channel model in the presence of obstacles is shown in Fig. 4.4. In THz
communication, the power of the scattering component is generally much lower than that
of LoS component, since the signal power of THz wave becomes very weak when it is
reflected or scattered two or more times. Thus, we ignore the scattering component, and
the LoS channel is expressed as

h̃k(t) = hLoS
f ,dk

(t)aLoS
k,φk

(t), (4.17)
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where h̃k(t) = {hup
k (t),hk(t)}, LoS channel function hLoS( f ,dk) consists of a spreading

loss function and a molecular absorption loss function, which is presented as

hLoS
f ,dk

(t) =
c

4π f dk
e−

τ( f )dk
2 e− j2π f δLoS,k(t), (4.18)

where c is the speed of light. Assuming that the RIS can be installed on the wall or
ceiling of the indoor scenario with height H, the location of the reflecting unit can be
presented as LRIS = [XRIS,YRIS,HRIS]. The location of the MEC can be denoted as LMEC =

[XMEC,YMEC,HMEC]. The location of the kth VR user can be written as Lk = [Xk,Yk,Hk].
The distance between the MEC and the kth VR user is denoted as dk, which is calculated as

dk =
√

(XMEC −Xk)2 +(YMEC −Yk)2 +(HMEC −Hk)2, (4.19)

f is the carrier frequency, and δLoS,k(t) =
dk
c is the time-of-arrival of the LoS propagation

of the kth VR user. τ( f ) is the frequency-dependent medium absorption coefficient that
depends on the molecular composition of the transmission medium, namely, the type and
concentration of molecules found in the channel as defined in [63]. In addition, aLoS

k,φk
(t) is

the normalized antenna array response vector at the MEC with M antenna elements, which
is written as

aLoS
k,φk

(t) =
1√
M
[1,e j 2π

λ
sin(φk), ...,e j 2π

λ
(M−1)sin(φk)]H , (4.20)

where M is the number of antennas equipped in the MEC, λ is the wavelength, and φk

denotes the angles of departure/arrival (AoD/AoA).
For the NLoS transmission, the THz channels between the MEC and the RIS are

denoted as
Gup(t) = ηGNLoS

f ,dM−I
(t)aNLoS

φMEC
(t)aNLoS

φRIS
(t)H , (4.21)

and
Gdown(t) = ηGNLoS

f ,dM−I
(t)aNLoS

φRIS
(t)aNLoS

φMEC
(t)H , (4.22)

where η is the path-loss compensation factor written as

η =
2
√

π f GRISN
c

. (4.23)

In (4.23), N is the number of elements on the RIS, and GRIS is the RIS element gain. The
channel function GNLoS

f ,dM−I
(t) is written as

GNLoS
f ,dM−I

(t) =
c

4π f dM−I
e−

τ( f )dM−I
2 e− j2π f δNLoS,M-I(t), (4.24)
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where dM−I is the distance between the MEC and the RIS, δNLoS,M-I(t) =
dM−I

c is the
time-of-arrival of the NLoS propagation between the MEC and the RIS. The normalized
antenna array response vectors aNLoS

φRIS
(t) of the RIS and aNLoS

φMEC
(t) of the MEC are written as

aNLoS
φRIS

(t) =
1√
N
[1,e j 2π

λ
sin(φRIS), ...,e j 2π

λ
(N−1)sin(φRIS)]H , (4.25)

and
aNLoS

k,φMEC
(t)=

1√
M
[1,e j 2π

λ
sin(φMEC), ...,e j 2π

λ
(M−1)sin(φMEC)]H, (4.26)

respectively. In (4.25) and (4.26), φRIS and φMEC are AoD or AoA, repectively. The THz
channel between the RIS and the bth VR user is given by

g̃b(t) = gNLoS
f ,db

(t)aNLoS
φb

(t), (4.27)

where g̃b(t) = {gup
b (t),gb(t)}, the channel function gNLoS

f ,db
(t) is written as

gNLoS
f ,db

(t) =
c

4π f db
e−

τ( f )db
2 e− j2π f δNLoS,b(t), (4.28)

db is the distance between the RIS and the bth VR user, and aNLoS
φb

(t) is written as

aNLoS
φb

(t) =
1√
N
[1,e j 2π

λ
sin(φb), ...,e j 2π

λ
(N−1)sin(φb)]H . (4.29)

4.2.8 Quality of Experience Model

The QoE of the wireless VR video frame streaming can be affected by several factors,
including video quality, VR interaction latency, and smoothness of the VR video frame [9].
The success of the uplink transmission will further affect the prediction of the viewpoint
and the status of LoS or NLoS of the VR user. We use the unit-impulse function δ̂k(t) to
denote the success of the viewpoint prediction, which is expressed as

δ̂k(t) =

1, if V̂ k
t =V k

t ;

0, otherwise.
(4.30)

where V̂ k
t = (X̂k

t ,Ŷ
k

t , Ẑ
k
t ) and V k

t = (Xk
t ,Y

k
t ,Z

k
t ) are the predicted and actual viewpoint of

the kth VR user at the tth time slot, respectively. In (4.30), if V̂ k
t =V k

t , δ̂k(t) = 1, otherwise,
δ̂k(t) = 0. According to [150] and [100], the QoE of the kth VR user at the tth time slot is
denoted as

