
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

Link to publication record in King's Research Portal

Citation for published version (APA):
Pecyna, L., Dong, S., & Luo, S. (2022). Visual-Tactile Multimodality for Following Deformable Linear Objects
Using Reinforcement Learning. In The 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2022)

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 06. Jan. 2025

https://kclpure.kcl.ac.uk/portal/en/publications/6971c605-035f-46fe-8ea1-1351c7bf5c5b


Visual-Tactile Multimodality for Following Deformable Linear Objects
Using Reinforcement Learning

Leszek Pecyna1, Siyuan Dong2 and Shan Luo3,∗

Abstract— Manipulation of deformable objects is a challeng-
ing task for a robot. It would be problematic to use a single
sensory input to track the behaviour of such objects: vision
can be subjected to occlusions, whereas tactile inputs cannot
capture the global information that is useful for the task. In this
paper, we study the problem of using vision and tactile inputs
together to complete the task of following deformable linear
objects, for the first time. We create a Reinforcement Learning
agent using different sensing modalities and investigate how its
behaviour can be boosted using visual-tactile fusion, compared
to using a single sensing modality. To this end, we developed
a benchmark in simulation for manipulating the deformable
linear objects using multimodal sensing inputs. The policy of
the agent uses distilled information, e.g., the pose of the object
in both visual and tactile perspectives, instead of the raw
sensing signals, so that it can be directly transferred to real
environments. In this way, we disentangle the perception system
and the learned control policy. Our extensive experiments show
that the use of both vision and tactile inputs, together with
proprioception, allows the agent to complete the task in up
to 92% of cases, compared to 77% when only one of the
signals is given. Our results can provide valuable insights
for the future design of tactile sensors and for deformable
objects manipulation. Code and videos can be found at: https:
//github.com/lpecyna/SoftSlidingGym.

I. INTRODUCTION

Humans and animals explore and interact with their envi-
ronment through a variety of senses of different modalities.
In some cases, we are able to observe the integration of
different modalities when one signal affects the percep-
tion of other sensory inputs. An example of such multi-
modal influence is the McGurk effect [1], in which humans’
perception of particular sounds is affected by visual cues.
Touch and vision are especially used by humans during
object identification and manipulation. This can be seen in
neuropsychological studies on fMRI data, which shows that
both visual and haptic signals are processed in a cross-modal
fashion during some of these tasks [2], [3].

In contrast, most of the artificial systems are based on a
single modality when performing their tasks and often differ-
ent types of algorithms are developed to approach particular
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Fig. 1. Manipulation goal: the gripper starts from the fixed end of the
rope/cable (on the left) and follows it, up to its tail end (on the right).

modalities. As robots are operating in more complex and
dynamic environments, it can be expected that the usage of
variety of sensing modalities will play a more important role
for them [4].

One of the situations when the environment becomes more
complicated, and multimodal perception might help in better
comprehension of it, is manipulation of flexible objects.
As such, contour following of Deformable Linear Objects
(DLOs) is a common task performed by humans, e.g., cable
following. We perform this by grasping a cable between
the thumb and the forefinger and slide the fingers to the
target position [5], e.g., when untangling the cables or when
following the cable to find its plug-end.

Cable following can be a challenging task for artificial
systems as the cable shape is changing dynamically while
the gripper is sliding. Moreover, different cables/ropes can
be characterised by different stiffness and friction, and their
starting shape might be complex and undetermined (kinks,
intersections, etc.). Due to these challenges, most of the
research concerning DLO manipulation uses some additional
constraints, e.g., an object is placed on a table [6], [7].

Training a Reinforcement Learning (RL) agent in a simu-
lated environment, in many aspects, is a desirable approach
as the environment can be explored through an extensive
number of episodes without possibility of damaging a robot.
However, simulation of sliding and realistic grasping is a
challenging task itself. For this reason, most of prior works
on flexible object manipulation utilise a firm grasp, i.e., the
section or a point of the object is fixed to the gripper and
cannot move in relation to it [8], [9]. In our work, we cannot
use such an approach as the gripper is sliding along the
object, instead we aim to modulate the grasping force while
the hand is moving.



