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Where Shall I Touch? Vision-Guided Tactile Poking for Transparent
Object Grasping

Jiaqi Jiang1,2, Guanqun Cao1, Aaron Butterworth1, Thanh-Toan Do3 and Shan Luo1,2

Abstract—Picking up transparent objects is still a challenging
task for robots. The visual properties of transparent objects
such as reflection and refraction make the current grasping
methods that rely on camera sensing fail to detect and localise
them. However, humans can handle the transparent object well
by first observing its coarse profile and then poking an area
of interest to get a fine profile for grasping. Inspired by this,
we propose a novel framework of vision-guided tactile poking
for transparent objects grasping. In the proposed framework,
a segmentation network is first used to predict the horizontal
upper regions named as poking regions, where the robot can
poke the object to obtain a good tactile reading while leading
to minimal disturbance to the object’s state. A poke is then
performed with a high-resolution GelSight tactile sensor. Given
the local profiles improved with the tactile reading, a heuristic
grasp is planned for grasping the transparent object. To miti-
gate the limitations of real-world data collection and labelling
for transparent objects, a large-scale realistic synthetic dataset
was constructed. Extensive experiments demonstrate that our
proposed segmentation network can predict the potential poking
region with a high mean Average Precision (mAP) of 0.360, and
the vision-guided tactile poking can enhance the grasping success
rate significantly from 38.9% to 85.2%. Thanks to its simplicity,
our proposed approach could also be adopted by other force or
tactile sensors and could be used for grasping of other challenging
objects. All the materials used in this paper are available at
https://sites.google.com/view/tactilepoking.

Index Terms—Transparent objects, tactile sensing, visual per-
ception, multi-modal sensing, object segmentation, robot grasping
and manipulation.

I. INTRODUCTION

TRANSPARENT objects are widely used in our daily life,
e.g., glass cups, plastic bottles and glass pan lids in a

kitchen. They are also common in research laboratories [1],
[2], e.g., vials, glass flasks and Petri dishes. Many of these
objects are fragile and easy to break, therefore need to be
handled with extra attention. To have robots work in such
environments, it is essential for robots to have safe interaction
with transparent objects. Without this capability, transparent
objects may be broken or have their contents spilled. Broken
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Fig. 1: An illustration of vision-guided tactile poking for transparent object grasping as
we do in our daily lives. As shown in the figure on the left, a glass cup on the table
is hard to detect due to its transparency, which brings difficulties to grasping the cup.
Before we grasp the cup, we first have a glance at the cup and predict potential areas
for contact. We then move our hands following the vision guidance to poke the cup, as
shown on the left. The contact with the cup will give us an accurate localisation of the
cup, which facilitates a stable grasp of the cup, as shown on the right.

glass or spilled liquid will pose hazards to the robot and people
that share its space.

However, it is still challenging for a robot to detect and
grasp transparent objects [3], [4]. Most objects in previous
object detection and grasping research have been opaque and
the perception of transparent objects remains a challenging
problem. Compared to opaque objects, transparent objects lack
salient features in their surfaces such as colour and texture
features. Moreover, their transparent materials violate the
Lambertian assumption that optical 3D sensors (e.g., LiDAR
and RGB-D cameras) are based on: the opaque objects reflect
light evenly in all directions, resulting in a uniform surface
brightness from all viewing angles, however, the surfaces
of transparent objects both reflect and refract light. Hence,
most of the depth data of transparent objects from depth
sensors is invalid or contains unpredictable noise. Due to these
challenges, most of the current grasping methods that rely on
accurate depth information from cameras cannot be directly
applied to the grasping of transparent objects.

Humans grasp objects with rich sensory information [5],
[6], such as the visual information obtained from eyes and the
tactile feeling via physical interaction. It is common that vision
with a wide field of view is used first for fast localisation of ob-
jects, then touch providing accurate perception of compliance
and contact force is used to align hand posture or grip strength
to enable a stable grasp [7]. Research on the coordination of
human visual and tactual input [8], [9] has shown that we use
vision to anticipate an object’s physical characteristics prior to
contact, preparing the hand for grasping, whereas touch takes
over control after the object is in the hand, in particular while
interacting with transparent objects [10] as shown in Fig. 1.

https://sites.google.com/view/tactilepoking
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Inspired by those observations, we propose a novel vision-
guided tactile poking approach for grasping transparent objects
in this paper. Different from most prior studies [3], [4] using
only RGB-D images to address these challenges of transparent
objects, our method integrates visual and tactile sensing so that
they aid each other and improve the grasping performance.
We first train a deep neural network named PokePreNet with
synthetic RGB images to predict the poking regions that are
with similar surface normals to the table surface. The contacts
with those areas contribute to good tactile readings while
leading to minimal disturbance to the state of the object. A
robotic arm equipped with a tactile sensor is then guided
to contact those regions, so as to generate informative local
profiles of the contacted transparent objects. Finally, using the
improved profiles, a heuristic grasp proposal is generated for
grasping the transparent object.

To evaluate the performance of our PokePreNet, we con-
struct a high-quality synthetic dataset as well as a real-
world test benchmark with over 9,000 RGB images and their
corresponding ground truth annotations. To bridge the gap
between the simulation and the real world, we randomise the
simulator to expose the model to a wide range of environments
while training. Our experiments demonstrate that our proposed
method can learn vision-guided tactile poking regions, with a
high mean Average Precision (mAP) of 0.360, and generalise
to transparent objects in the real world. We also conduct real
robot experiments and results show that our proposed method
can enhance the success rate of transparent object grasping
from 38.9% to 85.2%, compared to a vision based grasping.
Thanks to its simplicity, the proposed method can be adapted
to other settings that use other force or tactile sensors, and can
also be used for grasping of other challenging objects.

