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Review article 

Metabolic perturbations in fibrosis disease 
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A B S T R A C T   

Metabolic changes occur in all forms of disease but their impact on fibrosis is a relatively recent area of interest. 
This review provides an overview of the major metabolic pathways, glycolysis, amino acid metabolism and lipid 
metabolism, and highlights how they influence fibrosis at a cellular and tissue level, drawing on key discoveries 
in dermal, renal, pulmonary and hepatic fibrosis. The emerging influence of adipose tissue-derived cytokines is 
discussed and brings a link between fibrosis and systemic metabolism. To close, the concept of targeting 
metabolism for fibrotic therapy is reviewed, drawing on lessons from the more established field of cancer 
metabolism, with an emphasis on important considerations for clinical translation.   

1. Introduction 

The mechanisms involved in fibrosis are fundamentally similar to 
those in the normal wound healing response. There is an inflammatory 
response to tissue damage, which entails activation of local immune 
cells, followed by activation of local mesenchymal cells, namely fibro-
blasts, which deposit excessive and/or inappropriate extracellular ma-
trix (ECM) components and further increase production of pro- 
inflammatory cytokines, chemokines and angiogenic factors to perpet-
uate the process. Scarring occurs when these mechanisms are altered 
and/or exaggerated, with chronic fibrosis a result of persistently 
abnormal ECM turnover, favouring ECM production over ECM degra-
dation. Although other cell types make important contributions to 
fibrosis, fibroblasts are ultimately responsible for the excessive synthe-
sis, deposition and remodelling of ECM and much research has been 
dedicated to studying their aberrances in fibrotic disease including 

signalling (Kendall and Feghali-Bostwick, 2014), transcription, cyto-
skeletal and motility changes and cell-matrix interactions (Hinz and 
Gabbiani, 2003). There is now a growing appreciation that a supply of 
building blocks and energy carriers are required to fuel these activities, 
provided by core metabolic biosynthetic and bioenergetic pathways, 
and that pathological cells in fibrosis (fibroblasts, epithelial cells, im-
mune cells and others) undergo metabolic adaptations or reprogram-
ming to enable their proliferative and synthetic activities. Defining and 
characterising these adaptations may provide new opportunities for 
developing effective anti-fibrotic therapies. This review discusses the 
core metabolic processes in the context of fibrosis and the therapeutic 
advances made in this regard. 

2. Glycolysis and fibrosis 

Glycolysis is a major metabolic process that begins with the 
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intracellular transport of glucose and ends with the production of py-
ruvate and two molecules of ATP per molecule of glucose. Its flux is 
mediated by a series of cellular enzymes with the key rate limiting ones 
being hexokinase, phosphofructokinase and pyruvate kinase. The final 
product of glycolysis, pyruvate, is converted either to lactic acid or 
acetyl-CoA for utilisation in the tricarboxylic acid (TCA) cycle by 
mitochondria. Physiologically, conversion of pyruvate to lactic acid 
takes place in low oxygen tension conditions. However, we are 
increasingly aware of situations whereby this conversion occurs despite 
the presence of adequate oxygen (aerobic glycolysis). This is a phe-
nomenon known as the Warburg effect, classically described in cancer 
cells, where it is thought that the increase in glycolytic intermediates 
supply subsidiary pathways that support the activities of these 

proliferating cells (DeBerardinis and Chandel, 2020). However, not all 
cancer cells exhibit this effect and recently a “reverse Warburg” effect 
has been proposed whereby metabolites of aerobic glycolysis by stromal 
fibroblasts (rather than the cancer cells themselves) feed cancer cells and 
cause an upregulation of oxidative phosphorylation (Sotgia et al., 2011). 
In fibrosis, a similar reverse Warburg effect has been put forward 
whereby aerobic glycolysis takes place in the fibroblasts and the 
glycolytic metabolites influence the behaviour of other cell types such as 
epithelial cells and macrophages (or vice versa), contributing to path-
ogenesis (Maher, 2015). 

There is significant evidence that aerobic glycolysis takes place in a 
wide range of fibrotic conditions, including radiation-induced skin 
fibrosis (Zhao et al., 2019c), renal fibrosis (Yin et al., 2018), pulmonary 

