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Abstract

The Nobel-Prize-winning detection of gravitational waves (GWs) in 2015 opened up
a brand new window into observational cosmology, paving the way for the use of
GWs to search directly for signatures of new physics. Moreover, recent computational
developments in numerical relativity (NR) allow us to investigate Einstein’s equations
in regimes where the gravitational force is strong – a very promising area to test and
search for physics beyond the standard model of cosmology. In this thesis we will focus
in the use of numerical relativity to investigate the strong-field regime of the early
universe.

We will start by studying inflation, the current paradigmatic theory of the Big Bang
that assumes a period of accelerated expansion to explain why the current universe is
homogeneous and isotropic at the largest cosmological scales. The prevalent mechanism
is to use a scalar field that is assumed to homogeneously roll-down a model-dependent
potential, extracting the energy that drives the accelerated expansion. However, if such
a process can only begin in cases where the universe is already smooth, it becomes,
to some extent, redundant. In this thesis we will derive and test a simple analytical
criterion to predict if inflation can begin from inhomogeneous initial conditions. We
will show that convex and concave potentials that vary on super-Planckian scales are
significantly more robust than those that vary on sub-Planckian scales.

Then, we will pioneer the use of gravitational waves to detect cosmic strings, relics
that are expected to have been formed after a phase transition in the early universe, and
one of the key targets of the current LIGO/Virgo/KAGRA (LVK) detector searches.
We will present the first fully general relativistic dynamical simulations of abelian
Higgs circular cosmic strings loops that collapse and can either (i) unwind and disperse
or (ii) form a black hole. To maximise the discovery potential of such events – often
obscured by background noise in the detectors – we will construct their time-domain
gravitational-wave strain waveform, which features a low-frequency infall followed by a
characteristic merger and ringdown, with a large contribution of GW memory.

Lastly, we will simulate the formation of primordial black holes (PBHs) from sub and
superhorizon perturbations in a matter dominated universe with numerical relativity.
We will discuss the two primary mechanisms of formation that depend on the initial
perturbation mass and its geometry – via direct collapse of the initial overdensity and
via post-collapse accretion of the ambient dark matter. In both cases, we will confirm
that the process occurs around a Hubble time, and the initial mass of the black hole is
MBH ∼ 10−2H−1M2

Pl. We will also discuss how post formation, the PBH undergoes
rapid mass growth beyond the self-similar limit M ∝ H−1, showing that most its final
mass is accreted from the ambient dark matter.
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Chapter 1

Introduction

This thesis is split in three main parts: background, research and extra material.
The first part of the thesis comprises Chapters 1 and 2 and provides an overview1

of the key background to the presented research work. In Chapter 1 we review the
modern understanding of the universe, introducing general relativity, black holes
and gravitational waves. We also discuss the Friedmann-Lemaître-Robertson-Walker
(FLRW) universe and the shortcomings that led to the development of new physical
theories and phenomena beyond the standard model of cosmology, such as inflation,
cosmic strings and primordial black holes (PBHs). Chapter 2 introduces the key
techniques of numerical relativity (NR), where we explain the approaches to solve
Einstein’s equations in a computer. This chapter will lay the groundwork for the main
technical concepts that will be used in the research part of the thesis.

The research material in Chapters 3, 4 and 5 constitutes the core of the thesis, where
we study several early universe phenomena using numerical relativity2. In particular,
in Chapter 3 we will study the robustness of inflation to inhomogeneities in the initial
scalar field profile. Using 3+1 non-linear numerical simulations, we will test a simple
analytical criterion to predict when a given inflationary model will fail when starting
from inhomogeneous initial conditions. We will show that small-field concave models
are particularly sensitive to inhomogeneities in the scalar field. In Chapter 4, we will
focus on the study of cosmic strings, where we will present their first-ever general
relativistic dynamical simulations. Motivated by current detector searches by the
LIGO/Virgo/KAGRA (LVK) collaboration, we will construct the gravitational-wave

1Mostly based on well-known literature Refs. [321, 454, 40, 77].
2We will use the numerical relativity code grchombo [55, 154], which has been applied to study a

wide range of astrophysical and cosmological phenomena [203, 156, 157, 266, 437, 202, 150, 155, 265,
45, 465, 179, 152, 264, 324, 153, 355, 69, 464, 61, 186, 463, 263, 64, 200, 371, 56, 68, 293, 399, 151,
435, 187, 176, 400, 201, 461, 292, 63, 171].
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chirp waveform of a collapsing circular cosmic string loop. In Chapter 5, we will
use numerical relativity to simulate the formation of PBHs through the collapse of
superhorizon-sized scalar perturbations in a matter dominated era. We will describe
the two primary formation mechanisms – via direct collapse of the initial overdensity,
and via post-collapse accretion of the ambient dark matter.

Lastly, detailed calculations that have been omitted throughout the text and
additional material such as numerical methodologies and convergence tests are included
in Appendix A, B, C and D, which make up the extra material part of the thesis.

1.1 The universe today

After the successful tests of the theory of special relativity proposed by Albert Einstein
in 1906 [194], it was clear that the theory of gravity at that time, Newtonian gravity,
could not be complete. Special relativity is based on the postulate that nothing can
travel faster than light, which would not allow the instantaneous forces that Newtonian
theory needs to explain gravitational interactions. It was not until 1916 that Einstein
published one of his most revolutionary works, completely changing the understanding
of gravity and introducing a totally new formalism to think about space and time, the
theory of general relativity [195] – the modern theory of gravitation. Although there
are reasons to believe that it cannot be the ultimate theory of gravity, it has been
proven to be very successful in explaining the universe that is observed today.

General relativity is based on (i) the principle of general covariance: laws of
physics must take the same form for all observers, and (ii) the principle of equivalence:
all masses fall with the same acceleration regardless of their mass. Following these
principles, the theory of general relativity is written in tensor language that describes
gravity from a geometrical viewpoint of spacetime, fixed by the distribution of energy.
It turned out to be incredibly successful and more than a hundred years after its
publication, it is still passing with flying colours all the tests of the predictions that
had been made, such as the observation of gravitational waves [8] or the observation by
the Event Horizon Telescope of the shadow of the supermassive black hole candidate
in the center of the giant elliptical galaxy M87 [25–30].

General relativity is a geometric theory that relates the gravitational effects with
the curvature of spacetime, so differential geometry plays a crucial role. The most
fundamental object is a differentiable manifold M, which is a continuous and smooth
space that can be one-to-one mapped from Rn to M. One of the most important
objects is the metric tensor gµν which contains information about the “shape” of the
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spacetime and allows to define the notion of line element in a manifold

ds2 = gµνdx
µdxν . (1.1)

In three dimensional Euclidean geometry (in Cartesian coordinates), the metric takes
the usual form: gij = diag(1, 1, 1) so that distances are ds2 = dx2 + dy2 + dz2. On the
other hand, the spacetime metric is Lorentzian (has one negative and three positive
eigenvalues) and takes more complex forms that can depend on the position xµ. Vectors
in the manifold are classified depending the sign of their magnitude V 2 = gµνV

µV ν :
V 2 < 0 timelike, V 2 = 0 null, and V 2 > 0 spacelike. For example, massive and massless
particles travel along timelike and null geodesics, respectively.

For later use, it will be useful to introduce two types of derivatives of tensors.
The first one is called Lie derivative. Having a vector field V⃗ on a manifold, integral
curves can be defined integrating V µ(xµ (λ)) = dxµ(λ)/dλ. A family of these curves is
called a congruence with affine parameter λ. The Lie derivative of a tensor Tα

β with
respect to V⃗ measures how much the tensor changes when moving along the congruence.
Mathematically,

£V⃗ T
α
β = V σ∂σT

α
β − T σ

β ∂σV
α + Tα

σ ∂βV
σ . (1.2)

The other interesting derivative of a tensor is called covariant derivative. A partial
derivative of a tensor does not transform as a tensor under coordinate transformations,
whereas the covariant derivative does

∇αV
β = ∂αV

β + Γβ
ασV

σ , (1.3)

where Γβ
ασ are the Christoffel symbols, defined using the metric tensor as

Γα
µν = 1

2g
αβ (∂µgβν + ∂νgµβ − ∂βgµν) . (1.4)

The easiest way to measure the curvature of a spacetime and distinguish between
flat or curved manifolds is by considering what happens to a vector V α when it is
parallelly transported in a closed loop. For a flat manifold it will not change, whereas
for a curved manifold it will. The value of this change is quantified in the Riemann
curvature tensor, defined as

[∇µ,∇ν ]V α ≡ Rα
βµνV

β , (1.5)
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or in terms of the Christoffel symbols,

Rα
βµν = ∂µΓα

βν − ∂νΓα
µβ + Γα

λµΓλ
βν − Γα

λνΓλ
βµ . (1.6)

By definition, it is antisymmetric on the first and second pair of indices, and symmetric
with respect to exchange of these two pairs

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ , (1.7)

in addition to satisfy
Rα

βµν +Rα
µνβ +Rα

νβµ = 0 . (1.8)

We also define the Ricci curvature tensor as

Rαµ = gβνRαβµν , (1.9)

and the Ricci scalar
R = gµνRµν . (1.10)

Einstein’s equations tell spacetime how to curve given the matter distribution and, at
the same time, the spacetime tells the matter how to move through it. Mathematically,
the equations can be elegantly obtained applying the principle of least action to the
Einstein-Hilbert action3

SEH =
∫
d4x

M2
Pl

16π
√

−gR + SM , (1.11)

where M2
Pl ≡ G−1 is the non-reduced Planck mass with G the gravitational constant,

SM is the matter content action and g = det gµν . The equations of motion obtained
are known as the Einstein’s field equations

Rµν − 1
2Rgµν = 8πGTµν , (1.12)

where the cosmological constant has been neglected, and Tµν is the stress-energy-
momentum tensor given by

Tµν ≡ − 2√
−g

δSM

δgµν
, (1.13)

where T 00, T 0i and T ij are the energy density, momentum density and flux of momentum
i in the j direction, respectively. It obeys the energy-momentum conservation laws,

3In this thesis we will use the (−,+,+,+) convention.
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written in covariant language as
∇µT

µν = 0 . (1.14)

Although the covariant formulation introduces Einstein’s equations in a very simpli-
fied and elegant form, they consist of a complex system of 16 non-linear second order
differential equations, which only in particular cases with high degrees of symmetry
or weak-field limit can analytically be solved. We briefly review some of their most
important solutions below.

Black holes

The Schwarzschild spacetime [416] is one of the first and most fundamental solutions,
describing the exterior of stars and showing the existence of dense objects known as
black holes. It is a spherically symmetric spacetime with line element given by

ds2 = −
(

1 − 2GM
r

)
dt2 +

(
1 − 2GM

r

)−1
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, (1.15)

where M is a positive constant – usually the mass of the system. The metric is static
and describes the curvature of empty spacetime outside some central mass distribution
with total mass M , with r = 2GM being a coordinate singularity, the Schwarzschild
radius. In the limit of large r → ∞, 2GM/r → 0 and the metric asymptotically
approaches Minkowski. For M = 0, Minkowski spacetime is recovered.

Gravitational waves

Another interesting solution to Einstein’s equations are gravitational waves. In the
weak-field limit – where the gravitational force is negligible – one can decompose the
metric into

gµν ≈ ηµν + hµν , (1.16)

where ηµν = diag(−1, 1, 1, 1) is the flat space metric (called background metric) and
the metric perturbation hµν . We will skip the details here, but in the limit in which
only linear terms in hµν are kept, the linearized version of Einstein’s equations can be
reduced to a wave equation for hµν , corresponding to what we call gravitational waves,
ripples in the fabric of space and time

□h̄µν = 0 , (1.17)

where h̄µν ≡ hµν − 1
2hηµν is the trace-reversed metric perturbation and h = ηµνh

µν .
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These waves are produced in some of the most catastrophic events in the universe,
such as in compact binary coalescences of black holes (BH) or neutron stars (NS), and
then propagate through space. It was in fact the detection of these perturbations in
the gravitational field with the LIGO/Virgo interferometers that allowed for the first
direct observation of black holes in 2015. After upgrades, the current LVK network of
detectors has since then observed more than 50 events, including NS-NS and NS-BH
mixed binary mergers [7, 11, 19, 20].

The Friedmann-Lemaître-Robertson-Walker metric

Einstein’s field equations have been very successful in describing the dynamics of
objects in the universe and they are an incredibly powerful tool that can be applied
to the universe as a whole to learn about its past and future evolution. Our universe
contains a wide range of objects: stars, galaxy clusters, black holes... it is highly
inhomogeneous. However, when we look at different directions, the same density
of these objects is observed. In addition, observations of the Cosmic Microwave
Background (CMB) demonstrate that the universe is highly homogeneous – no special
places – and isotropic – no special directions – in large scales. This is known as the
cosmological principle and the appropriate metric tensor to describe such a universe
is the so-called Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime, with line
element

ds2 = −dt2 + a2(t)dl2 , (1.18)

where t is the cosmic time, a(t) is the scale factor of the universe and dl2 represents
the line element on a three-dimensional space of constant curvature k

dl2 = dr2

1 − kr2 + r2(dθ2 + sin2 dϕ2) . (1.19)

The constant curvature k is determined by the spatial topology and geometry of the
universe: (i) k = +1 closed, (ii) k = 0 flat, and (iii) k = −1 open universe, respectively.

Sometimes it is conventient to write the metric using an alternative time coordinate
called conformal time τ defined as dt = a(t)dτ , where the metric takes the simpler
form

ds2 = a2(τ)
[
−dτ 2 + dl2

]
, (1.20)

and null-rays travel along 45◦ trajectories in a spacetime diagram.
The energy-momentum tensor of the matter content T µν must respect the same

symmetries as the homogeneous and isotropic spacetime. Modeling it as a perfect fluid
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with energy density ρ and presssure P

T µν = (ρ+ P )uµuν + Pgµν , (1.21)

where uµ is the four-velocity of a comoving observer4. The local conservation of energy
(1.14) provides an equation for the evolution of the energy density

ρ̇+ 3
(
ȧ

a

)
(ρ+ P ) = 0 . (1.22)

For a complete description of the evolution of the matter components, we must also
specify its equation of state, P = P (ρ). It is useful to describe the universe by the
simple equation of state P = wρ, which has been proven to be very accurate with the
observational evidence and allows us to explore a variety of types of matter with a
single parameter w. Integrating (1.22), we get the evolution of the energy density

ρ = ρ0a
−3(1+w) . (1.23)

The scale factor a(t) is constrained to obey Einstein’s equations, so applying Eqn.
(1.12) to the FLRW metric (1.18) we derive the so-called Friedmann equation

H2 = 8π
3M2

Pl
ρ− k

a2 , (1.24)

where the Hubble parameter is defined as H ≡ ȧ/a. The evolution of the scale factor
is related to the matter content of the universe by a third field equation,

ä

a
= − 4π

3M2
Pl

(ρ+ 3P ) , (1.25)

which is not independent of Eqns. (1.22), (1.24) and can be obtained using the Bianchi
identities. The Eqn. (1.24) can be integrated and in the flat case (k = 0) lies

a(t) =
(√

8π
3M2

Pl
ρ0

3(1 + w)
2 t

) 2
3(1+w)

. (1.26)

If the universe is filled with non-relativistic matter with negligible pressure, such
as dust w ≈ 0, and then (1.23) implies ρ ∝ a−3 and a(t) ∝ t2/3. If the dominant
contribution to matter content of the universe is relativistic, such as radiation w = 1/3,
and the energy density evolves as ρ ∝ a−4 and a(t) ∝ t1/3. So if the universe is

4The comoving observer is the one that stays at fixed spatial coordinates.
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expanding and is filled by both dust and radiation, the non-relativistic matter will
inevitably dominate.

The critical density for a zero spatial curvature universe is defined as

ρcrit ≡ 3H2M2
Pl

8π , (1.27)

so that for both dust and radiation dominated universes ρcrit ∝ t−2. We define a
dimensionless density parameter

Ω ≡ ρ

ρcrit
, (1.28)

which distinguishes between a closed Ω > 1, flat Ω = 1 and open Ω < 1 universe. We
can rewrite the Friedmann equation (1.24) in terms of this new quantity as

Ω = 1 + k

a2H2 . (1.29)

This expression clearly indicates that for a dust or radiation dominated universe,
where (aH)−1 increases with time, the Ω = 1 flat solution is a repeller. Cosmological
observations measuring the Hubble parameter today estimate H0 ≈ 70 km s−1 Mpc−1,
consistent with a flat universe Ω ≈ 1. Most of this model’s predictions have shown
very accurate agreement with observational data. However, several problems have
remained open, and we briefly list them below as the most important shortcomings of
the standard cosmological model.

Homogeneity problem: A horizon is the region that separates the spacetime into
its causal and non-causal parts. In this way the comoving radius of a photon in
causal contact can be calculated to be ∼ (a(t)H(t))−1, which grows with time for a
dust or radiation dominated universe. In fact, the last scattering surface5 is made
of small disconnected regions of approximately 1◦ on the sky. However, the data of
the CMB proves that the microwave radiation reaching us from opposite directions
has approximately the same temperature – the universe is homogeneous and isotropic.
How is this possible if the photons had not had enough time to interact and thus
establish thermal equilibrium? Why did the universe start with such homogeneous
initial conditions?

Flatness problem: As we have discussed, the critical density Ω = 1 is a point of
unstable equilibrium, so that deviations from that value grow in time (see Eqn. (1.29)).
However, cosmological observations evidences that the density of the universe is very

5When photons stopped scattering with matter and started to freely propagate.
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close to the critical density today. For this to be possible, Ω had to be finely tuned to
be closer to one in the early universe. How?

Small scale inhomogeneity: Although the universe is apparently very smooth
on large scales, there is a plethora of structure on smaller scales such as stars and
galaxies. The standard cosmological model provides a nice successful framework for
understanding the origin of such a rich abundance of small-scale structure through the
growth of primordial density inhomogeneities. However, this poses another puzzle for
standard cosmology, what is the origin of these primeval fluctuations?

Exotic relics: As we will see later, local symmetries in Grand Unified Theories
(GUTs) are spontaneously broken at some energy around 1016 GeV to the symmetry of
the standard model SU(3) × SU(2) × U(1). These phase transitions are expected to
create relics that would radically change the evolution of the universe and the standard
cosmological model has no mechanism to get rid of this exotic matter.

Dark matter: Cosmological observations strongly indicate the existence of invisible
matter, only interacting through gravity and making up about ∼ 25% of the content
of the universe today. Though many candidates have been suggested, the exact nature
of dark matter remains unknown.

The first three issues are closely related to the very special initial conditions of
the FLRW metric. In the next section we will introduce cosmic inflation, based upon
classical gravitational theory and ideas in modern quantum field theory, as a possible
solution. The last two relate to outstanding problems in cosmology and particle physics,
and as we will see later, both cosmic strings and primordial black holes have been
considered as candidate solutions for such puzzles.

1.2 Beyond the standard cosmological model

1.2.1 The inflationary universe

As we have seen in the previous section, several of the standard cosmological model
puzzles have their origin in the increasing Hubble radius

d

dt

( 1
aH

)
> 0 . (1.30)
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What happens during a period where the Hubble radius decreases?

d

dt

( 1
aH

)
< 0 , =⇒ − ä

ȧ2 < 0 . (1.31)

And thus, the universe expands with positive acceleration. From Eqn. (1.25) positive
acceleration requires an equation of state where

ρ+ 3P < 0 , =⇒ w < −1
3 . (1.32)

In addition to the already discussed dust (w = 0) and radiation (w = 1/3) solutions,
vacuum energy (exotic matter with negative pressure, w = −1) allows for such an
accelerated expansion. This universe is very special because its energy density remains
constant as it evolves, via Eqn. (1.22).

One can also show that for a vacuum dominated universe the scale factor increases
exponentially

a(t) ∝ eHt , (1.33)

where H is the Hubble parameter given by Eqn. (1.24), and the comoving Hubble
radius decreases as

1
aH

∝ e−2Ht , (1.34)

possessing the ideal properties to resolve the homogeneity, flatness and unwanted
relics problems. This is what we call the inflationary universe and below we briefly
describe the ways in which such an accelerated expansion resolves some of the standard
cosmological puzzles.

Homogeneity problem: A decreasing Hubble radius during the inflationary period
allows for regions in the sky that seem to be out of causal contact today to have been
within the horizon at some point in the past, and hence providing the universe with a
smoothing mechanism.

Spatial flatness problem: Is also solved by growing the curvature radius exponen-
tially while keeping the energy density of the universe constant. In other words, the
accelerated expansion drives the energy density exponentially close to its critical value
at the end of inflation Ω ∝ 1 + ke−2Ht, thus predicting its Ω ≈ 1 value today.

Unwanted relics: Inflation erases any unwanted relics that were produced before
the accelerated expansion had started – their energy density is exponentially diluted
away. However, it will not get rid of exotica formed during a phase transition at a
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lower energy scale, leaving an open observational window for these objects. In fact, we
will later focus on cosmic strings and the use of gravitational waves to detect them.

Small-scale inhomogeneity: As we will see below, the inflationary mechanism can
be included within a framework at the classical level by the dynamics of a homogeneous
scalar field ϕ. We will not go into details, but measurements from the CMB are
compatible with density perturbations responsible for the formation of small-scale
structure having the origin on quantum fluctuations of this field, which grow as the
universe inflates.

Single scalar field inflation

We have already discussed vacuum energy, a type of matter that would provide the
properties of such an accelerated expansion with w = −1 (a cosmological constant).
However, the inflationary period must at some point end giving rise to the standard
cosmology we observe today. A successful model for “turning off” such a mechanism is
the use of a scalar field ϕ – which we call the inflaton, together with a model dependent
potential V (ϕ). The action of this new fundamental field minimally coupled to gravity
is written as

SM =
∫
d4x

√
−g

(1
2∇µϕ∇µϕ+ V (ϕ)

)
. (1.35)

The derived equation of motion for the scalar field is the famously known Klein-
Gordon equation

∇2ϕ = −dV (ϕ)
dϕ

. (1.36)

We can also derive the energy-momentum tensor of a single real scalar field via Eqn.
(1.13)

Tµν = ∂µϕ∂νϕ− gµν

(1
2∂αϕ∂

αϕ+ V (ϕ)
)
, (1.37)

where the components can be identified with the energy density and pressure from
(1.21). In an FLRW spacetime,

ρ = 1
2 ϕ̇

2 + 1
2

(∇ϕ)2

a2 + V (ϕ) , (1.38)

P = 1
2 ϕ̇

2 − 1
6

(∇ϕ)2

a2 − V (ϕ) , (1.39)

and the Klein-Gordon equation of motion for the field ϕ also reduces to

ϕ̈+ 3Hϕ̇− 1
a2 ∇2ϕ+ dV (ϕ)

dϕ
= 0 . (1.40)
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A key ingredient to make this mechanism successful is the assumption that the
field is homogeneous – it does not depend on spatial coordinates x – and thus ϕ = ϕ(t).
In this limit, the gradient terms in Eqn. (1.38) vanish, giving as final quantities

ρ = 1
2 ϕ̇

2 + V (ϕ) , (1.41)

P = 1
2 ϕ̇

2 − V (ϕ) . (1.42)

Then, w = P/ρ ≈ −1 if the kinetic term is subdominant when compared to the
potential ϕ̇2 ≪ V (ϕ), meaning that the field should “slow-roll”. This condition will
constrain the shape and properties of the potential V (ϕ). In the slow-roll regime, the
equations of motion for the field ϕ(t) and scale factor a(t) take the simpler form

ϕ̈+ 3Hϕ̇+ dV (ϕ)
dϕ

= 0 , (1.43)

H2 = 8π
3M2

Pl

(1
2 ϕ̇

2 + V (ϕ)
)
. (1.44)

We can quantify by how much the universe has expanded during the inflationary period
defining the number of e-folds

N = ln
(
af

ai

)
, (1.45)

which can be rewritten as dN = d ln a so that

N =
∫ af

ai

da

a
=
∫ tf

ti

Hdt =
∫ ϕf

ϕ0

H

ϕ̇
dϕ , (1.46)

where ϕ0 = ϕ(ti).
We define a slow-roll parameter ϵ to check that the comoving Hubble horizon is

decreasing
d

dt

( 1
aH

)
< 0 , =⇒ ϵ ≡ − Ḣ

H2 < 1 . (1.47)

Not only we want this instantaneous behaviour to take place, but we also want it to
last enough in order to solve the homogeneity and flatness problems. A second slow-roll
parameter to track such a condition is defined as

|η| ≡ |ϵ̇|
Hϵ

≪ 1 . (1.48)
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Fig. 1.1 Predictions vs observations for different popular inflationary models. The
axes correspond to the scalar index ns and the tensor-to-scalar ratio r. Observational
data favours concave models with an almost scale invariant power spectrum ns ≈ 1
and a negligible amount of tensor perturbations r ≈ 0. Figure from [31].

We can reformulate these conditions as constraints on the shape of the scalar field
potential using (1.43) and (1.44)

ϵ(ϕ) ≡ M2
Pl

16π

(
V ′

V

)2

, (1.49)

η(ϕ) ≡ M2
Pl

8π

(
V ′′

V

)
. (1.50)

Therefore, the universe will inflate while ϵ ≪ 1 and η ≪ 1. A common classification of
inflationary models is given by the shape of the scalar potential V (ϕ),

• Convex models where V ′′ > 0.

• Concave models where V ′′ < 0.

It is also common to classify them depending on their characteristic scale – the
field-range in which the scalar field transverses along

• Large field models: The field slow-rolls over a region ∆ϕ ≫ MPl.
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• Small field models: The field slow-rolls over a region ∆ϕ ≪ MPl.

Figure 1.1 illustrates how several inflationary models perform when compared to
observational constraints from the CMB by the Planck Collaboration [31]. The data is
consistent with a nearly scale invariant power spectrum where ns ≈ 1 and a negligible
tensor-to-scalar ratio, heavily disfavouring convex models. When inflation ends a
period known as reheating starts, when the inflaton couples to other fields, transferring
its energy to produce particles and starting the standard Hot Big Bang era.

What is next?

However, throughout the derivation of this mechanism, a key ingredient has been
enforced in order for inflation to succeed, the assumption that the pre-inflationary
state of the scalar field ϕ is homogeneous. However, if such a process can only
begin in cases where the universe is already smooth, it becomes, to some extent,
redundant. It is then crucial to study whether the homogeneous end-state is an
attractor solution of (any) inflationary model, regardless of its initial conditions
[224, 257, 459, 430, 73, 33, 74, 225, 291, 260, 386, 359, 313, 314, 117, 341, 226, 103,
118, 358, 72, 86, 125, 441, 71, 70, 395, 342, 436, 113, 223, 343, 116, 142, 164, 415, 402,
165, 357, 403, 82, 316, 344, 205, 98, 34, 35, 326, 199, 115, 228, 227, 114, 327, 229, 325,
193, 190, 107, 46, 47, 110, 157, 155, 61, 204, 293]. To do so, we must introduce a space
dependent field ϕ(x), recovering all the terms in Eqn. 1.40. Moreover, large variations
of the scalar field along the plateau of the inflationary potential can lead to gradients
where strong-field gravitational effects become important, and thus a description with
Einstein’s field equations is essential. In Chapter 3, we will use numerical relativity to
study the robustness of inflation to such inhomogeneous initial conditions for popular
inflationary models.

1.2.2 Cosmic strings

Cosmic strings were the rivals to inflationary theories in the structure formation debate
until they were ruled out after disagreement with the power spectrum observed by the
BOOMERanG experiment [175, 449, 438, 439, 112, 444, 385, 384, 32, 188, 160, 104,
391, 469]. They still remain a popular and active field of research because they are a
source of gravitational waves that could probe the high-energy physics regime of the
universe, beyond the capabilities of any current or planned particle accelerator.

Cosmic strings are an example of topological defects that form through one of the
most important concepts in modern particle theory, spontaneous symmetry breaking.
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The idea that there are underlying symmetries of nature that are not manifest in the
structure of the vacuum plays a crucial role in the unification of the forces – such as in
the standard model of particle phyiscs – and the construction of a theory of everything.
Of particular interest for cosmology is the theoretical expectation that symmetries that
are spontaneously broken today, were restored in the early universe provided that the
temperatures exceeded the energy scale of such a broken symmetry. Cosmic strings
are relics of the early universe that are expected to be produced in one of such phase
transitions, where the topology of the vacuum manifold is not simply connected, and
the forces that govern our universe today (weak, strong and electromagnetic forces)
were broken from a unified whole (known as Grand Unified Theory). After the process
of spontaneous symmetry breaking, the ground state of the theory is characterised by
a non-zero expectation value of the field and does not exhibit all the symmetries of the
Lagrangian. To illustrate this, we can look at the Lagrangian density of a complex
scalar field ϕ

L = (∂µϕ̄)(∂µϕ) + V (ϕ) , (1.51)

with potential
V (ϕ) = λ

4
(
ϕ̄ϕ− η2

)2
, (1.52)

where λ and η are the dimensionless coupling constant and the symmetry breaking
scale, respectively. This model is invariant under the global U(1) group of phase
transformations

ϕ(x) → eiαϕ(x), (1.53)

where “global” indicates that α is independent of the spacetime location x. As we will
see shortly, there is also a similar proccess for “local gauge” transformations with space
dependent α(x).

As Fig. 1.2 shows, the minimum of the potential lies on a circle at the symmetry
breaking scale |ϕ| = η, and the vacuum of the theory is characterized by a non-zero
expectation value

⟨0|ϕ|0⟩ = ηeiθ , (1.54)

with an arbitrary phase θ. It is clear then that the vacuum state is not invariant under
the phase transformation (1.53),

⟨0|ϕ|0⟩ → ηei(θ+α) , (1.55)

so it does not respect the symmetry of the Lagrangian and we say that the symmetry is
spontaneously broken. The state in which the symmetry remains unbroken ⟨0|ϕ|0⟩ = 0
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Fig. 1.2 Higgs potential and a straight string with colours illustrating the non-
trivial mapping of the field configuration from the degenerate circle of minima of the
potential in Eqn. (1.52) (left) into the physical space (right). The grey tube illustrates
the location of the infinite straight string along the z direction, where the field rests at
the local maximum of the potential.

corresponds to the local maximum of the potential and thus is not the lowest energy
configuration.

