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Abstract 
 

Oesophageal adenocarcinoma (OAC) incidence in Western countries has 

increased in the last decades. In the UK, 70-80% of patients are diagnosed with 

OAC at an advanced stage with metastatic disease. The late diagnosis impacts 

the success of OAC treatment resulting in a five-year survival rate of ~15%. This 

poor patient survival is further compounded by a high level of genetic inter-tumour 

heterogeneity. Despite international consortia extensively investigating the driver 

landscape of OAC, a significant proportion of OACs are partially explained by too 

few cancer driver genes. 

Consequently, the aim of this thesis is to complete the driver repertoire of a cohort 

of 675 OACs by employing a machine learning-based algorithm, sysSVM2, and 

to investigate the drivers’ role in OAC development. sysSVM2 learns about the 

molecular and systems-level properties (SLPs) of well-known cancer drivers to 

score and predict new ones in individual patients. Molecular properties define the 

driver alterations of individual OACs. SLPs describe the genes’ evolutionary 

origin and central role within the cell.  

Given that sysSVM2 prioritises drivers in single patients using a scoring system, 

we used a functional approach to compare two models predicting varying number 

of drivers per tumour. We estimated that five drivers per sample fully explained 

the development of OAC. Therefore, we compiled a comprehensive list of cancer 

drivers for all samples and investigated their frequency and functionality. Newly 

predicted drivers, some of which were targetable by oncological drugs, were 

preferentially sample-specific and hit immune- and DNA repair-related pathways. 

Well-known drivers were recurrent across samples and preferentially perturbed 

proliferative and invasion pathways. 

Finally, we found that OAC clinical stratification is sustained by different pathways 

that are active in a stage-specific fashion throughout the development of OAC. 
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Chapter 1. Introduction 

1.1 Oesophageal adenocarcinoma 

1.1.1 The epidemiology of OAC and its origin 

Oesophageal adenocarcinoma (OAC) is a disease of the distal oesophagus 

(Smyth et al., 2017). OAC incidence in Western countries has rapidly increased 

in the last decades (Coleman et al., 2018) exceeding that of oesophageal 

squamous cell carcinoma (OSCC), which remains the predominant subtype of 

oesophageal cancer worldwide (Smyth et al., 2017). OAC incidences are the 

highest in the United Kingdom (UK) and the Netherlands where the age-

standardised incidence rate for both countries in the male population was 

between 10.5-26.5 per 100000 people in 2012 (Rubenstein & Shaheen, 2015).  

There is a strong male predominance of OAC, with a 6:1 male-to-female ratio in 

Europe, reaching a 9:1 ratio in North America (Xie & Lagergren, 2016). Such 

high male predominance suggests that sex hormones may be involved in the 

development of OAC. A recent investigation has characterised the association 

between the genetic regulation of sex hormones and the risk of OAC (Xie et al., 

2020). The authors found that, based on the predicted effect of genetic 

mutations on the production of sex hormones, high levels of follicle-stimulating 

and luteinizing hormones were associated with increased and decreased risk 

of OAC, respectively.  

In addition to gender, a history of gastro-oesophageal reflux disease (GORD), 

obesity, age and tobacco smoking are other associated risk factors for OAC 

(Smyth et al., 2017). A 30-year history of GORD is associated with a 6.2-fold 

increased risk of developing OAC, in comparison tobacco smoking 

approximately doubles the risk of developing OAC compared with never 

smokers (Coleman et al., 2018).  

Although more than 50% of patients when diagnosed with OAC have no 

evidence of any precursor lesion (Sawas et al., 2018), OAC is thought to arise 

from a precancerous lesion known as Barrett’s oesophagus (BO) (Contino et 

al., 2017) (Figure 1.1). In BO the squamous epithelium of the distal oesophagus 
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is replaced with a crypt-like columnar epithelium resembling that of the intestine. 

This metaplastic state increases the risk of tumour development. As previously 

mentioned, one of the major risk factors for OAC is GORD, and BO is likely a 

reparative response to the damage induced by the refluxate (Peters et al., 2019). 

The incidence of BO in the general population is around 0.5–2% (Runge et al., 

2015) and BO-to-OAC progression increases in the presence of dysplasia. While 

the annual progression rate of non-dysplastic BO (NDBO) into OAC is 0.1–0.3%, 

in the presence of dysplasia it increases to at least 10% (Contino et al., 2017). 

 

 
Figure 1.1 Clinical progression from BO to OAC BO clinically progresses to OAC 
in a stepwise fashion where the non-dysplastic lesion progresses through different 
grades of dysplasia and transforms into an invasive disease where neoplastic cells 
have invaded the underlying basement membrane (Stage I). The tumour increases 
in size and metastasises regional lymph nodes (Stages II and III) and distant 
metastatic sites (Stage IV). The classification of OAC into clinical stages is based 
upon the 8th edition of the American Joint Committee on Cancer (AJCC) guidelines 
for oesophageal and oesophagogastric tumours (Rice et al., 2017). 
 

OAC is thought to originate from BO because of the cell of origin of the tumour. 

OAC is a disease of the columnar epithelium whereas the resident epithelium of 

the oesophagus is the squamous type. Genetic studies on matched BO and 
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OAC samples have identified that up to 80% of mutations overlap between the 

two samples in the same patient, further confirming the shared origin of BO and 

OAC (Agrawal et al., 2012; Ross-Innes et al., 2015). This is further supported 

by a genome-wide methylation analysis that described similar methylation 

profiles between BO and OAC (Xu et al., 2013). 

Some level of debate exists around the cell of origin of BO, hence also of OAC. 

A trans-differentiation of the oesophageal epithelium has been proposed as the 

mechanism initiating BO (Minacapelli et al., 2017). Alternatively, gastric cells 

have been proposed to migrate to the distal oesophagus, seeding the BO lesion 

(Quante et al., 2012). Finally, transitional basal progenitor or residual embryonic 

cells at the gastro-oesophageal junction (Jiang et al., 2017; Wang et al., 2011) 

or the expansion of the oesophageal submucosal gland duct into the BO 

segment (Owen et al., 2018) have been proposed to originate BO. A recent 

investigation integrating single-cell transcriptomic profiling and in silico lineage 

tracing using open chromatin, methylation and somatic mutation analyses has 

shown how BO originated from migrating gastric cardia cells to the distal 

oesophagus (Nowicki-Osuch et al., 2021). Additionally, the authors showed that 

all OAC tumours, even those diagnosed without any evidence of BO, shared the 

same marker expression profile with undifferentiated BO confirming the unique 

BO origin of OAC (Nowicki-Osuch et al., 2021). 

 

1.1.2 OAC clinical treatment 

In the UK, 70–80% of OAC patients are diagnosed with an advanced-stage 

tumour, when the lesion has become large and local (lymph node) or distant 

(other organs) metastases are already present (source: 

https://www.cancerresearchuk.org). This has a profound impact on the success 

of OAC treatment. OAC treatment is determined by evaluating the clinical 

staging of the tumour, which is usually done by following the American Joint 

Committee on Cancer (AJCC) staging guidelines (Rice et al., 2017). The AJCC 

system reports in standardised terms the size and depth of invasion of the 

tumour mass. It describes the size of the primary tumour (T), the number of 
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lymph nodes invaded by neoplastic cells (N), and the presence of distant 

metastasis (M). T varies from one to four, with higher scores representing a 

tumour that has invaded structures adjacent to the original epithelium. N is 

scored on a scale of zero to three with the maximum score representing 

evidence of at least seven lymph nodes invaded by neoplastic cells. The 

presence or absence of distant metastasis (M) is determined by a binary score 

of one or zero (Rice et al., 2017).  

Clinical staging is based upon an endoscopic examination and biopsy of the 

tumour for histological confirmation (Figure 1.2). Additionally, computerised 

tomography (CT) and positron emission tomography (PET) scans are carried 

out to exclude the presence of lymph node and distant metastases, respectively 

(Smyth et al., 2020). Only 19% of patients are treated with curatively-intended 

surgery as primary  care. The remaining patients are treated, often palliatively, 

with radiotherapy or chemotherapy. The treatment is chosen based on the 

results of the clinical assessment. Early-stage tumours (T1-2 N0 M0) are usually 

resected either endoscopically or surgically. Locally advanced non-metastatic 

tumours (T3-4 N1-3 M0) are usually treated with sequential lines of neoadjuvant 

chemotherapy to reduce the tumour mass. Resection is only performed when 

the presence of distant metastases in the patient can be excluded (M0). 

Advanced metastatic tumours (T1-4 N0-3 M1) are usually treated with multiple 

lines of chemotherapy that can be coupled with targeted or immunotherapy to 

improve patient survival. Clinically approved targeted and immunotherapies for 

OAC include trastuzumab, ramucirumab, nivolumab, and pembrolizumab 

(Smyth et al., 2020). 

Trastuzumab is an anti-human epidermal growth factor receptor 2 (HER2) 

monoclonal antibody. HER2 encodes the receptor tyrosine kinase (RTK) ErbB-

2 that is part of the epidermal growth factor receptor (EGFR) pathway. The 

involvement of ErbB receptors along with their ligands has been extensively 

reported in human cancers (Normanno et al., 2006). Given the central role of 

the EGFR pathway in multiple cellular signal transduction pathways, the ligand-

receptor network is involved in tumour pathogenesis and progression by 

promoting tumour growth and survival. Trastuzumab is suitable for patients 
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whose tumour shows amplification and overexpression of HER2. In the phase 

III Trastuzumab for Gastric Cancer (TOGA) trial patients were evaluated for 

HER2 overexpression by means of immunohistochemistry (IHC) and 

fluorescence in situ hybridisation (FISH). The median overall survival was 13.8 

months in patients treated with trastuzumab combined with chemotherapy 

compared with 11.1 months in patients treated with chemotherapy alone (Bang 

et al., 2010). Trastuzumab is currently used as first line treatment in HER2-

positive advanced metastatic tumours in addition to chemotherapy (Figure 1.2).  

Ramucirumab is an anti-vascular endothelial growth factor receptor 2 (VEGFR2) 

monoclonal antibody. Vascular endothelial growth factor (VEGF) is a key 

mediator of angiogenesis in cancer and binds two receptors: VEGFR1 and 

VEGFR2 (Carmeliet, 2005). The vasculature grows around the tumour to 

provide nutrients, and thus promoting sustained tumour growth. In addition, the 

VEGF pathway is involved in invasion and metastasis. The phase III RAINBOW 

trial evaluated the effect of ramucirumab in a cohort of patients with gastric and 

gastro-oesophageal junction adenocarcinoma. The investigators found that the 

median overall survival was 9.6 months in patients treated with ramucirumab 

combined with chemotherapy compared with 7.4 months in patients treated with 

chemotherapy alone (Wilke et al., 2014). Ramucirumab is currently used as 

second line treatment in combination with chemotherapy in advanced metastatic 

tumours (Figure 1.2). 

Nivolumab and pembrolizumab are anti-programmed cell death protein 1 (PD1) 

monoclonal antibodies. The immune-checkpoint PD1 plays a central role in the 

inhibition of the immune system via modulating the activity of T cells (Han et al., 

2020). The binding of PD1 to its ligand programmed death-ligand 1 (PDL1) 

results in T cell inactivation and mechanisms of immune escape. Consequently, 

the blockade of PD1 or PDL1 results in the release of mechanisms for anti-

tumour response. This inhibition has proven successful in the treatment of 

different solid tumours and haematological malignancies (Han et al., 2020). In 

the phase II KEYNOTE-059 study patients with gastric and gastro-oesophageal 

junction adenocarcinoma treated with pembrolizumab showed a median 

response duration of 8.4 months supporting further investigation into this drug 
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for advanced tumours (Fuchs et al., 2018). These two immunotherapy drugs are 

currently used in the clinic for patients whose advanced tumours have 

progressed after two or more lines of treatment and are thus defined as chemo-

refractory (Figure 1.2). 

 

 
Figure 1.2 Clinical treatment of OAC 
The staging of the tumour is usually done at diagnosis, termed clinical staging. This 
step entails an endoscopy of the primary tumour along with CT and PET scans to 
investigate the presence of lymph node or distant metastases. Tumours whose size 
is limited (T1-2) and show no evidence of lymph nodes (N0) and distant (M0) 
metastases are usually resected without any neoadjuvant treatment. Locally 
advanced non-metastatic tumours are larger in size (T3-4) and show evidence of 
lymph node metastases (N1-3). These tumours are treated with one or more lines of 
neoadjuvant chemotherapy in order to reduce the tumour size. If the neoadjuvant 
treatment is successful and there is no evidence of distant metastases (M0), the 
surgery is done. Advanced tumours where the tumour has metastasised (M1) are 
treated with multiple lines of chemo-treatment combined with targeted or 
immunotherapy if the corresponding biomarkers are present. Figure adapted from 
(Smyth et al., 2017, 2020). 
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The above-mentioned drugs in combination with chemotherapy and 

radiotherapy represent the current standard of care for OAC treatment. 

However, other targeted therapies have been tested over the years in the 

context of OAC. Targeting other components of the EGFR pathway, such as 

HER3 and HER4, via monoclonal antibodies and small molecule tyrosine kinase 

inhibitors has not proven beneficial in the clinical setting (Woo et al., 2015).  

Similarly, the inhibition of the mesenchymal epithelial transition factor (MET) 

receptor, which binds the hepatocyte growth factor (HGF) and is associated with 

proliferation and invasion, has not shown any increase in patient survival (Young 

& Chau, 2016). In addition, FGFR2 controls mitogenesis and differentiation. 

Although it is amplified in 5-10% of advanced gastric cancers, the inhibition of it 

has not shown any impact on improving patient progression-free survival (Bang 

et al., 2015).  

Despite all efforts to improve the clinical treatment of OAC, the overall five-year 

survival rate for this cancer remains relatively poor, between 15% and 20% 

(Ferlay et al., 2015). 

 

1.2 OAC cancer driver genes 

1.2.1 Next-generation sequencing studies in OAC  

The advancement of the field of targeted therapies relies heavily on molecular 

studies to elucidate the genetic mechanisms responsible for OAC development. 

Recent years have seen a surge in cancer genomics studies aimed at the 

identification of genes that, upon acquiring somatic alterations, contribute to the 

growth of the tumour, thus termed cancer driver genes. This surge has resulted 

in the sequencing of tens of thousands of tumours (Dressler et al., 2022). Further, 

decreased sequencing costs have created a large pool of cancer genome data 

available for the investigation of cancer driver genes.  

Specifically, due to the increase of OAC incidence in Western countries, most of 

the recent analyses and resulting literature represent the foundation stone for the 

clinical treatment of OAC. The first study analysing the genome of a small cohort 
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of OAC patients (e.g., 𝑛𝑛=11) using next-generation sequencing (NGS) was 

published in 2012 (Agrawal et al., 2012). In this seminal paper the authors 

compared the recurrently altered genetic coding drivers in OAC and OSCC. They 

identified differences by means of different frequencies of altered genes: OSCC 

was characterised by frequent coding driver alterations in TP53, NOTCH1 and 

NOTCH3 (>20% of samples), whereas OAC was characterised by frequent driver 

alterations in TP53 alone (>70% of samples) (Agrawal et al., 2012). Recent 

screenings have focused on larger cohorts and on the integration of different data 

types such as somatic copy number analysis (SCNA), DNA methylation, and 

mRNA expression. They showed that the molecular phenotype of OAC more 

closely resembles that of gastric cancer than that of OSCC (Kim et al., 2017; Liu 

et al., 2018). Based on the integration of multiple sources of molecular data, the 

authors argued against clinical trials combining the two subtypes of oesophageal 

cancers (Kim et al., 2017), supporting instead the grouping of OAC with gastric 

cancers for clinical investigations on neoadjuvant, adjuvant and systemic 

therapies (Smyth et al., 2020). 

Both OAC and its precursor lesion, BO, have a high mutational frequency 

comparable to that of cancer types known to be caused by environmental 

mutagens, such as lung and melanoma (Dulak et al., 2013; Stachler et al., 2015). 

This raises the question as to whether OAC can be also attributed to 

environmental stimuli. Different groups working with different OAC cohorts have 

observed a common mutational signature that comprises T>G substitutions in a 

CTT context (Dulak et al., 2013; Secrier et al., 2016; Stachler et al., 2015). 

Though the signature is of unknown aetiology, it has been suggested to result 

from the exposure to bile acids that continuously invade the distal oesophagus in 

patients with GORD (Contino et al., 2017). 

Most of the mutations identified by mutational screenings on OAC resulted in a 

loss-of-function (LoF) effect on the genes harbouring them (Agrawal et al., 2012; 

Dulak et al., 2013). Genes that drive tumour progression due to their lost or 

inactivation are commonly defined as tumour suppressor genes (TSGs) 

(Vogelstein et al., 2013). Under normal conditions TSGs control cell proliferation 

by arresting the cell cycle and inducing cell death upon DNA damage. In contrast, 
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oncogenes (OGs) promote neoplastic growth when activated or present in 

multiple copies within the cell (Vogelstein et al., 2013). 

Shortly after the first seminal studies on mutational coding drivers (Agrawal et al., 

2012; Dulak et al., 2013), it became evident that the major drivers of OAC 

development were structural rearrangements (Nones et al., 2014). Nones and 

colleagues observed that 33% of OACs showed evidence of catastrophic 

chromosomal events. Evidence of large and clustered genomic rearrangements 

(chromothripsis) and breakage-fusion-bridges (BFBs) were among the most 

recurrent events of chromosomal aberrations in OAC (Nones et al., 2014). Such 

events have been proposed to underlie mechanisms of oncogenic activation 

given the overlap of these aberrant regions with potent OGs. The acquisition of 

such catastrophic events might also explain why BO patients under routine 

surveillance quickly develop the tumour without linearly progressing through the 

clinical stages of OAC development.  

Further genomic instability in OAC is acquired through events of whole genome 

doubling (WGD), during which the entire genome duplicates resulting in twice the 

number of chromosomes of a diploid cell. Evidence of at least one event of WGD 

was observed in up to 62.5% of sequenced OAC cases, confirming the role of 

different forms of chromosomal instability (CIN) in the development of OAC 

(Stachler et al., 2015). 

Recent whole genome sequencing (WGS) and whole exome sequencing (WES) 

studies have investigated the frequency of cancer driver genes in large cohorts 

of samples (Frankell et al., 2019; Liu et al., 2018; Secrier et al., 2016). The largest 

of these comprised 551 OAC cases (Frankell et al., 2019). These studies 

confirmed that the most frequent genetic alterations (via mutations or copy 

number alterations, CNAs) affected TP53 in more than 70% of samples. The 

second most frequently altered gene (via mutations or CNAs) was CDKN2A with 

a frequency of less than 20%. Interestingly, CDKN2A was found silenced through 

epigenetic mechanisms in 75% of OACs (Liu et al., 2018), suggesting the 

importance of non-genetic mechanisms to explain the presence of OAC. 

Developing tailored strategies based on the pool of alterations present in OAC is 

challenging given the heterogeneous nature of the disease. Most of the tools 
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used so far for driver detection mainly rely on the identification of genes that are 

frequently altered within sample cohorts. Such an approach is limited by the 

driver heterogeneity present in OAC. 

The application of a machine learning tool, developed by the Ciccarelli lab, for 

patient-specific driver predictions to a cohort of 261 OACs allowed for the first 

time to complete the driver repertoire of all the OAC samples under investigation 

(Mourikis et al., 2019). This resulted in almost 1000 genes predicted as drivers 

across the sample cohort with the majority of them being rare or patient-specific. 

Mourikis and colleagues showed how tools for patient-specific predictions can 

help filling in the gap and understanding the specific evolutionary history of 

individual OACs. Identifying the genetic drivers responsible for tumour 

development is the first step towards improving the poor patient survival that is 

pervasive of this cancer type. 

 

1.2.2 Cancer driver genes involved in the BO-to-OAC progression 

Given the low progression rate of BO to OAC (see Chapter 1.1.1), a key aim of 

current research is to identify biomarkers of progression able to predict the group 

of BO patients that are most at risk of progressing to OAC, thus requiring 

additional surveillance. This will shed light on the mechanisms responsible for 

OAC initiation and open possibilities for early intervention in the treatment of 

OAC. In this context, some studies have investigated the driver landscape of both 

BO and OAC in matched and unmatched cases (Ross-Innes et al., 2015; Stachler 

et al., 2015; Weaver et al., 2014). 

Weaver and co-authors studied a cohort of samples composed of 112 OACs, 66 

NDBO cases, and 43 patients with high-grade dysplasia (HGD, the stage 

preceding the development of OAC) (Weaver et al., 2014). They found that the 

majority of recurrently mutated genes in OAC were also mutated in NDBO and 

HGD cases at similar frequencies. However, two such genes acquired mutations 

in a stepwise manner and defined stage boundaries of the disease. They found 

TP53 mutated in 72% of HGD cases and 69% of OACs but only 2.5% of NDBO 

samples. SMAD4 was altered, although at a low frequency (13%), only in OACs. 
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Although informative, the study did not investigate matched BO and OAC cases 

and, given the low progression rate of BO to OAC, it is difficult to understand 

which characteristics apply to progressors and which apply to non-progressor BO 

patients (Weaver et al., 2014). 

To better address the study of the clonal organisation of progressor BO and the 

genetic mechanisms underlying malignant transformation, two studies focused 

on matched BO and OAC pairs (Ross-Innes et al., 2015; Stachler et al., 2015). 

In 57% of the cases, fewer than 20% of the single nucleotide variants (SNVs) 

overlapped between BO and OAC pairs, with dysplastic cases sharing more 

SNVs with the corresponding OAC than NDBO cases. Such little overlap might 

be the result of the long BO evolutionary history before seeding the tumour. An 

in-depth spatiotemporal study of a single BO patient showed that BO originated 

from an individual founder cell. The initiating cell quickly gave rise to multiple 

clones within the BO segment with varying ability to expand and seed further 

clones (Ross-Innes et al., 2015). 

Previous analysis on BO already suggested it to be a multiclonal condition 

(Galipeau et al., 1999). In BO, clones with either one or both of 9p (harbouring 

CDKN2A) and 17p (harbouring TP53) loss of heterozygosity (LOH) would 

expand and invade a large proportion of the oesophagus. This seminal analysis 

also showed that 9p LOH usually occurred before 17p LOH (Galipeau et al., 1999).  

