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Abstract—With a significant amount of software now being
developed for use in patient-facing studies, there is a pressing
need to consider how to design this software effectively in order
to support the needs of both researchers and patients. We posit
that a microservice architecture—which offers a large amount
of flexibility for development and deployment, while at the same
time ensuring certain quality attributes, such as scalability, are
present—provides an effective mechanism for designing such
software. To explore this proposition, in this work we show how
the paradigm has been applied to the design of CONSULT, a
decision support system that provides autonomous support to
stroke patients and is characterised by its use of a data-backed
AI reasoner. We discuss the impact that the use of this software
architecture has had on the teams developing CONSULT and
measure the performance of the system produced. We show
that the use of microservices can deliver software that is able
to facilitate both research and effective patient interactions.
However, we also conclude that the impact of the approach
only goes so far, with additional techniques needed to address its
limitations.

Index Terms—Microservice architectures, Decision support
systems, Artificial intelligence

I. INTRODUCTION

Traditionally, research software is designed to provide func-
tionality to researchers themselves, who may, for example,
use a piece of software to simulate a given phenomenon
and directly measure the outputs of the software in order to
extract some scientific understanding. However, increasingly,
research software is also being presented to end-users where,
instead, scientific understanding is extracted from the way in
which software is able to support these users. This is typified
by research in the field of health informatics (HI), where
these users are patients, and the development of software to
support translational and clinical research is commonplace.
For example, a component of a piece of research software
developed in HI may be a healthcare dialogue system that is
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designed to use artificial intelligence (AI) to assist in decision-
making and understanding is extracted from how that system
is able to interact with a patient. Research such as this is
ever-increasing, given the pressing need to personalise and
automate healthcare provision to large cohorts of patients with
complex needs.

Developing a piece of software for patient-based research
brings a number of technical challenges, borne from the need
to support the requirements of both researchers and patients.
These include:

• Software development—Typically, the programming
languages used by researchers to develop software are
those that prioritise: (a) a low barrier to development en-
try (to enable domain researchers, who are not necessarily
trained software engineers, to realise their contributions)
and (b) technical package support (to enable the sharing
and reuse of contributions), e.g. Python. However, those
languages best suited to the development of patient-facing
software are typically those that prioritise: (a) scalability
(e.g. V8-compiled Javascript) in order to ensure access
is available to potentially large groups of users and
(b) user interface design in order to ensure that patients
are exposed to accessible clients.

• Modularity—In order to experiment with different ap-
proaches, researchers often want to change various com-
ponents within a system and observe the effects. When
applying technologies like AI, this may be particularly
prevalent when there are competing approaches to the
same tasks (e.g. different classification models trained
by different machine learning algorithms). Typically, one
would not expect such changes to be made in a patient-
facing system, where the overall stability and availability
of the platform is essential.

• Reproducibility—Researchers are keen for their results
to be reproducible, and as such the software from which



those results have been derived should be available and
easy for others to run. However, when a piece of software
contains logic relating to the processing of patient data, it
may not, for security reasons, be possible for that system
to be shared.

• Processing time—Researchers often want to evaluate
components that are associated with longer execution
times (e.g. a classification model may take many cycles
to produce predictions when examining a large amount
of data). In contrast, the components of a patient-facing
system need to execute in as near real-time as possible,
in order to ensure that potentially critical responses are
returned to users in sufficient time.

• Data quality—The data that researchers wish to use
as input to their software is likely to be high-volume,
heterogeneous, stream intermittently and originate from
a variety of different sources. Within a patient-facing
system, data sources need to be as accurate and stable
as possible, in order to ensure any health interventions
are based on correct information.

To address these challenges, we propose that patient-facing
research software be developed according to the microservice
architecture paradigm. To support this proposal, in this pa-
per we detail how CONSULT—an AI-based decision support
system (DSS) created to facilitate research into the self-
management of chronic health conditions such as stroke—
has been designed according to this paradigm, and discuss the
benefits this has brought. As a component of this discussion,
we quantify the impact of the microservice approach by
evaluating the performance of CONSULT using a number of
different metrics. We also introduce REFLECT, a project that
seeks to explore the impact of, and attitudes towards, the use of
wearable data within decision support, and was made possible
by the design of CONSULT.