We can study the vacua in which the symmetry is broken by expanding around the
ground state and rewriting the complex scalar field in terms of two real fields φ and ϑ,

ϕ(x) =
(
η + 1√

2
φ(x)

)
eiϑ(x) , (1.56)

The Lagrangian then becomes

L = 1
2 (∂µφ)2 + η2 (∂µϑ) + 1

2λη
2φ2 + Lint , (1.57)

where Lint includes cubic and higher order interaction terms in φ and ϑ. We see
that φ represents a particle with a positive mass mφ =

√
λη, corresponding to radial

oscillations about a point on the circle of minima |ϕ| = η. On the other hand, the real
field ϑ features in the Lagrangian without a mass term, so that mϑ = 0, corresponding
to a massless scalar particle – also called Goldstone boson.

However, most of particle physics is described by gauge theories, such as the abelian
Higgs model

L = (D̄µϕ̄)(Dµϕ) + λ

4
(
ϕ̄ϕ− η2

)2
+ 1

4FµνF
µν , (1.58)

where the covariant derivative is given by Dµ = ∂µ − ieAµ, with Aµ a gauge vector
field, e the gauge coupling and the antisymmetric tensor Fµν = ∂µAν − ∂νAµ. This
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model is invariant under the local gauge U(1) group of transformations

ϕ(x) → eiα(x)ϕ(x) , Aµ(x) → Aµ(x) + 1
e
∂µα(x) . (1.59)

Similar to the global case, the symmetry at the vacuum |ϕ| = η is spontaneously
broken, and the field ϕ acquires a non-zero vacuum expectation value. We again study
its properties representing the field as ϕ = η + φ/

√
2, so that in the unitary gauge

L = 1
2 (∂µφ)2 + 1

2m
2
φφ

2 + 1
4FµνF

µν + 1
2m

2
AAµA

µ + Lint , (1.60)

where

mφ =
√
λη , mA =

√
2eη . (1.61)

We see that in this case the breaking of a gauge symmetry is not accompanied by a
massless Goldstone boson, and instead, its corresponding degree of freedom is absorbed
into the vector field, which becomes massive – the massless Goldstone boson is “eaten”
by the vector field Aµ.

Cosmic strings [308, 448, 453, 442, 37, 38, 65, 271, 454] are one-dimensional struc-
tures that arise in models where a continuous symmetry is broken, such as the U(1)
gauge symmetry breaking that we have discussed. One possibility is that the symmetry-
breaking transition is not “perfect” and false vacuum remnants are left behind when
different regions of space decay to different ground states, see Fig. 1.2. As we traverse
a closed path in physical space it is possible for ϕ to wrap once around the circle of
minima, so that it develops a non-trivial winding, ∆θ = 2π. Then, the field far from
the string centre takes the form

ϕ ≈ ηeinθ , (1.62)

where n is an integer known as the string winding number. We can keep measuring
the winding on smaller loops as the path is shrunk to a point, up to the point in
which reach the string centre. There, the phase of ϕ is not well-defined and ∆θ cannot
continuously change from ∆θ = 2π to ∆θ = 0. There must then be one point contained
within the path where the phase is undefined, which is when the field ϕ rises to the
top of the potential, having a non-zero energy density, V (0) = λη4/4. The width of
the string is determined by the Compton wavelengths of the Higgs and gauge bosons:
δφ = m−1

φ and δA = m−1
A , and in general the characteristic transverse dimension is

far smaller than their length, so the can be treated as one-dimensional objects called
strings. In this work we will restrict the parameter space to strings where mφ = mA,
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which happens in the so-called critical coupling limit when λ = 2e2 = 1. Then, the
total string mass per unit length can be computed to be [101, 285]

µ = 2πη2 . (1.63)

Their coupling to gravity – and thus their gravitational effects – depend upon the
dimensionless quantity

Gµ = 2π
(

η

MPl

)2
, (1.64)

known as the string tension. For GUT scale strings with η ∼ 1016 GeV, this corresponds
to an enormous mass density µ ∼ 1022 g cm−1 and extremely small width δ ∼ 10−30 cm.

Given that the width is much smaller than any cosmological scale, strings are
often studied in the zero-width limit, or Nambu–Goto approximation. The metric of a
zero-width static straight string lying along the z-axis in the linear approximation of
general relativity is given by [450]

ds2 = −dt2 + dr2 + (1 − 4Gµ)2 r2dθ2 + dz2 . (1.65)

Transforming the polar angle, θ → (1 − 4Gµ) θ, the metric takes a flat-space Minkowskian
form. However, the polar angle varies in the range 0 ≤ θ ≤ 2π (1 − 4Gµ), introducing
an azimuthal “deficit angle” of 8πGµ. This is referred to as a conical singularity and has
interesting observational effects such as lensing, fluctuations in the cosmic microwave
background and the formation of wakes that were thought to play an important role
in structure formation. The network consisting of both infinite strings and closed
loops is conformally stretched by the expansion of the universe and strings straighten
themselves out due to their tension. Intercommutation of intersecting string segments
[310] leads to the continual chopping up of long strings into smaller loops.

In the Nambu-Goto limit, when the radius of curvature of a string is much greater
that its width, we can regard the string as a one-dimensional object, represented by a
two-dimensional surface in spacetime – the string worldsheet

xµ = xµ(σ0, σ1) , (1.66)

obeying the Nambu–Goto action [370, 230]

S = −µ
∫
d2σ

√
−γ , (1.67)
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where γ is the determinant of the worldsheet metric γab = gµνx
µ
,ax

ν
,b and gµν is the

four-dimensional metric that sets the spacetime interval between two nearby points in
the worldsheet

ds2 = gµνx
µ
,ax

ν
,bdσ

adσb . (1.68)

In the limit in which gravitational effects are negligible and the strings are taken to
be in flat spacetime neglecting any possible backreaction so that gµν = ηµν , the string
equations of motion take the simpler form

∂a

(√
−γγabxµ

,b

)
= 0 . (1.69)

After clever parametrisations of the worldsheet, it can be shown that the equation
of motion for the string reduces to a simple two-dimensional wave equation

ẍµ − xµ′′ = 0 . (1.70)

Setting t ≡ x0 = σ0 allows us to write the string trajectory as the three-vector x(t, σ),
where σ ≡ σ1 is the spacelike parameter on the string, and the contraints and equations
of motion take the form

ẋ · x′ = 0 , ẋ2 + x′2 = 1 , ẍ − x′′ = 0 . (1.71)

The physical meaning of the first equation is that the vector ẋ representing the
physically observable velocity is perpendicular to the string. The second constraint is
the conservation of energy that can be written as dσ = (1 − ẋ2)−1/2|dx| = dϵ/µ, where

ϵ = µ
∫

(1 − ẋ2)−1/2dl = µ
∫
dσ , (1.72)

is the energy of the string and dl = |dx|. Finally, the last equation implies that the
acceleration of a string element in its local rest frame (ẋ = 0) is inversely proportional
to the local curvature radius, |d2x/dl2|, so that the direction of ẍ is such that a curved
string tends to straighten.

A general solution of Eqn. (1.70) is

x(σ, t) = 1
2 [a(σ − t) + b(σ + t)] , (1.73)

with constraints a′2 = b′2 = 1. The geometric interpretation of these is that σ is
the length parameter along the three-dimensional curves a(σ) and b(σ). Some of the
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most popular simulations are based on the study of networks of Nambu-Goto strings
[389, 91, 96, 92, 93, 90, 405, 337, 347, 348, 309, 406, 456, 446, 380, 390].

As we will study cosmic string loops in Chapter 4, it is convenient to introduce
the solution of a closed loop in the Nambu-Goto limit. Its motion is described by the
previous equations, with 0 ≤ σ ≤ L, where L = M0/µ is the invariant length of the
loop. For a circular loop of radius R0, the energy is then

M0 = µL = 2πη2L = 4π2η2R0 . (1.74)

Given the periodicity of a closed loop, we require x(σ + L, t) = x(σ, t), which implies

b(σ+ + L) − b(σ+) = −a(σ− + L) + a(σ−) , (1.75)

where we have defined σ± = σ ± t. In the centre-of-mass frame of the loop, a and b
are periodic functions

a(σ + L) = a(σ) , b(σ + L) = b(σ) , (1.76)

Then it is clear from Eqn. (1.73) that the motion of the loop must also be periodic in
time, with period T = L/2, since

x(σ + L/2, t+ L/2) = x(σ, t) , (1.77)

and the fact that the timescale of the oscillation is comparable to the loop length
indicates that the motion must be relativistic. More precisely, if we think about a
string loop of initial radius R0 in the z = 0 plane, the a(σ) and b(σ) curves in polar
coordinates

a(σ) = {R0 cos (σ/R0) , R0 sin (σ/R0) , 0} , (1.78)
b(σ) = {R0 cos (σ/R0) , R0 sin (σ/R0) , 0} . (1.79)

satisfy the constraints. After using simple trigonometric identities, the solution via
Eqn. (1.73) is then

x(σ, t) = R0 cos (t/R0) {cos (σ/R0) , sin (σ/R0) , 0} , (1.80)
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so that the radial trajectory and velocity of the loop is given by

R(t) = R0 cos (t/R0) , v(t) = sin (t/R0) , (1.81)

precisely showing the ultrarelativistic nature of the collapse.
From the Nambu-Goto perspective the loop would forever oscillate under its tension.

However, the string width δ = (
√
λη)−1 introduces a cutoff scale for the oscillation,

where its Nambu-Goto description breaks down. In this regime, field theory simulations
must evolve the equations of motion derived from the Lagrangian to understand the
dynamics of individual strings [418, 330, 350, 328, 52, 329, 419, 22, 206, 378, 379,
349, 414], or the whole network [455, 353, 85, 336, 270]. Most of these studies are
based on the traditional “fixed grid” approach, where a single mesh containing a
constant number of grid points resolves the evolution of the system. There exists
computational limitations to this approach given the dynamical nature of interesting
scales that can evolve and differ by orders of magnitude, such as the string width and
size of the network. An attempt to fix this and resolve the string core throughout the
simulations is adopting the so-called “fat-string” approach, where the string width
artificially grows to match the comoving grid resolution. However, the extracted
radiation rate predictions differ from results of Nambu-Goto network simulations
[455, 379, 405, 423, 337, 91, 92, 96, 336]. A promising approach to accurately resolve
these differences is the use of Adaptive Mesh Refinement (AMR), which allows to
dynamically adapt and concentrate the computational power near the string core, to
study the massless and massive radiative modes of strings (see promising work in
[186, 187]).

What is next?

When the Nambu-Goto limit is not valid, we need to solve the field theory equations
of motion for the strings. Moreover, even for light strings with Gµ ≪ 1, the system
can evolve into a configuration where gravitational effects dominate and need to be
taken into account in the dynamics – such as the endpoint of a collapsing loop. There
has recently been interesting progress in incorporating the linearized gravitational
backreaction of Nambu-Goto strings and estimate its effect on the smoothing of these
structures [457, 458, 95, 145, 97, 407], but most of previous work is based on numerical
simulations that neglect their full gravitational description. In this thesis, we will
present the first general relativistic simulations of cosmic strings using numerical
relativity. We will make use of the AMR capabilities of grchombo [55, 154, 400]
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to accurately resolve the string core as the system evolves. Moreover, motivated by
recent gravitational-wave detections by the LVK network of interferometers and their
particular interest in cosmic strings [6, 1, 4, 15, 13, 18], in Chapter 4 we will construct
the first-ever gravitational chirp waveform of a collapsing circular cosmic string loop.

1.2.3 Primordial black holes

As we have discussed, the early universe had inhomogeneities that led to the formation
of the galaxies we observe today. These local fluctuations in the density could have
also underwent gravitational collapse to produce black holes, which would then grow
by accreting nearby matter [474, 252, 136]. These are known as primordial black holes
(PBHs) and due to their very unique properties, they are often invoked to resolve
various cosmological puzzles.

Unlike stellar black holes that form from the collapse of massive stars and can only
present masses above ∼ 3M⊙, primordial black holes can widely vary in mass range.
For example, they can be small enough for Hawking radiation to take place – where
particles are emitted as the black holes evaporate. This phenomena brings together
general relativity, thermodynamics and quantum mechanics, opening up an intriguing
avenue for hints of a theory of quantum gravity.

More importantly, PBHs could alleviate some problems associated with the standard
cold dark matter scenario [144, 129, 128], which comprises ∼ 25% of the energy density
in the universe today. This is often characterised in the parameter fPBH, conveying
the energy fraction of dark matter that is in PBHs

fPBH ≡ ΩPBH

ΩDM
, (1.82)

where Ω corresponds to the energy density and critical density fractions today. In the
case in which PBHs make up all the dark matter in the universe, fPBH = 1.

There exists several channels to detect PBHs, estimating what fraction of the
dark matter they comprise (fPBH), and providing stringent constraints on models of
the early universe, see Fig. 1.3. For example, black holes smaller than 1015g would
have evaporated by today, placing strong bounds on galactic and extra-galactic γ-
ray backgrounds, short bursts and cosmic rays [382, 133, 467, 332, 311, 339, 149].
PBHs with masses larger than 1015g would still be present today having important
astrophysical consequences. For example, lensing effects [261, 39] constrain masses
around 1022 − 1034g, dynamical effects such as the heating of the stars or the thermal
history of the universe 103 − 1013M⊙ [24, 404], gravitational waves solar mass PBHs
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Fig. 1.3 Fraction of PBH dark matter and observational constraints for a
monochromatic mass function, from evaporation (red), lensing (blue), GWs (gray),
dynamical effects (green), accretion (light blue), CMB distortions (orange), and large-
scale structure (purple). The four mass windows A, B, C and D correspond to PBHs
that could account for a relevant fraction of the dark matter density. Figure from [128].

1 − 102M⊙ [5, 11, 19, 20] and the generation of large-scale structure [139, 80, 351] the
intermediate and supermassive range 102 − 1013M⊙. Figure 1.3 shows the existence of
four main mass windows where PBHs could account for a relevant fraction of all of the
dark matter in the universe.

Even though the precise origin of these black holes is still unknown, the most
popular mechanism for PBH formation is through the collapse of superhorizon-sized
inhomogeneities that were generated and enhanced during cosmic inflation. When
inflation ends and the standard Hot Big Bang era starts, these primordial fluctuations
re-enter the horizon and can collapse to form black holes [131, 241, 394, 412, 248, 368,
360, 222, 362]. Another possible channel to produce PBHs of a wide mass range is via
the collapse of cosmic strings [273, 253, 393, 220, 120, 99, 338, 462, 245, 366, 137, 109,
84, 286].
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What is next?

Numerical relativity provides the techniques to study PBH formation channels without
the need of making any assumptions. The study of alternative mechanisms could
lead to the formation of PBHs with distinct properties, such as low-mass but highly
spinning PBHs. In this thesis, we will study the collapse of sub and superhorizon-sized
scalar perturbations in a matter dominated era with full numerical relativity. Our
main goal is to quantitatively investigate (i) what parameters control the formation of
the PBHs (ii) what is the fraction of energy that goes into the PBH mass compared to
the Hubble horizon.



Chapter 2

Numerical relativity

In this chapter we will introduce the techniques to solve Einstein’s equations numerically
[77, 40]. We will start by presenting the 3+1 decomposition of general relativity (or
ADM formalism [58]), which consists in splitting the space and time coordinates in order
to formulate the system of equations as an initial value problem. This decomposition
results in four constraints and a set of evolution equations that are known to be
numerically problematic due to their weak-hyperbolic properties. Then, we will devise
several approaches to solve the constraint equations, including a novel prescription
for initial data consisting of fundamental fields [62]. Lastly, we will introduce the
BSSN formalism [421, 79], a reformulation with strongly-hyperbolic properties and
also mention about useful dynamical gauge conditions that allow for long-term stable
simulations of black hole spacetimes.

2.1 3+1 decomposition

2.1.1 Foliation of spacetime

As seen in Chapter 1, the covariant formulation of Einstein’s equations makes them
incredibly elegant. However, it also entails a challenge to solve them as an initial value
problem1. We would like to recast them in a 3+1 form where the roles of space and
time are split. To do this, we foliate the full spacetime into a family of non-intersecting
three-dimensional spacelike surfaces Σ, where each surface is identified by a different
value of a scalar parameter t interpreted as a global time function, Fig. (2.1).

1Also called Cauchy problem, in which the solution is obtained evolving the data from a given
time t to a later time t+ dt.
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Fig. 2.1 Foliation of spacetime by three-dimensional spacelike surfaces Σ. The lapse
function α measures how much proper time elapses between neighboring hyperslices
along the normal vector. The shift functions βi measure the amount by which the
spatial coordinates are shifted within a slice with respect to the normal vector.

Focusing on two of these slices at different times, we introduce the following key
definitions

• dl2 = γijdx
idxj , spatial line element on the surface.

• dτ = α(t, xi)dt , α(t, xi) lapse function.

• xi
t+dt = xi

t − βi(t, xi)dt , βi(t, xi) shift function.

The functions α and βi measure how much proper time elapses between neighboring
time slices along the normal vector to the slice and the amount by which the spatial
coordinates are shifted within a slice with respect to the normal vector, respectively.
Given the coordinate freedom, both α and βi are non-unique gauge functions that
will determine how the coordinates evolve in time. As we will see later, their choice is
crucial to obtain long-term stable numerical simulations.

Following a geometric argument in Fig. (2.1), it can be shown that the spacetime
line element is expressed in terms of these quantities as

ds2 = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) , (2.1)
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and the four-dimensional metric and its inverse are identified as

gµν =
−α2 + βkβ

k βi

βj γij

 , gµν =
−1/α2 βi/α2

βj/α2 γij − βiβj/α2

 . (2.2)

We define the unit vector normal to the 3-surfaces as

nµ = (−α, 0) nµ = (1/α,−βi/α) . (2.3)

In addition, the spatial metric induced by gµν on each 3-surface Σ is

γµν = gµν + nµnν , (2.4)

which is nothing but the projection operator onto spatial surfaces

P µ
ν ≡ γµ

ν = δµ
ν + nµnν . (2.5)

The unit normal vector can then be rewritten in terms of α and ∇µt

nµ = −α∇µt , (2.6)

with
gµν∇µt∇νt ≡ −1

α2 . (2.7)

The minus sign in (2.6) is chosen such that nµ points in the direction of increasing t as
shown in figure (2.1). It is easy to show that nµ is timelike

nµnµ = gµνn
µnν = α2gµν∇µt∇νt = α2

(−1
α2

)
= −1 . (2.8)

A key ingredient is to define the time vector using nµ and βµ:

tµ = αnµ + βµ , (2.9)

which is tangent to time lines. It is useful to choose tµ to be the congruence along which
the spatial coordinate grid is propagated from one time slice to the next one. In other
words, tµ connects points with the same spatial coordinates on neighbouring time slices.

When the spacetime is foliated, a clear distinction between intrinsic and extrinsic
curvatures is often done:
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Fig. 2.2 The extrinsic curvature is defined as the change of the normal vector
under parallel transport on a curved hypersurface. It measures the rate at which the
slice deforms as it is carried forward along a normal.

• The intrinsic curvature is the curvature of the hypersurfaces. It is given by the
three-dimensional Riemann tensor (3)R defined as usual by (1.6) but using the
metric of the 3-surface γij.

• The extrinsic curvature is related to how the 3-surfaces are immersed within the
full spacetime. It is defined in terms of how much the direction of the normal
vector changes as it is parallelly transported from one point in the hypersurface
to another. The extrinsic curvature measures the rate at which the hypersurface
deforms as it is carried forward along a normal, Fig. (2.2).

The extrinsic curvature can be found by projecting gradients of the normal vector
into the slice Σ

Kµν = −Pα
µ P

β
ν ∇αnβ = −(∇µnν + nµn

α∇αnν) , (2.10)

where nβnβ = −1 =⇒ nβ∇αnβ = 0. Given the definition of Kµν , it is clear that it is
symmetric and purely spatial

nµKµν = −(nµ∇µnν + nµnµn
α∇αnν) = −(nµ∇µnν − nα∇αnν) = 0 . (2.11)

so that it is possible to only consider spatial components of the extrinsic curvature
tensor Kij, where (i, j) take values from one to three.
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Using the definition of the Lie derivative we can relate the definition of Kµν to the
first time derivative of the spatial metric γij

£n⃗γµν = nα∇αγµν + γµα∇νn
α + γνα∇µn

α

= nα∇α(gµν + nµnν) + (gµα + nµnα)∇νn
α + (gνα + nνnα)∇µn

α

= nα∇α(nµnν) + gµα∇νn
α + gνα∇µn

α

= nαnν∇αnµ + nαnµ∇αnν + ∇νnµ + ∇µnν = −Kµν −Kνµ = −2Kµν ,

where the symmetry properties of Kµν , ∇αgµν = 0 and again nα∇µnα = 0 have been
used. Therefore, the extrinsic curvature tensor can be rewritten in a very compact
form

Kµν = −1
2£n⃗γµν . (2.12)

The trace of the extrinsic curvature, often called the mean curvature or expansion

K = gµνKµν = −£n⃗γ
1/2 , (2.13)

measures the fractional change in the proper 3-volume along nµ. Following the definition
of the time vector (2.9) and properties of the Lie derivatives2, the definition can be
split into a time vector t⃗ and a shift vector β⃗ parts

Kµν = − 1
2α£αn⃗γµν = − 1

2α
(
£t⃗ − £β⃗

)
γµν , (2.14)

so that £t⃗γµν = −2αKµν + £β⃗γµν , and in an adapted coordinate system where £t⃗ = ∂t,

∂tγij = −2αKij + £β⃗γij . (2.15)

The metric and the extrinsic curvature (γij, Kij) are the fundamental variables of
our initial value formulation and can be considered as the equivalent of positions and
velocities in classical mechanics, measuring the instantaneous state of the gravitational
field.

2.1.2 Foliation of Einstein’s equations

As we have described in the first chapter, the dynamics of the gravitational field is
contained in Einstein’s field equations. However, so far we have only introduced the
tools to foliate the spacetime into three-dimensional hypersurfaces. In this section, we

2It can be shown that £v⃗ = (1/k)£kv⃗.
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will apply such techniques in order to recast Einstein equations in a 3+1 form. The
way to procceed is to contract their covariant form with the normal vector nµ and
the spatial projector P µ

ν different number of times. This is not a difficult but tedious
process and in this chapter we will only present the final results, but an extensive and
detailed derivation can be found in Appendix A.

If all the indices of the four-dimensional Riemannian tensor are projected onto
spatial hypersurfaces, the Gauss-Codazzi equations are obtained

P δ
αP

κ
βP

λ
µP

σ
ν Rδκλσ = (3)Rαβµν +KαµKβν −KανKβµ. (2.16)

If instead, only three indices are projected and one is contracted with the normal
unit vector, the obtained equations are the Codazzi-Mainardi equations

P δ
αP

κ
βP

λ
µn

νRδκλν = DβKαµ −DαKβµ, (2.17)

where Dµ is the projected covariant derivative Dµ ≡ Pα
µ ∇α.

On the other hand, note that if only two indices (not the trivial antisymmetric
indices of the Riemannian tensor) are contracted with the spatial projection operator

PαµP βνRαβµν = (gαµ + nαnµ)(gβν + nβnν)Rαβµν

= R + 2nµnνRµν = 2nµnνGµν , (2.18)

since the term with nαnµnβnνRαβµν vanishes due to the antisymmetry properties of
Rαβµν , and Gµν = Rµν −Rgµν/2.

Therefore, from Eqns. (2.16), (2.18) and Gµν = 8πTµν , with G = c = 1, we obtain
the first important result, the Hamiltonian constraint

(3)R +K2 −KµνK
µν = 16πρ , (2.19)

where ρ ≡ nµnνTµν is the local energy density measured by Eulerian observers3.
Considering now

PαµnνGµν = (gαµ + nαnµ)nν
(
Rµν − 1

2Rgµν

)
= PαµnνRµν − 1

2n
αR + 1

2n
αR = PαµnνRµν , (2.20)

3It is the observer with four-velocity nµ.
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and together with the contraction of the Codazzi-Mainardi equations (2.17)

gαµP δ
αP

κ
βP

λ
µn

νRδκλν = P κ
β n

νRκν = gαµ (DβKαµ −DαKβµ) , (2.21)

Defining the momentum density measured by Eulerian observers as Sα ≡ −PαµnνTµν ,
the second important result is obtained, the momentum constraints.

Dµ (Kαµ − γαµK) = 8πSα . (2.22)

Equations (2.19) and (2.22) show that in order to be consistent with Einstein’s equations,
the metric γij and the extrinsic curvature Kij cannot be chosen arbitrarily and instead,
they need to satisfy the Hamiltonian and momentum constraints at all times. In
addition, they do not depend on the gauge functions, so they have to be satisfied
regardless of the choice of coordinates.

However, we are interested not only in finding the initial data for a gravitational
system but also the evolution at later times. Hence, it is inevitable to derive equations
that involve time derivatives of spacetime quantities. Although when introducing the
definition of the extrinsic curvature tensor Einstein’s equations were not discussed, an
evolution equation for the spatial metric had already been introduced in (2.15).

£t⃗γµν = −2αKµν + £β⃗γµν . (2.23)

The evolution equation for the extrinsic curvature tensor Kµν is more subtle so the
result is presented here and its derivation is in Appendix A

£t⃗Kµν = −DµDνα + α
[

(3)Rµν +KKµν − 2KµλK
λ
ν

]
+ 4πα [γµν (S − ρ) − 2Sµν ] + £β⃗Kµν , (2.24)

where Sµν ≡ Pα
µ P

β
ν Tαβ is the spatial stress tensor measured by Eulerian observers and

S is its trace. The Eqns. (2.19), (2.22), (2.23) and (2.24) are equivalent to Einstein’s
equations and are usually referred to as the ADM decomposition [58].

2.2 Initial data and the constraint equations

One of the most important (and often hardest) steps in numerical relativity simulations
is the construction of constraint satisfying initial data. As we have seen, there is no
complete freedom in choosing of such data, and the spatial metric γij, the extrinsic
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curvature Kij and any matter fields need to satisfy the Hamiltonian and momentum
constraints. If the provided “starting values” are not compatible, results from their
dynamical evolution lack of any relevant physical interest.

The Hamiltonian constraint (Eqn. (2.19)) and the three momentum constraints
(Eqn. (2.22)) can only determine 4 of the 12 independent components of the gravita-
tional fields (γij, Kij) – symmetric and 3-dimensional tensors – leaving 8 undetermined.
Four of these eight undetermined functions are related to coordinate choices: three
specify the spatial coordinates within the slice, and one associated with the time
coordinate, chooses the hypersurface. Hence, there are four undetermined functions
that represent the two dynamical degrees of freedom characterizing a gravitational field
in general relativity – two independent sets of values for the conjugate pair (γij, Kij) –
corresponding to the two polarization modes of a gravitational wave in GR. Ideally
one would like to separate unambiguously the longitudinal from the transverse parts of
the gravitational fields at some initial time – so that we specify the latter and then
solve the constraints for the former. However, this is not possible given the non-linear
nature of general relativity.

The approach to the solution of Einstein’s initial value equations is: We first decide
which field variables we want to determine by solving the constraint equation – we
choose a particular decomposition of the constraint equations. Then, we make choices
for the remaining freely specifiable variables. These choices will in general reflect
the physical problem that we are trying to solve, but may also be guided by any
resulting simplifications that they induce in the constraint equations, or even numerical
advantages such as improvements in convergence, as we will see later.

2.2.1 Conformal transverse-traceless decomposition

Given the hyperbolic nature of the wave equation, its solution at any time depends
on its past history. Constraint equations, on the other hand, are elliptic equations
and constrain the fields in space at every instant of time, independently of their past
history. So if constraints are satisfied at the initial hyperslice, they should remain
under control throughout the numerical simulation4.

We start by writing the spatial metric γij as a product of a conformal factor ψ
and a background metric γ̄ij. To solve the constraint equations it is convenient to
decompose it as

γij = ψ4γ̄ij , (2.25)
4This is in fact one of the most robust tests to check whether evolution equations are correctly

implemented and results can be trusted.
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with γ̄ = detγ̄ij = 1. The conformal factor absorbs the overall scale of the metric and
leaves five degrees of freedom in the conformally related metric γ̄ij . One can show that
given this choice, the Hamiltonian constraint reduces to

8D̄2ψ − ψR̄ − ψ5K2 + ψ5KijK
ij = −16πψ5ρ , (2.26)

where D̄2 = γ̄ijD̄iD̄j is the covariant Laplace operator associated with γ̄ij. Given a
choice of the conformal metric γ̄ij, the Hamiltonian constraint provides a differential
equation for the conformal factor ψ.

We split the extrinsic curvature tensor into its trace and traceless part

Kij = Aij + 1
3γijK , (2.27)

which we then conformally transform5. A choice that brings constraint equations into
a simpler form is taking

Aij = ψ−2Āij , (2.28)
K = K̄ , (2.29)

so that DjA
ij = ψ−10D̄j

(
Āij

)
and the constraints become

8D̄2ψ − ψR̄ − 2
3ψ

5K2 + ψ−7ĀijĀ
ij = −16πψ5ρ, (2.30)

D̄jĀ
ij − 2

3ψ
6γ̄ijD̄jK = 8πψ10Si . (2.31)

Any symmetric, traceless tensor such as Āij can be split into a transverse-traceless
part that is divergenceless and a longitudinal part that can be written as a symmetric,
traceless gradient of a vector. So we can decompose Āij as

Āij = Āij
TT + Āij

L , (2.32)

where the transverse part is divergenceless D̄jĀ
ij
TT = 0 and the longitudinal part

satisfies
Āij

L = D̄iW j + D̄jW i − 2
3 γ̄

ijD̄kW
k . (2.33)

5Note that this is a different conformal rescaling for Āij than the one we will introduce in the next
section for Ãij .
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We can now write the divergence of Āij as

D̄jĀ
ij = D̄jĀ

ij
L = D̄2W i + 1

3D̄
i
(
D̄jW

j
)

+ R̄i
j ≡

(
∆̄LW

)i
, (2.34)

where ∆̄L is the vector Laplacian. Hence, the momentum constraints are rewritten as

(
∆̄LW

)i
− 2

3ψ
6γ̄ijD̄jK = 8πψ10Si , (2.35)

while the Hamiltonian constraint remains unchanged.
We can freely choose the conformally related metric γ̄ij , the mean curvature K and

the transverse-traceless part of the conformally related extrinsic curvature, Āij
TT. Given

these choices, we will solve the Hamiltonian and momentum constraints for ψ and the
vector potential W i, and then we can construct the physical solutions γij and Kij.