QoEk(t) = δ̂k(t)(q(Rk(t))−|q(Rk(t))−q(Rk(t −1))|), (4.31)

96



4.2 System Model and Problem Formulation

where q(Rk(t)) is the VR video transmission quality metrics. Here, due to [100], q(Rk(t))
is presented as

q(Rk(t)) = log

(
Rdown

k (t)
Rdown

th

)
, (4.32)

where Rdown
th is the downlink transmission threshold, and |q(Rk(t))−q(Rk(t −1))| is the

transmission quality variation, which indicates the magnitude of the changes in the trans-
mission quality from the (t −1)th time slot to the tth time slot. Note that the QoE model
in (4.31) guarantees the seamless, continuous, smoothness and uninterrupted experience of
the VR user.

4.2.9 Optimization Problem

To ensure that the requested FoV is rendered and transmitted within the VR interaction
latency, we aim to maximize the long-term QoE of the RIS-aided THz transmission system
by optimizing the phase shift of the RIS reflecting element under VR interaction latency
constraint. At the tth time slot, the VR interaction latency TVR consists of Tuplink, Trender,
and Tdownlink [69], which is written as

TVR(t) = Tuplink(t)+Trender(t)+Tdownlink(t), (4.33)

where Tuplink(t) is the uplink transmission latency, and Trender(t) is the MEC rendering
latency. For the centralized online GRU, the size of the uplink data is small, and the uplink
transmission latency is negligible. It is important to know that the size of FoV does not
change for different viewpoints, thus, the rendering latency remains the same. Therefore,
the VR interaction constraint condition can be converted to downlink transmission latency
constraint. The proposed THz VR system aims at maximizing the long-term total QoE
under the downlink transmission latency constraint in continuous time slots with respect
to the policy π that maps the current state information St to the probabilities of selecting
possible actions in At . We formulate the optimization as

max
π(At |St)

∞

∑
i=t

K

∑
k=1

γ
i−tQoEk(i), (4.34)

s.t. T k
downlink(i)≤ T downlink

th , (4.35)

where γ ∈ [0,1) is the discount factor which determines the weight of the future QoE, and
γ = 0 means that the agent only considers the immediate reward. In (4.35), T k

downlink(t) is
the downlink transmission latency of the kth VR user at the tth time slot, and T downlink

th is the
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downlink transmission latency constraint. Note that (4.35) guarantees the VR interaction
latency in each time slot under the VR interaction latency constraint.

Due to the fact that the mobility of the VR user is Markovian in continuous time slots,
the dynamics of the THz VR system is a Partially Observable Markov Decision Process
(POMDP) problem, which is generally intractable. Here, the partial observation refers
to that the MEC server can only know the previous viewpoints and locations of the VR
users in the environment, while it is unable to know all the information of the environment,
including, but not limited to, the channel conditions, and the viewpoint in the current time
slot. Meanwhile, the selected policy also needs to satisfy the VR interaction threshold
constraint. Thus, the problem in (4.34) is a constrained MDP (C-MDP) problem that can
be transformed into the following form

min
ω≥0

max
π

∞

∑
i=t

K

∑
k=1

γ
i−tQoEk(i)−ω(T k

downlink(i)−T downlink
th ), (4.36)

where ω is the Lagrangian multiplier, and π is the policy. Due to the fact that the number
of combinations of the phase shift increases exponentially with the number of phase shift
levels of the RIS, the problem in (4.36) is the generalization of large dimension C-MDP. To
address this issue, we deploy constrained deep reinforcement learning (C-DRL) to solve
this problem in (4.36) in Section 4.3.

4.3 Learning Algorithms for THz VR System

The deep neural network is one of the most popular non-linear approximation functions,
and C-DRL can effectively solve the C-MDP problem [89]. To solve the optimization
problem in (4.36), we propose a novel learning architecture based on online GRU, online
LSTM, CNN, and C-DRL, as shown in Fig. 4.5. In particular, the online GRU and online
LSTM are integrated with CNN to predict the viewpoint preference and LoS or NLoS
status of each VR user in continuous time slots, respectively. Using this information as
inputs, the C-DRL is deployed to select an optimal reflection coefficient matrix for THz
downlink transmission.

4.3.1 Viewpoint Prediction

We use the centralized online GRU and distributed FedAvg to predict the viewpoints of
VR users over time. The input of the learning model is the actual viewpoints of previous
time slots, and the output is the predicted viewpoint of the VR user for the next time slot.
For the centralized online GRU, the VR user directly transmits its actual viewpoint to the
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Fig. 4.5 Learning strategy for MEC-enabled and RIS-assisted THz VR networks.

MEC through uplink transmission at each time slot, and then the viewpoint is predicted
based on the current and previous time slots. The centralized online GRU for viewpoint
prediction has already been introduced in Section IV of [93] in detail.