Further analyses identified a sequential acquisition of driver alterations whereby 

CDKN2A inactivation occurred in the early stages of BO and the clone bearing 

such alterations usually expanded and invaded the whole segment (Maley et 

al., 2004). The early inactivation of CDKN2A was supported by the evidence 

that CDKN2A alterations underwent fixation more frequently than any other 

alteration in BO. For example, TP53 modifications occurred later in the 

evolutionary history of the disease and they required an existing CDKN2A 

mutant clone to expand on (Maley et al., 2004). In a later paper the same group 

identified TP53 as the gene responsible for BO-to-OAC progression (Maley et 

al., 2006). TP53 favoured progression through genomic instability and patients 

with a more unstable and clonally diverse BO were more likely to progress to 

OAC (Maley et al., 2006). Based on these observations, the very first model of 
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BO progressing to OAC postulated that BO acquired alterations in CDKN2A via 

LOH, point mutations or changes in the methylation status. These were followed 

by alterations in TP53, via LOH or point mutations, whereas aneuploidy marked 

the final malignant transformation (Maley, 2007) (Figure 1.3, Model 1). This 

mechanism was additionally supported by the observation that alterations in 

TP53 and CDKN2A gene loci were common in both BO and OAC, suggesting 

early acquisition of such mutations in the evolutionary history of the disease 

even before the tumour developed (Barrett et al., 1999). 

 

 
Figure 1.3 Genetic models of BO-OAC progression 
The first model postulates that alterations in CDKN2A are acquired very early on, 
usually at the level of NDBO. When dysplasia occurs, the lesion usually acquires 
alterations in TP53. Finally, the cell becomes malignant after acquiring additional 
aneuploidy (Maley, 2007; Maley et al., 2004; Maley et al., 2004). The second model 
postulates that alterations in TP53 are acquired when BO develops before the 
appearance of dysplasia. When dysplasia develops the cell usually doubles its 
genetic material (WGD). Finally, the tumour develops by acquiring additional 
alterations affecting mainly oncogenes (Stachler et al., 2015). WGD: whole-genome 
doubling, alt: alteration. 
 

Stachler and colleagues presented evidence in OAC of a fast-track mechanism 

for tumour development (Stachler et al., 2015). According to their observation, 

TP53 acquired driver alterations in the early, pre-dysplastic stages of BO. These 

alterations were then followed by a WGD event at the level of dysplastic BO 
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(DBO) (Stachler et al., 2015). The final malignant conversion was characterised 

by increased aneuploidy through the acquisition of alterations in oncogenes 

mainly via gene amplifications (Stachler et al., 2015) (Figure 1.3, Model 2). 

Although the TP53 and WGD model was most frequent, the authors also found 

evidence of the CDKN2A and TP53 model in their cohort of matched cases 

(Stachler et al., 2015). Their finding argued against the evidence that the 

acquisition of mutations in TP53 marked the boundary between NDBO and DBO 

(Weaver et al., 2014).  

The investigation of the driver events responsible for BO-to-OAC progression 

can help inform strategies for the early detection and treatment of patients who 

are more likely to progress. However, given the heterogeneous driver landscape 

of OAC, it is tempting to speculate that these two proposed models are not 

sufficient to explain all OAC cases and further investigation into these 

mechanisms is likely needed in the future. 

 

1.2.3 A debated point: the number of driver events needed per tumour 

A long-standing question in the cancer genomics field concerns the number of 

driver genes needed for malignant transformation. This number is highly 

heterogeneous and varies across cancer types, primary sites, and theoretical 

approaches used to derive it. 

The first attempt to calculate the number of drivers predated the advent of 

cancer genomics and relied on cancer age incidence data (Armitage & Doll, 

1954). The approach was based on the evidence that the incidence of cancer 

in the population increased with age. The incidence of common cancers, such 

as colorectal adenocarcinoma, breast carcinoma, and pancreatic ductal 

adenocarcinoma, increased to the power of four to six as a function of age. This 

led to the hypothesis that cancer could be the result of four to six rate-limiting 

steps, namely driver events, that accumulated randomly at a constant rate 

throughout life (Armitage & Doll, 1954). The fundamental idea behind this 

approach is to use mathematical approximation to fit the observed trend of 

tumour incidence.  
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This method has been applied to multiple cancer types (Martincorena & 

Campbell, 2015; Tomasetti et al., 2015), including OAC where it predicted the 

occurrence of three drivers per sample (Jeon et al., 2006). The authors obtained 

age-specific incidence data for 4483 white males and 746 white females 

diagnosed with OAC between 1973 and 2000 from the Surveillance 

Epidemiology and End Results (SEER) registry in the United States. The most 

parsimonious model fitting the data suggested that OAC developed from an 

initial step of tissue conversion (BO) followed by a multi-stage process 

characterised by three rate-limiting steps. According to the model, the first two 

steps resulted in an initiated cell that expanded clonally into a premalignant 

lesion followed by a final conversion to malignancy (Jeon et al., 2006). The 

mathematical model of OAC development well overlapped with the evidence 

available at the time according to which in BO there was evidence of clonal 

expansion (Maley et al., 2004) and of a sequential acquisition of genetic 

changes that resulted in tumour formation (Maley, 2007) (Figure 1.3, Model 1). 

More recently, the number of drivers has been measured as the number of 

genes whose mutations are under positive selection because of the selective 

advantage they provide to tumour cells (Martincorena et al., 2017). In the case 

of OAC, these resulted in a median of five driver events per sample. The authors 

applied dNdScv, a method widely used to predict driver genes, on a pan-cancer 

cohort of 7664 samples from 29 cancer types including OAC. The tool is based 

on the rationale that genes could accumulate mutations under positive, neutral 

or negative selection. These different evolutionary trajectories are obtained by 

calculating the rate of non-synonymous to synonymous mutations across the 

coding region of the genome.  

Genes under neutral selection represent the vast majority of the human coding 

genes (97-98%). They represent those genes with a mutation rate comparable 

to that expected by chance, the background mutation rate. Genes under positive 

selection represent 1-3.9% of all the human coding genes and they accumulate 

an excess of mutations that are likely to act as drivers in cancer patients. Finally, 

genes under negative selection represent a small portion of the human coding 

genome (0.02-0.5%) and are the pool of genes in which mutations are selected 
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against since their mutation rate is below the background mutation rate 

(Martincorena et al., 2017).  

In the context of oesophageal cancer, the authors found that five drivers are 

needed per tumour (Martincorena et al., 2017). One limitation of this study was 

that, due to the low number of samples, OSCC and OAC were treated as a 

single homogenous group. Interestingly, the study showed that half of the driver 

events occurred in yet-to-be-discovered cancer driver genes (Martincorena et 

al., 2017). 

Both the age-incidence and the positive selection method assume a constant 

number of drivers throughout the evolutionary history of an individual cancer. 

For example, Martincorena and colleagues compared the number of driver 

genes between early-stage and late-stage tumours and found no statistically 

significant difference at the pan-cancer level (Martincorena et al., 2017). This is 

in line with the hypothesis according to which the transformed cell already has 

the capacity to metastasise and no additional drivers must be acquired to gain 

the invasive phenotype after the malignant transformation (Vogelstein & Kinzler, 

2015). However, genomic instability increases as OAC progresses (Newell et 

al., 2019; Nones et al., 2014) and some of these newly acquired mutations might 

have functional implications in the progression of the disease. 

Based on the literature and as outlined above, two models explain the 

development of OAC in terms of the number of driver genes (Jeon et al., 2006; 

Martincorena et al., 2017); however, evidence shows that there is heterogeneity 

regarding the definitive number of cancer driver genes needed to explain the 

presence of the disease. 

 

1.3 Beyond cohort-based cancer driver detection methods 

1.3.1 Limitations of cohort-based approaches 

The identification of cancer driver genes along with the number of drivers required 

in individual tumours enables the unravelling of the processes that sustain tumour 

initiation and growth. This mechanistic understanding can then be exploited to 
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develop targeted therapies based on the genetic profiling of cancer patients. The 

main challenge for identifying driver genes is to differentiate between genes that 

harbour driver mutations and genes acquiring alterations that do not contribute 

to the disease (passenger alterations). 

Most current methods for driver identification rely on the recurrence of mutations 

across patient cohorts. The rationale is to identify the mutated genes that confer 

selective advantage to tumour cells, causing their mutations to be selected for 

and fixed across patients. Such tools inevitably rely on the size of the cohort 

under study. The larger the cohort, the higher the number of driver genes 

identified and the more comprehensive our understanding of cancer genes 

becomes (Repana et al., 2019). Some tools, such as MutSigCV (Lawrence et al., 

2013) and MuSiC (Dees et al., 2012), focus on genes whose mutation rate is 

above the background mutation rate in the cohort under investigation. dNdScv 

(Martincorena et al., 2017) identifies driver genes by deriving the ratio of non-

synonymous to synonymous mutations in order to characterise genes that are 

more likely to contribute to cancer given the accumulation of excess mutations 

(see Chapter 1.2.3). Such excess mutations are more likely to be drivers given 

their selection across multiple samples. OncodriveCLUST (Tamborero et al., 

2013a) identifies mutations that cluster in specific amino acids, while ActiveDriver 

(Reimand & Bader, 2013) and OncodriveFM (Gonzalez-Perez & Lopez-Bigas, 

2012) identify mutations with a functional impact on the encoded protein.  

For the identification of CNAs, GISTIC2 is the most widely used tool for driver 

detection (Mermel et al., 2011). However, the tool identifies recurrently deleted 

or amplified regions with little information as to which gene within the region is 

acting as driver. 

Despite all these efforts, even when several methods for driver detection are 

combined (Tamborero et al., 2013b; Bailey et al., 2018), a sizeable number of 

cancer patients are still left with very few driver genes. In a screening of 3205 

tumours from 12 different cancer types the authors applied five tools for driver 

identification based on the recurrence and functional impact of mutations. Despite 

identifying 291 cancer driver genes overall, almost 35% of the samples had less 

than three drivers per tumour (Tamborero et al., 2013b). The high number of 
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patients with too few cancer driver genes is particularly evident for cancer types 

that have a high degree of inter-tumour heterogeneity, such as OAC (Frankell et 

al., 2019).  

The limitations of cohort-based approaches have already been encountered and 

acknowledged in the context of OAC (Dulak et al., 2013; Weaver et al., 2014). 

Dulak and co-authors applied MutSigCV on a cohort of 149 samples and 

identified 26 significantly mutated (false discovery rate (FDR) <0.1) genes. 

However, they rescued 22 additional genes whose mutation frequency did not 

reach statistical significance but whose involvement in cancer had been 

extensively reported (Dulak et al., 2013). The inclusion of biological knowledge 

in order to compile a comprehensive list of driver genes has also been applied in 

other studies (Weaver et al., 2014). Such an approach, however valid, is limited 

by the current knowledge on cancer drivers and does not allow the discovery of 

new genes previously unrelated to cancer. 

One further limitation of cohort-based tools is their bias to identify frequently 

mutated driver genes, while neglecting rare driver events that are active in 

individual patients. To overcome this limitation, other tools aim to detect driver 

genes at the patient level rather than at the cohort level. This is more challenging 

because it is not possible to rely on an underlying population of tumours to identify 

signals of positive selection but predictions are performed on the individual 

tumour sample. DriverNet (Bashashati et al., 2012) and OncoIMPACT (Bertrand 

et al., 2015) combine several types of omics data to define perturbed networks 

of gene expression from which to infer driver genes at the patient level. PHIAL 

(Van Allen et al., 2014) and iCAGES (Dong et al., 2016), in addition to 

characterising patient-specific driver genes, return a clinical interpretation of 

somatic variants. sysSVM, developed and maintained by the Ciccarelli lab, 

predicts cancer driver genes in individual patients (Mourikis et al., 2019). The tool 

is based on supervised machine learning and the rationale behind it is that 

somatic alterations promoting cancer affect genes with distinct properties 

(D’Antonio & Ciccarelli, 2013). Such properties are a combination of molecular 

and systems-level properties (SLPs). Molecular properties include somatic 

alterations that individual tumours acquire throughout their evolutionary history. 
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SLPs are evolutionary, genomic, gene expression, and network properties that 

describe the cellular role and evolutionary origin of human genes. They include 

gene duplicability (Rambaldi et al., 2008), gene evolutionary origin (Syed et al., 

2010), breadth of gene and protein expression in human tissues (An et al., 2016), 

gene essentiality (Repana et al., 2019), connections and position of the protein 

in the protein-protein interaction network (PPIN), and number of associated 

regulatory microRNAs (miRNAs) (D’Antonio et al., 2012). 

 

1.3.2 Systems-level properties of cancer driver genes 

Cancer sequencing screens predict cancer driver genes based on statistical 

frameworks (Raphael et al., 2014). Given the variability in cancer driver detection 

methods and the corresponding output it is important to maintain an up-to-date 

and consistent overview of driver genes involved in cancer. To this end, the 

Network of Cancer Genes (NCG) was first established in 2010 (Syed et al., 2010).  

NCG is a resource developed and curated by the Ciccarelli lab and available to 

the community online at http://network-cancer-genes.org/. The goal of NCG is to 

maintain an up-to-date comprehensive list of cancer driver genes from the 

literature and to annotate their SLPs.  

Since cancer driver genes show a distinct SLP profile that is different from that of 

the rest of human genes (Repana et al., 2019), this characteristic was later 

exploited to develop a patient-specific cancer driver prediction tool (Mourikis et 

al., 2019). 

Specifically, cancer genes are more present as singletons in the human genome 

(Rambaldi et al., 2008) and originate earlier in evolution (Syed et al., 2010) 

compared to the rest of human genes. The central role of cancer genes across 

tissues is exemplified by their ubiquitous expression both at the gene (An et al., 

2016) and protein (Repana et al., 2019) level. Cancer genes are targeted by 

many more miRNAs than the rest of human genes (D’Antonio et al., 2012). They 

encode proteins that are highly-interconnected hubs in the PPIN (D’Antonio et 

al., 2012) and that are involved in more complexes than the rest of human genes 

http://network-cancer-genes.org/
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(An et al., 2016). Finally, cancer genes are essential in a higher fraction of human 

cell lines than the rest of human genes (Repana et al., 2019). 

SLPs also highlight different cellular roles and evolutionary paths of TSGs and 

OGs. TSGs are older, less duplicated, more ubiquitously expressed, and more 

essential than OGs (Repana et al., 2019). These traits underlie the specific role 

of these two sets of genes in the cell. TSGs are involved in the maintenance of 

basic cellular functions such as cell cycle and gene expression. OGs, on the other 

hand, are preferentially involved in regulatory functions, which tend to be more 

tissue-specific and less ubiquitous, such as signal transduction and the control of 

the immune system (Dressler et al., 2022). 

Overall, NCG provides the cancer research community with the crucial collection 

of an up-to-date list of cancer driver genes and builds the foundation of the cancer 

prediction tool, sysSVM (Mourikis et al., 2019), and its implementation, sysSVM2 

(Nulsen et al., 2021). 

 

1.3.3 sysSVM2: a tool for patient-specific driver predictions 

sysSVM2, the recent implementation of sysSVM (Mourikis et al., 2019), is a tool 

for the identification of driver genes at the individual patient level (Nulsen et al., 

2021). The tool is based on a supervised machine learning algorithm that scores 

genes based on their molecular and SLPs.  

sysSVM2 prioritises genes with features similar to those of genes that have been 

experimentally validated to be involved in tumorigenesis (namely, canonical 

cancer driver genes). Canonical drivers differ from the rest of human genes by 

SLPs that define these genes as a group as previously described (see Chapter 

1.3.2). Additionally, canonical drivers are described using molecular properties. 

Molecular properties are defined as mutations and CNAs, affecting the gene 

expression or impacting on the protein functionality (hence termed damaging), 

that occur in the individual cancer sample. 

sysSVM2 leverages these two sets of properties to rank damaged genes in 

individual cancer patients. The more similar the gene properties are to those of 

canonical drivers, the higher rank the gene will be assigned. Highly ranked genes, 
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given their similar property profile to that of canonical drivers, will then be 

considered the cancer drivers for that patient. 

The sysSVM2 algorithm uses a one-class classifier (OCC) that consists of four 

support vector machines (SVMs). An OCC has been selected as the most 

appropriate classification system due to limitations in the current knowledge of 

cancer driver genes (Nulsen et al., 2021). While it is possible to confidently define 

the true set of cancer driver genes (Dressler et al., 2022; Saito et al., 2020; 

Sondka et al., 2018; Vogelstein et al., 2013), it is more challenging to describe 

and identify non-cancer genes, i.e., genes that categorically do not contribute to 

cancer. 

 

 
Figure 1.4 Overview of sysSVM2 workflow 
The three steps that constitute sysSVM2 pipeline and its final output are shown: in 
the first ‘feature mapping’ step, molecular and systems-level features are mapped to 
each damaged gene in each patient. The second ‘model selection’ step consists of 
multiple iterations to tune the four SVMs’ parameters. After defining the parameter 
values the tool performs the actual ‘training and prediction’ phase and returns a 
ranked list of patient-specific predictions. The figure was created using BioRender. 
 

The four SVMs are trained on canonical cancer driver genes. sysSVM2 returns a 

list of damaged genes ranked in each patient accordingly to their similarity to the 

canonical drivers used for training. Specifically, sysSVM2 consists of three steps 

(Figure 1.4): 

• Feature mapping; 

• Model selection; 

• Training and prediction. 

In the first step, seven molecular and 19 systems-level features (Table 1.1) are 

mapped to all the damaged genes in individual patients. The genes are then 
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divided into training and prediction datasets. The training set consists of 

canonical drivers damaged in the cohort under study that will be used to optimise 

the parameters of the four SVMs. This is done through iterations of cross-

validation. The training set is randomly split at every iteration, and 2/3 of the 

genes are used to train the models with the remaining 1/3 used as a test set. The 

choice of the optimal model parameters is based on the sensitivity to retrieve 

canonical cancer drivers calculated at every iteration. Predictions are performed 

on the group of genes used as test set and the sensitivity to predict canonical 

driver genes is computed for each combination of parameters. The best models 

for the four SVMs are those with the highest sensitivity to retrieve canonical 

drivers and the lowest variance across multiple iterations (Nulsen et al., 2021). 

 
Table 1.1 sysSVM2 features 
The 26 features used by sysSVM2 for prioritising cancer driver genes are listed. For 
each feature the corresponding molecular or systems-level property, the type 
(whether it is binary or continuous) and the category are reported. 
Property Feature Feature type Category 
Mutation Exonic mutations (n) Continuous Molecular 

Mutation Non-truncating damaging 
mutations (n) Continuous Molecular 

Mutation Truncating mutations (n) Continuous Molecular 
Mutation GoF mutations (n) Continuous Molecular 
CNA Gene copy number (n) Continuous Molecular 
CNA Gene amplification Binary Molecular 
CNA Gene deletion Binary Molecular 
Conservation Pre-metazoan origin Binary Systems-level 
Conservation Metazoan origin Binary Systems-level 
Conservation Vertebrate origin Binary Systems-level 
Conservation Post-vertebrate origin Binary Systems-level 
Duplication Gene duplication Binary Systems-level 
Duplication Gene ohnolog Binary Systems-level 
Expression Tissues expressing gene (n) Continuous Systems-level 
Expression Gene expressed in 0 tissues Binary Systems-level 

Expression Gene expressed in 
7≤tissues≤36 Binary Systems-level 

Expression Tissues expressing protein (n) Continuous Systems-level 

Expression Protein expressed in ≥41 
tissues Binary Systems-level 
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Protein 
interactions 

Complexes the protein is part of 
(n) Continuous Systems-level 

Protein 
interactions PPIN degree Continuous Systems-level 

Protein 
interactions Protein: hub in PPIN Binary Systems-level 

Protein 
interactions PPIN betweenness Continuous Systems-level 

Protein 
interactions PPIN clustering coefficient Continuous Systems-level 

miRNA 
interactions miRNAs targeting the gene (n) Continuous Systems-level 

Essentiality Cell lines in which the gene is 
essential (%) Continuous Systems-level 

Essentiality Essential gene Binary Systems-level 
 

Once the best models are identified, the whole training set is used to train the 

four SVMs and the trained models are finally employed for predictions. A score 

that combines the predictions from the four SVMs is computed and used to rank 

genes in single samples (Figure 1.4). In each sample the genes that more closely 

resemble canonical cancer drivers used for training the model will rank higher 

and are therefore more likely to contribute to cancer in the corresponding sample. 

One of the strengths of sysSVM2 is that it prioritises cancer driver genes over 

false positives and non-cancer genes regardless of the size of the training cohort. 

Even in small cohorts of samples (e.g., 𝑛𝑛=10), the recall of cancer driver genes 

over false positives and the rest of human genes is comparable to that of large 

cohorts of up to 1000 samples (Nulsen et al., 2021). 

When benchmarked against other patient-specific driver detection methods, such 

as DriverNet (Bashashati et al., 2012) and OncoIMPACT (Bertrand et al., 2015), 

sysSVM2 showed a lower recall of false positives and outperformed the other 

methods in predicting cancer driver genes in individual patients (Nulsen et al., 

2021).  

sysSVM2 has been developed and implemented with the ultimate goal of 

prioritising cancer genes in individual patients by exploiting the similarity of genes 

SLPs to that of canonical drivers. This rationale has proven successful in 
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identifying the complete cancer driver gene repertoire in a pan-cancer cohort of 

7646 tumour samples (Nulsen et al., 2021). 

 

1.4 Aim of the thesis 

This thesis aims to investigate the role of genetic inter-tumour heterogeneity in 

shaping oesophageal adenocarcinoma (OAC) initiation and progression. The 

high grade of genetic inter-tumour heterogeneity hampers the efficacy of large-

scale cancer genomic studies for the identification of targetable genes in OAC. 

Furthermore, traditional cohort-based approaches hamper the identification of 

cancer driver genes in individual samples. Some patients are left with too few or 

no driver genes to explain the presence of the disease. In the context of precision 

oncology, it is important to identify the complete pool of driver genes responsible 

for the initiation and development of the tumour. Being able to identify the cancer 

driver repertoire in each patient will enable the employment of strategies tailored 

to the individual molecular landscape of each patient. 

In order to investigate inter-tumour heterogeneity in OAC, I will first introduce the 

Network of Cancer Genes (NCG). NCG is a curated repository of cancer driver 

genes and their systems-level properties (SLPs). NCG represents the foundation 

of the rest of the work presented in this thesis.  

In the second result chapter I will describe the process used to compile a 

comprehensive list of cancer driver genes in individual patients. Given the genetic 

heterogeneity of OAC, I will apply sysSVM2 to a large cohort of OAC samples 

that I curated and annotated. sysSVM2 ranks putative driver genes in individual 

samples based on molecular and SLPs. Since there is no hard cut-off that defines 

what is or is not a cancer driver gene, it is fundamental to quantify the number of 

drivers needed in individual patients. 

In the third result chapter, I will describe the comparison of two models on the 

number of cancer drivers in OAC: the age-incidence model and the positive 

selection model. The two models differ by the number of driver genes that they 

estimate are needed in each OAC. The age-incidence model predicts that three 

driver genes are enough to explain the presence of OAC in single patients. The 
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positive selection model, on the other hand, postulates that five driver genes are 

needed to explain the disease in each patient. I will compare the two models 

using pathway perturbations to inspect whether the additional drivers, predicted 

only under the positive selection model, are functionally involved in the 

development and progression of the tumour. 