Counting degrees of freedom: We started with 6 in γij and 6 in Kij . Now 1 in ψ, 5
in γ̄ij, 1 in K, 2 in Āij

TT and 3 in Āij
L . So if we specify the 8 degrees of freedom in γ̄ij,

K and Āij
TT, the four constraint equations will fix the remaining 4 degrees of freedom

in ψ and Āij
L .

Solving the vector Laplacian

In the rest of this section we will restrict to conformally flat spacetimes (γ̄ij = δij,
R̄ = 0) where the vector Laplacian (∆̄LW )i in Cartesian coordinates reduces to

(
∆̄LW

)i
= ∂j∂jW

i + 1
3∂

i∂jW
j . (2.36)

Below we present two methods that can lead to different numerical convergence
properties, depending on the physical system studied.

• One approach [105, 106] to solve this equation is based on writing the vector
field Wi as a sum of another vector field Vi and the gradient of a scalar field U ,

Wi = Vi + ∂iU , (2.37)

so that the vector Laplacian is expressed as

(
∆̄LW

)
i

= ∂j∂jVi + 1
3∂i∂

jVj + ∂j∂j∂iU + 1
3∂i∂

j∂jU . (2.38)
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We have the freedom to choose U in such a way that it cancels the second term
in the equation above,

∂j∂jU = −1
4∂jV

j . (2.39)

The vector Laplacian reduces to a very simple form of three flat-space Poisson
equations for Vi and the momentum constraints are

∂j∂jVi − 2
3ψ

6∂iK = 8πψ6Si . (2.40)

• A second approach [420, 369] chooses

Wi = 7
8Vi − 1

8
(
∂iU + xk∂iVk

)
, (2.41)

so that the momentum constraint yields

5
6∂

j∂jVi − 1
6∂i∂

j∂jU − 1
6x

k∂i∂
j∂jVk − 2

3ψ
6∂iK = 8πψ6Si . (2.42)

If we choose U such that

∂j∂jU = −8πψ6xjSj + 2
3ψ

6∂jK , (2.43)

then

5
6∂

j∂jVi − 1
6∂i∂

j∂jU − 1
6x

k∂i∂
j∂jVk − 2

3ψ
6∂iK = 8πψ10Si , (2.44)

which is solved by

∂j∂jVi = 8πψ6Si + 2
3ψ

6∂iK . (2.45)

We can solve the (non-linear) Hamiltonian constraint by expanding around a “guess”
solution ψ = ψ0 + δψ and solving for δψ as a linear differential equation iteratively.
Note that in general, the matter sources will also depend on the conformal factor ψ and
thus they should be linearised accordingly too. In the next subsections, we will solve
these equations for different physical systems. We will start by reviewing solutions in
vacuum, the so-called Bowen-York solutions of the momentum constraint, where we
will find the initial data for boosted and rotating black holes. Then, we will introduce
a novel approach to solve the constraints when matter terms are present, avoiding a
uniqueness problem that the Hamiltonian constraint possesses. To conclude, we will
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describe the most general case to obtain constraint satisfying initial data for a mixed
system containing both black holes and matter fields.

2.2.2 Solutions with black holes

We begin by looking at vacuum solutions for which the matter source terms vanish,
ρ = Si = 0. At a moment of time symmetry, momentum constraints are trivially
satisfied by choosing Kij = K = 0. The Hamiltonian constraint then reduces to

D̄2ψ = 1
8ψR̄ , (2.46)

where R̄ is the Ricci scalar associated to the conformal metric γ̄ij. Choosing the
conformally related metric to be flat γ̄ij = ηij makes D̄i reduce to the standard flat
covariant derivative so that D̄2 = ∂i∂i and the Ricci scalar vanishes R̄ = 0. The
Hamiltonian constraint then becomes

∂i∂iψ = 0 . (2.47)

Asymptotically flat solutions with spherical symmetry are given by

ψ = 1 + M

2r , (2.48)

where the constant M is the mass of the black hole. In addition, the solution is linear
so if we want to construct multiple black hole initial data we can just superpose the
single solution

ψ = 1 +
∑

i

Mi

2ri

. (2.49)

Equation (2.48) is just the Schwarzschild solution in isotropic coordinates

dl2 =
(

1 + M

2r

)4 (
dr2 + r2

(
dθ2 + sin2 θdϕ2

))
, (2.50)

which can be transformed to the solution in Schwarzschild coordinates

dl2 =
(

1 − 2M
R

)−1
dR2 +R2

(
dθ2 + sin2 θdϕ2

)
, (2.51)
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by relating the Schwarzschild and isotropic radial coordinates as

R = r
(

1 + M

2r

)2
, (2.52)

where the location of the horizon for a M mass black hole is at R = 2M (or r = M/2
in isotropic coordinates).

If we want to generalise the previous solution to boosted or rotating black holes
solving the momentum constraints becomes unavoidable, which in vacuum reduce to

∂j∂jW
i + 1

3∂
i∂jW

i = 0 . (2.53)

• A boosted black hole solution is given by

W i = − 1
4r
(
7P i + ninjPj

)
, (2.54)

where ni = xi/r is the outward-pointing unit radial vector and P i is the linear
momentum of the black hole.

• A spinning black hole, on the other hand,

W i = 1
r2 ϵ

ijknjSk , (2.55)

where ϵijk is the completely antisymmetric Levi-Civita tensor in three dimensions
and S i is the spin of the black hole.

Given the linearity of the momentum constraints, we can obtain the boosted and
rotating black hole solution by adding Eqns. (2.54) and (2.55). Then, reconstructing
the longitudinal part of the traceless extrinsic curvature tensor via Eqn. (2.33),

Āij
L = 3

2r2

[
niPj + njP i + nkPk

(
ninj − δij

)]
− 3
r3 (ϵilknj + ϵjlkni)nlSk . (2.56)

Note that for boosted or rotating black holes, the analytical conformal factor in Eqn.
(2.48) does not solve the Hamiltonian constraint anymore and one needs to find its
numerical solution sourced by

D̄2ψ + 1
8ψ

−7ĀijĀ
ij = 0 . (2.57)

So far we have focused on vacuum solutions, but what happens if one includes
non-trivial matter fields? One of the first problems that arises is that the use of the
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maximum principle for the Hamiltonian constraint is not applicable to prove local
uniqueness of solutions because the matter term −16πψ5ρ features with the “wrong
sign” – a negative coefficient combined with a positive exponent [473, 425, 387, 78, 460].
The fact that there exists no unique solutions entails a big problem for the convergence
of the used numerical algorithm. A method to partially cure this defect is to introduce
a rescaled energy density ρ = ψsρ̄ with s < −5, so that −16πψ5−sρ̄ recovers the “right
sign” and the maximum principle is applicable [78, 460]. In this case, ρ̄ becomes the
freely specifiable quantity and once the solution for ψ is found, one would need to
reconstruct the usual energy density ρ. An obstacle to this approach is the loss of
control over the initially specified energy density. In particular, if the energy density is
derived from other fundamental quantities such as scalar fields, it might not even be
possible to do such a reconstruction. In the next section we present a novel approach
to solve the Hamiltonian constraint that restores the uniqueness of its solutions in the
presence of matter fields.

2.2.3 Solutions with fundamental fields

When dealing with fundamental fields, the sources ρ and Si are often derived from other
quantities such as the field gradients and momenta (and can depend on the conformal
factor ψ per se). For example, for a theory with a real scalar field ϕ, non-trivial
momentum Π, and scalar potential V (ϕ), the energy and momentum flux densities are
given by

ρ(ψ) = 1
2ψ

−4(∂iϕ)2 + 1
2Π2 + V (ϕ) , Si = −Π∂iϕ . (2.58)

Choosing a rescaled energy density ρ̄ would also entail reconstructing the fundamental
quantities ϕ, Π, and V (ϕ). This process has the disadvantage of losing control over the
initially specified field configurations, in addition to changing the physical dynamics of
the system by modifying the scalar potential V (ϕ).

As we have seen throughout this section, given a particular decomposition, the
construction of the initial data demands making well-motivated choices for the freely-
specifiable independent background data and then solving the constraint equations for
the constrained variables. As we will see below, for cases in which fundamental fields
are the freely-specifiable quantities, it is preferable to choose ψ = ψ0 and solve for the
trace of the extrinsic curvature tensor K using the Hamiltonian constraint. The fixed
value ψ0 plays the role of the initial scale factor in FLRW spacetime ψ0 ∼ a

1/2
0 . This



2.2 Initial data and the constraint equations 41

approach avoids the non-uniqueness problem while keeping under control the specified
initial field configuration.

For this particular choice, the Hamiltonian constraint reduces from a differential
equation for ψ to an algebraic equation for K

K2 = 12ψ−5
0 D̄2ψ0 + 3

2ψ
−12
0 ĀijĀ

ij + 24πρ , (2.59)

with the freedom to choose between an overall collapsing or expanding K = ±
√
K2

spacetime6. The price to pay by pursuing this method is that even in the case of absent
momentum flux densities Si = 0, a space-dependent K will induce a source in the
momentum constraints, so that they always need to be solved

(
∆̄LW

)i
− 2

3ψ
6
0∂iK = 8πψ6

0Si , (2.60)

using any of the vector Laplacian decompositions that have been described before7.

2.2.4 Solutions with black holes and fundamental fields

If we want to study a mixed system where black holes and fundamental fields are
present, we rewrite the conformal factor as ψ = ψBH + ψ∗, and the traceless extrinsic
curvature tensor as Āij = Āij

BH +Āij
∗ , where ψBH and Āij

BH are approximate8 Bowen-York
initial data [105, 106] for a black hole with linear and angular momentum P and S
respectively9

ψBH = 1 + M

2r , (2.61)

Āij
BH = 3

2r2

[
niPj + njPi + nkPk (ninj − δij)

]
− 3
r3 (ϵilknj + ϵjlkni)nlSk , (2.62)

6The second and last terms are always positives, but D̄2ψ should not take negative values such
that K2 < 0.

7See also [216] for an interesting approach for inhomogeneous cosmologies.
8Note that while Āij

BH is an exact solution to the momentum constraints, ψBH = 1 +M/2r becomes
only an approximate solution when Āij ̸= 0.

9We are focusing on a single black hole but the extension to multiple boosted and rotating black
holes is trivial given the linearity of the momentum constraints.
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The Hamiltonian and momentum constraints reduce to

∂j∂jψ∗ − 1
12 (ψBH + ψ∗)5 K2 + 1

8 (ψBH + ψ∗)−7
(
Āij

BH + Āij
∗

)2
= −2π (ψBH + ψ∗)5 ρ ,(

∆̄LW∗
)

i
− 2

3 (ψBH + ψ∗)6 ∂iK = 8π (ψBH + ψ∗)6 Si ,

where the solutions ∂j∂jψBH = 0 and ∂jĀ
ij
BH = 0 have been used. The vector W i

∗ is
associated to the vector decomposition of Āij

∗

Āij
∗ =

(
∂iW j

∗ + ∂jW i
∗ − 2

3η
ij∂kW

k
∗

)
. (2.63)

Analogously to the case with fundamental fields, we will make a clever choice of
the trace of the extrinsic curvature tensor so that it includes the matter source terms,
ensuring the maximum principle applies for the Hamiltonian constraint. The remaining
ĀijĀ

ij term sources the right-hand-side of the elliptic equation for ψ∗, which can be
solved using standard integration methods

K2 = 24πρ ,

∂j∂jψ∗ + 1
8 (ψBH + ψ∗)−7

(
Āij

BH + Āij
∗

)2
= 0 ,(

∆̄LW∗
)

i
− 2

3 (ψBH + ψ∗)6 ∂iK = 8π (ψBH + ψ∗)6 Si .

(2.64)

(2.65)

(2.66)

We want to re-emphasise that the choice of decomposition for the vector Laplacian
(∆̄LW∗)i should be guided by the physical system studied, which can lead to an
important impact in the convergence of the numerical algorithm used.

2.3 Long-term stable numerical simulations

Assuming we had initial data that satisfies the constraint equations (2.19), (2.22),
we could in principle integrate the Eqns. (2.23) and (2.24) to evolve the system to
a later time. However, even in the simplest scenarios such as a perturbation around
flat spacetime, our 3+1 code would most likely crash after a short time. So the
ADM evolution equations that we have derived are not yet in a suitable form for
stable numerical integration, and their failure can be understood in terms of their
mathematical properties, they have been proven to be only weakly hyperbolic. In this
case, the evolution problem is not well-posed, and there is no reason to expect the
numerical implementations to be well-behaved.
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In the first part of this section we will recast these equations in a form that is
suitable for numerical evolution. To do so, we will add multiples of the constraints to
the evolution equations and thus affecting the mathematical properties of the system.
In particular, we will discuss a strongly hyperbolic reformulation known as the BSSN
reformulation of the evolution equations, which has proven more robust and successful
[421, 79].

The second part of this section will focus on suitable choices of the lapse and the
shift for long-term stable numerical simulations. As we have discussed, the decomposed
Einstein equations do not provide any equations for α or βi. These are arbitrary
functions that represent the coordinate freedom of general relativity, and thus must be
determined by imposing gauge conditions. We will discuss and compare a few canonical
gauge conditions that form the basis of choices frequently adopted in numerical relativity
schemes.

2.3.1 BSSN reformulation

The key idea is the non-uniqueness of the 3+1 evolution equations by adding arbitrary
multiples of the constraints, to obtain new equations which have the same physical
solution. However, rewriting the equations will inevitably change the mathematical
properties, with the possibility of finding a reformulation which is better behaved
numerically.

To derive the BSSN reformulation we begin by doing again a conformal transforma-
tion of the spatial metric γij = γ̄ij/χ. The conformal factor is usually chosen such that
the background metric γ̄ij has unit determinant, implying χ = γ−1/3 with γ = det γij.
It has been suggested that this choice deals better with spacetimes which contain black
hole singularities [124]. Other conventions often choose χ → χ2, χ = e4ϕ or χ = ψ−4,
as we have seen in the previous section. We will also make a new conformal rescaling
of the traceless extrinsic curvature10 Aij ≡ Ãij/χ. We will apply a first-order reduction
of the equations by writing all second derivatives in terms of first derivatives of a new
set of auxiliary functions that contain first derivatives of the original variables. The
conformal connection functions are defined in terms of the Christoffel symbols of the
conformal metric as

Γ̄i ≡ γ̄jkΓ̄i
jk = −∂j γ̄

ij . (2.67)
10Note that this is different to the rescaling of the traceless extrinsic curvature tensor denoted by

Āij , which is more convenient for solving the constraint equations.
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The number of dynamical variables have been increased from 12: (γij , Kij); to 17: (γ̄ij ,
Ãij, K, χ, Γ̄i), so the system of equations must also increase to fix the new degrees of
freedom that have been introduced. The detailed derivation can be found in Appendix
A and here only the final results are presented.

d

dt
χ =2

3χαK , (2.68)
d

dt
γ̄ij = − 2αÃij , (2.69)

d

dt
Ãij =χ

{
−DiDjα + α

(
(3)Rij − 8παSij

)}TF

+ α
(
ÃijK − 2ÃikÃ

k
j

)
, (2.70)

d

dt
K = − γijDiDjα + α

(
ÃijÃ

ij + 1
3K

2
)

+ 4πα(ρ+ S) , (2.71)

where d/dt ≡ ∂t − £β⃗ and TF denotes the trace-free part. The extra evolution
equations for the conformal connection functions can be obtained using (2.67) and
(2.69)

∂tΓ̄i = −∂j

(
£β⃗γ̄

ij
)

− 2
(
α∂jÃ

ij + Ãij∂jα
)
. (2.72)

We can expand the Lie derivatives using the rule for tensor densities T̃ = γw/2T

£v⃗T̃ =
[
£v⃗T̃

]
w=0

+ wT̃∂iv
i , (2.73)

which in the convention that is being used w = −2/3 for γ̄ij and Ãij , whilst it is w = 1
for χ. Therefore, the final expressions for the BSSN evolution equations are

∂tχ =2
3χ(αK − ∂kβ

k) + βk∂kχ ,

∂tγ̄ij = − 2αÃij + βk∂kγ̄ij + γ̄ik∂jβ
k + γ̃jk∂iβ

k − 2
3 γ̄ij∂kβ

k ,

∂tÃij =χ
{
−DiDjα + α

(
(3)Rij − 8παSij

)}T F
+ α

(
ÃijK − 2ÃikÃ

k
j

)
+ βk∂kÃij + Ãik∂jβ

k + Ãjk∂iβ
k − 2

3Ãij∂kβ
k ,

∂tK = −DiD
iα + α

(
ÃijÃ

ij + 1
3K

2
)

+ 4πα(ρ+ S) + βk∂kK ,

∂tΓ̄i =γ̄jk + 1
3 γ̄

ij∂j∂kβ
k + βj∂jΓ̄i − Γ̄j∂jβ

i + 2
3Γ̄i∂jβ

j − 2Ãij∂jα

+ 2α
(

Γ̄i
jkÃ

jk + 3
2Ã

ij∂jχ− 2
3 γ̄

ij∂jK − 8πχSi
)
.

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)
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2.3.2 Gauge conditions

As the constraints do not depend on the gauge variables, these are independent of the
data specified on the initial slice. However, their choice plays a crucial role in obtaining
robust and long-term stable numerical solutions.

Choice of the lapse

Defining the proper acceleration of an observer as

aµ ≡ nν∇νn
µ , (2.79)

and using the definition of the unit normal vector (2.6),

aµ ≡ nν∇νnµ = −nν∇ν(α∇µt) = −nν∇να∇µt− nνα∇ν∇µt ,

= 1
α
nµn

ν∇να + αnν∇µ

(−1
α
nν

)
= 1
α

(nµn
ν∇να + ∇µα) ,

=
(
δν

µ + nµn
ν
) 1
α

∇να = P ν
µ ∇ν lnα = Dµ lnα , (2.80)

where nµnµ = −1 and nν∇µnν = 0 has been used. Therefore, a spatially varying lapse
results in an acceleration of the observers.

Geodesic slicing is the simplest (but not the best) choice, taking α = 1 and βi = 0,
so that observers stay at fixed location in space with zero proper acceleration. However,
as geodesics tend to focus on regions of high density, the observers will end up collapsing,
making all the coordinate points to converge on the same physical point. This is a
consequence of the evolution equation (2.77) if ∂tK > 0, meaning that K is always
growing and therefore collapsing.

Maximal slicing condition partially solves the problem setting K = ∂tK = 0 on all
slices, so that (2.77) gives an elliptic differential equation for the lapse

D2α = α
[
AijA

ij + 1
3K

2 + 4π(ρ+ S)
]
, (2.81)

which needs to be solved at every timestep. Unfortunately, solving a three-dimensional
elliptic equation is very time-consuming.

Hyperbolic formulations are an example of dynamical gauges that have been proven
to be very successful with spacetimes containing black holes. One of the most popular
choice is

∂tα = −µα1α
µα2K + µα3β

i∂iα . (2.82)
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Fig. 2.3 “Trumpet”-like solution for the lapse function illustrating the slice
stretching. The blue arrows measure the proper time elapsed αdt between neighbouring
3-surfaces. The green arrows illustrate the effect of the shift function using the
gamma-driver condition, which reduces the stretching developed by the evolution of
the lapse.

The basic idea is to avoid the singularity by reducing the lapse and therefore slowing
down the evolution close to it. The values of the coefficients µαi

are physics dependent,
but one of the most successful choices is setting µα1 = 2, µα2 = µα3 = 1, known as
1 + log slicing [102]. An intuitive way of understanding this is by setting βi = 0, so that
the condition becomes ∂tα = −2αK, which can be integrated to get α ∝ exp(−2Kt).
Then, collapsing regions of spacetime where K > 0 will drive the lapse to zero α → 0.
Noting that the proper time is defined as dτ 2 = α2dt2, this gauge condition will “freeze”
the evolution near regions that are collapsing. Together with excision techniques where
the region close to the singularity is ignored and “removed” from the simulation grid
[432, 417, 161, 42, 44, 396], this is one of the most successful methods to avoid black
hole singularities in numerical relativity simulations.

Unfortunately, this trumpet-shaped lapse function leads to the stretching of slices
as shown in Fig. (2.3). Whilst time freezes inside the black hole, it keeps advancing
outside and the spatial slices become distorted. This stretching often leads to the
development of large gradients near the throat of the black hole, causing the failure of
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the simulation. One of the ways that this problem can be resolved is by choosing a
clever shift vector condition for βi.

Choice of the shift

As we have already discussed in Fig. 2.1, the shift functions βi measure the amount
by which spatial coordinates are shifted within a slice with respect to the normal
vector. Therefore, cleverly choosing the evolution equations for βi allows us to pull
the positions away from the throat of the black hole, thus reducing the slice stretching
developed by the evolution of the lapse. A very successful choice is the so-called
gamma-driver condition [43]

∂tβ
i = ηβ1B

i ,

∂tB
i = µβ1α

µβ2∂tΓ̄i − ηβ2B
i , (2.83)

with ηβ1 = 3/4, ηβ2 = µβ1 = 1 and µβ2 = 0 the common choices. The combination of
the 1 + log slicing for the lapse and the gamma-driver condition for the shift is called
the moving-puncture method [67, 124, 445], that has been proven to be very robust in
dealing with singularities.
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Chapter 3

The effects of potential shape on
inhomogeneous inflation

This chapter contains the article “The effects of potential shape on inhomogeneous
inflation” [61], published in the Journal of Cosmology and Astroparticle Physics (JCAP).

We study the robustness of single-field inflation against inhomogeneities. We derive
a simple analytic criterion on the shape of the potential for successful inflation in the
presence of inhomogeneities, and demonstrate its validity using full 3+1 dimensional
numerical relativity simulations on several classes of popular models of single-field infla-
tion. We find that models with convex potentials are more robust to inhomogeneities
than those with concave potentials, and that concave potentials that vary on super-
Planckian scales are significantly more robust than those that vary on sub-Planckian
scales.

3.1 Introduction

Cosmic inflation [244, 333, 36, 429] is the leading paradigm for the early universe.
It posits an early period of accelerated expansion in order to dynamically explain
the current homogeneous and spatially flat state of the universe. One of the most
remarkable successes of the paradigm is the observational confirmation of some of
its key predictions, a nearly scale-invariant and Gaussian spectrum of primordial
perturbations [31].

Inflation was introduced as a solution to several problems of standard big-bang
cosmology [244]. One of these problems is the horizon problem. However, inflation can
only constitute a solution to the horizon problem, if it does not have a horizon problem



52 The effects of potential shape on inhomogeneous inflation

of its own. So it is natural to ask what came before inflation and how it began. There
is certainly no guarantee that the universe was semi-classical at the time inflation
began, and it is difficult to talk about the beginning of inflation in complete generality.
To make progress, we make the simplifying assumption that at the time inflation began
the universe was already described by general relativity minimally coupled to a scalar
field, the inflaton.

In this case, the space of initial conditions for inflation is parameterized by the
degrees of freedom of the spatial metric and its conjugate momentum, and the corre-
sponding degrees of freedom of the inflaton. For each degree of freedom, we are free to
specify its configuration on the initial Cauchy hypersurface. It is then natural to ask
for which initial data inflation will be successful. By “successful” we mean that some
region of the initial hypersurface undergoes accelerated expansion for 60 e-foldings or
more. Whether inflation is successful depends both on the dynamics of the inflaton
model and the initial conditions, as well as the interplay between them.

In this work, we will explore one particular aspect of this interplay, the effect of
the initial amplitude of the inhomogeneities in the inflaton field (and their associated
metric perturbations) on different models of inflation.

Inflationary models are broadly classified as “concave” and “convex” models, depend-
ing on the shape of their potentials. We propose an analytic criterion as a diagnostic
for whether inflation will be successful for a given potential. We test this criterion
using full 3+1 numerical general relativity solutions and show that convex models are
more robust to inhomogeneities than concave models. Furthermore, we show that for
concave potentials the scale in field space over which the potential varies appreciably
plays an important role. Finally, we will argue that for some potentials there exists a
bound on the initial mean value of the inflaton field, beyond which inflation will be
successful regardless of the amplitude of the inhomogeneities.

3.2 Initial conditions and models

The problem of initial conditions for inflation has been studied extensively using
analytic and semi-analytic methods [224, 257, 459, 430, 73, 33, 74, 225, 291, 260, 386,
359, 313, 314, 117, 341, 226, 103, 118, 358, 72, 86, 125, 441, 71, 70, 395, 342, 436,
113, 223, 343, 116, 142, 164, 415, 402, 165, 357, 403, 82, 316, 344, 205, 98], as well as
numerically [34, 35, 326, 199, 115, 228, 227, 114, 327, 229, 325, 193, 190, 107, 46, 47]
(see [110] for a short review).
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Recently it has become possible to use numerical relativity codes to evolve different
initial configurations in the time domain even in the regime in which black holes form
[190, 157], allowing for a fully non-perturbative investigation of the field dynamics
in response to the initial conditions. This work was limited to a small number of
“typical” models, and quantified their success for different choices of parameterized
initial inhomogeneities.

One natural way to extend these investigations is to expand the classes of inhomo-
geneities, which was initiated in [155]. Another interesting direction is to expand the
classes of inflationary models under investigation, which we will do in the present work.

In this section we summarize the key features of the space of initial conditions on
which we focus, as well as the larger class of inflationary models.

3.2.1 The space of initial conditions

We decompose the spacetime metric using the standard ADM decomposition [57],

ds2 = −α2 dt2 + γij(dxi + βi dt)(dxj + βj dt) . (3.1)

Here γij is the 3-metric on the spatial hypersurface, while α and βi are the lapse
and shift. We are free to choose the initial Cauchy hypersurface. The metric initial
conditions are then fully specified by a choice of γij and the extrinsic curvature Kij at
each point in the spatial domain. The extrinsic curvature can further be decomposed
into the expansion K = γijKij and trace-free tensor components Aij,

Kij = 1
3Kγij + Aij . (3.2)

In the perturbative limit, the transverse part of Aij represents “gravitational wave”
modes, though we emphasize that in the non-perturbative limit they are not solutions
to a linear wave equation. In our sign convention, K < 0 denotes a locally expanding
spacetime.

Meanwhile, the space of initial conditions for the inflaton ϕ is given by the value of
the field and its canonical momentum

Π ≡ α−1(ϕ̇− βi∂iϕ) , (3.3)

at each point.
A more subtle aspect of the initial conditions is the choice of spatial boundary

conditions. In what follows we will assume periodic boundary conditions for the spatial
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domain, which imposes a T 3 topology on the space. Alternatively, this can be thought
of as imposing a scale of homogeneity on the initial conditions with the Universe made
up of many (inhomogeneous) boxes of size L. One can always make L larger, thus
increasing the scale of homogeneity relative to our patch of the Universe, and it is
usually considered that taking L to be greater than the initial Hubble scale of inflation
is a sufficiently conservative approach. Other topologies, in particular those that can
support a positive-definite (3)R can lead to different conclusions [74, 316], so that this
is a choice that should be made explicit.

In summary, the space of initial conditions for single-field inflation consists of the
values of the variables (γij, Kij, ϕ,Π) on the initial hypersurface. Their values are not
completely independent because they are subject to the Hamiltonian and momentum
constraints.

The constraints are a set of four non-linear coupled partial differential equations,
which are non-trivial to solve for a general matter distribution (see e.g. [41, 79]).
To simplify this task, some variables are often set to zero, severely restricting the
available space of initial conditions. In Refs. [190, 157, 155], γij is, for example,
assumed to be conformally flat γij ≡ χ−1δij where χ is a conformal factor. In addition,
Refs. [190, 157] set the trace-free part of the extrinsic curvature to zero Aij = 0.
Combined with the additional simplifying conditions that Π = 0 and the expansion
rate is spatially constant K = const < 0 (i.e. uniformly expanding), the momentum
constraint is then trivially satisfied. The parameter space in this case is then just the
scalar configuration ϕ(x), with the value of K imposed by an integrability condition in
the case of periodic boundary conditions (see [81]). The Hamiltonian constraint then
determines the conformal factor, χ.

Two more general classes of deviations from homogeneity have been explored. First,
in [157], a special case where K(x) = −Cϕ(x) +K0 where C > 0 is a free parameter,
and the value of K0 is set by integrability on the periodic domain. This Ansatz keeps
the momentum constraint trivial but allows us to explore initial conditions which mix
regions of local expansion (K < 0) and contraction (K > 0). It was found that, as
long as the initial hypersurface is expanding on average, ⟨K⟩ < 0, inflation will occur
in some patch, even if part of the spacetime collapses. Second, in [155], non-zero
transverse modes AT T

ij ̸= 0 were studied. It was found that the amplitude of the scalar
perturbations remained the main driver of inflationary success, with the tensor modes
generally reducing the number of e-folds, but not causing failure in isolation even at
high relative energy densities.
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It is clear from this discussion that a large space of initial conditions remains to be
explored. As we mentioned before, we will not pursue this direction here and reserve
it for future work. We instead consider initial conditions such that γ̃ij = δij, Π = 0,
Aij = 0 and K = const < 0, and we expand the classes of inflationary models.

3.2.2 The space of models

Inflation a priori only predicts that the observed primordial spectrum of density
perturbations should be nearly scale-invariant but does not predict the sign of the
departure from scale invariance. The space of inflationary models is vast, encompassing
a diverse variety of single field and multi-field models with many mechanisms (see e.g.
[346]). Without the guidance of some fundamental theory of inflation, models which
are not already ruled out by observations are in principle all valid. Nevertheless, useful
classifications of models can be made, such as categorizing the models in terms of their
energy scale, or the field range. As one might expect, it was shown in [157] that small
field inflation is generally less robust than large field inflation.

In this work, we will rely on a slightly more refined classification to guide our choice
of inflationary models. In the slow-roll approximation, we know that the slow-roll
parameter ϵ = −Ḣ/H2 obeys the differential equation

d ln ϵ
dN

= (ns(N ) − 1) + 2ϵ . (3.4)

Suppose the observed sign and magnitude of the departure from scale-invariance are
not mere accidents but arise because the scalar spectral index has the functional
form [356, 408]1

ns(N ) − 1 = −p+ 1
N

, (3.5)

where N is the number of e-folds (counted from the end of inflation), and p is number
of order unity. The most general solution to the differential equation (3.4) is then given
by

ϵ(N ) = p

2N
1

1 ± (N /Neq)p , (3.6)

where Neq is an integration constant. Unless there are additional hierarchies, we expect
it to be of order unity.

