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Abstract
The equilateral triangle is one of the few planar domains where the Dirich-
let and Neumann eigenvalue problems were explicitly determined, by Lamé in
1833, despite not admitting separation of variables. In this paper, we study the
Robin spectrum of the equilateral triangle, which was determined by McCartin
in 2004 in terms of a system of transcendental coupled secular equations. We
give uniform upper bounds for the Robin–Neumann gaps, showing that they
are bounded by their limiting mean value, which is hence an almost sure bound.
The spectrum admits a systematic double multiplicity, and after removing it we
study the gaps in the resulting desymmetrized spectrum. We show a spectral
gap property, that there are arbitrarily large gaps, and also arbitrarily small ones,
moreover that the nearest neighbour spacing distribution of the desymmetrized
spectrum is a delta function at the origin. We show that for sufficiently small
Robin parameter, the desymmetrized spectrum is simple.
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1. Introduction

The equilateral triangle is one of the few planar domains where the Dirichlet and Neumann
eigenvalue problems are explicitly solved, despite not admitting separation of variables. The
solution was found by Lamé in 1833 [13], who also investigated the Robin3 boundary value
problem: denoting by T an equilateral triangle and by ∂T its boundary as in figure 1, the Robin
problem is to solve

Δ f + λ f = 0 on T,
∂ f
∂n

+ σ f = 0 on ∂T,

where ∂
∂n is the derivative in the outward pointing normal direction, and σ > 0 is the Robin

parameter (which we take to be constant).
Lamé only determined the Robin eigenfunctions possessing 120◦ rotational symmetry, and it

is only in 2004 that McCartin [16, 18] completely determined the eigenproblem, showing that
all of the eigenfunctions are trigonometric polynomials4, and that the eigenvalues are deter-
mined by a system of transcendental coupled secular equations as follows: define auxiliary
parameters L ∈ (−π/2, 0], M, N ∈ [0, π/2), which are required to satisfy the coupled system
of equations

(2L − M − N − (m + n)π) tan L = 3rσ

(2M − N − L + mπ) tan M = 3rσ

(2N − L − M + nπ) tan N = 3rσ.

(1.1)

The corresponding Robin eigenvalues are

Λm,n(σ) =
4π2

27r2
(μ2 + ν2 + μν), (1.2)

where

μ =
2M − N − L

π
+ m, ν =

2N − L − M
π

+ n.

Note that there is a systematic multiplicity of order 2 coming from the symmetry Λm,n = Λn,m,
and we will refer to {Λm,n(σ)}0�m�n as the desymmetrized Robin spectrum.

For σ � 0, let λσ
n denote the nth eigenvalue of the Robin Laplacian on the equilateral tri-

angle, arranged by size and repeated with multiplicities (the case σ = 0 are the Neumann
eigenvalues). We will study a number of aspects of the Robin spectrum of the equilateral
triangle.

In the first part of the paper, we study the Robin–Neumann gaps

dn(σ) :=λσ
n − λ0

n,

see figure 2. As is the case for any bounded piecewise smooth planar domain, the RN gaps
have a limiting mean value [23], which equals

3 The term ‘Robin boundary condition’ came much later, see [6] for a historical discussion.
4 The only polygonal domains where all Dirichlet or Neumann eigenfunctions are trigonometric are rectangles, and
the equilateral, hemi-equilateral and right isosceles triangles [17], see [20] for a higher dimensional version.
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Figure 1. An equilateral triangle of side length h. The inscribed circle has radius
r = h/(2

√
3).

Figure 2. The first 500 RN gaps for the equilateral triangle with side length 1,
with σ = 1. The solid (red) line is the limiting mean value 2 length(∂T)/ area
(T) = 8

√
3 = 13.856 4 . . . . Note that all the gaps are below the limiting mean value,

as is proved in theorem 1.1.

d̄ := lim
N→∞

1
N

N∑
n=1

dn(σ) =
2 length ∂T

area T
σ =

4
r
σ,

where r is the radius of the inscribed circle. Remarkably, for the equilateral triangle, the limiting
mean value is also an upper bound:

Theorem 1.1. We have dn(σ) < d̄ for all n.

3
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For most domains, we do not expect a uniform upper bound, e.g. we expect that for the disk
there are arbitrarily large RN gaps, but cannot prove this for any example of a planar domain,
see [21] for the hemisphere.

As a consequence of theorem 1.1, we show:

Corollary 1.2. The RN gaps tend to the mean value along a density one sequence of
eigenvalues.

We use the results on the RN gaps to deduce information on the asymptotics of the Robin
spectrum of the equilateral triangle by comparing it to the Neumann spectrum:

Corollary 1.3. For fixed σ > 0, there are arbitrarily large gaps in the Robin spectrum {λσ
n}.

This is sometimes called the ‘spectral gap property’ and is useful in a variety of applications.
An example is to show the existence of inertial manifolds in dissipative reaction–diffusion
equations [5, 14]

∂u
∂t

= νΔu + g(u),

for u on a domain satisfying suitable boundary conditions, with g a suitable nonlinear function,
and where ν > 0 is a parameter, see [12] for the case of the equilateral triangle. There are very
few instances of planar domains where the existence of arbitrarily large gaps in the spectrum
(with any boundary condition) is known. The question is open even for the Dirichlet spectrum
of the rectangle having the golden mean as its aspect ratio.

We can also show that there are arbitrarily small nonzero gaps in the spectrum. In fact, we
have a stronger result:

Theorem 1.4. The distribution of nearest neighbour gaps in the desymmetrized spectrum
is a delta function at the origin, i.e. for any fixed x > 0,

lim
N→∞

1
N
#{n � N : λσ

n+1 − λσ
n � x} = 1.

We emphasize that in this paper,σ is fixed; it is of great interest to study the spacings when σ
grows with the eigenvalue, see the discussion by Sieber et al [24], and by Berry and Dennis [1].
In the second part of the paper we examine spectral multiplicities (or ‘modal degeneracies’).
For the Dirichlet or Neumann spectrum of the equilateral triangle, there are large multiplicities
of arithmetic origin; the same holds for the hemi-equilateral (half of an equilateral triangle) and
right isosceles triangles, but there are other triangles with accidental degeneracies, see the paper
of Berry and Wilkinson [2] for an exploration of these ‘diabolical points’. Hillairet and Judge
[7] showed that for almost all5 triangles the Dirichlet spectrum is simple, but their method does
not give a single explicit example. For the Robin spectrum on the equilateral triangle, there is
a systematic doubling due to the symmetry (m, n) �→ (n, m) in (1.2). McCartin [16, section 8]
observed that there are additional degeneracies for σ 	 1. We will show that for small σ > 0,
there are no other degeneracies:

Theorem 1.5. There is some σ0 > 0 so that there are no multiplicities in the Robin spectrum
for 0 < σ < σ0 except for the systematic doubling.

