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Abstract
Through numerical simulations of boson-star head-on collisions, we explore
the quality of binary initial data obtained from the superposition of single-
star spacetimes. Our results demonstrate that evolutions starting from a plain
superposition of individual boosted boson-star spacetimes are vulnerable to sig-
nificant unphysical artefacts. For equal-mass binaries, these difficulties can be
overcome with a simple modification of the initial data suggested in Helfer et al
(2019 Phys. Rev. D 99 044046) for collisions of oscillations. While we specifi-
cally consider massive complex scalar field boson star models of very high and
low compactness, we conjecture that this vulnerability be also present in other
kinds of exotic compact systems and hence needs to be addressed.

Keywords: gravitational waves, compact objects, boson stars, numerical
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1. Introduction

The rise of gravitational-wave (GW) physics as an observational field, marked by the detec-
tion of GW150914 [2] and followed by about 90 further compact binary events [3–5] over the
past years, has opened up unprecedented opportunities to explore gravitational phenomena.
From tests of general relativity [6–11] to the exploration of BH populations [12–16] or chart-
ing the Universe with independent new methods [17, 18], GW astronomy offers potential for
revolutionary insight into long-standing open questions; for a review see [19]. Some answers,
such as the association of a soft gamma-ray burst with the neutron star merger GW170817
[20, 21] have already raised our understanding to new levels. GW physics furthermore
establishes new concrete links to other fields of research, most notably to particle and high-
energy physics and the exploration of the dark sector of the Universe [19, 22]. Two important
ingredients of this remarkable connection are the characteristic interaction of fundamental
fields with compact objects through superradiance [23] and their capacity to form compact
objects through an elaborate balance between the intrinsically dispersive character of the fields
and their self-gravitation. The latter feature has given rise to the hypothesis of a distinct class of
compact objects as early as the 1950s [24]. In contrast to their well known fermionic counter-
parts—stars, white dwarfs or neutron stars—these compact objects are composed of bosonic
particles or fields and, hence, commonly referred to as boson stars (BS). GW observations
provide the first systematic approach to search for populations of these objects or to con-
strain their abundance. As with all other GW explorations, the success of this exploration is
heavily reliant on the availability of accurate theoretical predictions for the anticipated GW
signals. This type of calculation, using numerical relativity techniques [25], is the topic of this
work.

The idea of bosonic stars dates back to Wheeler’s 1955 study of gravitational-
electromagnetic entities or geons [24]. By generalising from real to complex-valued funda-
mental fields, it is even possible to obtain genuinely stationary solutions to the Einstein-matter
equations. First established for spin 0 or scalar fields [26–28], this idea has more recently been
extended to spin 1 or vector (aka Proca5) fields [29] as well as wider classes of scalar BSs
[30, 31]. In the wake of the dramatic progress of numerical relativity in the simulations of
black holes (BHs) [32–34] (see [35] for a review), the modelling of BSs and binary systems
involving BSs has rapidly gathered pace.

The first BS models computed in the 1960s consisted of a massive but non-interacting com-
plex scalar field ϕ. This class of stationary BSs, commonly referred to as mini BS, consists
of a one parameter family of ground-state solutions characterised by the central scalar-field
amplitude that reveals a stability structure analogous to that of Tolman–Oppenheimer–Volkoff
[36, 37] stars: a stable and an unstable branch of ground-state solutions are separated by the
configuration with maximal mass [38–40]. For each ground-state model, there furthermore
exists a countable hierarchy of excited states with n > 0 nodes in the scalar profile [41–43].
Numerical evolutions of these excited BSs demonstrate their unstable character, but also reveal
significant variation in the instability time scales [44].

Whereas mini BS models are limited in terms of their maximum compactness, self-
interacting scalar fields can result in significantly more compact stars, even denser than neutron

5 Even though the term ‘boson star’ generally applies to compact objects formed of any bosonic fields, it is often
used to specifically denote stars made up of a scalar field. Stars composed of vector fields, in contrast, are most
commonly referred to as Proca stars. Unless specified otherwise, we shall accordingly assume the term boson star to
imply scalar-field matter.
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stars [45–48]. This raises the intriguing question whether compact BS binaries may reveal
themselves through characteristic GW emission analogous to that from BHs or NSs [49].
Recent studies conclude that this may well be within the grasp of next-generation GW detectors
and, in the case of favourable events, even with advanced LIGO [50–52].

One of the characteristic properties of BSs is the quantised nature of their spin. The
linearised Einstein qquations in the slow-rotation limit lead to a two-dimensional Poisson
equation that does not admit everywhere regular solutions except for trivial constants; in con-
sequence BSs cannot rotate perturbatively [53]. By relaxing the slow-rotation approximation,
Schunck and Mielke [54] computed the first (differentially) rotating BSs and found that these
solutions have an integer ratio of angular momentum to particle number. The structure of spin-
ning BS models has been studied extensively over the years [55–63]. The quantised nature
of the angular momentum also applies to Proca and Dirac (spin 1

2 ) stars [64], but numerical
studies of the formation of rotating stars have revealed a striking difference between the scalar
and vector case: while collapsing scalar fields shed all their angular momentum through an
axisymmetric instability, the collapse of vector fields results in spinning Proca stars with no
indication of an instability [51, 65]. This observation is supported by analytic calculations [66],
but the instability may be quenched by self-interaction terms in the potential function or in the
Newtonian limit [67]. For further reading of the structure and dynamics of single BSs, we note
references [68–72].

The first simulations of BS binaries have considered the head-on collision of configurations
with phase differences between the constituent stars or opposite frequencies [73]; see also
[74, 75]. The phase or frequency differences manifest themselves most pronouncedly in the
dynamics and GW emission around merger. These collisions result in either a BH, a non-
rotating BS or a near-annihilation of the scalar field in the case of opposite frequencies. BS
binaries with orbital angular momentum generate a GW signal qualitatively similar to that
of BH binaries during the inspiral phase, but exhibit a much more complex structure around
merger [76, 77]. In agreement with the above mentioned BS formation studies, the BS inspirals
also seem to avoid the formation of spinning BSs, although they may settle down into single
nonrotating BSs.

In spite of the rapid progress of this field, the computation of GW templates for BSs still
lags considerably behind that of BH binaries, both in terms of precision and coverage of the
parameter space. Clearly, the presence of the matter fields adds complexity to this challenge, but
also alleviates some of the difficulties through the non-singular character of the BS spacetimes.
The first main goal of our study is to highlight the substantial risk of obtaining spurious physical
results due to the use of overly simplistic initial data constructed by plain superposition of
single-BS spacetimes. Our second main goal is to demonstrate how for the case of equal-mass
binaries an astonishingly simple modification of the superposition procedure, first identified
by Helfer et al [1] for oscillations, overcomes most of the problems encountered with plain
superposition. We summarise our main findings as follows.

(1) An adjustment of the superposition procedure for equal-mass binaries, given by
equation (45), results in a significant reduction of the constraint violations inherent to the initial
data; see figure 3.

(2) In the head-on collision of mini BS binaries with rather low compactness, we observe
a significant drop of the radiated GW energy with increasing distance d if we use plain super-
position. This physically unexpected dependence on the initial separation levels off only for
rather large d � 150 M, where M denotes the Arnowitt–Deser–Misner (ADM) mass [78]. In
contrast, the total radiated energy computed from the evolution of our adjusted initial data dis-
plays the expected behaviour over the entire studied range 75.5 M � d � 176 M: a very mild

3
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increase in the radiated energy with d. In the limit of large d � 150 M, both types of simulations
agree within numerical uncertainties; see upper panel in figure 6.