If we further assume that we observe modes at a typical moment so that either the
first or the second term in the denominator dominate, we are left with two solutions

1There is no guarantee that this is the case, but models that deviate from this will require additional
small parameters to account for the near scale-invariance.
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that are compatible with current data

ϵ(N ) = p

2N
and ϵ(N ) = p

2N

(Neq

N

)p

. (3.7)

Because p < 0 is disfavored by data, we will restrict our attention to p > 0.
So far this is general and makes no mention of a potential. If we assume that the

dynamics is governed by a single scalar field with canonical kinetic term

Lϕ = −1
2g

µν∂µϕ∂νϕ− V (ϕ) , (3.8)

we can reconstruct the potential from the equations2

dϕ

dN
= M2

Pl
8π

V ′

V
and

(
dϕ

dN

)2

= ϵM2
Pl

4π . (3.9)

One finds that the first class corresponds to monomial (or power law) potentials

V (ϕ) = λM4−2p
Pl ϕ2p . (3.10)

For the second class of models the potential during inflation is well approximated by

V (ϕ) ≃ Λ4
[
1 −

(
ϕ

µn

)n]
, (3.11)

where n = 2p/(p− 1) provided p > 1, and by

V (ϕ) ≃ Λ4
[
1 −

(
µn

ϕ

)n]
, (3.12)

with n = 2p/(1 − p) provided 0 < p < 1. For potentials of the form (3.11) inflation
occurs as the inflaton rolls off a hilltop, and we will sometimes refer to them as hilltop
models. Similarly, for the form (3.12) inflation occurs as the inflaton rolls off a plateau,
and we will sometimes refer to them as plateau models. For p ̸= 1 the departure from
the plateau is described by a power law. The case p = 1 is special and the departure
becomes exponential

V (ϕ) ≃ Λ4
[
1 − e−ϕ/µ

]
. (3.13)

We see that the hilltop and plateau models involve an additional scale, denoted µ in
the exponential models and µn in the power law models, which describes the distance

2We will use the Planck mass M2
Pl = ℏc/G throughout the chapter.
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in field space over which the plateau is approached. As we will see, this scale plays an
important role for the robustness against inhomogeneities. Roughly, we will see that
models are robust if this scale is Planckian or super-Planckian, and are susceptible to
inhomogeneities if this scale is sub-Planckian. Incidentally, this is closely tied to the
question whether gravitational waves from these models are detectable with upcoming
CMB experiments, which will be capable of detecting gravitational wave signals from
models with a super-Planckian characteristic scale [3].

3.3 An analytic criterion for robustness

In this section, we will derive a simple analytic criterion that allows us to infer the
robustness of a given single-field model against inhomogeneities. From [190, 157, 155]
we know that the amplitude of the inhomogeneity plays an important role. At fixed
energy density in the gradients, the amplitude is generically larger if only one or a
few modes are excited than if the energy density is distributed over a large number of
modes. So in what follows we will assume that the inhomogeneous initial conditions
for the inflaton field are given by a superposition of modes in the 3 spatial directions
[190, 157, 155]

ϕ(t = 0,x) = ϕ0 + ∆ϕ
3 (cos kx+ cos ky + cos kz) , (3.14)

with vanishing canonical momentum

Π(t = 0,x) = 0 , (3.15)

where k = 2πN/L is the wavenumber associated with the inhomogeneity, N = 1, 2, . . . is
an integer, and we set L to be the Hubble length H−1

i in the absence of inhomogeneities

L = 3MPl√
24πV (ϕ0)

. (3.16)

If we assume that the spatial metric is initially conformally flat, γij = χ−1δij, and
K = const < 0 as discussed in Sec. 3.2, then the scalar field dynamics near the initial
hyperslice is approximately described by the Klein-Gordon equation

ϕ̈ ≈ ∇2ϕ− dV (ϕ)
dϕ

, (3.17)



58 The effects of potential shape on inhomogeneous inflation

(a) (b)

Fig. 3.1 (a): Example of inflationary potential with inhomogeneous initial
conditions reaching ϕmax ≡ ϕ0 +∆ϕ and ϕ0 −∆ϕ. The inflaton rolls down the potential
to the reheating minimum ϕreh in the positive ϕ direction (b): Sketch of f(ϕ0,∆ϕ)
for a concave and convex model: The main difference between models (different
solid lines) is whether f has a maximum and there exists a “drag-down” region where
f < 0. Away from the trivial ∆ϕ = 0 homogenous point, convex models do not have
such maximum and always stay within the f > 0 region where the field is pulled back.
Concave models however, can have a turning point followed by a zero crossing and
values of ∆ϕ for which f < 0 (dashed line) and hence the field is dragged towards the
minimum, ending inflation. The shaded colours illustrate different outcomes of the
maximum of the field ϕmax ≡ ϕ0 + ∆ϕ.

where the subdominant friction term has been ignored since initially ϕ̇ ∼ 0. Without
loss of generality, we assume that the inflaton rolls down the potential to the reheating
minimum ϕreh in the positive ϕ direction – see Fig. 3.1a. Consider the dynamics of
the inflaton at the point of maximum amplitude ϕmax – this is the field value closest
to the reheating minimum and thus the point at which the inflaton is most at risk of
falling into the reheating minimum and ending inflation. Our question is then whether
the inflaton field at this point will initially be “pulled back” towards ϕ0 to safety,
or whether the gradient of the potential dV/dϕ < 0 will drag the inflaton into the
minimum, ending inflation early or preventing it from taking place altogether. For
compactness, we will sometimes refer to the former as “pull-back” and the latter as
“drag-down”.
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Initially, ϕmax = ϕ0 + ∆ϕ. Using Eqn. (3.17) and Eqn. (3.14), its initial evolution
is given by

ϕ̈max = −k2∆ϕ− dV (ϕmax)
dϕ

= −f(ϕ0,∆ϕ), (3.18)

where

f(ϕ0,∆ϕ) = k2∆ϕ+ dV (ϕ0 + ∆ϕ)
dϕ

. (3.19)

In Fig. 3.1b we sketch the shape of the function f(ϕ0,∆ϕ) at fixed ϕ0 for different
inflationary models. In the absence of inhomogeneities, ∆ϕ = 0, f(ϕ0,∆ϕ) < 0
which means that ϕ̈max > 0, i.e. the field rolls towards the reheating minimum as
expected. As we increase the amplitude of the inhomogeneities the gradients contribute
as −∇2ϕ = k2∆ϕ > 0 which is positive definite.3 For small ∆ϕ, we can approximate
the potential contributions

dV (ϕ0 + ∆ϕ)
dϕ

≈ dV (ϕ0)
dϕ

+ d2V (ϕ0)
dϕ2 ∆ϕ

= −3
√
ϵV

4πH
2
i MPl + 3ηVH

2
i ∆ϕ , (3.20)

where ϵV and ηV are the usual potential slow-roll parameters evaluated at ϕ0. In the
region of the potential that supports inflation these are small so that the contribution
from gradients eventually overcomes the potential contribution. This implies that ϕmax

is pulled back into the inflationary region as described in [157].
However, as ∆ϕ increases further, expanding dV/dϕ is no longer a good approxima-

tion, and the potential contribution may overcome the gradient contribution, k2∆ϕ, so
that f(ϕ0,∆ϕ) may take on negative values. Suppose this occurs at an inhomogeneous
amplitude of ∆ϕcrit and correspondingly ϕcrit = ϕ0 + ∆ϕcrit, such that a zero exists at

f(ϕ0,∆ϕcrit) = k2∆ϕcrit + dV

dϕ
(ϕ0 + ∆ϕcrit) = 0 . (3.21)

Then as ∆ϕ > ∆ϕcrit, the inflaton will tend to roll towards the reheating minimum
at least initially, and has a greater chance of failure4

3Note that while it is assumed that ϕ has a periodic profile with wavelength k, this positive
definiteness is general even if ϕ takes on a more complicated profile as ϕmax is a maximum of the
profile by definition.

4In [190], a criterion based on the spatially average (i.e. global) force ⟨V ′(ϕ)⟩ > V ′(⟨ϕ⟩) was
introduced, which led to the simple condition that inflation is likely to fail when ∆ϕ reaches the
end of the inflationary plateau. This is consistent with our findings. Our condition, on the other
hand, relies on the balancing of the local force at the point of maximal fluctuation, and as we will
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Ignoring the trivial case of f(ϕ0,∆ϕ) < 0, ∆ϕ ≈ 0, where inflation is well-known
to succeed, we begin with f(ϕ0,∆ϕ) > 0 – we assume there exists some region where
inflation will succeed as long as ∆ϕ is small enough. As we increase ∆ϕ, the slope of
f(ϕ0,∆ϕ) is initially positive because ηV ≪ 1 and k ≳ Hi. We can further relate this
to the overall shape of the potential as follows.

If the potential is convex, d2V/dϕ2 > 0, then f(ϕ0,∆ϕ) must increase as ∆ϕ is
increased and remains positive. This means that convex models are automatically
robust to inhomogeneities in the inflaton sector. The inhomogeneous field is initially
always pulled back, away from the reheating minimum. The time scale is roughly given
by the inverse of its wavenumber, tpb ∼ k−1. For N = 1 (i.e. near horizon size mode),
this is then tpb ∼ H−1, which means that the field is pulled back within a Hubble time.
We will confirm this intuition numerically in Sec. 3.4.

On other hand, if the potential is concave, d2V/dϕ2 < 0, then f(ϕ0,∆ϕ) may
turn over as ∆ϕ increases. If the potential is sufficiently concave before the reheating
minimum (which is convex by construction), then a zero crossing at ϕcrit can exists
such that f(ϕ0,∆ϕcrit) = 0. In this case f(ϕ0,∆ϕ) < 0 at ϕmax > ϕcrit, and the inflaton
will fall into the reheating minimum and end inflation. Once a sufficiently large spatial
region falls into the reheating minimum, the remaining space will be dragged down by
the pressure difference between the inflating plateau and the minimum, resulting in
the end of inflation within a few e-folds.

This discussion implies that convex potentials are generically more robust to
inhomogeneities than concave potentials. We also see that decreasing the wavelength
of the inhomogeneities (and hence increasing k2) makes models more robust – the most
dangerous modes are the long wavelength near horizon modes, consistent with the
numerical results of [157].

As we will discuss now, robustness for concave potentials is closely related to the
characteristic scale of the potential. To see this, note that in order for f to vanish at
∆ϕcrit, and to turn negative for ∆ϕ > ∆ϕcrit, it must possess a maximum, i.e.

∂f

∂∆ϕ = k2 + V ′′(ϕ0 + ∆ϕ) , (3.22)

must have a zero for some value of ∆ϕ. We now consider this requirement for different
models, beginning with the monomial potentials defined in Eqn. (3.10). In this case

see, can accurately predict the point of failure (or not) even when ∆ϕ reaches beyond the end of the
inflationary plateau.
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we write

∂f

∂∆ϕ = k2 + 2p(2p− 1)V (ϕ0 + ∆ϕ)
M2

Pl

M2
Pl

(ϕ0 + ∆ϕ)2 (3.23)

= k2

1 + 6p(2p− 1)
(kL)2

(
ϕmax

ϕ0

)2p
M2

Pl
8πϕ2

max

 ,
where we have used Eqn. (3.16) in going from the first to the second line. The first
term proportional to k2 is the gradient term, while the second is the potential term.
From the denominator of the second term we again see that increasing the wavenumber
suppresses the importance of the potential term relative to the gradient term, and that
inflation is more robust to inhomogeneities with higher wavenumbers. If the potential is
concave, p < 1/2, the second term in the parentheses is negative as expected. However,
since |ϕmax| < |ϕ0| and p > 0, it is negligible until ϕmax drops well below the reduced
Planck mass. If the potential is still well approximated by a power law at this point,
an instability may develop (see ϕ2/3 case in Sec. 3.4). However, the functional form
assumed here only describes the potential during the inflationary period, and as the
magnitude of ϕ decreases the potential in a single-field model must eventually turn
over and develop a minimum. This implies that for sufficiently small |ϕ| the potential
again becomes convex. If this transition occurs before the second term becomes large,
we expect the model to be robust irrespective of whether the inflationary part of the
potential is convex or concave.

We can readily extend this discussion to the other classes of models introduced
in 3.2.2. For the hilltop models (3.11), we can write (again using Eqn. (3.16))

∂f

∂∆ϕ = k2 − n(n− 1) Λ4

M2
Pl

M2
Pl

µ2
n

(
ϕmax

µn

)n−2

= k2

1 − 3n(n− 1)
(kL)2

M2
Pl

8πµ2
n

(
ϕmax

µn

)n−2
 . (3.24)

Again the potential is only well approximated by equation (3.11) provided ϕmax < µn.
So a maximum can only occur if µn is well below the reduced Planck mass, implying
that models in which the characteristic scale over which the potential departs from Λ4

is Planckian are robust even against large field excursions.
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For the plateau models (3.12), defining the potential so the field rolls towards larger
values of ϕ, we can similarly write

∂f

∂∆ϕ = k2

1 − 3n(n+ 1)
(kL)2

M2
Pl

8πµ2
n

(
µn

|ϕmax|

)n+2
 . (3.25)

In this case the potential is only well approximated by (3.12) if |ϕmax| > µn, and as
for the hilltop models, plateau models with a Planckian characteristic scale are robust
against large field excursions, and the function f can only change sign for models with
sub-Planckian µn.

For models in which the potential approaches the plateau exponentially as in (3.13),
but defined so that the field rolls towards the minimum in the positive ϕ direction

∂f

∂∆ϕ = k2 − Λ4

µ2 e
ϕmax/µ

= k2
[
1 − 3

(kL)2
M2

Pl
8πµ2 e

ϕmax/µ

]
, (3.26)

we see that for µ of order the reduced Planck mass, ∂f/∂∆ϕ > 0 in the regime in
which the potential is well approximated by (3.13), so that there is no maximum in f

and no zero crossing can exist for any value of ∆ϕ and ϕ0. Starobinsky inflation is an
example of this case and will be studied in the following section.

The condition defined by (3.19) is valid for the initial hyperslice. We will now show
that it still broadly remains valid at a later time of the evolution. At later times the
gradients dilute due to the expansion as ∇2ϕ ∼ k2∆ϕ2/a(t)2, where a(t) ∼ eHt is the
scale factor, such that (3.21) becomes

f(ϕcrit, t) ≈ k2∆ϕcrit e
−2Ht + dV (ϕcrit)

dϕ
, (3.27)

and ∆ϕcrit will take different values over time.
Hence, the robustness of a model is not only determined by the existence of a

critical value ϕcrit(t = 0) = ϕ0 + ∆ϕcrit(t = 0) for which the field will initially roll
towards the minimum, but the field should also restore as close as possible to ϕ0 before
crossing ϕcrit at later times to inflate by enough e-folds. If the rate of change of ϕcrit(t)
is small, the pull-back will have time to homogenize the field before crossing ϕcrit, and
the spacetime will inflate as in the homogeneous case (see D-brane inflation in Fig. 3.4b
and an α-attractor model in Fig. 3.5b). However, if ∆ϕcrit(t) decreases with N faster
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than the pull-back reduces the amplitude, the field will fall to the minimum, ending
inflation (see Fig. 3.3b).

3.4 Numerical validation

In this section we demonstrate the validity of our criterion by solving the equations
of general relativity numerically using the numerical relativity package grchombo
[55, 154]. The metric initial conditions for the simulations are described in Sec. 3.2,
with near-horizon scale inhomogeneity as defined in Eqn. (3.14) and Eqn. (3.15). The
evolution equations and a summary of the parameters used for the simulations (Tab.
B.1) are shown in the Appendix. A summary video of the field evolution for different
models can be found in this link.

3.4.1 Convex potentials

As discussed above, for convex potentials ∂f/∂∆ϕ > 0, so that the gradients will
always pull the field back. As a concrete representative of this class, we consider

V (ϕ) = λM
8/3
Pl (−ϕ)4/3. (3.28)

A homogeneous initial value of the field of ϕ0 = −3.26MPl with λ = 2.57 × 10−14

would result in 100 e-folds. Note that the potential as written in Eqn. (3.28) is only a
good approximation during inflation, and the full potential is expected to be analytic
at the origin. However, the details of the transition do not affect the conclusions.

Fig. 3.2a shows that even for field excursions that reach the reheating minimum,
with ∆ϕ = 3.26MPl (corresponding to Ω ≡ ρgrad/ρV ≈ 50), the maximum of the field
ϕmax is pulled back into the inflating region, as predicted by our criterion. In the latter
case, the scalar field has support well in the regime where a homogeneous field would
have failed. Similar results were found for the quadratic model V = (1/2)m2ϕ2 in [157],
which is also robust.

Perhaps the most interesting point here is that convex models are robust even if
the inflaton explores regions of the potential that do not support inflation. This was
first observed in [157] for m2ϕ2 potentials, and here we see that this remains true more
generally.

It is also worth noting that different regions begin inflation for rather different
values of the scalar field, so that the resulting spacetime will be highly inhomogeneous

https://youtu.be/yk9sGuG8hdI
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(a) (b)

Fig. 3.2 (a): Convex monomial: The left panel shows the convex model potential
ϕ4/3 (3.28) rotated by 90◦. The right panel shows the evolution of the maximum
ϕmax = ϕ0 + ∆ϕ and minimum ϕmin = ϕ0 − ∆ϕ field points as a function of e-folds N
(time runs from left to right). If these extremal points restabilize to values closer to ϕ0,
inflation can proceed. Failure occurs when one of the points diverges to the reheating
minimum, but this model shows robustness to this failure mode, as expected from our
analytic prescription. (b): Concave monomial: As Fig. 3.2a but for the concave
monomial model ϕ2/3 (3.29). The dashed black line corresponds to the mean value ϕ0,
which is set to be the value that would result in 100 e-folds for the homogeneous case.
See Tab. B.1 for more details about the parameters used. The field at the reheating
minimum is pulled back and enters slow-roll inflation from the restored field value.
The features at N ≈ 2 correspond to black holes that form and inflate out of the
simulation grid after the pull-back – with the time scale roughly given by the inverse
of its wavenumber.

on very large scales and inflation only leads to homogeneity and isotropy within the
different regions.

3.4.2 Concave potentials

As we saw in our analytic treatment, a more careful discussion is required for concave
potentials because the robustness depends on the characteristic scale of the potential
µ. We will now test our analytic predictions for different concave models.
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Monomial potentials

An example of a concave monomial potential which is compatible with the observed
value of the spectral index ns is the so-called ϕ2/3 model which arises in the context of
string theory [424]. During inflation, the potential is well approximated by

V (ϕ) = λM
10/3
Pl (−ϕ)2/3 . (3.29)

This is a large field model in which ϕ0 = −2.31MPl and λ = 3.58 × 10−14 lead to
100 e-folds of inflation in the absence of inhomogeneities. As mentioned previously,
for typical values of the parameters, these models develop a maximum of f very
close to the bottom of the potential. In fact, the critical point where f = 0 is at
∆ϕcrit ≈ −1.25 × 10−10MPl for N = 1 and thus it is challenging to simulate a region
where f < 0.

We show the results for this model in Fig. 3.2b. As expected, for concave monomial
models the results are similar to those with convex potentials.

Hilltop models

For concave models, like hilltop models (3.11), f may develop a zero at ∆ϕcrit. Our
condition implies that there is a maximum in f if and only if n > 2 since for n = 2 f
is linear in ∆ϕ and a second zero crossing cannot exist. In this section we will focus in
the cubic hilltop model n = 3,

V (ϕ) =


Λ4 , ϕ < 0

Λ4
[
1 −

(
ϕ
µ3

)3
]
, 0 < ϕ < ϕcc

1
2m

2(ϕ− ϕreh)2 , ϕ ≥ ϕcc

(3.30)

To simulate these models, we extend the inflationary potential with a quadratic
minimum beyond some value ϕcc, and a flat plateau V (ϕ) = Λ4 for ϕ < 0. The
potential we use for reheating is Vreh(ϕ) = (1/2)m2(ϕ − ϕreh)2, where m and ϕreh

are chosen such that Vinf(ϕcc) = Vreh(ϕcc) and dVinf(ϕcc)/dϕ = dVreh(ϕcc)/dϕ. The
reheating potential is clearly convex, but we choose ϕcc sufficiently deep into the
non-inflating regime (i.e. the slow-roll parameter ϵ ≥ 1). This is conservative in the
sense that the model would be more robust if the transition occurred earlier5. This
model of reheating is chosen for simplicity – one could also imagine other examples like

5Note that such extensions may change their observational constraints, see e.g. [298].
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(a) (b)

Fig. 3.3 (a): Cubic hilltop with µ3 = MPl. The left panel shows the potential (3.30)
rotated 90o where the solid black part of the curve is the inflationary potential we
want to test and the grey parts correspond to extensions of the model as described
in the text. The dashed black line corresponds to the mean value of the field ϕ0 that
would result in 100 e-folds in the absence of inhomogeneities. The right panel shows
the evolution of the maximum and minimum of the field ϕmax and ϕmin where we have
chosen ∆ϕ such that the field configuration reaches the minimum of the potential.
As there exists no ∆ϕcrit, the extrema of the field pull back towards ϕ0 during the
evolution (blue solid line). At N ≈ 2 black holes form and shortly afterwards inflate
out of the simulation when they fall below the numerical resolution of the grid. (b):
Cubic hilltop with µ3 = 5 × 10−2MPl. The dash-dotted black lines correspond to the
critical values of the field ϕcrit(t) by solving (3.27) for different wavelengths: k = 2πH
(N = 1) and k = 6πH (N = 3). If some value crosses to > ϕcrit(t), the field will
fall from the inflationary plateau to the reheating minimum, dragging the rest down.
For example, for N = 1 the minimum of the field ϕmin (blue solid line) crosses the
dash-dotted line ϕcrit and hence rolls down. For fixed ∆ϕ, the N = 3 case (dashed
green line) falls to the minimum when ϕmax crosses the ϕcrit that corresponds to N = 3,
but stays longer in the inflationary plateau than the N = 1 case. As expected, this
shows that inflation is more robust to inhomogeneities with shorter wavelengths. The
parameters used in this plot are shown in Tab. B.1.

hybrid inflation where the reheating field is not the inflaton, but this would require
working with an additional scalar field.

As discussed above, the robustness of this model depends on the characteristic
scale of the potential µ3. For µ3 = MPl we find that ϕ0 = 7.43 × 10−2MPl and
Λ4 = 2.05 × 10−16M4

Pl would result in 100 e-folds for the homogeneous case. As argued
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in the previous section, f does not have a maximum, so that the field is pulled back
even when it explores the minimum of the potential. This is shown in Fig. 3.3a.

On the other hand, for µ3 = 5×10−2MPl together with ϕ0 = 1.05×10−5MPl and Λ4 =
5.15×10−24M4

Pl, f develops a maximum at ∆ϕ∗ = 6.87×10−3MPl and a zero crossing at
∆ϕcrit = 1.38 × 10−2MPl. So for an initial amplitude of ∆ϕ = 1.10 × 10−2MPl < ∆ϕcrit

the field will initially be pulled back, whereas for ∆ϕ = 1.50 × 10−2MPl > ∆ϕcrit, the
the inflaton will fall from the inflating plateau into the reheating region, Fig. 3.3b.

However, even if the field is initially pulled back, inflation may fail at later times
because ϕmax > ϕcrit(t) (see dash-dotted black line). For these two cases in which
Ω ≈ 10−3, inflation fails to provide more than 1.5 e-folds. In addition, we show that
inflation is more robust to inhomogeneities with higher wavenumbers. Starting with the
same amplitude, we see that N = 3 leads to more e-folds of inflation than the N = 1
case, although this is not sufficient to save inflation in this case. Similar results were
found for the hilltop quartic model (n = 4) in [157], in agreement with the theoretical
prediction. We conclude that small field hilltop models with n > 2 are sensitive to
initial inhomogeneities in the scalar field.

Plateau models

We also consider the third class of concave potentials (3.12), which arises in string
theory as D-brane inflation [296, 211, 189]. In the best-studied case the inflaton
describes the position of a D3 brane, which corresponds to n = 4. As in the hilltop
model, we smoothly extend the potential with a convex model at ϕcc = −1.05µ4 (such
that ϵ(ϕcc) ≫ 1), giving us the following approximation to the potential

V =

 Λ4
[
1 −

(
µ4
ϕ

)4
]
, ϕ < ϕcc

1
2m

2(ϕ− ϕmin)2 , ϕ ≥ ϕcc

(3.31)

As before, we first consider µ4 = MPl, ϕ0 = −2.18MPl and Λ4 = 5.58 × 10−15M4
Pl

so that observational constraints on the scalar power index are satisfied. We choose
∆ϕ = 1.25MPl for which ϕmax = ϕreh and observe that the field is pulled back to safety
concluding that the model is robust. This is shown in Fig. 3.4a.

On the other hand, for µ4 = 10−2MPl with ϕ0 = −9.92 × 10−2MPl and Λ4 =
1.29 × 10−24M4

Pl, we predict a value of ∆ϕcrit = 8.21 × 10−2MPl for which the field falls
from the inflationary plateau. We test this numerically in Fig. 3.4b by exploring the
evolution of field configurations with ∆ϕ = 8.40 × 10−2MPl and ∆ϕ = 8.10 × 10−2MPl.
As shown in the figure the former is immediately dragged down ending inflation while
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(a) (b)

Fig. 3.4 (a): Large field D-brane model with µ4 = MPl. The black curve is the
inflationary model and the grey parts of the curve show the reheating extension which
is attached. No ϕcrit exists so even field configurations that reach the minimum are
pulled back to the inflationary plateau. As for other large field models, the gradient
energy density collapses and forms black holes at N ≈ 2. The dashed black line is the
value of ϕ0 that would inflate for 100 e-folds in the absence of inhomogeneities, see Tab.
B.1 for more details. (b): Small field D-brane: As Fig. 3.4a but with µ4 = 10−2MPl.
For the wavenumber N = 1, (3.27) predicts the field critical values ϕcrit(t) (dash-dotted
black line). If we choose ∆ϕ such that ϕmax > ϕcrit the field will immediately fall down
to the reheating minimum (blue line). The value of ϕcrit decrease more slowly than in
the cubic hilltop case (see Fig. 3.3b), so the field has time to pull back to values close
to ϕ0 and slow-roll down from the plateau (green line).

the latter is pulled back from the brink and inflates, as our criteria predicted. We
conclude that small field D-brane inflation is not generically robust because there exist
values of ∆ϕ that can rapidly end it.

The D-brane model is discussed further in Sec. (3.5), in the context of constraints
on the initial value of ϕ0.

Exponential plateau models

For completeness, we also consider models in which the potential approaches the
plateau exponentially rather than like a power law. The best-known model in this class
is the Starobinsky model [428]

V (ϕ) = Λ4
(
1 − eϕ/µ

)2
, (3.32)
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(a) (b)

Fig. 3.5 (a): The Starobinsky model is an example of an exponential plateau model
with µ =

√
3/16πMPl and hence with large field excursions. As f does not have a

maximum, it will remain positive for any ∆ϕ, so that the model will support inflation
even if the field configuration starts in non-inflationary regions of the potential (blue
solid line). Similar to other large field cases (Fig. 3.2b, 3.2a, 3.3a and 3.4a) in which
there are large gradient energy densities, black holes form at N ≈ 2. See Tab. B.1
for details of the parameters used. (b): Example of an α-attractor model with
µ = 5 × 10−3MPl. In this case there exists a ∆ϕcrit such that the field will initially roll
towards the non-inflationary regime and reach the minimum (blue line). As for the
small field D-brane model (Fig. 3.4b), the values taken by ϕcrit(t) over time change
more slowly than the pull back. So as long as initially ∆ϕ < ϕcrit(t = 0) (green line),
the field will restabilise to values close to ϕ0 before any region crosses ϕcrit(t) and
therefore the spacetime approaches inflation during the 10 e-folds for which we follow
the evolution, unlike the small field cubic hilltop model (see Fig. 3.3b).

where µ ≡
√

3/16πMPl [429]. The transition from the concave to the convex domain
of the potential occurs at d2V/dϕ2(ϕcc) = 0, or ϕcc = −µ ln 2 so there is no need to
extend it. In this model f does not possess a maximum, and the field is pulled back
into the inflationary plateau even if it initially explores the minimum.

We show this in Fig. 3.5a for the parameters shown in Tab. B.1 in the appendix.
As expected, even field configurations that reach the bottom of the potential are
restabilised to values closer to ϕ0, and we follow their evolution numerically for N > 10
e-folds, at which point the inhomogeneities have redshifted away and the local regions
undergo slow-roll inflation.

In the Starobinsky model the scale µ and the Planck scale share a common origin,
but this is not the case for all exponential plateau models. The so-called α-attractors
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[297, 299] are a class of models in which µ can vary over a wide range of scales. For
sufficiently small values f will cross zero for a large enough value of ∆ϕ as we will
show below.

Using (3.19) we see that for µ < 2.7×10−2MPl, f will gain a maximum, and crosses
zero before ϕcc if µ < 10−2MPl. We show this for µ = 5 × 10−3MPl in Fig. 3.5b. As
before, we set ϕ0 to the value of the field that would result in 100 e-folds in the absence
of inhomogeneities. For this value f crosses zero at ∆ϕcrit = 4.74 × 10−2MPl. We
confirm that for ∆ϕ = 5.1 × 10−2MPl > ∆ϕcrit the field is dragged down, and that it
is pulled back for ∆ϕ = 4.5 × 10−2MPl < ∆ϕcrit. Similar to the small-field D-brane
inflation model, the rate of change of ϕcrit(t) over time is smaller than the pull-back,
so that there is no crossing at later times and the field can restore to values close to
ϕ0. We again follow the evolution for N > 10 e-folds.

3.5 Constraints on the initial value of the scalar
field

So far we have focused the discussion on models of inflation with ϕ0 chosen to yield
100 e-folds in the absence of inhomogeneities. We will now consider both ϕ0 and the
amplitude ∆ϕ as free parameters and study the behavior of f when varying them.
Models that are always robust to inhomogeneities do not offer further insight into
the initial value of the inflaton field ϕ0 required for successful inflation. However, for
models that suffer the weakness of having f < 0 for some range of ∆ϕ, we can obtain
a constraint on ϕ0.