Our contributions can be summarised as follows:
• We propose a vision-guided tactile poking approach for

grasping transparent objects, which is the first of its kind;
• We introduce a novel poking region segmentation

network trained with a pixel-level Positive-Negative-
balanced loss, which boosts segmentation performance;

• We have collected a high-quality synthetic dataset for
transparent object perception and grasping to bridge the
reality gap, which is the largest of its kind.

The rest of this paper is structured as follows. Section II
reviews the related works and Section III introduces the
robot setup and the dataset; Section IV details our proposed
vision-guided tactile poking method for transparent object
grasping; Section V analyses the experimental results; Finally,
Section VI summarises the paper and discusses the work.

II. RELATED WORKS

A. Transparent Object Grasping

There are two types of methods for robots to perform
transparent object grasping in the literature. The first aims to
reconstruct depth maps of transparent objects, so as to mitigate
the sensor failures in depth images. In [11], an approach was
proposed that matches pixels from Time-of-Flight images first
and then reconstructs an approximated surface with triangulat-
ing methods. To enhance the matching speed and reduce the

influence of noise, a method was proposed in [12] to match
transparent edges instead of all pixels. However, those methods
require multiple views of one object, which is not suitable for
the case when the camera is fixed. To address this challenge,
some other studies [3], [13], [14] focus on reconstructing the
missing or noisy depth regions of transparent objects using a
single RGB-D image. In [3], a global optimisation algorithm
was adopted to reconstruct the depth values that are removed
based on predicted object masks. In [13], a local implicit
neural representation built on ray-voxel pairs was proposed to
reconstruct depth information incorporated with an iterative
self-correcting refinement model. In [14], an affordance-based
depth reconstruction framework was proposed to facilitate the
robotic manipulation of transparent objects.

Rather than reconstructing a depth map, [4], [15] generate
the grasp proposal with only RGB images or noisy depth maps
as input. In [4], transfer learning was used to transfer the
grasping model trained on depth maps to transparent object
grasping with RGB images. In [15], a two-stage approach
was proposed to estimate 6-DoF pose of transparent objects
from a single RGB-D image, which can be used to assist
transparent object grasping. Nonetheless, there has been no
work on transparent object grasping with both visual and
tactile information. To our best knowledge, this is the first
work to achieve the task.

B. Object Grasping using Vision and Touch
The coordination between vision and touch sensing plays an

important role in robot perception and has been applied to a
number of different tasks [16] such as object recognition [17],
[18], shape exploration [19], and object grasping [20], [21].
The visual-tactile features can be fused via direct concate-
nation [20] or a Self-Attention mechanism [22]. Moreover,
the coordination of vision and touch allows us to develop
regrasping policies that will best grasp the object [20]. How-
ever, the above studies either assume that the object position is
known or use the depth information from camera to localise
the object. These assumptions are not suitable for detecting
and grasping transparent objects that are placed at a random
location on the table due to their noisy or missing depth maps.
In contrast, in this work, we use visual feedback to provide
geometric cues for guiding the tactile sensor to contact the
transparent object, which facilitates its grasp.

C. Sim2Real Learning for Transparent Objects
Synthetic datasets have been used in a wide array of appli-

cations, such as object segmentation [23], human pose estima-
tion [24], and tactile object classification [25]. However, there
are only a few synthetic datasets for transparent objects. Most
of those datasets [26], [13] were generated without considering
the subtle effect of transparent objects, e.g., specular highlights
and caustics. In contrast, our simulation method can not only
generate realistic images of transparent objects with such
effects considered, but also provide detailed annotations, using
the LuxCoreRender [27] engine. Compared to the rendering
method used in [3] that uses Cycles [28] engine, our method
generates more natural synthetic images and builds the glass
shader in an easier way.
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Fig. 2: There are 9 objects in both synthetic (the first row) and real-world datasets (the
second row), from left to right: large disposable cup, highball cup, rectangular cup, vial,
jar, mug, small disposable cup, champagne cup and tumble cup.

III. SYSTEM SETUP

In this section, we first introduce a high-quality synthetic
dataset generation framework. It can auto-generate the poking
areas that are hard to be annotated by humans, e.g., the side
surface of a cylindrical cup. Then we introduce the robot
setup used for the real world data collection and experiments.
We introduce the system setup before the methodology as we
believe the synthetic data generation will also be a contribution
of this paper, and can help the reader better understand the
methods to be introduced later.

A. Synthetic Data Generation

We first generate the synthetic data of transparent objects,
i.e., RGB images, depth images, surface normals and instance
masks, before we conduct real world experiments, due to two
reasons. First, key cues that determine the poking regions, i.e.,
surface normals, cannot be obtained in real world experiments.
Second, labels like instance masks of transparent objects can
be generated automatically in synthetic data, whereas it is
challenging and time consuming for human annotators to
annotate instance masks in real data of transparent objects.

We use Blender’s physics engine [29] and LuxCoreRen-
der rendering engine [27] to generate our synthetic dataset.
Through simulating the flow of light, LuxCoreRender can
not only produce photo-realistic images, but also simulate
important effects caused by the presence of transparent objects
such as reflections and caustics. The dataset consists of 9
objects modelled after real-world transparent glass objects, as
shown in Fig. 2. To enrich the variety of the synthetic data,
we employed 33 HDRI lighting environments and 20 textures
for the ground plane underneath the transparent objects.