After defining how many drivers are needed per OAC I will investigate the 

frequency of cancer driver genes. I will divide the identified drivers in two groups: 

those that have been experimentally validated to be involved in cancer (canonical 

cancer drivers) and the new candidate drivers (sysSVM2 predictions). I will next 

investigate whether the two sets of drivers (canonical drivers and sysSVM2 

predictions) perturb similar pathways. I will inspect sysSVM2 predictions for new 

potential drug targets by using the recently curated list of antineoplastic and 

immunomodulating drugs, published as part of the latest update of NCG. 

Finally, taking advantage of the clinical stratification of OAC samples I will look at 

the frequency of drivers across stages and investigate whether different 

pathways are perturbed in a stage-specific fashion during the development of 

OAC.  
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Chapter 2. Materials & Methods 

2.1 The Network of Cancer Genes 

2.1.1 Literature curation 

A literature search integrating PubMed, The Cancer Genome Atlas (TCGA, 

https://www.cancer.gov/tcga) and the International Cancer Genome Consortium 

(ICGC, https://dcc.icgc.org/) was carried out to retrieve cancer screens published 

between 2018 and 2020. The literature search resulted in 135 coding and 154 

non-coding cancer screens, of which 37 were retained after examining abstracts 

and full texts. Exclusion criteria included the absence of driver genes or driver 

detection methods and the impossibility to map non-coding driver alterations to 

protein-coding genes. The 37 new cancer screens were added to the 273 

publications previously curated by the Ciccarelli lab (Repana et al., 2019), 

totalling 310 cancer publications. A similar literature search retrieved 24 

sequencing screens of non-cancer and healthy tissues published before 2020, 

18 of which were retained after applying the same criteria as above. Each paper 

was reviewed independently by two experts and further discussed if any 

mismatch was found in their annotations, including the list of driver genes, the 

number of donors, the type of screen (whole-genome, whole-exome, target gene 

sequencing), the cancer or healthy tissues, and the driver detection method. 

Canonical cancer drivers were extracted from two publications (Saito et al., 2020; 

Vogelstein et al., 2013) and the Cancer Gene Census (CGC) v.91 (Tate et al., 

2019). From CGC, all tier 1 and 2 genes were retained, except those derived from 

gene fusions. Canonical cancer driver genes were further stratified into TSG, OG, 

and unclassified if having a dual role or having conflicting or unavailable 

annotation. 

Drivers from cancer screens and canonical sources underwent additional filtering. 

They were intersected with a list of 148 possible false positives derived from two 

sources (Lawrence et al., 2013; Saito et al., 2020). After manual checks of the 

supporting evidence, two drivers were retained as canonical, five were retained 

as candidates, and 41 were removed.  
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The three resulting lists (canonical drivers, drivers from cancer screens, and 

healthy drivers) were intersected to annotate: 

• canonical drivers in cancer screens,  

• remaining drivers in cancer screens (candidate cancer drivers),  

• canonical healthy drivers,  

• candidate healthy drivers,  

• remaining healthy drivers. 

 

2.1.2 Systems-level properties 

Protein sequences from RefSeq v.99 (O’Leary et al., 2016) were aligned to the 

human genome assembly GRCh38 using BLAT (Kent, 2002). Unique genomic 

loci were identified for 19756 genes based on gene coverage, span, score, and 

identity (Bhagwat et al., 2012). Genes sharing at least 60% of their protein 

sequence were considered as duplicates (Rambaldi et al., 2008). 

Evolutionary conservation was obtained for 18922 human genes using their 

orthologs in EggNOG v.5.0 (Huerta-Cepas et al., 2019). Genes were considered 

to have a pre-metazoan origin (and therefore conserved in evolution) if they had 

orthologs in prokaryotes, eukaryotes, or opisthokonts (Matteo D’Antonio & 

Ciccarelli, 2011). 

Gene expression for 19231 genes in 49 healthy tissues was derived from the 

union of Protein Atlas v.19.3 (Uhlén et al., 2015) and GTEx v.8 (Aguet et al., 

2020). Genes were considered expressed in a tissue if their expression value 

was ≥1 transcript per million (TPM). Protein expression for 13229 proteins in 45 

healthy tissues was derived from Protein Atlas v.19.3 (Uhlén et al., 2015). When 

multiple expression values were available the highest one was retained. 

A total of 542397 non-redundant binary interactions between 17883 proteins 

were gathered from the integration of five sources (BioGRID v.3.5.185 (Oughtred 

et al., 2019), IntAct v.4.2.14 (Orchard et al., 2014), DIP (February 2018) 

(Salwinski et al., 2004), HPRD v.9 (Keshava Prasad et al., 2009) and Bioplex 

v.3.0 (Huttlin et al., 2021)). Data on 9476 protein complexes involving 8504 

proteins were derived from CORUM v.3.0 (Giurgiu et al., 2019), HPRD v.9 
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(Keshava Prasad et al., 2009), and Reactome v.72 (Jassal et al., 2020). 

Experimentally-supported interactions between 14747 genes and 1758 miRNAs 

were obtained from the integration of miRTarBase v.8.0 (Huang et al., 2020) and 

miRecords v.4.0 (Xiao et al., 2009). Degree, betweenness, and clustering 

coefficient were calculated for protein and miRNA networks using the R package 

igraph v.1.2.6 (Csardi & Nepusz, 2006). 

The loss-of-function observed/expected upper bound fraction (LOEUF) score for 

18392 genes was obtained from gnomAD v.2.1.1 (Karczewski et al., 2020). 

Germline mutations (SNVs and small insertions and deletions, indels) were 

obtained from the union of 2504 samples from the 1000 Genomes Project Phase 

3 v.5a (Auton et al., 2015) and 125748 samples from gnomAD v.2.1.1 

(Karczewski et al., 2020). Mutations were annotated with ANNOVAR (April 2018) 

(Wang et al., 2010) and dbNSFP v3.0 (Liu et al., 2016) and only those identified 

as exonic or splicing were retained. Mutations were annotated as damaging if at 

least one of the following conditions was true:  

• truncating (stopgain, stoploss, frameshift) mutations,  

• missense mutations predicted by at least five out of the seven function-

specific methods and by at least two out of the three conservation-specific 

methods (Table 2.1), 

• splicing mutations predicted by at least one of two splicing-specific 

methods (Table 2.1), 

• hotspot mutations identified with OncodriveCLUST v1.0.0 (Tamborero et 

al., 2013).  

A total of 18812 genes were retained as damaged. A total of 32558 germline 

structural variants (SVs) for 14158 genes were derived using 15708 samples 

from gnomAD v.2.1.1 (Karczewski et al., 2020). The numbers of damaging 

mutations and SVs per base pair (bp) were calculated for each gene. 

 
Table 2.1 Prediction tools used to annotate the damaging effect of mutations 

Tool Method Reference 

SIFT Function 
(P. C. Ng & Henikoff, 

2003) 
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PolyPhen-2 HDIV Function (Adzhubei et al., 2013) 

PolyPhen-2 HVAR Function (Adzhubei et al., 2013) 

MutationTaster Function (Schwarz et al., 2010) 

MutationAssessor Function (Reva et al., 2011) 

LRT Function (Chun & Fay, 2009) 

FATHMM Function (Shihab et al., 2013) 

PhyloP Conservation (Pollard et al., 2010) 

GERP++RS Conservation (Davydov et al., 2010) 

SiPhy Conservation (Garber et al., 2009) 

ADA Splicing (Liu et al., 2016) 

RF Splicing (Liu et al., 2016) 

 

Essentiality data for 19013 genes in 1122 cell lines were obtained by integrating 

three RNA interference (RNAi) knockdown and six CRISPR/Cas9 knockout 

screens (Behan et al., 2019; Dempster et al., 2019; Lenoir et al., 2018; McFarland 

et al., 2018; Meyers et al., 2017; Tsherniak et al., 2017). Genes with CERES 

(Meyers et al., 2017) or DEMETER (Tsherniak et al., 2017) scores <− 1 or Bayes 

score (Hart & Moffat, 2016) > 5 were considered as essential. 

The proportions of duplicated genes, pre-metazoan genes, essential genes, and 

proteins engaging in complexes were compared between gene groups using a 

two-sided Fisher’s exact test. Distributions of healthy tissues expressing genes 

or proteins, protein and miRNA network properties, LOEUF scores, damaging 

mutations and SVs per bp were compared between gene groups using a two-

sided Wilcoxon rank-sum test. Multiple comparisons within each property were 

corrected using the Benjamini-Hochberg procedure.  

For each SLP in each driver group (𝑑𝑑 ), a normalised property score was 

calculated as: 

Normalised property score = 𝑠𝑠𝑠𝑠𝑠𝑠(∆𝑑𝑑) ×
|∆𝑑𝑑| −𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡|∆𝑡𝑡|

𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡|∆𝑡𝑡| −  𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡|∆𝑡𝑡|
 

where 𝑡𝑡 represents the ten gene groups (canonical cancer drivers, candidate 

cancer drivers, TSGs, OGs, drivers with coding alterations, drivers with non-

coding alterations, canonical healthy drivers, candidate healthy drivers, 
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remaining healthy drivers, and the rest of human genes); 𝑠𝑠𝑠𝑠𝑠𝑠(∆𝑑𝑑) is the sign of 

the difference; and ∆𝑑𝑑  indicates the difference of medians (for continuous 

properties) or proportions (for categorical properties) between each driver group 

and the rest of human genes. Minima and maxima were taken over all ten gene 

groups for each property. 

 

2.1.3 Pan-cancer cell line data  

Gene expression data for cancer genes in 2443 cancer cell lines were taken from 

the Cancer Cell Line Encyclopaedia (CCLE, May 2020) (Ghandi et al., 2019), the 

Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Cell Line Project 

(CLP) v.91 (Futreal et al., 2004), and a Genentech study (GNE, June 2014) (Klijn 

et al., 2015). Gene expression levels were derived directly from the original 

sources, namely reads per kilobase million (RPKM) values for CCLE and GNE, 

and microarray z-scores for CLP. Genes were categorized as expressed if their 

expression value was ≥1 RPKM in CCLE or GNE and were annotated as over, 

under, or normally expressed in CLP, as determined by COSMIC. 

 

2.1.4 Driver functional annotation 

Gene functions were collected for 11778 proteins from Reactome v.72 (Jassal et 

al., 2020) and KEGG v.94.1 (Kanehisa et al., 2017) (levels 1 and 2). Driver 

enrichment in Reactome pathways (levels 2–8) compared to the rest of human 

genes was calculated using a one-sided Fisher’s exact test and corrected for 

multiple testing with the Benjamini-Hochberg method. Enriched pathways were 

then mapped to the corresponding Reactome level 1. 

 

2.1.5 Drug interactions 

A total of 247 Food and Drug Administration (FDA)-approved, antineoplastic, and 

immunomodulating drugs targeting 212 human genes were downloaded from 

DrugBank v.5.1.8 (Wishart et al., 2018). Genetic biomarkers of response and 
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resistance to drugs in cancer cell lines were obtained from Genomics of Drug 

Sensitivity in Cancer (GDSC) v.8.2 (Iorio et al., 2016). Of those, only 467 

associations with FDR ≤0.25 involving 129 drugs and 106 genes were retained. 

Genetic biomarkers of response and resistance in clinical studies were obtained 

from the Variant Interpretation for Cancer Consortium Meta-Knowledgebase v.1 

(Wagner et al., 2020). A total of 868 associations between drugs and genomic 

features involving 64 anti-cancer drugs and drug combinations and 24 human 

genes were retained (Wagner et al., 2020). 

 

2.1.6 Database and website implementation 

All annotations of driver genes were stored into a relational database based on 

MySQL v.8.0.21 (source: https://dev.mysql.com/doc/refman/8.0/en/) connected 

to a web interface enabling interactive retrieval of information through gene 

identifiers. The frontend was developed with PHP v.7.4.15 (Bakken et al., 2020). 

The interactive displays of miRNA-gene and protein-protein interactions were 

implemented using the R packages Shiny v.1.6.0 (Chang et al., 2017) and igraph 

v.1.2.6 (Csardi & Nepusz, 2006) and ran on a Shiny Server v.1.5.16.958. 

 

2.2 Clinical and molecular characterisation of the BO and OAC 
sample cohort 

2.2.1 Annotation of damaged genes 

Aligned genomic sequencing data in the form of BAM files were downloaded from 

public repositories for two cohorts (Dulak et al., 2013; Stachler et al., 2015). 

Mutation (SNVs and indels) and copy number (CN) data for the International 

Cancer Genome Consortium - Oesophageal Cancer Clinical and Molecular 

Stratification (ICGC-OCCAMS) samples were obtained from the OCCAMS 

consortium, of which the Ciccarelli lab is a part (source: 

https://www.occams.org.uk/). Mutation (SNVs and indels), CN, and gene 
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expression data for TCGA samples were obtained from the Genomic Data 

Commons portal I (source: https://gdc.cancer.gov/; Grossman et al., 2016). 

For the two publication datasets (Dulak et al., 2013; Stachler et al., 2015), somatic 

mutations (SNVs and indels) were called using Strelka v.2.9.0 (Saunders et al., 

2012). The absolute CN of genomic regions, the sample ploidy and the sample 

purity were obtained by running ASCAT v.2.5.2 (Loo et al., 2010). To obtain the 

gene CN, gene coordinates were intersected with genomic regions for which 

ASCAT calculated the CN. If at least 25% of the gene length was contained in 

one of the genomic regions, the CN of the region was assigned to the gene.  

For all 748 samples, mutations were annotated as damaging as previously 

described (see Chapter 2.1.2). In addition to genes altered via damaging 

mutations, CNAs were considered. A gene was considered affected by damaging 

CNAs if it was either homozygously deleted (gene CN =0) or amplified (gene CN 

≥2 times sample ploidy).  

An additional filtering was carried out for TCGA samples. To remove possible 

false-positive CNAs and given the availability of gene expression data for the 

whole TCGA cohort, CNAs were corrected by RNA-seq. Homozygously deleted 

genes were confirmed if their expression was <1 fragments per kilobase per 

million (FPKM) over sample purity. Heterozygously deleted genes had CN =1 or 

CN =0 and FPKM >1 over sample purity. The expression of putatively amplified 

genes was compared between samples with and without each gene amplification 

using a two-sided Wilcoxon rank-sum test and corrected for multiple hypothesis 

testing using the Benjamini-Hochberg procedure. Only amplified genes with an 

FDR <0.05 were retained.  

 

2.2.2 Estimation of WGD 

The CN of the genomic segments, obtained with ASCAT v.2.5.2 (Loo et al., 

2010), were used to identify the presence of WGD in the OAC samples. An 

adaptation of the method used by Dentro et al. (Dentro et al., 2021) was used to 

estimate whether samples had undergone WGD. 
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For each major allele CN the length of the genome with the same CN value was 

calculated. If, throughout the whole genome, the longest total segment 

corresponded to major allele CN ≥2, the sample was predicted to have undergone 

WGD. 

 

2.2.3 Clinical annotation 

Clinical data were obtained from the same sources as the molecular data (Dulak 

et al., 2013; Stachler et al., 2015; https://www.occams.org.uk/; 

https://gdc.cancer.gov/).  

BO cases progressing to OAC were retained even if the paired OAC had not been 

sequenced. BO clinical information included whether dysplasia was present, 

which resulted in the stratification of samples into two major groups: NDBO and 

DBO. 

OAC clinical information included the patient gender, the age at diagnosis, the 

size of the primary tumour (T), the number of metastasised lymph nodes (N), the 

presence of distant metastasis (M), whether the patient received neoadjuvant 

chemotherapy, and whether the sample had been collected at the clinical or at 

the pathologic staging.  

The information on TNM stages was used to classify OAC samples into stage I, 

II, III and IV by applying the guidelines as described in the 8th edition AJCC 

staging of tumours of the oesophagus and oesophagogastric junction (Rice et al., 

2017). 

BO and OAC samples with both clinical and molecular information were retained 

for downstream analyses.  

 

2.2.4 Curation of OAC-specific canonical cancer driver genes 

The list of OAC-specific canonical cancer driver genes was derived from the 

integration of OAC-specific canonical drivers reported in NCG6 (Repana et al., 

2019) and the manual curation of five additional OAC-specific screens (Dulak et 

https://gdc.cancer.gov/
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al., 2012; Frankel et al., 2014; Frankell et al., 2019; Murugaesu et al., 2015; 

Nones et al., 2014). 

The manual annotation of the five additional screens resulted in 311 putative 

cancer drivers. This list was then intersected with the 711 canonical cancer 

drivers from NCG6 (Repana et al., 2019), and 78 canonical cancer drivers were 

retained. 

Given the presence of canonical cancer driver genes identified through the study 

of CNAs, only genes for which there was agreement between their role in 

tumorigenesis and their driver event were retained (i.e., deleted TSGs and 

amplified OGs). This filtering resulted in the removal of three genes that were 

reported as TSGs but were found amplified in the corresponding screen. 

The final list of OAC-specific canonical cancer driver genes was composed of 77 

genes. 

 

2.3 Training of sysSVM2 and evaluation of its predictions 

2.3.1 Prioritisation of cancer driver genes 

In order to complete the list of cancer driver genes in individual samples, 

sysSVM2 (Nulsen et al., 2021), was used. sysSVM2 consists of four one-class 

SVMs trained on the molecular and systems-level properties of the canonical 

cancer driver genes damaged in the BO and OAC cohort. The tool ranks 

damaged genes outside the training set based on how closely their properties 

resemble those of canonical cancer drivers used for training.  

The algorithm consists of three stages: feature mapping, model selection, and 

training and prediction. 

 

FEATURE MAPPING 
In the feature mapping stage, molecular and systems-level properties are 

mapped to all the damaged genes in the cohort. The pool of damaged genes 

across the whole cohort is then divided into training and prediction sets.  
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TSGs with LoF alterations (truncating mutations, missense or splicing damaging 

mutations, homozygous deletions, or double hits) and OGs with gain-of-function 

(GoF) alterations (hotspot mutations, missense or splicing damaging mutations, 

or gene amplifications) were retained. For TP53 both LoF and GoF alterations 

were retained as driver events. Somatic alterations in TSGs and OGs that were 

of the opposite types (i.e. GoF in TSGs and LoF in OGs) were discarded. 

Molecular properties were derived from the annotation of damaged genes in 

individual samples as previously described (see Chapter 2.2.1). From these 

properties, seven molecular features were derived and used for feature mapping. 

SLPs of human genes were obtained from NCG6 (Repana et al., 2019) which 

collected information from different sources. Briefly, duplicated gene loci (genes 

with 60% protein sequence shared with another locus) were identified as 

previously described (Repana et al., 2019). The gene ohnolog status (i.e. whether 

gene duplicates appeared as a result of whole-genome duplication events that 

occurred at the basis of vertebrates) was obtained from Nakatani et al. (Nakatani 

et al., 2007). Data on gene essentiality in cell lines were obtained from PICKLES 

(September 2017) (Lenoir et al., 2018) and OGEE v.2 (Chen et al., 2017). Genes 

in PICKLES were considered to be essential in a cancer cell line if they had Bayes 

factor (Hart & Moffat, 2016) >3, while original annotations of essentiality from 

OGEE were retained. mRNA expression data for healthy human tissues were 

obtained from GTEx v.7 (Lonsdale et al., 2013) and Protein Atlas v.18 (Uhlén et 

al., 2015). A gene was considered expressed in a tissue if its median expression 

was ≥1 TPM in both databases (or in one database if said tissue was not included 

in both). Protein expression data for healthy human tissues was downloaded from 

Protein Atlas v.18 (Uhlén et al., 2015). The PPIN was built as previously 

described (Repana et al., 2019), from the union of BioGRID v.3.4.157 (Chatr-

Aryamontri et al., 2017), MIntAct v.4.2.10 (Orchard et al., 2014), DIP (February 

2018) (Salwinski et al., 2004) and HPRD v.9 (Keshava Prasad et al., 2009). 

Network properties (PPIN degree, betweenness and centrality) were calculated 

using custom scripts as previously described (see Chapter 2.1.2). Genes were 

identified as participating in complexes using data downloaded from CORUM 

(July 2017) (Ruepp et al., 2009), HPRD v.9 (Keshava Prasad et al., 2009) and 
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Reactome v.63 (Fabregat et al., 2018). The number of miRNAs regulating a gene 

was calculated using data from miRTarBase v.7 (Chou et al., 2018) and 

miRecords v.4 (Xiao et al., 2009). The evolutionary origin of genes was identified 

as previously described (Matteo D’Antonio & Ciccarelli, 2011), using data from 

EggNOG v.4.5.1 (Huerta-Cepas et al., 2016). From these properties, 19 systems-

level features were derived and used for feature mapping. 

For each systems-level feature, missing values were imputed using the median 

or mode (for continuous and categorical features, respectively) of available data 

for canonical drivers and the rest of human genes separately. All features used 

in the model significantly differentiated cancer drivers from other human genes 

or subgroups of cancer drivers among each other (i.e. TSGs and OGs). 

 

MODEL SELECTION 
The kernels used in sysSVM2 are linear, polynomial, radial, and sigmoid, and 

each of them is controlled by parameters whose values can vary. For this reason, 

a grid search was run to select the best parameters for each kernel separately 

that defined the best models. The best models were defined as those with a high 

sensitivity to retrieve canonical cancer drivers and high stability (low standard 

deviation of sensitivity).  

These parameters and their default grid ranges are: 

• Nu (𝜈𝜈, all kernels): values ranging from 0.05 to 0.35 in incremental steps of 

0.05; 

• Gamma (𝛾𝛾, radial and sigmoid kernels): values assessed were 𝛾𝛾 = 2𝑥𝑥, where 

𝑥𝑥 ∈  {−7,−6, … ,4}; 

• Degree (𝑑𝑑, polynomial kernel): chosen from the set {3, 4, 5}. 

A parameter grid search was carried out for each kernel separately, for a total of 

196 kernel-parameter combinations which were the result of 7 parameter 

combinations for the linear kernel, 7 × 12 = 84 combinations each for the radial 

and sigmoid kernels, and 7 × 3 = 21 combinations for the polynomial kernel.  

To identify the best models, cross-validation iterations were performed on the 

training set. At each iteration the training set was randomly split with 2/3 of the 

genes used to train the models and the remaining 1/3 used as a test set. The 
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sensitivity of each parameter combination to retrieve canonical cancer drivers 

was calculated at every iteration. For each kernel 𝑘𝑘 and parameter combination 

𝑖𝑖 , the mean 𝜇𝜇𝑘𝑘𝑘𝑘  and standard deviation 𝜎𝜎𝑘𝑘𝑘𝑘  of the sensitivity were calculated 

across the cross-validation iterations. These were then converted into z-scores, 

𝑧𝑧𝑘𝑘𝑘𝑘
(𝜇𝜇) and 𝑧𝑧𝑘𝑘𝑘𝑘

(𝜎𝜎), which measured the relative values of mean and standard deviation 

between the different parameter combinations such that: 

� 𝑧𝑧𝑘𝑘𝑘𝑘
(𝜇𝜇)

𝑖𝑖
= � 𝑧𝑧𝑘𝑘𝑘𝑘

(𝜎𝜎)

𝑖𝑖
= 0 

and 

Variance𝑖𝑖 �𝑧𝑧𝑘𝑘𝑘𝑘
(𝜇𝜇)� = Variance𝑖𝑖�𝑧𝑧𝑘𝑘𝑘𝑘

(𝜎𝜎)� = 1. 