In this paper, we create an RL agent for a cable/rope
following task in a simulated environment and investigate
how its behaviour can be boosted using visual-tactile fusion,
compared to using a single sensing modality. As shown in
Fig. 1, we have both visual and tactile perspectives of the
state of the deformable linear object in the gripper. The
robot agent’s goal is to pick up the object at its fixed end
and follows it up to its tail end. We chose this task, as
sliding along DLOs is not well explored, especially when it
comes to simulation, and it is a good candidate for research
concerning visual-tactile synergy as both of the signals can
provide useful information to complete the task.

To the best of our knowledge, this is the first study to
use both vision and tactile inputs for the task of cable
following. We used distilled information as the observations
of the agent, e.g., the object pose in both visual and tactile
perspectives, instead of the raw visual images or tactile data.
In this way, the trained agent can be directly transferred
to real environments, and the learned control policy can
be disentangled from the perception system. Through our
extensive experiments, we find that when both vision and
tactile inputs, together with proprioception, are used, the
agent can complete the task (reach the end of the cable and
hold it) in up to 92% of cases, compared to the best result of
77% with a single sensory input used (for vision); and when
two signals were used – 89% (for vision and proprioception).

II. RELATED WORK

A. Visual-Tactile Multimodality

Vision and touch are two main important senses used
for object manipulation. They have been widely used in
robotics but, in most of the cases, with only one sensory
input used [10], [4]. In the resent years, there have been
several studies aiming to combine both of these inputs. Many
of them concentrate on sensing, rather than on manipulation,
like feature sharing or feature extraction [11], [12]. When it
comes to object manipulation itself, even when both of the
senses are utilised, in many cases, one input type supports
another one, and is used in a specific sub-task, e.g., tactile
sensing can help to verify the contact with the object (several
examples of that are provided in [10]). Hence, they are not
used simultaneously together.

There are a few works to extract features from the sensors
and use them together in the control scheme. In [13], multiple
sensory inputs are integrated in a grasping stability task
(of mugs and bottles). In [14], in-hand object location is
estimated from joint sensors, and [15] covers object pose
estimation. The work presented herein follows the idea where
the extracted features are used simultaneously together.

B. DLO Following

There have been several studies concerning contour fol-
lowing of rigid objects that utilise vision [16] or tactile
sensing [17], [18]. From the point of view of flexible object
following that utilises tactile sensors, there are two works
[19] and [5]. The first [19] proposes a reinforcement learning
approach to close a deformable ziplock bag using BioTac

sensors. The robot grasps and follows the edge of the bag
using a constant grasping force. The authors used Contextual
Multi-Armed Bandits (C-MAB) RL algorithm to train the
robot to close the bag in discrete time steps with a maximum
velocity of 0.5 cm/s (trapezoidal velocity profiles). The
second [5], which is the most relevant to our work from
the point of view of the task, presents a control framework
that uses a real-time tactile feedback from a GelSight sensor
[20], [21] to accomplish the task of cable following. To
achieve that, the authors designed a parallel gripper with a
servo motor actuator. In their study, only the tactile signal
was used to modulate gripping force. The RL was not used
in [5], instead two controllers were used: PD – for cable grip
control, and LQR – for cable pose control. Compared to the
decoupled controllers in [5], in this work we control both
the gripping force and the end-effector pose simultaneously
using the RL policy.

III. PROBLEM STATEMENT

The goal of the presented DLO following task is to grasp
the cable/rope at the beginning end with the gripper, and
follow it – using an appropriate grasping force – to its tail
end. The task should finish by holding the object close to its
finishing end. The beginning of the rope is firmly held by
the second gripper (it is attached to a point in space in the
simulator), as illustrated in Fig. 1.

In many aspects, this task is similar to the one presented
in [5]. There are, however, many differences: we performed
the training in a simulator (we are planning to test our model
on a real platform in the next stages of our work); we use
data from both vision and tactile sensors (in [5] only tactile
signal was used); our model uses an RL algorithm (compared
to decoupled PD and LQR controllers in [5]). Also, we do not
perform re-grasping procedure1. Instead, we finish a training
episode when the DLO falls from the gripper. We assume
no plug at the end of the cable (which allowed cable-end
recognition by the tactile sensor in [5]). Hence, in our case,
we expect the vision to play a principal role in the object-
end identification. As our task is conducted in the simulator,
the parameters we chose can make the object properties
correspond to those of a cable or a rope, which can be much
softer than the cable used in [5]. As in [5], we consider a
planar motion; in this way the extracted angles from a tactile
sensor and a top-view camera provide sufficient information
about DLO configuration in the plane of motion.