5 In the sense of Lebesgue measure on the space of triangles of fixed area, which can be parameterized by triples of
angles which sum to π.
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A similar result holds for the square; however, for rectangles whose squared aspect ratio is
irrational, there are multiplicities for arbitrarily small σ > 0 [22], showing the special arith-
metic nature of the result. For the proof of theorem 1.5, we partition the spectrum into clusters

CR(σ) = {Λm,n(σ) : m, n � 0, m2 + mn + n2 = R2},

consisting of all Robin eigenvalues given by (1.2), that, for σ = 0, correspond to the common
Neumann eigenvalue satisfying

4π2

27r2
(m2 + mn + n2) = Λm,n(0) =

4π2

27r2
R2

with some m, n � 0 integers, for the given R > 0. At σ = 0, these clusters are well sepa-
rated, as the Neumann eigenvalues are multiples by 4π2

27r2 of integers. As σ varies, different
clusters remain separated for small σ due to our upper bound on the Robin–Neumann gaps
(theorem 1.1). This reduces the problem to showing that there is some σ0 > 0 for which
all of the clusters break up completely (except for a systematic double multiplicity) for all
0 < σ < σ0. To prove this requires a detailed study of the secular equation (1.1) governing the
eigenvalues, which takes up sections 9, 10 and 11.

2. Background on the equilateral triangle

We consider an equilateral triangle T of side length h. Denote by

r =
h

2
√

3

the radius of the inscribed circle. The area of T is then

area(T) =

√
3h2

4
= 3

√
3r2.

We use Cartesian coordinates (x, y) so that the vertices are located at
{(0, 0), (0, h), (h/2, h

√
3/2)} (figure 1).

2.1. Neumann eigenfunctions

The eigenfunctions are either symmetric or antisymmetric w.r.t the altitude of the triangle, that
is the line x = h/2. A complete set of orthogonal Neumann eigenfunctions is

Ts/a
m,n(x, y) = cos

(
π�

3r
(3r − y)

){
cos
sin

}(√
3π(m − n)

9r

(
x −

√
3r
))

+ cos
(πm

3r
(3r − y)

){
cos
sin

}(√
3π (n − �)

9r

(
x −

√
3r
))

+ cos
(πn

3r
(3r − y)

){
cos
sin

}(√
3π (�− m)

9r

(
x −

√
3r
))

,

where for the symmetric eigenfunctions Ts
m,n we take 0 � m � n and cosine, and for the anti-

symmetric ones Ta
m,n we take 0 � m < n and sine. Here the m, n � 0 are integers, and m, n, �

satisfy

m + n + � = 0

5
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with the corresponding eigenvalue being

Λm,n(0) :=
2π2

27r2

(
m2 + n2 + �2

)
=

4π2

27r2

(
m2 + mn + n2

)
.

There are high multiplicities in the Neumann spectrum of the equilateral triangle, com-
ing from the fact that for integers which can be written in the form m2 + mn + n2 there are
‘typically’ many ways to do so. This is a well-understood number theoretic issue, completely
similar to the problem of representation as a sum of two squares. The squared L2 norm of the
eigenfunctions is [15, section 8.1]

‖Ta/s
m,n‖2

2 =

∫
T
(Ts/a

m,n)2 =
9
√

3r2

4
, m < n

and

‖Ts
m,m‖2

2 =
9
√

3r2

2
, m > 0.

2.2. Robin eigenfunctions

The eigenfunctions are either symmetric or antisymmetric w.r.t the altitude of the tri-
angle, that is the line x = h/2. McCartin showed that a complete set of orthogonal
eigenfunctions is

Ts/a
m,n(x, y) = cos

(
πλ

3r
(3r − y) − δ1

)
{cos

sin
}
(√

3π (μ− ν)
9r

(
x −

√
3r
))

+ cos
(πμ

3r
(3r − y) − δ2

)
{cos

sin
}
(√

3π (ν − λ)
9r

(
x −

√
3r
))

+ cos
(πν

3r
(3r − y) − δ3

)
{cos

sin
}
(√

3π (λ− μ)
9r

(
x −

√
3r
))

with some δ1, δ2, δ3 ∈ R, where for the symmetric eigenfunctions Ts
m,n we take 0 � m � n

and cosine, and for the antisymmetric ones Ta
m,n we take 0 � m < n and sine. Here μ, ν,λ

(depending on m, n and the Robin constant σ) are chosen subject to

μ+ ν + λ = 0

and μ, ν � 0 are determined by a set of transcendental equations (imposed by requiring that the
corresponding eigenfunctions satisfy the Robin condition on the boundary): define auxiliary
parameters

L ∈ (−π/2, 0], M, N ∈ [0, π/2) (2.1)

and set

λ =
2L − M − N

π
− m − n, μ =

2M − N − L
π

+ m, ν =
2N − L − M

π
+ n.

6
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Figure 3. Plots of Λm,n(σ) with (m, n) = (1, 9), (5, 6), (4, 7). Note that Λ1,9(0) = Λ5,6(0).

Then L, M, N are required to satisfy the coupled system of equations

(2L − M − N − (m + n)π) tan L = 3rσ

(2M − N − L + mπ) tan M = 3rσ

(2N − L − M + nπ) tan N = 3rσ, (2.2)

see [16] for existence and uniqueness of solutions.
The corresponding eigenvalues are

Λm,n(σ) =
2π2

27r2
(μ2 + ν2 + λ2) =

4π2

27r2
(μ2 + ν2 + μν). (2.3)

One may find some examples of plots of Λm,n(·) in figure 3. Note that there is a system-
atic multiplicity of order 2 coming from the symmetry Λm,n = Λn,m. We refer to [4] for a
computation of the L2 norm of the eigenfunctions.

3. A uniform upper bound for the RN gaps: proof of theorem 1.1

Our goal is to show that for the equilateral triangle, the Robin–Neumann gaps are bounded
above by their limiting mean value, which we recall equals

d̄ := lim
N→∞

1
N

N∑
n=1

dn(σ) =
2 length ∂ T

area T
σ =

4
r
σ.

Proof. We will show that

0 < Λm,n(σ) − Λm,n(0) < d =
4
r
σ. (3.1)

Given that, to pass from the Λm,n(σ) to its analogue for the ordered eigenvalues is the same
argument as for the rectangle (see [23, section 8.2]) that we reproduce here for the sake of
completeness, albeit briefly. Namely, recall that {λσ

n}n�0 is the Robin spectrum corresponding
to the Robin parameter σ (in non-decreasing order), and, given k � 1, consider the closed
interval

Ik := [0,λ0
k + d] ⊆ R.

7
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Then, thanks to the inequality (3.1) to be proved immediately below, Ik is bound to contain
all of λσ

n < λ0
n + d, for n � k, i.e. Ik contains at least (k + 1) of the eigenvalues {λσ

n}, implying,
in particular, that

λσ
k � λ0

k + d,

sufficient to deduce the claimed analogue of (3.1) for the ordered Robin eigenvalues.
We now turn to proving (3.1). To this end we rewrite the equation (2.2) in a compact form

as follows: set

m1 = m, m2 = n, m3 = −(m + n),

μ1 = μ, μ2 = ν, μ3 = λ,

M1 = M, M2 = N, M3 = L

so that

μ1 + μ2 + μ3 = 0 = m1 + m2 + m3 (3.2)

and

μ j = m j +
1
π

(2M j − Mi − Mk), (3.3)

where {i, j, k} = {1, 2, 3}, and the system (2.2) becomes

μ j tan M j =
3rσ
π

, j = 1, 2, 3.