Fig. 1. (A) A simplified schematic showing the 
major pro-fibrotic factors influencing glycolysis. 
HIF1α stabilisation results in overexpression of 
glucose transporters (GLUT) and glycolytic 
genes including hexokinase (HK), phosphofruc-
tokinase (PFK), phosphoglycerate kinase, 
enolase and pyruvate kinase (PK/PKM). It also 
inhibits conversion of pyruvate to acetyl-CoA by 
inducing PDK and upregulating lactate dehy-
drogenase (LDH) which catalyses conversion of 
pyruvate to lactate. The PI3K/AKT signalling 
pathway leads to upregulation of GLUT, HK and 
PFK whereas TGFβ1 induces expression of HK 
and fructose-2,6-biphosphatase 3 (PFK3B) 
which activates PFK. (B) Interplay between the 
major pro-fibrotic pathways centring on HIF1α 
stabilisation. In the presence of sufficient oxy-
gen, prolyl hydroxylases (PHD) hydroxylate 
HIF1α, triggering proteosomal degradation. In 
hypoxia, PHD is inhibited and the stabilised 
HIF1α enters the nucleus to create an active 
HIF1 complex, transcribing genes that amongst 
other functions, promote glycolysis. PI3K/AKT/ 
mTOR signalling is the major pathway pro-
moting HIF1α transcription and translation. The 
Wnt/β-catenin and TGFβ1/SMAD pathways 
cross-interact with the PI3K/AKT pathway and 
indirectly increase HIF1α transcription.   
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fibrosis (Xie et al., 2015) and cirrhosis (Lee et al., 2018). For example, 
renal myofibroblast activation can be induced by the overexpression of 
pyruvate kinase muscle isozyme M2, which increases aerobic glycolysis 
(Ding et al., 2017). On the other hand, suppressing glycolysis, whether 
by inhibition of glucose transporters (Zhao et al., 2019c) or inhibition of 
glycolytic enzymes (e.g. 6-phosphofructo-2-kinase (Xie et al., 2015), 
hexokinase (Zhao et al., 2019c), pyruvate kinase (Ding et al., 2017)), 
attenuated the pro-fibrotic phenotype both in vitro (e.g. myofibroblast 
differentiation (Xie et al., 2015) and fibroblast ECM production (Zhao 
et al., 2019c)), and in vivo (e.g. bleomycin-induced lung fibrosis (Xie 
et al., 2015) and unilateral ureteric obstruction-induced renal fibrosis 
(Ding et al., 2017)). This is consistent with the association of fibrosis 
with hyperglycaemia – patients with diabetes mellitus are afflicted by 
fibrosis in their end organs including kidneys, heart, liver and eyes (Ban 
and Twigg, 2008), and patients undergoing peritoneal dialysis are at risk 
of peritoneal fibrosis as a result of chronic high glucose dialysate 
(Chagnac et al., 1999). 

Mechanistically, HIF-1α appears to be a central regulator (Fig. 1). Its 
stabilisation increases glycolysis by causing overexpression of glucose 
transporters (enabling increased glucose uptake) and activation of 
glycolytic enzymes such as Glut, HK2, PKM2, LDHA, and PDK1 
(enabling increased glycolytic flux) (Semenza, 2010). Stabilisation of 
HIF-1α also inhibits the mitochondrial TCA cycle by increasing LDHA 
expression (promotes lactate production) and inhibiting pyruvate de-
hydrogenase (upregulates PDK1 which decreases conversion of pyruvate 
into acetyl-CoA) (Fig. 1a) (Semenza, 2010). In normoxia, HIF-1α levels 
are regulated through hydroxylation-triggered proteosomal degradation 
(Iommarini et al., 2017). Independently of oxygen availability, path-
ways identified in the stabilisation of HIF-1α, whether by inhibition of 
degradation, nuclear translocation or transcriptional activity, are 
numerous (Iommarini et al., 2017). The PI3K/AKT/mTOR pathway is a 
major pathway implicated in increasing HIF1α transcription and of 
particular relevance to fibrosis is its bilateral reinforcement of key 
pro-fibrotic pathways, including TGFβ1 and WNT/β-catenin (Vallée 
et al., 2017) (Fig. 1b). TGFβ1 can also directly induce the glycolytic 
enzyme PFKFB3 to increase phosphofructokinase-1-mediated stimula-
tion of glycolysis (Xie et al., 2015). PFKFB3 expression has been shown 
to specifically correlate with the expression of α-smooth muscle actin 
(SMA), a marker of myofibroblast differentiation (Xie et al., 2015). 
However, despite the evidence implicating HIF-1α in fibrogenesis, the 
new HIF stabilisers that have been introduced to treat renal anaemia 
appear not to cause fibrosis (Kabei et al., 2020). 

In addition to its contribution to pro-fibrotic pathways, glycolysis 
supplies amino acids for collagen synthesis. Collagen is the main struc-
tural protein found in the ECM of fibrotic tissue and the predominant 
amino acid constituents of collagen are glycine, proline and lysine. The 
collagen precursor undergoes hydroxylation, disulphide bonding and 
glycosylation to form the functional triple-helix collagen molecule. 
Following secretion into the extracellular space, peptidases cleave the 
amino- and carboxyl-terminals to produce insoluble collagen, which 
crosslinks to form microfibrils that combine to form a collagen fibre 
(Gelse et al., 2003). The glycolytic intermediate 3-phosphoglyceric acid 
is a precursor to serine which is converted to glycine, an amino acid 
whose presence is critical for stabilisation of the collagen helix (Nigde-
lioglu et al., 2016). The end-product of glycolysis, lactic acid, serves to 
increase collagen stability by increasing the activity of proline hydrox-
ylase, which enhances collagen hydroxylation. 