Our model of DLO manipulation is defined as finite-
horizon, discounted Markov decision process (MDP) rep-
resented by a tuple of (S, A, p, R). The state space S
and action space A are assumed to be continuous. State
transition probability p, represents the probability density of
the next state st+a ∈ S given the current state st ∈ S and
action at ∈ A. R is an immediate reward emitted by the
environment on each transition. The details about the agent’s
actions, state space and the definition of a reward function
implementation are provided in the next section.

1This was not part of the controller task in [5], instead it was used when
the gripper recognises it is losing the cable or reaches workspace limits.



Fig. 2. DLO following task with the RL policy.

IV. METHODOLOGY

In this section we present our methodology for implemen-
tation and usage of an RL agent to solve the task of DLO
following. We first describe the model, its architecture, what
observations it uses and what actions the agent can make.
Next, we present the reward function that is set to promote
the behaviour of reaching the object-end and staying there.
Finally, we explain how our model performance is evaluated.

A. Agent Description

In our study we use Soft Actor-Critic (SAC) [22] that pro-
vides state-of-the-art performance in continuous control tasks
(like robotic manipulation). SAC combines sample efficient
off-policy method with ability to operate in a continuous
action and state spaces.

1) Model Architecture: The model is composed of an
actor network and a critic which is made of two Q-value
networks (to combat the problem of overestimation of Q-
values).

Both Q-value networks and the policy network are MLPs
with two hidden layers of 1,024 neurons with ReLU activa-
tion function. The actor takes as an input the state and outputs
the mean and covariance for the Gaussian distribution that
represents the policy [22]. From that the action is sampled.
The Q-value network input is made of actions together with
observation space and produces single values (Q-value). The
model’s general scheme of interaction with the environment
can be seen in Fig. 2.

2) Observations: In general, observations we use in our
model can be divided in three categories as shown in Fig. 3.

• Kinematic (proprioceptive): it provides the information
about the position of the gripper in the space (x and y
coordinates) and its closure state (variable from 0 to 1,
where 0 corresponds to the situation where gripper is
fully open and 1 where it is fully closed). It is an array
of 3 components: OG = [xG, yG, cG].

• Tactile: Described more in Section V-B, it is composed
of the angle and the position of the DLO in relation to
the gripper: OT = [ϑT , yT ].

• Visual: Described more in Section V-C, the visual input
is composed of 4 components: information of if the
cable is visible on the right side of the gripper, how con-
fident the angle is, the angle, and the y position of of the
cable in relation to the gripper: OV = [vV , qV , ϑV , yV ].

Fig. 3. Illustration of state variables (observations) available for the model.

3) Actions: As the gripper is supposed to move freely
in the x-y space, our action array is composed of target
displacements in these directions. Apart from that, the agent
is able to modify the closing force of the grip hence the
array of action is composed of: A = [∆xg,∆yg, cG]. As the
time step is constant in the simulation (set to 0.01 s) these
∆x and ∆y values directly correspond to velocities of the
gripper. The simulator allows to set how many time steps are
executed after each action step, in our case this was set to
8. We limit these values (by scaling the output of the agent)
to keep the speed of the gripper in a feasible range for the
real robot and also to assure better RL training. After some
preliminary experiments, we chose maximal values of ∆x
and ∆y to be 0.0025, which corresponds to the velocity of
0.25 m/s.

4) Reward: Our reward can be represented by partial
rewards and defined as:

Rt =

{
Rmove +Rend, if nh ̸= 0

Pfall, if nh = 0

where Rmove is a reward for moving towards the end of the
DLO; Rend is the reward for being close to the end of the
rope; Pfall is the penalty for dropping it; nh is a number of
particles being held by the gripper.

The partial rewards are defined as follows:

Rmove = αmove(dt − dt−1)

where αmove is the weight of that reward, dt is the distance
(in meters) at the current time step t. In the simulation, it is
calculated as:

dt =
piLc

nc

where pi is the average value of indexes of particles being
held by the gripper (the starting particle is indexed as 1
and the end particle is indexed as nc that is the number
of particles of the rope), Lc is the length of the rope.