To bridge the gap between simulation and real environ-
ments, we first set the camera intrinsics based on the param-
eters of the Intel RealSense D415 camera that we use in the
real experiments. Then we randomly select one HDRI lighting
environment and one ground plane surface texture applied
with a random rotation angle for each scene. Finally, several
CAD model objects were created above the plane surface to
increase the learning efficiency. For each scene, the ground
truth data from Blender includes: (1) rendered monocular RGB
image, (2) aligned depth in meters, (3) instance masks of
all transparent objects, (4) the camera pose, and (5) surface
normals of the scene.

Using the rendered data, the ground truth of poking regions
can be generated as follows. First, we get the dot product map
via calculating the dot product of each pixel and the table
surface normal. Then, we apply a pre-defined threshold to the
dot product map to get initial poking regions. However, not

Fig. 3: Three visualisation examples of our synthetic dataset. The first four columns are
RGB images, depth images, surface normals and instance masks of three scenes with a
few transparent objects rendered in Blender, respectively, and the poking region masks
in the last column are generated from them.

Fig. 4: Robot setup. (a) An overview of the experimental setup that consists of a UR5
robotic arm, Robotiq 2F-85 gripper, a GelSight sensor and an Intel RealSense D415; (b)
The GelSight Sensor; (c) A sketch diagram of the GelSight sensor.

all the initial poking regions are suitable for tactile poking, for
example, the inner surface of a cup. To remove those areas, we
calculate the height map relative to the ground plane using the
depth image and the camera pose. If the height of one pixel
is lower than a predefined threshold, the pixel will not be set
as part of the poking region. Figure 3 shows some examples
of rendered images and their corresponding ground truth of
poking regions for transparent objects. In total, there are over
9,000 views of 9 objects generated in the sythetic dataset.

B. Robot Setup for Transparent Object Grasping

As shown in Fig. 4, our robot setup consists of a 6-DOF
UR5 robot equipped with a Robotiq 2F-85 adaptive gripper
and a GelSight sensor, as well as an Intel RealSense D415
RGB-D camera mounted on the tripod for overseeing the
environment. The GelSight is a camera-based optical tactile
sensor that can detect contact and capture fine details of the
object surface. In a GelSight sensor, a webcam is placed under
an elastomer that captures the deformations of the elastomer
on the top when contacted. The sensor has a flat sensing area
of 14mm × 10.5mm and can capture tactile images with
a resolution of 1280 × 720 at a frequency of 30 Hz [30].
In previous works [20], the gripper’s fingers were replaced
with GelSight sensors to generate tactile images for grasped
objects. However, this replacement limits the sensing area to
the inner side of the finger. To address this limitation, as
shown in Fig. 4(a), the GelSight sensor is attached to the end-
effector’s side with a 90° angle to achieve a tactile poking
action, i.e., the GelSight’s y-axis and z-axis coincide with
the end-effector’s y-axis and x-axis, respectively. The rotation
between the end-effector and the GelSight sensor is then set
as (0, π2 , 0), and the translation is obtained with an Opti-Track
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Fig. 5: An overview of our vision-guided tactile poking approach for transparent object grasping. From left to right: First, the PokePreNet takes the RGB image, and outputs
the segmented poking regions where different colours represent different instances. Then based on the detected poking regions, the poking point generator is used to generate the
potential poking point that guides the robotic arm to move towards the transparent object until the equipped GelSight sensor contacts the object. Lastly, with predicted poking region
and the obtained local profiles from tactile poking, a heuristic grasp proposal is generated for grasping the transparent object.

Motion Capture system. Moreover, the classic Tsai hand-eye
calibration method [31] is applied to the calibration between
the RealSense camera and the UR5 robot.

C. Real-World Dataset Collection

To test the generalisation of the proposed PokePreNet,
we also create a dataset of real-world transparent objects in
the laboratory space. As illustrated in Fig. 2, there are 4
transparent plastic and 5 glass objects in both our synthetic
and real-world datasets. The real-world dataset consists of 180
images of those nine known objects used in synthetic training
data. Each image contains one object randomly placed on the
table. Due to the difficulty of annotating the side surface of
cylindrical objects, only the rectangular cup and the jar, i.e.,
the third column and fifth column in Fig. 2, have the cases
where they stand on their sides.

IV. METHODOLOGY

In this work, we propose a vision-guided tactile poking
approach for transparent object grasping, with an overview
of the framework illustrated in Fig. 5. First, the poking region
prediction network (PokePreNet) takes a single RGB image
and outputs the poking region segmentation in the instance
level. Based on the detected poking region, a poking point
is then generated to guide the robotic arm to move towards
the transparent object. The robotic arm will stop once a
contact between the equipped GelSight sensor and the object
is detected. Finally, with the predicted poking region and

obtained local profiles from tactile poking, a heuristic grasp
proposal is generated for grasping the transparent object.