II. BACKGROUND AND RELATED WORK

A. Microservices

The primary principle of the microservice architecture
paradigm is that traditional monolithic architectures should
instead be separated into individual communicating services,
each of which provides a single piece of overall system
functionality [1]. Although it has its roots in more traditional
service-oriented architectures, the microservice approach is
derived from the use of services in practice, which has led to a
more opinionated paradigm that emphasises the importance of
clear service boundaries and limited-service scope. Microser-
vices also differ from traditional service-oriented architectures
in the type of communication used between services. Typically
HTTP calls to well-defined REST interfaces provide commu-
nication between services [2], but other mechanisms can also
be leveraged, such as publish/subscribe (pub/sub) models, and
queue-based implementations.

In industry, the use of microservices is now commonplace,
with one of the most prolific and early adopters of the
architecture being the Netflix streaming service [3]. In the

research domain, there are also several examples of the use
of microservices, typically to support researchers directly in
various tasks. NDStore is a storage and analysis platform
for brain imaging data, which is realised using microservice
technologies [4]. Different services exist to support data ingest,
and analysis workflows. Similarly, OceanTEA is a software
platform that supports collaborative, multi-platform analysis
of oceanographic data, and is also realised as a microser-
vice architecture [5]. Based on the popularity of using the
approach to design data science platforms, the GeRDI project
tries to abstract research software architectures like the ones
described into a high-level architecture that consists of a set of
common service types [6]. This architecture can then be used
to guide the creation of services when future platforms are
developed. The services represented include those supporting
the collection of metadata, data pre-processing and the data
analysis itself. However, Schröer warns that a ‘one-size-fits-
all’ mapping, such as this—between the activities found within
a data science workflow (i.e. data retrieval through to analysis
and publication) and the services that support that workflow—
might not be feasible, given the fact that in some domains
certain task are more tightly related than in others [7]. For ex-
ample, in one domain data preparation and analytics might be
very distinct research processes, and thus be better supported
by a piece of software comprising a service responsible for
each, but in another these tasks might essentially be joined,
and thus be better supported by a single service. Overall, this
shows us that determining the remit of a service is a difficult
task, and should be driven by the domain a system is being
designed for.

In the health informatics research domain specifically, mi-
croservices have been used to support researchers in a number
of areas, including the collection of patient data. Garcia-
Moreno et al. use a microservice architecture to collect data
from a single wearable device and use it to train a frailty
classification model [8]. The performance of the classifier
is then assessed offline. In the same way, Roca et al. have
developed a chatbot, supported by a microservice architecture,
which gathers data from patients with chronic conditions (such
as images from psoriasis patients) [9]. Although the system
has clinical applications, the focus on the gathering of patient
data suggests that, at present, the platform is likely to be used
to support activities such as epidemiological research. The
work presented here demonstrates the use of a microservice
architecture in the HI domain to facilitate a clinical, patient-
facing application.

B. The CONSULT decision support system

With the increasing strain on healthcare resources, the
presence of digital support tools within routine clinical care
settings is on the rise. A common support tool is a (clinical)
decision support system (DSS), a piece of software that stores
clinical knowledge and patient-specific data, reasons with that
knowledge and data using patient preferences, and provides
output to a clinician, assisting their practice. Such tools can
also be accessed directly by patients, to facilitate the self-
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management of health and wellness, further reducing the
burden on professional healthcare services.

Due to their potential impact, several research studies have
explored the impact of DSSs on healthcare provision. The
TRANSFoRm project looked at implementing a DSS that in-
tegrates with local EHR systems in order to provide clinicians
with support directly at the point of care [10]. Specifically,
to assist with a clinician’s workflow, EHR data is mined in
order to display potential diagnoses when a patient presents
with a certain condition. To support more long-term care,
TRANSFoRm also explored the potential for using a DSS
for clinical trial recruitment at the point of care. In much the
same way, the DSS developed as a part of the HARVEST
project aims to support a clinician in understanding a patient’s
medical record by summarising its content using Natural
Language Processing (NLP) and visualisation techniques [11].
For example, salient conditions are presented to a clinician
by extracting key terms from a patient’s medical record and
comparing how frequently they appear within a given time
period (selected by the clinician) to how frequently they appear
in the records of other patients at the same practice.

Despite the research that has been undertaken into DSSs,
several challenges remain, including how to support patients
with complex needs, such as those with the multiple morbidi-
ties often associated with chronic conditions like stroke. With
this challenge in mind, the goal of the CONSULT DSS is to
combine several patient-facing DSS components (e.g. a tradi-
tional user interface (UI) and a chatbot) with a computational
argumentation-based AI engine [12]. Computational Argu-
mentation is a logic-based methodology in which claims are
presented as evidence, either supporting or attacking specific
conclusions, and it thus maps well to the medical decision-
making domain [13]. To ensure that the argumentation engine
has a holistic, up-to-date view of a patient, it has access to data

gathered from wearable wellness devices (which patients can
also view directly) and their electronic health record (EHR).
These inputs are used to personalise and autonomously reason
with stored clinical knowledge in order to provide transparent
healthcare recommendations [14], [15].