For the federated learning among distributed VR devices, each VR user predicts the
viewpoint in its VR device in continuous time slots based on the online GRU algorithm.
At each time slot, the updated learning model of each VR user is delivered to the MEC for
model aggregation via uplink transmission, and the model aggregation at the MEC at the
tth time slot can be denoted as

θ̄θθ
GRU
t =

K

∑
k=1

pkθθθ
GRU
k,t , and pk =

nk

n
, (4.37)

where pk is the percentage of the number of data samples of the kth device in the total
number of data samples, nk is the number of data samples of the kth VR user, and
n is the total number of data samples, which is calculated as n = ∑

K
k=1 nk. Then, the

aggregated model is transmitted to each VR user through downlink transmission to predict
the viewpoint, and the predicted viewpoint is delivered to the MEC for VR video frame
rendering. Since the size of the learning model is much larger than that of the viewpoint,
the VR interaction latency may be increased.

99



4.3 Learning Algorithms for THz VR System

4.3.2 LoS and NLoS Prediction

When VR users move in the indoor scenario following the VRMM mobility model, they
may be blocked by the VR users with higher heights or obstacles. To predict the LoS or
NLoS status of each VR user in continuous time slots, we first employ an RNN model
based on LSTM to predict the position of the VR user [90]. Then, we map the indoor
scenario into a 2D image, label the positions of the MEC, the VR users, and the obstacles
with different colors, and deploy the CNN to predict the LoS or NLoS status of each VR
user.

Long-short Term Memory

To capture the dynamics in mobility of the VR user for the (t + 1)th time slot, both of
the most recent observation Ot = {O1

t ,O
2
t , ...,O

K
t } and the previous observations Ht =

{Ot−To+1, ...,Ot−2,Ot−1} given a memory window To are required, where Ok
t = Lk

t =

[Xk
t ,Y

k
t ,H

k
t ] is the actual location of the kth VR user at the tth time slot. In the VRMM,

we assume that there are four moving directions, which are up, down, left and right, and
can be denoted as Du, Dd, Dl, and Dr, respectively. To detect the the moving direction of
the VR user over time, an RNN model with parameters θθθ

RNN, and a LSTM architecture in
particular, is leveraged, where θθθ

RNN consists of both the LSTM internal parameters and
weights of each layer.

The online LSTM layer has multiple standard LSTM units and receives current and
previous observations at each time slot via the two-ray uplink transmission, and is con-
nected to an output layer, which consists of a Softmax non-linearity activation function
with four output values. The four output values represent the predicted probabilities
P{Dt = {Du,Dd,Dl,Dr}|[O1

t ,O
2
t , ...,O

K
t ],θθθ

RNN} of the moving directions for the tth time
slot with historical observations [O1

t ,O
2
t , ...,O

K
t ].

To update the model parameter θθθ
RNN, a standard Stochastic Gradient Descent (SGD)

[117] via BackPropagation Through Time (BPTT) [141] is used. At the (t +1)th time slot,
the parameters θθθ

RNN are updated as

θθθ
RNN
t+1 = θθθ

RNN
t −λ

RNN
∇LRNN(θθθ RNN

t ), (4.38)

where λ RNN ∈ (0,1] is the learning rate, ∇LRNN(θθθ RNN
t ) is the gradient of the loss function

LRNN(θθθ RNN
t ) to train the RNN predictor. Here, LRNN(θθθ RNN

t ) is obtained by averaging the
cross-entropy loss as

LRNN
t (θθθ RNN)=−

t

∑
t ′=t−Tb+1

log
(
P{Dt ′ = D̂|Ot

′

t ′−T0
,θθθ RNN}

)
, (4.39)
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where
D̂={Du,Dd,Dl,Dr}, Ot

′

t ′−T0
=[Ot ′−T0+1, ...,Ot ′−1,Ot ′ ], (4.40)

and Tb is the randomly selected mini-batch size.
By predicting the moving direction of each VR user, the MEC is able to know the

position of the VR user in the next time slot in advance.

Convolutional Neural Network

Based on the predicted positions of VR users, the MEC, obstacles, and the VR users with
different heights are labeled with different colors, and mapped into a 2D image to be the
input of the CNN. The CNN predicts the LoS/NLoS status of each VR user based on the
input 2D image.

Input

21 × 21

L1:Feature map

64@21×21

L2:Feature map

64@21×21 L3:Sub sampling

64@11×11

L4:FC layer

64@11×11 to 128 L5:Output

128 to 2

Softmax

Fully Connected
Convolutions

Convolutions
Max Pooling

Fig. 4.6 Proposed CNN to classify the LoS or NLoS status of VR users.

The CNN is a multi-layer network evolved from the traditional neural network. The
CNN mainly includes the input layer, convolution layer, pooling layer, fully-connected
layer, and output layer. It is used for feature extraction and mapping through fast training,
and possesses high classification and prediction accuracy. We assume that the proposed
CNN model consists of one data input layer, Nc convolution layers, Np pooling layers, N f

fully-connected layers, and one output layer. Meanwhile, it is assumed that the size of the
input image is N0 ×N0. The detailed description of each layer in the CNN is introduced as
follows:

(a) Data Input Layer: The MEC, obstacles, VR users with higher heights, and VR users
with lower heights are denoted by different colors in the 2D image. The preprocessed
images are used as the input data of the convolution network, and the initial feature
extraction is obtained via principal component analysis (PCA) [134], which is usually used
for feature extraction. Meanwhile, the images are projected into the characteristic subspace
of N0 ×N0 × 3, where 3 presents the color of the image is in RGB mode. Therefore,
the learning efficiency and computational complexity of the CNN can be decreased by
reducing the image dimensionality.