A. Poking Region Segmentation

The poking region segmentation is treated as an instance
segmentation problem. In the instance segmentation, every
pixel will be simultaneously classified whether it belongs to
the poking region and which instance it is part of. One of the
most popular instance segmentation techniques is Mask R-
CNN [32]. However, the poking region only occupies a small
part of the bounding box, which causes a bad precision of
Mask R-CNN. To solve this issue, our PokePreNet introduces
two novel improvements to the original Mask R-CNN for
segmenting the poking regions: (1) a larger output feature map
via adding more deconvolutional layers; (2) a new pixel-level
Positive-Negative-balanced loss.
Larger output feature map. We add two more deconvolu-
tional layers to increase the size of poking region masks from
28 × 28 to 112 × 112. The filters in all the deconvolutional
layers have a size Sf of 2× 2, with zero padding d = 0 and
stride s = 2, which can double the size of the feature map:

So = s ∗ (Si − 1) + Sf − 2 ∗ d (1)

where Si and So are the sizes of the input feature map and
the output feature map, respectively.
Pixel-level Positive-Negative-balanced loss. We use a multi-
task loss L to jointly train the instance segmentation network
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to predict the object class, bounding box position, and poking
region mask on each Region of Interest (RoI) as follows:

L = Lcls + Lloc + Lmask (2)

where Lcls is the multinomial cross entropy loss; Lloc is
the Smooth L1 loss [33] between the regressed box offsets
t = {tx, ty, tw, th} and the ground-truth box offsets v =
{vx, vy, vw, vh}:

Lloc(t, v) =
∑

k∈{x,y,w,h}

SmoothL1(tk − vk) (3)

where

SmoothL1
(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise.
(4)

Lmask is the poking region mask loss. Following [32], [33],
the weighting factors for each sub-loss are set to 1.

In the vanilla Mask R-CNN, the average binary cross-
entropy loss is used for training instance masks. However, the
distribution of positive/negative pixels (positive pixels are the
pixels that are part of the poking regions, and negative pixels
are ones that are not) in the objects such as the cup in Fig. 6
is heavily biased: only 5% of the bounding box area is part
of the poking region. To this end, the cross-entropy loss from
the poking region only contributes to a small part of the total
loss, and leads to a bad precision of the poking region.

To address this issue, we define the following pixel-level
Positive-Negative-balanced (PN) loss for the poking region
mask Lmask in Eq. 2:

Lmask(Xi) = −βi
∑

j∈Y +
i

log Pr (yj = 1|Xi)

−
∑

j∈Y −
i

log Pr (yj = 0) |Xi)
(5)

where Y +
i and Y −i denote the positive and negative ground

truth label sets for the ith RoI Xi, respectively; βi is the weight
on an instance basis to balance the loss between positive and
negative pixels, as illustrated in Fig. 6.

Specifically, βi is set to |Y −i |/|Y
+
i | and 1 when |Y +

i | is
larger than 0 and equal to 0, respectively. |.| function is used
for calculating the set size, and j represents the pixel index.
Pr (yj = 1|Xi) = σ (aj) ∈ [0, 1] is computed using sigmoid
function σ (.) on the activation value aj at pixel j.

In our initial experiments, we find that the PN loss boosts
the poking region segmentation performance in the exper-
iments in the real environment. However, in our synthetic
dataset results, there are some extremely small poking regions
and as a result βi is very large in such cases, which results into
a large number of false positives and lowers the performance.
Hence, to enhance the performance in the simulation, we use
a log function to restrict large values and use a Log-Positive-
Negative-balanced (LPN) loss for Lmask instead with βi:

βi =

{
ln(
|Y −

i |
|Y +

i |
) if |Y +

i | > 0

1 if |Y +
i | = 0

(6)

The proposed method can be recognised as a kind of Hard
Example Mining method [34], i.e., mining of examples that

Fig. 6: An illustration of how the Positive-Negative-balanced weight βi is computed.
Red pixels in the ground truth are the positive pixels that are part of the poking region,
whereas green pixels are the negative pixels that are not part of the poking region.

are hard to be classified or detected. The hard examples in
this work are the pixels from the instance with a small poking
region where a biased pixel distribution exists. Hence, we use
this heuristic to accelerate the mining of hard examples with-
out the need to classify each pixel in each RoI individually,
which makes our method more efficient.

B. Vision-guided Tactile Poking

Given the detected poking region from Sec. IV-A, we
generate a poking point Pt = [xt, yt] in the image frame
for every transparent object. To generate the poking point,
we first find the external contour of the poking region mask
using OpenCV function findContours. Then we use OpenCV
function fitEllipse to fit the contour and get the centroid Pc.
Similar to [35], the poking points are generated based on the
primitive shapes. As shown in the output of our PokePreNet
in Fig. 5, the 2-D poking regions are simplified into two types
of primitive shapes: a simply connected mask (the blue mask)
if Pc is part of the poking region, and a ring shape connected
mask (the green mask) if Pc is out of the poking region.

If the poking region is a simply connected mask, the poking
point will be set to the ellipse centroid Pc, as centroids are
widely used for grasping the objects with simple rectangular
or cylindrical shapes [36]. On the other hand, if the poking
region is a ring shape mask, Pc’s nearest positive pixel will
be set as the poking point to avoid getting the GelSight sensor
into the object. The algorithm used to find the poking point
in the image frame is summarised in Alg. 1.