A prototype of the CONSULT system has been co-designed
with patients, implemented and demonstrated [16], [17]. This
system integrates with several commercial off-the-shelf well-
ness sensors, including a blood pressure monitor (Withings1),
heart rate tracker (Garmin2) and the Vitalpatch ECG monitor
(Medibiosense3), a low-cost bespoke sensor. Wellness sensor
integration was achieved by connecting with the APIs exposed
by each vendor. A proof-of-concept (PoC) integration was also
developed for EMIS4, a UK EHR company. CONSULT has
undergone a successful pilot study with a number of users
[18], and is shortly due for patient research trials.

III. SYSTEM DESIGN

As a result of applying the principles of microservice design
to CONSULT, its overall system architecture is shown in Fig. 1.
Here, the services that comprise the system are shown, along
with system inputs. While each service has a specific function,
which is described by the label provided, services can also be
conceptually grouped according to their collective functional-
ity: services designed to collect and format sensor data (red); to
collect EHR data (pink); to store sensor data (specifically in the
FHIR health data standard [19]) (blue); to co-ordinate the flow
of data through the system (yellow); to interface with the user
(orange); and to perform background processing tasks (green),
including computational argumentation-based reasoning. Each

1https://withings.com
2https://garmin.com
3https://medibiosense.com/vitalpatch
4https://www.emishealth.com

https://withings.com
https://garmin.com
https://medibiosense.com/vitalpatch
https://www.emishealth.com
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service can operate as a self-contained entity, encapsulating its
processing logic behind a well-defined REST or queue-based
interface, allowing the functionality it offers to be invoked by
other services.

During the software development cycle of the project,
the functionality of each service was determined iteratively,
starting with a coarser scope and then refining the remit
of each service to a suitable granularity. This process was
guided by a domain-drive design approach, specifically the
notion of bounded context, the idea that the encapsulation
found in a given domain (e.g. the unique responsibilities held
by different departments in a commercial organisation) could
and should be reflected in the services that support the work
done in that domain [20]. This is evident, for example, in the
choice to clearly separate the reasoning components from the
data processing components, which are development areas in
which different research function-focussed sub-groups within
the greater CONSULT project worked.

In practice, each service is a containerised (Dockerised)
application, typically paired with both an (API) gateway (e.g.
Nginx) and a database (e.g. MariaDB). The data stored by each
service in its database depends on its functionality. For some
services this may be logging information, but for others, such
as the FHIR health data service, this is specific (encrypted)
data such as EHR data combined with wearables data. Con-

tainers are either orchestrated directly by Docker compose5 or
managed by Kubernetes6. Based upon their service category
(Fig. 1), these containers are split over different virtual ma-
chines, each accessible via a public subnet or only available
within a private subnet, depending on the functionality being
offered. This allows us to, for example, place the health data
service on its own machine—to which additional security
measures are applied—within a private subnet, while still
having our user-facing services accessible. Virtual machines
(nodes) are provided by Amazon Web Services (AWS), and
range in capacity from 1 (v)CPU, 500MB RAM to 4 (v)CPUs,
16GB RAM, depending on the services that are present on the
node.

Together, the services in CONSULT communicate to provide
individual pieces of functionality within the system. Commu-
nication is either via HTTP, a queue-based intermediary or via
a pub/sub mechanism. An example of this communication is
shown in the sequence diagram in Fig. 2. Here, the system
is responding to an exacerbation in a patient’s blood pres-
sure, as read in real-time from the Withings wearable blood
pressure sensor, which a patient has previously registered
with the system. This information is passed from the device

5https://github.com/docker/compose
6https://kubernetes.io

https://github.com/docker/compose
https://kubernetes.io
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Fig. 3: CONSULT’s chatbot and dashboard interfaces

manufacturer’s server (e.g. Withings) to the CONSULT system,
and then passed through various services to standardise, store
and analyse the reading, before the alert is generated and
sent to the user via a chatbot (Fig. 3). Evidence of the
alert is also present in a UI dashboard. The user can then
respond to this alert by asking for more information, which
is then provided by the computational argumentation engine
and communicated to the user, structured as a computational
argumentation dialogue [21] and transmitted via the chatbot.