Finally, the ∆z score was defined as:  

Δ𝑧𝑧 = 𝑧𝑧𝑘𝑘𝑘𝑘
(𝜇𝜇) − 𝑧𝑧𝑘𝑘𝑘𝑘

(𝜎𝜎) 

High ∆z scores corresponded to parameter combinations that had high mean 

sensitivity and low standard deviation relative to the other combinations for that 

kernel. The four parameter combinations (one per kernel) with the highest ∆z 

scores were selected and used to train the four kernels on the entire training set. 

 

TRAINING AND PREDICTION 
Once the parameters for each kernel were selected, the four SVMs were trained 

using the entire training set of canonical drivers. The trained sysSVM2 models 

were, thus, used for prediction in individual samples. To combine the outputs of 

the four kernels, a combined score 𝑆𝑆𝑔𝑔𝑔𝑔, was calculated for each gene 𝑔𝑔 in sample 

𝑠𝑠. 𝑆𝑆𝑔𝑔𝑔𝑔 measured the similarity of the features of gene 𝑔𝑔 to those of the training 

set. It combined the rank of 𝑔𝑔 in sample 𝑠𝑠 according to each of the four kernels. 

This resulted in a normalised final score between 0 and 1. High ranks in each 

kernel were given exponential weighting and the kernels were weighted 

according to their sensitivity, with more sensitive kernels contributing more to the 

score. The formula used to calculate the combined score, 𝑆𝑆𝑔𝑔𝑔𝑔, was: 
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𝑆𝑆𝑔𝑔𝑔𝑔 =
∑ �− log10 �

𝑅𝑅𝑘𝑘𝑘𝑘𝑘𝑘
𝑁𝑁𝑠𝑠
� × 𝜇𝜇𝑘𝑘�4

𝑘𝑘=1

4 × log10(𝑁𝑁𝑠𝑠)  

where 𝑅𝑅𝑘𝑘𝑘𝑘𝑘𝑘 represents the rank of gene 𝑔𝑔 in sample 𝑠𝑠 according to the decision 

value of kernel 𝑘𝑘; 𝑁𝑁𝑠𝑠 is the total number of damaged genes in sample 𝑠𝑠; and 𝜇𝜇𝑘𝑘 

is the mean sensitivity of kernel 𝑘𝑘 as assessed by cross-validation iterations. 

 

2.3.2 Performance and stability metrics 

The results of the three driver settings tested in sysSVM2 were measured using 

two performance and two stability metrics: Area Under the Receiver Operating 

Characteristic (AUROC) curve, composition score, Rank-Biased Overlap (RBO) 

score, and overlap of the top five predictions between models.  

AUROC curves were derived for each sample individually by comparing the ranks 

of canonical drivers not used for training and of candidate cancer drivers to false 

positives and to the rest of human genes. The median AUROC curve was then 

measured across samples.  

The composition score assessed the identity of the top five predictions in each 

sample and measured the prevalence and ranks of different types of genes. The 

score 𝑆𝑆 was calculated as a weighted sum according to the following formula: 

𝑆𝑆 = � 𝑤𝑤𝑔𝑔 × 𝑡𝑡𝑔𝑔
5

𝑔𝑔=1
. 

The weight 𝑤𝑤𝑔𝑔 of each gene 𝑔𝑔 in the top five was such that higher-ranked genes 

were assigned greater weight; specifically, 𝑤𝑤𝑔𝑔 = 6 − 𝑟𝑟𝑔𝑔 where 𝑟𝑟𝑔𝑔 was the rank of 

gene 𝑔𝑔 (with 1 being the highest). The contribution 𝑡𝑡𝑔𝑔 of gene 𝑔𝑔 was defined for 

different gene categories as reported in Table 2.2.  

 
Table 2.2 Contribution of gene categories to top five drivers 

Gene (𝑔𝑔) Gene contribution (𝑡𝑡𝑔𝑔) 

OAC-specific canonical driver 3 

Non OAC-specific canonical driver 2 

OAC-specific candidate driver 1.5 
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Non OAC-specific candidate driver 1 

Rest of human genes 0 

False positive -1 

 

The RBO score (Webber et al., 2010) was used to assess the similarity of the top 

five predictions from pairs of models. It measured the overlap of ranked lists at 

incrementally increasing depths using a convergent series. It was calculated 

according to the formula: 

RBO =
1 − 𝑝𝑝

1 − 𝑝𝑝5
× �𝑝𝑝𝑑𝑑−1

5

𝑑𝑑=1

× 𝐴𝐴𝑑𝑑 

where 𝑝𝑝 determines how steep the decline in weights is (the smaller 𝑝𝑝, the more 

top-weighted is the metric; the closer it is to 1, the flatter the weights are) (Webber 

et al., 2010) and was set to 0.9 so that the five rankings were weighted similarly, 

𝑑𝑑 indicates the depth in the rankings (starting from the top-ranked elements), and 

𝐴𝐴𝑑𝑑 is the overlap of the two lists, restricted to depth 𝑑𝑑. 

 

2.4 Investigating cancer driver genes 

2.4.1 Deriving the list of cancer driver genes in individual samples 

The list of cancer driver genes in individual OAC samples was derived using the 

following procedure. OAC-specific canonical cancer drivers damaged in each 

sample were considered as cancer drivers for that sample. If more than three or 

five canonical drivers, based on the model under investigation (Jeon et al., 2006; 

Martincorena et al., 2017), were present in each sample, then OAC-specific 

canonical cancer drivers were prioritised as follows. CDKN2A, TP53 and OAC-

specific OGs were prioritised according to previous literature on the acquisition 

of driver alterations in the BO-to-OAC progression (Maley, 2007; Stachler et al., 

2015). If either CDKN2A or TP53 were not damaged, OAC-specific TSGs were 

prioritised.  
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If less than three or five OAC-specific canonical drivers were damaged, the 

highest-ranked genes from sysSVM2 were added in order to obtain three or five 

drivers in total per individual sample.  

 

2.4.2 Gene set enrichment analysis 

Human pathways for gene set enrichment analysis (GSEA) were obtained from 

Reactome v.72 (Jassal et al., 2020) and from MSigDB v.7.4 (Liberzon et al., 

2015). Reactome was used to investigate differences between driver models (see 

Chapter 5.2) and between sysSVM2 predictions and OAC-specific canonical 

cancer drivers (see Chapter 5.4). MSigDB was used to investigate differences 

across OAC clinical stages (see Chapter 5.6).  

Before testing, Reactome pathways were restricted to those of level 2 or higher, 

and with between 10 and 500 genes (total of 1303 pathways containing 10178 

unique genes). All 50 MSigDB hallmarks pathways were used comprising a total 

of 4378 unique genes.  

Across all comparisons, as well as in individual OAC clinical stages separately, 

the unique set of cancer genes was tested for enrichment in pathways containing 

at least one gene against the rest of human genes using one-sided Fisher’s exact 

tests. The resulting p-values within each clinical stage were corrected for FDR 

using the Benjamini-Hochberg method. 

 

2.4.3 Comparing the contribution of different sets of drivers to 
Reactome level 1 pathways 

After identifying the enriched Reactome pathways by applying the filtering on the 

pathway size as explained above (see Chapter 2.4.2), each enriched pathway 

was mapped to their corresponding level 1. Differences in the proportion of 

enriched pathways mapping to each level 1 were compared between the sets of 

drivers in each comparison and within each OAC clinical stage. The proportions 

were compared using a chi-squared test and the resulting p-values were 
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corrected using the Benjamini-Hochberg method. Proportions with an FDR <0.1 

were considered as significantly different. 

 

2.4.4 Reducing Reactome redundancy 

Given the pyramidal structure of the Reactome database (Figure 7.1), the genes 

mapping to lower level pathways (e.g. level 6 or level 7) are fully contained in 

higher level pathways (e.g. level 2 or level 3). 

The pathways enriched in the positive selection-specific drivers (see Chapter 5.2) 

were tested in order to investigate whether they were, in terms of genes mapping 

to them, fully contained in higher level pathways enriched in the age-incidence 

drivers. If all the genes from an enriched pathway in the positive-selection-

specific drivers were contained in any of the pathways enriched in the age-

incidence drivers, the pathway was identified as redundant, hence removed from 

further analyses.  

Of the total 899 enriched pathways in the positive selection-specific drivers, 343 

were retained as non-redundant and investigated further. 
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Chapter 3. The Network of Cancer Genes 

3.1 Motivation 

NCG is a curated database of cancer driver genes and their SLPs. SLPs are 

global properties of genes, that, although they are not directly related to cancer, 

differentiate cancer driver genes from the rest of human genes. SLPs includes 

properties that describe the evolutionary history of the gene, such as the first 

appearance of the gene in the species phylogenetic tree (Syed et al., 2010) and 

the presence of duplicated copies of the gene in the human genome (Rambaldi 

et al., 2008). Moreover, SLPs define the pervasive role of the gene in terms of its 

expression at the gene and protein level (An et al., 2016; Repana et al., 2019), 

the essentiality in cancer cell lines (Repana et al., 2019), the level of miRNA 

regulation (D’Antonio et al., 2012), the participation of the encoded protein in 

protein complexes (An et al., 2016), and its position in the PPIN (D’Antonio et al., 

2012).  

The seventh release of NCG (NCG7) is available online at http://network-cancer-

genes.org/. NCG7 (Dressler et al., 2022) contains some novelties with respect to 

previous releases (An et al., 2016, 2014; D’Antonio et al., 2012; Repana et al., 

2019; Syed et al., 2010). In addition to cancer drivers, it now reports information 

relative to genes that, upon acquiring somatic mutations, drive the expansion of 

clones in non-cancer tissues (namely, healthy drivers). Another novelty of NCG7 

is that it now also annotates cancer drivers implicated in disease progression 

through the accumulation of mutations in their non-coding regions (namely, 

drivers with non-coding alterations). Finally, NCG7 includes some new SLPs and 

gene annotations. These newly introduced SLPs describe the tolerance of the 

gene towards the accumulation of germline variation and are used as further 

evidence of the essential role of the gene within the cell. Furthermore, we have 

introduced the annotation of interactions between human genes and anti-cancer 

drugs.  

The seventh release of NCG has been a collaborative effort of the Ciccarelli lab 

and my contribution to it involves the: 

• Curation of gene and protein expression in human healthy tissues; 

http://network-cancer-genes.org/
http://network-cancer-genes.org/
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• Curation of gene expression in cancer cell lines; 

• Curation of gene function; 

• Annotation of drug interactions (specifically, drug targets and biomarkers 

of response and resistance to antineoplastic drugs); 

• Co-curation of the database; 

• Review of the literature curation performed by other colleagues. 

In the rest of the chapter, I will acknowledge and discuss the contributions of the 

other group members who curated the remaining information. 

 

3.2 Curated annotation of cancer and healthy drivers 

In order to gather a comprehensive understanding of cancer and healthy driver 

genes we collected information from 331 scientific papers published between 

2008 and 2020. My colleagues Amelia Acha-Sagredo, Lucia Montorsi, Dimitra 

Repana and Neshika Wijewardhane carried out and curated the literature search, 

which was reviewed by the rest of the group, including myself.  

We integrated three sources of canonical cancer driver genes (Saito et al., 2020; 

Sondka et al., 2018; Vogelstein et al., 2013) (Figure 3.1A). As additional sources 

of cancer driver genes we included 310 publications, of which 291 reported 

mutations in coding regions of the human genes, five investigated mutations in 

non-coding regions of the human genes, and 14 annotated mutations in both 

coding and non-coding regions of the human genes (Figure 3.1A). In addition, we 

selected 18 publications investigating healthy drivers in non-cancer tissues.  

The curation of the 331 publications present in NCG7 resulted in the identification 

of 3347 cancer driver and 95 healthy driver genes (Figure 3.1A). We further 

divided the 3347 cancer drivers into canonical and candidate cancer driver 

genes. While 591 cancer driver genes had robust experimental evidence 

supporting their implication in tumorigenesis, and thus were defined as canonical, 

we labelled the remaining 2756 as candidate drivers given that their involvement 

in cancer is based exclusively on statistical methods for the prediction of driver 

genes from cancer patients. We then curated nine SLPs and three annotations 

for the pool of drivers that we collected (Figure 3.1A).  
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Figure 3.1 Literature annotation and resulting list of cancer and healthy drivers 
A) Pipeline overview of the literature curation and annotation of SLPs and additional 
driver information (e.g., gene function, somatic variation and gene interactions with 
anti-cancer drugs). B) Proportion of canonical cancer driver genes that are TSGs, 
OGs and unclassified. C) Overlap between canonical cancer drivers (derived from 
the three sources of canonical drivers (Saito et al., 2020; Sondka et al., 2018; 
Vogelstein et al., 2013)) and the cancer drivers derived from the curation of 310 
cancer publications. D) Proportion of healthy drivers that are also canonical cancer 
drivers, candidate cancer drivers and only healthy. Figure adapted from (Dressler et 
al., 2022). 
 

We divided the 591 canonical drivers into subgroups based on their mechanism 

of action in promoting and sustaining tumorigenesis. We identified 254 TSGs, 

256 OGs and 81 canonical drivers with unclear or no evidence for their 

mechanism of action in the context of tumorigenesis (Figure 3.1B). We did not 

identify 29% (170/591) of the canonical drivers in any of the 310 cancer 
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sequencing screens (Figure 3.1C). This may suggest that these 170 canonical 

cancer drivers contribute to carcinogenesis via non-mutational mechanisms, 

such as CNAs or epigenetic deregulation.  

Given the novelty of the field and the limited number of studies available 

(Wijewardhane et al., 2021), it came as no surprise that the number of healthy 

drivers that we identified was smaller than the overall number of cancer drivers. 

Interestingly, 92% of the healthy drivers were also cancer drivers (57 canonical 

healthy and 30 candidate healthy drivers) and only 8% (8/95) were involved 

exclusively in the expansion of mutated clones in non-cancer tissues (Figure 

3.1D). 
 

3.3 SLPs define the central role of cancer and healthy drivers 
within the cell 

We compiled annotations of SLPs for all human genes, including evolutionary 

origin (curated by Michele Bortolomeazzi), gene duplication (curated by Reda 

Keddar), gene and protein expression in healthy human tissues (curated by me), 

protein-protein (curated by Lisa Dressler) and miRNA-gene (curated by Hrvoje 

Misetic) interactions, germline variation (curated by Joel Nulsen and Hrvoje 

Misetic), and gene essentiality (curated by Lisa Dressler). We evaluated the SLPs 

of canonical and candidate cancer drivers against the rest of human genes. We 

then investigated how specific subtypes of these two main categories differed 

from each other (e.g., TSGs versus OGs and candidate drivers with only coding 

alterations versus candidate drivers with only non-coding alterations). Finally, we 

investigated how the three categories of healthy drivers (Figure 3.1D) compared 

with the rest of human genes. 

Canonical and candidate cancer driver genes were older and more broadly 

expressed in healthy human tissues than the rest of human genes (Figure 3.2A). 

This highlights their evolutionary conserved and ubiquitous role. Both cancer 

driver categories encoded central hubs of the PPIN (Figure 3.2A). Specifically, 

such proteins formed significantly more connections (higher degree), were more 

central and clustered (higher betweenness and clustering coefficient, 
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respectively) in the PPIN and took part in significantly more protein complexes 

than the rest of human genes. Moreover, canonical and candidate cancer drivers 

showed a higher level of miRNA regulation than the rest of human genes (Figure 

3.2A). 

As one of the novelties of NCG7, we investigated the tendency of genes to 

accumulate germline alterations by including three new metrics. We measured 

the number of damaging mutations and SVs per coding bp using germline data 

from healthy individuals (Karczewski et al., 2020) and introduced the LOEUF 

score which quantifies the tendency to accumulate germline LoF alterations 

(Karczewski et al., 2020). Further supporting the central role of these drivers in 

the cell, we observed that canonical and candidate cancer drivers accumulated 

fewer germline alterations than the rest of human genes (Figure 3.2A), pointing 

towards a negative selection against potentially damaging germline alterations in 

these sets of genes. In line with that, we observed that both driver categories 

were also significantly more essential in cancer cell lines than the rest of human 

genes (Figure 3.2A).  

 

 
Figure 3.2 SLPs of cancer and healthy drivers 
Comparison of SLPs between A) canonical or candidate cancer drivers and the rest 
of human genes; B) TSGs and OGs; C) candidate cancer drivers with only coding 
alterations and candidate cancer drivers with only non-coding alterations; D) 
canonical or candidate or remaining healthy drivers and the rest of human genes. 
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The normalised property score was calculated as the normalised difference between 
the median or proportion values in each driver category and the rest of human genes 
(see Chapter 2.1.2). Proportions of pre-metazoan (old), duplicated, proteins involved 
in complexes and essential genes were compared using a two-sided Fisher’s exact 
test. Distributions of gene and protein expression, protein-protein, miRNA-gene 
interactions and germline variation were compared using a two-sided Wilcoxon test. 
The resulting p-values were corrected within each SLP using the Benjamini-
Hochberg method. Figure adapted from (Dressler et al., 2022). 
 

TSGs were older, more enriched in single-copy genes and more broadly 

expressed across human healthy tissues than OGs (Figure 3.2B). These 

differences were due to the different roles of these two groups of genes within 

the cell, as previously suggested (D’Antonio & Ciccarelli, 2011; Domazet-Lošo & 

Tautz, 2010; Michor et al., 2004). TSGs accumulated fewer germline alterations 

than OGs and this was further supported by the higher proportion of cancer cell 

lines in which TSGs were essential (Figure 3.2B). 

Candidate cancer drivers with non-coding alterations showed a weaker SLP 

profile than candidates with coding alterations (Figure 3.2C). Particularly, 

candidate drivers with non-coding alterations were younger, more often present 

as duplicates in the human genome, less central in the PPIN and the miRNA-

gene network, and accumulated more germline alterations than candidate driver 

genes with coding alterations. These properties suggest that candidate drivers 

with non-coding alterations play different roles within the cell than those 

accumulating alterations in coding regions. 

Finally, we investigated the differences within the heterogeneous group of healthy 

drivers (Figure 3.2D). We used the rest of human genes as a reference for these 

comparisons to better characterise how healthy drivers behaved with respect to 

genes that were not involved in cancer or clonal expansion in healthy tissues. 

Strikingly, we observed that canonical healthy drivers localised at the extreme 

spectrum for most of the SLPs (e.g., conservation, PPIN, miRNA interactions, 

germline variation and essentiality) showing a much more pronounced profile 

than all canonical cancer drivers (Figure 3.2D). Candidate healthy drivers showed 

an intermediate SLP profile between that of canonical healthy and the remaining 

healthy drivers (Figure 3.2D). From a property perspective the remaining healthy 

drivers had a completely different SLP profile from that of all other driver 
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categories (Figure 3.2D). Since we only identified eight genes that belonged to 

this category, the differences we observed will have to be confirmed on a larger 

and more robust group of remaining healthy drivers.  

 

3.4 Annotation of gene function and interactions with drugs 

We investigated the function of the different groups of driver genes through GSEA 

(see Chapter 2.1.4). We found that at least 60% of enriched pathways (FDR 

<0.05) across all driver groups converged to five main cellular processes (i.e., 

signal transduction, gene expression, immune system, cell cycle, and DNA 

repair) (Figure 3.3A, Table 3.1). TSGs showed a convergence to cell cycle and 

DNA repair pathways, while oncogenes were enriched in signal transduction and 

immune system-related pathways (Figure 3.3A, Table 3.1). The SLPs along with 

the functional enrichment (Figure 3.2B, Figure 3.3) suggest that TSGs are 

involved in the maintenance of the basic cellular machinery, such as mismatch 

repair mechanisms and cell cycle checkpoints. Oncogenes, on the other hand, 

are preferentially involved in regulatory functions such as signal transduction and 

the regulation of the immune system. 

Candidate cancer drivers showed a functional profile closely resembling that of 

canonical cancer drivers with few exceptions such as extracellular matrix 

organisation (Figure 3.3A). 

We investigated the functional enrichment of the two categories of candidate 

drivers individually. Interestingly, the candidate drivers with non-coding 

alterations were not enriched in any pathway (Table 3.1). The candidate drivers 

with coding alterations showed functional enrichment that closely resembled that 

of candidate drivers altogether (Figure 3.3A). However, the number of pathways 

enriched in candidate cancer drivers was lower than the number of pathways 

enriched in candidate drivers with coding alterations (Figure 3.3A). Given the lack 

of functional enrichment in candidate drivers with non-coding alterations (Table 

3.1), the lower numbers of enriched pathways in all candidate drivers may be 

explained by the fact that drivers with non-coding alterations are contributing to 

the functional enrichment of all candidate cancer drivers by adding noise. 



Chapter 3 Results 

 

58 
 

 

 
Figure 3.3 Functional and drug annotations of cancer driver genes 
A) Proportion of enriched Reactome levels 2-8 pathways mapping to the 
corresponding level 1 in each driver category. Enrichment was measured comparing 
the proportion of drivers in each pathway against that of the rest of human genes 
using a one-sided Fisher’s exact test. FDR was calculated by applying Benjamini-
Hochberg correction. Proportion of canonical, candidate cancer drivers and the rest 
of human genes that are B) targets of FDA-approved antineoplastic drugs or 
biomarkers of response or resistance to immunomodulating and oncological drugs 
in C) cancer cell lines and D) clinical trials. The corresponding numbers for each 
group is reported. This figure was adapted from Dressler et al. (Dressler et al., 2022). 
 