To see this, let us denote the value of ϕ for which dV (ϕ̂)/dϕ is the most negative
by ϕ̂. This is the value of the field for which the model is most likely to fail for any
value of ∆ϕ as we can see from Eqn. (3.21). If f(ϕ0, ϕ̂ − ϕ0) > 0, the model will be
robust to inhomogeneities. This condition leads to a bound

ϕ̂− ϕ0 > − 1
k2
dV (ϕ̂)
dϕ

, (3.33)

that guarantees robustness for any value of ∆ϕ.
Of course, not all values of ∆ϕ are allowed because we must ensure that the energy

density in gradients remains sub-Planckian, which imposes a bound of the form

ϕ̂− ϕ0 ≪ M2
Pl
k

. (3.34)
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So one may ask whether one can find values of ϕ0 such that f(ϕ0,∆ϕ) > 0 for all
energetically allowed values of ∆ϕ, and by combining the bounds, we see that this will
be the case provided

−1
k

dV (ϕ̂)
dϕ

≪ M2
Pl . (3.35)

This bound is fairly weak for any model in which the inflationary Hubble scale is
well below the Planck scale, and often there will be stronger constraints on ∆ϕ, for
example, because the potential is only of the assumed form over a much smaller field
range than M2

Pl/k. These constraints should then be taken into account.
Let us, for example consider D-brane inflation. In this case, inflation must certainly

end before V (ϕ̂) = 0, and we will take ϕ̂ = −µ to approximate the point when
dV (ϕ̂)/dϕ = −4Λ4/µ is most negative. Hence (3.33) leads to

ϕ0 < −µ− 1
k2

4Λ4

µ
. (3.36)

This constraint on the initial mean value of the field is shown in Fig. 3.6 for different
wavenumbers of the inhomogeneities k = 2πN/L with L = H−1

i and N = 1, N = 10,
and N = 100. The green shaded regions indicate the initial conditions for which the
model is not robust, in the sense that the existence of sufficiently large pertubations
will cause it to fail.

In addition, we approximately sketch the constraints imposed by the Planck data,
which roughly exclude values of µ < 2 × 10−7MPl and µ > 2 × 10−1MPl [31], together
with the requirement that inflation lasts for at least N = 100.

As we discussed, the energy density stored in gradients must be sub-Planckian,
which imposes the additional constraint

|ϕ0| − µ ≪ M2
Pl
k

. (3.37)

Since this bound is rather weak for typical parameters, it is not shown in Fig. 3.6.
From the perspective of low energy effective field theory, the plateau may extend

over large or possibly even infinite distances in field space. However, in the context
of string theory there is another constraint we should impose on ∆ϕ to ensure our
discussion remains valid. The inflaton parameterizes the position of a brane along
a warped throat in the internal space whose size is limited. As a consequence, the
plateau only extends over a finite range, and we only expect the potential to be
well-approximated by our model for sub-Planckian ∆ϕ [76]. So in string theory, only
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Fig. 3.6 Constraints on ϕ0 and µ for successful inflation in D-brane model, given
by (3.31). We define successful inflation if a model with a mean value of ϕ0 has f > 0
for all choices of ∆ϕ so that only pull-back effects can be observed. Small field models
are more sensitive to inhomogeneities since smaller values of µ make the model more
concave and hence less robust, requiring stronger constraints for the initial mean field
value ϕ0. Higher modes (greater N) are more robust, and therefore relax the constraints
on ϕ0.

the area below the grey region is available, and we see that the sweet-spot for which
the model is robust to inhomogeneities lies at around µ ∼ 10−1MPl.

These constraints should not be taken as definitive, but rather illustrative, because
other factors may influence the dynamics. For example, the presence of a sharp rise
in the potential was seen to make the model less robust in [157], and we are only
studying a subset of possible inhomogeneous initial conditions. Overall, however, such
differences are likely to make the constraints on the model more restrictive, rather
than less.
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3.6 Summary and discussion

We studied the robustness of different single-field models of inflation to inhomogeneities
in the scalar field. We found a simple analytic criterion that successfully predicts
whether a given model for a given set of initial data will successfully inflate in our
3 + 1 dimensional numerical relativity simulations. For convex potentials, we showed
that inflaton eventually begins even if the inhomogeneities in initial configuration are
large enough to explore the minimum of the potential. For concave models, we see that
effects of inhomogeneities strongly depend on the characteristic scale of the potential.
For potentials with super-Planckian characteristic scale the inflaton is pulled back
towards field values for which the model supports inflation, even if the field initially
explores the minimum. For potentials with sub-Planckian characteristic scales the
potential gradients win over gradients in the scalar field, and inflation rapidly ends. As
a consequence, concave potentials with sub-Planckian characteristic scale will require
additional physical mechanisms (or tuning) to set up initial conditions suitable for
inflation.

For example, from Fig. 3.6, we see that D-brane inflation with µ < 10−2MPl will
only be robust to inhomogeneities in the field if the mean initial value is super-Planckian.
This is in tension with the bound on the field range derived in [76] and implies that
inflation will not succeed if the brane is initially highly perturbed.6

While we have assumed that the metric sector is initially conformally flat in our
analysis, since f(ϕ) ⊂ −dV/dϕ, we expect the result that concave potentials with
sub-Planckian characteristic scales are less robust to hold more generally. The condition
Eqn. (3.19) will in general contain additional curvature terms of order ≲ K∂µϕ which
may change the position of the zero of f , but these will not dominate the k2∆ϕ term.
We leave a more detailed study of the larger space of initial conditions for future work.

6The brane is usually assumed to be homogeneous in most constructions of such models. See for
example [111, 207] for studies that deviate from this assumption.





Chapter 4

Abelian Higgs cosmic strings with
full numerical relativity

This chapter contains the articles “Cosmic string loop collapse in full general relativity”
[264], published in Physical Review D (PRD), and “Coherent gravitational waveforms
and memory from cosmic string loops” [64], published in Classical and Quantum
Gravity (CQG).

We present the first fully general relativistic dynamical simulations of Abelian Higgs
cosmic strings using 3+1D numerical relativity. Focusing on cosmic string loops, we
show that they collapse due to their tension and can either (i) unwind and disperse
or (ii) form a black hole, depending on their tension Gµ and initial radius. We show
that these results can be predicted using an approximate formula derived using the
hoop conjecture, and argue that it is independent of field interactions. We extract
the gravitational waveform produced in the black hole formation case and show that
it is dominated by the l = 2 and m = 0 mode. In addition, we also construct its
first-time-ever time-domain gravitational-wave strain waveform, which exhibits a large
memory effect during merger, ending with a burst and the characteristic ringdown as a
black hole is formed. Furthermore, we investigate the waveform and energy emitted
as a function of string width, loop radius and string tension Gµ. We find that the
mass normalized gravitational-wave energy displays a strong dependence on the inverse
of the string tension EGW/M0 ∝ 1/Gµ, with EGW/M0 ∼ O(1)% at the percent level,
for the regime where Gµ ≳ 10−3. Conversely, we show that the efficiency is only
weakly dependent on the initial string width and initial loop radii. Using these results,
we argue that gravitational wave production is dominated by kinematical instead of
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geometrical considerations. Lastly, we use our results to put a bound on the production
rate of planar cosmic strings loops as N <∼ 10−2 Gpc−3 yr−1.

4.1 Introduction

The detection of Gravitational Waves (GW) from black hole (BH) binaries [8] by the
LIGO/Virgo collaboration marked the start of a new era of observations. Beyond
astrophysical objects such as BH and neutron stars, this paved the way for the use of
GW to search directly for signatures of new physics. One of the key targets of this
search is the existence of a network of cosmic strings [6, 1, 4, 15].

Cosmologically, cosmic string networks naturally arise after a phase transition in the
early universe, possibly during GUT symmetry breaking1 [308, 448, 271, 454, 287, 163].
These networks may manifest themselves through several channels, such as imprints
via lensing on the Cosmic Microwave Background [23] and emitting gravitational
waves. There is a large literature concentrating on the stochastic background of weak
field emission of GW through cusps, travelling kinks and kink-kink interactions of
the strings [451, 443, 274, 440, 217, 218, 398, 413, 269, 121, 53, 50, 143, 122, 51, 172–
174, 88, 406, 93, 289, 186, 60], which is recently searched for by the LIGO/Virgo
collaboration [6, 1, 4, 15, 13, 18]. This signal is the total integrated power of incoherent
GW from all such individual emissions, i.e. the sum of all individual emissions which
themselves are too weak to be directly detected. Furthermore, these networks may
manifest themselves through other channels, such as their imprints via lensing on the
Cosmic Microwave Background [452, 23].

Complementarily, one can also search for localized coherent events of these strings.
Coherent events are those that are individually energetic enough to be detected
directly. Such events can occur, for example, when the strings self-interact through
the formation of sharp cusps, through the collisions of travelling kinks that are formed
during the intercommutation (i.e. collisions) of cosmic strings, or when cosmic string
loops collapse. Such a search requires the construction of GW waveform templates –
parameterized coherent time/frequency domain signals which can then be searched
via match-filtering in the detector signal stream or identified within a burst search.
We emphasise that searches for stochastic and coherent signals are complementary –
the non-detection/detection of one does not imply the non-detection/detection of the
other.

1More speculatively, string theory also suggests the presence of cosmological fundamental super-
strings, especially through the mechanism of brane inflation [388, 295].
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Fig. 4.1 Strain waveform: The l = 2, m = 0 strain mode for a cosmic string loop
collapse into a black hole with Gµ = 4 × 10−3 and R0 = 600 M−1

Pl . The dotted signal
was calculated using the semi-analytical approach while the solid line is from the
integration of the NR signal (see Appendix (C.6)). The strain exhibits a large memory
due to the aspherical loss of matter ejecta during merger, ending with a characteristic
ringdown after the black hole is formed. A summary movie of the simulation can be
found here [233]. A set of strain waveforms for different Gµ are plotted in C.9.

Before this work, the two primary methods of modeling cosmic strings have been
through solving the field theory equations in flat or expanding spacetime, or through
an effective Nambu-Goto prescription with weak coupling to gravity (see e.g. [454]).
In either case, by considering the stress-energy of a network of strings, one can then
compute in the weak gravity limit a stochastic GW background [451, 174]. Local events
such as the collisions of traveling kinks and cusps along the strings are expected to
produce bursts of GW – these bursts events have been computed using the Nambu-Goto
approximation, again in the weak field limit [174]. These two methods do not coincide

https://youtu.be/-dhYA2788LA
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in general, mainly due to their disagreement on the primary energy loss mechanism of
the cosmic strings (see [270, 455, 352, 378, 353, 91]).

Going beyond the weak field limit requires the finding of the solutions to the
full field theory coupled to general relativity – and in this work we present the first
numerical relativity simulation of Abelian Higgs cosmic strings in full general relativity2.
In this chapter, we numerically explore the collapse of a circular cosmic string loop
in extreme regimes (4 × 10−3 < Gµ < 4 × 10−2). In the literature, collapsing cosmic
string loops have been considered as seeds in the formation of primordial black holes
[273, 253, 393, 220, 120, 99, 338, 462, 245, 366, 137, 109, 84, 286]. We show that
whether the loop collapses into a BH or unwinds itself depends on a simple analytic
relation derived using the hoop conjecture.

In this chapter, we compute the corresponding coherent GW strain in the time-
domain – see Fig. 4.1. In other words, we compute the GW strain waveform from
individual GW events from the collapse to black holes of cosmic string loops, which is
manifestly a strong gravity event. We show that the coherent GW strain signals from
the collapse of cosmic string loops are dominated by two major components. The first
component is that of a large gravitational wave memory [434, 147] effect during the
merger, generated by a large aspherical “jet-like” ejection of matter radiation. The
second component is that of the final ringdown phase post-BH formation, with the
initial collapse stage being a subdominant contribution to the total signal. We also find
that the efficiency of GW production is around O(1)% of the total cosmic string mass,
which is in agreement with the bound of < 29% [254]. This efficiency is dependent on
the cosmic string tension Gµ, with lower tension producing more GW – up to 2.2% for
Gµ = 2 × 10−3, which is the lower bound of the parameter space studied in this work.
In comparison, the efficiency for head-on BH mergers and inspiral merger is 0.06% and
∼ 5% respectively [426, 397]. We will comment on this somewhat counter-intuitive
result in section 4.6.

Coherent GW events are categorized by its energy (“loudness”) and its characteristic
frequency. The distance d from which one of these events could be observed by current
and future GW detectors is given by

(
d

10 Mpc

)
∼
√
EGW

M⊙

(
10−19

h

)
(4.1)

2Work had been done in the past for infinite straight strings and traveling waves in the context of
full general relativity [213, 242, 334, 330, 209, 214, 219].
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where EGW is the energy emitted in GWs and h is the strain sensitivity of the detector.
Roughly speaking, interferometers are optimized to detect GW induced strain of
h ∼ 10−21 around a finite frequency domain – for the LIGO/Virgo interferometers
this is f ∼ 10 − 1000 Hz. In the case of GW events when a black hole is formed, the
quasinormal mode (QNM) frequency of the characteristic ringdown phase is determined
by its mass. Combined, this means that LIGO/Virgo is sensitive to EGW ∼ M⊙ events
at around 100 Gpc. Thus to produce coherent GW observable by LIGO/Virgo one must
produce sufficiently energetic (“loud”) events at its detector frequency3. This means
that LIGO/Virgo will be sensitive to cosmic string loop events4 of around 100M⊙ at a
distance of about 1 Gpc [264].

To check the dependency of the waveforms and energy as a function of the initial
conditions and parameter of the cosmic string loops, we compute the waveforms for
the three main parameters of the system. The first parameter is the string tension
Gµ which specifies the underlying theory. The next two parameters, the initial radius
R0 and the width of the string δ, define the initial string geometry. We find evidence
that the the mass normalized waveforms depend strongly on the string tension Gµ,
and weakly on the string width δ and initial string radii R0, for the regime Gµ > 10−3.
Hence, it follows that the GW production efficiency of collapsing cosmic string loops
is only weakly dependent on initial string loop radii R and the width of the string
δ – at least for the parameter space studied in this work. Combined with the fact
that the power is dependent on string tension Gµ – and this sets the loop velocity at
BH formation – we argue that the generation of GW is driven by collapse kinematics
instead of the geometry of the system.

The chapter is organized as follows. In section 4.2, we describe the abelian Higgs
cosmic string model and recap some previous results. In section 4.3, we discuss the
possible outcomes of a collapsing circular cosmic string loop and introduce a formula
to predict such a result. In section 4.4, we describe the parametric dependences of GW
power from both string geometry and string model for cosmic string collapse events.
In section 4.5, we show how the waveform is not degenerate to other known BH merger
processes, and we derive the full coherent time-domain GW strain waveform from a
combination of semi-analytic and numerical results. We discuss the prospects and
strategies for a direct detection search and conclude in section 4.6.

3The signal is redshifted as it travels from the progenitor to the detectors, but this effect is small.
4For binary black hole mergers, the efficiency is about 5%, i.e. 5% of the merger mass is converted

to EGW, putting them into the peak sensitivity window of LIGO/Virgo (O(1 ∼ 100)M⊙ black holes)
as designed.
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Fig. 4.2 Gravitational wave signals as a function of string tension Gµ and
black hole head-on reference [154]: The signal is normalised with the initial mass of the
system and shifted such that the maximum of rΨ4 coincides at time t = 0, for three
cases from table (C.1) for Gµ = {3×10−3, 6×10−3, 1×10−2} and corresponding mass
M0 = {18.85MPl, 13.19MPl, 10.05MPl}. The relationship between Ψ4 and detector
strain h is given in (4.21). The thickness of the line is an estimate of the numerical
error. Unphysical parts of the signal are de-emphasised using ticked lines with different
transparencies. We find that smaller Gµ have larger amplitudes and hence produce
more gravitational wave radiation (with 2.2% for Gµ = 2 × 10−3 with R = 1600M−1

Pl ).
The rest of the initial mass goes into the black hole and matter radiation. A table
summary of all the runs is shown in (C.1).

4.2 Abelian Higgs with gravity

The action of the Abelian Higgs model minimally coupled to gravity5 is

S = SEH −
∫
d4x

√
−g

[
(Dµϕ)∗(Dµϕ) + 1

4FµνF
µν + V (ϕ)

]
, (4.2)

where SEH =
∫
dx4√−g(R/16πG), Dµ = (∂µ − ieAµ) is the covariant derivative with

its U(1) gauge field Aµ with field strength tensor

Fµν = ∂µAν − ∂νAµ , (4.3)
5We use the − + ++ convention for the metric, and set ℏ = c = 1 and MPl = 1/

√
G.
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and V (ϕ) is the sombrero potential of the complex scalar field ϕ

V (ϕ) = 1
4λ

(
|ϕ|2 − η2

)2
, (4.4)

where η is the symmetry breaking scale.
For simplicity, we set the charge e and the dimensionless coupling constant λ to

obey the critical coupling limit
β = λ

2e2 = 1 , (4.5)

in which the Higgs and vector masses are identical and the string tension µ is related
to the symmetry breaking scale as

µ = 2πη2 . (4.6)

The coupling constant λ and the string tension Gµ set the width of string as

δ =
√

2π
λµ

. (4.7)

As a check of our code, we numerically construct a fully relativistic infinite static
string coupled to gravity and demonstrate that its evolution is indeed static and stable.
The details of this construction can be found in Appendix C.3.

In this work, we consider circular string loops of radius R0, with mass given by

M0 = 2πµR0 (4.8)

which is independent of the coupling constant λ. To construct the initial conditions,
we define toroidal coordinates

x = cosφ(R + r cos θ) ,
y = sinφ(R + r cos θ) ,
z = r sin θ ,

(4.9)

and choose the following ansatz for the field variables

ϕ = f(r)einθ , Aθ = nα(r)
e

, (4.10)
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where n is the winding number of the string which is set to one throughout this work.
To construct the loop we use the profile f(r) from the static string6. After making the
conformal metric ansatz

γijdx
idxj = χ(dx2 + dy2 + dz2) , (4.11)

we solve the Hamiltonian constraint to obtain the conformal factor χ.

4.3 Dispersion vs BH formation

We simulate the collapse of circular loops, scanning through the initial condition
parameter radius R0 and the model symmetry-breaking scale η (and hence string
tension via Eqn. (4.6)), in the critical coupling limit with e = 1 and λ = 2. The loop
begins at rest but quickly accelerates to close to the speed of light due mainly to the
string tension. We find this motion to be consistent with the Nambu-Goto action
dynamics (see Appendix C.4)

r = R0 cos τ

R0
, (4.12)

up to r ∼ δ which is the thickness of the string given by Eqn. (4.7) and τ is the time
coordinate at spatial infinity. Depending on the choice of µ and R0, there are two
possible outcomes: (i) the string unwinds itself and the resulting radiation disperses or
(ii) a BH forms.

This result can be predicted using the hoop conjecture as follows. A BH forms if
the loop mass M0 = 2πµR0 is enclosed within a radius smaller than its Schwarzschild
radius 2GM0. In addition, the smallest volume in which a loop can be contained before
the string unwinds has radius δ, which sets the Schwarzschild radius the lower bound
for BH formation to be 2GM0 > δ, or

R0 >

√
1

8πλ(Gµ)−3/2M−1
Pl . (4.13)

Moreover, as the minimum radius of a loop is R0 = δ, we don’t expect dispersion
cases for Gµ > (4π)−1 and all loops will form BHs. We find this estimate to be a
good predictor (see Fig. 4.3), which suggests that black hole formation is broadly
independent of field interactions.

6See Appendix C.3 for details.
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Fig. 4.3 Overview of simulations : The loop can either form a BH or unwind
and radiate all its mass. The analytical expression derived from the hoop conjecture
accurately predicts the outcome. Movie links for the evolution over time of the collapse
are available for the dispersion [232] and black hole [231] cases.

If a black hole forms, the amount of initial mass that falls into the black hole
depends on the initial radius R0 for fixed Gµ, with the rest being radiated in either
gravitational waves or matter.

We investigate whether this collapse is a Type I or Type II transition7 [243] by
studying the mass of the black hole close to the critical radius. Supposing it is a Type
II collapse and let R∗ be the critical point such that MBH(R∗) = 0, one can compute
the critical index γ defined by

MBH ∝ (R0 −R∗)γ . (4.14)
7Whether the mass is always finite (Type I) or it is continuously turned on as R0 → R∗ (Type II).

https://youtu.be/nHH3gTEjMPo
https://youtu.be/U5CkThsDU6w
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Fig. 4.4 Critical collapse: We plot the logarithm of the mass of the black hole vs the
logarithm of the difference between the initial and the theoretical(star)/observed(cross)
critical radius for Gµ = 1.6 × 10−2. As we argued in the text, our simulation showed
that the actual Rob

∗ > Rth
∗ , resulting in a critical index within 0.17 < γ < 0.39, where

the error is due to the uncertainty in determining numerically Rth
∗ < R∗ < Rob

∗ . Note
that we only use the first 7 points to compute the critical index for R0 ≤ 0.05R∗ as
the critical relation is only expected to hold perturbatively.

The value asumming the theoretical prediction of Eqn. (4.13), Rth
∗ =

√
1/8πλ(Gµ)−3/2M−1

Pl ,
is γ = 0.39, see Fig. 4.4. However, in our simulations we have observed Rob

∗ > Rth
∗ ,

giving γ = 0.17, showing that γ is highly dependent on the choice of the actual value of
R∗ – of which we are unable to identify with confidence due to the lack of computational
resources. Therefore, we conclude that γ = 0.28 ± 0.11.

In the subcritical limit where 2GM0 < δ, the loop unwinds as it collapses, transfer-
ring all the mass into matter and gravitational radiation. If R0 ≫ δ the velocity at
unwinding is much larger than the escape velocity and all the energy is radiated away.
However, if R0 ∼ δ, the velocity can be small enough so that instead of full dispersal
the mass slowly decays at the center and a soliton might form.
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4.4 Parametric dependence of GW signals

In this section we study how the gravitational wave signal changes when we vary the
parameters of the model: the string tension Gµ, the initial loop radius R0 and the
string width δ.

We first focus on the string tension Gµ. We performed a series of simulations
with the string parameters shown in table (C.1) with fixed λ = 2. Since varying Gµ
substantially changes the mass of the string (see (4.8)), for each choice, we choose its
initial R0 to ensure that a black hole can be formed (i.e. obey the condition (4.13)).

In Fig. 4.2, we show the time domain gravitational waveforms in terms of the (mass
normalized) rΨ4 Weyl scalar for the cases8 of Gµ = {3 × 10−3, 6 × 10−3, 1 × 10−2}
with corresponding mass M0 = {18.85, 13.19, 10.05}MPl. For the cases investigated,
we find the maximum efficiency is 2.2% for the case of Gµ = 2 × 10−3.

The energy radiated in GWs can be estimated from the rΨ4 Weyl scalar by (C.42).
The efficiency of GW production normalized over total string mass, EGW/M0 is shown
in Fig. 4.5. Interestingly, we find that this scales as

EGW

M0
= A

16π2
1
Gµ

(4.15)

where A is a numerical factor found to be approximately A ≈ 10−2. Intriguingly,
this means that smaller tension leads to greater efficiency, with the caveat that we
have only explored a small regime of the total possible parameter space. This scaling
clearly cannot be unbounded as Gµ → 0, and must turnover at some point. We will
discuss this further in section 4.6. Even though the velocity of the loop at collision is
ultra-relativistic, ∼ 0.99 c, the GW production is strongly suppressed when compared
to other ultra-relativistic events. For comparison, a boosted head-on black hole merger
(14 ± 3%) and relativistic fluid particle collapse (16 ± 2%) radiates a much larger
fraction of its total mass in gravitational waves [427, 191]. This suggests that the
initial apparent horizon is very spherical – possibly due to the thickness of our strings
when compared to the Schwarzschild radius, i.e. 2GMloop ∼ O(1) × δ. In the limit of
infinitisimally thin strings, the maximum GW production was calculated by Hawking
to be 29% [254]. Hence, we believe that one can boost the efficiency by colliding thinner
strings (i.e. 2GMloop ≫ δ) – in this limit the hoop conjecture argument above suggests
that a black hole will form before the loop has a chance to interact and unwind, thus

8We show the results of the other simulations in the appendix, Fig. C.10.
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Fig. 4.5 Efficiency in GW production vs string tension: We find that the
efficiency EGW/M0 ∝ A (16π2Gµ)−1 obey a simple power law with A = 10−2 (solid
line). The simulation parameters and results are tabulated in Tab. (C.1) while the
star-dotted point on the right is the result from the paper [264]. Note that the last
data point to the left may signal the turnover of the inverse power law 1/Gµ.

it is possible that the GW emission will be larger via Hawking’s argument, though this
has not been demonstrated numerically.

We can also explore the dependence of GW emissions as a function of string width δ
and initial radius R0. In [254], using purely geometrical arguments, Hawking computed
the efficiency of GW emitted from an infinitesimally thin cosmic string loop, and
showed that it has an upper bound of 29%. This is obtained by assuming that the
initial horizon of the black hole is a thin disk, and then computing the difference of
the disk’s total area with the area of the final Schwarzschild black hole. Hence, it is
plausible that if the initial horizon of the black hole is less disk-like and more spheroidal,
the efficiency will become smaller since the initial horizon area will then be greater
(and the difference with the area of the Schwarzschild black hole is smaller). To test
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(a) (b)

Fig. 4.6 (a): Gravitational wave signals for different width δ: The plot shows
the mass normalized Weyl scalar rΨ4 for Gµ = 1 × 10−2, R0 = 160M−1

Pl but with
different configurations obtained by varying the string width δ using expression (4.7)
by half (λ = 8) and quarter (λ = 32). The thickness of the lines indicates the numerical
error. This illustrates that the GW signal does not strongly depend on string width
δ. (b): Gravitational wave signals for different radii R: The plot shows the
mass normalized Weyl scalar rΨ4 for the radii R0 {160, 240, 320}M−1

Pl , with fixed
width δ = 17.72M−1

Pl and constant tension Gµ = 1 × 10−2. The thickness of the lines
indicates the numerical error. This illustrates that the GW signal does not strongly
depend on the string radii.

for this idea, we can define a dimensionless “thickness” parameter,

δ

R0
=
√

2π
λµ

1
R0

, (4.16)

such that a cosmic string is “thin” if δ/R0 is small and ”thick” if δ/R0 is close to
unity. In the infinitesimally thin limit, δ/R0 → 0. Our argument above suggests that
the GW efficiency should increase as δ/R0 decrease, with the Hawking limit being
δ/R0 = 0. However, as we will show in below, this is not borne out by our numerical
simulations, at least in the limited range of parameters we are able to explore. We test
this argument by performing simulations with varying string width δ and radius R0,
while keeping other parameters fixed as follows.

String width δ dependence: We performed three simulations with varying λ =
{2, 8, 32} which corresponds to string widths δ = {δ2, δ2/2, δ2/4}) with δ2 =
17.72M−1

Pl , while fixing Gµ = 1 × 10−2 and initial radius R0 = 160M−1
Pl . From the

results shown in Fig. 4.6a, we see that the signals only depend weakly on string width.
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Initial radius R0 dependence : We performed three simulations with varying R0 =
{160, 240, 320}M−1

Pl at fixed Gµ = 1 × 10−2 and λ = 2. Since the mass scales with R0

and the ringdown frequency of a black hole is inversely proportional to its mass, we
normalise the signal with their initial mass. From the results shown in Fig. 4.6b, we
find that the normalised signal at most scales weakly with R0.

The above results suggest that the GW emission efficiency is only weakly dependent
on initial string dimensionless thickness δ/R0.

On the other hand, the numerically obtained scaling (4.15) can be suggestively
rewritten as

EGW

M0
= Aγ(tBH)

4π , (4.17)

where γ is the Lorentz factor of the string infall velocity and tBH is black hole formation
time, i.e.

γ(tBH) = 1
4πGµ . (4.18)

We can derive (4.18) as follows. In [264], we have shown that the dynamics of a
radius R0 cosmic string loop during the infall is well described by the Nambu-Goto
approximation [367], for which the position and velocity at some given time are given
by

R(t) = R0 cos
(
t

R0

)
vR(t) = sin

(
t

R0

)
. (4.19)

The black hole forms approximately when rBH = 2GM0 = 4πR0Gµ, which using
(4.19) happens at time tBH = R0 cos−1 (4πGµ), so that the velocity at black hole
formation is

vR(tBH) =
√

1 − 16π2 (Gµ)2 , (4.20)

which using γ = (1 − v2)−1/2 leads to (4.18). For Gµ = 1 × 10−2 − 2 × 10−3, this
corresponds to v(tBH) ≈ 0.9920 − 0.9997, so it is an ultra-relativistic event. Note that
the velocity equation (4.20) does not depend on λ and R0. Physically, the smaller the
string tension, for a fixed loop mass M0 the larger the radius of the loop has to be, the
longer it takes for the loop to reach the Schwarzschild radius and hence the faster the
loop will be moving when the black hole is formed.

Hence we conjecture that the GW emission process is dominated by the kinetic
energy of the system, with the string geometry playing only a minor role. Finally,
loops in general are generated non-circularly with many different oscillating stable
configurations. Nevertheless, in the presence of gravity, we expect gravity to eventually
win out, with roughly the timescale of their gravitational collapse to be the free-fall
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time-scale. In the final stages of collapse, we expect the tension to circularize the loops
and thus our results should hold in general.

4.5 Gravitational strain waveforms

Our goal in this section is to construct the strain waveform. The gravitational wave
strain h as seen by a detector is related to the Weyl scalar Ψ4 by the following equation
of motion

ḧ = ḧ+ + iḧ× = Ψ4 . (4.21)

Thus we would need to integrate (4.21) to obtain h. The details of this integration are
described in Appendix (C.6).