3. Amino acid metabolism and fibrosis 

Amino acids are a major constituent of the cellular biomass and are 
involved in multiple metabolic pathways essential for cell survival. They 
are sources of energy, precursors for biosynthetic processes and main-
tain tissue homeostasis, amongst other roles (Lieu et al., 2020). Studies 
linking amino acid metabolism and fibrosis have mainly been on lung 
fibrosis although focus has also been directed at liver fibrosis and 

systemic sclerosis. Most evidence implicating altered amino acid meta-
bolism in fibrosis is related to glutamine. This non-essential amino acid 
is the most abundant circulating free amino acid and is a precursor to 
numerous cellular processes, both as a carbon and nitrogen donor for 
macromolecular synthesis, and as an orchestrator of cellular signalling. 
Glutaminolysis is the process by which glutamine is converted first into 
glutamate by the activity of glutaminase, then into α-ketoglutarate by 
two divergent pathways, namely glutamine dehydrogenase and a group 
of transaminases including glutamate-oxaloacetate transaminase, 
glutamate-pyruvate transaminase and phosphoserine transaminase. At 
times of limited pyruvate availability such as during aerobic glycolysis, 
the TCA cycle is maintained by a process known as anaplerosis, meta-
bolic reactions that replenish the required intermediates. α-ketogluta-
rate is the main anaplerotic substrate, although other metabolites 
formed from glutaminolysis such as oxaloacetate and citrate can also 
serve this purpose. Glutamine anaplerosis in the TCA cycle can provide 
precursors for the generation of other non-essential amino acids, lipids 
and nucleotides. Furthermore, by-products of glutaminolysis such as 
succinate can stabilise HIF-1α (Xie et al., 2015), which in turn augments 
glycolysis. 

Metabolic profiling studies on patients with various fibrotic condi-
tions including systemic sclerosis, pulmonary fibrosis and liver fibrosis 
have indicated alterations in glutamine-glutamate metabolism (Hase-
gawa et al., 2020; Kang et al., 2016; Murgia et al., 2018) and in vitro 
studies have supported this, implicating pathway enzymes such as 
glutamate dehydrogenase (Li et al., 2017) and glutaminase (Ge et al., 
2018; Henderson et al., 2020; Li et al., 2017), amongst others. Gluta-
minase levels were found to be raised in TGFβ1-stimulated mouse lung 
fibroblasts and fibroblasts from patients with idiopathic pulmonary 
fibrosis (IPF). TGFβ1 was shown to stimulate glutaminolysis and induce 
metabolic reprogramming favouring lung myofibroblast differentiation, 
while lung fibroblasts grown in the absence of glutamine showed an 
attenuated response to TGFβ1 (Bernard et al., 2018). Further mecha-
nistic studies showed that the expression of collagen in TGFβ1-induced 
lung myofibroblasts was reliant on glutaminolysis as glutaminase 
blockade (using specific glutaminase inhibitors CB-839 and BPTES as 
well as using glutaminase gene knockdown) was shown to decrease the 
expression of type I and III collagens, whereas glutaminase over-
expression had the opposite effect (Ge et al., 2018; Hamanaka et al., 
2019). Mechanistically, Ge et al. (2018) reported the importance of 
α-ketoglutarate (the mitochondrial end product of 
glutaminolysis)-dependent mTOR signalling in promoting collagen 
(proline) hydroxylation whereas Hamanaka et al. (2019) focused on the 
need for the cytoplasmic glutamate-consuming enzymes phosphoserine 
aminotransferase 1 and aldehyde-dehydrogenase 18A1 in producing 
glycine and proline, respectively. 

As the main constituents of collagen, it is of no surprise that both 
proline and glycine are independently gaining interest, particularly in 
the fields of pulmonary (Gaugg et al., 2019; Kang et al., 2016) and liver 
(Hasegawa et al., 2020; Sanchez-Antolín et al., 2015) fibrosis, respec-
tively. Not only serving collagen biosynthetic roles, proline in particular 
has been found to be a HIF-1α stabiliser in skin fibroblasts although this 
effect is blunted in the presence of glutamine (Szoka et al., 2017). As 
larger and more detailed exploratory studies are performed, it is likely 
that more interconnections between pathways will be discovered. 