Algorithm 1 Poking point generation

Input: Mpoking: a poking region mask.
Output: Pt = [xt, yt]: a poking point in the image frame

1: external contour ← findContours(Mpoking)
2: ellipse ← fitEllipse(external contour)
3: if ellipse.centroid in Mpoking then
4: [xt, yt]← ellipse.centroid
5: else
6: [xt, yt]← findNearestPositive(ellipse.centroid)
7: end if

Guided by the poking point, the robotic arm is moved
towards the transparent object until the equipped GelSight
sensor contacts the object. The GelSight sensor is set parallel
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to the table so as to minimise the horizontal force and avoid
the change of the object’s state. The tactile contact is detected
with a simple image subtraction-based algorithm [37]. First, a
tactile image is captured as the reference. Then, the element-
wise absolute difference between the reference and the current
frame is computed and applied with a binary thresholding in
every channel. Finally, the contact will be recognised in the
current frame, if the number of positive pixels in the difference
frame is larger than a predefined threshold. We also considered
detecting the contact by thresholding the Structural Similarity
Index Measure (SSIM) of the reference and contact images.
However, compared to the image subtraction-based algorithm,
the computational cost of SSIM is much higher (0.2s vs. 0.02s
for processing each tactile image). To stop the robotic arm
as soon as a contact is detected and avoid destroying fragile
transparent objects, the image-subtraction method is used.

C. Heuristic Transparent Object Grasping

Based on the predicted poking region and the object’s
local profiles (i.e., contact position) from the tactile poking, a
heuristic grasp representation in the world frame is generated
for the top-down parallel grasping. The grasp representation
is defined as a 5-dimensional vector Ghrst = [x, y, z, w, θ] as
shown in Fig. 5, where [x, y, z] represents the grasp centroid
in the world frame. w and θ represent the width and the
orientation of the heuristic grasp, respectively. Note that θ is
the one-dimensional angle around the vertical axis of gravity
direction to facilitate the top-down parallel grasping.

If Pc belongs to the poking region, the poking position
PW

t in the world frame will be equal to the position of centre
PW

c . Hence, a centroid-based grasp [36] is used for grasping
the transparent object. In detail, [x, y, z] of Ghrst will be set
to PW

t . The grasp width w and the orientation θ are set to
the maximum value of gripper width, and the fitted ellipse
rotation angle for grasping along the short axis of the ellipse,
respectively. If Pc is not part of the poking region, the grasp
centroid will be set according to the distance D(PW

c ,PW
t )

between P c and P t in the world frame. Under the assumption
that PW

c and PW
t are at the same height, the centroid of the

fitted ellipse in the world frame PW
c can be calculated with

a pin-hole camera model.
If D is larger than the half of the finger width, the gripper

finger could be inserted into the transparent object. Hence, an
edge grasp is used for grasping the transparent object as the
grasp proposal shown in Fig. 5. [x, y, z] will be the poking
position PW

t . The grasp width w and the orientation θ are set
to the twice of D and parallel to the vector < PW

c ,PW
t >,

respectively. Otherwise, a centroid-based grasp is used and
the grasp position will be set to PW

c . The grasp width w
and orientation θ are set to the maximum value and the fitted
ellipse rotation angle. The algorithm used to generate the
heuristic grasp is summarised in Alg. 2.

V. EXPERIMENTS

In this section, we conduct a series of experiments to eval-
uate our vision-guided tactile poking for transparent objects
grasping. The goal of the experiments are three-fold: (1)

Algorithm 2 Heuristic grasp generation

Input: PW
t : poking position in the world frame; Mpoking: a

poking region mask; ellipse: fitted ellipse from Alg. 1.
Output: Ghrst = [x, y, z, w, θ]: a heuristic grasp proposal.

1: if ellipse.centroid in Mpoking then . centroid grasp
2: [x, y, z]← PW

c ← PW
t

3: w ← maximum gripper width
4: θ ← ellipse.rotation angle
5: else
6: PW

c ← calculateWorldPosition(ellipse.centroid)
7: D ← calculateDistance(PW

c ,PW
t )

8: Angle← calculateAngle(PW
c ,PW

t )
9: if D > 0.5×finger width then . edge grasp

10: [x, y, z]← PW
t

11: w ← 2×D
12: θ ← Angle
13: else . centroid grasp
14: [x, y, z]← PW

c

15: w ← maximum gripper width
16: θ ← ellipse.rotation angle
17: end if
18: end if

To evaluate the poking region segmentation accuracy of our
PokePreNet in both synthetic and real-world datasets; (2) To
investigate how poking regions improve the success rate of
tactile poking against bounding boxes and instance masks;
(3) To investigate how the feedback from tactile poking can
improve the success rate of transparent objects grasping.

A. Poking Region Segmentation Experiments

To evaluate the poking region segmentation accuracy, the
standard Average Precision (AP) metric is used. To be more
specific, we used mean AP (mAP), AP50 and AP75, i.e., AP
at different Intersection over Union (IoU) thresholds 50% and
75%, and APS , APM and APL (AP at different scales, i.e.,
small, medium and large). It should be noted that the object
scale is determined by the poking region size instead of the
bounding box size. We only evaluate the poking region seg-
mentation results in this work, as the bounding box detection
is not related to our tactile poking approach. Similar to the
previous studies [32], our PokePreNet uses a Region Proposal
Network to extract 1000 proposals for each image. Our poking
region segmentation experiments are organised as follows.
Firstly, we compare our Positive-Negative-balanced loss (PN)
and Log-Positive-Negative-balanced loss (LPN) against vanilla
cross-entropy loss and weighted cross-entropy loss in both the
synthetic and real-world datasets. Secondly, we analyse the
effect of the output size of the poking region map. Thirdly, we
examine the domain randomisation’s effect on generalisation.
Evaluation of different loss functions. We evaluate
PokePreNet on both the synthetic and real-world benchmarks.
Table I compares the performance of using different types
of losses for poking region segmentation. The vanilla loss
represents the average binary cross-entropy loss used in the
vanilla Mask R-CNN. Weighted loss adds a fixed large weight
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Fig. 7: Visual comparison of poking region segmentation results using different loss functions. The top two rows and the bottom two rows compare results on the synthetic dataset
and the real-world dataset, respectively. As shown above, our PN and LPN based methods generate much better poking regions, compared to the vanilla loss and weighted loss.

to the cross-entropy loss of positive pixels.
In the synthetic dataset, the weighted loss and the PN

loss although bring 7.9% and 3.5% gains in terms of APS
respectively, nevertheless lead to a significant drop of the
overall performance. This is because when the poking region
areas are extremely small in the synthetic dataset, the balanced
weight on positive pixels will result in more false positives
and lower the performance. After using the log function to
compress the value range of the balanced weight in PN loss,
the LPN loss achieves an improvement of 8.7% and 3.2% on
APS and mAP, respectively.