(3) In collisions of highly compact BSs with solitonic potentials, the radiated energy is
largely independent of the initial separations for both initial data types, but for plain superpo-
sition we consistently obtain∼10%more radiation than for the adjusted initial data; see bottom
panel in figure 6. Furthermore, we find plain superposition to result in a slightly faster infall.
The most dramatic difference, however, is the collapse into individual BHs of both BSs well
before merger if we use plain superposition. No such collapse occurs if we use adjusted initial
data. Rather, these lead to the expected near-constancy of the central scalar-field amplitude of
the BSs throughout most of the infall; see figure 9.

(4) We have verified through evolutions of single boosted BSs that the premature collapse
into a BH is closely related to the spurious metric perturbation (44) that arises in the plain
superposition procedure. Artificially adding the same perturbation to a single BS spacetime
induces an unphysical collapse of the BS that is in qualitative and quantitative agreement with
that observed in the binary evolution starting with plain superposition; see figure 9.

The detailed derivation of these results begins in section 2 with a review of the formalism
and the computational framework of our BS simulations. We discuss in more detail in section 3
the construction of initial data through plain superposition and our modification of this method.
In section 4, we compare the dynamics of head-on collisions of mini BSs and highly compact
solitonic BS binaries starting from both types of initial data. We note the substantial differences
in the results thus obtained and argue why we regard the results obtained with our modification
to be correct within numerical uncertainties. We summarise our findings and discuss future
extensions of this work in section 5.

Throughout this work, we use units where the speed of light and Planck’s constant are set to
unity, c = h̄ = 1. We denote spacetime indices by Greek letters running from 0 to 3 and spatial
indices by Latin indices running from 1 to 3.

2. Formalism

2.1. Action and covariant field equations

The action for a complex scalar field ϕ minimally coupled to gravity is given by

S =

∫ √
−g

{
1

16πG
R − 1

2

[
gμν∇μϕ̄∇νϕ+ V(ϕ)

]}
d4x, (1)

where gαβ denotes the spacetime metric and R the Ricci scalar associated with this metric. The
characteristics of the resulting BS models depend on the scalar potential V(ϕ); in this work,
we consider mini BS and solitonic BS, obtained respectively for the potential functions

Vmin = μ2|ϕ|2 , Vsol = μ2|ϕ|2
(

1 − 2
|ϕ|2
σ2

0

)2

. (2)

Here, μ denotes the mass of the scalar field and σ0 describes the self-interaction in the solitonic
potential which can result in highly compact stars [46]. Note that Vsol → Vmin in the limit
σ0 →∞.

Variation of the action (1) with respect to the metric and the scalar field yields the Einstein
and matter evolution equations

4
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Gαβ = 8πGTαβ = 8πG

[
∂(αϕ̄∂β)ϕ− 1

2
gαβ

(
gμν∂μϕ̄∂νϕ+ V(ϕ)

)]
, (3)

∇μ∇μϕ = ϕV ′ :=ϕ
d

d|ϕ|2 V. (4)

Readers who are mainly interested in the results of our work and/or are familiar with the
equations governing BS spacetimes may proceed directly to section 3.

2.2. 3 + 1 formulation

For all simulations performed in this work, we employ the 3 + 1 spacetime split of ADM
[78] and York [79]; see also [80]. Here, the spacetime metric is decomposed into the physical
three-metric γi j, the shift vector βi and the lapse function α according to

ds2 = gαβdxαdxβ = −α2dt2 + γmn(dxm + βmdt)(dxn + βndt), (5)

where the level sets x0 = t = const. represent three-dimensional spatial hypersurfaces with
timelike unit normal nμ. Defining the extrinsic curvature

Ki j = − 1
2α

(∂tγi j − βm∂mγi j − γim∂ jβ
m − γm j∂iβ

m), (6)

the Einstein equations result in a first-order-in-time set of differential equations
for γi j and Ki j that is readily converted into the conformal Baumgarte–Shapiro–
Shibata–Nakamura–Oohara–Kojima (BSSNOK) formulation [81–83]. More specifically, we
define

χ = γ−1/3 , K = γmnKmn , γ̃ i j = χγi j,

Ãi j = χ

(
Ki j −

1
3
γi jK

)
, Γ̃i = γ̃mnΓ̃i

mn, (7)

where γ = det γi j, and Γ̃i
mn are the Christoffel symbols associated with γ̃ i j. The Einstein

equations are then given by (see for example section 6 in [22] for more details)

∂tχ = βm∂mχ+
2
3
χ(αK − ∂mβ

m), (8)

∂tγ̃ i j = βm∂mγ̃ i j + 2γ̃m(i∂ j)β
m − 2

3
γ̃i j∂mβ

m − 2αÃi j, (9)

∂tK = βm∂mK − χγ̃mnDmDnα+ αÃmnÃmn +
1
3
αK2 + 4πGα(S + ρ), (10)

∂tÃi j = βm∂mÃi j + 2Ãm(i∂ j)β
m − 2

3
Ãi j∂mβ

m + αKÃi j − 2αÃimÃm
j

+ χ(αRi j − DiD jα− 8πGαSi j)
TF, (11)

∂tΓ̃
i = βm∂mΓ̃

i +
2
3
Γ̃i∂mβ

m − Γ̃m∂mβ
i + γ̃mn∂m∂nβ

i +
1
3
γ̃ im∂m∂nβ

n

− Ãim

(
3α

∂mχ

χ
+ 2∂mα

)
+ 2αΓ̃i

mnÃmn − 4
3
αγ̃ im∂mK − 16πG

α

χ
ji,

(12)

5
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where ‘TF’ denotes the trace-free part and auxiliary expressions are given by

Γi
jk = Γ̃i

jk −
1

2χ
(δi

k∂ jχ+ δi
j∂kχ− γ̃ jkγ̃

im∂mχ),

Ri j = R̃i j +Rχ
i j,

Rχ
i j =

γ̃i j

2χ

[
γ̃mnD̃mD̃nχ− 3

2χ
γ̃mn∂mχ∂nχ

]
+

1
2χ

(
D̃iD̃ jχ− 1

2χ
∂iχ∂ jχ

)
,

R̃i j = −1
2
γ̃mn∂m∂nγ̃ i j + γ̃m(i∂ j)Γ̃

m + Γ̃mΓ̃(i j)m + γ̃mn
[
2Γ̃k

m(iΓ̃ j)kn + Γ̃k
imΓ̃k jn

]
,

DiD jα = D̃iD̃ jα+
1
χ
∂(iχ∂ j)α− 1

2χ
γ̃ i jγ̃

mn∂mχ∂nα. (13)

Here, D̃ and R̃ denote the covariant derivative and the Ricci tensor of the conformal metric γ̃ i j,
respectively.

The matter terms in equations (8)–(12) are defined by

ρ = Tμνnμnν , jα = −⊥ν
αTμνnμ , Sαβ = ⊥μ

α⊥ν
βTμν ,⊥μ

α = δμα + nμnα.