Therefore, since |M j| < π/2,

|μ jM j| < |μ j tan M j| =
3r
π
σ. (3.4)

Now consider the difference (compare (2.3))

Λm,n(σ) − Λm,n(0) =
2π2

27r2

3∑
j=1

(μ2
j − m2

j).

We have

μ2
j − m2

j = (μ j − m j)(2μ j − (μ j − m j))

= 2μ j(μ j − m j) − (μ j − m j)
2

� 2μ j(μ j − m j)

=
2
π
μ j(2M j − Mi − Mk)

8
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on inserting (3.3). Therefore

0 < Λm,n(σ) − Λm,n(0) =
2π2

27r2

3∑
j=1

(μ2
j − m2

j)

� 4π
27r2

3∑
j=1

μ j(2M j − Mi − Mk).

Recalling that {i, j, k} = {1, 2, 3} and using (3.2) gives

3∑
j=1

μ j(Mi + Mk) =
∑

j

M j(μi + μk) = −
∑

j

M jμ j

and so

3∑
j=1

μ j(2M j − Mi − Mk) = 2
3∑

j=1

μ jM j −
3∑

j=1

μ j(Mi + Mk) = 3
3∑

j=1

M jμ j.

Inserting (3.4) gives that this is �27 r
π σ and hence

0 < Λm,n(σ) − Λm,n(0) � 4π
27r2

· 27r
π

σ =
4
r
σ

proving (3.1). �

4. Almost sure convergence of the RN gaps: proof of corollary 1.2

A tautological consequence of theorem 1.1, which says that all RN gaps (which are positive)
are bounded by their limiting mean value, is that almost all RN gaps converge to the limiting
mean value d̄.

Proof. Indeed, let dn � 0 be a sequence of non-negative numbers, which has a limiting mean
value

d̄ := lim
N→∞

1
N

N∑
n=1

dn,

and assume that for all n we have dn � d̄. Then we claim that necessarily, for almost all n, we
have dn = d̄ + o(1) as n →∞. On the contrary, assume that there is some δ > 0 so that the set

Nδ := {n : dn � d̄ − δ}

satisfies:

lim supN→∞
1
N

#Nδ ∩ [1, N] = c > 0.

Thus we are guaranteed an infinite sequence S of N’s satisfying

#Nδ ∩ [1, N] > cN/2.

9
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For all N � 1, we can compute the mean value as

1
N

N∑
n=1

dn =
1
N

∑
n�N
n∈Nδ

dn +
1
N

∑
n�N
n/∈Nδ

dn � 1
N

∑
n�N
n∈Nδ

(d̄ − δ) +
1
N

∑
n�N
n/∈Nδ

d̄,

where we have used dn � d̄ for n /∈ Nδ . In particular, for N ∈ S,

1
N

N∑
n=1

dn � (d̄ − δ)
1
N
#Nδ ∩ [1, N] + d̄

1
N
#{n /∈ Nδ , n � N}

= d̄ − δ
1
N
#Nδ ∩ [1, N] � d̄ − δ

c
2

and so

d̄ = lim
N→∞
N∈S

1
N

N∑
n=1

dn � d̄ − δ
c
2
< d̄

which is a contradiction. �

5. Large gaps in the Robin spectrum: proof of corollary 1.3

Proof. Since the Robin spectrum clusters at a bounded distance around the Neumann spec-
trum { 4π2

27r2 (m2 + mn + n2) : m, n � 0}, it suffices to observe that the Neumann spectrum has
arbitrarily large gaps. This well known arithmetic fact admits a quick proof by noting that for
integers of the form m2 + mn + n2, the prime decomposition can only contain primes of the
form p = 3k + 2 to an even power (see e.g. [8, chapter 9.1]). Let p1 = 2, p2 = 5, . . . , pK be the
first K primes congruent to 2 mod 3. Using the Chinese remainder theorem we find n satisfy-
ing n = − j + pj mod p2

j for j = 1, . . . , K. Then n + 1, n + 2, . . . , n + K are not of the form
x2 + xy + y2 because n + j = 0 mod pj while n + j = 0 mod p2

j . Thus we found a gap of size

� 4π2

27r2 · K in the Neumann spectrum. �
We can extract qualitative results from the finer results known about gaps between values

of binary quadratic forms:
In 1982, Richards [19] proved that the maximal gap g(x) among integers of the form

m2 + mn + n2 up to x is at least ( 1
3 − o(1)) log x as x →∞, see [3, 10] for improvement to

the constant. Hence, if we denote by

gσ(x) = max
(
λσ

n+1 − λσ
n : λσ

n � x
)

,

then, with the help of theorem 1.1, we obtain the bound

gσ(x) 	 log x.

10
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6. Spacings: proof of theorem 1.4

Fix σ > 0 and denote by λσ
n the Robin spectrum (σ = 0 being the Neumann spectrum) and let

xσ(n) = c(λσ
n+1 − λσ

n ), c =
4π

area T

be the normalized nearest neighbour gaps, whose mean value is unity by Weyl’s law. Let

P̃σ(t, N) :=
1
N
#{n � N : xσ(n) < t}

be the cumulative distribution function of the xσ(n).
Note that if for a pair of tuples (m, n) and (m′, n′) representing consecutive Neumann energies

one has

m2 + n2 + mn = m′2 + n′2 + m′n′,

then Λm,n(0) = Λm′,n′ (0), so that the corresponding nearest neighbour gap vanishes. Hence for
the Neumann spectrum, all the nearest gaps vanish except for at most the number of integers

representable by the form m2 + n2 + mn, whose number of those energies �X is O
(

X√
log X

)
by [9]. On the other hand, by Weyl’s law, the total number of energies �X is proportional to
X, hence most of the gaps vanish precisely, implying, in particular, that the limiting spacing
distribution is the delta function. Hence, in the Neumann case, the limiting spacing distribution
is a delta-function at the origin: we have for any t > 0,

lim
N→∞

P̃0(t, N) = 1. (6.1)

Proof of theorem 1.4. By corollary 1.2, the bulk of Robin spectrum is obtained from
the Neumann spectrum by an approximately constant shift, therefore the spacing distribution
remains unchanged. Denote by dσ(n) = λσ

n − λ0
n the Robin–Neumann gaps and d̄ their limiting

mean value. Fix ε > 0 and let S be the set of integers n so that

d̄ − ε < dσ(n)

(and also dn(σ) < d̄). We showed that S has density one (corollary 1.2). Therefore, the set

S2 := {n � 1 : n ∈ S and n + 1 ∈ S}

also has density one.
For n ∈ S2, we compute the difference of the normalized gaps xσ(n) and x0(n):

1
c

(xσ(n) − x0(n)) = (λσ
n+1 − λσ

n ) − (λ0
n+1 − λ0

n)

= (λσ
n+1 − λ0

n+1) − (λσ
n − λ0

n) = dσ(n + 1) − dσ(n).

Since dσ(n + 1), dσ(n) ∈ (d̄ − ε, d̄) we obtain dσ(n + 1) − dσ(n) ∈ (−ε, ε) so that for all
n ∈ S2,

xσ(n) − x0(n) ∈ (−cε, cε).