4. Lipid metabolism and fibrosis 

It is important to consider that metabolically dysfunctional adipose 
tissue in obesity is characterised by fibrosis (Sun et al., 2013). Here, 
chronic positive energy balance promotes adipose tissue hypertrophy 
and hyperplasia, accumulation of immune cells and neovascularisation, 
leading to pathological ECM remodelling, largely by pre-adipocytes 
(Sun et al., 2013). There is also a growing appreciation that the adi-
pose tissue ECM can feedback to resident cells, modulating, for example, 
adipocyte metabolism including response to insulin and lipolysis (Baker 
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et al., 2017). 
Fatty acid (beta) oxidation is the catabolic process where fatty acids 

are broken down to generate ATP. Free fatty acids are first activated in 
the cytosol to form acyl-CoA by conjugation with coenzyme A, then 
converted to acylcarnitine for transport across the mitochondrial 
membrane and conversion back to acyl-CoA for beta oxidation to take 
place. A repeated sequence of four enzymes is involved in beta oxidation 
resulting in the release of an acetyl-CoA unit that enters the TCA cycle 
(Houten and Wanders, 2010). Due to its energy efficiency, it is not 
surprising that fatty acid oxidation is an important source of energy for 
cellular functions. Impaired fatty acid oxidation is associated with renal 
fibrosis (Kang et al., 2015), pulmonary fibrosis (Zhang et al., 2020) and 
radiation-induced skin fibrosis (Zhao et al., 2019b) and differences in 
the lipid composition of fibrotic keloid skin have also been reported 
(Louw and Dannhauser, 2000), although the pathophysiological signif-
icance of this is not clear. 

The PPAR signalling pathway is a major regulator of fatty acid 
oxidation. PPARs are a family of transcription factors that exist as three 
main isoforms (α, δ and γ). They have variable tissue expression and 
divergent roles in lipid metabolism. PPARα is an activator of mito-
chondrial and peroxisomal fatty acid beta oxidation in the liver, PPARδ 
is a regulator of fatty acid oxidation in muscle and PPARγ is an activator 
of fatty acid synthesis and storage, most abundantly expressed in adi-
pose tissue (Varga et al., 2011). Another main regulator of fatty acid 
oxidation is the transcriptional coactivator PGC-1α which binds to and 
increases the activity of PPARs but also directly modulates the activity of 
transcription factors that can increase the expression of proteins 
involved not only in fatty acid beta-oxidation but also the TCA and the 
electron transport chain. PGC-1α in turn is regulated by AMPK, which 
senses cellular energy status, becoming activated when the AMP/ATP 
ratio is high and triggers a wide range of catabolic pathways to restore 
ATP (Hardie, 2011). 

There may be several means by which lipid metabolism influences 
fibrogenesis and generally, it appears that fibrogenesis is associated with 
an increase in fatty acid synthesis and a decrease in fatty acid oxidation 
(Fig. 2). As exemplified in diabetes-induced renal fibrosis, levels of key 
enzymes in fatty acid synthesis pathways (induced by the transcription 

factors SREBP1c and CHREBP) are increased and this corresponds with a 
decrease in fatty acid oxidation (Proctor et al., 2006). The increase in 
fatty acid synthesis was shown to raise levels of TGFβ1 and decrease 
ECM degradation via the serine protease inhibitor, PAI1, which regu-
lates the activity of MMPs that mediate extracellular collagen degrada-
tion. Consistent with this, most fibrotic tissues have been shown to have 
downregulated PPAR signalling (generally indicating downregulated 
fatty acid oxidation) in response to TGFβ1 (Lakshmi et al., 2017; Qian 
et al., 2012; Wei et al., 2010; Zheng et al., 2002). A further link between 
fatty acid oxidation and ECM regulation was provided when in a recent 
study, CD36, a PPAR signalling-responsive fatty acid transporter which 
mediates type I collagen internalisation and degradation, was found to 
be reduced in both human and murine skin fibrosis (Zhao et al., 2019b). 
This phenotype was rescued by enhancing PPAR signalling using caffeic 
acid and its bioactive derivative, thereby restoring fatty acid oxidation. 
Upstream of PPAR signalling, it is interesting to note that PGC-1α defi-
ciency leads to mitochondrial degradation, inflammation, and renal 
fibrosis (Fontecha-Barriuso et al., 2019). In pulmonary fibrosis, levels of 
the master cellular metabolism regulator, AMPK, are decreased. As well 
as promoting fatty acid oxidation, AMPK normally inhibits fatty acid 
synthesis via ACC1 phosphorylation and SREBP1c. In their study, Ran-
garajan et al. (2018) demonstrated a reversal of fibrosis in a bleomycin 
lung fibrosis model by activation of AMPK using metformin. 