(14)

In adapted coordinates, we only need ρ and the spatial components ji, Si j which are determined
by the scalar field through equation (3), Defining, in analogy to the extrinsic curvature (6),

Π = − 1
2α

(∂tϕ− βm∂mϕ) ⇔ ∂tϕ = βm∂mϕ− 2αΠ, (15)

we obtain

ρ = 2ΠΠ̄ +
1
2
∂mϕ̄ ∂mϕ+

1
2

V , S + ρ = 8Π̄Π− V ,

ji = Π̄∂iϕ+Π∂iϕ̄,

Si j = ∂(iϕ̄∂ j)ϕ− 1
2
γi j

(
γmn∂mϕ̄ ∂nϕ− 4Π̄Π + V

)
. (16)

The evolution of the scalar field according to equation (4) in terms of our 3 + 1 variables is
given by equation (15) and

∂tΠ = βm∂mΠ+ α

[
ΠK +

1
2

V ′ϕ+
1
4
γ̃mn

(
∂mϕ∂nχ− 2χD̃mD̃nϕ

)]

− 1
2
χγ̃mn∂mϕ∂nα, (17)

where V ′ = dV/d(|ϕ|2).
Finally, we evolve the gauge variables α and βi with 1 + log slicing and the Γ-driver

condition (the so-called moving puncture conditions [33, 34]),

6
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∂tα = βm∂mα− 2αK , ∂tβ
i = βm∂mβ

i +
3
4

Bi , ∂tB
i = βm∂mBi + ∂tΓ̃

i − ηBi, (18)

where η is a constant we typically set to Mη ≈ 1 in units of the ADM mass M.
Additionally to the evolution equations (8)–(12), the Einstein equations also imply four

equations that do not contain time derivatives, the Hamiltonian and momentum constraints

H :=R+ K2 − KmnKmn − 16πρ = 0, (19)

Mi :=DiK − DmKm
i + 8π ji = 0. (20)

While the constraints are preserved under time evolution in the continuum limit, some level
of violations is inevitable due to numerical noise or imperfections of the initial data. We will
return to this point in more detail in section 3 below.

For the time evolutions discussed in section 4, we have implemented the equations of this
section in the lean code [84] which is based on the cactus computational toolkit [85]. The
equations are integrated in time with the method of lines using the fourth-order Runge–Kutta
scheme with a Courant factor 1/4 and fourth-order spatial discretisation. Mesh refinement is
provided by carpet [86] in the form of ‘moving boxes’ and we compute apparent horizons with
AHFinderDirect [87, 88].

2.3. Stationary boson stars and initial data

The initial data for our time evolution are based on single stationary BS solutions in spherical
symmetry. Using spherical polar coordinates, areal radius and polar slicing, the line element
can be written as

ds2 = −e2Φdt2 +

(
1 − 2m

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (21)

where Φ and m are functions of r only. It turns out convenient to express the complex scalar
field in terms of amplitude and frequency,

ϕ(t, r) = A(r)eiωt , ω = const. ∈ R. (22)

At this point, our configurations are characterised by two scales, the scalar mass μ and the
gravitational constant6 G. In the following, we absorb μ and G by rescaling all dimensional
variables according to

t̂ = μt , r̂ = μr , m̂ = μm , Â =
√

GA , ω̂ = ω/μ;

(23)

note that μ has the dimension of a frequency or wave number and
√

G is an inverse mass.
Using the Planck mass MPl = 1/

√
G = 1.221 × 1019 GeV, we can restore SI units from the

dimensionless numerical variables according to

r = r̂ ×
(

μ

1.937 × 10−10 eV

)−1

km , ω = ω̂ × μ

6.582 × 10−16 eV
Hz , A = Â MPl,

6 Or, equivalently, the Planck mass MPl =
√

h̄c/G = 1/
√

G for h̄ = c = 1.

7
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and likewise for other variables. The rescaled version of the potential (2) is given by

V̂min = Â2 , V̂sol = Â2

(
1 − 2

Â2

σ̂2
0

)2

with σ̂0 =
√

Gσ0. (24)

In terms of the rescaled variables, the Einstein–Klein–Gordon equations in spherical symmetry
become

∂r̂Φ =
m̂

r̂(r̂ − 2m̂)
+ 2πr̂

(
η̂2 + ω̂2e−2ΦÂ2 − V̂

)
, (25)

∂r̂m̂ = 2πr̂2
(
η̂2 + ω̂2e−2ΦÂ2 + V̂

)
, (26)

∂r̂ Â =

(
1 − 2m̂

r̂

)−1/2

η̂, (27)

∂r̂η̂ = −2
η̂

r̂
− η̂∂r̂Φ +

(
1 − 2m̂

r̂

)−1/2

(V̂ ′ − ω̂2e−2Φ)Â with

V̂ ′ =
dV̂

d(Â)2
. (28)

By regularity, we have the following boundary conditions at the origin r̂ = 0 and at infinity,

Â(0) = Âctr ∈ R
+ , m̂(0) = 0 , η̂(0) = 0 , Φ(∞) = 0 , Â(∞) = 0. (29)

This two-point-boundary-value problem has two free parameters, the central amplitude Âctr

and the frequency ω̂. For a given value Âctr, however, only a discrete (albeit infinite) num-
ber of frequency values ω̂ will result in models with Â(∞) = 0; all other frequencies lead to
an exponentially divergent scalar field as r →∞. The ‘correct’ frequencies are furthermore
ordered by ω̂n < ω̂n+1, where n � 0 is the number of zero crossings of the scalar profile Â(r̂);
n = 0 corresponds to the ground state and n > 0 to the nth excited state [44]. Finding the
frequency for a regular star for user-specified Âctr and n is the key challenge in computing
BS models. We obtain these solutions through a shooting algorithm, starting with the inte-
gration of equations (25)–(28) outwards for Â(0) = Âctr specified, Φ(0) = 1, and our ‘initial
guess’ ω̂ = 1. Depending on the number of zero crossings in this initial-guess model, we
repeat the calculation by increasing or decreasing ω̂ by one order of magnitude until we have
obtained an upper and a lower limit for ω̂. Through iterative bisection, we then rapidly converge
to the correct frequency. Because we can only determine ω̂ to double precision, we often find
it necessary to capture the scalar field behaviour at large radius by matching to its asymptotic
behaviour

ϕ ∼ 1
r̂

exp
(
−
√

1 − ω̂2e−2Φ
)

, (30)

outside a user-specified radius r̂match. Finally, we can use an additive constant to shift the func-
tion Φ(r̂) to match its outer boundary condition. In practice, we impose this condition in the
form of the Schwarzschild relation e2Φ = (1 − 2m̂/r̂) at the outer edge of our grid; in vacuum
this is exact even at finite radius, and we can safely ignore the scalar field at this point thanks
to its exponential falloff.
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Figure 1. One parameter families of mini BSs (black solid) with potential V̂min and
solitonic BSs (red dashed) with potential V̂sol and σ̂0 = 0.2 as given in equation (24). In
section 4 we simulate head-on collisions of two specific models marked by the circles
and with parameters listed in table 1.

Table 1. Parameters of the two single, spherically symmetric ground state BS models
employed for our simulations of head-on collisions. Up to the rescaling with the scalar
mass μ, each BS is determined by the central amplitude Actr of the scalar field and the
potential parameter σ0 of equation (2). The mass MBS of the boson star, the scalar field
frequency ω, the areal radius r99 containing 99% of the total mass MBS and the com-
pactness, defined here as the maximal ratio of the mass function to radius, represent the
main features of the stellar model.