(b) Convolution Layer: The characteristics of the input image are extracted by a
randomly initialized filter. It is possible that the input image has various characteristics,
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thus, multiple filters are used to extract all features in the original image. Zero padding
is also used for each convolution layer to keep the size of the features extracted from the
input image as N0 ×N0.

(c) Pooling Layer: It plays an important role in sub-sampling via using the features
extracted from the convolution layers. The time complexity can be decreased in the next
convolution layer or fully-connected layer by reducing the number of operations in the
sub-sampling. The Max-pooling method is usually deployed to extract the largest value in
the sliding window for the sub-sampling among all methods used in the pooling layer.

(d) Fully-connected Layer: The features extracted by the convolution and pooling layer
are inserted into the neural network. A softmax layer that is often used for the classifications
of multiple classes is employed at the end of the fully-connected layer. Meanwhile, the
classification result corresponds to a probability that the sum of the probabilities of all
classes is equal to 1, and the class with the highest probability is the estimated label for the
corresponding input image.

For example, the proposed CNN to classify the LoS or NLoS statuses of VR users is
shown in Fig. 4.6, which is also used for the simulations in Section 4.4. In Fig. 4.6, a
21×21 image goes through two convolution layers with 64 filters, and one max-pooling
layer. The kernel size and pooling size are 2×2. Then, the extracted features pass through
a fully-connected layer with 128 filters. The activation function in the convolution layer
and fully-connected layer is the ReLu function. After passing through the fully-connected
layer, the softmax layer is used to determine the LoS or NLoS status corresponding to
the input image. Note that Adam Optimizer is also employed while training the proposed
CNN model [83].

4.3.3 Downlink RIS Configuration

The main purpose of Reinforcement Learning (RL) is to select the proper reflection
coefficient matrix ΘΘΘ given in (4.14) of the RIS for THz downlink transmission for the VR
users in NLoS areas. While for the uplink transmission at the (t +1)th time slot, it directly
uses the selected ΘΘΘ at the tth time slot. This is because the downlink transmission requires
a high data rate for the FoV with high resolution, whereas the uplink transmission only
transmits the actual position and viewpoint or the learning model of the VR user (e.g., the
size of the uplink data is much smaller than that of the FoV). Through a series of action
strategies, the MEC is able to transmit the selected ΘΘΘ to the RIS via wired connection,
interact with the environment, and obtain rewards based on its actions, which can help
improve the action strategy. With enough iterations, the MEC is able to learn the optimal
policy that maximizes the long-term reward.
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We use S ∈ S, A ∈ A, and R ∈ Re to denote the state, action and reward from their
corresponding sets, respectively. The purpose of the RL algorithm is to find an optimal
policy π to maximize the long-term reward for A = π(S). The optimization function can
be formulated as < S,A,R >, and the detailed descriptions of the state, action, and reward
of the optimization problem in (4.34) are introduced as follows.

• State: At the tth time slot, the network state is denoted as

St = (Lt ,It , Q̂oEt−1) ∈ S, (4.41)

with Lt = {L1
t ,L

2
t , ...,L

KVR

t },

It = {I1
t , I

2
t , ..., I

KVR

t }

Q̂oEt−1 = {QoE1
t−1,QoE2

t−1, ...,QoEKVR

t−1 },

where Lt is the set containing the positions of all VR users at the tth time slot, where
Lk

t = [Xk
t ,Y

k
t ,H

k
t ], Ik

t = {1,0} is the predicted LoS or NLoS status of the kth VR user
for the tth time slot, where 1 represents LoS, 0 represents NLoS, and QoEk

t−1 is the
QoE value calculated by (4.31) of the kth VR user for the (t −1)th time slot.

• Action: The action space is written as

At = {Θ̃ΘΘt} ∈A, (4.42)

with Θ̃ΘΘt = {ΘΘΘ
1
t ,ΘΘΘ

2
t , ...,ΘΘΘ

L̂N

t },

where Θ̃ΘΘt is the set that includes all possible reflection coefficient matrix given the
number of reflection elements N of the RIS and the number of phase shift levels L̂,
with ΘΘΘ

i
t given in (4.14).

• Reward: The immediate reward Rt is designed as

Rt(St ,At) =
KVR

∑
k=1

QoEk
t . (4.43)

The performance of the selected action is determined by the position and LoS/NLoS
status of the VR user, which can further influence the long-term QoE of the THz VR
system. Therefore, we use the observed position, the LoS/NLoS status, and the QoE of
the VR user as observation, and use the QoE as a reward. According to the observed
environmental state St at the tth time slot, the MEC selects specific action At from the set
A and obtains reward Rt . Then, the discounted accumulation of the long-term reward is
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denoted as

Q(S,π) =
∞

∑
i=t

(γ)i−tRi(Si,Ai), (4.45)

where γ ∈ [0,1) is the discount factor.
When the number of reflection elements and phase shift levels is small, the RL algo-

rithm can efficiently obtain the optimal policy. However, when a large number of reflection
elements and phase shift levels exist, e.g. 1050 (L̂ = 10, N = 50), the state and action spaces
will be increased proportionally, which will not only occupy plenty of computation mem-
ory of the MEC, but also inevitably result in massive computation latency and degraded
performance of the RL algorithm. To address this issue, deep learning is introduced to RL,
namely, deep reinforcement learning (DRL), through interaction with the environment,
DRL can directly control the behavior of the MEC, and solve complex decision-making
problems. Meanwhile, the policy should not violate the VR interaction latency threshold.
Thus, we use a constrained deep Q network (C-DQN) to solve the optimization problem,
which indirectly optimizes the policy by optimizing the value function while satisfying the
downlink latency constraint.
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Fig. 4.7 The C-DRL diagram of the THz transmission scheme.