In the real-world test benchmark, both our PN loss and
LPN loss outperform the original loss and the weighted loss:
PN loss leads to the best overall performance and LPN loss
results in largest improvement on APM . These different trends
might be caused by two main reasons: (1) Manual annotations
of the real-world benchmark is not as accurate as synthetic
annotations; (2) Domain randomisation is not sufficient to
bridge the domain gap between the simulation and the real
world. To address this problem, domain adaptation will be
considered in the future work. We also show the qualitative
results of poking region segmentation in Fig. 7. As illustrated,
the original loss and the weighted loss result in a lot of false
negatives and false positives. Our PN loss and LPN loss yield
highest quality poking region segmentation results on the real-
world images and the synthetic images.

TABLE I: BASELINE COMPARISONS ON SYNTHETIC AND REAL BENCHMARK.

Test data Loss type mAP AP50 AP75 APS APM APL

Synthetic vanilla 0.530 0.843 0.600 0.020 0.509 0.744
Synthetic weighted 0.468 0.865 0.467 0.099 0.399 0.733
Synthetic PN [ours] 0.472 0.749 0.500 0.053 0.388 0.752
Synthetic LPN [ours] 0.562 0.916 0.601 0.107 0.507 0.775

Real vanilla 0.319 0.672 0.248 N/A 0.149 0.540
Real weighted 0.330 0.669 0.292 N/A 0.155 0.542
Real PN [ours] 0.360 0.778 0.304 N/A 0.181 0.576
Real LPN [ours] 0.356 0.757 0.221 N/A 0.234 0.536

Evaluation of the poking region output feature map size.
We also analyse the effect of the poking region output feature
map size. Mask R-CNN uses only one deconvolutional layer
to create the 28×28 mask map from the 14×14 feature map.
Following the setup of Mask R-CNN, we add one, two, and
three more deconvolutional layers to create the 56×56, 112×
112, and 224× 224 poking region mask map, respectively.

Table II summarises the segmentation accuracy of the
mentioned networks on both the synthetic dataset and real-
world dataset. The results show that the segmentation accuracy
is gradually improved when the output size is increased from
28×28 to 112×112, however, it is not further improved when
adding one more deconvolutional layer to make the output size
to 224× 224, on both synthetic and real datasets. It should be
noted that similar results have also been reported in [38]. One
possible reason is that 112× 112 is large enough to show the
details of the object and, compared to 224× 224, is closer to
the real feature map size of transparent objects. Moreover, the
best models tested in the synthetic dataset and the real dataset
are trained with our LPN loss and PN loss, respectively.

TABLE II: EFFECT OF OUTPUT MASK SIZE.

Test data Output size mAP AP50 AP75 APS APM APL

Synthetic 28× 28 0.397 0.654 0.425 0.018 0.299 0.660
Synthetic 56× 56 0.442 0.708 0.477 0.051 0.354 0.752
Synthetic 112× 112 0.562 0.916 0.601 0.107 0.507 0.775
Synthetic 224× 224 0.501 0.868 0.501 0.064 0.398 0.749

Real 28× 28 0.198 0.425 0.183 N/A 0.081 0.337
Real 56× 56 0.271 0.555 0.224 N/A 0.117 0.454
Real 112× 112 0.360 0.778 0.304 N/A 0.181 0.576
Real 224× 224 0.337 0.751 0.281 N/A 0.170 0.554

Evaluation of domain randomisation. Despite not being
trained on real transparent objects for poking region segmenta-
tion, our models can be adapted well to the real-world domain.
To evaluate the importance of our data generation method-
ology, we assessed the model’s sensitivity to the number of
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Fig. 8: Examples of the poking points generated with the bounding box, the instance mask, the poking region with vanilla Mask R-CNN loss (Original) and the poking region with
our PN loss (Ours). The red colour and blue dot represent the segmentation results and generated poking points, respectively.

unique textures seen in the training. Table III shows that the
domain randomisation method via applying different textures
significantly improves the mAP of poking region segmentation
accuracy in real-world dataset from 31.3% to 36.0%.

TABLE III: EFFECT OF DOMAIN RANDOMISATION (DR).

Test data DR mAP AP50 AP75 APS APM APL

Synthetic × 0.472 0.803 0.515 0.073 0.420 0.672
Synthetic

√
0.562 0.916 0.601 0.107 0.507 0.775

Real × 0.313 0.697 0.249 N/A 0.160 0.506
Real

√
0.360 0.778 0.304 N/A 0.181 0.576

B. Vision-Guided Tactile Poking Experiments

In this subsection, we conduct real-world experiments to
evaluate the performance of our vision-guided tactile poking
method. We define that the poking action will be recognised
as successful, if no protective stop happens to the robotic arm,
and a contact happens between the transparent object and the
GelSight sensor. During the poking motion, the robotic arm
will stop if the height of the end-effector is lower than a
predefined threshold, which means the poke misses the object
entirely and will be taken as a failure.