Fix t > 0, and take ε < t/c. Then for n ∈ S2, if xσ(n) < t then x0(n) < t + cε, while x0(n)
< t − cε implies that xσ(n) < t. Thus

{n ∈ S2 : xσ(n) < t} ⊆ {n ∈ S2 : x0(n) < t + cε}

11
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and

{n ∈ S2 : xσ(n) < t} ⊇ {n ∈ S2 : x0(n) < t − cε}.

On the other hand, we have

0 � P̃σ(t, N) − 1
N
#{n � N, n ∈ S2 : xσ(n) < t}

� 1
N
#{n � N : n /∈ S2} = o(1),

and likewise for σ = 0, hence

P̃0(t − cε, N) + o(1) � P̃σ(t, N) � P̃0(t + cε, N) + o(1).

Since ε > 0 is arbitrary, for any fixed t > 0, we obtain by (6.1)

lim
N→∞

P̃σ(t, N) = 1

which gives our claim. �

7. Simplicity of the desymmetrized spectrum: overview of the proof of
theorem 1.5

7.1. Review of notation

We recall notation: for integers m, n � 0, and σ � 0, we defined the variables

L = Lm,n(σ) ∈
(
−π

2
, 0
]

, M = Mm,n(σ), N = Nm,n(σ) ∈
[
0,

π

2

)
(7.1)

given by solutions of the system⎧⎪⎪⎨
⎪⎪⎩

(2L − M − N − (m + n)π) tan L = 3rσ

(2M − N − L + mπ) tan M = 3rσ

(2N − L − M + nπ) tan N = 3rσ

. (7.2)

The variables μ, ν were defined as

μ =
2M − N − L

π
+ m, ν =

2N − L − M
π

+ n,

and, finally, the Robin eigenvalues with parameter σ are:

Λm,n(σ) :=
4π2

27r2

(
μ2 + ν2 + μν

)
.

To prove that the desymmetrized spectrum is simple (theorem 1.5), it is needed to show
that there exists σ0 > 0 so that for all σ ∈ (0, σ0), one has Λm,n(σ) = Λm′ ,n′(σ) for all pairs
(m, n) = (m′, n′) with 0 � m � n, 0 � m′ � n′. We adopt the notation

R2 = R2(m, n) :=
27r2

4π2
Λm,n(0) = m2 + n2 + mn, (7.3)

12
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and

FR(m, n) =
R4

m2n2(m + n)2
=

1
m2

+
1
n2

+
1

(m + n)2
.

7.2. Key propositions

Proposition 7.1. For σ > 0 sufficiently small:

(a) For 1 � m � n,

Λm,n(σ) = Λm,n(0) +
4
r
· σ − 4FR(m, n)

π2
· σ2(1 − rσ) + O

(
1

m4
· σ3

)
,

(7.4)

with the implied constant absolute.
(b) For m = 0 < n, Λ0,n(·) satisfies6

Λ0,n(σ) = Λ0,n(0) +
10
3r

· σ + O(σ3/2), (7.5)

with the implied constant absolute.
(c) The function Λ0,0(σ) is continuous7 at σ = 0.

Proposition 7.2. If (m, n) and (m′, n′) are two integer points on the ellipse

X2 + XY + Y2 = R2

with 1 � m < m′ � n′ < n, then FR(m, n) > FR(m′, n′) and as R →∞ we have a lower bound
for the difference

FR(m, n) − FR(m′, n′) 	 1
m4

with the implied constant absolute.

7.3. Proof of theorem 1.5 assuming propositions 7.1 and 7.2

Proof. We assert that for any integers m, n, m′, n′ � 0, one has:

(a) If

m2 + n2 + mn < m′2 + n′2 + m′n′,

then Λm,n(σ) < Λm′,n′(σ) for σ ∈ (0, π2/(27r)).

6 By general perturbation theory [11, chapter VII] (see in particular remark 4.22 on page 408), the functions Λ0,n(·)
are analytic, at least in some neighbourhood of the origin. Therefore the remainder term in (7.5) can be replaced by
On(σ2).
7 In fact, Λ0,0(·) is analytic, by [11, chapter VII].
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(b) For σ > 0 sufficiently small (absolute), if 0 � m < m′ � n′ < n satisfy

m2 + n2 + mn = m′2 + n′2 + m′n′

then Λm,n(σ) > Λm′,n′(σ).

The desymmetrized Neumann spectrum {Λm,n(0) : 0 � m � n} is partitioned into clusters
of coinciding eigenvalues

CR = {Λm,n(0) : 0 � m � n, m2 + mn + n2 = R2}.

Part (a) deals with the situation that at σ = 0, we start from different clusters CR, CR′ with
R < R′, and the claim is that there is some σ0 so that for σ ∈ (0, σ0), the evolved clusters remain
separate. Since distinct integers are spaced at least one apart from each other, the distance
between different Neumann clusters (σ = 0) is at least 4π2/(27r2). We use our upper bound
(theorem 1.1) on the Robin–Neumann gaps:

λn(σ) − λn(0) <
4
r
σ,

so that if 4σ/r < 4π2/(27r2) then different Robin clusters cannot mix, that is

Λm,n(σ) < Λm′ ,n′(σ)

for σ ∈ (0, π2/(27r)).
Now take integers 0 � m < m′ � n′ < n, so that

m2 + n2 + mn = m′2 + n′2 + m′n′

(equivalently,Λm,n(0) = Λm′,n′ (0)). If m = 0, then we invoke proposition 7.1 (a) and (b) to write

Λm′,n′ (σ) − Λ0,n(σ) =
2
3r

· σ + O(σ3/2) > 0,

since F(m′, n′) < 3.
Otherwise, if m � 1, then we invoke proposition 7.1 (a) to yield

Λm′,n′ (σ) − Λm,n(σ) =
(
FR(m, n) − FR(m′, n′)

)
· 4σ2(1 − rσ)

π2
+ O

(
σ3

m4

)

which along with proposition 7.2 show that for σ > 0 sufficiently small,

Λm′,n′ (σ) − Λm,n(σ) 	 σ2

m4
+ O

(
σ3

m4

)
	 σ2

m4
> 0

in particular this difference is nonzero. In either case, m = 0 or m � 1, (b) is proved. �

8. Asymptotic expansion of the eigenvalue curves

8.1. Some auxiliary results

We state some lemmas on the properties of the auxiliary parameters M, N and L, which we
then use to prove proposition 7.1.

Lemma 8.1. For every 0 � m � n and σ � 0 there exists a unique solution (L, M, N) to (7.2)
in the prescribed range (7.1). These solutions satisfy:

14
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(a) For 0 � m < n, σ > 0 one has L, N = O
(
σ
n

)
, with the implied constant absolute.

(b) In addition to the above, M = O
(
σ
m

)
uniformly for 1 � m � n, σ > 0. Otherwise, for

m = 0 < n, one has M = O
(√

σ
)

for σ > 0 sufficiently small, with the implied constant
absolute.

(c) For m = n = 0 one has |L|, |M|, |N| �
√
σ, so, in particular the functions L, M, N are

continuous at σ = 0.