IV. RESULTS AND DISCUSSION

A microservice architecture brings a number of benefits,
including technological heterogeneity, replaceability and com-
posability, ease of deployment, resilience and scalability. In
the following sections (IV-A–IV-E), we explore each of these
properties, and explain how during the development of CON-
SULT they allowed us to address the challenges highlighted
with patient-facing research software in Section I. We also
describe various limitations of the approach encountered, and
the mitigation strategies put in place.

A. Technological heterogeneity

The multi-disciplinary sub-groups tasked with building the
CONSULT DSS comprised researchers with backgrounds in
infrastructure development, AI and/or medical statistics. As
such, each had different preferences for the way software
should be implemented, based on their own experience, their
research goals and the type of functionality they were tasked
with adding to the system. For example, it was deemed
necessary to develop the argumentation engine (Fig. 1, green)
in Python, predominantly due to the fact that several packages
key to the construction of the engine were realised in this
language; to develop the traditional DSS components, such
as the coordination components (Fig. 1, yellow) in Javascript,
to leverage its ability to scale natively; and to develop the
data miner and UI backend (Fig. 1, orange) in R, owing to
the statistical processing that would need to be performed on
the incoming data and the requirement to display aggregate
statistics and graphs, respectively. While a decision on a
uniform technology could have been made, this would have
resulted in difficult trade-offs in the research to be conducted.

Instead, by realising the different components in a system
as microservices, each with its own REST interface uniformly

accessible via HTTP (or a queue intermediary), the choice of
technologies underpinning the services can be heterogeneous.
In the case of CONSULT, this meant that each research sub-
team was able to develop in any of these languages without
affecting the ability of the services to combine in order
to deliver system functionality. For example, the Expressjs7,
Fastify8, Flask9 and Plumber10 web frameworks were used to
develop services written in Javascript, Typescript, Python and
R, respectively, each of which is deployed within (custom)
Docker containers. Despite the range of languages used, from
Fig. 2 we can see that the dialogue manager (Javascript) is
readily able to communicate with the argumentation engine
(Python).

Technological heterogeneity is arguably the most imme-
diate benefit of adopting a microservice approach for the
development of patient-facing software, but we observed that
unchecked heterogeneity should be approached with caution.
This was evident in our choice of R as the underlying language
for the data miner and UI backend services, which, although
performing sufficiently as a part of the platform, is not
necessarily designed to act in a service capacity. As a result, a
number of additional solutions were required to solve several
problems, including the introduction of a custom DNS server
in order to ensure that the R-based components were able to
correctly resolve the addresses of other services.

B. Replaceability and Composability

Although the incorporation of an argumentation-based rea-
soning engine into the CONSULT system has provided us with
a suitable basis for the patient-based research we wish to
conduct, during the development of the platform it was also
desirable to decouple this component from the rest of the
system in order to enable additional research to take place in
the future with different, perhaps domain-specific, reasoners.
The same was true of other components of the system, such
as the data miner. However, it was clear that building this
flexibility into the system could not compromise its stability, as
patient-facing software needs to provide a reliable experience

7https://expressjs.com
8https://fastify.io
9https://flask.palletsprojects.com
10https://rplumber.io

https://expressjs.com
https://fastify.io
https://flask.palletsprojects.com
https://rplumber.io


TABLE I: Extract of dialogue templating syntax

Term Description Example
Dialogue Unique identifier for patient

dialogue.
2-1-initiate

Step A unique identifier for the
chatbot response given at this
stage of the dialogue.

1011

BranchLevel An indication of how many
times the dialogue has
branched (i.e. how many
responses have been received
from the user prior to this
response) at this stage of the
dialogue.

2 i.e. one previous re-
sponse from a user.

External Indicates that the response to
the user is not hard coded,
but collected from an exter-
nal service.

-

URL The address of the service
from which to retrieve data
for a user response.

http://service/argengine/
explanation

Body A collection of key value
pairs, indicating the data
fields to be sent to the ex-
ternal service and where to
source the data itself.

-

Type The type of data to collect to
send to the service.

context (access data stored
by the dialogue manager
itself), literal (use a hard
coded value) or external
(call an additional service,
such as the data miner, for
embedded dynamic data).

Print A regular expression indicat-
ing which field to print from
the external service response.

.*expl.* (any field in the
response containing the
substring ‘expl’).

to users. By adopting a microservice design approach, we were
able to develop a system where components are encapsulated
entities which sit behind interfaces that remain consistent in
the event that the underlying logic changes, and can thus be
readily changed. For example, the reasoner service offers an
endpoint to which a symptom, such as back pain, can be
passed, along with a set of patient data. In turn, this endpoint
promises to return a set of possible treatments for the patient
(e.g. the administration of a drug specific to that symptom).
With this contract in place, the services reliant on the reasoner
are agnostic to the logic that provides this functionality in
practice, be this the computational argumentation engine or
another AI component.