Table IV compares the success rates of vision-guided tactile
poking methods using four different input sources for poking
point generation. The “bounding box” and “mask region”
approaches guide the tactile poking with the centroid position
of predicted bounding boxes and predicted instance masks,
respectively. The “poking region” represents those methods
that use the poking region segmentation results as the input
of poking point generator. [Vanilla] and [Ours] respectively
represent the PokePreNet trained with the vanilla binary cross-
entropy loss and our PN loss. Similar to [3], we had 12
attempts in grasping of each object, i.e., a total of 108 attempts
for testing the above approaches. The results show that the
poking region is a better cue for guiding the tactile poking

compared to bounding box and instance mask, and the better
poking region segmentation contributed by our PN loss can
further improve the poking success rate from 84.3% to 89.8%.

The poking points generated with different methods have
been visualised in Fig. 8. It is noticed that the generated poking
points based on bounding box and instance mask sometimes
have different surface normals against the table surface e.g.,
the first and second columns), which will lead to failed poking
motions. We can also observe that the bad poking region
segmentation caused by the vanilla cross-entropy loss can also
result in a failed tactile poking as shown in the third column.

TABLE IV: COMPARISON ON VISION-GUIDED TACTILE POKING.

Object Category BBox Mask PR (Vanilla) PR (Ours)
Big disposable cup 4/12 4/12 8/12 8/12

Highball cup 5/12 5/12 9/12 11/12
Rectangular cup 7/12 6/12 10/12 10/12

Vial 8/12 8/12 12/12 12/12
Jar 12/12 12/12 12/12 12/12

Mug 6/12 8/12 10/12 12/12
Small disposable cup 5/12 6/12 8/12 8/12

Champagne cup 5/12 6/12 11/12 12/12
Tumble cup 6/12 7/12 11/12 12/12

Average success rate 53.7% 57.4% 84.3% 89.8%

C. Transparent Object Grasping Experiments

To demonstrate the advantage of vision-guided tactile pok-
ing, we compare four different objects grasping approaches, as
shown in Table V. “Baseline1” and “Baseline2” generate grasp
proposals from object instance masks and poking regions (PR)
based on the depth obtained from an RGB-D camera, respec-
tively. In contrast, our methods use the contact position from
tactile poking to generate the heuristic grasp proposal. Same
as the tactile poking experiment, every grasping approach was
tested with 12 attempts on each object including 4 attempts
with the object upright, 4 attempts with the object upside
down, and 4 attempts with the object standing on its sides.
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Fig. 9: Examples of successful and failed grasps. Top: A successful grasp contributed
by the poking region predicted with our PokePreNet. Bottom: A failure grasp caused by
bad poking region segmentation when using the vanilla cross-entropy loss. The poking
region, grasp proposal and snapshot of grasping are shown for each case.

TABLE V: COMPARISON ON TRANSPARENT OBJECT GRASPING.

Baseline1 Baseline2 Ours1 Ours2
Region Type Masks PR PR PR

Loss vanilla PN vanilla PN
Localisation source camera camera poking poking
Big disposable cup 4/12 4/12 8/12 8/12

Highball cup 2/12 3/12 8/12 10/12
Rectangular cup 4/12 5/12 9/12 10/12

Vial 4/12 4/12 11/12 11/12
Jar 8/12 8/12 12/12 12/12

Mug 2/12 4/12 8/12 10/12
Small disposable cup 4/12 5/12 8/12 8/12

Champagne cup 4/12 4/12 10/12 11/12
Tumble cup 3/12 5/12 10/12 12/12

Average success rate 32.4% 38.9% 77.8% 85.2%

As reported in Table V, the transparent objects are hard
to grasp with “Baseline1” or “Baseline2” due to their noisy
and missing depth information. Moreover, our methods sig-
nificantly improve the grasping success rate from 38.9% to
77.8% and 85.2% via using the accurate local profile (i.e.,
contact position) from vision-guided tactile poking. Similar to
the results in tactile poking experiments, the bad poking region
segmentation results caused by the vanilla cross-entropy loss
can result in a failed grasp, i.e., the second column in Fig. 9.

D. Tactile Alignment for Grasping Small Objects

Apart from providing the contact position for grasping,
the tactile sensor can also sense the local shape of contact
regions in the poking. Here, “contact regions” are the regions
validated by the tactile sensor, whereas the above “poking re-
gions” are from visual appearances and indicate the functional
interactions of the object parts with humans or robots from
the affordance perspective [39]. Due to hand-eye and sensor-
end-effector calibration errors mentioned in Section III-B,
there would be an offset between the expected poking point
predicted from vision and the centre of the contact region.
The offset will result in an error in estimating the centroid
of the fitted ellipse detailed in Section IV-B and therefore
deteriorate the performance of our centroid-based grasp. To
address the offset, a tactile alignment method is used to rectify
the estimated centroid using the local shape obtained from the
tactile image. Due to the limited perceptive field of Gelsight
sensor, we only test the tactile alignment method with the
small vial (the 4th object in Fig. 2). It should be noted that
the tactile alignment experiment is not the main focus of this
paper, but to demonstrate the potential of the current work.

Fig. 10: Examples of the position alignment predictions using tactile readings.