Rend is given only when the gripper is less than 20
particles from the end of the object and it is increasing
linearly when fingers approach the end2.

Rend =

{
αend(pi + 20− nc), if pi > nc − 20

0, otherwise

2Quadratic function was also tested.



Fig. 4. Frames from the simulated environment. On the left – the beginning
of the task where the cable falls freely; on the right – the gripper finished
the task and holds the cable’s end.

Pfall is a constant value. Together with αmove and αend, it
was chosen through a hyperparameter search3. These values
were set to Pfall = −0.5, αmove = 10, and αend = 1

20 .
5) Evaluation Metrics: We evaluate the performance of

our model using several metrics. One of them is to classify
each of the completed episodes in one of the categories:

• Hold the end – the gripper follows the DLO till its
end, stays there and holds the object. This is the goal
behaviour. We defined being at the end as the situation
when the gripper holds any of the last 10 particles.

• Stop before – the gripper did not reach close to the end
but it did not drop the object.

• Reach end but drop – the gripper reached the end of the
DLO (last 10 particles) but failed to keep the object.

• Drop before – the gripper dropped the DLO earlier,
without reaching its end.

Apart from this classification, two more metrics are used:
• Time spent at the end – we check how long (i.e., how

many time steps) the gripper spends at the end of the
DLO (at any of 10 last particles).

• How far it goes – we check how close to the end of
the DLO gripper reached (we measure this distance
from the end of the object as the length of the rope
is randomised). The distance is measured in particles.

V. EXPERIMENT SETUP

We simplified our observations to scalars (e.g., angles and
positions). This allows relatively simple assessment of what
piece of information is useful, ensuring that the observations
are not influenced by the process of information extraction
from the real images. This approach could potentially help
us to avoid domain shift in the future Sim-to-Real transfer. It
also makes this method more general, allowing its application
with different types of sensors.

A. Simulation

We use Nvidia Flex – a particle based simulation technique
[23], [24], wrapped in SoftGym [9] - which is a set of
benchmarks. SoftGym provides simulated environments and
agents, and it uses PyFlex [25] that provides Python interface
for Nvidia Flex, and Gym [26], a toolkit for developing and
comparing reinforcement learning algorithms.

We constructed a new task and environment in SoftGym
based on “rope flatten” task. We assumed the usage of a

3For simplification, we performed hyperparameter search for all modal-
ities together – for each parameter we checked the model behaviour and
performance with different sensing modalities.

Fig. 5. Possible occlusions in rope visibility caused by the gripper (capsule
in the simulation).

camera and a gripper with tactile sensors, based on that we
amend the environment. We use two capsule-shape objects to
simulate GelTip sensors [27]. We adjusted how the gripper
can move and introduced a new way of gripping rope’s (or
a cable’s) particles (Section V-D). The screenshots from the
simulator, with an example of the rope configuration at the
beginning and at the end of the task, can be seen in Fig. 4.

B. Tactile sensors

The sensor provides us with an angle ϑT of the cable
with the gripper’s x axis as presented in Fig. 3, and with the
position of the cable in the y direction (along the finger).
In the case of the GelSight like sensors, these angles and
positions can be obtained using algorithms described in [20].
We use particles’ positions (between gripper’s fingers) in the
simulator to calculate these values (we fit the line to the
centres of these particles and use its angle and its intersection
with y axis). In the case of the real sensor, the precision
depends on the normal force. This is well illustrated in [5]
(for the GelSight sensor), where the controller is adapting
the gripping force taking into account tactile quality.

In some of the experiments presented herein we added a
random noise – proportional to the gripper closure – to the
measured angle and position.

ϑT = ϑT,nom + (1− cG)ϑnoise,

yT = yT,nom + (1− cG)ynoise,

where ϑnoise and ynoise are sampled from the normal
distributions with different standard deviations (depending
on assumed sensitivity); ϑT,nom and yT,nom are the nominal
values. These are calculated based on the positions of the
DLO particles between the grippers fingers.