Despite the separation between interface and functionality
brought by a service-based approach, it became clear during
the development of CONSULT that due to the sheer diversity
of AI tools that might be plugged into the system in the
future, minor modifications to the reasoner’s interface were
still inevitable. In an attempt to mitigate the impact of this, we
explicitly built support for different reasoners into CONSULT’s
dialogue manager service. This service controls the operation
of the chatbot by, in part, interfacing with the chosen reasoner
(Fig. 2). To do this, rather than hard-coding the interactions
between the dialogue manager and the reasoner we instead

‘‘Dialogue”: ‘‘2−1−initiate”,
‘‘Step”: ‘‘1011”,
‘‘BranchLevel”: ‘‘2”,
‘‘External”: {

‘‘serviceURL”: ‘‘http://service/argengine/explanation”,
‘‘Method”: ‘‘POST”,
‘‘Body”: [
{

‘‘Key”: ‘‘pid”,
‘‘Value”: {

‘‘Type”: ‘‘context”,
‘‘Key”: ‘‘user”

}
...

‘‘Print”: ‘‘.*expl.*”
...

Fig. 4: Extract from CONSULT dialogue template

introduced what we term a dialogue templating syntax11.
An overview of the syntax is given in Table I, with an

example shown in Fig. 4. Here, an extract is shown from a
larger JSON-based template that is being used to specify how
the chatbot should initiate a conversation with a user when
an exacerbation in their vital signs (e.g. blood pressure) is
detected. At this point in the dialogue—which consists of a
number of steps and branches to model the space of possible
responses given and allow the dialogue manager to correctly
orchestrate user interactions—a response from the reasoner is
required in order to fulfil a patient’s request for an explanation
of a piece of advice that has been given. This is specified
by providing the address of the reasoner (indicated by the
serviceURL field), a copy of the data it requires (e.g. a patient’s
demographic information, such as their unique user id, as
stored in a key called user by the dialogue manager, and to
be passed in a field called pid) and an indication of how to
interpret the response it provides (in this case a field returned
from the argumentation engine containing the text expl). This
data can then be collected by the dialogue manager, sent to the
reasoner and a response returned to the user. Our syntax can
also be used to dynamically create options for a user, based
on the response from the reasoner. Using this approach, in the
event that the endpoint of a service does need to change, it
is much easier to update how dependent components (in this
case the dialogue manager) interface with it, with no updates
to the code itself required.

The REFLECT project. The flexibility and stability offered
by a microservice architecture can also be demonstrated by
adopting the reverse perspective, and considering not only
how the paradigm enables components to be swapped into
CONSULT, but also how it enables CONSULT’s services to
be used elsewhere. As an example of this, we consider the
cardiometabolic DSS developed by the global health tech-
nology company Metadvice Ltd12. This DSS aims to support

11An early version of this syntax was originally demonstrated (but not
documented) in [16].

12https://www.metadvice.com

https://www.metadvice.com


Blood pressure
(Withings API)

Pulse and Activity
(Garmin API)

Heart Rate / ECG
(Medibiosense API)

Device
Integration
(Withings)

Device
Integration
(Garmin)

Device
Integration
(Vitalpatch)

Sensor-FHIR
converter

FHIR server

Metadvice’s
cardiometabolic
DSS services

Sensor data

Sensor
data

Sensor data

FHIR resources

FHIR resources

Fig. 5: The CONSULT services used to compose Metadvice’s
DSS

clinicians—and, as it evolves, patients directly—in the treat-
ment of conditions such as hypertension and diabetes, and is
composed of several services including a selection of those
developed in CONSULT. The services reused from CONSULT
include the wearable data device collection services and the
FHIR server, shown in Fig. 5, which provide Metadvice’s DSS
with patient data that can then be displayed to a user and,
ultimately, be used to support the treatment recommendations
provided. Using a dedicated user interface, patients can, as
they do in CONSULT, register their devices, with the other ser-
vices in Metadvice’s DSS then consuming the data collected.
As such, this DSS can now be used in practice, with wearable
device data providing a more holistic and real-time picture of a
patient’s health. The integration of CONSULT’s components in
this way was conducted as a part of the REFLECT project,
which is designed to explore, more widely, the impact of
wearable device data on AI-based decision-support systems,
and thus on personalised patient healthcare.