The contact region is first obtained with a convolutional
segmengtation neural network [40] as shown in Fig. 10.
Similar to the centroid prediction in the visual images detailed
in Section IV-B, the OpenCV function findContours is applied
to the contact region to extract an arc of the inner ring of
the vial’s upper surface, and the OpenCV function fitEllipse is
used to estimate its centroid position in the tactile image frame.
The pin-hole camera model [40] is then applied to obtain the
rectified centroid position of the vial’s upper surface.

To validate that the tactile alignment can enhance the
robustness of grasping, we introduce a random translation error
ranging from -12 ∼ 12 mm in x-axis of the world frame to the
hand-eye transformation. We test with 20 attempts of grasping
the vial and observe that the tactile alignment can improve the
grasping success rate of the vial from 80% to 100%.

E. Failures Analysis

Failures in Poking Region Segmentation. In the real world
experiments, it has been noticed that thin poking regions of
the rectangular cup (the 3rd object in Fig. 2) were hard to be
detected when the object is placed upright. This was due to
that the camera introduces noise to the captured images and as
a result the poking regions are blurred. It could be improved by
fine-tuning the PokePreNet with real dataset or incorporating
it with other pixel-wise semantic segmentation methods.

Failures in Tactile Poking. One failure mode for tactile
poking is the fall of transparent objects that are placed upright
after being poked by the GelSight sensor. In this paper, we
assume that contacting poking regions will generate reliable
tactile readings, while causing minimum disturbance to the
object state. However, for light objects such as disposable cups
(the 1st and 8th objects in Fig. 2), the extremely small gravity
cannot prevent the object from turning. As shown in Fig. 11(a),
when the cup is under static equilibrium, the torques of the
gravity G and the normal force F are equal, i.e., F ∗d2 = G∗
d1. As a result, the maximum force applied to the disposable
cup by the GelSight sensor is around 0.1N . The robotic arm
cannot react in time to such a small force due to network
latency and image processing, which will lead to a failed tactile
poking with the falling of the disposable cup. The excessive
torque could be avoided by evenly contacting the whole poking
region at the same time using a larger tactile sensor.

Failures in Grasping. As shown in Tables IV and V, our ap-
proach can poke and grasp cylindrical objects without making
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Fig. 11: Side views of the tactile poking, where the GelSight sensors are in contact with
(a) a cup placed upright and (b) a cylindrical object placed on its side. (a): The force
analysis of the cup under static equilibrium, where G, FN and F represent the gravity
of the cup, the normal force from the table and the normal force from GelSight sensor,
respectively. d1 and d2 represent the arms of G and F , respectively; (b): The force
analysis of the cylindrical cup when an adhesion exists.

them roll on the table for most of the attempts. However, when
the GelSight sensor moves away from the contacted object
after poking, the adhesion between the GelSight’s elastomer
and the object might cause disturbance to the object’s state
as shown in Fig. 11(b), which will lead to a failed grasp. We
could solve this problem with a dual-arm manipulation, i.e.,
one arm is used to poke and fix the object on the table, and
the other arm is used to explore and grasp the object.

VI. CONCLUSIONS AND DISCUSSIONS
In this paper, we introduce a novel vision-guided tactile

poking method for grasping transparent objects. Compared to
previous methods, the proposed framework is the first that
coordinates vision and tactile sensing to address the challenges
of grasping transparent objects. The extensive experiments
show that our proposed method can learn vision-guided tactile
poking using only synthetic data for training and can gener-
alise to the real world settings. The robot grasping experiments
demonstrate that the informative local profile (i.e., position and
local shape of contact regions) from tactile poking can enhance
the performance of transparent objects grasping.

We have the robot poke the object for once to detect the
contact and update the local profiles of transparent objects,
which is different from the previous tactile exploration works
that contacts the object multiple times [41], [42]. Tactile
exploration can be used to estimate the object shape so as to fa-
cilitate grasping. However, in those works strong assumptions
were made: either the object is 2D and the pushing process is
quasi-static [43], [44] or the object is fixed on the table [42].
These assumptions are not suitable for our cases as 3D and
movable objects are used in our investigated scenarios. For
example, a cylindrical cup can roll a long way on the table with
a small horizontal force. In this case, the assumptions in the
tactile exploration will not stand any more as the cup is highly
movable and is not quasi-static. In contrast, our vision-guided
tactile poking method would output a good tactile reading
while maintaining minimal disturbance to the object’s state,
so that the modelling of object dynamics is not needed.

The GelSight tactile sensor in this work plays two different
roles. First, the GelSight sensor is used as a contact detector to
validate the poking regions predicted by our PokePreNet, so as
to replace the noisy depth from vision and facilitate the grasp.
Second, as the GelSight sensor can extract the local shapes of
small transparent objects, it is used to align grasp proposals to

mitigate bias in the calibration error. When a large calibration
error exists, there will be a large offset between the actual
contact position and the expected position, which may lead to
a failed grasping, and the geometric information of the object
obtained from the tactile images can remedy grasping.

It is worth noting that the first role can also be fulfilled
by other tactile sensors such as the tactile finger [45] and the
GelTip sensor [46], or force sensors like Nano 17 force/torque
sensors. It means that our proposed method is general and
can be easily transferred to other settings. Force sensors with
sensitive force estimation could achieve better control of the
poking motion compared to the GelSight sensor. However,
force sensors cannot replace tactile sensors for the second role
without matrix-based force readings or high-resolution tactile
images. Given that, we use the tactile alignment experiment to
demonstrate the advantage of using a high-resolution GelSight
sensor in vision-guided tactile poking. In the future work, we
will investigate the tactile alignment for grasping transparent
objects further without prior knowledge of the object shape.
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