Model
√

GActr

√
Gσ0 μMBS ω/μ μr99 max m(r)

r

Mini 0.0124 ∞ 0.395 0.971 22.31 0.0249
Soli 0.17 0.2 0.713 0.439 3.98 0.222

For a given potential, the solutions computed with this method form a one-parameter family
characterised by the central scalar field amplitude Â0. In figure 1 we display two such families
for the potentials (24) with σ̂0 = 0.2 in the mass–radius diagram using the areal radius r̂99

containing 99% of the BS’s total mass. In that figure, we have also marked by circles two
specific models, one mini BS and one solitonic BS, which we use in the head-on collisions in
section 4 below. We have chosen these two models to represent one highly compact and one
rather squishy BS; note that both models are located to the right of the maximal M̂(r̂) and,
hence, stable stars. Their parameters and properties are summarised in table 1.

The formalism discussed so far provides us with BS solutions in radial gauge and polar
slicing. In order to reduce the degree of gauge adjustment in our moving puncture time evo-
lutions, however, we prefer using conformally flat BS models in isotropic gauge. In isotropic
coordinates, the line element of a spherically symmetric spacetime has the form

μ2ds2 = −e2Φd̂t2 + ψ4(dR̂2 + R̂2dΩ2), (31)

9
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where dΩ2 = dθ2 + sin2 θ dφ2. Comparing this with the polar-areal line element (21), we
obtain two conditions,

ψ4R̂2 = r̂2 , ψ4dR̂2 = X2dr̂2 with X =

(
1 − 2m̂

r̂

)−1/2

. (32)

In terms of the new variable f (r̂) = R̂/r̂, we obtain the differential equation

d f
dr̂

=
f
r̂

(X − 1), (33)

which we integrate outwards by assuming R̂ ∝ r̂ near r̂ = 0. The integrated solution can be
rescaled by a constant factor to ensure that at large radii—where the scalar field has dropped
to a negligible level—we recover the Schwarzschild value ψ = 1 + m̂

2R̂
, in accordance with

Birkhoff’s theorem. Bearing in mind that ψ4R̂2 = r̂2, this directly leads to the outer boundary
condition

R̂ob =
r̂ob − m̂ob

2

⎡
⎣1 +

√
1 − m̂2

ob

(r̂ob − m̂ob)2

⎤
⎦ , (34)

end, hence, the overall scaling factor applied to the function R̂(r̂).
In isotropic coordinates, the resulting spacetime metric is trivially converted from spherical

to Cartesian coordinates x̂i = (x̂, ŷ, ẑ) using dR̂2 + R̂2dΩ2 = dx̂2 + dŷ2 + dẑ2, so that

μ2ds2 = −e2Φd̂t2 + ψ4δi jdx̂i dx̂ j. (35)

For convenience, we will drop the caret on the rescaled coordinates and variables from now
on and implicitly assume that they represent dimensionless quantities to be converted into
dimensional form according to equation (23).

2.4. Boosted boson stars

The single BS solutions can be converted into boosted stars through a straightforward Lorentz
transformation. For this purpose, we denote the star’s rest frame by O with Cartesian 3 + 1
coordinates xα = (t, xk) and consider a second frame Õ with Cartesian 3 + 1 coordinates
x̃α̃ = (̃t, x̃k̃) that moves relative to O with constant velocity vi. These two frames are related
by the transformation

Starting with the isotropic rest-frame metric (31) and the complex scalar field
ϕ(t, R) = A(R)eiωt+ϑ0 with R =

√
δmnxmxn, we obtain a general boosted model in terms of the

3 + 1 variables in Cartesian coordinates x̃k̃ as follows.
(1) A straightforward calculation leads to the first derivatives of the metric, its inverse and

the scalar field in Cartesian coordinates xi in the rest frame,

10
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∂tgμν = ∂tg
μν = 0 ,

∂tϕR = −ωϕI ,

∂tϕI = ωϕR,

∂ig00 = −2e2Φ dΦ
dR

xi

R
,

∂ig
00 = 2e−2Φ dΦ

dR
xi

R
,

∂igkk = 4ψ3 dψ
dR

xi

R
,

∂ig
kk = −4ψ−5 dψ

dR
xi

R
,

∂iϕR =
η

f
cos(ωt + φ0)

xi

R
,

∂iϕI =
η

f
sin(ωt + φ0)

xi

R
, (36)

where ϕR and ϕI are the real and imaginary part of the scalar field, and

dψ
dR

= −1
2

X − 1
X

ψ

R
,

dΦ
dR

=
X2 − 1

2XR
+

2πR
f 2

X(η2 + ω2e−2ΦA2 − V).

(37)

(2) We Lorentz transform the spacetime metric, the scalar field and their derivatives to the
boosted frame Õ according to

g̃α̃β̃ = Λμ
α̃Λ

ν
β̃gμν , g̃α̃β̃ = Λα̃

μΛ
β̃
νgμν , ∂γ̃ g̃α̃β̃ = Λλ

γ̃Λ
μ
α̃Λ

ν
β̃∂λgμν ,

ϕ̃(x̃α) = ϕ(xμ) , ∂α̃ϕ̃ = Λμ
α̃∂μϕ. (38)

(3) We construct the 3 + 1 variables in the boosted frame from these quantities according
to

α̃ =
(
−g̃0̃0̃

)−1/2
, β̃ k̃ = g̃0̃k̃ , γ̃ k̃l̃ = g̃k̃l̃ , β̃ k̃ = γ̃ k̃m̃β̃m̃, (39)

K̃k̃l̃ = − 1
2α̃

(
∂̃tγ̃ k̃l̃ − β̃m̃∂m̃γ̃ k̃l̃ − γ̃m̃l̃∂k̃β̃

m̃ − γ̃ k̃m̃∂l̃ β̃
m̃
)

,

Π̃ = − 1
2α̃

(
∂̃tϕ̃− β̃m̃∂m̃ϕ̃

)
, (40)

with

∂̃tγ̃ k̃l̃ = ∂0̃g̃k̃l̃ , γ̃ k̃m̃∂l̃ β̃
m̃ = ∂l̃ g̃0̃k̃ − β̃m̃∂l̃ g̃k̃m̃. (41)

11
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(4) In addition to these expressions, we need to bear in mind the coordinate transformation.
The computational domain of our time evolution corresponds to the boosted frame Õ. A point
x̃α̃ = (̃t, x̃k̃) in that domain therefore has rest-frame coordinates

(t, xk) = xμ = Λμ
α̃ x̃α̃. (42)

It is at (t, xk), where we need to evaluate the rest frame variables Φ(R), X(R), the scalar field
ϕ(t, R) and their derivatives. In particular, different points on our initial hypersurface t̃ = 0 will
in general correspond to different times t in the rest frame.

3. Boson-star binary initial data

The single BS models constructed according to the procedure of the previous section are exact
solutions of the Einstein equations, affected only by a numerical error that we can control by
increasing the resolution, the size of the computational domain and the degree of precision of
the floating point variable type employed. The construction of binary initial data is conceptually
more challenging due to the non-linear character of the Einstein equations; the superposi-
tion of two individual solutions will, in general, not constitute a new solution. Instead, such a
superposition incurs some violation of the constraint equations (19) and (20). The purpose of
this section is to illustrate how we can substantially reduce the degree of constraint violation
with a relatively simple adjustment in the superposition. Before introducing this ‘trick’, we
first summarise the superposition as it is commonly used in numerical simulations.