C. Ease of deployment

A key component of a reproducible research method is
ensuring the code or software used to derive a set of results
is readily available and can easily be deployed in new envi-
ronments. This acts as a record for how a set of results were
derived and provides other researchers with the opportunity to
replicate the results obtained. Microservice architectures are
typically considered easy to deploy for a number of different
reasons and thus have a positive impact on reproducibility.
Primarily, the ability to deploy services independently of each
other—and, critically, the ability to stop, fix and redeploy
services without affecting the operation of other services in
the event of issues with a new deployment environment—
makes the technical deployment of a platform designed as
a set of services more manageable. Moreover, the natural

choice to containerise services eliminates many of the issues
associated with directly installing a piece of software to a new
environment, including package installation overhead (with
these already being stored within an image or automatically in-
stalled when building an image) and the overhead of deploying
software to remote locations (e.g. the use of image registries
to deploy services to a remote server efficiently). At a high
level, the separation of a system into individual services, each
with a clear remit, also acts as a form of documentation for
those wishing to gain an overview of how a system works.

For patient-facing software, having a platform that can be
deployed in this manner is particularly beneficial in respect
of reproducibility. When a piece of software is designed to
be used by patients, there are elements of the logic of that
system which it may not be possible to make public, for
security and/or privacy reasons. This is likely to include those
elements that deal with the processing and storage of patient
data. Within a monolithic system, the absence of a component
like this would likely prohibit deployment, and, as a result,
limit reproducibility. However, the ability to deploy services
separately, as brought by a microservice architecture, means
that in the absence of certain services parts of the architecture,
not connected to the missing services, can still be deployed
and run and their outputs verified. Moreover, those services
that are not available can easily be substituted with different
services to form a complete architecture. Within CONSULT a
component with limited public availability is the FHIR health
data server, which has been customised for our use (Fig. 1).
Because of the service structure, the absence of this data server
does not preclude, for example, another researcher running the
data miner, and verifying its operation with other patient data
or with synthetic data. In addition, one could easily substitute
the missing data server with a generic FHIR server, in order
to have a complete running system.

Despite these benefits, if an appropriate number of services
are not used, this structure can, instead, have a negative
impact on ease of deployment, and thus reproducibility. During
the lifetime of the CONSULT project, we have transitioned
between different phases of the study (e.g. pilot to user), and
the system development has changed hands between different
groups of researchers, with new researchers often needing to
run the platform in new environments, and indeed wanting
to verify the operation of the system before proceeding with
the next phase of the work. Here, we have seen in practice
a number of the stated deployment benefits of having an
architecture that comprises a number of services. For example,
looking at the architecture of CONSULT (Fig. 1) one can gain
an initial insight into how its components combine to deliver
the functionality of the platform. At the same time, some
researchers have reported that the number of services in the
system seems to outweigh the intelligibility brought by this
separation, obfuscating their ability to understand and deploy
it. As such, while it is clear that having services with a limited
remit is often a positive in terms of conveying the functionality
of the system to new developers, having too many services
can result in a system that is unwieldy. Thus, an appropriate
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Fig. 6: How CONSULT’s dashboard service responds to in-
creased load on the argumentation service

balance needs to be found, which may vary from project to
project.

D. Resilience

Although we have seen that technological heterogeneity
allows various components to communicate with each other,
the ability of each component to engage in said communication
may still be limited. One of these limiting factors is the time
taken for a component to complete its task when the system re-
ceives a given input. During the development of CONSULT, the
required computational argumentation functionality—which
drives the AI research around which the project’s primary
contributions are centred—was identified as an element of the
proposed system likely to be associated with higher processing
times, even assuming a (Python) implementation that is opti-
mised to make maximum use of the available processing cores
on a given machine. As such, its execution risked affecting the
ability of other areas of the system not reliant on its outputs,
such as the aggregation and presentation of sensor data, to
respond to users in a timely manner.

By separating the individual components of the system into
self-contained services, we gained a number of benefits in
respect of processing time. Firstly, like the health data server,
this allowed us to place the computational argumentation
service on a dedicated virtual machine, to which we can
allocate additional resources in an attempt to mitigate any
delays in advance. In addition, assuming there are still delays
introduced by the argumentation components, we were able
to ensure that, within CONSULT, these delays do not affect
users’ access to components unrelated to the engine. A user
can, for example, still interact with the dashboard to load an
aggregated view of their sensor data from the server, as long
processing times within the argumentation component do not
propagate to the rest of the system as they would in a typical
monolithic structure.