As shown in Fig. 4.7, C-DQN is a value-based DRL algorithm, it combines a neural
network with Q-learning and optimizes the state-action value function through a deep
neural network (DNN). The C-DQN uses a neural network to store state and action
information Qπ(S,A). It also applies the experience replay to train the learning model, and
experiences in the experience replay are partially selected to learn to improve the learning
efficiency of the neural network and break the correlation among the training samples.
In addition, the distribution of the training samples can be smoothed via averaging the
selected samples, which can further avoid the training divergence.
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The objective of C-DQN is to find the optimal policy π⋆, and obtain optimal state-action
value Q⋆(S,A), which is expressed as

π
⋆(S) = argmax

A
Q⋆(S,A). (4.46)

In the proposed optimization problem, C-DQN should satisfy the VR downlink transmis-
sion latency constraint. Thus, the state-action value is calculated as

Q(S,A) = R+ γCDQN max
A′

Q(S
′
,A

′
)−ωCdown, (4.47)

where S
′

is the next state, A
′

is the next action, and γCDQN is the discount factor, which
determines the balance between the current state-action value and future state-action value.
In (4.46), Cdown is the downlink transmission cost due to the constraint in (4.35) at each
time slot, which is calculated as

Cdown =
∑

KVR

k=1 T k
downlink

KVR −T downlink
th , (4.48)

where KVR is the number of the VR users, T k
downlink(t) is the downlink transmission latency

of the kth VR user at the tth time slot, and T downlink
th is the downlink transmission latency

constraint. According to (4.46), the Q evaluation network in C-DQN is used to estimate
Q(S,A). Note that the target Q network does not change in each time slot and is updated
after several time slots. To update the evaluation state-action value, Bellman Equation is
applied, which is denoted as

Qe(S,A) = (1−αCDQN)Qe(S,A)+αCDQNQtar(S,A), (4.49)

where Qe and Qtar are the output of Q evaluation and target network, respectively. In
(4.48), αCDQN is the learning rate. The loss function is calculated as (Qtar −Qe), which is
used to update the weights of the Q evaluation network. We can obtain the optimal policy
and Q value when the C-DRL converges. Our detailed C-DRL algorithm is presented in
Algorithm 4.

4.3.4 Computational Complexity Analysis of Learning Algorithms

For the computation complexity of the RNN based on the GRU and LSTM architecture, it is
computed as O(m̃ñ log ñ), where m̃ is the number of layers, and ñ is the number of units per
learning layer. The computation complexity of the CNN is written as O(∑

LCNN
i=1 m̂2

i n̂2
i cincout),

where m̂ is the length of the output feature map of the Convolution kernel, n̂ is the length
of the Convolution kernel, cin is the number of the input channels, cout is the number of
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Table 4.1 Simulation Parameters of THz VR Network

Indoor scenario size 20 m × 20 m × 3 m
Number of MEC 1
Location of MEC [0, 0, 3 m]

Number of VR users 5
Height of VR user [1.2 m, 1.8 m]

Location of obstacle (X axis) [4 m, 8 m], [12 m, 16 m]
Location of obstacle (Y axis) [8 m, 12 m]
Height of obstacle (Z axis) 3 m

Center Location of RIS [10 m, 20 m, 3 m]
Speed of Light 3×108 m/s

THz center frequency 300 GHz
Number of phase shift elements 20

FoV resolution 4k
MEC execution ability FMEC 5 GHz

Number of cycles processing one bit fMEC 1000 Cycles/bit
Number of antennas of MEC 30

Downlink transmission latency 12 ms
White Gaussian noise σ2 −110 dBm

LSTM memory size 10
Minibatch size 64

RNN learning rate 0.005
Discount Factor γ 0.9

Number of C-DRL layer 2
Number of C-DRL units of each layer 128

C-DRL Learning rate αCDQN 0.05
Time slots 300

106



4.4 Simulation Results

the output channels, and LCNN is the number of CNN layers [46]. The computational
complexity of the C-DRL algorithm is given by O(m̄n̄ log n̄). Here, m̄ is the number of
layers, and n̄ is the number of units per learning layer [49].

To compare with the C-DRL algorithm, we use an exhaustive algorithm to select
the optimal phase shift of the RIS, and the computational complexity of the exhaustive
algorithm is denoted as O(L̂N) [98], where L̂ and N are the number of phase shift levels
and the number of reflecting elements of the RIS, respectively.
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Fig. 4.8 Average prediction error of centralized online GRU and distributed FedAvg
algorithms in continuous time slots.

4.4 Simulation Results

In this section, we examine the effectiveness of our proposed learning architecture in Fig.
4.5. The simulation parameters are summarized in Table 4.1.