3.1. Simple superposition of boson stars

The most common configuration involving more than one BS is a binary system, and this is
the scenario we will describe here. We note, however, that the method generalises straight-
forwardly to any number of stars. Let us then consider two individual BS solutions with their
centres located at xi

A and xi
B, velocities vi

A and vi
B. The two BS spacetimes are described by the

3 + 1 (ADM) variables γA
i j , αA, βi

A and KA
i j , the scalar field variables ϕA and ΠA, and likewise

for star B. We can construct from these individual solutions an approximation for a binary BS
system via the pointwise superposition

γi j = γA
i j + γB

i j − δi j , Ki j = γm(i
[
KA

j)nγ
nm
A + KB

j)nγ
nm
B

]
,

ϕ = ϕA + ϕB , Π = ΠA +ΠB. (43)

One could similarly construct a superposition for the lapse α and shift vector βi, but their
values do not affect the physical content of the initial hypersurface. In our simulations we
instead initialise them by α =

√
χ and βi = 0.

A simple superposition approach along the lines of equation (43) has been used in numerous
studies of BS as well as BH binaries including higher-dimensional BHs [73, 76, 77, 89–91].
For BHs and higher-dimensional spacetimes in particular, this leading-order approximation
has proved remarkably successful and in some limits a simple superposition is exact, such as
infinite initial separation, in Brill–Lindquist initial data for non-boosted BHs7 [92] or in the
superposition of Aichelburg–Sexl shockwaves [93] for head-on collisions of BHs at the speed
of light. It has been noted in Helfer et al [1], however, that this simple construction can result
in spurious low-frequency amplitude modulations in the time evolution of binary oscillations

7 Note that for Brill–Lindquist one superposes the conformal factor ψ rather than ψ4 as in the method discussed here.
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(real-scalar-field cousins of BSs); cf their figure 7. Furthermore, they have proposed a straight-
forward remedy that essentially eliminates this spurious modulation. As we will see in the next
section, the repercussions of the simple superposition according to equation (43) can be even
more dramatic for BS binaries, but they can be cured in the same way as in the oscillation case.
We note in this context that BSs may be more vulnerable to superposition artefacts near their
centres due to the lack of a horizon and its potentially protective character in the superposition
of BHs.

The key problem of the construction (43) is the equation for the spatial metric γi j. This is best
illustrated by considering the centre xi

A of star A. In the limit of infinite separation, the metric
field of its companion star B becomesγB

i j → δi j. This is, of course, precisely the contribution we
subtract in the third term on the right-hand-side and all would be well. In practice, however,
the BSs start from initial positions xi

A and xi
B with finite separation d = ‖xi

A − xi
B‖ and we

consequently perturb the metric at star A’s centre by

δγi j = γB
i j(x

i
A) − δi j (44)

away from its equilibrium value γA
i j (x

i
A). This metric perturbation can be interpreted as a distor-

tion of the volume element
√
γ at the centre of star A. More specifically, the volume element

at star A’s centre is enhanced by O(1)% for initial separations O(100) M and likewise for
the centre of star B (by symmetry); see appendix A of reference [1] for more details.8 The
energy density ρ, on the other hand, is barely altered by the presence of the other star, because
of the exponential fall-off of the scalar field. The leading-order error therefore consists in
a small excess mass that has been added to each BS’s central region. We graphically illus-
trate this effect in the upper half of figure 2 together with some of the possible consequences.
As we will see, this qualitative interpretation is fully borne out by the phenomenology we
observe in the binaries’ time evolutions. Most notably, we will see in figure 9 that with our
correction, the central scalar field amplitude and, hence, the central energy density of the col-
liding stars remains nearly constant in time during most of the infall stage, precisely as one
would expect for two non-pulsating BSs at large distance.

Finally, we would like to emphasise that, while evaluating the constraint violations is in
general a good rule of thumb to check whether the field configuration is a solution of the sys-
tem, it does not inform one whether it is the intended solution. Let us visualize for this purpose
the space of constraint satisfying initial data as a hypersurface in the space of all initial data
sets. A constraint solving process will project some initial guess onto this hypersurface, but it
does not guarantee that we end up with the desired physical configuration. Likewise, applying
a constraint damping system such as conformal Z4 [94, 95] may eventually drive the system to
a constraint satisfying solution, but it may not be the originally intended one, i.e. a binary sys-
tem composed of two unexcited BS stars in our case. Returning to our geometrical picture in
the space of initial data sets, we can split the distance vector between two given configurations
into a component perpendicular to the constraint hypersurface and one tangential to it. Solv-
ing the constraints only eliminates the former. Developing a method to reduce the tangential
component is the goal of the next section.

3.2. Improved superposition

The problem of the simple superposition is encapsulated by equation (44) and the resulting
deviation of the volume elements at the stars’ centres away from their equilibrium values. At

8 Due to the slow decay of this effect ∝1/
√

d [1], a simple cure in terms of using larger d is often not practical.
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Figure 2. Graphical illustration of the spurious dynamics that may be introduced by the
simple superposition procedure (43). Upper panel: the spurious increase in the volume
element mimics a squeezing of the stellar core that effects a pulsation of the star or
may even trigger gravitational collapse to a BH. Lower panel: no such squeezing occurs
with the adjusted superposition (45), and the binary evolution starts with approximately
unperturbed stars.

the same time, the equation presents us with a concrete recipe to mitigate this error: we merely
need to replace in the simple superposition (43) the first relation γi j = γA

i j + γB
i j − δi j by

γi j = γA
i j + γB

i j − γB
i j(x

i
A) = γA

i j + γB
i j − γA

i j (x
i
B) . (45)

The two expressions on the right-hand side are indeed equal thanks to the symmetry of
our binary: its constituents have equal mass, no spin and their velocity components satisfy
vi

Av
j
A = vi

Bv
j
B for all i, j = 1, 2, 3 in the centre-of-mass frame. Equation (45) manifestly

ensures that at positions xi
A and xi

B we now recover the respective star’s equilibrium metric
and, hence, volume element. We graphically illustrate this improvement in the bottom panel
of figure 2.

A minor complication arises from the fact that the resulting spatial metric does not
asymptote towards δi j as R →∞. We accordingly impose outgoing Sommerfeld boundary
conditions on the asymptotic background metric 2δi j − γA

i j (x
i
B); in a set of test runs, however,

we find this correction to result in very small changes well below the simulation’s discretisation
errors.

Finally, we note that the leading-order correction to the superposition as written in
equation (45) does not work for asymmetric configurations with unequal masses or spins. Gen-
eralising the method to arbitrary binaries requires the subtraction of a spatially varying term
rather than a constant γB

i j(x
i
A) = γA

i j (x
i
B) or δi j. Such a generalisation may consist, for example,

of a weighted sum of the terms γA
i j (x

i
B) and γB

i j(x
i
A). Leaving this generalisation for future work,

we will focus on equal-mass systems in the remainder of this study and explore the degree of
improvement achieved with equation (45).
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Table 2. The four types of BS binary head-on collisions simulated in this study. The
individual BSs A and B are given either by the mini or solitonic model of table 1, and start
with initial velocity v directed towards each other. The initial data is constructed either
by plain superposition (43) or by adjusting the superposed data according to equation
(45). For each type of binary, we perform five collisions with initial separations d listed
in the final column.