As a consequence of the high degree of overlap, the functional profile of healthy 

drivers closely resembled that of cancer drivers (Figure 3.3A). The candidate 

healthy drivers showed enrichment in only six pathways overall mapping to four 

level 1 Reactome pathways, namely cell cycle, haemostasis, organelle 

biogenesis and transport of small molecules (Table 3.1) These enriched 

pathways included transport of plasma lipoproteins, injury-induced platelet 

activation, and formation of sensory cilia. There was no functional enrichment in 

the remaining healthy drivers (Table 3.1), likely due to the small number of genes 

in this category (Figure 3.1D). 
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Table 3.1 Proportion of enriched pathways per driver category 
For each driver category the proportion of enriched level 2-8 pathways is reported. Enriched pathways are mapped to the 
corresponding Reactome level 1 pathway. The enrichment was tested for all driver categories against the rest of human genes. 
Reactome 
pathway level 
1 

Canonical 
cancer 
drivers 
(%) 

Candidate 
cancer 
drivers 
(%) 

TSGs 
(%) 

OGs 
(%) 

Drivers 
with 
coding 
alterations 
(%) 

Drivers 
with non-
coding 
alterations 
(%) 

All 
healthy 
drivers 
(%) 

Canonical 
healthy 
drivers 
(%) 

Candidate 
healthy 
drivers 
(%) 

Remaining 
healthy 
drivers (%) 

Signal 
Transduction 

35 26 25 40 37 0 46 50 0 0 

Gene 
expression 

12 16 19 10 12 0 12 12 0 0 

Immune 
system 

18 7 3 22 15 0 12 14 0 0 

Cell cycle 5 8 10 3 4 0 7 6 16.7 0 
DNA repair 6 7 18 0 2 0 1 2 0 0 
Developmental 
biology 

6 8 6 5 7 0 4 3 0 0 

Extr. matrix 
organisation 

0 5 0 0 3 0 0 0 0 0 

Metabolism of 
proteins 

2 4 5 2 2 0 2 3 0 0 

Cell responses 
to external 
stimuli 

2 3 3 2 2 0 3 2 0 0 

Signalling in 
disease 

2 1 1 2 2 0 3 3 0 0 

Metabolism of 
RNA 

0 2 0 0 1 0 0 0 0 0 
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Infectious 
disease 

2 2 0 2 1 0 0 0 0 0 

Haemostasis 2 2 0 4 2 0 4 1 50 0 
Metabolism 1 2 2 2 2 0 1 1 0 0 
Vesicle-
mediated 
transport 

1 1 0 1 0 0 0 0 0 0 

Programmed 
cell death 

2 0 4 1 2 0 1 1 0 0 

Organelle 
biogenesis 

0 0 0 0 0 0 1 0 16.7 0 

Neuronal 
system 

2 1 0 2 3 0 1 1 0 0 

DNA 
replication 

0 0 1 0 0 0 0 0 0 0 

Chromatin 
organisation 

1 4 2 1 1 0 1 1 0 0 

Cell-cell 
communication 

1 1 1 1 1 0 1 0 0 0 

Circadian 
clock 

0 0 0 0 1 0 0 0 0 0 

Transport of 
small 
molecules 

0 0 0 0 0 0 0 0 16.7 0 
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Finally, we studied the interaction between genes and oncological drugs. 

Specifically, we investigated the gene categories that were frequently targeted by 

anti-cancer drugs (Figure 3.3B). We did not differentiate between targeted 

therapy and more traditional treatment such as chemotherapy, and as a result 

we observed that the majority (58%) of drug targets fell within the category of the 

rest of human genes (Figure 3.3B). On the other hand, most of the biomarkers of 

resistance or response to oncological treatment in cancer cell lines (82%, Figure 

3.3C) or clinical trials (88%, Figure 3.3D) were cancer driver genes with a large 

prevalence of canonical cancer drivers.  

All SLPs, along with the gene functional annotation and interactions with drugs, 

are available online to the cancer research community at http://network-cancer-

genes.org/. Reda Keddar, Hrvoje Misetic, Michele Bortolomeazzi, and Lisa 

Dressler curated the implementation of the website. 

 

3.5 Conclusion 

The SLP profile shows that driver genes involved in tumorigenesis have 

distinctive characteristics. Based on such properties we were able to distinguish 

cancer driver genes from the rest of human genes. Within the cancer driver 

repertoire we observed heterogeneity between TSGs and OGs. The evolutionary 

and functional analyses showed that TSGs and OGs represent two distinct 

groups of canonical cancer drivers. Not only do they contribute to cancer in 

different ways, they also evolved through different paths and play distinctive roles 

within human cells. 

Interestingly, canonical healthy drivers show the most extreme property profile 

within the driver categories we analysed. This could support the evidence that 

not all driver genes have the same effect on promoting tumorigenesis. It has been 

previously suggested that cancer driver genes can be distributed across a 

gradient of oncogenic potential (Davoli et al., 2013; Grossmann et al., 2020). At 

one end of the gradient, driver genes have a very strong potential for promoting 

tumorigenesis and, hence, are termed super-drivers (Grossmann et al., 2020). 

Those at the opposite end have a lower oncogenic potential (Davoli et al., 2013). 

http://network-cancer-genes.org/
http://network-cancer-genes.org/
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Based on this reasoning, it is tempting to speculate that the 57 canonical healthy 

driver genes represent a subset of super-drivers given their marked property 

profile. The remaining healthy drivers are represented by such a small number of 

genes on which currently, any conclusion regarding their evolutionary history and 

cellular role would be premature. 

From a functional perspective, we observed three top pathways enriched across 

all categories of drivers at similar proportions: signal transduction, gene 

expression and immune system. However, within some groups of drivers, the 

functional profile might be diluted by the presence of genes whose role within the 

cell has not yet been clearly defined, such as candidate drivers with non-coding 

alterations. 

From a treatment perspective, many targets of anti-cancer drugs are non-cancer 

genes. This is mainly explained by the fact that some traditional treatments, such 

as chemotherapy, do not rely on the presence of alterations within their targets, 

even though they target different aspects of the cellular machinery. On the other 

hand, most known mechanisms of resistance or response to oncological drugs 

are mediated by cancer driver genes because this group of genes has been 

investigated more thoroughly in the context of carcinogenesis. 

The advantage of SLPs is that they allow us to distinguish genes involved in the 

initiation and development of cancer from the pool of genes that are not involved 

in cancer. This advantage can be employed in cancer prediction tools for the 

prioritisation of cancer driver genes in patient cohorts. Results are particularly 

insightful when applied to cancer types that are genetically heterogenous and 

whose driver repertoire is not fully explained by acquired alterations in canonical 

cancer drivers. The use of SLPs in prioritising cancer driver genes can be applied 

in order to derive a comprehensive list of cancer driver genes in individual 

patients regardless of the size of the cohort under investigation (Mourikis et al., 

2019; Nulsen et al., 2021). 
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Chapter 4. Resolving OAC genetic inter-tumour 
heterogeneity 

4.1 Motivation 

OAC is genetically heterogeneous (Contino et al., 2017). This means that across 

patients only a handful of genes are commonly predicted as cancer drivers and 

many tumours are left with no drivers to explain the presence of the disease in 

the corresponding patient. However, identifying cancer driver genes is key for the 

clinical treatment of patients. The field of precision oncology relies heavily on the 

identification of cancer driver genes in order to select the most appropriate 

therapy to treat individual patients (Malone et al., 2020).  

Cancer driver genes are those genes that, upon acquiring driver alterations, 

sustain tumour growth, promote local invasion and distant metastasis. Driver 

alterations confer a selective advantage to cells that harbour these alterations 

over cells that do not. The resulting selective advantage enables tumour cells to 

produce more daughter cells than their neighbours through mechanisms that 

result in resistance to apoptosis or accelerated proliferation. Additionally, driver 

alterations can favour cancer cells by reprogramming their cellular metabolism 

and avoiding immune destruction (Hanahan, 2022). 

The limitation in identifying the complete repertoire of cancer driver genes in the 

sample cohort under investigation is undoubtedly due to the cohort size and the 

tools used to identify them (see Chapter 1.3.1). One common approach to 

prioritise cancer driver genes is to identify recurrent mutations within their genetic 

sequence.  

The study of tumour evolution and the identification of cancer driver genes have 

inherited fundamental concepts from the field of evolutionary biology. Mutations 

are the source of new variation within a population and they exist in three different 

forms: neutral, deleterious, and beneficial (Gregory, 2009). Beneficial mutations 

can be rare and provide only a minor advantage. But, over time, the proportion 

of these beneficial and heritable traits within the population increases due to a 

process known as natural selection. Mutations that confer a fitness advantage 
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are thus selected for and become predominant over time, whereas the 

deleterious ones disappear due to their negative outcome. 

In cancer this process of selection occurs much faster than in the evolution of 

species for two reasons. Firstly, the replication time of cells is much faster than 

the reproduction of entire individuals. Secondly, somatic mutations represent the 

main driving force in cancer. They occur frequently, especially when cells are 

exposed to mutagens, and can become fixed in a few replication cycles via clonal 

expansion (Nowell, 1976). 

Recurrence-based methods rely on this idea: if a mutation gives a selective 

advantage to tumour cells it will be selected for and will appear more often than 

usual in sample cohorts (Martincorena et al., 2017). The larger the cohort is, the 

greater the statistical power available to identify cancer genes harbouring less 

frequent driver mutations. These approaches have proved particularly useful in 

defining our current knowledge of genes that drive cancer (Dressler et al., 2022; 

Sondka et al., 2018; Vogelstein et al., 2013). However, most of the genes 

reported in these repositories are those that accumulate driver mutations most 

frequently.  

Higher mutation rate, after correcting for confounding factors such as the level of 

gene expression, replication time and the mutation rate of the genomic region, 

means higher selective advantage (Davoli et al., 2013). However, it has long 

been acknowledged that the genomic landscape of most tumours is dominated 

by cancer driver genes altered in 5% or less of samples (Wood et al., 2007). 

Driver mutations in such genes result in a lower selective advantage but are key 

to understanding tumour initiation, development, and expansion to other organs. 

Additionally, in some cancer types the mutational landscape is further hampered 

by extended driver heterogeneity. 

In the context of OAC, even the most comprehensive genetic study so far, which 

comprised 551 OAC samples and the employment of multiple driver detection 

methods, failed to identify cancer driver genes across all patients (Frankell et al., 

2019). In the study, the authors combined seven driver detection methods that 

resulted in the prioritisation of 77 driver genes affected by coding and non-coding 

mutations and CNAs. Despite the large cohort size and the combination of 
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multiple cancer driver detection methods, 50% of the samples had less than five 

driver events (Frankell et al., 2019), a commonly accepted number of driver 

events to explain the development of the disease (Martincorena et al., 2017). 

For this reason, we compiled a large cohort of OAC and BO samples and 

investigated their heterogeneity by applying sysSVM2 (see Chapter 1.3.3). The 

tool, instead of relying on the frequency of alterations, uses SLPs to prioritise 

cancer driver genes. As shown above (see Chapter 3.3), we can exploit these 

properties to differentiate between cancer driver genes and the rest of human 

genes. This approach allows the prioritisation of frequently altered cancer drivers 

and of genes that rarely accumulate driver alterations and contribute to cancer in 

very few or individual tumours. 

 

4.2 Curation of a comprehensive cohort of BO and OAC cases 

We assembled a cohort of 748 BO and OAC samples derived from 671 

patients, combining various sources (Figure 4.1A): 

• 489 samples obtained from ICGC-OCCAMS (source: 

https://www.occams.org.uk/); 

• 73 samples obtained from TCGA (source: https://gdc.cancer.gov/; 

Grossman et al., 2016); 

• 186 samples obtained from two NGS screens on OAC (Dulak et al., 2013; 

Stachler et al., 2015). 

The dataset consisted of 73 BO cases (all of which progressed to cancer) and 

675 OACs (Figure 4.1A). Despite all 73 BO patients in the cohort progressing to 

OAC, genomic data of the paired OAC were available for 70 BO cases. The 

average age at cancer diagnosis was 67 years and 85% of patients were male, 

in accordance with the strong male predominance of the disease (Xie & 

Lagergren, 2016). 

We stratified the 748 samples into clinical stages (Figure 4.1B). We divided the 

73 BO cases based on the presence of dysplasia and found 73% of them to be 

NDBO. We decided not to include the grade of dysplasia due to the high inter-

observer variability in evaluating Barrett’s dysplasia (Fitzgerald et al., 2014). 
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This resulted in a single stage, namely DBO, that included both low-grade and 

high-grade dysplasia samples. We annotated OAC samples using the 8th edition 

of the AJCC staging of cancers of the oesophagus and oesophagogastric 

junction (Rice et al., 2017). The staging system describes the size of the tumour 

using the TNM notation (see Chapter 1.1.2). We found that 75% of the OAC 

samples in our cohort were classified as Stage III or IV tumours. This is in line 

with the late diagnosis of the disease where 70-80% of patients are diagnosed 

when lymph node or distant metastases are already present (source: 

https://www.cancerresearchuk.org). 

Given the different original sources of samples we set out to treat and analyse 

them consistently using the same bioinformatic pipeline (see Chapter 2.2.1; 

Figure 4.1C). The tools for variant calling applied to the bulk of our data, namely 

ICGC-OCCAMS, were benchmarked against various other available methods 

and had among the best sensitivity and specificity for variant calling (Ding et al., 

2015). Hence, we decided to apply the same tools to the remaining sources of 

samples. 

For the samples obtained from the NGS screens on OAC (Dulak et al., 2013; 

Stachler et al., 2015), we downloaded the BAM files and called in house both 

the CN segments and the mutations (Figure 4.1C). For the TGCA (curated by 

Hrvoje Misetic) and ICGC-OCCAMS samples we obtained the called CN 

segment and mutations and moved further to identify the genes affected by 

damaging alterations (see Chapter 2.2.1; Figure 4.1C). We defined as 

damaging those alterations (mutations or CNAs) that resulted in the activation 

or inactivation of the gene. Specifically, we considered four categories of 

damaging alterations: 

• Damaging SNVs and indels; 

• Homozygous deletions; 

• Gene amplifications; 

• Double hits, in which one of the two alleles was lost and the other 

harboured a damaging SNV or indel. 
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Figure 4.1 Annotation of damaged genes across sources and clinical stages 
A) Original sources of BO and OAC samples. B) Clinical stage of the samples 
included in this study. The number of samples in each clinical stage is reported on 
top of each bar. C) Pipeline overview for the annotation of damaged genes. The 
pipeline is split into two parts that run in parallel: on one side the annotation of genes 
affected by damaging CNAs, while on the other side the annotation of genes affected 
by damaging mutations. Reported is the entry point into the pipeline for each source 
of samples. D) Distribution of damaged genes per sample across original sources. 
Reported on the horizontal axis is the source and the number of samples obtained 
from it. The numbers on top of the graphs represent the median value for the 
corresponding distribution. E) Comparison of the distribution of homozygous 
deletions between BO and OAC samples obtained from (Stachler et al., 2015) F) 
Distribution of damaged genes per sample across clinical stages. Reported on the 
horizontal axis is the clinical stage and the number of samples mapping to it. The 
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numbers on top of the graphs represent the median value for the corresponding 
distribution. In D) – E) – F) each pairwise comparison was done using a two-sided 
Wilcoxon test. The resulting p-values were corrected using the Benjamini-Hochberg 
method. *** FDR <0.0001, ** FDR <0.001. 
 

We compared the number of damaged genes across original sources and found 

that BO samples had significantly fewer genes with damaging alterations than 

OAC samples (Figure 4.1D). We also observed that within the four OAC sources 

the number of damaged genes per sample was comparable (Figure 4.1D). 

However, within BO samples, the ICGC source had significantly more damaged 

genes than the Stachler source. This was caused by a significantly higher 

number of homozygous deletions per sample in the BO cases from the Stachler 

cohort (Stachler et al., 2015) than in the paired OAC samples (Figure 4.1E). 

Since the transition from BO to OAC is commonly characterised by increased 

aneuploidy (Nones et al., 2014; Stachler et al., 2015), we decided not to call 

CNAs in the BO samples from the Stachler cohort (Stachler et al., 2015). In line 

with what was previously reported in the literature, which showed a stable 

genome with very few or no copy number changes in BO cases that progressed 

to OAC (Ross-Innes et al., 2015), we assumed that these BO samples had a 

normal diploid genome without any evidence of aneuploidy. 

Finally, we compared the distributions of damaged genes per sample across 

clinical stages. We observed that samples accumulated more damaged genes 

across the four OAC stages than within BO stages (Figure 4.1F). This was in 

line with previous evidence of increased aneuploidy in the progression from BO 

to OAC (Ross-Innes et al., 2015; Stachler et al., 2015) mainly due to an increase 

in gene amplifications (Table 4.1). Interestingly, we did not observe any increase 

in the distribution of the number of damaged genes per sample between early 

and advanced OAC stages (Figure 4.1F). 

 
Table 4.1 Median number of damaged genes across cohorts 
For each category of damaged genes (all damaging alterations, damaging mutations, 
homozygous deletions, amplifications, double hits) reported is the median number of 
damaged genes within the cohort. 



Chapter 4 Results 

 

69 
 

Cohort 
Median number of 
damaged genes 

Damaging category 

ICGC BO (48) 45 All damaging 

Stachler BO (25) 17 All damaging 

ICGC OAC (441) 283 All damaging 

TCGA OAC (73) 330 All damaging 

Stachler OAC (23) 240 All damaging 

Dulak OAC (138) 309 All damaging 

ICGC BO (48) 17 Damaging mutations 

Stachler BO (25) 17 Damaging mutations 

ICGC OAC (441) 31 Damaging mutations 

TCGA OAC (73) 35 Damaging mutations 

Stachler OAC (23) 20 Damaging mutations 

Dulak OAC (138) 22 Damaging mutations 

ICGC BO (48) 2 Homozygous deletions 

Stachler BO (25) 0 Homozygous deletions 

ICGC OAC (441) 4 Homozygous deletions 

TCGA OAC (73) 1 Homozygous deletions 

Stachler OAC (23) 2 Homozygous deletions 

Dulak OAC (138) 4 Homozygous deletions 

ICGC BO (48) 1 Amplifications 

Stachler BO (25) 0 Amplifications 

ICGC OAC (441) 223 Amplifications 

TCGA OAC (73) 280 Amplifications 

Stachler OAC (23) 215 Amplifications 

Dulak OAC (138) 250 Amplifications 

ICGC BO (48) 0 Double hits 

Stachler BO (25) 0 Double hits 

ICGC OAC (441) 0 Double hits 

TCGA OAC (73) 0 Double hits 

Stachler OAC (23) 2 Double hits 
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Dulak OAC (138) 1 Double hits 

 

4.3 OAC genetic inter-tumour heterogeneity 

We then set out to investigate the current knowledge on OAC-specific cancer 

drivers and analyse how frequently these drivers were altered in the 748-sample 

cohort that we assembled and curated.  

Since this project was started prior to the release of the seventh update of the 

NCG database, we used the, then current, version of the database, NCG6, as 

a reference (Repana et al., 2019). The NCG database, in addition to reporting 

cancer driver genes and their SLPs, contains information regarding the list of 

cancer drivers associated with individual cancer types. We additionally used 

NCG6 to derive the pan-cancer list of canonical cancer driver genes and SLPs 

for all human genes.  

From NCG6, we retrieved nine canonical cancer driver genes that had been 

previously reported to be involved in OAC tumorigenesis and whose role in 

promoting cancer was experimentally validated (Figure 4.2A). NCG6 contains 

information on the mutational drivers predicted in six publications on OAC 

published between 2012 and 2017 (Agrawal et al., 2012; Dulak et al., 2013; Fels 

Elliott et al., 2017; Kim et al., 2017; Secrier et al., 2016; Weaver et al., 2014). 

Shortly after we obtained this list, the most comprehensive study on OAC driver 

genes was published (Frankell et al., 2019) and we decided to include it in order 

to have a thorough understanding of the driver landscape in OAC. The curation 

of the drivers predicted overall in these seven screenings resulted in 48 OAC-

specific canonical cancer drivers (Figure 4.2A). Given the role of aneuploidy in 

driving OAC progression (Stachler et al., 2015) and the fact that NCG6 reports 

only mutational cancer drivers, we decided to include OAC-specific cancer 

driver genes that are altered via CNAs such as amplifications or homozygous 

deletions. We curated four additional screenings that focused specifically on the 

study of CNAs in OAC (Dulak et al., 2012; Frankel et al., 2014; Murugaesu et 

al., 2015; Nones et al., 2014). This resulted in 29 new canonical cancer driver 

genes that were identified by exclusively focusing on drivers affected by CNAs 
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(Figure 4.2A).  

The final and, to our knowledge, most comprehensive list of OAC-specific 

canonical cancer driver genes we obtained resulted in 77 genes that were 

shown to be involved in OAC tumorigenesis. Although Frankell et al. reported 

the same number of OAC driver genes (Frankell et al., 2019), the two lists differ 

from each other in that we only included drivers with robust experimental 

evidence supporting their role in cancer, namely canonical.  

The largest proportion of the 77 OAC-specific canonical cancer drivers were 

represented by TSGs (49%), followed by 35% OGs, with the remaining 16% 

being undefined canonical drivers with no clear understanding of how they 

mechanistically promote tumorigenesis (Figure 4.2B). We noticed that 66% of 

the 77 drivers were predicted as drivers in only one of the 11 screenings that we 

annotated (Figure 4.2C). The most frequently predicted genes were CDKN2A 

and SMAD4, reported as drivers in nine and eight OAC-specific screenings 

respectively (Figure 4.2). Conversely, TP53, the most frequently altered gene in 

OAC (Contino et al., 2017), was predicted as a cancer driver gene in six 

screenings. 

We mapped the 77 OAC-specific canonical cancer driver genes to our cohort of 

748 samples in order to investigate the prevalence and frequency of their 

damaging alterations. We found these genes to be damaged 2690 times in 715 

samples. Interestingly, three OAC-specific canonical cancer drivers were never 

damaged in our cohort. These three genes were all reported as TSGs, namely 

FAM46C, KLF6 and SDHB, and were identified exclusively as drivers affected 

by CNAs. Due to the limitations in the current methods for the identification of 

drivers with CNAs (see Chapter 1.3.1), it is possible that, even though they were 

reported as the putative driver genes affected by the recurrent genomic loss 

(Murugaesu et al., 2015), they were not the driver genes targeted by the loss of 

the genomic locus.  
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Figure 4.2 The driver gene landscape of OAC based on current knowledge 
A) Sources of OAC-specific canonical cancer driver genes with the corresponding 
number derived from each of them. B) Classification of OAC-specific canonical 
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cancer drivers in TSGs, OGs and unclassified. Unclassified drivers are genes with 
dual roles in cancer or no clear evidence regarding their mechanism of action in the 
context of tumorigenesis. C) Level of support for the OAC-specific canonical cancer 
drivers. The levels refer to the number of OAC-specific screenings that predicted the 
gene as cancer driver. D) List of the alterations present in the 77 OAC-specific 
canonical drivers in individual samples. The colour of each cell represents the type 
of alteration affecting the corresponding gene in the corresponding sample. On the 
right, the percentage of total samples in which the gene is altered is shown. The 748 
samples are divided into clinical stages. E) Proportion of OAC samples with and 
without whole-genome doubling (WGD). F) Distribution of OAC-specific canonical 
cancer driver genes in the 675 OAC samples. 
 