Lemma 8.1 implies in particular, that, as σ → 0, one has

L(σ), M(σ), N(σ) → 0

uniformly w.r.t. m, n � 0. Therefore μm,n(σ) → μm,n(0) = m and νm,n(σ) → νm,n(0) = n uni-
formly. It will also follow a fortiori from our analysis below that uniformly in m, n,

lim
σ→0

Λm,n(σ) = Λm,n(0) =
4π2

27r2

(
m2 + n2 + mn

)
.

Lemma 8.2. For m = 0, n � 1 the functions L, M, N are analytic on σ > 0 and continuous
at σ = 0, with L, N continuously differentiable on R�0. Further, L, M, N satisfy the following
asymptotics around the origin, with all the implied constants absolute:

N,−L =
3r
nπ

· σ + O

(
σ3/2

n2

)
, M =

√
3r/2 ·

√
σ + O(σ3/2).

To state the next lemmas, we use the uniform notation as in section 3, where we rewrite the
coupled system (7.2) in compact form as follows: set

m1 = m, m2 = n, m3 = −(m + n),

μ1 = μ, μ2 = ν, μ3 = −(μ1 + μ2),

M1 = M, M2 = N, M3 = L,

so that

μ1 + μ2 + μ3 = 0 = m1 + m2 + m3

and

μ j = m j +
1
π

(2M j − Mi − Mk),

where {i, j, k} = {1, 2, 3}. Thus for each 0 � m1 � m2, we obtain a coupled system for the
variables M1, M2, M3 with M1, M2,−M3 ∈ [0, π/2)

μ j tan M j =
3rσ
π

, j = 1, 2, 3. (8.1)
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Lemma 8.3. If 1 � m1 � m2 then the derivatives at σ = 0 are

M′
j(0) =

3r
πm j

, (8.2)

and

M′′
j (0) = −18r2

π3

m2
j + 2mimk

m3
jmimk

. (8.3)

We next give bounds for the derivatives of M j:

Lemma 8.4. There is some σ0 > 0 so that if 1 � m1 � m2 then M j(σ) are analytic in [0, σ0]
and satisfy (uniformly in [0, σ0])

M′
j =

3r
πm j

(
1 + O

(
1

m j

))
, (8.4)

|M′′
j | �

1
m1m2

j

, (8.5)

M′′′
j = 2

(
M′

j

)3
+ O

(
1

m3
1m2

j

)
=

54r3

π3m3
j

+ O

(
1

m3
1m2

j

)
. (8.6)

Lemma 8.5. The values of the first three derivatives of Λm,n(·) at the origin are:

Λ′
m,n(0) =

4
r

(8.7)

Λ′′
m,n(0) = − 8

π2
FR(m, n) (8.8)

Λ(3)
m,n(σ) =

24r
π2

FR(m, n) + O

(
1

m4

)
. (8.9)

The proofs of these lemmas will be given in sections 9, 10 and 11.

8.2. Proof of proposition 7.1

Proof. Proposition 7.1 (a) is a direct consequence of (8.7) and (8.8) via a three-term Tay-
lor expansion around σ = 0, invoking the Lagrange form of the remainder appealing to the
estimate (8.9): for every σ > 0 sufficiently small, one has the estimate

Λm,n(σ) = Λm,n(0) +
4
r
· σ − 4FR(m, n)

π2
· σ2 +

(
4rFR(m, n)

π2
+ O

(
1

m4

))
· σ3,

which yields (7.4). Part (c) of proposition 7.1 is a direct consequence of lemma 8.1 (c).
To prove proposition 7.1 (b), namely that

Λ0,n(σ) = Λ0,n(0) +
10
3r

· σ + O(σ3/2)
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we write

Λ0,n(σ) =
2π2

27r2

3∑
j=1

μ2
j .

Using m = 0, n � 1 we have

μ1 =
1
π

(2M1 − M2 − M3)

μ2 = n +
1
π

(2M2 − M3 − M1), μ3 = −n +
1
π

(2M3 − M1 − M2)

so that

3∑
j=1

μ2
j = 2n2 +

6n
π

(M2 − M3) +
1
π2

3∑
j=1

(2M j − Mi − Mk)2.

Inserting lemma 8.2 which asserts that

M1 =

√
3rσ

2
+ O(σ3/2), M2,−M3 =

3r
nπ

σ + O

(
σ3/2

n2

)

gives

3∑
j=1

μ2
j = 2n2 +

45r
π2

σ + O(σ3/2)

so that

Λ0,n(σ) =
2π2

27r2

3∑
j=1

μ2
j = Λ0,n(0) +

10r
3

σ + O(σ3/2)

as claimed. �

9. Proofs of lemmas 8.1 and 8.2

9.1. Proof of lemma 8.1

Proof. The existence and uniqueness of the solutions (L, M, N) to (7.2) was established in
[16, section 6]. We observe that L � 0 and M, N � 0 forces 2L − M − N � 0, and so

2L − M − N − (m + n)π � −(m + n)π.

Hence, the first equation of (7.2) implies that if (m, n) = (0, 0) (which, for m � n is
equivalent to n = 0), then

| tan L| � σ

m + n
� σ

n
,

17
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and so

L � σ

n
.

The proof of N � σ
n is similar to the above, except that we focus on the 3rd equation of

(7.2) and notice that

2N − L − M + nπ � nπ − M � (n − 1/2)π 	 n.

This concludes the proof of lemma 8.1 (a), and the same argument yields the case m > 0 of
lemma 8.1 (b), by exploiting the 2nd equation of (7.2).

If m = 0 but n > 0, then, the 2nd equation of (7.2) reads

(2M − L − N) tan M = 3rσ. (9.1)

First, assume by contradiction that M < 10 · (|L|+ N) (say). Then, assuming that σ > 0 is
sufficiently small, so that, with the help from the (readily established) part (a) of lemma 8.1,
|L|, |N| < 1/100 (so that 0 � M < 1/5), the lhs of (9.1) is bounded above by

(2M − L − N) tan M � σ

n
· M � σ2

n2
,

so the equality (9.1) cannot hold with σ > 0 sufficiently small. Hence we may as well assume
that

M � 10 · (|L|+ N).

But then we may deduce from (9.1):

M2 � (2M − M/10) · M � (2M − N) · M

� (2M − N) tan M � (2M − L − N) tan M = 3rσ,

so that M �
√
σ as in the 2nd assertion of lemma 8.1 (b).