In other words, a microservice architecture provides us with
a high level of resilience. We are able to confirm this effect
by sending controlled amounts of HTTP load to both the
argumentation service and the dashboard (UI backend) service
simultaneously. These services are deployed as detailed in
Section III. Our aim is to identify any dependencies between
the services by comparing trends in their respective response
times (as opposed to comparing their relative performance, as
this would not be a fair test given that the services differ in
terms of functionality, inputs and execution environment). To
ensure uniformity in all other aspects of the tests, we use a
standard load testing tool13. Note that no automated service
scaling techniques are employed for these tests. From Fig. 6,
we can see that if we increase the load by 50 concurrent
requests/sec at tn (0 < n ≤ 10) for the argumentation service,
its response time degrades, however the response time of the
dashboard, which we keep under consistent load (50 concur-
rent requests/sec), does not exhibit such a trend. To quantify
this further, using Ordinary Least-Squares (OLS) regression
we can estimate14 the dependency between response time and
increased load in our tests. For the argumentation service,
OLS gives us a coefficient of 0.1 (p < 0.05) suggesting a
positive relationship between response time and load, whereas
a much lower (< 0.01), statistically insignificant coefficient is
received for the dashboard, suggesting it is not impacted by
the increased load on the argumentation service.

Naturally, for those components that are reliant on outputs
from the argumentation engine, any delay does have an impact.
For example, the chatbot will still have to wait for outputs from
the argumentation engine before responding to a user, e.g. in
the scenario shown in Fig. 2. However, because the chatbot
is simply waiting, as opposed to being delayed by processing
capacity, there is still the capacity to respond to a user, to
inform them, for example, of longer running times, while the
argumentation engine is still processing.

E. Scalability

The data gathered from wearable devices by the CON-
SULT system—and used as a key input to the argumentation
engine—can be characterised by a number of properties.
Predominantly, the devices of interest have high-volume data
output, in particular the target ECG patch, which takes mul-
tiple readings every second over a continuous period of up to
7 days. The amount of data from some of these devices can,
however, vary, depending on the number of devices uploading
data at any given time; in some cases there can be a large
amount of data being passed to the system, and in others
none at all. Finally, the mechanism offered by each vendor
to supply the data in practice can differ, with some offering
push-based models, and others requiring polling for available
data. Given each of these properties, there was a risk that the
system developed would not be able to collect all the available

13https://github.com/rakyll/hey
14Due to the autocorrelation typically found in time series data, we only

treat the derived coefficients as estimates.

https://github.com/rakyll/hey
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Fig. 7: How CONSULT responds to requests at high load compared to a monolithic system

data, leading to an incomplete and thus inaccurate view of each
patient.

The adoption of a microservice design approach allowed us
to ensure that all the data available to CONSULT is adequately
collected. Firstly, by using the principle of limited service
scope as a guide, we were prompted to develop a different
service for each vendor (Withings, Garmin and Medibiosense,
Fig. 1, red), ensuring that, from an integration perspective,
data could be collected sufficiently. Each service is able to
collect data based upon that vendor’s configuration: receive,
and subsequently poll for, new data in the case of Withings;
receive a direct push of data in the case of Garmin; and
continuously poll for data in the case of Medibiosense. In ad-
dition, to address the varying volume of data, the microservice
approach provides us with the ability to selectively scale these
services, both up and down, depending on demand (requests
per second (RPS)). In practice, we achieve this scalability
using our container orchestration tooling. This complements
the inherent scalability provided by building these services us-
ing a language like V8-compiled Javascript, which prioritises
scalability by design. With the services appropriately scaled
based on load, we remove the risk of not being able to capture
all the data passed to the system.

We can confirm the scalability of our architecture in practice
by once again issuing a controlled amount of load to the
system, this time targeting the Withings device integration
service. For comparison, we emulated a monolithic system
that does not scale by placing a single replica of this service’s
logic (including a gateway) on a single node. For CONSULT,
RPS auto-scaling was enabled (up to 20 service replicas across
three nodes). Requests were issued to both systems in repeated
60s windows. All other test conditions were as described in
Section IV-D. Across these two systems we then determined:
(1) the average number of requests that can be responded to,

and, of those requests, which are positive responses and which
indicate a load-based error; and (2) the average time taken
to respond to those requests. From Fig. 7a, we are able to
confirm that, despite quite a large standard deviation in the
average number of responses from CONSULT, when services
can be replicated according to demand, a much higher number
of requests can be responded to. More importantly, we can see
that in the monolithic system a number of requests time out,
meaning the data contained within those requests (e.g. pushed
heart rate data) is lost. In contrast, virtually no timeouts are
found in CONSULT. Similarly, from Fig. 7b, we can see that
the average response time is lower from CONSULT; despite
the overlapping interquartile ranges (IQRs), a Mann-Whitney
U-test, under the null hypothesis that there is no difference
between the two distributions, shows a significant difference
between the two average response times (p < 0.05). We
attribute this to the fact that while a monolithic system is
processing existing requests, new requests are effectively held
in the gateway until they can be responded to, leading to
an increased overall response time and, in certain cases, the
timeouts seen.