Unsurprisingly, the most frequently damaged gene was TP53, damaged in 66% 

of our cohort (494/748) (Figure 4.2D). CDKN2A was the second most damaged 

gene with alterations present in 25% of samples. All of the remaining canonical 

cancer driver genes were damaged in less than 20% of samples, with 56 genes 

damaged in 5% or less of samples (Figure 4.2D). Interestingly, CDKN2A 

alterations were more common in precancerous stages than across OAC clinical 

stages. Specifically, we found CDKN2A altered in 45% of NDBO cases (24/53) 

whereas across OAC clinical stages we found it altered in 16% to 24% of the 

cases.  

We observed that the vast majority of the most frequently altered drivers were 

OGs, affected by amplifications (Figure 4.2D), although proportionally OGs were 

less represented than TSGs (Figure 4.2B). The high frequency of amplifications 

in OAC-specific canonical drivers might be explained by the common presence 

of WGD in OAC. We found that 68% of our 675 OAC samples underwent at 

least one WGD event (Figure 4.2E). In this context, it is probably easier for a 

cancer lesion to accumulate further aneuploidy in the form of amplifications 

rather than losing genes given the duplicated number of gene copies present in 

WGD samples. Additionally, mutations in TP53 were reported as favouring the 

proliferation of cancer cells with WGD (Quinton et al., 2021). The high 

prevalence of TP53-inactivating mutations in our cohort is likely to explain the 

high incidence of WGD, hence further aneuploidy in the form of gene 

amplifications.  

Finally, we looked at the distribution of OAC-specific canonical cancer driver 

genes across the 675 OAC cases. We observed some level of variability in 
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terms of the number of canonical drivers damaged in individual samples (Figure 

4.2F). The median number of damaged OAC-specific canonical drivers per 

sample was four, with one sample accumulating 14 damaged OAC-specific 

canonical driver genes. We observed that 26% of OAC cases had less than 

three drivers (Figure 4.2F), demonstrating an urgent need to complete the list of 

drivers in a significant proportion of OAC samples. 

 

4.4 OAC-specific training of sysSVM2 

In order to complete the list of driver genes in each sample, we used sysSVM2 

(Nulsen et al., 2021). sysSVM2 is trained on canonical cancer drivers but the 

exact composition of the training set is dependent on the goal of the experiment. 

In order to find the optimal SVM models for OAC, we tested three settings of 

sysSVM2. The settings corresponded to three different lists of canonical drivers 

that we used to optimise the SVM parameters through cross-validation.  

We aimed to investigate how large, non OAC-specific lists of canonical drivers 

performed as compared to small, OAC-specific canonical drivers in the 

prioritisation of cancer driver genes in OAC. We used 711 canonical cancer 

drivers divided into 239 TSGs, 239 OGs and 233 drivers with an undefined role 

as derived from NCG6 (Repana et al., 2019). In addition to this, we included a list 

of OAC-specific drivers which did not include CNA drivers (Figure 4.2A). Different 

lists of canonical drivers resulted in different training and prediction sets across 

the three settings. 

We tested three groups of driver genes as training set (Table 4.2): 

• 48 OAC-specific canonical cancer drivers, derived from the union of NCG6 

and Frankell et al. (Frankell et al., 2019) (setting 1), 

• 239 TSGs and 239 OGs from NCG6 (setting 2), 

• All 711 canonical cancer drivers from NCG6 (setting 3). 

 
Table 4.2 Training and prediction sets for sysSVM2 under the three settings 

 Training set Prediction set 
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# samples 

# genes 

(redundant) 

# genes 

(unique) 
# samples 

# genes 

(redundant) 

# genes 

(unique) 

Setting 1 712 2428 48 748 266421 18883 

Setting 2 738 7358 455 748 261491 18476 

Setting 3 741 11525 683 748 257324 18248 

 

sysSVM2 used the molecular and systems-level features of these three sets of 

genes to train the SVMs based on the four kernels. To select the best models, 

which define the four kernels, we ran a cross-validation with 10000 iterations for 

each of the three settings. During the cross-validation, we evaluated the 

sensitivity of each kernel to predict canonical drivers. We identified the best four 

models (one for each of the four SVMs) as those with the highest average and 

lowest standard deviation of sensitivity to retrieve canonical drivers in multiple 

iterations of cross-validation (see Chapter 2.3.1).  

Using these best models, we used the whole training sets to train and predict on 

the corresponding prediction sets (Table 4.2). To select the best setting of the 

three, we investigated their predictions in terms of performance and stability. In 

order to investigate the performance of the three settings, we used the AUROC 

curve and the composition score (Nulsen et al., 2021) (see Chapter 2.3.2). These 

two metrics enabled us to evaluate the prevalence of different gene categories in 

top ranked positions. To evaluate the stability of the predictions across the three 

settings, we measured the degree of overlap of top ranked genes in pairwise 

comparisons and the RBO score (Nulsen et al., 2021) (see Chapter 2.3.2). The 

RBO score evaluates the overlap between two lists keeping track of the position 

where it occurs.  

Settings 1 and 2 were comparably able to distinguish canonical cancer drivers 

not included in the training set from non-cancer genes and false positives (Figure 

4.3A). We could not evaluate this metric in Setting 3 as the training set included 

all canonical cancer drivers. Although the performance decreased, sysSVM2 was 

also able to separate candidate cancer genes from false positives across all three 

settings we tested (Figure 4.3A).  
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Figure 4.3 Evaluation of the three sysSVM2 settings 
A) AUROC curve comparing canonical drivers to false positive (red), canonical 
drivers to non-cancer genes (blue), candidate drivers to false positive (yellow), 
candidate drivers to non-cancer genes (green). Recall rates were calculated for each 
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sample within each setting separately and the median AUROC curve across samples 
is plotted. Median AUROC curve for all comparisons is indicated. B) Median 
composition scores of the top five predictions in terms of canonical drivers, candidate 
drivers, non-cancer genes and false positives in the pairwise comparisons of the 
three settings. C) Distribution of the number of top five predictions shared between 
settings. The overlap was calculated between each pair of predictions in each 
sample. The colours reflect the number of genes overlapping between settings. D) 
RBO score of the top five predictions in each sample. For each distribution the 
median value is reported on top of the graph. B) – C) – D) Samples were divided into 
clinical stages and also treated as a single group. The number of samples per stage 
is reported. 
 

We then investigated the composition of the top five predictions in order to 

understand which gene categories were prioritised across the three settings. Top-

ranking predictions in setting 1 had a higher composition score overall than those 

in settings 2 and 3 (Figure 4.3B). By contrast, settings 2 and 3 had similar 

composition scores across stages and altogether. Since canonical and candidate 

cancer genes were weighted more than non-cancer genes and false positives, 

this meant that cancer-related genes ranked higher than non-cancer genes in 

setting 1 over the other two (Figure 4.3B). 

Regarding stability, we compared the top five predictions of each set for each 

sample. Although setting 2 and 3 shared more genes scoring among the top five 

predictions with each other than with setting 1 (Figure 4.3C), 90% of samples 

overall shared at least two predictions between setting 1 and setting 2 or 3 (Figure 

4.3C). Furthermore, we observed that across settings 2 and 3 most of the drivers 

were predicted in the same order (Figure 4.3D). Instead, setting 1 showed more 

variability when compared to the other two settings with 50% of drivers in 

common and predicted in the same order across stages (Figure 4.3D). 

Based on these comparisons, we chose the OAC-specific training set (setting 1) 

because, although it had less predictions shared with the other two (Figure 4.3C-

D), it showed the highest performance in terms of prioritising cancer-related 

genes among the top five predictions (Figure 4.3B). Additionally, the choice of 

using OAC-specific canonical drivers resulted in the training of the sysSVM2 

bearing a closer resemblance to the original driver landscape of OAC. 
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Figure 4.4 sysSVM2 score of different gene categories 
Shown are the distributions of sysSVM2 scores assigned to the six gene categories 
present in the prediction sets. For each category the score distribution is reported for 
the OAC-specific training done on the 48 canonical cancer drivers (no fill pattern) 
and on the 77 canonical cancer drivers (square fill pattern). The genes are divided 
into OGs, canonical cancer drivers with undefined role, TSGs, candidate cancer 
drivers, non-cancer genes and false positives. The parentheses indicate the number 
of redundant and unique genes, respectively, for each category present in the 
prediction set. The median value is reported above each plot. Each pairwise 
comparison was done using a two-sided Wilcoxon test. *** p-value <0.0001. 
 

We later compiled a more comprehensive list of OAC-specific canonical cancer 

drivers that included genes altered via CNAs and resulted in 77 genes in total 

(Figure 4.2A). We trained sysSVM2 using this more comprehensive knowledge 

of OAC and evaluated it with respect to the previously chosen OAC-specific 

setting based on the initial 48 canonical drivers. The parameters that defined the 

best four models converged to the same values in the two settings (see Chapter 

2.3.1; Table 4.3). Additionally, we found that under both settings canonical cancer 

drivers that were part of the prediction sets were scored higher than candidate 

cancer drivers, non-cancer genes, and false positives (Figure 4.4). The 77 OAC-

specific canonical drivers setting assigned a lower score to false positives than 
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the 48 OAC-specific canonical drivers setting. Based on this evidence, we 

continued our analysis using the training of sysSVM2 done on the comprehensive 

list of 77 OAC-specific canonical drivers. 

 
Table 4.3 Best model parameters 
Reported are the values describing the best models for each SVM-parameter 
combination for which an optimisation was done. The values reported show the 
parameters selected when training sysSVM2 on the 48 and on the 77 OAC-specific 
canonical cancer drivers.  
SVM Parameter Value under 48 genes Value under 77 genes 

Linear 𝜈𝜈 0.05 0.05 

Polynomial 
𝜈𝜈 0.05 0.05 

𝑑𝑑 2 2 

Radial 
𝜈𝜈 0.05 0.05 

𝛾𝛾 0.0078125 0.0078125 

Sigmoid 
𝜈𝜈 0.05 0.05 

𝛾𝛾 0.25 0.25 

 

4.5 Conclusion 

To our knowledge, we compiled the most comprehensive cohort of BO and OAC 

samples to date and annotated their damaged genes. Given the variety of 

sources from which we obtained these samples, we annotated their damaged 

genes consistently using the same bioinformatic pipeline. This resulted in 

comparable distributions of the number of damaged genes per sample within 

OAC sources. Within BO sources, we observed some level of variability due to 

the inability of calling reliable CNAs in the samples obtained from Stachler et al. 

(Stachler et al., 2015). We found a higher number of homozygous deletions in 

the Stachler cohort of BO cases than in the paired cohort of OACs. Since the 

literature reported evidence of low CNAs in BO and high CNAs in OAC (Ross-

Innes et al., 2015), we decided to assume that these BO cases were diploid with 

no CNAs in their genome. 
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We stratified BO and OAC samples into clinical stages, classifying most of the 

tumours as advanced due to the presence of lymph node or distant metastasis. 

Indeed, the late diagnosis of the disease is one of the causes that hampers the 

successful treatment of OAC (Contino et al., 2017). We observed that OAC 

samples accumulated more damaged genes compared to BO samples. This 

higher level of instability was mainly driven by the acquisition of gene 

amplifications as the tumour develops (Nones et al., 2014; Ross-Innes et al., 

2015). Interestingly, we did not observe any differences in the level of instability 

across OAC stages, suggesting that no new genetic drivers are involved in 

acquiring the ability to metastasise. However, sub-clonal drivers in the primary 

lesion may become clonal and promote metastasis, especially in treated tumours 

(Hu et al., 2020).  

We compiled a comprehensive list of canonical cancer driver genes that were 

previously reported to be involved in OAC tumorigenesis by integrating 11 OAC-

specific screenings. By mapping this comprehensive knowledge to our cohort of 

748 BO and OAC samples we confirmed that OAC is indeed heterogeneous. 

TP53 was the most frequent driver with alterations in 66% of the samples. It was 

followed by CDKN2A altered in 25% of the samples. Interestingly, CDKN2A 

showed some level of stage-specificity in that it was more frequently altered in 

the precancerous lesion, NDBO, than across OAC clinical stages. A previous 

study investigated the acquisition of driver alterations in a stage-specific fashion 

(Weaver et al., 2014). However, this study did not report CDKN2A as one of the 

genes differentiating the pre-cancer from the cancer lesion. The authors 

observed a similar rate of CDKN2A alterations across BO-to-OAC progression 

(Weaver et al., 2014). Given that this study focused exclusively on mutation rates, 

this discrepancy most likely results from the missing CNA analysis.  

We found that the driver repertoire across the 675 OAC samples was quite 

heterogeneous. The median number of driver genes per sample was four. Five 

drivers per tumours have been proposed to be needed to explain the presence 

of OAC (Martincorena et al., 2017). Under the five-driver model, 66% of our 

samples would require additional cancer driver genes to be predicted. Even 

under more conservative estimates of three cancer driver genes needed per 
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tumour (Tomasetti et al., 2015; Vogelstein & Kinzler, 2015), 26% of our samples 

did not have enough cancer driver genes to explain the presence of the disease 

in the corresponding patient. 

Given the heterogeneity of the OAC driver gene landscape, we decided to use a 

cancer driver prediction tool that allows us to prioritise cancer driver genes at the 

individual patient level (Nulsen et al., 2021). sysSVM2 learns the molecular 

(damaging somatic alterations) and systems-level (SLPs) features of canonical 

cancer drivers and predicts as drivers the damaged genes in single patients that 

more closely resemble these features. We tested three settings of sysSVM2 and 

compared their performance and stability. Specifically, we tested three training 

sets, namely the OAC-specific, TSGs and OGs, and all canonical drivers settings. 

We selected the OAC-specific setting given its higher ability in prioritising cancer-

related genes in top positions compared to the other two settings.  
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Chapter 5. Investigating the role and therapeutic 
vulnerabilities of OAC genetic drivers 

5.1 Motivation 

After training sysSVM2 on an OAC-specific setting of 77 canonical cancer drivers, 

we were able to complete the list of cancer driver genes in all 675 OAC samples 

we annotated. The sample-specific lists were the result of combining OAC-

specific canonical cancer drivers with drivers prioritised by sysSVM2, henceforth 

termed sysSVM2 predictions.  

Firstly, we investigated how many cancer driver genes were needed in individual 

OACs, aiming for the search of a clearly defined number of driver events among 

the altered genes. A reliable estimate on the number of driver genes needed per 

tumour, and in this work per OAC, is crucial for the identification of targeted 

therapies in individual patients and will help the cancer research community to 

understand how the disease initiates and develops.  

We analysed two published models that described the number of drivers needed 

in OAC (Jeon et al., 2006; Martincorena et al., 2017). Jeon et al. took advantage 

of age incidence data on OAC to derive the number of rate-limiting steps, hence 

drivers, that described the relation between age and tumour incidence. This 

model estimated that three cancer driver genes were needed per OAC. By 

contrast, Martincorena et al. relied on identifying signals of positive selection 

across cancer genomes and to derive the number of events needed to explain 

cancer evolution. As a result, the authors found that five driver events were 

needed per OAC. 

sysSVM2 ranks the damaged genes that are part of the prediction set in individual 

samples using a combined score that weights the four kernels based on their 

sensitivity (see Chapter 2.3.1). The score is a proxy of how closely the genes’ 

properties resemble those of OAC-specific canonical cancer drivers used for 

training. Highly ranked genes have the most similar property profile to that of 

OAC-specific canonical drivers and will then be prioritised as cancer drivers for 

that patient. 
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Given the ranking nature of sysSVM2 predictions, we compared the two driver 

models by selecting different numbers of cancer driver genes per sample. We 

studied whether the two additional drivers prioritised exclusively under the five-

driver-per-sample (namely positive selection) model were predicted to be 

functionally involved in OAC tumorigenesis. We looked at the pathways they 

perturbed to see if they converged to the pathways already altered by the three-

driver-per-sample (namely age-incidence) model or were involved in novel 

molecular processes.  

After selecting the positive selection model as the most thorough estimate on the 

number of drivers needed per OAC, we investigated the role of OAC-specific 

canonical drivers and sysSVM2 predictions in the context of OAC tumorigenesis. 

Furthermore, we searched for drivers in the list of sysSVM2 predictions that could 

be exploited as drug targets. Finally, we investigated whether there were any 

differences in the frequency of drivers across OAC clinical stages suggesting that 

some cancer driver genes are acquired at specific stages, hence are able to 

define clinical stage boundaries, during OAC development. 

 

5.2 Drivers identified under the positive selection model perturb 
novel pathways 

Based on the number of drivers needed per individual tumour according to the 

age-incidence and the positive selection model, the proportion of samples that 

required sysSVM2 predictions varied. Under the age-incidence model, which 

assumed three drivers per OAC (Jeon et al., 2006), 26% (176/675) of the samples 

required additional drivers to be found (Figure 5.1A). Within these 176 samples, 

64% (112/176) required one additional driver to be predicted whereas the 

remaining 36% required either two or three drivers to be identified (Figure 5.1A). 

Under the positive selection model predicting five drivers per tumour 

(Martincorena et al., 2017), 66% (446/675) of the OACs required further 

investigation in order to complete their list of cancer driver genes (Figure 5.1B). 

In this context, 61% of the samples (270/446) required one or two drivers to 

complete their list of cancer driver genes, whereas the remaining 39% of the 
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samples required between three and five driver genes to be further predicted 

(Figure 5.1B). 

We predicted 234 and 521 cancer driver genes in total under the age-incidence 

and the positive selection model, respectively. As a consequence of the larger 

number of drivers needed under the positive selection model and of the fact that 

we derived the drivers from the same ranked list of damaged genes in each 

sample (see Chapter 2.4.1), all of the 234 age-incidence drivers represented a 

subset of the 521 positive selection drivers (Figure 5.1C). 

 

 
Figure 5.1 OAC samples with not enough cancer drivers 
A) Proportion of OAC samples that have an incomplete repertoire of cancer driver 
genes under the age-incidence model. Highlighted in different brown shades are the 
proportions of samples that require between one and three additional predictions. B) 
Proportion of OAC samples that have an incomplete repertoire of cancer driver 
genes under the positive selection model. Highlighted in different blue shades are 
the proportions of samples that require between one and five additional predictions. 
C) Overlap between the unique sets of driver genes predicted under the age-
incidence and positive selection models. 
 

Cancer driver alterations in core oncogenic pathways have been reported to 

occur in a nearly mutually exclusive mode (McLendon et al., 2008). Once a gene 

involved in one of the hallmarks of cancer (Hanahan, 2022) is altered, the cell 

acquires a selective advantage. A second driver alteration, that results in the 

perturbation of the same pathway, is less likely to occur within the cell since it is 

unlikely to provide additional advantage to the cancer cell (Ciriello et al., 2012). 

We reasoned that, if the two additional drivers per sample predicted exclusively 

under the positive selection model (termed positive selection-specific drivers) 

perturbed pathways already altered by the age-incidence drivers, then the 
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positive selection-specific drivers would be more likely to be redundant and not 

functionally involved in OAC initiation and development. If, on the other hand, 

they perturbed novel pathways that were not directly affected by the age-

incidence drivers, the positive selection-specific drivers would be more likely to 

be functionally relevant and needed to explain the presence of the tumour in 

individual patients. To investigate this, we carried out a cohort-level GSEA on the 

three drivers per sample predicted by the age-incidence model and on the two 

positive selection-specific drivers separately and compared their results (see 

Chapters 2.4.2 and 2.4.3).  

We observed minimal differences in terms of pathway perturbations between the 

age-incidence drivers and the positive selection-specific drivers (Figure 5.2A). 

Specifically, metabolism in stage I OACs and DNA repair in stage II OACs were 

predominantly perturbed by positive selection-specific drivers. By contrast, signal 

transduction in stage IV OACs and immune system in stage I OACs were 

preferentially affected by alterations in age-incidence drivers.  

Given the redundancy of Reactome, which we used as a reference database for 

cellular pathways, we decided to inspect the level of overlap between the 

pathways enriched in the positive selection-specific drivers and those enriched in 

the age-incidence drivers (Figure 5.2B, see Chapter 2.4.4). We found a high level 

of pathway overlap between the two models. However, between 17% and 58% 

of the pathways enriched in the positive selection-specific drivers across OAC 

clinical stages were novel and independent from the age-incidence driver 

enrichment. 

When inspecting these novel pathways, we noticed that the positive selection-

specific drivers preferentially perturbed pathways related to DNA activities and 

replication, such as transcription, cell cycle, and DNA repair (Figure 5.2C). 

Specifically, we found the positive selection-specific drivers enriched in 

processes like chromosome maintenance, nucleotide and base excision repair, 

and the regulation of gene expression via non-coding RNAs and epigenetic 

mechanisms. 
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Figure 5.2 Comparison of the age-incidence and positive selection models 
A) Comparison of the proportion of level 1 Reactome pathways between the age-
incidence drivers (brown) and the positive selection-specific drivers (blue). 
Highlighted in brown and blue are the pathways in which the proportion is larger in 
the corresponding model (FDR <0.1, one-sided Fisher’s exact test). FDR was 
calculated by applying the Benjamini-Hochberg correction. B) Overlap of the 
enriched level 2-8 Reactome pathways in the age-incidence drivers (brown) and 
those enriched in the positive selection-specific drivers (blue). C) Proportion of the 
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positive selection-specific enriched level 2-8 Reactome pathways mapping to the 
corresponding level 1. D) Overlap of the enriched level 2-8 Reactome pathways in 
the age-incidence drivers (brown) and those enriched in the positive selection drivers 
(cyan). 
 

Finally, we wondered whether all of the pathways perturbed by the 234 age-

incidence drivers were contained in the list of pathways perturbed by the 521 

positive selection drivers. In order to determine this, we tested the enrichment of 

the two sets of drivers separately and compared their results. Across all OAC 

clinical stages at least 94% of the enriched pathways in the age-incidence drivers 

were part of the enriched pathways under the positive selection driver model 

(Figure 5.2D). Unsurprisingly, the vast majority of pathways perturbed by the 234 

drivers predicted under the age-incidence model were part of the pathways 

perturbed by the 521 drivers under the positive selection model.  

Based on these results, we selected the positive selection model as a thorough 

estimate on the number of drivers needed per OAC and discarded the age-

incidence model. We decided to drop the small driver model (three driver genes 

per OAC) because the age-incidence model was fully contained in terms of 

pathway perturbations (Figure 5.2D) and driver genes (Figure 5.1C) in the larger 

positive selection model. The drivers predicted exclusively under the positive 

selection model added perturbations to novel pathways that were not affected by 

the age-incidence drivers, pointing towards a putative functional implication of the 

positive selection-specific drivers in the perturbation of cellular pathways involved 

in OAC development. 

 

5.3 Frequency of cancer drivers across OAC samples 

Next we investigated the identity and the frequency of the drivers across samples. 

Under the positive selection model we identified in total 521 unique cancer driver 

genes divided into 73 OAC-specific canonical cancer drivers and 448 sysSVM2 

predictions.  