The cholesterol biosynthesis pathway, also known as the mevalonate 
pathway, deserves specific mention. Its intermediates, the isoprenoids 
farnesyl pyrophosphate and geranylgeranyl pyrophosphate, are 
involved in post-translational modifications of proteins known as pro-
tein prenylation (Hooff et al., 2010). The function of small monomeric 
GTPases such as Rho and Ras, signal transducers that mediate various 
profibrotic sequelae, require prenylation to function, whether by 
increasing protein hydrophobicity for associating with cell membranes 
or by stabilising protein-protein interactions (Distefano et al., 2006). 
Notable downstream pathways are the CTGF/CCN2/TGFβ1 and the 
Hippo signalling pathways. RhoA isoprenylation was required for the 
CTGF/CCN2 induction by TGFβ1 in human lung fibroblasts (Watts and 
Spiteri, 2004) as well as the activation of YAP/TAZ (Santos et al., 2020; 
Sorrentino et al., 2014), transcriptional co-activators of the Hippo 

Fig. 2. Some key factors influencing fatty acid meta-
bolism and links to fibrogenesis. Upon sensing energy 
shortage, AMPK causes activation of transcription fac-
tors including PPAR and its transcriptional coactivator 
PGC1α, whilst inhibiting the transcription factors 
SREBP1c and ChREBP. This results in a switch from 
fatty acid synthesis to fatty acid oxidation, which is 
associated with ECM degradation. In hyper-
insulinaemic states with surplus glucose, SREBP1c and 
ChREBP are induced, in turn promoting fatty acid 
synthesis and this has been shown to be associated with 
increased TGFβ1 expression and decreased ECM 
degradation.   
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signalling pathway which are induced in hepatic (Mannaerts et al., 
2015) and pulmonary fibrosis (Liu et al., 2015). Consistent with these 
observations, using statins as a proxy for inhibiting isoprenoid synthesis 
had promising anti-fibrotic results (Santos et al., 2020; Watts and 
Spiteri, 2004). 

Lipids have also been implicated in fibrosis in the context of 
inflammation. Specifically, anti-inflammatory lipid mediators (lipoxins, 
resolvins, protectins) can attenuate experimental fibrosis (Serhan et al., 
2015); secondary messenger diacylglycerol (binding to protein kinase C) 
promotes fibroblast proliferation (Weigel et al., 2016); and lipid rafts (e. 
g. caveolae) influence relevant signalling pathways, including β1 
integrin-mediated mechanotransduction (Radel et al., 2007). 

5. Mitochondrial dysfunction and fibrosis 

Beyond their role in bioenergetic pathways (namely the TCA cycle 
and oxidative phosphorylation), mitochondria contribute to numerous 
cellular processes including biosynthetic pathways, cellular signalling, 
anti-oxidant defence and apoptosis (Herst et al., 2017). Through these 
processes, evidence is increasing for the interplay between mitochon-
drial dysfunction and fibrogenesis and approaches to restore mito-
chondrial quality have been shown to reverse fibrosis (Li et al., 2020; 
Rangarajan et al., 2017). 

A key link between mitochondrial dysfunction and fibrosis is 
oxidative injury, manifesting as increased reactive oxygen species (ROS) 
and mitochondrial DNA (mtDNA) release. A byproduct of oxygen 
metabolism, ROS can directly regulate ECM production and degradation 
(Siwik and Colucci, 2004), is required for TGFβ1-induced myofibroblast 
differentiation (Hecker et al., 2009), and can induce NLRP3 inflamma-
some activation, which in turn can set off signalling cascades that pro-
mote fibrosis (e.g. interleukin-1β secretion that enhances production of 
PDGF) (Stout-Delgado et al., 2016). On the other hand, mtDNA release 
can serve as a Damage-Associated Molecular Pattern, which when bound 
to toll-like receptor 9, can lead to TGFβ1 production, release, and acti-
vation (Fang et al., 2016). Consistent with this is the finding that IPF 
fibroblasts produce more mtDNA and normal fibroblasts have increased 
mtDNA production when stimulated with TGFβ1 (Ryu et al., 2017). Of 
interest, the increased mtDNA production by the TGFβ1-treated fibro-
blasts in this study were accompanied by enhanced glycolysis. 

Mitochondrial stress is also accompanied by the mitochondrial 
unfolded protein response (mitoUPR), which induces transcription of 
genes that promote mitochondrial recovery. However, persistent 
mitoUPR activation can lead to irreversible mitochondrial dysfunction 
and upregulation of mitoUPR markers has been observed in lung fibrosis 
(Cuevas-Mora et al., 2021; Jiang et al., 2020). It is important to refer to 
the growing body of research suggesting cross-talk between mitochon-
dria and the mevalonate pathway – a key finding is that mitoUPR sig-
nalling upregulates the mevalonate pathway and sustains protein 
prenylation, which is antagonized by statins (Oks et al., 2018; Rauthan 
et al., 2013). In the context of these studies, it is thought that protein 
prenylation confers cellular protection and its inhibition underlies some 
of the non-cholesterol (adverse) effects of statins such as muscle pain. 
However, one is reminded that these non-cholesterol effects also include 
inhibition of fibrosis, as discussed above (Santos et al., 2020; Watts and 
Spiteri, 2004). 