While the separation of services in a microservice archi-
tecture provides us with many benefits, the fact that data is
now passed between a number of different components for
processing creates a new point of failure. Specifically, if, upon
the receipt of an HTTP request from a service, the receiver
throws an error, the information sent is lost (assuming no
replay mechanism is present). If this occurs when processing
collected data, scaling up the services in our system will not
prevent an incomplete picture of a patient being received. Our
use of messaging queues (Fig. 2), where sensor data is placed
after being collected by our device integration services (and
where patient records could be placed by our EHR integration
service) rather than being sent over HTTP, ensures that data



is not only completely captured from a source but also stored
in its entirety. Each queue operates using the AMQP protocol
(as provided by the RabbitMQ message broker15). With this
in place, sensor data (and EHR data) remains present even in
the event of issues with the services at each end of the queue.

There are a number of other areas of the system that
also benefit from the scalability of services. These include
the dashboard, where each user interacts with a replica of
the backend service, ensuring maximum availability. However
scaling at the service level is unlikely to have an impact in
certain areas of our architecture, such as the reasoner, where,
although desirable, it may not be trivial to split tasks between
different replicas in order to reduce processing time.

V. SUMMARY AND CONCLUSION

In this work, we have shown how the requirements of
researchers often place at risk the usability of software in
patient-based research. Researchers want to (i) use program-
ming languages that are geared more towards experimentation
and data analysis than scalability; (ii) change the components
of a system frequently and experiment with components that
have high execution times; (iii) use potentially intermittent
and complex data sources; and (iv) share the software used
to derive their results. To ensure that research software that
is developed and used in this manner is suitable for patient-
based research we have proposed the use of a microservice
design approach. This approach has a number of advantages:
(i) different languages—suited both to data analysis and the
development of user software—can be mixed; (ii) components
can be changed and components with high processing re-
quirements can be used without sacrificing system stability
or response time; (iii) a variety of different data sources
can be used without losing data important for a system to
compile an accurate view of a patient; and (iv) software can be
shared as part of a reproducible research methodology without
compromising security. We have shown these advantages in
practice, and how the approach can reconcile the needs of
both researchers and patients, by introducing the CONSULT
system, how it was designed and how it performs under load.
It is worth noting that the connections we have drawn between
each of the benefits brought by the use of a microservice ar-
chitecture and a given problem in the development of patient-
facing research software are not designed to be exclusive. For
example, composability, while providing flexibility, also has
a significant impact on reproducibility. Moreover, it is not
our claim that monolithic, patient-facing research software can
never exhibit these quality attributes; a well-designed, well-
resourced monolithic application may, for example, exhibit
some resilience. However, we believe that by building an
application as a set of microservices these properties are much
easier to obtain.

As well as highlighting the benefits of a microservice
approach, we have also commented on its limitations in
respect of reconciling the needs of patients and researchers.

15https://rabbitmq.com

In turn, we have suggested potential mitigation strategies, in
particular the use of a dialogue templating syntax to deal
with inevitable changes to service interfaces. However, despite
our mitigations, it is also clear that microservices do not in
themselves guarantee software that is perfectly suited to patient
use. The adoption of a particular architecture has no impact
on, for example, the quality of the UI served by a UI service
and whether that UI is suited to patients who may be impaired,
either cognitively or physically.

Future work will explore the impact of the microservice
approach on the development and performance of different
types of patient-facing research software. With patients taking
greater responsibility for their own care, this is likely to
include research software that is not necessarily designed to
be used by patients but has an increasing patient-based audi-
ence. EHR-based phenotype libraries, for example, now make
public the definitions used to identify medical conditions in
research studies, and are thus likely to also attract interest from
patients; something that should be factored into their design.
We have demonstrated the benefits of using microservices in
the phenomics domain through our work with the Phenoflow
library which uses microservices to store, generate and vi-
sualise computable phenotypes for researchers [22]. Looking
further ahead still, the benefits of using a microservice design
approach likely extends to other groups of end-users and thus
to other types of research software, and this is worthy of
additional investigation. The most immediate group of users to
consider would be clinicians, where microservices could, for
example, be used to modularise EHR system architectures to
obtain similar benefits to the ones seen, such as the ability to
have custom, stable deployments in different health settings.
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