Finally we show lemma 8.1 (c): since m = n = 0, then the equality M = N is forced by the
symmetry between these two. (If, by contradiction, M > N, then the lhs of the 2nd equation of
(7.2) is strictly bigger than the lhs of the 3rd equation of (7.2).) Then the system (7.2) reads

{
2(L − M) tan L = 3rσ

(M − L) tan M = 3rσ
. (9.2)

Then, by the 1st equation of (9.2), and recalling that L, tan L � 0 and M � 0, it forces
2L tan L � 3rσ, and so L �

√
σ, as above. Further, either M = L �

√
σ or we may divide

the equations in (9.2), and so

M � tan M = −2 tan L �
√
σ,

as we have already seen. This concludes the proof of lemma 8.1 (c). �
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9.2. Proof of lemma 8.2

Recall (7.2) (with m = 0), namely

(2M − N − L) tan M − 3rσ = 0

(πn + 2N − L − M) tan N − 3rσ = 0

(−πn + 2L − M − N) tan L − 3rσ = 0. (9.3)

Consider the third equation of (9.3): thanks to lemma 8.1 (a) we may write

tan L = L + O(L3) = L + O(σ3/n3),

and, in addition, from lemma 8.1 (b), one has

nπL = −3rσ + O(σ3/2/n),

and then

L = − 3r
nπ

· σ + O(σ3/2/n2). (9.4)

Analogously,

N =
3r
nπ

· σ + O(σ3/2/n2). (9.5)

Next we focus on the first equation of (9.3): we write

tan(M) = M +
1
3

M3 + O(M5) = M +
1
3

M3 + O(σ5/2),

and feed (9.4) and (9.5) into it to derive:

2M2 = 3rσ + M(L + N) − 2
3

M4 − 1
3

M3(L + N) + O(σ3) = 3rσ + O(σ2)

= 3rσ(1 + O(σ)),

so that

M =

√
3r
2

·
√
σ(1 + O(σ)) =

√
3r
2

·
√
σ + O(σ3/2).

The continuity of L, M, N at σ = 0 follows directly from lemma 8.1, and here we deal with
the analyticity of L, M, N for σ > 0 sufficiently small. We want to use the analytic implicit
function theorem for the system (9.3). To do that we evaluate the Jacobian of (9.3) (with m = 0)
as

J0,n(σ) =

⎛
⎜⎜⎜⎜⎝

2M − N − L
cos2 M

+ 2 tan M − tan M − tan M

− tan N
πn + 2N − L − M

cos2 N
− tan N

− tan L − tan L
−πn + 2L − M − N

cos2 L
+ 2 tan L

⎞
⎟⎟⎟⎟⎠ .
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For σ → 0, we have M, N, L → 0 so

tan M ∼ M = O
(√

σ
)

, tan N ∼ N = O
(σ

n

)
,

and likewise tan L = O( σn ). Also

1
cos2 M

= 1 + tan2 M = 1 + O(σ),
1

cos2 N
= 1 + O

(
σ2

n2

)
,

and likewise 1/cos2 L = 1 + O(σ2/n2). Thus for small σ > 0,

J0,n(σ) =

⎛
⎝4M + O(σ) O(

√
σ) O(

√
σ)

O(σ/n) πn + O(
√
σ) O(σ/n)

O(σ/n) O(σ/n) −πn + O(
√
σ)

⎞
⎠

when σ → 0, we obtain

| det J0,n(σ)| = 4π2n2 · M + O(σ) 	
√
σ

because M ≈
√
σ. Thus we found | det J0,n(σ)| 	

√
σ = 0 so that by the analytic implicit

function theorem, M, N, L are analytic in σ near σ = 0.

10. Proofs of lemmas 8.3 and 8.4

10.1. The derivatives of Mj at σ = 0: proof of lemma 8.3

Proof. We compute derivatives: from the definition of μ j we obtain

μ′
j =

1
π

(
2M′

j − M′
i − M′

k

)
.

From (8.1) we obtain after one differentiation

μ′
j tan M j + μ j(tan M j)′ =

3r
π

(10.1)

and differentiating again

μ′′
j tan M j + 2μ′

j(tan M j)′ + μ j(tan M j)′′ = 0. (10.2)

We also recall that

μ j(0) = m j, M j(0) = 0 (10.3)

so that tan M j(0) = 0, cos M j(0) = 1. Now (tan M j)′ = M′
j/(cos2 M j) and therefore

(tan M j)
′(0) = M′

j(0).

Substituting in (10.1) and evaluating at σ = 0 using (10.3) gives m jM′
j(0) = 3r

π
, or

M′
j(0) =

3r
πm j

,
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which is (8.2). We also obtain

μ′
j(0) =

1
π

(
2M j(0)′ − M′

i(0) − M′
k(0)

)
=

3r
π2

(
2

m j
− 1

mi
− 1

mk

)

=
3r
π2

2mimk − m jmi − m jmk

m jmimk
=

3r
π2

m2
j + 2mimk

m jmimk

on using mi + mk = −m j.
The second derivative of tan M j is

(tan M j)′′ =

(
M′

j

cos2 M j

)′
=

M′′
j

cos2 M j
−

2(M′
j)

2 tan M j

cos2 M j
(10.4)

and at σ = 0 we obtain

(tan M j)′′(0) = M′′
j (0).

Inserting in (10.2) yields

2μ′
j(0)M′

j(0) + m jM
′′
j (0) = 0

or

m jM
′′
j (0) = −2

3r
πm j

· 3r
π2

m2
j + 2mimk

m jmimk
= −18r2

π3

m2
j + 2mimk

m2
jmimk

which gives

M′′
j (0) = −18r2

π3

m2
j + 2mimk

m3
jmimk

as claimed in (8.3). �

10.2. Bounding derivatives of Mj: proof of lemma 8.4

Analyticity of M j near σ = 0 is proved analogously to the case m = 0, n � 1 in lemma 8.2.
We will prove the bounds on the derivatives. Before proceeding, we formulate a standard

fact from linear algebra (we leave the verification to the reader):

Lemma 10.1. Suppose we have a system of the form (I + B)x = y, x, y ∈ R
n with B a rank

one matrix

B = β · αT, β,α ∈ R
n,

where ‖α‖ · ‖β‖ < 1. Then

x = y − 〈α, y〉
1 + 〈α, β〉β

and so

x j = y j + O(‖y‖ · ‖α‖ · |β j|).
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We now proceed with the proof of lemma 8.4:

Proof. For the first derivative we use (10.1) and rearrange it as

M′
j

(
1 +

6rσ cos2 M j

π2

1
μ2

j

)
− 3rσ cos2 M j

π2μ2
j

(M′
i + M′

k) =
3r cos2 M j

πμ j

that is, the vector �M = (M1, M2, M3)T satisfies a matrix equation of the form

(I + B)�M′ = y

with

B =
3rσ
π2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 cos2 M1

μ2
1

−cos2 M1

μ2
1

−cos2 M1

μ2
1

−cos2 M2

μ2
2

2 cos2 M2

μ2
2

−cos2 M2

μ2
2

−cos2 M3

μ2
3

−cos2 M3

μ2
3

2 cos2 M3

μ2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= β · αT,

where

αT =
3rσ
π2

(2,−1,−1) , βT =

(
cos2 M1

μ2
1

,
cos2 M2

μ2
2

,
cos2 M3

μ2
3

)
,

and

y j =
3r cos2 M j

πμ j
.