Furthermore, as we have already described, numerically the early time infall signal
is contaminated by the presence of unphysical artefacts from the numerical construction
of its initial conditions9. To circumvent this, we note that during this early time period,
the infall tracks the trajectory of a Nambu-Goto string until a distance of O(δ) [264].
We use this fact to construct a semi-analytic model of the GW emission during infall
as follows. The modified trajectory is given by

R(t) = R0

[
Θ(t0 − t) + cos

(
t

R0

)
Θ(t− t0)

]
, (4.22)

where the Heaviside functions ensure consistency with the initial data of our numerical
simulations where the loop is static for t < t0 (see Fig. C.6 and Fig. C.5b). In
Cartesian coordinates (x, y, z) such that r =

√
x2 + y2 + z2, the stress tensor in the

corresponding basis is

Tαβ(t,x) = µvαvβγ δ(r −R(t))δ(z) , (4.23)

where the velocity is vα = (1, vR sin(ϕ), vR cos(ϕ), 0) with

vR(t) = dR

dt
= sin

(
t

R0

)
Θ(t− t0) . (4.24)

The gravitational wave signal of such system is then given in the weak field limit
by the standard formula [340]

rhT T
ij (t) = 4GΛij,kl(n)

∫ ∞

−∞

dω

2π T̃kl(ω, ωn/c)e−iωtret (4.25)

9These artefacts are generically present for most numerical relativity initial conditions.
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where tret = t−r/c is the retarded time and is valid for arbitrary velocities, and Λij,kl is
the projector to the traceless-transverse gauge. The result and details of this calculation
for various methods as well as a convergence test can be found in Appendix (C.6.2)
and Fig. C.5a. We plot the resulting gravitational wave strain for Gµ = 4 × 10−3 with
R0 = 600M−1

Pl in Fig. 4.1.
As one can see, r∆h+ = rh+(∞)−rh+(−∞) > 0. This is known as the gravitational

wave memory effect [475, 108, 147, 89, 434], which is a large permanent shift in the
strain waveform. The nature of this memory arises from the fact that post-merger,
there is a loss of matter emitted axially in an ultra-relativistic jet (Fig. C.11) – and
hence is highly aspherical – while its “incoming” velocity is zero (i.e. the loop is initially
static). This generates a large linear memory shift [198] akin to that of a core-collapse
supernova [381].

We can estimate the magnitude of this memory using the linear memory formula
[108, 147]

r∆hTT
ij (θA) = ∆

∑
A

 4GMA√
1 − v2

A

(
vj

Av
k
A

1 − vA cos θA

)TT , (4.26)

where MA an vA are the rest mass and asymptotic velocity respectively of ejecta
particle A and θA is the angle between vi

A and the direction to the detector. The ∆
expresses the difference between the initial “incoming” and “outgoing” values. The
initial velocity of the loop is vi

A = 0. From numerical simulations, it can be seen that
the outgoing ejecta is highly beamed like jets in the direction axial to the loop (see
Fig. C.11). In general, to use this formula, one must calculate the flux of ejecta as a
function of angle. Since our goal is not to make a precise prediction of its value (we
directly obtain this from numerical simulations), but to simply demonstrate that our
numerical result is indeed gravitational wave memory, we approximate its magnitude
as follows. We assume that all the ejecta is travelling at a constant velocity axially (i.e.
perpendicular to the plane of the loop) at vi

A = (0, 0,±vz) where vz ∼ 1 (the exact
value does not affect the final answer significantly).

We express the right hand side of Eqn. (4.26) onto a spherical basis at radius r
by first rotating each instance of the metric r∆hij → r∆hi′j′(θ, ϕ) where (θ, ϕ) are
the coordinates on the sphere. We then project the metric onto their traceless and
transverse components to obtain

∆hT T
i′j′(θ, ϕ) =


∆h+ ∆h× 0
∆h× −∆h+ 0

0 0 0

 , (4.27)
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where it can be shown that

r∆h+ = 2GEtotal
v2

z sin2 θ

v2
z cos2 θ − 1 , r∆h× = 0 . (4.28)

and Etotal ≈ M0 −MBH = 1.32MPl (see Tab. (C.1)) is the total integrated relativistic
flux energy for both matter and GW we directly measured from our simulations. To
compare this to our numerical result in Fig. 4.1, we project (4.28) onto the l = 2,
m = 0 mode as

r∆h+
2,0 =

∫
dΩ r∆h+(−2Y

2
0 )∗ ≈ 8 M−1

Pl , (4.29)

which about a factor of 2 smaller when compared to the numerical value we obtained,
but at the right order of magnitude. We emphasise that (4.29) is just an estimate of
the memory assuming the interactions stay within the linear regime, and hence it is
not surprising that the true memory is larger.

4.6 Summary and discussion

In this work, we showed that GW production of cosmic string loops that collapse and
form black holes scales as

EGW

M0
= A

16π2
1
Gµ

, A ≈ 10−2 , (4.30)

but depends weakly on its initial string width and loop radius. We argue that this
strongly suggests that the GW production in such a collapse is dominated by kinematic
processes, and not geometric ones.

Clearly, since Gµ is theoretically not bounded from below, (4.30) cannot scale
without bound to smaller values as it violates the Hawking bound EGW/M0 → 0.29 at
Gµ ≈ 2 × 10−5. This suggests that there must exist some new scale where this turnover
from the inverse power law to some other relationship. This turnover may already be
hinted in Fig. 4.5, where the Gµ = 2 × 10−3 point is diverging from expression (4.30),
and will be a focus of our future investigations.

Observations of the CMB [23] and the LIGO/Virgo search for stochastic GW
[6, 1, 4, 15, 13, 18] constraints the current cosmic string tension to Gµ ≲ 10−14 − 10−7

– this value is dependent on the details of the cosmic strings network evolution which
is uncertain (and model dependent) [405, 423, 337, 91, 92, 96, 336]. This regime is
obviously beyond the validity of our scaling argument. While we have only explored
a small regime of the possible parameter space and the amplitude of the GW signal
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may differ for other parameters, we do not expect the form of the GW strain signal
shown in Fig. 4.1 to differ substantially at lower Gµ. We also emphasise that strongly
gravitating strings such as fundamental strings with Gµ ∼ 10−2 can also be produced
in many popular brane inflation models [466, 294, 295, 392]. Modulo such theoretical
concerns about the probability distribution of such events which can only be estimated
from large network simulations, we take the agnostic view that their existence can be
put into observational test.

On the other hand, we believe that the large gravitational wave memory of these
events is a robust result regardless of the string parameters10, since it is sourced by the
large aspherical emission of post-collapse debris which we expect to occur regardless.
While GW memory is historically removed from both the detector data streams and
theoretical predictions, there is now increasing interest in their search [180, 100] and is
currently a goal of the LIGO/Virgo collaboration [277].

Both such short signals with little GW production during the infall phase suggests
that this it is best looked for in the transient short-during burst channel [2, 10, 9, 12, 14].
This channel makes only minimal assumptions on the expected signal waveform, at
the cost of reduced sensitivity to weaker signals. One may wonder whether the string
loop burst waveform is degenerate with other processes such as a black hole inspiral
or head-on mergers – and hence can be picked up by already existing match-filtered
searches. The former case might be trivial since the lack of an oscillatory pre-merger
signal and the fact that the black hole formed from the collapse has no spin could be
sufficient features to distinguish from a binary black hole inspiral system. On the other
hand, if the orbiting binary consisted of very massive components such as GW190521
[16], we would only have access to the late stages of the event and could look very
similar to the waveforms computed in this work. The analysis done in [17] excluded
the cosmic string origin of GW190521, but used weak-gravity cusp signal templates
[172], which inherently do not incorporate a ringdown phase. Thus, the fitting would
very likely be improved when cosmic string loop templates are used instead.

For a more symmetric scenario such as a head-on BH-BH merger, in Fig. (4.7) we
show that it is not degenerate. While the ringdown signal from the black hole formed
from a loop is degenerate with a black hole with the same mass formed from a head-on
merger 16× closer, the pre-merger and the merger itself differ considerably. Therefore,
it should be distinguishable as long as one has access to the full waveform.

To detect such weaker signals, one would need to make use of the full match-filtering
search, which requires the construction of a parameterised GW waveform template. In

10See [290] for a recent calculation from cosmic string cusps and kinks.
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Fig. 4.7 String loop and black hole head-on merger comparison: The l = 2
m = 0 strain mode for Gµ = 2×10−3 with R0 = 1600M−1

Pl . Both signals are normalized
to mass, but the black hole formed from the head-on collision is 16× closer to the
detector. This shows that the signal of the collapse of a cosmic string loop is not
degenerate with distance to spin-free BH merger.

this work, we argue that the primary parameter for the construction of such waveform
templates is the string tension Gµ, with secondary parameters being the initial string
width and radii. We undertook the first steps in the construction of the GW strain
waveform template (Fig. 4.1). we can ask whether we can detect suitably massive
cosmic strings loops with current or future detectors. The two key parameters are (i)
the frequency and (ii) the luminosity of the event, both which depend on the masses.
The former constraints our loop parameter space to 2πµR0 ≈ Mdetector. We choose
Mdetector such that its frequency lies at peak sensitivity of LIGO/Virgo (f ∼ 100Hz).
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For the latter, the strain h observed at a distance d from a source of GWs is
(

h

10−21

)
∼
√

EGW

3 × 10−3M⊙

(
10 Mpc

d

)
. (4.31)

Cosmic string loops are generated during the evolution of the string network when
strings intercommute, although there is presently no consensus on the probability
distribution of loops and their classification (see e.g. [90, 406]). Furthermore, it is
not clear that all loops will collapse due to the presence of non-intersecting loop
configurations and the uncertainty in their angular momentum loss mechanisms. Hence,
we will take the agnostic view that only planar loops will collapse – assuming that
planar loops will circularize as argued by [256]. Suppose then N(R0, z) is the co-moving
production density rate of planar loops of radius R0 at redshift z (i.e. it has dimensions
[N(R0, z)] = L−3T−1), then the detection rate is given by

Γ =
∫ zd

0
4π
[∫ z

0

dz′

H(z′)

]2
N(r, z)dz
H(z) , d =

∫ zd

0

dz

(1 + z)H , (4.32)

such that zd is the maximum range in redshift of the detector, which itself depends
on the energy of the GW EGW emitted. Our numerical results suggest that O(1)%
of the total string loop mass is emitted, which is an order of magnitude smaller than
that of the typical BH-BH mergers, translating to about a factor of 3 shorter in
detectable distance d. For LIGO/Virgo and the Einstein Telescope (ET), the maximum
redshift range is then zd ∼ 0.005 and zd ∼ 0.05 respectively. In this limit, Γ can be
approximated as

Γ ≈ ϵ3/2
(

R0

GM⊙

)3/2

(Gµ)3/2
(

10−19

h

)3 (
N(R0, z)
Mpc−3

)
. (4.33)

Clearly, Γ depends linearly on N(R0, z), which itself depends on the cosmic string
model and its network evolution, which at present is still being debated vigorously as
mentioned above. For example, in [256], it was estimated that N(R0, z) ∝ (Gµ)2R0/s−4

where s is the correlation length of the loop. Other estimates are given in [393, 123].
On the other hand, we can use the non-detection of such collapse events in the present
LIGO/Virgo to put a constraint on N(R0, z). For Gµ ∼ 10−10 which leads to solar
system sized loops of R0 ∼ O(100) a.u., this is N(R0, z) < 10−2 Gpc−3 yr−1 11, which

11If we assume that these GW are incoherent, this leads to a stochastic background energy of
ΩGWh

2 ∼ 10−10.
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is a lower detection rate than what is expected from BH mergers of O(10) Gpc−3 yr−1

[11].
Finally, we note that this is a conservative estimate since these solar system sized

loops satisfy RBH ∼ O(1040) × δ and hence are thin loops. In this limit, ϵ might be
closer to 29 %, with a corresponding increase in d. In an upcoming publication, we
will complete the construction of these templates, and use them to search for cosmic
string loop collapse signatures in the LIGO/Virgo data stream.





Chapter 5

Primordial black hole formation
with full numerical relativity

This chapter contains the article “Primordial black hole formation with full numerical
relativity” [176], published in the Journal of Cosmology and Astroparticle Physics
(JCAP).

We study the formation of black holes from subhorizon and superhorizon pertur-
bations in a matter dominated universe with 3+1D numerical relativity simulations.
We find that there are two primary mechanisms of formation depending on the initial
perturbation’s mass and geometry – via direct collapse of the initial overdensity and
via post-collapse accretion of the ambient dark matter. In particular, for the latter case,
the initial perturbation does not have to satisfy the hoop conjecture for a black hole to
form. In both cases, the duration of the formation the process is around a Hubble time,
and the initial mass of the black hole is MBH ∼ 10−2H−1M2

Pl. Post formation, we find
that the PBH undergoes rapid mass growth beyond the self-similar limit MBH ∝ H−1,
at least initially. We argue that this implies that most of the final mass of the PBH is
accreted from its ambient surroundings post formation.

5.1 Introduction

Primordial black holes (PBHs) form in the early stages of the universe, and their idea
was first conceived in the late sixties and early seventies [136, 252, 474]. It is notable
that it was the potential existence of small black holes from primordial origin that led
Hawking to theorize black hole evaporation [255]. It was realised shortly after that
PBHs could constitute a significant part of cold dark matter [144], and interest in PBHs
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has spiked in the recent past as a result. Evaporating PBHs have been suggested as
explanations for galactic and extra-galactic γ-ray backgrounds, short γ-ray bursts and
anti-matter in cosmic rays [382, 133, 467, 332, 312, 339, 149] and PBHs could provide
seeds for the formation of supermassive black holes and large-scale structure [140, 80].
Moreover, PBHs could be responsible for certain lensing events [261, 262], with recent
analysis suggesting that the population of BHs detected by the LIGO/Virgo/KAGRA
(LVK) observatories [19] may be primordial [17, 208]. Additionally, work is underway
to use next generation gravitational wave experiments to detect PBH formation and
mergers [323, 373]. Results obtained by the NANOGrav Collaboration [59] have been
associated to PBHs, as well [177, 447, 318, 185].

Various formation mechanisms could be relevant for PBHs [127, 239]. These
mechanisms include the formation of PBHs during inflation [148, 282, 212, 197], the
collision of bubbles that result from first order phase transitions [170, 258, 317, 331,
354, 315, 301, 322, 302, 303], the collapse of cosmic strings [308, 273, 253, 393, 220,
120, 338, 462, 245, 366, 137, 109, 264, 84, 286, 64, 288, 94], the collapse of domain
walls produced during a second order phase transition [181, 409, 410, 221, 178, 335],
the collapse of a scalar condensate in the early universe [167, 166, 169, 168] and specific
baryogenesis scenarios [184, 183, 238, 182, 300]. However, the mechanism that is most
relevant for this work is the collapse of overdense regions that are present in the early
universe [132, 365, 87, 146, 196, 375, 376, 240, 363, 471], which may originate from e.g.
pre-inflation quantum fluctuations [138, 135, 272, 284, 210, 401, 431, 75].

In the standard picture, these fluctuations collapse post inflation, while the universe
is dominated by radiation energy. The nonzero radiation pressure resists collapse,
meaning that the inhomogeneities must be fairly large for PBHs to form. It was
suggested early on that an overdensity δ must be larger than a critical value δc equal to
1/3 if PBHs are to form [132]. This statement was checked analytically and numerically
soon after [365, 87, 377] and more recently [374, 422, 251, 364, 248, 361, 362], supporting
the need for a perturbation larger than some threshold with values that broadly agree.

PBH formation in matter dominated epochs has also been extensively studied
analytically and semi-analytically. In various non-standard universe histories, inflation
is followed by a period of matter domination [305, 126, 345, 49]. PBH formation
in such an early epoch of matter domination was considered early on [304]. More
recently, a threshold amplitude for the collapse of a scalar field overdensity was found
[267], the effects of non-sphericity [250] and inhomogeneity [320] on the collapse were
investigated, the resulting spin of the PBHs was studied [249], the duration of an early
epoch of matter domination was constrained by considering the PBH abundance [141]
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Fig. 5.1 Direct collapse and accretion driven mechanisms: The figure summa-
rizes the two distinct processes of PBH formation studied in this work. Top panel shows
the direct collapse mechanism where the initial superhorizon perturbation is dense
enough to directly form a black hole when the perturbation reaches the centre. Bottom
panel depicts the accretion driven collapse mechanism, where the initial perturbation
is insufficiently dense but acts as a seed to trigger the accretion of the background
dark matter, which subsequently collapses to form a black hole. Both start from the
same initial radius R0, but with different initial amplitudes ∆ξ. In the leftmost figures,
we show the initial size of the Hubble horizon (white solid line) which will grow as
time evolves. In the other figures, the Hubble horizon has grown larger than the box
size. Colourbars are shown in the top right, with lighter (darker) colours signifying
higher (lower) energy densities, and scales fixed per mechanism. Colourbars are shown
in the top right, with lighter (darker) colours signifying fixed higher (lower) energy
densities per mechanism. Video comparisons of these mechanisms can be found here
[235] and here [236].

and constraints on the amplitude and spectral index of the collapsing scalar field were
obtained [130].

In this work, we use full 3+1D numerical relativity simulations to investigate the
collapse of subhorizon and superhorizon non-linear perturbations in an expanding
universe that is dominated by matter. We model the expanding background and the
collapsing perturbation using an oscillating massive scalar field and massless scalar
field respectively. The massless scalar field’s initial energy is thusly contained purely

https://youtu.be/fqEBlCybF8I
https://youtu.be/4N5e2RnUkmU
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in its gradients. We will show that there are two broad mechanisms of black hole
formation – via direct collapse for the case where the overdensity is sufficiently large
that it will form a black hole, and via post-collapse accretion for the case where the
overdensity is smaller. In both cases, the process is rapid and its duration is around
a single Hubble time, forming PBHs with initial masses of MBHH ∼ 10−2M2

Pl. We
illustrate these mechanisms in Fig. 5.1.

Our choice of fundamental scalar fields as dark matter, instead of a pressureless
cold fluid (as suggested by [192]), is prompted by our focus on an early time (i.e.
pre-BBN) matter dominated phase instead of the present late time matter dominated
phase. Such early era matter domination is often driven by a non-thermal fundamental
scalar or moduli dynamics [21] instead of the more familiar cold pressureless fluid
such as thermal WIMP dark matter. Furthermore, early matter phases will eventually
transition into a radiation domination epoch, such that the standard Hot Big Bang
cosmological evolution can proceed. Such a phase transition from matter domination
into radiation domination can then be achieved through the decay of the scalar field
into either standard model particles or intermediaries.

This chapter is organised as follows. In section 5.2 we explain the numerical setup
we use for evolving a scalar perturbation in a dark matter dominated background.
In section 5.3 we introduce the two aforementioned formation mechanisms and their
characteristics, and we study the properties of the black holes that are formed post
collapse. In section 5.4 we comment on the post formation growth of the black holes
(BHs), and we conclude in section 5.5.

5.2 Early matter domination epoch with scalar
fields

We will use a metric with − + ++ signature, in Planck units ℏ = c = 1 such that
G = M−2

Pl . The action we will consider is

S =
∫

d4x
√

−g
[
M2

Pl
16πR − Lϕ − Lξ

]
, (5.1)

involving a massive scalar field ϕ with mass m that models the ambient dark matter,
and a massless scalar field ξ that sources the initial perturbation. They are both
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minimally coupled to gravity but not otherwise coupled to one another, i.e.

Lϕ = 1
2∇µϕ∇µϕ+ m2ϕ2

2 , and (5.2)

Lξ = 1
2∇µξ∇µξ . (5.3)

Since the field ξ has no potential, it will only influence dynamics via its gradients.
Furthermore, it will dilute much more rapidly than dark matter, and hence not affecting
the long term dynamics of the system once its initial job of sourcing a perturbation is
done1.

When the gradients in ξ are negligible, the spacetime dynamics are dominated by
the behaviour of the background scalar field ϕ. When ϕ is additionally homogeneous
on a given spatial hyperslice, the metric of the spacetime is well described by the
Friedman-Lemaître-Robertson-Walker (FLRW) line element

ds2 = −dt2 + a(t)2(dr2 + r2dΩ2
2) , (5.4)

where dΩ2
2 = dθ2 + sin2 θdϕ2. The scale factor a(t) evolves according to the Friedmann

equation H2 = 8πρ/3M2
Pl, where H(t) ≡ ȧ/a is the Hubble parameter2. The equation

of motion for ϕ reduces to the Klein-Gordon equation

ϕ̈+ 3Hϕ̇+ dV

dϕ
= 0 , (5.5)

where the Hubble parameter is

H2 ≡ 8π
3M2

Pl

(1
2 ϕ̇

2 + V (ϕ)
)
, (5.6)

and the corresponding pressure is given by

pDM = 1
2 ϕ̇

2 − V (ϕ) . (5.7)

If the oscillation of ϕ is sufficiently undamped, which is the case if 2m ≫ 3H, the
friction term in Eqn. (5.5) can be neglected. The dynamics of ϕ are then approximately
given by a simple harmonic oscillator ϕ(t) = ϕ0 cos

(
mt
)
, whose pressure is

1In principle, we could use a single massive scalar ϕ. However, in practice, we find that large
perturbations of the massive scalar would introduce a large infusion of potential energy into the
dynamics of the background resulting in non-matter dominated evolution, at least initially.

2Dotted variables are derivatives with respect to cosmic time t.
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pDM = ϕ2
0m

2

2

(
sin2

(
mt
)

− cos2
(
mt
))

. (5.8)

As long as the oscillation period T is sufficiently smaller than one Hubble time, this
averages to zero over one Hubble time, i.e. ⟨pDM⟩ = 0, resulting in a dark matter
dominated expansion, which can be interpreted as a model for pressureless dust [54] at
large scales.

Meanwhile, the massless scalar field ξ provides the energy density perturbation
that will trigger BH formation. In this work, we exclusively consider initially static
spherically symmetric perturbations and we leave the generalisation to fewer degrees
of symmetry for future work. We choose the initial configuration of ξ to be space
dependent as

ξ(t = 0, r) = ∆ξ tanh
[
r −R0

σ

]
, (5.9)

where ∆ξ, σ and R0 are the amplitude, width and the initial size of the perturbation
respectively. The mass of the initial perturbation scales roughly as R2

0. We emphasise
that this perturbation is non-linear, despite its moniker. Nevertheless, its massless
nature means that it will propagate very close to the speed of light. Given the initial
static configuration, we expect to see the perturbation split into an infalling mode,
which drives the PBH formation, and an outgoing mode, which rapidly disperses.

The background scalar field ϕ starts from rest, so that ϕ̇ = 0 and the initial Hubble
parameter in the absence of inhomogeneities is H2

0 = 8πM−2
Pl V (ϕ0)/3 via Eqn. (5.6).

Since the configuration of ξ breaks the homogeneity of the initial spatial hyperslice,
to set up the correct initial conditions for the metric, we will solve the Hamiltonian
constraint. We choose a conformally flat ansatz for the 3-metric γij,

dl2 = ψ4(dx2 + dy2 + dz2) . (5.10)

Then, the Hamiltonian constraint reduces to an equation for the conformal factor ψ

H = ∂i∂iψ − ψ5

12K
2 + 2πM−2

Pl ψ
5ρ = 0 , (5.11)

where
ρ = ρξ + ρDM = ψ−4

2 (∂iξ)2 + V (ϕ0) . (5.12)
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Here the local expansion K is the trace of the extrinsic curvature, K = TrKij. Eqn.
(5.11) then becomes

∂i∂iψ − ψ5

12
(
K2 − 9H2

0

)
+ πM−2

Pl ψ (∂iξ)2 = 0 . (5.13)

We choose an initially expanding spacetime with K = −3H0, so that the periodic
integrability condition is satisfied3 [81, 472, 157]. The eventual Hamiltonian constraint
only depends on the radial coordinate r due to the spherical symmetry of the setup,
and we solve for the conformal factor ψ numerically

∂2ψ

∂r2 + 2
r

∂ψ

∂r
+ πψ

M2
Pl

(
∂ξ

∂r

)2

= 0 . (5.14)

5.3 Primordial black hole formation

Our main scale of reference will be the initial size of the unperturbed Hubble horizon
H0, which is fixed for all simulations by choosing the initial value of the scalar field ϕ

to be ϕ0 = 7.8 × 10−3MPl, with m ≈ 102H0. In the following, we will vary the initial
size of the perturbation from subhorizon to superhorizon, R0H0 ∈ [0.575, 1.6]. We
will also vary the perturbation amplitude within the range ∆ξM−1

Pl ∈ [0.075, 0.12],
whilst keeping the initial width fixed to σ0 = 0.15H−1

0 , such that the ratio between the
maximum gradient energy density to dark matter energy density is ρξ/ρDM ∼ 1.

We find that, for both subhorizon and superhorizon perturbations, PBH formation
occurs via two possible mechanisms – a direct collapse mechanism whereby the PBH is
formed by the initial perturbation of ξ itself, and a post-collapse accretion mechanism
whereby the initial perturbation of ξ sources a gravitational potential that then accretes
the background dark matter ϕ until a PBH forms. What determines the type of PBH
formation process depends (unsurprisingly) on both the geometry and mass of the
initial perturbation shell, as well as the expansion rate of the background cosmology.
We will discuss these two mechanisms below4.

3The initial energy density of the system is completely dominated by the scalar potential of the
homogeneous dark matter field ϕ, which allows us to neglect the perturbation field ξ. Then, the main
contribution to the initial energy density is given by the (homogeneous) value of the potential and
thus K2 = 24πV (ϕ0).

4In this work, we have used the background energy density, or equivalently the background scale
factor, as time. This corresponds to the cosmic time infinitely far away from the centre of the PBH.
However, in numerical relativity simulations, the foliation of spatial hyperslices is dynamically driven
by the so-called puncture gauge, which is required to enforce numerical stability in the presence
of future singularities. In this work, we have assumed that masses of PBHs are identified with its
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5.3.1 Direct collapse

In the direct collapse scenario, the perturbation collapses towards its geometric centre
(to which we will henceforth simply refer as the centre) and forms a black hole directly
on its own, without significant accretion of the background DM density. We will now
estimate the time a shell takes to undergo direct collapse. The perturbation field ξ

is massless, and hence if we ignore the backreaction of the shell on the background
geometry, it propagates along null-like geodesics 5. In an FLRW background, the scale
factor a is given by the null element dt2 = a2(t)dr2. Solving this kinematic equation,
the co-moving radius of the shell is then

rshell = R0a
−1
0 − 2H−1

0 a−1
0

[(
a

a0

)1/2
− 1

]
, (5.15)

where we set a0 ≡ 1 to be the initial scale factor at the initial time. The value of the
scale factor at the moment the shell collapses to the centre a∗ is then the solution to
the equation rshell(a∗) = 0, namely

a∗ = a0

[
1 + R0H0

2

]2
, (5.16)

which is roughly a Hubble time. Notice that a∗ is independent of the initial mass
and depends only on R0. We show in Fig. 5.2 that this analytic estimate is in good
agreement with our numerical results.

To determine whether or not a given initial perturbation shell will undergo direct
collapse into a black hole, we consider the width of the shell at the time when the shell
reaches the centre σ∗ = σ(a∗). Ignoring backreaction again, since the field ξ is massless,
the width of the shell as it collapses towards the centre scales as the expansion rate, i.e.

σ(a) = σ0a . (5.17)

Thus the width of the shell when it reaches the centre is simply σ(a∗) = σ0a∗. At this
moment, applying the hoop conjecture6 suggests that if the condition

σ(a∗) < 2GMinfall , (5.18)

foliation, when in principle one should identify it via null geodesics from the black hole horizon to
infinity. This inaccuracy should be minor and would not affect the main conclusions of the chapter.

5If the perturbation field ξ instead has mass mξ ∼ mϕ, then the collapse time is roughly the free
fall time τff ∼

√
MPl/mξξ which is also roughly one Hubble time.

6The presence of an expanding background modifies the hoop conjecture somewhat in general
[411], but we checked that the effects are negligible in our analytic estimates.
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Fig. 5.2 Black hole formation for different perturbation amplitudes. The
top (bottom) panel shows mass of the formed BHs as a function of the Hubble
parameter H(t) at infinity, for subhorizon (superhorizon) collapse respectively. Vertical
dashed black lines correspond to the time at which the perturbation reaches the centre
according to Eqn. (5.16). BHs formed through direct (accretion) collapse are shown
in dash-dotted (solid) lines. For accretion collapse BHs, increasing the amplitude ∆ξ
makes that the BH forms earlier with a smaller initial mass. Our simulations are in
good agreement with the hoop conjecture prediction that the threshold is ∆ξM−1

Pl ≈ 0.1
for R0H0 = 0.65 and ∆ξM−1

Pl ≈ 0.07 for R0H0 = 1.25. In direct collapse, part of the
collapsing perturbation ends up within the black hole, corresponding to a larger initial
mass.

is satisfied, where Minfall is half7 the initial mass of the shell obtained by integrating
the gradient energy of the profile ξ(r) roughly given by Eqn. (5.9) in flat space

Minfall ≈ 1
2

∫
dr 4πr2 1

2

(
∂ξ

∂r

)2

, (5.19)

7The infalling mass is half the initial mass, since the other half will radiate outwards to infinity, so
the shell’s initial (vanishing) momentum is conserved.
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then a black hole will form. This result is again in good agreement with our numerical
results, as shown in Fig. 5.2.

The fact that such simple estimates agree with our numerical results suggests that
the backreaction of the perturbation on the background dynamics is not very important,
at least at the level of determining when and how a black hole will form, even if the shell
density is large and locally ρξ > ρDM. This is backed up by our numerical simulations,
where we see that the ρDM profile is not strongly affected by the presence of ρξ, at least
initially, as can be seen in a video of the numerical evolution of the energy densities
here [236].

5.3.2 Accretion collapse

On the other hand, if σ(a∗) > 2GMinfall, a black hole does not form directly. In this
case, the energy density of the perturbation ρξ disperses after reaching the centre and
becomes locally sub-dominant to the background energy density ρDM. Nevertheless,
the presence of ξ generates a gravitational potential well in the centre, which seeds
accretion of the background DM and eventually causes a collapse into a black hole.
We illustrate this process in Fig. 5.3.

In this phase, the initially homogeneous and expanding background spacetime is
made to locally collapse by the perturbation, with the expansion K locally changing
sign from negative (expanding) to positive (contracting), decoupling the region near
the centre from the rest of the expanding background. The local dark matter begins
to accrete at an extremely high rate δρDM/ρDM ∝ a34, as shown in Fig. 5.4a. Once
sufficient DM mass has accumulated, a PBH forms. This process takes around an
e-fold to complete. This rapid accretion rate is much higher than that predicted from
linear theory, which is δρDM/ρDM ∝ a, indicating that the process is highly non-linear.