4.4.1 Viewpoint Prediction

The VR dataset obtained from [4] includes 16 clips of VR videos with 153 VR users, and
969 data samples of the motion in three dimensions, pitch, yaw, and roll, namely, X , Y , and
Z viewing angles. The viewpoint ranges of X , Y and Z angles are (-50◦, 50◦), (-150◦, 150◦),
and (-50◦, 50◦), respectively. According to [22], the motion of the VR user has strong
short-term auto-correlations in all three dimensions. Due to the fact that auto-correlations
are much stronger than the correlation between these three dimensions, the angles in each
direction can be trained independently and separately. In addition, the range of Y angle
distribution is much larger than that of X and Z. Therefore, for simplicity, we use online
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GRU to predict the Y angle of VR users in this section, however, our algorithms can also
be used for the prediction of X and Z angles. In the simulation, we use the viewpoint
samples of the historical ten time slots (1 second) to predict the viewpoint of the next time
slot (0.1 seconds).

Fig. 4.8 plots the average prediction error of the centralized online GRU and distributed
FedAvg algorithms in continuous time slots. In the Genie-aided scheme, the learning
algorithms are trained with the known correct actual viewpoint of each VR user by the
MEC at each time slot. In the Error-free Transmission scheme, there are no transmission
errors in the uplink and downlink transmission. We can see that the performance of the
centralized online GRU is better than that of the FedAvg. This is because the FedAvg
depends on the local data of each VR user while minimizing the loss function, and this
biases the learning model to be fit for the specific VR user [104], whereas the centralized
online GRU can learn from global data of all VR users, so that the learning model can
be appropriated for all VR users. It is also noted that at the beginning, there are large
fluctuations in the performance of the learning algorithms. This is because the parameters
in the learning algorithms should be modified to capture the viewpoint preference of the
VR user. In addition, more simulation results of viewpoint prediction have already been
described in Section V of [93] in detail.

4.4.2 LoS and NLoS Prediction

During the LoS and NLoS prediction, the algorithm that integrates online LSTM and CNN
is deployed to predict the mobility of VR users and judge the LoS/NLoS status of the VR
user in continuous time slots. We first use Python to simulate the mobility of VR users in
the indoor scenario, and label the moving direction based on the corresponding mobility
data. Then, we use the created mobility dataset to train parameters of the LSTM, which
can be further used for the online mobility prediction. Fig. 4.9 (a) plots the loss of the
LSTM of each epoch. It is seen that the LSTM converges after 60 epochs. Fig. 4.9 (b)
plots the prediction error of the LSTM via different number of moving periods. It is noted
that when we use the mobility data of the previous 10 time slots to predict the mobility
direction for the next time slot, we can obtain the minimum prediction error [93].

Fig. 4.10 (a) plots the loss of CNN for LoS or NLoS prediction of each VR user of
each epoch. It is obtained that the CNN converges after 150 epochs. Fig. 4.10 (b) plots
the prediction accuracy of CNN via different number of VR users. We observe that the
prediction accuracy is about 95% when the number of VR users is smaller than 15, but
decreases with increasing number of VR users. This can be explained by the fact that when
more VR users exist in the indoor scenario, the features of the input 2D image become
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Fig. 4.9 (a) Loss of LSTM for VR user mobility prediction of each epoch. (b) Prediction
error of LSTM algorithm via different number of moving periods.
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Fig. 4.10 (a) Loss of CNN for LoS or NLoS prediction of each VR user of each epoch. (b)
Prediction accuracy of CNN algorithm via different number of VR users.

more complex, and make it difficult for CNN to extract the features with the given structure,
which reduces the prediction accuracy.

4.4.3 RIS Configuration of THz Transmission

For the downlink THz transmission, we deploy C-DRL to select the proper phase shift
of the RIS to reflect the THz signals for the VR users in NLoS areas. For simplicity, we
use “w/ Pred” to present “with prediction". In the Genie-aided scheme, the online learning
algorithms are trained with the known correct actual viewpoint and position of each VR
user at each time slot, which is the upper bound of the online learning algorithm and can
hardly be achieved in the practical wireless VR systems. To compare with the proposed
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Fig. 4.11 Reward of the MEC-enabled and RIS-assisted THz VR network of each time slot
via C-DRL.

learning architecture, an exhaustive algorithm is deployed to select the optimal phase shift
of the RIS in downlink transmission at each time slot.
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Fig. 4.12 (a) Average QoE of the MEC-enabled and RIS-assisted THz VR network of
each time slot via C-DRL with viewpoint and LoS/NLoS prediction. (b) Average VR
interaction latency of the MEC-enabled and RIS-assisted THz VR network of each time
slot via C-DRL with viewpoint and LoS/NLoS prediction, where the VR interaction latency
constraint is 20 ms.