There are two reasons why we imitate the finger-like
sensors in our simulations. First, we are planning to use
GelTip sensors in the future experiments with the robot.
Second, due to the nature of the simulator – a cable/rope
is made of particles connected with springs in the Nvidia
Flex environment – rectangular-shape fingers cause unwanted
behaviour of the rope which is difficult to overcome, e.g., the
corner of the sensor gets between particles when the gripper
is pulling the cable. Hence, more rounded shape is more
appropriate for this simulation task.

C. Camera

We use a top-view camera and in this way we simplify
the task to a planar problem (see Section III). Similarly as
with tactile data, we extract and use the position and angle
of the rope from the camera image. We use the position



and angle of the rope on the right from the gripper (in the
direction of motion) as presented in Fig. 3 – ϑV and yV
variables. The camera’s top-view can be subjected to gripper
and cable occlusions, and not always the position and angle
of the cable are visible in the image as illustrated in Fig. 5
(top row). Hence, we also include the information if the cable
is visible from the right – vV , and how far continuously it
goes to the right – the confidence about the angle – qV .

In the simulation, the algorithm analyses the positions of
DLO particles. After finding the first particle at the edge of
the finger we follow the rope and record when the particles
change the direction – when their x component decreases
more than the assumed value (0.25 particle radius). We
use the particles between the finger edge and the direction
change (we check maximum 10 particles) to fit the line
and obtain the angle. The confidence value corresponds to
the normalised distance along these selected particles. A
similar method can be applied for real image input where the
DLO is detected using topology extraction and vectorisation
algorithm (e.g., [28]). In that case, we would analyse the
segments of the rope to detect the change of direction.

D. Gripper

The gripper can move in x and y directions and close
or open the grip, similarly as in [5]. We implemented
the process of gripping with variant gripping force in the
simulated environment. This task is not trivial and in most
simulations it is implemented by attaching the object being
held to the gripper without taking into account possibility of
sliding or factors such as friction. This was the case of the
original environments implemented in SoftGym [9]. As the
rope is in fact simulated as particles connected by springs,
simple decreasing of the gap between two capsules (that we
used to represent the gripper’s fingers) was causing unnatural
behaviours – the gripper was getting caught between the
particles holding them firmly.

Instead of doing that, our intention was to modify the
friction between the DLO and the fingers. This, on the
other hand, was not straight forward because the friction
parameters are global in the simulator. To this end, we
modify the value of the inverse mass of the rope’s particles
that were between the fingers, and amended their positions
according to the grippers’ movement. This is similar to the
approach in the original environments of the SoftGym, where
the inverse mass was set to 0 and the position was set
to follow the gripper – causing that the particle was fully
attached to it.

Assuming that the closing action is scaled between 0 and
1 and that the gripper changes the friction (or rather the
inverse mass of held particles) when that value is above 0.5
but the full closure appear at 0.9, the inverse mass wp can
be expressed as:

wp = max(2.25wp,nom − 2.5wp,nommax(cG, 0.5), 0)

where wp,nom is the nominal value of the inverses mass of
DLO particles used in the simulator.

E. Randomisation

To allow our agent to operate in different environments
we randomised variety of parameters in the simulation. This
randomisation makes the agent to better generalise the task
and could allow Sim-to-Real transfer even when the real
environment, e.g., cable parameters, are quite different from
these in the simulation.

We randomised:
• Length of the cable (uniform, from 30 to 60 particles);
• DLO starting position – we pick the rope in a random

place and place it in a random location, we repeat that
4 times before each episode;

• DLO stretch stiffness (uniform, from 0.8 to 1.4);
• Bending stiffness (uniform, from 0.8 to 2.4);
• Friction coefficient (uniform, from 0.04 to 0.3);
The ranges of these parameters were chosen empirically

in the simulator. Changing some of them in a bigger range
would require to decrease the simulation step, which extends
the training time. In these ranges the simulation was stable
and at the same time we could observe different interactions
between the gripper and the DLO.

F. Training the agent

In the training, we used a batch size of 128, learning rates
for actor and critic of 0.001, 1,000 initial steps (with no agent
updates), horizon length for each episode of 150 steps, and
the maximum number of training steps was set to 50,000.
The reward discount was set to γ = 0.99.

VI. RESULTS

To test the proposed methods and investigate how different
sensory inputs contribute to the rope following task, we
conducted multiple experiments. First, we compared the be-
havior of the agent and its performance when only one of the
signals is provided. Next, we conducted similar experiments
using two out of three inputs. Following that we performed
the ablation studies where we trained the agent with all three
inputs but we tested it excluding one of the signal. At the end,
we check the agent’s performance when different sensitivity
of the tactile sensor is used – different randomisation when
the gripper is open.