6. Adipokines and fibrosis 

Adipose tissue is now recognized as an endocrine organ that regu-
lates glucose and lipid metabolic homeostasis, and numerous adipose 
tissue-derived secretory products (adipokines) have been identified as 
important mediators (Stern et al., 2016). Shortly after the discovery of 
leptin as the product of the mouse obese gene in 1994, adiponectin was 
identified as an adipokine whose secretion was enhanced by insulin, 
spurring larger scale profiling efforts to identify hundreds of novel 
adipokines for further study (Lehr et al., 2012). Of the numerous 

adipokines, adiponectin is probably the most frequently studied for its 
effects on expanding healthy adipose tissue. It has been shown to be a 
potent insulin sensitiser and it regulates the expression of key glycolysis 
genes (Liu et al., 2012). It activates AMPK, an important regulator of 
energy balance, which amongst its other functions, induces PPARα 
transcription to stimulate fatty acid oxidation. Of relevance to this re-
view is the recent finding that adiponectin has an antifibrogenic effect 
on fibroblasts. Human skin biopsies of patients with systemic sclerosis 
show decreased phosphorylated AMPK (reflecting adiponectin activity) 
and augmentation of adiponectin signalling mitigated skin fibrosis in 
mice (Marangoni et al., 2017). A similar result was demonstrated in 
keloid disease where reduced adiponectin expression was noted and in 
vitro treatment of keloid fibroblasts with adiponectin suppressed 
CTGF/CCN2-induced proliferation, migration and ECM production (Luo 
et al., 2017). A few other adipokines have been indicated to have anti-
fibrotic potential – visfatin is a proinflammatory adipokine that has been 
associated with obesity and myocardial fibrosis, but in late stage diffuse 
cutaneous systemic sclerosis, increased visfatin levels in serum was 
accompanied by regression of fibrotic skin lesions (Żółkiewicz et al., 
2019). Apelin is a novel adipokine that has recently been shown to 
alleviate renal, myocardial and lung fibrosis (Huang et al., 2016) as well 
as TGFβ1-induced skin fibrosis (Yokoyama et al., 2018). CTRP3 is 
another lesser known adipokine with a molecular structure and function 
resembling adiponectin which exerted antifibrotic activity by targeting 
CTGF/CCN2, TGFβ1 and type I collagen production in colonic fibro-
blasts (Hofmann et al., 2011). Adipolin is a recently identified 
insulin-sensitising adipokine that was shown to be protective against 
pathological vascular remodelling by reducing PDGF-BB stimulated 
proliferation of vascular smooth muscle cells (Ogawa et al., 2019). 

7. Targeting metabolic pathways for fibrosis therapy 

Elucidating metabolic perturbations in fibrosis has highlighted some 
promising targets for fibrosis therapy. This development is discussed in 
detail by Zhao et al. (2019a). Most of the attempts to address specific 
metabolic alterations to treat fibrosis have been limited to the preclin-
ical stages and it is important to consider what makes a good metabolic 
target in human disease. There are lessons to be learnt from the more 
established field of cancer metabolism therapy, particularly whether 
manipulation of metabolic pathways can be tolerated by normal tissues. 
Antimetabolites such as antifolates (methotrexate, pemetrexed), purine 
analogues (6-mercaptopurine, 6-thioguanine) and pyrimidine analogues 
(5-fluorouracil) are successful chemotherapeutics but are accompanied 
by prominent toxic side-effects on normal rapidly proliferating cells (e.g. 
bone marrow, intestinal crypts and hair follicles). 

The glycolysis pathway has been targeted at several points in anti- 
fibrotic studies. The expression of GLUT1 correlates with increased 
glycolysis and its inhibition has shown anti-fibrotic effects on lung fi-
broblasts (Cho et al., 2017) and cardiac myoblasts (Ying et al., 2018). 
2-DG is a compound which competitively inhibits HK and slows 
glycolysis. Ding et al. (2017) showed that treating renal fibroblasts with 
2-DG decreased TGFβ1-associated fibrosis markers (fibronectin and 
α-SMA) whilst increasing environmental pH with reduced lactate accu-
mulation. This process was tested in a mouse model of renal fibrosis 
(using unilateral ureteric obstruction) and showed therapeutic efficacy, 
as did shikonin, an alternative rate-limiting inhibitor of glycolysis that 
targets PKM2 (Ding et al., 2017). Similarly, in lung myofibroblasts, 2-DG 
treatment was associated with antifibrotic changes to cell phenotype 
(differentiation, contraction, collagen deposition) (Xie et al., 2015). 