Label Star A Star B v Initial data d/M

mini Mini Mini 0.1 Plain 75.5, 101, 126, 151, 176
+mini Mini Mini 0.1 Adjusted 75.5, 101, 126, 151, 176
soli Soli Soli 0.1 Plain 16.7, 22.3, 27.9, 33.5, 39.1
+soli Soli Soli 0.1 Adjusted 16.7, 22.3, 27.9, 33.5, 39.1

4. Models and results

For our analysis of the two types of superposed initial data, we will now discuss time evolutions
of binary BS head-on collisions. A head-on collision is characterised by the two individual
BS models and three further parameters, the initial separation in units of the ADM mass,
d/M, and the initial velocities vA and vB of the BSs. We perform all our simulations in the
centre-of-mass frame, so that for equal-mass binaries, vA = −vB =: v. One additional param-
eter arises from the type of superposition used for the initial data construction: we either use
the ‘plain’ superposition of equation (43) or the ‘adjusted’ method (45).

For all our simulations, we set v = 0.1; this value allows us to cover a wide range of initial
separations without the simulations becoming prohibitively long. The BS binary configura-
tions summarised in table 2 then result in four sequences of head-on collisions labelled mini,
+mini, soli and +soli, depending in the nature of the constituent BSs and the superposi-
tion method. For each sequence, we vary the BSs initial separation d to estimate the dependence
of the outcome on d. First, however, we test our interpretation of the improved superposition
(45) by computing the level of constraint violations in the initial data.

4.1. Initial constraint violations

As discussed in section 3.1 and in appendix A of reference [1], the main shortcoming of the
plain superposition procedure consists in the distortion of the volume element near the indi-
vidual BSs’ centres and the resulting perturbation of the mass–energy inside the stars away
from their equilibrium values. If this interpretation is correct, we would expect this effect
to manifest itself in an elevated level of violation of the Hamiltonian constraint (19) which
relates the energy density to the spacetime curvature. Put the other way round, we would expect
our improved method (45) to reduce the Hamiltonian constraint violation. This is indeed the
case as demonstrated in the upper panels of figure 3 where we plot the Hamiltonian constraint
violation of the initial data along the collision axis for the configurations mini and +mini
with d = 101 M and the configurations soli and +soli with d = 22.3 M.

In the limit of zero boost velocity v = 0, this effect is even tractable through an analytic
calculation which confirms that the improved superposition (45) ensures H = 0 at the BS’s
centres in isotropic coordinates; see appendix A for more details.

Our adjustment (45) also leads to a reduction of the momentum constraint violations of the
initial data, although the effect is less dramatic here. The bottom panels of figure 3 display the
momentum constraint Mx of equation (20) along the collision axis normalised by the momen-
tum density 8π jx; we see a reduction by a factor of a few over large parts of the BS interior for
the modified data +mini and +soli.
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Figure 3. Upper row: the Hamiltonian constraint violation H—equation (19)—
normalised by the respective BS’s central energy density 16πρctr is plotted along the
collision axis of the binary configurations mini, +mini with d = 101 M (left) and
soli, +soli with d = 22.3 M (right). The degree of violations is substantially
reduced in the BS interior by using the improved superposition (45) for +mini and
+soli relative to their plain counterparts; the maxima of H have dropped by over
an order of magnitude in both cases. Bottom row: the same analysis for the momen-
tum constraint Mx normalised by the central BS’s momentum density 8π jx . Here the
improvement is less dramatic, but still yields a reduction by a factor of a few in the
BS core.

The overall degree of initial constraint violations is rather small in all cases, well below
0.1% for our adjusted data. These data should therefore also provide a significantly improved
initial guess for a full constraint solving procedure. We leave such an analysis for future work
and in the remainder of the work explore the impact of the adjustment (45) on the physical
results obtained from the initial data’s time evolutions.

4.2. Convergence and numerical uncertainties

In order to put any differences in the time evolutions into context, we need to understand the
uncertainties inherent to our numerical simulations. For this purpose, we have studied the
convergence of the GW radiation generated by the head-on collisions of mini and solitonic
BSs.

Figure 4 displays the convergence of the radiated energy Erad as a function of time for the
+mini configuration with d = 101 M of table 1 obtained for grid resolutions h1 = M/6.35,
h2 = M/9.53 and h3 = M/12.70 on the innermost refinement level and corresponding grid
spacings on the other levels. The functions Erad(t) and their differences are shown in the
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Figure 4. Convergence analysis for the GW energy extracted at Rex = 252 M from the
head-on collision +mini of table 1 with d = 101 M. For the resolutions h1 = M/6.35,
h2 = M/9.53 and h3 = M/12.70 (on the innermost refinement level), we obtain conver-
gence close to second order with convergence factor Q2 = 2.857 (upper panel). The
numerical error, obtained by comparing our results with the second-order Richard-
son extrapolated values (bottom panel), is 0.9% (1.6%, 3.6%) for our high (medium,
coarse) resolutions.

bottom and top panel, respectively, of figure 4 together with an amplification of the high-
resolution differences by the factor Q2 = 2.857 for second-order convergence. The observation
of second-order convergence is compatible with the second-order ingredients of the Lean code,
prolongation in time and the outgoing radiation boundary conditions. We believe that this dom-
inance is mainly due to the smooth behaviour of the BS centre as compared with the case of
black holes [96]. By using the second-order Richardson extrapolated result, we determine the
discretisation error of our energy estimates as 0.9% for h3 which is the resolution employed
for all remaining mini BS collisions. We have performed the same convergence analysis for
the plain-superposition counterpartmini and for the dominant (�, m) = (2, 0) multipole of the
Newman–Penrose scalar of both configurations and obtained the same convergence and very
similar relative errors.

In figure 5, we show the same convergence analysis for the solitonic collision +soli with
d = 22.3 M and resolutions h1 = M/22.9, h2 = M/45.9, h3 = M/68.8. We observe second-
order convergence during merger and ringdown and slightly higher convergence in the earlier
infall phase. For the uncertainty estimate we conservatively use the second-order Richardson
extrapolated result and obtain a discretisation error of about 0.07% for our medium resolution
h2 which is the value we employ in our solitonic production runs. Again, we have repeated
this analysis for the plain soli counterpart and the (2, 0) GW multipole observing the same
order of convergence and similar uncertainties. Our error estimate for the solitonic configura-
tions is rather small in comparison to the mini BS collisions and we cannot entirely rule out
a fortuitous cancellation of errors in our simulations. From this point on, we therefore use a
conservative discretisation error estimate of 1% for all our BS simulations. A second source
of uncertainty in our results is due to the extraction of the GW signal at finite radii rather than
I+. We determine this error by extracting the signal at multiple radii, fitting the resulting data
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Figure 5. Convergence analysis as in figure 4 but for the configuration +soli of table 1
with d = 22.3 M and resolutions h1 = M/22.9, h2 = M/45.9 and h3 = M/68.8. The
numerical error, obtained by comparing our results with the second-order Richardson
extrapolated values (bottom panel), is 0.03% (0.07%, 0.6%) for our high (medium,
coarse) resolutions.

by the series expansion f = f0 + f1/r, and comparing the result at our outermost extraction
radius with the limit f0. This procedure results in errors in Erad ranging between 0.5% and
3%. With the upper range, we arrive at a conservative total error budget for discretisation and
extraction of about 4%. As a final test, we have repeated the mini and +mini collisions for
d = 101 M with the independent GRChombo code [97, 98] using the CCZ4 formulation [95]
and obtain the same results within ≈1.5%. Bearing in mind these tests and a 4% error budget,
we next study the dynamics of the BS head-on collisions with and without our adjustment of
the initial data.