We use lemma 10.1, noting that

|〈α, y〉| � |α| · |y| � 1
m1

, |β j| �
1

m2
j

to find

M′
j =

3r cos2 M j

πμ j
+ O

(
1

m1m2
j

)
=

3r
πm j

(
1 + O

(
1

m j

))

locally uniformly in σ.
For the second derivative, use

cos2 M j(tan M j)
′′ = M′′

j − 2(M′
j)

2 3rσ
πμ j

(10.5)

(which is a rewriting of (10.4) using (8.1)) and insert into (10.2) (again using (8.1)) to obtain
(recalling (tan M j)′ cos2 M j = M′

j)

μ j

(
M′′

j −
6rσ
π

(M′
j)

2

μ j

)
= −2μ′

jM
′
j − μ′′

j cos2 M j tan M j
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or, after using (8.1)

M′′
j +

3rσ cos2 M j

π2μ2
j

(
2M′′

j − M′′
i − M′′

k

)
= −

2μ′
jM

′
j

μ j
+

6rσ
π

(M′
j)

2

μ j
. (10.6)

The rhs of (10.6) is O(1/(m1m2
j)) by our bounds on the first derivative while the lhs of (10.6)

is of the form (I + B)�M′′ with B = βαT,

αT =
3rσ
π2

(2,−1,−1), βT =

(
cos2 M1

μ2
1

,
cos2 M2

μ2
2

,
cos2 M3

μ2
3

)
.

Applying lemma 10.1 we find

M′′
j = −

2μ′
jM

′
j

μ j
+

6rσ
π

(M′
j)

2

μ j
+ O

(
1

m3
1

· 1
m2

j

)
� 1

m1m2
j

.

For the third derivative we have:

Lemma 10.2.

M′′′
j = 2(M′

j)
3 + O

(
1

m3
1m2

j

)
=

54r3

π3m3
j

+ O

(
1

m3
1m2

j

)
.

Proof. Differentiate (10.2) to obtain

μ j(tan M j)′′′ + 3μ′
j(tan M j)′′ + 3μ′′

j (tan M j)′ + μ′′′
j tan M j = 0. (10.7)

Recall (10.4) which gives

cos2 M j(tan M j)
′′ = M′′

j − 2(M′
j)

2 tan M j (10.8)

which in particular we now know to be O(1/m1m2
j) using (8.1). Differentiating (10.8) gives

− 2 tan M j(cos2 M j)M′
j(tan M j)′′ + cos2 M j(tan M j)′′′

= M′′′
j − 4M′

jM
′′
j tan M j − 2(M′

j)
2(tan M j)′

so that by (8.5)

cos2 M j(tan M j)′′′ = M′′′
j − 2(M′

j)
3 + O

(
1

m1m4
j

)
(10.9)

on using (8.1) and

(tan M j)′ =
M′

j

cos2 M j
= M′

j

(
1 +

(
tan M j

)2
)
= M′

j + O

(
1

m3
j

)
.

Multiplying (10.7) by (cos2M j)/μ j and inserting (10.9) gives

M′′′
j + μ′′′

j tan M j
cos2 M j

μ j
= 2(M′

j)
3 + O

(
1

m1m4
j

)
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and thus we get

M′′′
j + O

(
1

m2
j

)(
2M′′′

j − M′′′
i − M′′′

k

)
= 2(M′

j)
3 + O

(
1

m1m4
j

)
.

Applying lemma 10.1 with αT = (2,−1,−1), β j = O(1/m2
j) and y j = 2(M′

j)
3 + O( 1

m1m4
j
) (so

that 〈α, y〉 = O(1/m3
1)) gives

M′′′
j = 2(M′

j)
3 + O

(
1

m3
1m2

j

)
.

We then use (8.4)

M′
j =

3r
πm j

(
1 + O

(
σ

m j

))

to obtain

M′′′
j =

54r3

π3m3
j

+ O

(
1

m3
1m2

j

)
.

11. Proof of lemma 8.5

Recall that

Λm,n =
2π2

27r2

3∑
j=1

μ2
j

and we set

R2 = m2 + mn + n2 =
1
2

3∑
j=1

m2
j ,

FR(m, n) =
R4

m2n2(m + n)2
=

1
m2

+
1
n2

+
1

(m + n)2
.

We want to show

Lemma 11.1. Assume that 1 � m � n. Then

Λ′
m,n(0) =

4
r

, Λ′′
m,n(0) = −8FR(m, n)

Λ(3)
m,n(σ) = 24 · r · FR(m, n) + O

(
1

m4

)
.
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11.1. The first derivative of Λm,n

Differentiating gives

Λ′
m,n(0) =

4π2

27r2

∑
j=1

μ j(0)μ′
j(0).

We have

∑
j=1

μ j(0)μ′
j(0) =

1
π

3∑
j=1

m j

(
2M′

j(0) − M′
i(0) − M′

k(0)
)

=
3r
π2

3∑
j=1

m j

(
2

m j
− 1

mi
− 1

mk

)

since μ j(0) = m j, and M′
j(0) = 3r/(πm j). Since

3∑
j=1

m j

(
2

m j
− 1

mi
− 1

mk

)
= 6 −

3∑
j=1

m j

(
1
mi

+
1

mk

)
,

and

−
3∑

j=1

m j

(
1
mi

+
1

mk

)
= −

3∑
j=1

m j

mi
−

3∑
j=1

m j

mk

= −
3∑

k=1

1
mk

(
m j + mi

)
=

3∑
k=1

1 = 3,

we obtain ∑
j=1

μ j(0)μ′
j(0) =

27r
π2

which gives

Λ′
m,n(0) =

4π2

27r2
· 27r
π2

=
4
r
.

11.2. The second derivative of Λm,n

Using Leibnitz’s rule gives

Λ′′
m,n =

4π2

27r2

3∑
j=1

μ jμ
′′
j + (μ′

j)
2.

We have

μ j(0) = m j, M′
j(0) =

3r
πm j

, M′′
j (0) = −18r2

π3

(
1

mim jmk
+

2
m3

j

)
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so that

μ′
j(0) =

1
π

(2M′
j(0) − M′

i(0) − M′
k(0)) =

3r
π2

(
2

m j
− 1

mi
− 1

mk

)

and

μ j(0)μ′′
j (0) = m j

1
π

(2M′′
j (0) − M′′

i (0) − M′′
k (0))

= −18r2

π4

(
2

(
1

mim j
+

2
m2

j

)
−
(

1
m jmk

+
2m j

m3
i

)

−
(

1
m jmi

+
2m j

m3
k

))

giving

3∑
j=1

μ j(0)μ′′
j (0) = −36r2

π4

3∑
j=1

(
2

m2
j

− m j

m3
i

− m j

m3
k

)
.

Likewise,

3∑
j=1

μ′
j(0)2 =

9r2

π4

3∑
j=1

(
2

m j
− 1

mi
− 1

mk

)2

.

A straightforward computation reveals that

3∑
j=1

(
2

m2
j
− m j

m3
i
− m j

m3
k

)
=

3R4

(m1m2m3)2
= 3FR(m, n)

and

3∑
j=1

(
2

m j
− 1

mi
− 1

mk

)2

=
6R4

(m1m2m3)2
= 6FR(m, n).

These give

4π2

27r2

3∑
j=1

μ j(0)μ′′
j (0) = −16

π2
FR(m, n),

4π2

27r2

3∑
j=1

μ′
j(0)2 =

8
π2

FR(m, n).

Altogether we find

Λ′′
m,n(0) = − 8

π2
FR(m, n).
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11.3. The third derivative

We have

Λ(3)
m,n =

2π2

27r2

3∑
j=1

2μ jμ
′′′
j + 6μ′

jμ
′′
j .