The approach of targeting glycolysis therapeutically has long been 
studied in cancer (Pelicano et al., 2006); however, its use in patients was 
limited by unacceptable systemic hypoglycaemia when doses sufficient 
to limit glucose metabolism in cancer cells were used. Although lower 
doses were better tolerated by patients, efficacy was limited and the 
question of whether there exists a sufficient therapeutic window to 
inhibit glycolysis enzymes remains to be determined (Dwarakanath 
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et al., 2009; Landau et al., 1958). It is worth noting the challenges faced 
when targeting glucose metabolism in the cancer therapeutics field and 
pre-empt the alternative approaches being considered for use in fibrotic 
conditions. One such approach is isoform-selective targeting of glyco-
lytic enzymes. Some cancers are specifically dependent on the HK2 
isoform of HK, an isoform that is normally expressed in skeletal and 
adipose tissue, rather than being constitutively expressed. This speci-
ficity provided a rationale for development of selective HK2 inhibitors as 
viable anticancer agents (Garcia et al., 2018). Whether cells involved in 
fibrosis exhibit metabolic enzyme isoform-selective dependency is a 
question worth pursuing. Another finding in cancer glucose metabolism 
is that partial and transient reduction of glycolysis rather than 
completely blocking it (e.g. using 3PO rather than 2-DG), is sufficient to 
impair pathologic angiogenesis (Schoors et al., 2014), offering an 
alternative approach to address the issue of toxicity. 

In general, fatty acid oxidation is thought to be impaired in fibrosis 
(Zhang et al., 2020) and several therapeutic discoveries have supported 
this. The synthetic compound C75, which inhibits FASN and increases 
fatty acid oxidation (via the rate limiting enzyme Cpt1), was found to 
attenuate both renal and lung fibrosis (Jung et al., 2018; Kang et al., 
2015). Zhao et al. (2019c) provided evidence that PPAR activation 
(using caffeic acid) functionally enhanced fatty acid oxidation and 
suppressed glycolysis, whilst downregulating ECM components fibro-
nectin and type 1 collagen. Again, there are lessons from cancer thera-
peutics but also important differences. Whilst increased fatty acid 
synthesis is common to both cancer and fibrosis, fatty acid oxidation is 
seen to promote cancer cell survival (Harjes et al., 2016). In this field, 
efforts are being made for pharmacological blockade of fatty acid 
oxidation. For example, Cpt1 inhibitors show tumour inhibitory effects 
(Melone et al., 2018) and are suggested as potential druggable agents 
(Schlaepfer et al., 2014). However, they are associated with increased 
fibrosis markers in mice (Kang et al., 2015) and it is interesting to note 
that a clinical trial using the Cpt1 inhibitor etomoxir in patients with 
heart failure was stopped due to hepatotoxicity (Holubarsch et al., 
2007). 

PPARγ agonists have long attracted attention as regulators of 
adipocyte differentiation (promote fibroblast conversion to adipocytes) 
(Tontonoz et al., 1994) that increase insulin sensitivity in patients with 
diabetes mellitus. Beyond their antidiabetic effects, PPARγ agonists have 
been found to have antifibrotic actions on various models of fibrosis 
including the lung (Burgess et al., 2005), cornea (Jeon et al., 2017), and 
skin (Wu et al., 2009), with mechanistic studies showing that their ac-
tion is by antagonizing TGFβ-induced responses through both 
PPARγ-dependent and PPARγ-independent pathways (Dantas et al., 
2015; Jeon et al., 2014; Kuriyan et al., 2012). In considering the 
PPARγ-independent effects, it is noteworthy that several PPARγ ligands 
can inhibit mitochondrial pyruvate carrier activity (Divakaruni et al., 
2013), and in so doing potentially attenuate fibrosis (McCommis et al., 
2017). Using IPF fibroblasts, Oruqaj et al. (2015) found that PPARα 
activators (ciprofibrate or WY14643) also reduced TGFβ-induced myo-
fibroblast differentiation and collagen production and hypothesised that 
this occurred through increased peroxisomal biogenesis. Previous 
studies had provided evidence that peroxisomes are important in 
diminishing ROS production and inflammatory reactions, and a 
well-known peroxisomal disorder with absent or reduced peroxisomes, 
Zellweger syndrome, manifests with hepatic fibrosis (Oruqaj et al., 
2015). 

It is exciting that a number PPAR agonists have reached clinical trials 
as potential anti-fibrotic agents, namely in treating non-alcoholic stea-
tohepatitis, including lanifibranor, a pan-PPAR agonist (NCT03008070, 
NCT03459079), elanfibranor, a dual PPARα/δ agonist for non-alcoholic 
steatohepatitis (NCT02704403) and obeticholic acid, a nuclear receptor 
that transcriptionally increases PPARα and PPARδ (NCT02548351). It is 
important to note however, that lanifibranor was first developed to treat 
systemic sclerosis but the Phase 2b trial showed that its primary efficacy 
end point to alleviate skin fibrosis was not met (Denton et al., 2020). An 

important caveat in drugs targeting the PPAR signalling pathway is that 
there are complex interactions between the different isoforms that 
remain incompletely understood. 