From our simulations, we note two salient points. Firstly, if we consider shells
that undergo accretion collapse, for fixed initial amplitude ∆ξ, the smaller the initial
R0 (and therefore the smaller the mass) of the initial perturbation, the more massive
the initial mass of the PBH. This somewhat counter-intuitive result is due to the
fact that the PBH forms via accreting DM, thus a more massive seed will generate a
steeper potential well, and hence the Schwarzschild radius is reached earlier and at a
smaller value for the BH mass. To confirm this, we checked that keeping R0 fixed but
increasing ∆ξ also yields a less massive initial PBH – this is true for both subhorizon
and superhorizon cases, as can be seen in Fig. 5.2. In Fig. 5.4b we plot the dark
matter energy density for two different values for R0 and ∆ξ. We confirm that larger
amplitudes (and thus more massive seeds) result in a faster accretion rate.

https://youtu.be/4N5e2RnUkmU
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Fig. 5.3 Evolution of the local expansion K and energy densities ρDM and
ρξ at the centre of the collapse r = 0, as a function of the Hubble parameter H(t) at
infinity – recall that K > 0 corresponds to locally collapsing spacetime. A representative
subhorizon (superhorizon) is shown in thin light blue (thick dark blue) in the accretion
collapse case. The top, middle and bottom panels show the evolution of the expansion,
the background energy density and gradient energy density respectively. Initially, the
background energy density decays as ρDM ∼ a(t)−3. When the perturbation reaches the
centre (dotted vertical lines) and disperses, gravitational effects decouple the system
and stop the local expansion, acting as a seed for the accretion of the background
matter ρDM. The accretion of the background matter continues until and after a black
hole forms (dashed vertical lines).
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(a) (b)

Fig. 5.4 (a): Rate of growth for the local dark matter overdensity δρDM/ρDM
at the centre of the collapse is well beyond the linear approximation as δρDM/ρDM ∝ a34.
Near black hole formation (vertical dashed blue line), the accretion rate tapers off,
although some of this tapering effect is due to our gauge condition. (b): Evolution
of the dark matter energy density at the centre of the collapse for a set of initial
radii R0 and amplitudes ∆ξ. For same radii perturbations, accretion begins at the
same time. However, the accretion rate is larger for larger amplitudes, which results in
the formation of a black hole at an earlier time.

Secondly, as R0 approaches H−1
0 , the expansion rate of the universe begin to exert

a competing effect. For shells with larger R0, it takes longer for the shell to reach the
centre, and thus a smaller ρξ and less steep potential when accretion begins. This leads
to an increase in the initial mass of the PBH following our argument above – resulting
in the “bump” in the initial mass of the black holes (e.g. the black dots in Fig. 5.5).

5.4 PBH growth and final mass

In the cases of both direct and accretion collapse, the initial mass of the PBH formed
is small compared to the Hubble horizon, MBHH0 ∼ 10−2M2

Pl – see Fig. 5.5. Once the
initial PBH has formed, the PBH accretes DM from its surroundings in the growth
phase at a rate that depends on the steepness of the potential and the density of the
surrounding DM “scalar cloud” [276, 153, 68, 275]. In general and regardless of the
details of the parameters, we find that the initial accretion rate is much higher than
the linear theory prediction of δρDM/ρDM ∝ a, as mentioned above. This growth rate
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is roughly constant, at least initially, and its contribution to the mass of the PBH will
rapidly dwarf that of its initial mass.

In a matter dominated universe, naive Newtonian collapse suggests that the maxi-
mum mass of the black hole is bounded by MBHH ∼ αM2

Pl [136], where α ≲ 1 is some
constant which depends on the exact details of the accretion. This suggests a self-
similar growth at some equilibrium point. In references [246, 247], it was demonstrated
numerically that while the initial growth can be rapid, it will not achieve self-similar
growth as accretion is not efficient once the black hole decouples from the background
spacetime. However, these works used a stiff massless scalar field as ambient matter
instead of a massive scalar field, which more accurately models the ambient DM. From
Fig. 5.5, we find that M ∼ H−β where β ≫ 1. As M approaches the Hubble horizon,
we expect β ≤ 1 although unfortunately, we were unable to track the growth of PBH
beyond a few factors of their initial mass, as the numerical cost becomes prohibitive.

As long as the universe is dominated by DM, the black hole will continually accrete
and grow without end. This would be the case if the PBH is formed in the present late
time DM dominated epoch – however such late time PBH has already been ruled out
[127, 239]. As we mentioned in the introduction, we consider instead an early phase of
DM domination before transitioning into the era of radiation domination prior to the
onset of Big Bang Nucleosynthesis (BBN), i.e. before the temperature of the universe
is around 1 MeV. This provides a natural cut-off for the growth of the PBH.

Nevertheless, if we assume that the rapid growth we observe continues untilMBHH ∼
M2

Pl, and that the BH grows self-similarly after, it is implied that the final mass of the
PBH is independent of when it forms. This means the final mass of the PBH is given
by

MBH ≈ 1038
(

1 MeV
T

)2

g ≈ 105
(

1 MeV
T

)2

M⊙ , (5.20)

where T is the temperature of the universe at the onset of radiation domination. Taking
TBBN = 1 MeV as the natural cut-off for the growth of the PBH, the most massive black
holes that can be formed via this accretion mechanism are MBH ≈ 1038g ≈ 105M⊙

[134, 237].
On the other hand, if the PBH growth asymptotes to a slower rate than the self-

similar rate, or achieve self-similarity before MBH ∼ H−1M2
Pl, then our simulations

suggests that MBH ≳ 10−2H−1M2
Pl, where H is the Hubble parameter when the PBH

forms. This means that PBH formed around T ∼ 5 MeV, MBH ≳ 40M⊙ could form
the basis of the population of massive BH that are being detected today by the LVK
observatories.
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Fig. 5.5 Summary of simulations showing the black hole MBH as a function of
the Hubble parameter H(t) at infinity, for various initial radii R0, for ∆ξM−1

Pl = 0.075.
The growth rate of the black hole mass is larger for larger shells, because they source a
larger gravitational potential. Black dots correspond to the initial black hole masses at
formation, identified using an apparent horizon finder.

5.5 Summary and discussion

In this chapter, we demonstrated that superhorizon non-linear perturbations can
collapse and form PBHs in a matter dominated universe, using full numerical relativity.
We show that, depending on the mass of the initial perturbation shell, this happens
via either the direct collapse or the accretion collapse mechanisms. We provide an
analytic criterion Eqn. (5.18) using the hoop conjecture to determine which mechanism
is relevant for a given setting, and compute the timescale of collapse using the same
prescription. Despite the O(1) non-linearity, we find that the dynamics of collapse can
be modeled as a simple superhorizon mass shell collapsing in an expanding background.
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This suggests that semi-analytic estimates of PBH formation in a matter dominated
era are broadly accurate.

On the other hand, details matter. We showed that even in the cases where the
perturbation is insufficient on its own to form a PBH in a direct collapse, non-linear
accretion rates are far higher than what standard linear theory predicts, causing a
rapid collapse into a PBH via accretion of ambient DM. In both the direct collapse
and accretion collapse formation cases, the initial mass of the PBH is roughly MBH ∼
10−2H−1M2

Pl, but formation is followed by an extremely rapid growth M ∝ H−β where
β ≫ 1. Presumably, this growth will asymptote to either the self-similar rate β = 1 or
the decoupled rate β < 1 [246, 247].

Interestingly, even if the self-similar rate is not achieved, the fact that most of the
mass of the PBH is gained through post-formation accretion suggests that there might
be a mechanism to generate PBHs with non-trivial spin. Such non-trivial spin might
for example be generated by the collapse of a non-spherically symmetric shell, even if
the shell is initially spinless. In that case, the PBH might not form in the centre of the
initial mass distribution and thus form with spin, whilst outgoing radiation carries away
angular momentum of opposite sign, such that angular momentum is still globally con-
served, as suggested by [250, 249]. We will explore this possibilty in a future publication.





Chapter 6

Conclusions

6.1 Summary

In this thesis we have applied modern numerical relativity techniques to study the
role of strong gravity in three open problems in the early universe: inhomogeneous
inflation, cosmic strings and primordial black holes. The thesis has been structured in
three parts: background, research and extra material.

We started Chapter 1 reviewing general relativity and introduced the basics of
the inflationary universe, cosmic strings and primordial black holes as extensions of
the current standard cosmological model. In Chapter 2 we concluded the background
material by introducing the methods of numerical relativity to cast Einstein’s equations
in a 3+1 form, ready to be solved as an initial value problem. We also discussed novel
approaches to solve the initial data constraints for spacetimes that contain both black
holes and fundamental fields.

The core research material consists of Chapters 3, 4, and 5, where we have presented
the main original results of this thesis.

6.1.1 Inhomogeneous inflation

In Chapter 3, we explored whether inflation can begin from inhomogeneous initial
conditions. In particular, we derived and tested the high accuracy of an analytical
criterion to predict when a given inflationary model will succeed regardless of its initial
conditions in the scalar field ϕ. We argued that for a perturbation with wavenumber k,
inflation fails if there exists a ∆ϕ such that

k2∆ϕ+ dV

dϕ
(ϕ0 + ∆ϕ) = 0 . (6.1)
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Fig. 6.1 Additional constraints on the joint parameter space for brane inflation in
both its initial conditions space (y-axis) and its model space (x-axis) by combining
numerical simulations (red vs white regions), observational data [31] (blue shading),
the requirement for a minimum of N = 100 efolds of inflation (green shading) and a
geometric constraint (grey shading).

We related this to a condition in the shape of the potential by taking the derivative

k2 + V ′′(ϕ0 + ∆ϕ) = 0 . (6.2)

The first term is always positive, whilst the second one depends upon the shape of the
potential. For convex potentials V ′′ > 0, and thus inflation can never fail. For concave
potentials, on the other hand, V ′′ < 0 allows the zero crossing to exist depending on the
value of k2 and the scale of the potential. We confirmed that decreasing the wavelength
of the inhomogeneities (and thus increasing k2) makes models more robust, so the
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most dangerous modes are the long wavelength near horizon modes. However, V ′′(ϕ) is
larger for small-field potentials – those in which the field ϕ transverses a small region
– and we showed that their robustness is closely related to the characteristic scale of
the potential. We demonstrated that convex models are generically more robust than
small field concave ones, as opposed favoured observations by the Planck Collaboration,
see Fig. 1.1. In addition, we argued that for some potentials there exists a bound on
the initial mean value of the inflaton field, beyond which inflation will be successful
regardless of the amplitude of the inhomogeneities.

Our work emphasises that whether inflation is successful depends jointly on both the
inflationary model and the initial conditions. In particular, Fig. 6.1 clearly demonstrates
a way forward in placing more stringent constraints by combining observational data,
theoretical models and initial condition space together.

6.1.2 Cosmic strings with NR

In Chapter 4, we performed the first-ever fully general relativistic simulations of abelian
Higgs cosmic strings. Focusing on circular loops of radius R0 whose mass is given
in terms of the string tension Gµ as GM0 = 2πR0Gµ, our numerical results showed
that the loop can either (i) unwind and release its energy in a mixture of gravitational
waves, scalar and vector fields, or (ii) form a black hole radiating O(1)% of the initial
total mass of the system in gravitational waves. Using the hoop conjecture we derived
a formula for R0 to predict such an outcome

R0 >

√
1

8πλ (Gµ)−3/2 M−1
Pl , (6.3)

and confirmed its accuracy in Fig. 4.3.
We also performed a parameter space study by simulating lower string tension loops

Gµ ≈ 10−3 − 10−2, and varying both the radius R0 and the string width δ = (
√
λη)−1.

Surprisingly, we found that the gravitational waves of the collapse only weakly depend
on the latter two whilst lighter strings – smaller Gµ and thus weaker coupling to gravity
– lead to greater eficciency, radiating up to ∼ 2% of the initial mass in gravitational
waves, see Fig. 4.5. We explained this counter-intuitive result by looking at the Lorentz
factor of the string right before the black hole forms, which increases for smaller string
tensions as γ(tBH) = (4πGµ)−1, with the efficiency scaling with the Lorentz factor of
the string approximately as EGW/M0 ∝ (Gµ)−1, for the parameter space studied in
this work. We argued that this strongly suggests that the GW production in such a
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Fig. 6.2 “Plus” and “cross” polarisations of the strain waveform of a collapsing
circular cosmic string loop. The top of the figure displays snapshots of the process:
loop infall, merger and ringdown of the black hole. The contribution to the cross
polarisation vanishes due to the S1 symmetry of the collapse.

collapse is dominated by kinematic proceesses, and not geometric ones, such as the
thickness of the loop.

The ultimate goal of this research line is illustrated in Fig. 6.2, where motivated by
current gravitational-wave searches by the LVK observatories we constructed the first-
ever time-domain gravitational strain waveform of such an event. The signal features a
low frequency infall followed by a characteristic merger and standard ringdown of a
Schwarzschild black hole. In addition, it shows very interesting phenomenology such as
the large permanent shift in the “plus” polarisation of the strain, called gravitational-
wave memory. Its origin resides in the large aspherical emission of energy that is
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sourced post-collapse, so we believe this is a robust result regardless of the string
parameters.

6.1.3 PBH formation with NR

We have demonstrated that in a matter dominated universe, superhorizon non-linear
perturbations can collapse and form PBHs via the direct collapse or the accretion
collapse mechanisms, when the perturbation is insufficient on its own to form a PBH
but it triggers an accretion process that causes a rapid collapse of the ambient DM. We
have tested an analytic criterion (Eqn. (5.18)) using the hoop conjecture to determine
which mechanism is relevant for a given setting, and compute the timescale of collapse
using the same prescription. In both processes the PBH forms within an efold and with
a small initial mass compared to the Hubble horizon, MBHH0 ∼ 10−2M2

Pl. However,
we found that the formation is followed by an extremely rapid growth M ∝ H−β with
β ≫ 1, where the PBH acquires most of its mass.

Last but not least, Appendix A, B, C and D comprise the extra material of this
thesis. They include detailed calculations that have been omitted throughout the text,
such as the projections of the 3+1 Einstein’s equation or the construction and fitting of
the gravitational-wave signal corresponding to the infall of the cosmic string loop. In
these sections we also prove the robustness of our work by presenting details about the
implemented evolution equations as well as numerical checks and convergence tests.

6.2 Future work

In Chapter 3 we focused on popular inflationary models and restricted the study of
the robustness of inflation to inhomogeneities in the initial scalar field profile ϕ. We
intend to extend this work by exploring a more general set of initial perturbations with
both non-trivial scalar field ϕ and momentum ∂tϕ, and thus providing more robust
conclusions about the precise theory of the Big Bang. This is a highly contentious
open problem that has been mostly unexplored due to its computational challenge –
one would need to solve for the full set of initial constraint equations.

We will also delve into alternative mechanisms such as the non-perturbative inves-
tigation of bouncing cosmologies [307, 306, 119, 215, 470, 280] – which state that the
beginning of our universe bounced from another cosmological epoch. This has lately
received renewed interest thanks to recent computational studies claiming it to be a
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more effective cosmological smoother than the inflationary paradigm [162, 278, 281, 279].

Regarding cosmic strings, our ultimate goal is to extend their general relativistic
characterisation to other system dynamics and provide the community with accurate
gravitational-wave templates to be used in the LVK detector searches. In Chapter 4
we focused on circular cosmic string loops, but it is well known that these are only
an example among a plethora of configurations that arise after a phase transition in
the early universe. To check whether circular loops are unnatural or the endpoint of
more generic loops’ lifetime, we will delve into the angular and gravitational radiation
of non-circular loops by doing a general relativistic extension of the work done in
[349, 414], where their flat space formation and decay was studied. This will allow us
to quantify the angular momentum loss rate and thus conclude what number density
of circular loops we should expect today.

Another well-motivated and generic signal to look for in the detector data stream is
what is known as a cusp – a burst of gravitational waves released when a fragment of
a string doubles back on itself and moves at the speed of light. The current waveforms
used in the detector analysis pipelines are based on weak-gravity calculations in the
Nambu-Goto limit [173]. We will construct their general relativistic waveforms by
using field-theory analytical solutions for cosmic string traveling waves [219], which are
extremely valuable for the construction of constraint satisfying initial data evolving to
a cusp1.

The PBH formation mechanisms studied in this thesis where most of its mass is
gained through post-formation accretion suggests that there might exist a channel to
generate PBHs with non-trivial spin. In a future publication, we will investigate the
collapse of non-spherically symmetric shells to check whether such configurations can
lead to the formation of highly spinning PBHs in a matter dominated era.

In addition, we will use numerical relativity to check whether PBHs can form
through the collision of expanding vacuum bubbles, which are expected to arise after
a first-order phase transition [158, 159]. As opposed to the literature considering the
intersection of multiple null shells [283, 259, 468, 354], we will look into the stability of
the post-collision scalar field dynamics.

1Besides this case, most of the non-trivial systems entail the challenge of solving both the Hamil-
tonian and momentum constraints, which will be done using the method described in Chapter
2.
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In summary, I believe that the research contained in this thesis opens up a new
intriguing avenue for the use of numerical relativity in the early universe. In particular,
the development of techniques for a general initial condition solver not only allows
the extension of the work discussed, but it will also open up an infinite number of
opportunities to study a wide range of problems in cosmology.
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Part III

Extra material





Appendix A

Foliation of Einstein’s equations

A.1 ADM decomposition

Obtaining Gauss-Codazzi equation:

DjV
k = P q

j P
k
r ∇qV

r = P q
j ∇qV

k + P q
j n
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r = P q
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since P k
t n

t = 0 and Kk
i = −Din

k. Therefore,
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since Kµν is symmetric. Noting the definition of the 4-dimensional Riemannian
curvature tensor RαβµνV

β = 2∇[µ∇ν]Vα, the Gauss-Codazzi equation is obtained

P δ
αP

κ
βP

λ
µP

σ
ν Rδκλσ = (3)Rαβµν +KαµKβν −KανKβµ. (A.6)

Similarly for the Codazzi-Mainardi equation, defining aa ≡ nb∇bna,

Kab = −P p
aP

q
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so that

DaKbc = P p
aP

q
b P

r
c ∇pKqr = −P p

aP
q
b P

r
c ∇p(∇qnr − nqar)

= −P p
aP

q
b P

r
c ∇p∇qnr − P p

aP
q
b P

r
c ∇p(nqar) = −P p

aP
q
b P

r
c ∇p∇qnr +Kabac (A.8)

and hence
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r
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b P

r
c Rpqrsn
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which is the Codazzi-Mainardi equation

DbKac −DaKbc = P p
aP

q
b P

r
c n

sRpqrs (A.10)

The evolution equation for the extrinsic curvature tensor Kµν is obtained following the
definition of the Lie derivative

£n⃗Kab = nc∇cKab +Kca∇bn
c +Kcb∇an

c
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(A.11)

and as ∇aab = nc∇a∇cnb + ∇an
c∇cnb,

£n⃗Kab = −ndncRdbac − ∇aab − ncna∇cab − aaab −Kc
bKac −Kcanba

c (A.12)

It can be easily shown that £n⃗Kab is purely spatial since

na£n⃗Kab = nanc∇cKab + naKac∇bn
c + naKbc∇an

c

nc∇c(naKab) −Kabn
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because Kab is purely spatial, which implies naKab and also ∇c(naKab) = na∇cKab +
Kab∇cn

a = 0. Therefore, projecting two indices in LHS of (A.12) will give the same
result but with a simplified version of RHS.
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q
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bKac (A.14)

since P p
anp = 0. In addition,
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q
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and replacing the first term by the Gauss-Codazzi equation and the second term by
Einstein’s equations
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where Sab ≡ P p
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q
b Sab and P p
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q
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rsTrs = γab(γrs − nrns)Trs = γab(S − ρ). Now
as aa = Da lnα and using the Gauss-Codazzi equation for the first and Einstein’s
equations for the second term on RHS,
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so that finally the evolution equation for Kab is
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+ 4πα (γab(S − ρ) − 2Sab)
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where the last part comes from the matter content.

A.2 BSSN reformulation

Starting from the evolution equation for the spatial metric

d
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(
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3γijK
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(A.19)
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and doing the conformal transformation,
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which splits into

d
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Similarly for the evolution equation of the extrinsic curvature tensor
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so that equation (A.23) can be rewritten
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and expanding LHS
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+ 4πα (γij(S − ρ) − 2Sij) (A.29)
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which can be splitted into a traceless and a trace part
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Now inserting the Hamiltonian constraint,
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a final evolution equation can be obtained for K
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For the conformal connection functions, first note that
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and therefore
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Expanding the Lie derivative,
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where the rule of taking Lie derivative of tensor densities has been used. Using the
momentum constraints
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where S̄i = χSi, we can rewrite the evolution equation into its final form
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Appendix B

The effects of potential shape on
inhomogeneous inflation

B.1 Evolution equations

In this work, we use grchombo, a multipurpose numerical relativity code [55, 154]
which solves the BSSN [79, 421] formulation of the Einstein equation and the moving-
puncture gauge [102, 67, 124, 445], which helps us control constraint violation growth
and evolve black hole spacetimes. The matter part of the Lagrangian is

Lϕ = −1
2g

µν∂µϕ∂νϕ− V (ϕ) , (B.1)

which gives the evolution equations

−∇µ∇µϕ+ dV (ϕ)
dϕ

= 0 , (B.2)

and decomposing the equation into two first order equations, with BSSN variables it
becomes

∂tϕ = αΠ + βi∂iϕ , (B.3)
∂tΠ = βi∂iΠ + α∂i∂iϕ+ ∂iϕ∂

iα

+ α

(
KΠ − γijΓk

ij∂kϕ− dV

dϕ

)
. (B.4)
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The stress energy tensor is

Tab = ∇aϕ∇bϕ− 1
2gab (∇cϕ∇cϕ+ 2V ) , (B.5)

and its various components are defined as

ρ = na nb T
ab , Si = −γia nb T

ab ,

Sij = γia γjb T
ab , S = γij Sij . (B.6)

The Hamiltonian and momentum constraints are monitored throughout the evolution
to check the quality of our simulations, see Fig. B.1a. We use periodic boundary
conditions in all directions.

B.2 Initial data

We have defined the conformal metric γ̃ij = χγij where χ is the conformal factor, a
scalar density. We make the simplifying assumption that Aij = 0 and that the induced
metric is conformally flat γ̃ij = δij. We solve the Hamiltonian constraint for χ using
a multigrid solver. As explained in Sec. 3.2, the momentum constraints are trivially
satisfied, and the constant value of K is set by imposing an integrability condition on
the periodic domain.

B.3 Measurement of e-folds

The number of e-folds informs by how much the universe has expanded from a reference
time t0. In an inflationary spacetime the scale factor grows as a(t) ∝ eHt and the
number of e-folds N with respect to t0 is then defined as

N = ln
(
a(t)
a(t0)

)
(B.7)

In our code, the conformal factor is related to the scale factor in a FLRW spacetime as
χ = a(t)−2 so that the local number of e-folds can be obtained by evaluating

N = −1
2 lnχ . (B.8)



B.4 Constraint violation 161

(a) (b)

Fig. B.1 (a): L2H constraint remains stable throughout the evolution for all runs.
Dark colours correspond to large field models, for which black holes form at N ≈ 2
(yellow-coloured region). Lighter colours represent the Hamiltonian constraint violation
for small field cases, in which the gradient energy density is not enough to form
singularities. For these cases the L2H analysis is stopped when the field first reaches
the minimum. (b): Convergence test for small field D-brane inflation model is
consistent with a 2nd order convergence. Top panel: Evolution of ϕmax for low (LR:
963), mid (MR: 1123) and high (HR: 1283) resolutions. Bottom panel: LR-MR and
MR-HR errors and the LR-MR values expected at 2nd order convergence.

In this work we track the average number of e-folds over the simulation box with
coordinate volume V = dxdydz by averaging χ, so that

⟨N ⟩ = −1
2 ln⟨χ⟩ (B.9)

where
⟨χ⟩ = 1

V

∫
V
χ dV . (B.10)

B.4 Constraint violation

In Fig. B.1a, we show that the volume-averaged Hamiltonian constraint violation

L2H =
√

1
V

∫
V

|H2|dV , (B.11)
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where V is the box volume, is under control throughout the simulations studied in this
paper.

We use the gradient conditions on ϕ and χ to tag cells for regridding, although in
many of our simulations a single level is sufficient. It is only for the large field cases in
which ∆ϕ > MPl, where large gradient energies are present, that we need to use AMR
to resolve any collapse to black holes. As we do not excise the interior of the black
holes, an increase in L2H can be seen in the yellow-coloured region until the black
holes are inflated out due to the expanding spacetime. In addition, cases in which
the field initially rolls-down to the reheating minimum and drags-down the rest of the
field, sharp gradients have to be resolved by using multiple levels of AMR which is
challenging numerically due to the two different scales that need to be tracked.

B.5 Convergence testing

We tested the convergence of our simulations using a box of size L = 32M = H−1 with
low (LR: 963), mid (MR: 1123) and high (HR: 1283) resolutions. We extract the value
of the field at the center of the grid, which corresponds to ϕmax and track its evolution.
In particular we look at the case of ∆ϕ < ∆ϕcrit for the small field D-brane model
3.4b. The evolution of the field with respect to the average number of e-folds is shown
in the top panel of Fig. B.1b, together with the relative errors for different resolutions
in dashed lines ||ϕLR − ϕMR|| and ||ϕMR − ϕHR||. The evolution is consistent with 2nd
order convergence (solid line).
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Model V (ϕ) µ [MPl] λ | Λ4 [M4
Pl] ϕ0 [MPl] Hinf [MPl] ∆ϕe [MPl] ∆ϕcrit [MPl] ∆ϕ1 [MPl] ∆ϕ2 [MPl]

λM
8/3
Pl (−ϕ)4/3 − − − 2.57 × 10−14 −3.26 1.02 × 10−6 3.07 − − − 3.26 − − −

λM
10/3
Pl (−ϕ)2/3 − − − 3.58 × 10−14 −2.31 7.23 × 10−7 2.21 − − − 2.31 − − −

Λ4
(

1 −
(

ϕ
µ3

)3
) 1 2.05 × 10−16 7.43 × 10−2 4.14 × 10−8 8.03 × 10−1 − − − 9.40 × 10−1 − − −

5 × 10−2 5.15 × 10−24 1.05 × 10−5 6.57 × 10−12 1.68 × 10−2 1.38 × 10−2 1.10 × 10−2 1.50 × 10−2

Λ4
(

1 −
(

ϕ
µ4

)−4
) 1 5.58 × 10−15 −2.18 2.11 × 10−7 1.07 − − − 1.25 − − −

1 × 10−2 1.29 × 10−17 −9.92 × 10−2 1.04 × 10−8 7.67 × 10−2 8.21 × 10−2 8.10 × 10−2 8.40 × 10−2

Λ4 (1 − exp [ϕ/µ])2

√
3/16π 2.11 × 10−14 −2.19 3.97 × 10−7 1.95 − − − 2.19 − − −

5 × 10−3 1.18 × 10−18 −6.33 × 10−2 3.14 × 10−9 4.31 × 10−2 4.74 × 10−2 4.50 × 10−2 5.10 × 10−2

Table B.1 Overview of runs: (i) Convex monomial. (ii) Concave monomial. (iii) Cubic hilltop. (iv) D-brane. (v)
α-attractor model. In these cases Λ4 is chosen such that it is compatible with scalar index measurements from the Planck 2018
observations. In addition, ϕ0 is the initial field value that would correspond to 100 e-folds in the absence of inhomogeneities
∆ϕ = 0. ∆ϕe corresponds to the value where ϵV (ϕe) = 1 with ϕe = ϕ0 + ∆ϕe. ∆ϕcrit is the value for which f(ϕ0,∆ϕcrit) = 0
and ∆ϕ1 and ∆ϕ2 are different amplitudes used in simulations.





Appendix C

Abelian Higgs cosmic strings with
full numerical relativity

C.1 Evolution equations

In this work, we use grchombo, a multipurpose numerical relativity code [55, 154]
which solves the BSSN [79, 421] formulation of the Einstein equation and the moving-
puncture gauge [102, 67, 124, 445], which helps us control constraint violation growth
and evolve black hole spacetimes. The matter part of the Lagrangian is

Lm = −(Dµϕ)∗(Dµϕ) − 1
4FµνF

µν − V (ϕ) , (C.1)

which gives the evolution equations

−DµD
µϕ+ ∂V (ϕ)

∂ϕ̄
= 0 , (C.2)

∇µF
µν = −eJν , (C.3)

with
Jν = 2Im(ϕ∗Dνϕ) , Fµν = ∂µAν − ∂νAµ . (C.4)

We decompose these equations in 3+1 coordinates, following [476]. Furthermore, we
impose the Lorenz condition

∇µAµ = 0 . (C.5)

Using the projector
P ν

µ = δν
µ + nµn

ν , (C.6)
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Fig. C.1 (a): Gauss constraint for static string: We run the same simulation for
an infinite static string with Gµ = 1.6×10−2 (η = 0.05MPl) with and without damping.
We find that the damping stabilises the linear growth in violation. (b): L2 norm of
constraints: Loop with Gµ = 1.6×10−2 and R = 100 M−1

Pl remains stable throughout
evolution, even after black hole formation. The initial Hamiltonian constraint is smaller
than it can be maintained by the evolution scheme. The momentum constraints
violation are negligible throughout.

where nµ is the normal to the hypersurface, the gauge field and current can further be
decomposed into traverse and longitudinal components via

Aµ = Aµ + nµA ,

Jµ = Jµ + nµJ ,
(C.7)

such that

Aµ = P ν
µAν and A = −nνAν ,

Jµ = P ν
µJν and J = −nνJν .

(C.8)

The electric and magnetic fields are defined as

Eµ = P ν
µn

ρFνρ , (C.9)

Bµ = P ν
µn

ρ(⋆Fνρ) , (C.10)
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where (⋆Fνρ) is the dual Maxwell tensor. Using the previous decomposition we rewrite
the Maxwell tensor as

Fµν = nµEν − nνEµ + ∂µAν − ∂νAµ . (C.11)

In addition, Eqn. (C.3) gives the Gauss constraint

∇̃iE
i = eJ , (C.12)

where ∇̃ = P ν
µ ∇ν .