Fig. 4.11 plots the reward of the MEC-enabled and RIS-assisted THz VR network of
each time slot via C-DRL. It can be seen that the C-DRL converges after 50 epochs. Fig.
4.12 plots the average QoE and the average VR interaction latency of the MEC-enabled and
RIS-assisted THz VR network of each time slot via C-DRL with the uplink viewpoint and
LoS/NLoS prediction via GRU compared to that via the exhaustive algorithm, respectively.
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Fig. 4.13 (a) Average QoE of the MEC-enabled and RIS-assisted THz VR network via
C-DRL with viewpoint and LoS/NLoS prediction with increasing number of VR users. (b)
Average VR interaction latency of the MEC-enabled and RIS-assisted THz VR network
via C-DRL with viewpoint and LoS/NLoS prediction with increasing number of VR users,
where the VR interaction latency constraint is 20 ms.

It is observed that at the beginning 150 time slots, the average QoE of C-DRL with
prediction scheme is worse than that of the C-DRL with the Genie-aided scheme, and both
schemes do not violate the VR interaction latency after convergence. This is because in the
Genie-aided scheme, the online learning algorithms are directly trained with the known
correct actual viewpoint and position of each VR user, so that they are capable of better
capturing historical trends of viewpoint preference and mobility of the VR user, which can
further improve the prediction accuracy.

Interestingly, we notice that after 150 time slots, the gap between the C-DRL with
prediction scheme and the exhaustive with prediction scheme is small. This is due to the
experience replay mechanism and randomly sampling in C-DRL, which uses the training
samples efficiently and smooths the training distribution over the previous behaviors.
Importantly, the performance of all learning-based and exhaustive schemes substantially
outperforms the conventional non-learning-based scheme, where the reflection coefficients
matrix of the RIS is randomly selected. From Fig. 4.12, we also notice that the performance
of the centralized C-DRL with the Genie-aided scheme is better than that of the scheme
with FedAvg. This is because in the FedAvg, the learning model needs to be uploaded via
uplink transmission for model aggregation, and then the updated global model needs to be
transmitted to all VR users through downlink transmission for viewpoint prediction, which
leads to extra transmission latency.

Fig. 4.13 plots the average QoE and VR interaction latency of the MEC-enabled and
RIS-assisted THz VR network via C-DRL with viewpoint and LoS/NLoS prediction versus
the number of VR users compared to that via the exhaustive algorithm, respectively. With
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Fig. 4.14 (a) Average QoE of the MEC-enabled and RIS-assisted THz VR network via
C-DRL with viewpoint and LoS/NLoS prediction with increasing number of reflecting
elements of the RIS. (b) Average VR interaction latency of the MEC-enabled and RIS-
assisted THz VR network via C-DRL with viewpoint and LoS/NLoS prediction with
increasing number of reflecting elements of the RIS, where the VR interaction latency
constraint is 20 ms.

increasing number of VR users, the average QoE of VR users decreases as shown in Fig.
4.13 (a), whereas the average VR interaction latency increases as shown in Fig. 4.13 (b).
This is due to the fact that with increasing number of VR users, the interference among
the THz transmission increases. When the number of VR user is larger than 15, the gap
between the C-DRL and the exhaustive algorithm becomes larger, and the VR interaction
latency constraints are violated with increasing number of VR users. This is because
the LoS/NLoS prediction accuracy via CNN decreases, which further affects the action
selected by the C-DRL.

Fig. 4.14 plots the average QoE and the average VR interaction latency of the MEC-
enabled and RIS-assisted THz VR network via C-DRL with viewpoint and LoS/NLoS
prediction versus the number of reflecting elements of the RIS compared to that via the
exhaustive algorithm, respectively. With increasing number of reflecting elements of the
RIS, the average QoE of VR users increases as shown in Fig. 4.14 (a), whereas the average
VR interaction latency decreases as shown in Fig. 4.14 (b). This is because as the number
of reflecting elements increases, the THz channel gain reflected by the RIS increases [59],
which further increases the THz transmission rate for the VR users in NLoS areas. In
addition, the VR interaction latency of the non-learning schemes is not influenced by the
predicted LoS/NLoS status via CNN.
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4.5 Conclusions

In this chapter, a MEC-enabled and RIS-assisted THz VR network was developed to
maximize the long-term QoE of real-time interactive VR video streaming in an indoor
scenario under VR interaction latency constraints. Specifically, in the uplink, a centralized
online GRU algorithm and distributed FedAvg were used to predict the viewpoints of
VR users over time, to determine the corresponding FoV to be rendered at the MEC.
An algorithm that integrates online LSTM and CNN was also designed to predict the
locations of VR users and determine the LoS or NLoS statuses in advance. Then, a C-DRL
algorithm was developed to select the optimal phase shifts of the reflecting elements of
the RIS to compensate for the NLoS loss in THz transmission. Simulation results have
shown that our proposed ensemble learning architecture with online GRU, online LSTM,
CNN, and C-DRL algorithms substantially improved the long-term QoE, while satisfying
the VR interaction latency constraint, and the QoE performance of our proposed learning
architecture was near-optimal compared to the exhaustive algorithm.
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Algorithm 4 C-DRL to select the optimal phase shifts of the RIS in THz transmission

1: Initialize replay memory G, discount factor γCDQN ∈ [0,1), and learning rate αCDQN ∈
(0,1].

2: Initialize state-action value function Q(S,A), the parameters of evaluation Q network
and target Q network.

3: for Iteration = 1,...,I do
4: Input the network state S.
5: for t = 1,...,T do
6: Use ε-greedy algorithm to select a random action At from the action space A.
7: Otherwise, select At = max

A∈A
Q(St ,A).