We use μ′
j � 1/m1, μ′′

j � 1/m3
1 to deduce that

Λ(3)
m,n =

4π2

27r2

3∑
j=1

μ jμ
′′′
j + O

(
1

m4
1

)
.

Now
3∑

j=1

μ jμ
′′′
j =

1
π

3∑
j=1

μ j(2M′′′
j − M′′′

i − M′′′
k ) =

1
π

3∑
j=1

M′′′
j (2μ j − μi − μk)

after reordering the sum. We use a simple lemma:

Lemma 11.2. If {i, j, k} = {1, 2, 3}, and b1 + b2 + b3 = 0, then

3∑
j=1

a j(2b j − bi − bk) = 3
3∑

j=1

a jb j.

Apply lemma 11.2 to a j = M′′′
j , bj = μ j, to obtain

3∑
j=1

μ jμ
′′′
j =

3
π

3∑
j=1

μ jM
′′′
j .

Using μ j = m j + O(1/mj) and (8.6) which states that

M′′′
j =

54r3

π3m3
j
+ O

(
1

m3
1m2

j

)

gives

μ jM
′′′
j =

54r3

π3m2
j

+ O

(
1

m3
1m j

)
=

54r3

π3m2
j

+ O

(
1

m4
1

)
.

We obtain
3∑

j=1

μ jμ
′′′
j =

3
π

3∑
j=1

54r3

π3m2
j

+ O

(
1

m4
1

)

and so

Λ(3)
m,n =

4π2

27r2

3∑
j=1

μ jμ
′′′
j + O

(
1

m4
1

)
=

4π2

27r2

3
π

3∑
j=1

54r3

π3m2
j
+ O

(
1

m4
1

)

=
24r
π2

3∑
j=1

1
m2

j

+ O

(
1

m4
1

)
= 24rFR(m, n) + O

(
1

m4
1

)
.

This concludes the proof of lemma 8.5. �
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12. Proof of proposition 7.2

Proof. We first assume that

m′ > 10m.

Then use

FR(m, n) =
1

m2
+

1
n2

+
1

(m + n)2
>

1
m2

,

FR(m′, n′) =
1

m′2 +
1

n′2 +
1

(m′ + n′)2
<

3
m′2 <

3
(10m)2

to obtain

FR(m, n) − FR(m′, n′) >
1

m2
− 3

(10m)2
	 1

m2

which is certainly sufficient.
Now assume that for δ > 0 very small (but fixed),

δR < m < m′ � 10m.

We will show that

FR(m, n) − FR(m′, n′) =
1

R2

(
f
(m

R

)
− f

(
m′

R

))

>
243
4

1
R4

+ O

(
1

R5

)
	 1

R4

and since m > δR, we obtain

FR(m, n) − FR(m′, n′) 	 δ4

m4
	 1

m4

as required.
Given R, and 1 � m < n, with m2 + mn + n2 = R2 we can express n in terms of m as

n =

√
R2 − 3

(m
2

)2
− m

2
.

Therefore we can write

FR(m, n) =
1

R2
f
(m

R

)
,

where

f (x) =
1
x2

+
1(√

1 − 3
(

x
2

)2 − x
2

)2 +
1(√

1 − 3
(

x
2

)2
+ x

2

)2

which simplifies to

f (x) =
1

x2(1 − x2)2
.
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The derivative of f is

f ′(t) = − 2(1 − 3t2)
t3(1 − t2)3

which is negative for 0 < t < 1/
√

3, so that f is decreasing in that range. Moreover, the second
derivative is

f ′′(t) =
6
(
7t4 − 4t2 + 1

)
t4
(
t2 − 1

)4 =
6
(
3t4 + (1 − 2t2)2

)
t4
(
t2 − 1

)4 > 0

which is positive, hence f ′(t) is increasing (and negative) and − f ′(t) is positive and decreasing.
Let x = m/R, x′ = m′/R. Then

FR(m, n) − FR(m′, n′) =
1

R2

(
f (x) − f (x′)

)
.

We separate two cases: m′ = n′, or m′ < n′.
If m′ = n′ then x′ = 1/

√
3 (since then R2 = 3(m′)2), and f ′(1/

√
3) = 0. We expand f (x)

around x′ = 1/
√

3 to first order with Lagrange remainder term

f (x) − f

(
1√
3

)
= f ′

(
1√
3

)(
x − 1√

3

)
+

f ′′(t)
2

(
x − 1√

3

)2

for some t ∈ (x, 1/
√

3) ⊂ [0, 1√
3
]. Hence using 1√

3
− x = m′−m

R � 1
R and a numerical finding

that min
[0,1/

√
3]

f ′′(t) = 119.167 . . . , we obtain

f (x) − f

(
1√
3

)
� 1

2

(
min

[0,1/
√

3]
f ′′(t)

)(
x − 1√

3

)2

>
59
R2

. (12.1)

If m′ < n′ then we use the mean value theorem, obtaining that for some x < t < x′ we have

FR(m, n) − FR(m′, n′) =
1

R2

(
f (x) − f

(
x′
))

=
1

R2
(x′ − x) · (− f ′(t)).

We want to give lower bounds for x′ − x and for − f ′(t).
We have x′ − x = (m′ − m)/R � 1/R. Moreover, we claim that

x′ � 1√
3
− 1

2R
.
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Indeed, since m′2 + m′n′ + (n′)2 = R2 with n′ > m′ so that by integrality n′ � m′ + 1, we have

4R2 = 3(m′)2 + (m′ + 2n′)2 � 3(m′)2 + (m′ + 2(m′ + 1))2

= 4(1 + 3m′ + 3(m′)2)

so that x′ = m′/R satisfies 3(x′)2 + 3
R x′ + 1

R2 � 1, giving

x′ � 1
6

(√
12 − 3

R2
− 3

R

)
<

1√
3
− 1

2R
.

Hence

− f ′(t) > − f ′(x′) > − f ′
(

1√
3
− 1

2R

)
=

243
4R

+ O

(
1

R2

)
.

Therefore

f (x) − f (x′) = (x′ − x) · (− f ′(t)) � 243
4

1
R2

+ O

(
1

R3

)
(12.2)

in this case.
Combining (12.1) and (12.2) gives that in both cases,

FR(m, n) − FR(m′, n′) =
1

R2

(
f
(m

R

)
− f

(
m′

R

))
>

59
R4

+ O

(
1

R5

)

as claimed.
Finally assume

m < m′ � 10m and m � δR,

so that in particular, m′ < 10δR: then

FR(m, n) − FR(m′, n′) =
1

R2
( f (x) − f (x′)) =

1
R2

(x′ − x) · (− f ′(t))

for some t ∈ (x, x′). Note that 0 < t < x′ < 10x < 10δ so that

− f ′(t) =
2(1 − 3t2)
t3(1 − t2)3

>
2(1 − (10δ)2)

t3
>

1
t3

for δ > 0 sufficiently small, so since tR < m′ < 10m we obtain

FR(m, n) − FR(m′, n′) =
m′ − m

R3
(− f ′(t)) >

m′ − m
t3R3

>
1

(10m)3

which is consistent with the assertion of proposition 7.2 in this case. �
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