We found OAC-specific canonical drivers prioritised 2344 times in the whole 

cohort making up 69% of the total drivers (Figure 5.3A). sysSVM2 predictions 
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made up altogether 31% of the total driver repertoire and were prioritised 1031 

times (Figure 5.3A). sysSVM2 predictions were a combination of canonical 

drivers that had not been previously reported to be involved in OAC (18%), 

candidate cancer driver genes (17%), and genes that had not been previously 

reported to be involved in cancer (65%) (Figure 5.3A). 

We then investigated the number of samples in which each OAC-specific 

canonical driver and sysSVM2 prediction was predicted as a driver. OAC-specific 

canonical drivers were more frequent across samples than sysSVM2 predictions 

(Figure 5.3B). More than 60% of sysSVM2 predictions were sample-specific. 

 

 
Figure 5.3 Frequency of OAC cancer drivers across samples 
A) Proportion of OAC cancer drivers that are OAC-specific canonical cancer drivers 
(pink) and sysSVM2 predictions (orange). Highlighted in the bar plot is the proportion 
of sysSVM2 predictions that are non OAC-specific canonical, candidate cancer 
drivers and rest of human genes. B) Distribution of the frequency of cancer driver 
genes across samples. The driver genes are divided into OAC-specific canonical 
drivers and sysSVM2 predictions. On top of each bar the actual number is reported. 
 

We observed some exceptions to the main trend. Some OAC-specific canonical 

cancer drivers were prioritised in individual samples. These comprised the TSGs 

FAS, FLCN, PRDM1, SH2B3 and STAG2.  

Interestingly, we found two sysSVM2 predictions prioritised as drivers in at least 

5% of the samples: SNRPD1 and YWHAB, predicted as drivers in 33 and 41 OAC 

samples respectively. Both of these genes were not previously reported to be 

involved in OAC tumorigenesis and were not described as cancer driver genes 
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before (Dressler et al., 2022; Repana et al., 2019). Both genes were altered via 

gene amplifications in all samples in which we predicted them as cancer drivers.  

SNRPD1 encodes a spliceosome-associated protein. The spliceosome is a large 

cellular machinery that controls the splicing of the nuclear precursor mRNA into 

mature mRNA (Bonnal et al., 2012). Specifically, the spliceosome is responsible 

for removing the introns from the precursor mRNA and stitching together the 

exons into mRNA before transferring the mature mRNA into the cytoplasm for 

translation. Misregulation of splicing contributes to cancer progression in many 

ways, such as control of cell proliferation, cell death, angiogenesis, and 

metastasis (Bonnal et al., 2012). High SNRPD1 expression was associated with 

unfavourable prognosis in breast cancer (Dai et al., 2021). The authors found that 

SNRPD1 knockdown resulted in reduced cell viability and cell cycle arrest, and 

proposed that overexpression of the gene was needed to sustain cell cycle 

progression in cancer cells. A second study observed a marked reduction in cell 

viability in breast, lung and melanoma cancer cell lines as a consequence of 

SNRPD1 depletion (Quidville et al., 2013). The authors also found that depletion 

of the gene resulted in cancer cell death through autophagy. 

YWHAB encodes the protein 14-3-3β. The 14-3-3 family proteins are involved in 

many signal transduction pathways including those that regulate cell division (Fu 

et al., 2000). Takihara and colleagues observed that overexpression of 14-3-3β 

promotes cancer cell growth and tumour formation in vivo (Takihara et al., 2000). 

They also found increased activation of the mitogen-activated protein kinase 

(MAPK) cascade as a result of overexpression of 14-3-3β, probably due to the 

interaction of the protein with Raf-1 which mediates MAPK signalling. MAPK 

signalling is an evolutionarily conserved cascade responsible for processing 

extracellular signals that control multiple cellular responses, such as proliferation, 

apoptosis, and migration (Dhillon et al., 2007). Similarly, Sugiyama and co-

authors found that reducing YWAHB expression in cancer cell lines 

endogenously expressing high levels of the protein led to reduced proliferation 

and the seeded tumours were smaller and histologically more benign (Sugiyama 

et al., 2003).  
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Overall, a large proportion of sysSVM2 predictions were rare or sample-specific, 

further highlighting the importance of tools that enable the prioritisation of cancer 

driver genes active in individual samples. However, we predicted two new driver 

genes, SNRPD1 and YWAHB, which had never been reported to be involved in 

OAC before, in more than 5% of our cohort. Although experimental validation in 

OAC is needed, the driver alterations affecting these genes suggest they act as 

putative tumour-promoting genes. 

 

5.4 OAC-specific canonical drivers and sysSVM2 predictions 
perturb different processes 

We then investigated whether OAC-specific canonical drivers and sysSVM2 

predictions perturbed similar or different pathways during OAC development. We 

tested the enrichment of drivers in individual clinical stages and divided the 

drivers into two sets: OAC-specific canonical drivers and sysSVM2 predictions. 

Across all clinical stages OAC-specific canonical drivers were preferentially 

perturbing pathways involved in signalling (Figure 5.4A). sysSVM2 predictions 

instead preferentially contributed to the alteration of immune-related and DNA 

repair-related pathways (Figure 5.4A). However, whilst OAC-specific canonical 

drivers preferentially affected signalling-related pathways across all stages, 

sysSVM2 predictions showed more variability. sysSVM2 predictions 

preferentially affected immune-related pathways in stage I, II, and IV tumours, 

whilst DNA repair was influenced by sysSVM2 predictions across all OAC clinical 

stages (Figure 5.4A). 

Among the signalling-related pathways perturbed by OAC-specific canonical 

drivers we found signalling by activin, signalling by Erb-b2 receptor tyrosine 

kinase 4 (ERBB4), signalling by erythropoietin, and signalling by insulin-like 

growth factor 1 receptor (IGF1R) (Figure 5.4B).  

Overall, these pathways contribute to processes like cancer cell proliferation and 

apoptosis, such as activin (Chen et al., 2006) and ERBB4 (Segers et al., 2020) 

signalling. IGF1R allows anchorage-independent growth of cancer cells (Maki, 
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2010). By contrast, erythropoietin stimulates tumour growth by favouring 

angiogenesis and promoting lymph node metastasis (Kimáková et al., 2017). 

 

 
Figure 5.4 Pathways perturbed by OAC-specific canonical drivers and 
sysSVM2 predictions 
A) Comparison of the proportion of Reactome level 1 pathways between the OAC-
specific canonical cancer drivers (pink) and the sysSVM2 predictions (orange). 
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Highlighted in pink and orange are the pathways in which the proportion is larger in 
the corresponding set of drivers (FDR <0.1, one-sided Fisher’s exact test). FDR was 
calculated by applying Benjamini-Hochberg correction. B) List of enriched pathways. 
Enrichment was measured comparing the proportion of drivers in each pathway 
against that of the non-driver genes. (FDR <0.1, one-sided Fisher’s exact test). FDR 
was calculated by applying Benjamini-Hochberg correction. The colours of the bars 
describe the four OAC clinical stages. The colours under each bar describe the driver 
set, OAC-specific canonical drivers or sysSVM2 predictions, enriched in the 
corresponding pathway. C) Proportion of sysSVM2 predictions involved in 
inflammation affected by GoF and LoF alterations. D) Proportion of sysSVM2 
predictions involved in MHC-I mediated antigen processing and presentation 
affected by GoF and LoF alterations. E) Proportion of immune-related sysSVM2 
predictions predicted in the corresponding number of samples. 
 

We found four DNA repair pathways perturbed exclusively by sysSVM2 

predictions (Figure 5.4B). Three of these were involved in the repair of damage 

induced by mutagens such as oxidative reactive species or as a result of 

replication errors, namely base and nucleotide excision, and mismatch repair 

processes. sysSVM2 predictions, however, were also involved in mechanisms 

that tolerate unrepaired damage during genome replications, such as DNA 

damage bypass.  

Thirty-four driver genes, predicted in 76 samples, were involved in DNA damage 

repair. These included one canonical cancer driver, seven candidate cancer 

genes, and 26 genes not reported to be involved in cancer before (Repana et al., 

2019). Among them, EP300 is a well-known TSG with experimental evidence that 

supports its inactivating role in promoting tumorigenesis (Iyer et al., 2004) and in 

contributing to genomic instability (Tini et al., 2002). Recent studies showed how 

cancers with mutations in EP300 had a higher tumour mutational burden than 

cancers with wild-type EP300 (Chen et al., 2021). We found that the only OAC of 

the 76 samples with the hypermutated phenotype, as defined by Bailey et al. 

(Bailey et al., 2018), had indeed EP300 as a driver. 

Lastly, we saw two different mechanisms perturbed by sysSVM2 predictions that 

impact the immune microenvironment surrounding the tumour (Figure 5.4B). On 

one hand, sysSVM2 predictions were involved in mechanisms of immune escape 

such as the major histocompatibility complex class I (MHC-I) mediated antigen 

processing and presentation. On the other hand, sysSVM2 predictions were 

enriched in pro-inflammatory mechanisms such as Toll-like receptor (TLR) 
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cascade and signalling by interleukins, with the latter pathway also affected by 

OAC-specific canonical drivers.  

In line with evidence reported in other cancer types (Mantovani et al., 2008), we 

found that 76% of the sysSVM2 predictions involved in pro-inflammatory 

mechanisms were altered via GoF alterations underlying potential oncogenic 

mechanisms of these genes (Figure 5.4C). By contrast, 42% of the sysSVM2 

predictions enriched in MHC-I mediated antigen processing and presentation 

were damaged via LoF alterations, such as HLA-B, suggesting a higher 

involvement of genes with tumour-suppressive roles in mechanisms of immune 

escape (Figure 5.4C). Although cancer cells preferentially inactivate TSGs in 

order to evade the immune system (Martin et al., 2021), 58% of the sysSVM2 

predictions involved in immune escape were damaged through GoF alterations 

underlying a tumour-promoting rather than a tumour-suppressive role. Upon 

closer inspection we noticed that GoF alterations tended to affect genes that exert 

a suppressive effect on antigen processing and presentation, thus contributing to 

the inactivation of this process. Among these, we found CDC27 and genes 

involved in protein degradation, hence antigen processing, such as PSMD3, 

RPS27A, and SMURF1.  

For instance, Song and co-authors showed that CDC27 had a regulatory effect 

on CD274, the gene encoding PDL1 (Song et al., 2020). CDC27 overexpression 

was associated with high expression of PDL1, a well-known inhibitor of antigen 

presentation to T cells (Han et al., 2020). In contrast, overexpression of 

proteasomal subunits such as PSME3 and PSME4 have been shown to induce 

immune escape by restricting proteasome activity, thus inhibiting the processing 

and presentation of the antigen (Boulpicante et al., 2020; Javitt et al., 2021). 

Finally, we wondered whether sysSVM2 predictions, especially those involved in 

immune-related pathways, were recurrent across the sample cohort or rather 

sample-specific. We found that 77% of the 116 sysSVM2 predictions enriched in 

immune-related pathways were rare or patient-specific, predicted as cancer 

drivers in less than three samples (Figure 5.4B).  

These analyses suggest that OAC-specific canonical cancer drivers and 

sysSVM2 predictions play different roles that together contribute to OAC 
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tumorigenesis by specialising on the perturbation of different hallmarks of cancer 

(Hanahan, 2022). OAC-specific canonical drivers preferentially perturbed 

signalling-related pathways that influence tumour proliferation, cell death, and the 

ability to metastasise. By contrast, sysSVM2 predictions were mainly involved in 

mechanisms of immune escape and of DNA damage repair. Interestingly, we 

found that the pathways involved in immune escape were preferentially altered 

by sample-specific drivers. 

 

5.5 Newly discovered targetable drivers 

We then investigated whether any drivers, especially sysSVM2 predictions, were 

targets of FDA-approved, antineoplastic, and immunomodulating drugs collected 

in NCG7 (Dressler et al., 2022).  

Of the total 521 unique cancer driver genes that we identified, 16 can currently 

be targeted by oncological drugs (Figure 5.5A). Ten gene targets were OAC-

specific canonical drivers, while the remaining six were part of sysSVM2 

predictions (Table 5.1).  

The six sysSVM2 predictions targeted by drugs were three oncogenes, one 

candidate cancer gene, and two non-cancer genes (Table 5.1). The three 

oncogenes - ABL1, FGFR1 and SRC - were not reported previously as OAC-

specific cancer drivers.  

As part of the drugs that target OAC-specific canonical drivers, we found some 

that are already being used in the clinic, such as trastuzumab (see Chapter 1.1.2). 

Other drugs, such as afatinib targeting ERBB2 and EGFR, are currently tested in 

clinical trials as they showed initial promising results (Janjigian et al., 2015). Other 

drugs, such as cetuximab targeting EGFR, provided no additional benefit to 

patients whose tumours harboured the corresponding driver alteration (Lordick et 

al., 2013).  

Among the drugs that preferentially target sysSVM2 predictions we found 

tyrosine kinase inhibitors such as dasatinib and regorafenib, and poly ADP-ribose 

polymerase (PARP) inhibitors such as olaparib, niraparib, and rucaparib. 
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Dasatinib is a tyrosine kinase inhibitor with multiple targets including ABL1, 

EPHA2, SRC, YES1 (Table 5.1). All four genes are non-receptor tyrosine 

kinases. With the exception of EPHA2, they were all amplified in those samples 

where we prioritised them as drivers. Dasatinib is a potent agent for the treatment 

of chronic myeloid leukaemia, and some preliminary studies showed evidence of 

its efficacy in gastric cancer cell lines, too (Choi et al., 2020). Regorafenib is also 

a multitarget tyrosine kinase inhibitor that targets ABL1, EPHA2 and FGFR1 

(Table 5.1). Its use is approved for the treatment of locally advanced or metastatic 

tumours. Indeed, it was shown to increase progression-free survival in a cohort 

of refractory advanced oesophagogastric adenocarcinomas (Pavlakis et al., 

2016). PARP1 is involved in the DNA damage response and, more specifically, 

in the repair of DNA single-strand breaks and is the target of PARP inhibitors. 

Most PARP inhibitors are approved for the treatment of ovarian and breast cancer 

in patients with damaging germline BRCA mutations. Some clinical trials are in 

the process of evaluating the response to PARP inhibitors alone or in combination 

with chemotherapy and immunotherapy in gastric cancer (Wang et al., 2021). 

These initial studies are promising as they show an acceptable safety profile 

along with preliminary antitumour activity of these drugs. 

 

 
Figure 5.5 OAC drivers targeted by oncological drugs 
A) Overlap between OAC cancer drivers and genes targeted by FDA-approved 
immunomodulating and antineoplastic drugs. B) Overlap of OAC samples that have 
at least one targetable OAC-specific canonical cancer driver and OAC samples that 
have at least one targetable sysSVM2 prediction. 
 

In total, 59% of our sample cohort (397/675) had a driver alteration in at least one 

of these 16 targetable cancer genes with some of the samples having multiple 

drivers targetable by oncological drugs. The OAC-specific canonical drivers alone 

covered 374 samples; nine samples had at least one targetable OAC-specific 
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canonical driver and one targetable sysSVM2 predictions. Interestingly, 14 

samples had only targetable sysSVM2 predictions (Figure 5.5B). 

We found potential drug targets within the pool of rare or patient-specific drivers. 

Alterations harboured within these drivers should be considered in the context of 

precision medicine to develop therapies tailored on the driver landscape of 

individual tumours.  

 
Table 5.1 Cancer driver genes targeted by oncological drugs 
For each of the 16 cancer driver genes the gene name, whether it is a OAC-specific 
canonical cancer driver, its driver role according to NCG6 (Repana et al., 2019), the 
number of samples in which it is predicted as a driver and the number of oncological 
drugs that target it are reported. The genes are shown in ascending order based on 
the number of samples in which they are predicted as drivers. 

Gene OAC-specific 
driver Driver role # of 

samples 
# of 

drugs 
ABL1 N OG 1 5 
EPHA2 N Candidate cancer 1 2 
SRC N OG 2 1 
BRAF Y OG 3 6 
FGFR1 N OG 3 6 
PARP1 N Non-cancer 6 4 
JAK1 Y Canonical cancer 7 2 
MAP3K1 Y Canonical cancer 7 1 
FGFR2 Y OG 10 5 
YES1 N Non-cancer 10 1 
MET Y OG 22 2 
PIK3CA Y OG 49 1 
EGFR Y OG 79 11 
CCND1 Y OG 98 1 
CDK6 Y OG 98 3 
ERBB2 Y OG 122 6 

 

5.6 Stage-specific driver perturbations 

Next we investigated whether the four OAC clinical stages were characterised by 

the acquisition of specific cancer driver genes that could help defining stage 

boundaries (e.g., the transition from clinical stage I to clinical stage II). In addition, 
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we studied whether OAC clinical stratification was reflected at the level of 

pathway perturbation that could further help stratifying patients into subgroups.  

In order to investigate the frequency of driver alterations across stages we 

focused on cancer driver genes predicted in at least 5% of our whole OAC sample 

cohort. We used this threshold as too few OACs are unlikely to be a 

representative sample of the entire OAC population.  

We found 18 unique cancer driver genes altered 1811 times in 647 samples. 

Sixteen of these were OAC-specific canonical drivers and the other two were the 

sysSVM2 predictions discussed above (see Chapter 5.3). None of the 18 drivers 

were stage-specific or acquired driver alterations at specific stage boundaries 

(Figure 5.6A). 

Although not significant, we observed that three genes showed a trend of stage-

specific driver event acquisition. ERBB2 acted as a driver in 23% of stage I OAC 

tumours; the percentage progressively decreased across stages, and in stage IV 

tumours ERBB2 was predicted as a cancer driver in 16% of cases (Figure 5.6A). 

Conversely, MYC and KRAS showed the opposite trend: we predicted them as 

drivers in 11% and 12% of OAC stage I cases, respectively. In stage IV tumours 

we found MYC acting as a driver in 20% of samples and KRAS in 21% of 

samples.  

 

 
Figure 5.6 OAC clinical stage-specific driver alteration and pathway 
perturbation 
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A) Frequency of recurrent drivers in OAC samples. The samples were divided into 
clinical stages. Recurrence was defined as cancer driver genes predicted in at least 
5% of the whole OAC cohort. B) List of enriched pathways across OAC clinical 
stages. Enrichment was measured comparing the proportion of drivers in each 
pathway against that of the non-driver genes. (FDR <0.1, one-sided Fisher’s exact 
test). FDR was calculated by applying Benjamini-Hochberg correction. The colours 
identify the four OAC clinical stages. The numbers in brackets report the number of 
sample in the corresponding stage. 
 

We finally tested the enrichment of all the drivers grouped into clinical stages. We 

identified differences in terms of pathways that the stage-specific drivers 

perturbed (Figure 5.6B). Stage I cancer drivers were enriched in TGF-β and WNT 

signalling. The drivers we predicted in stage II tumours were not enriched in any 

pathway, most likely because stage II OACs were the smallest group among the 

four OAC clinical stages (Figure 4.1B). The drivers predicted in the two advanced 

OAC stages were enriched in phosphoinositide 3-kinase (PI3K) signalling and in 

targets of two transcription factors, namely E2F and MYC. MYC targets enriched 

in stage IV drivers reflected the trend we observed for individual cancer driver 

genes (Figure 5.6A). 

Recurrent cancer drivers in OAC were not enriched, at the single gene level, in 

any clinical stage of the disease suggesting that, based on our cohort size, cancer 

driver genes do not acquire alterations at specific stage boundaries. We 

observed, however, a few trends that suggest a sequential acquisition of driver 

alterations affecting specifically ERBB2, MYC and KRAS. When looking at the 

pathway perturbed by drivers instead of individual driver genes, we observed 

clear differences across stages. All of the pathways that we reported enriched 

across the four clinical stages had previously been discussed in the context of 

OAC (Mourikis et al., 2019), however we were able to show that they acquired 

alterations in a stage-specific fashion. 

 

5.7 Conclusion 

sysSVM2 ranks damaged genes in individual samples based on how much the 

gene properties resemble those of canonical cancer drivers used for training. In 

this work, the training set for sysSVM2 consisted of a list of 77 OAC-specific 
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canonical drivers derived from two sources; NCG6 (Repana et al., 2019) and the 

curation of additional OAC screenings obtained from a comprehensive literature 

search (Dulak et al., 2012; Frankel et al., 2014; Frankell et al., 2019; Murugaesu 

et al., 2015; Nones et al., 2014). The training of sysSVM2 resulted in ranked 

sample-specific lists of damaged genes based on the driver landscape, which 

was specific for OAC.  

Given the ranking nature of sysSVM2 predictions and the fact that the tool does 

not impose a hard cut-off on what a cancer driver gene is, we wondered how 

many drivers were needed to explain OAC in single patients. This led us to 

compare two previously reported models on the number of driver genes needed 

in the context of OAC. The first model - age-incidence - reported that three drivers 

were needed per tumour, whereas the second model - positive selection - 

estimated five drivers per tumour. 

We investigated whether the two positive selection-specific driver genes in each 

sample perturbed novel pathways. After removing redundant pathways, the 

positive selection-specific drivers indeed altered pathways that were not directly 

affected by the age-incidence drivers. Pathways involved in the regulation of 

gene expression, mechanisms of nucleotide and base repair, and chromosome 

maintenance were exclusively altered by the positive selection-specific drivers.  

This led us to select the positive selection model, five drivers per sample, as the 

most accurate model available so far to explain OAC evolution.  

We then investigated the frequency of drivers across the 675-sample cohort. We 

found that, in line with previous investigations (Mourikis et al., 2019), sysSVM2 

predictions were preferentially sample-specific whilst OAC-specific canonical 

drivers were more often recurrent. Interestingly, two sysSVM2 predictions were 

altered at a similar rate to that of some OAC-specific canonical cancer drivers, 

specifically in 5% of our cohort. These two genes were SNRPD1 and YWHAB, 

neither of which was reported as a driver before. The type of alterations affecting 

these two drivers in our cohort along with experimental evidence on their 

mechanism of action (Dai et al., 2021; Quidville et al., 2013; Sugiyama et al., 

2003; Takihara et al., 2000) suggested that they are likely to act in a tumour-

promoting mode during OAC development.  
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Given the heterogenous list of sysSVM2 predictions, composed of 448 unique 

driver genes, we compared their role to that of OAC-specific canonical cancer 

drivers. We found a high level of overlap in terms of pathways perturbed by both 

sets of drivers, as previously reported (Mourikis et al., 2019). However, in addition 

to the above, these two sets of drivers played distinct roles in the cell. OAC-

specific canonical driver genes preferentially perturbed well-known signalling 

cascades involved in the control of cell fate such as activin signalling (Chen et 

al., 2006) and the promotion of angiogenesis such as erythropoietin activation 

(Kimáková et al., 2017). Interestingly, sysSVM2 predictions were preferentially 

involved in DNA repair and the regulation of the immune system. The enrichment 

of sysSVM2 predictions in DNA repair processes recapitulates the observed 

trend in which positive selection-specific drivers were mainly involved in the 

perturbation of similar processes. The two results are probably related, as models 

that predict more drivers per tumour require more sysSVM2 predictions to 

complete their list of driver genes.  

sysSVM2 predictions were enriched in pathways involved in the recognition and 

presentation of antigens to cytotoxic CD8+ T cells. It is tempting to speculate that 

alterations acquired in this set of drivers are thus responsible for the impairment 

of the detection of cancer cells by the immune system. Additionally, sysSVM2 

predictions perturbed pathways involved in the creation of a pro-inflammatory 

environment around the tumour mass such as TLR cascade and interleukin 

signalling. Our group and others already described the involvement of TLR 

cascade in the context of OAC (Fels Elliott et al., 2017; Mourikis et al., 2019). The 

TLR signalling has been suggested to be key in creating a pro-inflammatory 

immune environment, which favours and sustains tumour progression, in the 

distal oesophagus through the recruitment of NF-kB. Overall, we found that most 

of the immune-related pathways were perturbed by sample-specific sysSVM2 

predictions, highlighting the important role of these driver genes during OAC 

development. 