4.3. Radiated gravitational-wave energy

For our first test, we compute the total radiated GW energy for all our head-on collisions focus-
ing in particular on its dependence on the initial separation d of the BS centres. In this estimate
we exclude any spurious or ‘junk’ radiation content of the initial data by starting the integration
at t = Rex + 40 M. Unless specified otherwise, all our results are extracted at Rex = 300 M for
mini BS collisions and Rex = 84 M for the solitonic binaries.

The main effect of increasing the initial separation is a reduction of the (negative) binding
energy of the binary and a corresponding increase of the collision velocity around merger. In
the large d limit, however, this effect becomes negligible. For the comparatively large initial
separations chosen in our collisions, we would therefore expect the function Erad to be approx-
imately constant, possibly showing a mild increase with d. The mini BS collisions shown as
black × symbols in the upper panel of figure 6 exhibit a rather different behaviour: the radiated
energy rapidly decreases with d and only levels off for d � 150 M. We have verified that the
excess energy for smaller d is not due to an elevated level of junk radiation which consistently
contributes well below 0.1% of Erad in all our mini BS collisions and has been excluded from
the result of figure 6 anyway. The +miniBS collisions, in contrast, result in an approximately
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Figure 6. The GW energy Erad generated in the head-on collision of mini (upper panel)
and solitonic (lower panel) BS binaries starting with initial separation d and velocity
v = 0.1 towards each other. For comparison, a non-spinning, equal-mass BH binary
colliding head-on with the same boost velocity v = 0.1 radiates Erad = 6.0 × 10−4 M
[91].

constant Erad with a total variation approximately at the level of the numerical uncertainties. For
d � 150 M, both types of initial data yield compatible results, as is expected. The key benefit of
our adjusted initial data is that they provide reliable results even for smaller initial separations
suitable for starting BS inspirals.

The discrepancy is less pronounced for the head-on collisions of solitonic BS collisions;
both types of initial data result in approximately constant Erad. They differ, however, in the
predicted amount of radiation at a level that is significant compared to the numerical uncer-
tainties. As we will see below, this difference is accompanied by drastic differences in the BS’s
dynamics during the long infall period. We furthermore note that the mild but steady increase
obtained for the adjusted +soli agrees better with the physical expectations.

The differences in the total radiated GW energy also manifest themselves in different ampli-
tudes of the (2, 0) multipole of the Newman–Penrose scalar Ψ4. This is displayed in figures 7
and 8 where we show the GW modes for the mini and solitonic collisions, respectively. The
most prominent difference between the results for plain and adjusted initial data is the signifi-
cant variation of the amplitude of the (2, 0) mode in the plain mini BS collisions in the upper
panel of figure 7. In contrast, the differences in the amplitudes in figure 8 for the solitonic col-
lisions are very small. In fact, the differences in the radiated energy of the soli and +soli
collisions mostly arise from a minor stretching of the signal for the soli case; this effect is
barely perceptible in figure 8 but is amplified by the integration in time when we calculate the
energy. Finally, we note the different times of arrival of the main pulses in figure 8; especially
for larger initial separation, the merger occurs earlier for the soli configurations than for
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Figure 7. The (2, 0) mode of the Newman–Penrose scalar for the mini boson star col-
lisions of table 1. Rex denotes the extraction radius and the imaginary part of the (2, 0)
mode of Ψ4 vanishes for this configuration.

their adjusted counterparts +soli. We will discuss this effect together with the evolution of
the scalar field amplitude in the next subsection.

4.4. Evolution of the scalar amplitude and gravitational collapse

The adjustment (45) in the superposition of oscillations was originally developed in reference
[1] to reduce spurious modulations in the scalar field amplitude; cf their figure 7. In our sim-
ulations, this effect manifests itself most dramatically in the collisions of our solitonic BS
configurations soli and +soli. From figure 1, we recall that the single-BS constituents of
these binaries are stable, but highly compact stars, located fairly close to the instability thresh-
old. We would therefore expect them to be more sensitive to spurious modulations in their
central energy density. This is exactly what we observe in all time evolutions of the soli con-
figurations starting with plain-superposition initial data. As one example, we show in figure 9
the scalar amplitude at the individual BS centres and the BS trajectories as functions of time
for the soli and +soli configurations starting with initial separation d = 22.3 M. Let us
first consider the soli configuration using plain superposition displayed by the solid (black)
curves. In the upper panel of figure 9, we clearly see that the scalar amplitude steadily increases,
reaching a maximum around t ≈ 30 M and then rapidly drops to a near-zero level. Our interpre-
tation of this behaviour as a collapse to a BH is confirmed by the horizon finder which reports
an apparent horizon of irreducible mass mirr = 0.5 M just before the scalar field amplitude col-
lapses; the time of the first identification of an apparent horizon is marked by the vertical dotted
black line at t ≈ 30 M. For reference we plot in the bottom panel the trajectory of the BS centres
along their collision (here the x) axis. In agreement with the horizon mass mirr = 0.5 M, the
trajectory clearly indicates that around t ≈ 30 M, the BSs are still far away from merging into
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Figure 8. The (2, 0) mode of the Newman–Penrose scalar for the solitonic boson star
collisions of table 1. Rex denotes the extraction radius and the imaginary part of the (2, 0)
mode of Ψ4 vanishes for this configuration.

a single BH; in units of the ADM mass, the individual BS radius is r99 = 2.78 M. We interpret
this early BH collapse as a spurious feature due to the use of plain superposition in the initial
data construction. This behaviour is also seen in the case of the real scalar field oscillations
in [1].

We have tested this hypothesis with the evolution of the adjusted initial data. These exhibit
a drastically different behaviour in the collision +soli displayed by the dashed (red) curves
in figure 9. Throughout most of the infall, the central scalar amplitude is constant, it increases
mildly when the BS trajectories meet near x = 0, and then rapidly drops to zero. Just as the
maximum amplitude is reached, the horizon finder first computes an apparent horizon, now
with mirr = 0.99 M, as expected for a BH resulting from the merger; see the vertical red line in
the figure.

As a final test of our interpretation, we compare the behaviour of the binary constituents with
that of single BSs boosted with the same velocity v = 0.1. As expected, the scalar field ampli-
tude at the centre of such a single BS remains constant within high precision, about O(10−5),
on the timescale of our collisions. We have then repeated the single BS evolution by poisoning
the initial data with the very same term (44) that is also added near a single BS’s centre by the
plain-superposition procedure. The resulting scalar amplitude at the centre of this poisoned BS
is shown as the dash-dotted (blue) curve in figure 9 and nearly overlaps with the correspond-
ing curve of the soli binary. Furthermore, the poisoned single BS collapses into a BH after
nearly the same amount of time as indicated by the vertical blue dotted curve in the figure9.
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Figure 9. The central scalar-field amplitude |ϕctr| as a function of time for one BS in
the head-on collisions of solitonic BSs with distance d = 22.3 M (black solid and red
long-dashed) as well as a single BS spacetime with the same parameters (green dashed)
and the same single BS spacetime ‘poisoned’ with the metric perturbation (44) that
would arise in a simple superposition (see text for details). The dotted vertical lines
mark the first location of an apparent horizon in the simulation of the same colour;
as expected, no horizon ever forms in the evolution of the unpoisoned single BS. In
the bottom panel, we show for reference the coordinate trajectories of the BS centres
as obtained from locally Gauss-fitting the scalar profile. Around merger this procedure
becomes inaccurate, so that the values around t ≈ 70 M should be regarded as qualitative
measures, only.