Although the task performed throughout our experiments
is similar to the one in [5], some differences make the result
comparison implausible. Studies presented in [5] centred
around the velocity and performance of the gripper (and
its controller) and on the gripper construction itself. In our
research we focus on comparing different input modalities
and on investigation of RL agent’s behaviour.

All the results are collected in such a way that every
200 training steps we evaluate agent performance using 10
random environments (i.e., with a random DLO properties
and configurations). We repeat the whole training 10 times
for different random seeds (this way we train 10 different
independent agents). The results presented in the paper
are the average values from these 10 independent training
sessions together with 95% confidence margin. The curves



Fig. 6. Episode outcome. Each subplot corresponds to a different sensory
input: tactile, kinematic, vision, or all. The curves were collected from 10
independent training sessions, shading represents 95% confidence range.

Fig. 7. Agent’s performance evaluation when one type of the inputs is used.
Each subplot corresponds to a different metric. The curves were collected
from 10 independent sessions, shading represents 95% confidence range.

were additionally smoothed using a window size of 5 (i.e.,
the average of 5 following results).

A. Training Performance When a Single Sensory Input is
Provided

We first analyse the results obtained when only one of
the inputs was used (tactile, visual or kinematic). These
are compared with the results when all three signals are
provided together. Fig. 6 shows the outcome of the RL agent
behaviours; how often the task was finalised in a most desired
way: Hold the end; or how frequently other 3 outcomes
were observed (described more in Section. IV-A.5). We can
see that the behaviour of the agent changes significantly
depending on the input. Only vision allows the model to
stop and hold the DLO at the appropriate moment (Hold
the end). This was expected, as both T and K signals do not
hold information that allows to identify the end of the object.

Fig. 8. Episode outcome. Each subplot corresponds to a different combi-
nation of sensory inputs. The curves were collected from 10 independent
training sessions, shading represents 95% confidence range.

Fig. 9. Agent’s performance evaluation when two types of inputs are used.
Each subplot corresponds to a different metric. The curves were collected
from 10 independent sessions, shading represents 95% confidence range.

This is, however, improved when all the signals are used
together, in that case, the agent is able to obtain much better
performance faster. As the kinematic signal does not provide
any information about the DLO itself the agent prefers to not
follow along the object and stops prematurely. Simulations
with a tactile input show similar behaviour but the agent
relatively often tends to follow the object till the end and
drops it after that.

The results from particular modalities are compared more
directly in the Fig. 7. Each curve represents a different type
of inputs and each subplot shows a different type of metrics.
In the figure, we also included episode collective reward and
the most desired outcome: Hold the end. The best mean
results for each modality are 12%, 11%, 77% and 92% (Hold
the end), respectively for T, K, V and All4.

4As we mentioned before, the results in figures are smoothed for better
readability, therefore listed results might not be directly visible.



Fig. 10. Performance of the agent when trained with all of the sensory
inputs but some of the inputs were not provided in the testing phase. On the
left subplot – episode reward in a particular case; on the right – comparing
ablation studies (when tested without T or V) with all signal case and with
the case when the model was trained from the beginning without one of the
inputs. Error bars and shading correspond to 95% confidence range.

These results allow us to make a clear conclusion that the
agent with a visual input outperforms the agents trained with
other signal types. However, it is also clear that when other
inputs are included this performance is improved. We can
also see that both kinematic and tactile inputs help in sliding
along DLO (How far it goes subplot)5.

B. Training Performance When Two Sensory Inputs Are
Provided

Figures 8 and 9 are created in the same manner as the
figures in the earlier subsection. As expected, we can observe
better performance of the training when two sensory inputs
are used. When we compare the V subplot from Fig. 6 with
subplots V + K and T + V presented here, we can see that
each of the inputs (T or K) provides some improvement.

Again, we can see that the visual signal plays a crucial
role and only when it is included in the input the agent is
more often successfully performing Hold the end behaviour.
The best mean results for each paired-modalities are 16%,
89%, 77% and 92% (Hold the end), respectively for T + K,
V + K, T + V and All.