8: The MEC performs downlink transmission according to the selected action At .
9: The MEC observes reward Rt , new state St+1 and calculates the cost according to

(4.47).
10: Store transition (St ,At ,Rt ,Cdown

t ,St+1) in replay memory G.
11: Sample random minibatch of transitions (S j,A j,R j,Cdown

j ,S j+1) from replay
memory G.

12: if j+1 is terminal then
13: ytarget

j = R j.
14: else
15: ytarget

j = R j+1 + γ max
A

Q(S j+1,A)−ωCdown
j+1 .

16: end if
17: Update evaluation Q network.
18: Update the Lagrangian multiplier with

ω = ω +αCDQN
1
|G|

|G|

∑
i=1

Cdown
i , (4.44)

where |G| is the size of the replay memory.
19: Update target Q network periodically.
20: end for
21: end for
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Chapter 5

Conclusions

5.1 Main Conclusions

In this work, we studied machine learning in wireless VR networks. The main conclusions
are summarized as follows:

• 5G and THz techniques guarantee high transmission rate and low interaction latency
for wireless VR networks. Furthermore, a proactive retransmission scheme in 5G
networks and two-ray uplink transmission in THz networks guarantee the reliability
of uplink transmission. Also, deploying RIS in THz networks and smartly adjusting
the phase shift elements support the THz transmission for VR users in NLoS areas.

• Machine learning algorithms help 5G and THz achieve the QoE requirements of VR
users. First, DRL algorithms can select proper MECs to render VR video frames
and determine the optimal association between MECs and VR user groups. Second,
constrained DRL can select the optimal phase shifts of the RIS under the latency
constraint to perform THz transmission for VR users in NLoS areas.

• Online learning algorithms such as linear regression, neural network, LSTM, and
GRU can predict the viewpoints of new VR users over time, and LSTM and GRU can
capture the time-correlated features of viewpoints in real VR datasets. In addition,
federated learning can not only predict the viewpoints of VR users but also guarantee
the privacy of VR users.

Although we mainly considered machine learning for wireless VR networks in 5G
and THz, the proposed learning and transmission schemes can also be used for traditional
video streaming or information transmission in 4G, 5G, mmWave, THz, 6G, and WiFi.
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5.2 Summary of Thesis Achievements

As usage of wireless VR networks and machine learning keeps growing, it becomes
increasing important to understand synergies between these two fields to improve QoE
of VR users and decrease VR interaction latency. Unlike the existing research works
mainly deployed traditional optimization methods to optimize wireless networks and did
not use real VR datasets, in this thesis, we investigated a number of possibilities to improve
wireless VR networks with the help of machine learning.

In Chapter 2, we considered offline and online learning algorithms for uplink wireless
VR networks with a proactive retransmission scheme to predict the viewpoints of wireless
VR users with real VR datasets. We deployed multiple learning models for multiple VR
videos. Also, to generalize these learning models, we considered one learning model
for all VR videos. In the online learning algorithms, the online n-order LR, NN, and
LSTM/GRU algorithms would update their parameters according to the actual viewpoints
delivered from new VR users through uplink transmission, which could further improve
the prediction accuracy. Meanwhile, a proactive retransmission scheme was introduced to
the online learning algorithms to enhance the reliability of uplink transmission, which can
correctly update the parameters and input viewpoints of online learning models.

In Chapter 3, a decoupled learning strategy was developed to optimize real-time VR
video streaming in wireless networks, which considered FoV prediction and rendering
MEC association. Specifically, based on GRU architecture, an RNN model was used to
predict the FoV preference of each VR user over time. Then, based on the correlation
between the location and predicted FoV request of VR users, centralized and distributed
DRL strategies were proposed to determine the optimal association between MEC and
VR user group, and optimal rendering MEC for model migration, so as to maximize the
long-term QoE of VR users.

Finally, in Chapter 4, a MEC-enabled and RIS-assisted THz VR network was developed
to maximize the long-term QoE of real-time interactive VR video streaming in an indoor
scenario under VR interaction latency constraints. Specifically, in the uplink, a centralized
online GRU algorithm and distributed FedAvg were used to predict the viewpoints of
VR users over time, to determine the corresponding FoV to be rendered at the MEC. An
algorithm that integrates online LSTM and CNN was also designed to predict the locations
of VR users and determine the LoS or NLoS statuses in advance. Then, a C-DRL algorithm
was developed to select the optimal phase shifts of the reflecting elements of the RIS to
compensate for the NLoS loss in THz transmission.
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5.3 Future Works

Various aspects investigated in this thesis can be further developed to improve wireless VR
systems. In this section, we detail some of these future works.

• In Chapter 2, 3, and 4, we mainly deployed machine learning algorithms to optimize
wireless VR system. However, we do not explain why these machine learning
algorithms can improve the QoE of VR users and decrease VR interaction latency.
An important research direction could be considering explainable machine learning
in wireless VR systems.

• In Chapter 4, through using FedAvg, VR users did not need to transmit local datasets
to the MEC, which could guarantee privacy of VR users. However, transmitting
learning model can increase transmission latency, especially when the size of learn-
ing model is large. Thus, an important research direction is considering adaptive
federated dropout in wireless VR networks.
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