Clearly this behaviour of the single boosted BS is unphysical, and strongly indicates that the
plain superposition of initial data introduces the same unphysical behaviour to oursoli binary
constituents. We have repeated this analysis for our entire sequence of soli binaries with very
similar results: the individual BSs always collapse to distinct BHs about Δt ≈ 50 M before the
binary merger.

Finally, the trajectories in the bottom panel of figure 9 indicate that the BS merger occurs
a bit later for the +soli case than its plain-superposition counterpart soli. This is indeed
a systematic effect we see for all initial separations d and which agrees with the different
arrival times of the peak GW signals that we have already noticed in figure 8. We do not
have a rigorous explanation of this effect, but note that the two trajectories in figure 9 start
diverging right at the time of spurious BH formation in the soli binary. Perhaps some of
the binding energy in BS collisions is converted into deformation energy rather than simply

9 Recall that this BS model is stable but fairly close to the stability threshold in figure 1 and therefore does not require
a large perturbation to be toppled over the edge.
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kinetic energy of the stars’ centres of mass, slowing down the infall compared to the BH case10.
Another explanation may consider the generally repulsive character of the scalar field which
endows it with support against gravitational collapse. When the infalling BSs collapse to BHs,
the scalar field essentially disappears as a potentially repulsive ingredient and the ensuing col-
lision is sped up. Whatever ultimately generates this effect, the key observation of our study is
that even rather mild imperfections in the initial data can drastically affect the physical outcome
of the time evolution.

5. Conclusions

We have simulated head-on collisions of equal-mass, non-spinning BS and the GW radia-
tion generated in the process. The main focus of our study is the construction of BS binary
initial data and the ensuing impact of systematic errors on the physical results of the simula-
tions. In particular, we have contrasted the relatively common method of plain superposition
according to equation (43) with the adjusted procedure (45) first identified in reference [1] for
oscillations.

Our results demonstrate that the adjustment (45) in the construction of initial data
leads to major improvements in the initial constraint violations and the time evolutions
of binary BS collisions. In contrast, we find that the use of plain superposition for BS binary
initial data may not only result in quantitatively wrong physical diagnostics but can even result
in completely spurious physical behaviour such as premature gravitational collapse. In spite
of the great simplicity of the adjustment (45) and its success in overcoming the most severe
errors in the ensuing evolution, it is not free of shortcomings. (i) In its present form, the adjust-
ment only works for a restricted class of binaries, namely equal-mass systems with no spin and
velocity vectors satisfying vi

Av
j
A = vi

Bv
j
B. (ii) Even with the adjustment, the initial data contain

some residual constraint violations; it should therefore primarily be regarded as an improved
initial guess for a constraint solving procedure rather than the ‘real deal’ in its own right. More
specifically, one may regard the adjustment (45) as a preconditioning that brings the initial
guess of a constraint solving procedure closer to the constraint satisfying surface in the space
of initial data and also closer to the targeted physical configuration of initially non-pulsating
BS binary constituents.

These shortcomings clearly point towards the most urgent generalisations of our work, over-
coming the symmetry restrictions and adding a numerical constraint solver. The main obstacle
in extending our method to asymmetric binaries arises from equation (45): for general binaries,
the terms γB

i j(x
i
A) and γA

i j (x
i
B) cease to be equal and we can no longer apply a constant correction

that simultaneously recovers the equilibrium metric for both stars. A possible solution may
consist in introducing weight functions into a compound correction wAγB

i j(x
i
A) + wBγA

i j (x
i
B)

that reduces to the necessary equilibrium corrections at both stars’ centers. Such weight func-
tions may be chosen phenomenological or based upon leading-order or (post-)Newtonian
expressions for the tidal corrections the stars exert on each other. A comprehensive explo-
ration of such a generalization of our method suffers more from an abundance of possibilities
rather than a lack of ideas; extensive numerical tests will then be needed to identify an optimal
strategy.

10 We note that the relativistic Love numbers (which measure the tidal deformability) of non-rotating BHs are zero
[99].
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Appendix A. Analytic treatment of the Hamiltonian constraint

For the case of two non-boosted BSs, we can analytically compute the Hamiltonian constraint
violation at the stars’ centres. Let us consider for this purpose the metric ansatz (31). From this
line element, we directly extract the spatial metric

γA
i j = ψ4

Aδi j. (A.1)

for a non-boosted BS at position xi
A. This metric is time-independent, so that for zero shift

vector the extrinsic curvature vanishes, KA
i j = 0. For the second binary member, we likewise

obtain a metric γB
i j and extrinsic curvature KB

i j = 0, now centred at position xi
B.

For sufficiently large initial separation d = ‖xi
B − xi

A‖, the exponential falloff of the scalar
field implies

φA(xB) = φB(xA) ≈ 0,

ΠA(xB) = ΠB(xA) ≈ 0.
(A.2)

The superposition of the two stars’ scalar fields results in

ϕ = ϕA + ϕB , Π = ΠA +ΠB, (A.3)

and, combined with equation (A.2),

ρ(xA) = ρA(xA),

ρ(xB) = ρB(xB).
(A.4)

24

https://tacc.utexas.edu


Class. Quantum Grav. 39 (2022) 074001 T Helfer et al

The single BS spacetimes are solutions to the Einstein equations; by using equation (A.1), their
individual Hamiltonian constraints (19) simplify to

HA = 8δi j∂i∂ jψA + 16πψ5
AρA = 0, (A.5)

and likewise for star B.
Next, we construct a binary spacetime by superposing the metric which leads to

ψ = ψA + ψB − c, (A.6)

where c is a constant which we keep arbitrary for the moment. For the Hamiltonian constraint
of the superposed spacetime at the centre of star A, we find

H(xi
A) = 8δi j∂ i∂ jψA(xi

A) + 8δi j∂i∂ jψB(xi
A)

+16π[ψA(xi
A) + ψB(xi

A) − c]5ρ(xi
A).

(A.7)

We can now choose the constant c in accordance with the ‘trick’ in equation (45), namely

c = ψB(xi
A), (A.8)

and the constraint simplifies to

H(xi
A) = 8δi j∂i∂ jψA(xi

A) + 8δi j∂i∂ jψB(xi
A)

+ 16πψA(xi
A)4ρ(xi

A).
(A.9)

By equation (A.5), the derivative of the conformal factor ψA cancels out the density ρA, so that

H(xi
A) = 8δi j∂i∂ jψB(xi

A). (A.10)

Using the analogue of equation (A.5) for star B, we trade the right-hand side for the energy
density,

H(xi
A) = −16πψB(xi

A)4ρB(xi
A). (A.11)

For sufficiently large separation d of the stars, however, this vanishes by equation (A.2) which
is the result we wished to compute. By symmetry, we likewise obtain H(xi

B) = 0, which
concludes our calculation.
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