In the case of How far it goes metric, any combination
that contains visual input (V + K or T + V) allows to
achieve relatively high performance, similar to the one with
All signals.

C. Ablation studies

We trained the agent using all of the inputs (T + V + K),
but in this experiment when the model was tested we ablate
one of the signals to investigate its effect on the agent’s
performance. The performance of the agent is presented in
the left subplot in Fig. 10, where we show the mean value

5This edge following is fully possible with a tactile signal but it is not
preferred by the agent due to the penalty for cable dropping which happens
when it reaches the end.
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Fig. 11. Performance of the agent (episode reward) when different
sensitivity of the tactile sensor was assumed (sensitivity vary depending
on the grasping force). Error bars correspond to 95% confidence range.

of collective episode reward. We can see that removal of V
signal caused the biggest drop in performance. Ablation of
T input, on the other hand, was insignificant and the results
are almost the same as with that signal. This implies that the
tactile input is in some way complementary.

To investigate the influence of the tactile signal, we present
our ablation studies on a training development plot (Fig. 10,
top right). The curve with removed signal is obtained in a
way that the the agent is trained with all inputs but every
200 steps is tested with a tactile-free signal6. We can see
that removal of T input has practically no impact on the
reward. These results were compared with the session where
tactile input was not used at all during the training. The
results are interesting as we can see that the model which
has access to additional tactile information in the training
phase can learn faster and obtain better performance than
the model trained without tactile signal T (both agents are
tested without T input). Possible explanation is that the DLO
angle information (which is more certain in the case of tactile
input) is useful in the training process to interpret and take
advantage of the position information. Similar observation
is even more evident when the visual signal is removed
(Fig. 10, bottom right). The agent that was trained with
all signals while tested without visual input performs much
better compared to the model that was trained without vision.

D. Tactile Sensitivity Study

As described in Section V-B, we took into account the
impact of tactile sensor sensitivity. We included the random
noise in the tactile input that was equal to zero when
the gripper was using maximum gripping force and was
increasing with gripper opening. Fig. 11 shows the results for
different sensitivity and when the tactile input is not included
at all. Full randomisation when no grip corresponds to the
situation where the standard deviation of aforementioned ran-
domisation was set such high that angle should be practically
not useful to estimate the real orientation of the rope (σ was
set to 0.5 rad) and position should be very unreliable (σ was
set to 0.002 m). In that case, we can see that the agent was
not able to learn to use that input (during the 50,000 steps

6We use the same agent for tactile-free and all signals tests, hence, the
curve has a very similar characteristic. The difference in performance is
more visible when checking other metrics.



training) – the reward was as good as in the case of lack
of tactile input. However, we can observe improvement of
the agent performance when partial randomisation was used
if the K input was provided together with T. This shows
that such less sensitive input can be used by the agent but
only with the information about the gripper’s closure, which
allows to evaluate the reliability of the tactile signal.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we investigated the use of both vision and
tactile inputs in completing a task of following deformable
linear objects. We introduced a benchmark in simulation and
studied how an RL agent’s behaviour can be boosted using
visual-tactile fusion, compared to using single sensing inputs.
We also conducted ablation studies where the agent, trained
with a larger amount of signals, was tested with fewer inputs.
Our results show the importance of multimodality and each
sensing modality plays a different role in completing the task.
We find that vision played a crucial role in finishing the task
and finding the end of the cable. Without vision (and due to
the nature of our reward function), the agent prefers to finish
the movement prematurely. We also see the importance of
kinematic input which allows the agent to know where it
is. Tactile input in some aspect was redundant with visual
input, however, as we showed it was important for the agent
to go further along the cable. The importance of the tactile
signal is more significant when vision is not available, which
is common due to obstacles in real-life situations.

The results presented in this paper provide useful insights
for future designs of tactile sensors and for deformable
objects manipulation. The presented approach can provide
guidance in the process of simulating tasks where sliding
or touching of flexible materials is required. One of future
works will be to adapt the trained agent on a real platform.
Thanks to the usage of the distilled information, such transfer
of knowledge should be much less affected by a domain
shift. The research also has potential to be extended to more
complex tasks, where we manipulate other objects like a
cloth or train the agent to achieve a different goal, e.g.,
wrapping a cable around a pin.
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