Next we inspected the list of OAC drivers, searching for targetable genes. We 

found 16 driver genes as potential targets of anticancer treatment. Ten of these 

were OAC-specific canonical drivers and the remaining six were sysSVM2 
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predictions, mostly predicted in single patients. Among the six sysSVM2 

predictions we found non-receptor tyrosine kinases targeted by multiple drugs 

(Huang et al., 2020) and targets of PARP inhibitors which are showing promising 

preliminary results in the treatment of gastric cancer (Wang et al., 2021). 

Finally, we inspected the identity and role of cancer driver genes from a clinical 

perspective. We wondered whether cancer drivers were acquired at specific 

stage boundaries that could help us in stratifying OAC samples into clinical 

groups. No driver gene acquired alterations at specific stage boundaries. 

However, some pathways were perturbed in a stage-specific fashion. TGF-β and 

WNT signalling were altered in stage I tumours, whereas PI3K signalling and 

transcription factor networks were altered in late stage tumours. 

In the context of BO-to-OAC progression it has been reported that TSGs acquire 

driver alterations before OGs, whose alterations usually characterise the 

acquisition of the definitive neoplastic phenotype (Maley, 2007; Stachler et al., 

2015). Pan-cancer studies have additionally showed that increased genomic 

instability is usually a hallmark of late stage OAC tumours (Gerstung et al., 2020). 

Given this, it is tempting to speculate that driver events in early stage tumours 

preferentially perturb pathways that involve well-known TSGs, such as SMAD4 

and APC in TGF-β and WNT signalling, respectively. By contrast, late stage 

tumours, characterised by higher genomic instability and chromosomal 

rearrangements, which usually underlie OG activation (Nones et al., 2014), show 

an increased dysregulation of transcriptional networks regulated by well-know 

OGs such as MYC. 
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Chapter 6. Discussion 

6.1 Summary 

The work presented in this thesis aims to inspect the role of genetic inter-tumour 

heterogeneity in the initiation and progression of OAC and to identify the cellular 

and molecular processes that the driver genes perturb during progression from 

early to late tumour stages. Furthermore, whether the drivers converge to disrupt 

similar cellular pathways is a key aim of this work alongside understanding which 

molecular processes underlie the clinical stages of OAC. 

In the first results chapter I describe the role along with the evolutionary, genomic, 

expression, and network properties of cancer and healthy driver genes whose 

extensive annotation and SLPs have been published as part of the seventh 

release of the NCG database, available online at http://network-cancer-

genes.org/. SLPs are intrinsic properties of human protein-coding genes that 

describe their role within the cell and the evolutionary path across the species 

phylogenetic tree. This chapter lays the foundation for all of the subsequent 

analysis. 

In order to investigate how heterogeneity favours OAC development, it is critical 

to first define and complete the list of drivers in each OAC sample. Given the 

inter-tumour genetic heterogeneity present in OAC, in the second results chapter 

I derive single-patient driver predictions from the large cohort of samples using 

sysSVM2, a machine learning tool for driver identification. The tool relies on 

similarities at the level of molecular and SLPs between the canonical cancer 

drivers used for training and the remaining damaged genes. The molecular 

properties summarise the somatic alterations present in each tumour and are 

specific for each sample as they describe the genetic changes acquired by the 

cancer cells throughout the individual tumour evolutionary history. SLPs, on the 

other hand, are derived from NCG.  

In the final results chapter the training and prediction of sysSVM2 is used to 

derive a comprehensive list of drivers for each OAC sample. I present and 

compare two lists of drivers predicted under two models that estimate different 

numbers of drivers needed in OAC. Finally, I investigate the role of the identified 

http://network-cancer-genes.org/
http://network-cancer-genes.org/
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drivers, their potential as targets of anti-cancer treatment, and the cellular 

processes that these drivers perturb across OAC clinical stages in order to 

understand their translational potential. 

 

6.2 NCG: a manually curated repository of cancer and healthy 
driver genes 

Cancer genomes acquire hundreds of somatic alterations throughout their 

evolutionary history. Some of these alterations affect genes that, upon acquiring 

a mutated phenotype, promote cancer growth by providing affected cells with a 

selective advantage over their neighbours. Indeed, the goal of cancer genomics 

is to identify which genes are responsible for driving cancer initiation and 

progression (Campbell et al., 2020).  

Different resources exist, that are available to the cancer research community, 

for annotating the specific alterations (Ainscough et al., 2016; Cerami et al., 2012; 

Tamborero et al., 2018) or the genes (Futreal et al., 2004; Sondka et al., 2018) 

that drive cancer. Similarly, NCG curates an up-to-date overview of driver genes 

that are well-known or predicted to be involved in tumorigenesis. NCG differs 

from similar repositories in that it focuses on cancer genes, rather than 

alterations, classifies drivers into canonical (namely those with experimental 

validation) and candidate (namely those predicted by driver identification tools), 

and annotates their SLPs (An et al., 2016; Matteo D’Antonio et al., 2012; Dressler 

et al., 2022; Repana et al., 2019; Syed et al., 2010). Such properties are a proxy 

for the central role of the genes within the cell and across species. 

NCG7 now annotates driver genes that promote tumorigenesis by accumulating 

mutations in their non-coding regions and genes that are involved in the 

expansion of mutated clones within non-cancer tissues (healthy drivers). The 

database also integrates a larger number of sources on gene essentiality, 

contains new properties that describe the genomic accumulation of germline 

variation, and annotates the interaction between human genes and anti-cancer 

drugs. Altogether, these provide the novelties of the latest release and iteration 

of the NCG repository (Dressler et al., 2022).  
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We confirmed that cancer driver genes appeared earlier in evolution (Syed et al., 

2010), are more present as singletons in the human genome (Rambaldi et al., 

2008), are more broadly expressed across human healthy tissues (An et al., 

2016; Repana et al., 2019), are more finely regulated by miRNA (D’Antonio et al., 

2012), and encode proteins that are more central, connected and clustered in the 

PPIN (D’Antonio et al., 2012) than the rest of human genes. Finally, cancer 

drivers are more essential in cancer cell lines as confirmed by the tendency to 

accumulate fewer germline alterations than the rest of human genes (Dressler et 

al., 2022). 

Within canonical cancer drivers we observed some level of heterogeneity since 

TSGs and OGs specialised in different cellular roles during their evolution. We 

confirmed that TSGs are preferentially involved in the maintenance of basic 

cellular processes such as the control of the cell cycle and the repair of DNA 

damage. This shows evidence of an enrichment of caretaker genes within TSGs 

(Domazet-Lošo & Tautz, 2010; Kinzler & Vogelstein, 1997; Michor et al., 2004; 

Negrini et al., 2010). Their role in maintaining a functional and stable genome is 

of fundamental importance for cells, hence shared across many species. Their 

evolutionary-conserved maintenance role is indeed supported by the older age, 

lower duplicability, broader expression in human tissues, and higher essentiality 

of TSGs with respect to OGs.  

OGs, on the other hand, are preferentially involved in regulatory functions such 

as signalling and the immune system. Such processes tend to vary more across 

cells, and likely reflect the lower level of expression in human healthy tissues and 

the lower grade of essentiality across cancer cell lines of this group of drivers 

compared to TSGs.  

Canonical healthy drivers (𝑛𝑛=57) represent the subgroup of genes with the most 

extreme SLP profile. With respect to their evolutionary conservation, PPIN, 

miRNA-gene interactions, germline variation, and gene essentiality, these 57 

drivers display a profile that is even stronger than that of canonical cancer drivers 

altogether.  

This observation raises a few questions about the initiation of tumorigenesis and 

the expansion of mutated clones in healthy tissues. Based on their extreme SLP 
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profile, it is tempting to speculate that these 57 genes are representative of a 

subset of drivers that show a very strong oncogenic potential. If this is the case, 

it is intriguing to understand why clones with somatic mutations in these drivers 

do not always show a malignant phenotype. Related to this, it becomes 

particularly interesting to identify the genomic and environmental changes that 

represent the final tipping point responsible for malignant transformation.  

Mutations affecting the same gene result in different phenotypes between cancer 

and normal tissues (Wijewardhane et al., 2021). This has been a topic of interest 

with some compelling mechanisms proposed to explain such differences. Firstly, 

a driver alteration in only one gene is probably not sufficient to cause malignant 

transformation. Even the most conservative estimates report that at least two or 

three driver events must be acquired by cells to transform into a tumour 

(Martincorena & Campbell, 2015; Tomasetti et al., 2015). A second important 

aspect to consider is the underlying genomic context in which these changes are 

acquired. Specifically, since cancer is characterised by a high grade of genetic 

instability (Hanahan, 2022; Hanahan & Weinberg, 2011), the absence of this 

instability is probably a major brake on the acquisition of an invasive phenotype. 

Similarly, it is becoming increasingly evident that, in some cases, pre-cancer 

lesions accumulating high levels of CIN are more likely to progress to cancer 

compared to lesions that are CN-neutral (Killcoyne et al., 2020, 2021). In this 

context, an interesting point is to understand how mutations in these 57 drivers 

are able to activate changes that result in the acquisition of CIN and in the 

surrounding microenvironment.  

Finally, understanding the role of drivers involved only in the clonal expansion 

within healthy tissues and whether they have a protective role against 

carcinogenesis, or are involved in processes not affecting cancer, will be critical 

to fully elucidating the acquisition of healthy drivers. 

New studies are being continuously published on the acquisition of somatic 

mutations in non-cancer tissues that result in the expansion of mutated clones 

(Fowler et al., 2021; Li et al., 2021; Moore et al., 2021; Ng et al., 2021; Robinson 

et al., 2021; Saini et al., 2021). New investigations will help in understanding what 
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the role of mutated clones in healthy tissues is that will ultimately result in further 

insights into the initial stages of tumour development.  

 

6.3 sysSVM2 optimisation on an OAC-specific setting 

We curated one of the largest cohorts of BO and OAC samples comprising 748 

samples. We characterised these samples from a clinical and a molecular 

perspective using a consistent bioinformatic pipeline for the annotation of 

damaged genes in individual samples. We stratified samples into clinical stages 

and found that, as the tumour developed, the samples acquired significantly more 

CNAs underlying an increased level of CIN as previously reported (Ross-Innes 

et al., 2015; Stachler et al., 2015). 

The higher grade of genomic instability we observed in OAC samples was driven 

by gene amplifications rather than homozygous deletions and double hits whose 

numbers were comparable between pre-cancer and cancer lesions. The high 

level of amplifications in OAC samples is likely due to structural rearrangements 

acquired when the tumour develops, as suggested by other groups (Nones et al., 

2014). 

We then compiled a comprehensive list of canonical cancer driver genes 

identified in OAC, including all NGS screenings focusing on this cancer type 

(Agrawal et al., 2012; Dulak et al., 2012, 2013; Fels Elliott et al., 2017; Frankel et 

al., 2014; Frankell et al., 2019; Kim et al., 2017; Murugaesu et al., 2015; Nones 

et al., 2014; Secrier et al., 2016; Weaver et al., 2014). This list represents a bona 

fide snapshot of the current knowledge of cancer driver genes involved in OAC 

tumorigenesis. It resulted in 77 driver genes whose alterations have robust 

experimental evidence of their involvement in cancer development.  

We found that, with the only exception of TP53 and CDKN2A, damaged in 66% 

and 25% of samples respectively, the remaining OAC-specific canonical cancer 

drivers were damaged in less than 20% of samples. This confirmed the high 

grade of heterogeneity in OAC as previously reported (Agrawal et al., 2012; Dulak 

et al., 2013). This was also confirmed by the vast majority (66%) of OAC samples 
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with not enough cancer driver genes to explain the presence of the disease in the 

corresponding patient. 

Interestingly, we noticed that CDKN2A acquired more alterations in the pre-

cancer lesion with 45% of NDBO cases having the gene in their list of drivers. 

The gene was mainly altered via homozygous deletions rather than damaging 

mutations. A previous study investigating the sequential acquisition of driver 

events in the progression from BO to OAC did not identify CDKN2A as one of the 

genes more commonly altered in BO than in OAC (Weaver et al., 2014). This was 

likely due to the fact that the authors only inspected mutations and discarded the 

role of CNAs in the study of BO-to-OAC progression.  

Other groups found CDKN2A to be key in the progression from BO to OAC 

(Maley, 2007; Stachler et al., 2015). However, our observation argues against 

this thesis given the lower percentage of OAC samples with driver CDKN2A 

alterations. If CDKN2A is an early driver of progression whose alterations are 

acquired at the level of BO, and BO is the lesion that seeds OAC, it is reasonable 

to expect that the alteration is maintained in OAC at a similar rate to that observed 

in BO. If this is not the case, two possible explanations exist. In the first case, 

given the polyclonality of the BO lesion (Ross-Innes et al., 2015), it is possible 

that the clone harbouring the CDKN2A alteration was not the one that seeded the 

tumour. Alternatively, CDKN2A is a key driver involved in the evolution of the BO 

lesion but has little to do with the progression to OAC. 

Given OAC genetic inter-tumour heterogeneity, which has been extensively 

reported and discussed by us and other groups (Contino et al., 2017; Mourikis et 

al., 2019), we decided to apply a tool for driver detection, sysSVM2, that allows 

the making of single-patient predictions (Nulsen et al., 2021). sysSVM2 prioritises 

as cancer drivers the damaged genes that more closely resemble the canonical 

drivers used as training set. 

The Ciccarelli lab applied a previous version of the sysSVM2 tool to a smaller 

cohort of OAC samples that enabled the completion of the list of cancer driver 

genes in individual samples (Mourikis et al., 2019). In this work, we applied an 

optimised version of the tool to a much larger cohort of BO and OAC samples 

than previously. In addition, we performed further investigation in order to select 
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an optimised OAC-specific setting for training sysSVM2 that recapitulated the 

driver repertoire specific for OAC carcinogenesis. 

 

6.4 Role and clinical relevance of the driver genes contributing 
to OAC development 

A long-standing question in cancer biology concerns the number of driver events 

that are needed for a normal cell to transform into a cancer cell. In this context, 

multiple methods have been applied and different cancer types have been 

inspected (Anandakrishnan et al., 2019; Makohon-Moore et al., 2018; 

Martincorena et al., 2017; Tomasetti et al., 2015; Vogelstein & Kinzler, 2015). 

The final number is variable and has been estimated to be between two and 

eleven, based on the cancer type and the methodology applied to derive it.  

In OAC, two of said models have been previously applied in an attempt to explain 

the mechanisms of tumorigenesis (Jeon et al., 2006; Martincorena et al., 2017). 

Jeon et al. used an approach based on age incidence data that predicted three 

driver events per tumour, whereas Martincorena et al. studied the genes that 

accumulate more non-synonymous mutations than the rest of the genome and, 

from there, derived that five driver events are needed per tumour. 

The ranking nature of sysSVM2 predictions allowed us to investigate and 

compare the two models in terms of the functional implication of the two sample-

specific positive selection-specific drivers that were not predicted under the age-

incidence model. We reasoned that, in order to investigate whether the positive 

selection-specific drivers were needed to explain the presence of OAC, we would 

look at their role within the cancer cell. If they converged to perturb pathways that 

were not already altered by the age-incidence drivers, they would more likely be 

functionally implicated in OAC carcinogenesis, hence needed to explain the 

presence of the disease.  

Based on this reasoning, we found that the two positive selection-specific drivers 

added perturbations to new pathways. They contributed to the perturbations of 

novel pathways such as DNA damage repair, gene expression, and cell cycle 
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pathways, therefore suggesting that they are likely functionally involved in OAC 

development. 

It is reasonable to assume that, as the number of drivers estimated to explain the 

disease increases, more pathways will be perturbed by the additional drivers. 

However, similar analysis done within the group on a pan-cancer dataset showed 

that, in some cancer types, models predicting a larger number of drivers added 

no or very little contribution to the perturbation of new pathways (unpublished 

data, Hrvoje Misetic). This suggests that additional drivers do not always 

contribute to the perturbation of novel pathways that sustain tumorigenesis. 

After selecting the number of drivers needed per OAC, we were able to complete 

the list of drivers in individual samples and investigate their role in the 

development of OAC. We identified two distinct behaviours for the recurrence 

across samples of OAC-specific canonical drivers and sysSVM2 predictions. 

Specifically, OAC-specific canonical drivers were more often predicted across 

samples, whereas sysSVM2 predictions were preferentially rare or sample-

specific. Interestingly, we found two genes within the pool of sysSVM2 predictions 

prioritised as drivers in 5% of our OAC cohort which were not previously reported 

to be involved in cancer. In all samples we found these altered via gene 

amplifications. This confirmed the suggested role of these two genes in the 

context of carcinogenesis as potential OGs (Dai et al., 2021; Quidville et al., 2013; 

Sugiyama et al., 2003; Takihara et al., 2000).  

Moreover, we confirmed that, overall, the two sets of cancer drivers (OAC-

specific canonical driver genes and sysSVM2 predictions) perturbed almost all of 

the processes reported to sustain cancer development (Hanahan, 2022; 

Hanahan & Weinberg, 2011) across all four OAC clinical stages. We also showed 

that most of these processes were similarly perturbed by both OAC-specific 

canonical drivers and sysSVM2 predictions. We observed, however, some 

interesting exceptions to this general trend. The alterations affecting OAC-

specific canonical drivers preferentially perturbed pathways involved in signalling. 

Alterations affecting these pathways are likely to result in proliferative growth, 

resistance to cell death, evasion of growth suppressors, induction of 

angiogenesis, and promotion of metastasis. By contrast, alterations in sysSVM2 
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predictions preferentially contributed to the perturbation of other aspects of 

tumour development. Specifically, we saw a larger contribution from sysSVM2 

predictions in creating genomic instability, escaping immune destruction, and 

creating a microenvironment that promotes inflammation and cancer growth.  

We also inspected the list of drivers for putative targets of anti-cancer treatment. 

Within sysSVM2 predictions we found some interesting targets of PARP inhibitor 

therapy that are currently under investigation in the context of gastric cancer 

(Wang et al., 2021).  

These results suggest that, within the pool of patient-specific driver genes, 

putative clinical targets reside. Such targets can only be identified by patient-

specific driver prediction tools and can contribute to the development of strategies 

for precision medicine. Additionally, we showed that patient-specific drivers alone 

are involved in important mechanisms that sustain tumour growth, such as 

immune escape. 

Finally, we looked at possible biomarkers in the form of drivers and cellular 

pathways that can help in further characterising OAC clinical stages. In terms of 

individual drivers, we did not see any difference in the frequency of these across 

stages. When inspecting the pathways we observed that some processes, such 

as TGF-β and WNT signalling, were altered at early stages, whereas others, such 

as transcription network controlled by MYC and E2F, were perturbed at more 

advanced stages of disease.  

The stage-specific enriched pathways might recapitulate the evolutionary history 

of OAC. In OAC, TSG inactivation, which often underlies TGF-β and WNT 

signalling, is usually an early event acquired in the first stages of pre-cancer 

development (Gerstung et al., 2020; Maley et al., 2004; Maley et al., 2004). Later 

on when the tumour develops OG amplifications become more frequent (Stachler 

et al., 2015). Even though in this work we investigated only the acquisition of 

driver perturbations across the tumour clinical stages, OAC evolutionary history 

could be reflective of mechanisms in which tumorigenesis is driven by LoF 

alterations in early tumour stages and followed, at later stages, by an increase in 

GoF alterations. 
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6.5 Concluding remarks and future trajectories 

Understanding the mechanisms of tumour development is extremely important 

for the development of strategies that are able to inhibit or counteract it. In this 

work, we showed that two groups of drivers exist within OAC. Well-known OAC 

drivers, given their higher frequency rate, are commonly perturbed and easily 

identified when investigating sample cohorts. The second group of drivers is 

represented by genes that, instead, are preferentially sample-specific and can 

only be identified by applying statistical tools for single patient driver prediction.  

This concept has important implications in the context of OAC tumorigenesis. The 

recurrent drivers preferentially perturb processes that sustain tumour growth, 

prevent cancer cell death, and promote invasion. The sample-specific drivers, on 

the other hand, preferentially interfere with processes involved in immune escape 

and DNA damage repair creating vulnerabilities that can be exploited by 

anticancer treatment.  

When identifying therapies tailored to the specific landscape of individual 

tumours, it is pivotal to identify the precise number of driver genes present in the 

patient. We showed that five drivers per tumour is a comprehensive estimate on 

the number of driver events needed in individual OACs. Once the driver genes 

are identified it is easier to tailor strategies that consider the driver landscape of 

single tumours. We demonstrated how sample-specific driver genes can be 

useful targets of anti-cancer treatment, especially in those tumours that have no 

targetable driver alteration within their pool of canonical cancer drivers. 

In the future, it will be of interest to follow up on some of the remaining open 

questions regarding: 

• The role of non-coding drivers in OAC development. It would be 

informative to integrate, within the sysSVM2 framework, features that will 

enable the prioritisation of non-coding drivers, such as long non-coding 

RNAs, in order to obtain a broader and more comprehensive view of 

driver events in OAC. 

• The temporal acquisition of driver genes. Previous work has already 

investigated the acquisition of recurrent events in OAC (Gerstung et al., 
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2020). It would be interesting to see if differences in the acquisition of 

OAC-specific canonical drivers and sysSVM2 predictions exist and, if so, 

in which direction. 

• The interplay between cancer drivers and the tumour microenvironment 

in the BO-to-OAC progression. Additionally, it will be particularly useful 

for the clinic to investigate how the tumour microenvironment of 

progressors and non-progressors differs in order to identify potential 

biomarkers of progression and further refine the early detection of this 

deadly disease.  
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Chapter 7. Appendix 

7.1 Supplementary figures 

 
Figure 7.1 Pyramidal structure of the Reactome database 
The Reactome database is organised into levels. Level 1 pathways are 28 in total 
and broad. They describe general cellular processes. As the level increases, so does 
the granularity of the information present in each level. For each level the number of 
pathways corresponding to that level is reported, along with an example of at least 
one pathway. 
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