Another noteworthy metabolic target is the signalling protein mTOR. 
A serine/threonine protein kinase in the PI3K-related kinase family, 
mTOR is an orchestrator of metabolic reprogramming and influences 
glucose metabolism, lipid metabolism and glutamine metabolism 
through the induction HIF1α (glycolytic shift), SREBP (fatty acid syn-
thesis) and glutaminase (glutaminolysis), respectively (Mossmann et al., 
2018; Saxton and Sabatini, 2017). Rapamycin/sirolimus, an allosteric 
inhibitor of mTOR, has shown promise in inhibiting fibrosis in lar-
yngotracheal stenosis (Namba et al., 2015), renal fibrosis (Chen et al., 
2012) and cardiac fibrosis (Yu et al., 2013). This is postulated to be a 
result of reduced fibroblast proliferation and synthesis, attenuated 
epithelial-mesenchymal transition and suppression of 
inflammation-induced fibroblast stimulation (Hillel and Gelbard, 2015). 
One of the newer classes of antidiabetics, the sodium-glucose cotrans-
porter 2 inhibitors, also act to inhibit mTOR and have recently been 
shown to reduce renal fibrosis (Kogot-Levin et al., 2020). However, it is 
necessary to be aware that a different allosteric inhibitor of mTOR, 
everolimus, used in the management of several cancers, is associated 
with the development of pulmonary fibrosis, possibly through the in-
duction of the profibrotic protein CTGF/CCN2 (Eren et al., 2020; Leask, 
2019). 

Finally, it is important to consider the role epigenetic mechanisms 
play. DNA hypomethylation is already well known to associate with 
fibrogenic gene activation (Moran-Salvador and Mann, 2017). Barce-
na-Varela et al. (2020) recently provided evidence linking epigenetic 
effectors, fibrogenic activation and metabolic reprogramming. Using 
novel dual small molecule inhibitors against the H3K9 methyltransfer-
ase G9a and DNA-methyltransferase, they showed that pro-fibrogenic 
responses to TGFβ1 and hypoxia were dependent on epigenetic fac-
tors. Of particular interest, TGFβ1-induced glycolysis and lactate pro-
duction were attenuated whereas the metabolic regulator, PGC-1α, 
reversed by TGβ1, was reactivated (Barcena-Varela et al., 2020). As 
described earlier, PGC-1α is a transcriptional coactivator that increases 
fatty acid oxidation, amongst other metabolic activities. 

8. Summary and future perspectives 

Although there is promise for clinical translation, efficacy and 
tolerability of emerging therapies are variable and reasons for discrep-
ancies in relative effectiveness within drug classes are poorly under-
stood. Furthermore, there exist incompletely understood mechanisms 
acting indirectly on metabolism to influence fibrosis. For example, 
glucagon-like peptide 1 agonists, which are another class of newer 
antidiabetic agents, are increasingly investigated for their anti-fibrotic 
effects (Warren et al., 2019; Zhang et al., 2015). As insulin sensitisers, 
it would have been reasonable to postulate that their effects involved the 
activation of glycolysis, although Almutairi et al. (2021) showed that 
this was not the case. 

Although the effects of metabolic dysregulation on fibroblasts have 
been the focus of this review, using therapeutic agents to alter meta-
bolism would affect all cell types in the body. Within the fibroblast 
population, there is substantial diversity within tissues, as well as be-
tween organ systems and tissue states (Philippeos et al., 2018; Shaw and 
Rognoni, 2020). Their respective phenotypes are an area of intense 
research and dissecting the metabolic profiles of these subpopulations is 
anticipated to be instructive. Inflammation is another major factor 
driving fibrosis and its association with metabolism was only briefly 
touched on in this review. Immunometabolism is a field with growing 
momentum, and it is likely new discoveries here will have relevance to 
fibrosis. Cells outside of the traditional wound healing repertoire are 
also coming into light. Shook et al. (2020) reported that adipocytes can 
alter their identity and become wound bed myofibroblasts. Interest-
ingly, they found that adipocyte lipolysis regulates inflammatory 
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macrophage infiltration and thereby contributes to the wound healing 
response. It would be interesting to know whether the metabolism of 
adipocytes in the vicinity of scars/fibrosis is relevant. 

To conclude, metabolic dysregulation is not merely a consequence of 
fibrotic tissue changes but makes significant functional contributions to 
disease processes, which justifies antifibrotic drug development or 
repurposing focusing on the manipulation of metabolic targets. 
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