To ensure that numerical violation of Eqn. (C.12) is kept to a minimum, we stabilise
it by introducing an auxiliary damping variable Z [476, 268, 383], resulting in the
following modified evolution equations

∂tE
i = α(KEi + ∇̃iZ − eJ i + ∇̃iA) − A∇̃iα + βj∂jE

i

− Ej∂jβ
i , (C.13)

∂tA = −Ai∇̃iα + α(KA − ∇̃iAi − Z) + βj∂jA , (C.14)
∂tAi = −α(Ei + ∇̃iA) − A∇̃iα + βj∂jAi

+ ∂iβ
jAj , (C.15)

∂tZ = α(∇̃iE
i − eJ − κZ) + βj∂jZ . (C.16)

From fig. C.1a we see the scheme is effective at stopping the growth of constraint
violations.

Finally, we decompose the complex scalar field

ϕ = 1√
2

(ϕ1 + iϕ2) , (C.17)

and rewriting the matter equations with BSSN variables,
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∂tϕa = αΠa + βi∂iϕa , (C.18)
∂tΠa = βi∂iΠa + α∂i∂iϕa + ∂iϕa∂

iα

+ α

(
KΠa − γijΓk

ij∂kϕa + dV

dϕa

)
+ α(−e2AµA

µϕa ± eϕa+1∇µA
µ

± 2eAµ∂µϕa+1) , (C.19)
∂tE

i = αKEi − eαχγ̃ijJj + αχγ̃ij∂jZ

+ χ2γ̃ij γ̃kl∂lα(∂jAk − ∂kAj)
+ αχ2γ̃ij γ̃kl(D̃k∂jAl − D̃k∂lAj)

+ α

2χγ̃
ij γ̃kl(∂jAl∂kχ− ∂kAj∂lχ)

+ βj∂jE
i − Ej∂jβ

i , (C.20)
∂tA = αKA − αχγ̃ij∂jAi + αχAiΓ̃i − αZ

+ α

2 Aiγ̃
ij∂jχ− χγ̃ijAi∂jα + βj∂jA , (C.21)

∂tAi = −αχ−1γ̃ijE
j − α∂iA − A∂iα

+ βj∂jAi + ∂iβ
jAj , (C.22)

∂tZ = α∇̃iE
i − 3

2
α

χ
Ei∂iχ− αeJ − ακZ + βj∂jZ , (C.23)

where a ∈ {1, 2} and the second order Klein Gordon equation has been decomposed
into two first order equations as usual. The stress energy tensor for Abelian Higgs is1

Tµν = D(µϕ
∗Dν)ϕ+ FµαF

α
ν + gµνLm, (C.24)

and its various components are defined as

ρ = na nb T
ab , Si = −γia nb T

ab ,

Sij = γia γjb T
ab , S = γij Sij . (C.25)

The Hamiltonian constraint

H = R +K2 −KijK
ij − 16πρ , (C.26)

1We define the symmetrisation as D(µϕ
∗Dν)ϕ ≡ Dµϕ

∗Dνϕ+DµϕDνϕ
∗.
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Fig. C.2 (a): Toroidal coordinates encode the symmetry of our cosmic string loops.
They are used to generate the initial field configuration, where R defines the radius of
the loop. (b): Initial relative violation: Slice through initial data for loop from
center through string with Gµ = 1.6 × 10−2 and initial radius R = 100 M−1

Pl . The
green region indicates where the string is located. We find that there is an error of at
most 0.3%.

the momentum constraint

Mi = Dj(Kij − γijK) − 8πSi , (C.27)

and the Gauss constraint
Z = ∇̃iE

i + eJ νnν , (C.28)

are monitored throughout the evolution to check the quality of our simulations (see
Fig. C.1b). Our boundary conditions are Dirichlet.

C.2 Initial data

We set up the field as mentioned in the main text using toroidal coordinates (see Fig.
C.2a). Time symmetry is assumed for our initial data,

K = 0 , Aij = 0 , (C.29)
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which automatically fulfils the momentum contraint (eq. C.27). In addition, we make
a conformally flat2 ansatz γ̃ij,

γ̃ij = δij , (C.30)

and impose the metric to be identity in the center of the string, similar as the static
string (see eq. C.36). We find that doing so reduces possible excitations of the string.
For the gravitational wave extraction, we impose the condition

lim
r→∞

χ = 1 . (C.31)

We solve for χ using the Hamiltonian constraint Eqn. (C.26). We reduce the spatial
dimension of the problem by using its cylindrical symmetry. This solution is then
further relaxed to obtain the final solution, which is that of an excited cosmic string
loop.

As shown in Fig. C.2b, the relative Hamiltonian violation from our prescription is

Hrel = H
16πρmax

< 1% .

C.3 Abelian Higgs code test

To test the code, we compare the evolution of a simulation with a known semi-analytic
case of the infinite static string [454]. Given the symmetry of the problem we use polar
coordinates

x = r cos(θ) ,
y = r sin(θ) ,
z = z .

(C.32)

and choose cylindrically symmetric ansatz for the scalar and gauge fields ϕ and Aµ

ϕ = f(r)einθ ,

Aθ = nα(r)
e

,
(C.33)

2This is not the unique solution to the constraint equations given the initial field configuration.
However, it is the most easily implemented, as more general initial conditions require much greater
computational resources to find. Conformal flatness is also consistent with the fact that the spacetime
is asymptotically Schwarzschild.
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and all other components are set to zero. We impose the boundary conditions

f(0) = 0 , f(∞) = 1 ,
α(0) = 0 , α(∞) = 1 .

(C.34)

For the metric, the following ansatz is chosen

ds2 = −eA(r)dt2 + eB(r)(dr2 + r2dθ2) + eA(r)dz2 , (C.35)

where A(r) and B(r) are radial functions numerically determined. We impose the
metric and its derivatives to be locally flat

A(0) = 0 , A′(0) = 0 ,
B(0) = 0 , B′(0) = 0 .

(C.36)

We solve Einstein’s and the corresponding matter evolution equations

Gµν = 8πTµν , (C.37)

DµD
µϕ = dV

dϕ̄
, (C.38)

iteratively as follows. We solve the Klein-Gordon equation (eq. C.38) for fixed flat
background, then use this solution to calculate the stress-energy tensor and retrieve
the values of A(r) and B(r) via (C.37) to build a new metric. Plugging this back into
the Klein-Gordon equation we find new profiles for the fields using the new metric as
background. The solution converges quickly (within ∼ 5 iterations), see Fig. C.3a for
the obtained profiles of f and α.

C.4 Comparison with Nambu-Goto

Previous work showed that without gravity [367] the Nambu-Goto (NG) action is still
valid at relativistic speeds. However, a comparison between the two approaches, leads
to consistent results with NG up to roughly the point when the string radius is close to
the string thickness (see fig. C.3b). To reduce gauge effects we use the time of static
observer at the position of the string,

τ =
∫
α|ρ=max(ρ) dt . (C.39)
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Fig. C.3 (a): Radial profile of α and f for an infinite static string with gravity in
the critical coupling limit (e = 1, λ = 2) and η = 0.05 MPl (Gµ = 1.6 × 10−2). (b):
Comparison with Nambu-Goto for loop with Gµ = 1.6 × 10−2 and initial radius
R0 = 100 M−1

Pl shows agreement.

Having shown that NG is a good approximation, we use it to estimate the velocity
before unwinding, which we define as the point where the radius of the loop R is equal
to the thickness of the string δ. We find

vδ =

√√√√1 −
(
δ

R0

)2

, (C.40)

which, for our simulations, gives results ranging from 0.97 c to 0.99 c. In the case for
which we extract the gravitational wave signal (Gµ = 1.6 × 10−2, R0 = 100 M−1

Pl ) we
estimate a velocity of 0.99 c before collision.

C.5 Convergence testing

In Fig. (C.4a), we show that the volume-averaged Hamiltonian constraint violation

L2(H) =
√

1
V

∫
V

|H2|dV , (C.41)

where V is the simulation box coordinate volume with the interior of the apparent
horizon excised, is under control throughout the simulation.
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(a) (b)

Fig. C.4 (a): L2 norm of constraints: We test the Hamiltonian constraint evolution
for a loop with Gµ = 2 × 10−3 and R0 = 1600M−1

Pl . It collapses and forms a black hole
at t ≈ 2500M−1

Pl . After that, the Hamiltonian constraint remains stable at L2H < 10−7.
This plot shows that we have very good numerical control over our simulations. (b):
Convergence in rΨ4 for Gµ = 2 × 10−3 and R0 = 1600M−1

Pl between different coarse
grid resolutions: low (∆x = 48M−1

Pl ), mid (∆x = 38M−1
Pl ) and high (∆x = 32M−1

Pl )
resolutions, in addition to 6 refinement levels.

We use the gradient conditions on ϕ and χ to tag cells for regridding. The precise
criteria is chosen depending on the symmetry breaking scale η and the total mass of
the system. We use the symmetry of the system to only simulate one quarter of the
system, which reduces the computational cost of the problem.

We cut off our signal after some time t when the black hole has formed (and hence
the QNM signal is completely determined analytically), and fit QNM modes for the
l = 2 m = 0 mode [319] in Fig. C.7b). We test the precision of the simulation by
comparing the radiated energies with the initial mass. We find that these number for
the simulations in table (C.1) are consistent within the 1-5 % range.

We tested the convergence of our simulations with a cosmic string loop of Gµ =
2×10−3 and R0 = 1600M−1

Pl by using a box of size L = 3072M−1
Pl in which we improved

by a factor of 1.2 between the medium and highest resolution and 1.25 between the
lowest and medium resolution. The convergence of rΨ4 is shown in Fig. C.4b, for
different coarse grid resolutions: low (∆x = 32M−1

Pl ), medium (∆x = 38.4M−1
Pl ) and

high (∆x = 48M−1
Pl ), in addition to 6 refinement levels.
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C.6 Constructing the strain waveform

We extract the Newman-Penrose scalar Ψ4 [372] with tetrads proposed by [66]. We
compute it in the numerical grid using the BSSN variables, and extract its real and
imaginary components at a certain distance from the source, which we then decompose
into spin-2 spherical harmonics. Similarly as in black hole binaries, there is some
non-physical radiation associated with the initial data, which in our case consists of
a toroidal shell of artificial radiation resulting in two GW peaks before the physical
signal. While such stray-GW can often be ignored as they quickly radiate away at light
speed, due to the rapid collapse of the cosmic string loops at ultrarelativistic speeds,
they cannot be ignored.

Nevertheless, these artefacts can be separated by simulating larger loops. The time
for the stray radiation moving at the speed of light is R0 + rext, while the signal of the
collapsing loop arrives around R0π/2 + rext. This implies that we can separate the
artificial radiation from the real signal by increasing the radius of the loop, which is
computationally expensive. This is especially visible in Fig. 4.2, where we increased
the radius of the loop for smaller Gµ to guarantee black hole formation. The initial
peak, which is the artificial, becomes more and more separated with the signal for
larger R0. To calculate the total emitted GW energy we use the usual equation

dEGW

dt
= r2

16πG

∫
Sr

∣∣∣∣∫ t

t0
Ψ4dt

′
∣∣∣∣2 dΩ , (C.42)

where Sr is a sphere of radius r.

C.6.1 Integrating the rΨ4

The GW strain can be obtained directly from integrating the numerically obtained
Weyl scalar Ψ4,

ḧ = ḧ+ + iḧ× = Ψ4, (C.43)

with the boundary conditions that the emission in gravitational wave power stops at
large times and PGW ∝ ḣ

lim
t→∞

ḣ = 0 . (C.44)

We hence have the freedom to shift h

h = hnum + ∆h , (C.45)
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where hnum is the gravitational wave strain calculated using a numerical integration
technique from Ψ4. However, we found in the simulations that the quasi-normal modes
become unreliable after a certain time due to numerical resolution (see Fig. C.7b for
t >∼ 4500), which causes substantial errors in the integration. To deal with this, this we
substitute the signal with analytical QNMs [83] for the corresponding l = 2 mode. We
performed convergence checks in resolution, courant-factor, box-radius and extraction
radius, to ensure that all our numerical integrations are converged.

C.6.2 Weak-field gravity extension

To construct the infall signal, we will calculate ithe strain of a collapsing circular and
planar cosmic string loop with energy momentum tensor given by

Tαβ(t,x) = µvαvβγ δ(r −R(t))δ(z) (C.46)

where we define r =
√
x2 + y2 and the behaviour of the pre-merger collapse in the

weak-field limit is well described by

R(t) = R0

[
Θ(t0 − t) + cos

(
t

R0

)
Θ(t− t0)

]
. (C.47)

so that vα = (1, vR sin(ϕ), vR cos(ϕ), 0) with

vR(t) = dR

dt
= sin(t/R0)Θ(t− t0) . (C.48)

where δ(t− t0) is the Dirac delta and we set the starting time t0 = 0 to be consistent
with the simulations. Note that we have use the Heaviside Theta functions to impose
the initial of the cosmic loop such that it is infinitely static from t < t0, consistent
with the initial conditions of our numerical simulations. This is important as the
Nambu-Goto loop is oscillating, and hence will contribute GW in the regime t < t0, in
contradiction to our numerical simulations (see Figs. C.6 and C.5b).

The effective GW generated for sources that are relativistic is given by [340]

rhT T
ij (t) = 4GΛij,kl(n)

∫ ∞

−∞

dω

2π T̃kl(ω, ωn/c)e−iω(t−r/c) , (C.49)

where n is the direction of the observer

n = (sin θ sinϕ, sin θ cosϕ, cos θ) , (C.50)
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(a) (b)

Fig. C.5 (a): Consistency test between the frequency-domain and time-domain
methods for Gµ = 4 × 10−3 and R0 = 600M−1

Pl . We run both methods with three
resolutions, which we refer as low, mid and high. The difference between them becomes
smaller as the resolution is increased, indicating that our integration has converged.
Both methods recover the same signal. (b): GW signal from weak field gravity
for the infall of a loop simulated in this paper (solid black line) and an oscillatory
Nambu-Goto loop (dashed grey line). The signal of the former starts at rh = 0 while
for the latter, the observer gets contribution from the expanding regime (t < 0) of the
Nambu-Goto loop. The weak gravity calculation breaks down when the loop collapses
to a point.

and Λij,kl(n) is the projector to the TT gauge,

Λij,kl(n) = PikPjl − 1
2PijPkl , (C.51)

where
P (n) = δij − ninj . (C.52)

We define the fourier transform as

T̃kl(ω,k) =
∫
d4x Tkl(t,x)eiωt−ik·x . (C.53)

To check the calculation we also calculate the same expression in the time-domain,

rhT T
ij (t) = 4GΛij,kl(n)

∫ ∞

−∞
d3x Tkl

(
t− r

c
+ x · n,x

)
, (C.54)
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Fig. C.6 Spacetime diagram of loop evolution: The solid black line represents
the loop evolution of our simulations. The loop is initially at rest with radius R0, then
starts to collapse at t0 and forms a black hole at tBH. The dashed grey is the solution
of an oscillating loop following the Nambu-Goto action. As shown in Fig. C.5b, the
first signal an observer at xobs receives depends on the past history of the loop (grey
shaded area). For the Nambu-Goto case, one would get gravitational radiation coming
from the expansion phase of the loop (after it has shrunk to a point in the previous
cycle). We cut this spurious signal off by imposing a Heaviside function in (4.19).

we indeed find that both formulations converge to the same result (see Fig. C.5a).

Frequency-domain

We simplify (C.49) into

rh+(t, θ, ϕ) = 1
2
(
I2(t, θ) − cos2(θ)(I1(t, θ) − I2(t, θ))

)
,

rh× = 0
(C.55)
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where the two integrals are

I1(t, θ) = 8GµR0

∫ t2

t1

sin(t′/R0)2Θ(t′)√
A2 − (t′ − tret)2

dt′ , (C.56)

and

I2(t, θ) = 8GµR0

∫ t2

t1

sin(t′/R0)2
√
A2 − (t′ − tret)2Θ(t′)
A2 dt′ (C.57)

with A = R0 [Θ(−t′) + cos (t′/R0) Θ(t′)] sin(θ) and tret = t − r/c the retarded time.
These are integrated numerically from t1(t, θ) to t2(t, θ), defined so that the square
root above is well defined. To find these two points, one has to find the roots in t′ of
R2

0 [Θ(−t′) + cos (t′/R0) Θ(t′)]2 sin(θ)2 −(t′ − tret)2 = 0, which we did using a non-linear
numerical solver for every t and θ.

Time-domain

Similarly as in (C.55), we can simplify (C.54) into

rh+(t, θ, ϕ) = 1
2
(
rIxx(t, θ) − cos2(θ)rIyy(t, θ)

)
, and ,

rh× = 0
(C.58)

where the integrals are

Ixx(t, θ) = 4GµR0

∫ 2π

0
dϕ′ B2 sin2(ϕ′)

1 + cos(ϕ′) sin(θ)B, (C.59)

and
Iyy(t, θ) = 4GµR0

∫ 2π

0
dϕ′ B2 cos2(ϕ′)

1 + cos(ϕ′) sin(θ)B (C.60)

with

B = sin
(
tret + r(ϕ′, θ, t) cos(ϕ′) sin(θ)

R0

)
× Θ(tret + r(ϕ′, θ, t) cos(ϕ′) sin(θ)) ,

(C.61)

where one has to first obtain r(ϕ′, θ, t) by solving

r −R0 cos
(
tret + r(ϕ′, θ, t) cos(ϕ′) sin(θ)

R0

)
×Θ(tret + r(ϕ′, θ, t) cos(ϕ′) sin(θ)) = 0,

(C.62)
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(a) (b)

Fig. C.7 (a): Time delay ((C.63)) caused by the dynamical gauge for the case
Gµ = 4 × 10−3, R0 = 600M−1

Pl . We estimate GWs emitted near BH formation to
be reaching our extraction radius with ∆t ≈ 200M−1

Pl delay in simulation time. (b):
Fitting l = 2 m = 0 Quasinormal mode: We cut off the numerical signal at
t = 3300M−1

Pl and search for the mass that best fits the analytic quasi-normal mode
with the signal. We find a good fit with the mass 18.33MPl for Gµ = 2 × 10−3 and
R0 = 1600M−1

Pl .

using a non-linear solver similarly to the frequency approach for t1(t, θ) and t2(t, θ).
However, we need to solve for an additional variable this method, it is numerically
much more expensive but we use it to check consistency between both methods, Fig.
C.5a.

C.6.3 Fitting to the NR signal

We first correct a time delay ∆t of the signal caused by a redshift, which we estimate
as

∆t =
∫ rext

R(t)
dr

(
1

α(t, r) − 1
)

(C.63)

where α(t, r) is the lapse function and
∫ rext

R(t) dr = rext − R(t) is the distance from the
string center to the extraction radius as the loop collapses, which we track throughout
the simulation. The delay ∆t encodes the difference between the simulation time and
the real time it takes a gravitational wave to propagate from the string center to the
detector. The delay over time is shown in Fig. C.7a and for near black hole formation,
we estimate it to be ∆t ≈ 200M−1

Pl for Gµ = 4 × 10−3 and R0 = 600M−1
Pl case.
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Fig. C.8 Matching the numerical and analytical signals for the Gµ = 4 × 10−3,
R0 = 600M−1

Pl case. As estimated in Fig. C.7a, we correct the time delay by shifting the
numerical signal by −∆t = −200M−1

Pl . The shaded region indicates where the best fit
is being calculated to determine the free shift r∆h, which is found to be r∆h ≈ 20MPl.

We then match the strain from our numerical relativity simulations rhnum with the
weak gravity calculation rhweak of the previous section as follows

rh =

rhweak, t < tcut

rhnum + r∆h t > tcut

. (C.64)

The free shift r∆h is chosen by finding the best fit value over a region where both
signals are valid (shaded region in Fig. C.8). We define this region of validity as, that
when GM/R(tf) ≈ 0.25, such that tf = R0 cos−1 (4GM/R0). In addition, we define
the starting point as the time when most of the initial data artefacts have passed the
detector (we can read this value from the rΨ4 plot). The best fit is shown in Fig. C.8.

A similar analysis can be done for other (Gµ,R0) cases, which we compare in Fig.
C.9. The larger the initial radius R0 of the loop, the longer the infall. In addition,
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Fig. C.9 Gravitational waveforms for (Gµ,R0) = {(6 × 10−3, 350M−1
Pl ), (5 ×

10−3, 450M−1
Pl ), (4 × 10−3, 600M−1

Pl ), (3 × 10−3, 1000M−1
Pl )}. The numerical signals have

been corrected the delays ∆t = {160M−1
Pl , 180M−1

Pl , 200M−1
Pl , 300M−1

Pl } respectively,
estimated via (C.63). The figure shows how larger loops have a longer infall and
the memory is about the same for the last three cases, which is expected since the
total radiation in GWs and matter is very similar M0 − MBH ≈ 1.25MPl, while for
(Gµ,R0) = (6 × 10−3, 350M−1

Pl ) the memory is smaller as M0 − MBH ≈ 1.05MPl, see
Tab. C.1.

more energetic events (larger EGW) have larger amplitude rh whereas we see that the
last three waveforms show a similar amount of memory r∆h, which is expected as the
total energy emitted is M0 −MBH ≈ 1.25MPl, and for (Gµ,R0) = (6 × 10−3, 350M−1

Pl )
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Fig. C.10 Gravitational wave signal for different string tension Gµ and black
hole head-on reference [154]: The signal is normalised with the initial mass of the
system and shifted such that the maximum of rΨ4 coincides at time t = 0, for all cases
in table (C.1). Unphysical parts of the signal are de-emphasised using dashed lines. A
summary of the parameters used for these runs is shown below in table (C.1).

less energy is radiated to infinity M0 −MBH ≈ 1.05MPl, resulting in smaller memory,
see Tab. C.1.

C.7 Summary of simulations

Here we show the summary of the results for the different Gµ runs. The first three
columns correspond to the parameter space studied. The next four columns include
information of data extracted from the simulations together with the corresponding
error bars. Lastly, we compute the length contraction before black hole formation
using the velocity given by the Nambu-Goto approximation ((4.20)).

To get an approximate estimate of the numerical precision of the signal in Figs.
(4.2), (4.6a) and (4.6b), we performed two simulations with two different resolutions.
Conservatively we can assume our simulations possess 2nd order convergence (see
section C.5 below) and used the difference between the two runs to get an estimate for
the error. We then chose the maximum value of the error (excluding the non-physical
signal from the initial data) as the value for all points.
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Furthermore, in Fig. (4.5) we calculated errors for all measured quantities. We
estimated the error of M0 by calculating the difference between the theoretical value
and the integrated energy of the first frame. The errors for MBH are obtained by
performing a best fit using QNMs after some different time. To calculate Ematter we
integrated over the grid, excluding a region close to the black hole. Lastly, the error of
EGW is estimated by the energy in initial data artefacts mixed with the physical signal,
ie. the energy between t = R0 + rext and when the artefacts have passed the detectors.
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Gµ R0 [M−1
Pl ] λ M0 [MPl] MBH [MPl] Ematter [MPl] EGW [MPl] γ(tBH)

1 × 10−2 160 2 10.05 ± 0.07 9.21 ± 0.18 0.41 ± 0.10 0.07 ± 0.02 7.96
9 × 10−3 200 2 11.31 ± 0.07 10.27 ± 0.05 0.31 ± 0.08 0.09 ± 0.02 8.84
8 × 10−3 250 2 12.57 ± 0.07 11.59 ± 0.08 0.26 ± 0.07 0.11 ± 0.02 9.95
7 × 10−3 300 2 13.19 ± 0.07 12.23 ± 0.01 0.29 ± 0.07 0.13 ± 0.03 11.37
6 × 10−3 350 2 13.19 ± 0.07 12.14 ± 0.06 0.46 ± 0.12 0.15 ± 0.02 13.26
5 × 10−3 450 2 14.14 ± 0.06 12.97 ± 0.02 0.56 ± 0.14 0.19 ± 0.02 15.92
4 × 10−3 600 2 15.08 ± 0.05 13.76 ± 0.04 0.75 ± 0.19 0.25 ± 0.02 19.89
3 × 10−3 1000 2 18.85 ± 0.04 17.58 ± 0.12 0.62 ± 0.16 0.38 ± 0.02 26.53
2 × 10−3 1600 2 20.11 ± 0.03 18.33 ± 0.06 1.38 ± 0.35 0.44 ± 0.02 39.79

Table C.1 Overview of simulations with different Gµ and R0: In this table, we list all the simulations we have done
for this work. The initial mass M0 is obtained using (4.8) and the error calculated with the difference to the integrated mass
of the numerical initial data. To extract the energy in gravitational waves EGW we integrated over the rΨ4 at different radii.
The radiated energy in matter components Ematter is estimated by integrating it after black hole formation over the numerical
grid excluding the interior of the BH.
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Fig. C.11 2D slice of the collapse of a cosmic string loop using 3+1D numerical relativity.: Figures in the panel
above show the evolution of the system from left to right and top to bottom. In colour we plot the energy density. Initially,
the loop starts to collapse from rest (upper left); The energy density of the loop increases as its radius becomes shorter and
accelerates to ultra-relativistic speeds, when Lorentz contraction effects emerge in the direction of the collapse (upper right).
When the radius of the loop is of the same order as the width of the string, the collision happens, where high curvature effects
appear (lower left). If the system is massive and thin enough, part of the initial mass of the system collapses to a black hole
and high-relativistic jets are emitted axially as a result of the ultra-relativistic collision (lower right). This aspherical ejection
of matter is responsible for a constant shift in the gravitational waveform known as gravitational wave memory. The full
movie can be found here [234].

https://youtu.be/0sSH54gXu4U




Appendix D

Primordial black hole formation
with full numerical relativity

D.1 Evolution equations

This work was written based on simulations run using grchombo [55, 154], with
the CCZ4 formulation of the Einstein equations [48] and the moving-puncture gauge
[102, 67, 124, 445]. The matter part of the Lagrangian is

L = 1
2g

µν∂µϕ∂νϕ+ Vϕ(ϕ) + 1
2g

µν∂µξ∂νξ + Vξ(ξ) , (D.1)

which gives the evolution equations

∇µ∇µϕ− dVϕ(ϕ)
dϕ

= 0 , ∇µ∇µξ − dVξ(ξ)
dξ

= 0 , (D.2)

and decomposing them into first order equations, with BSSN variables

∂tϕ = αΠϕ + βi∂iϕ , (D.3)
∂tΠϕ = βi∂iΠϕ + α∂i∂iϕ+ ∂iϕ∂

iα

+ α

(
KΠϕ − γijΓk

ij∂kϕ− dVϕ

dϕ

)
, (D.4)

∂tξ = αΠξ + βi∂iξ , (D.5)
∂tΠξ = βi∂iΠξ + α∂i∂iξ + ∂iξ∂

iα

+ α

(
KΠξ − γijΓk

ij∂kξ − dVξ

dξ

)
, (D.6)
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D.2 Initial data

The matter content of this work is comprised by a massive ϕ field that dominates the
background dynamics, and an inhomogeneous massless ξ field which provides the local
overdensity through its gradients. We choose potentials

Vϕ(ϕ) = 1
2m

2ϕ2, Vξ(ξ) = 0 , (D.7)

and spherically symmetric initial field configurations

ϕ(t = 0, xi) = ϕ0 ,

ξ(t = 0, xi) = ∆ξ tanh
[
r −R0

σ0

]
,

∂ϕ(t = 0, xi)
∂t

= ∂ξ(t = 0, xi)
∂t

= 0 .

(D.8)

In our simulations, mH−1
0 = 62.6. We also choose a conformally flat metric γ̄ij = δij,

so the energy density on the initial hyperslice is given by

ρ(t = 0, xi) = ψ−4

2 δij∂iξ∂jξ + 1
2m

2ϕ2
0 , (D.9)

which corresponds to a shell-like overdensity in a dark matter environment. This
setup is spherically symmetric and we reduce the computational cost of evolution by
simulating one eighth of the system using symmetric boundary conditions. A schematic
depiction of the initial setup is given in Fig. D.1a.

The equation of motion for a massive homogeneous field ϕ is given by the Klein-
Gordon equation

ϕ̈+ 3Hϕ̇+ ∂V (ϕ)
∂ϕ

= 0 , (D.10)

where H ≡ ȧ/a is the Hubble function defined with the scale factor of the universe
a(t). For the universe to stay matter dominated for an extended period of time, we
require the solution of Eqn. (D.10) to be an undamped oscillation. This constrains the
initial value of ϕ to

ϕ0 <
1√
3π
MPl , (D.11)

and we use ϕ0 = 7.8 × 10−3MPl for all our simulations. Momentum constraints are
trivially satisfied, and we solve the Hamiltonian constraint (5.14) numerically to find
the conformal factor ψ.
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(a) (b)

Fig. D.1 (a): Initial setup of collapsing superhorizon overdensity (transparent
shell) and inner initial Hubble horizon depicted in black. Using symmetric (reflective)
boundary conditions we simulate an eighth of the system. (b): Convergence test
of the black hole mass formed from an initial perturbation of R0 = 1.6H−1

0 and
∆ξM−1

Pl = 0.075. Top panel shows the estimated mass for three base grid resolutions
NLR = 80, NMR = 96, NHR = 128. Bottom panel shows errors in mass measurements
between high-middle and middle-low resolutions showing convergence to 1%.

D.3 Convergence testing

We test the robustness of our numerical results by finding the mass of the black hole
formed from an initial perturbation of radius R0 = 1.6H−1

0 and ∆ξ = 0.15H−1
0 , using

three different base grid resolutions, namely NLR = 80, NMR = 96, NHR = 128. Fig.
D.1b shows the mass obtained with an apparent horizon finder [433] for these three
runs, indicating that convergence is achieved.

Additionally, we made sure the code reproduces the FLRW limit for appropriate
initial conditions. If one uses the same initial setup as described in appendix D.2,
but gives the field ξ a uniform value throughout the simulation box, evolution should
proceed in an FLRW manner, as the simulated universe is now completely homogeneous.
We checked this by averaging the values of the energy density ρ and the scale factor
a over the box, and tracking these throughout the evolution. We satisfactorily find
that the scaling between these two quantities is then ρ ∼ a−3, as expected for a
matter-dominated FLRW universe.
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