
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

Document Version
Version created as part of publication process; publisher's layout; not normally made publicly available

Link to publication record in King's Research Portal

Citation for published version (APA):
Godfrey, T., Batra, R., Douthwaite, S., Edgeworth, J., Miles, S., & Zschaler, S. (in press). A Methodology for
DSML-assisted Participatory Agent-Based Enterprise Modelling. In Practice of Enterprise Modelling 2022
Springer Nature.

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 25. Dec. 2024

https://kclpure.kcl.ac.uk/portal/en/publications/c1323401-ff42-456f-af0a-84c53a7af579


A Methodology for DSML-assisted Participatory
Agent-Based Enterprise Modelling ⋆

Thomas Godfrey1[0000−0002−9904−0744], Rahul Batra2, Sam
Douthwaite2[0000−0003−4469−7623], Jonathan Edgeworth2, Simon

Miles1[0000−0001−9956−4217], and Steffen Zschaler1[0000−0001−9062−6637]

1 Department of Informatics, King’s College London, Bush House, Strand Campus,
30, Aldwych, London, WC2B 4BG, UK

{thomas.1.godfrey,simon.miles,steffen.zschaler}@kcl.ac.uk
2 Guy’s and St Thomas’ NHS Foundation Trust, Westminster Bridge Rd, London

SE1 7EH, UK
{Rahul.Batra1,Sam.Douthwaite,jonathan.edgeworth}@gstt.nhs.uk

Abstract. Participatory agent-based modelling (ABM) can help bring
the benefits of simulation to domain users by actively involving stake-
holders in the development process. Collaboration in enterprise mod-
elling can improve the model developer’s understanding of the domain
and therefore improve the effectiveness of domain analysis. Where many
agent-oriented methodologies focus on the development of one-off mod-
els, domain-specific modelling languages (DSML) can improve the re-use
of concepts identified in domain analysis across multiple case studies
and expose modelling concepts in domain-appropriate terms, increas-
ing model accessibility. To realise the benefits of DSMLs we need to
understand how DSML development can be incorporated into typical
agent-based modelling. In this paper we discuss existing methodologies
for ABM development and DSML development, and we discuss the ben-
efits merging the two can bring. We present a methodology for DSML-
assisted participatory agent-based modelling, and support the methodol-
ogy with a case study— a modelling exercise conducted in collaboration
with a hospital emergency department on the topic of infection control
for COVID-19 and Influenza.

Keywords: Agent-Based Modelling · Participatory Modelling · Domain-
Specific Modelling.

1 Introduction

Agent-based modelling (ABM) can be an attractive option for enterprise mod-
elling due to the capacity of agent-based models to capture: high levels of het-
erogeneity, organic interactions between model entities, and organic emergent
behaviours [7]. To develop effective agent-based models, it is important that
⋆ Thomas Godfrey is supported by the KCL funded Centre for Doctoral Training

(CDT) in Data-Driven Health.



2 T. Godfrey et al.

model developers have a strong understanding of the domain. Developers need
to identify the actors involved in a process, their behaviours, and how they in-
teract between themselves and the environment. These behaviours need to be
translated into a set of rules to model but determining which actors and ac-
tions should be captured and how they should be modelled can be a complex
process. Participatory modelling [28] encourages close collaboration between do-
main stakeholders and model developers, improving the quality of domain analy-
sis. However, existing approaches to participatory modelling typically depend on
general-purpose, or agent-oriented, languages that require the model developer
to translate design concepts into a technical implementation. This abstraction
process is manual, is prone to error and ambiguities, and presents a lack of re-use.

Domain-specific modelling languages (DSMLs) [9] are an attractive tool for
supporting participatory modelling. DSMLs consist of a concrete syntax (the
language grammar), an abstract syntax (a meta-model of the language struc-
ture), and semantics (the ‘meaning’ of the language concepts). DSMLs expose
domain-appropriate concepts in the concrete syntax, allowing the user to utilise
these high-level terms to implement models. This can allow domain stakeholders
to collaborate on the model implementation directly, reducing the risk of abstrac-
tion errors. Models written in a DSML are typically automatically generated into
computer-readable code, allowing for traceability of the model, and efficiency of
development. In developing a DSML, the developer performs domain engineer-
ing [23] by identifying the common and variable properties of the domain and
formalising them in the language syntax. The DSML can then be used to gen-
erate specific model instances by expressing the particulars of the model using
the language concepts (known as application engineering). The meta-model of
the DSML effectively provides an (evolving) domain model for future modelling
exercises, improving the re-use of concepts for specific applications.

Existing approaches to DSML-assisted modelling methodologies place the
abstraction level of the DSML at the ABM platform level (such as easyABMS
[11], and the work of Stark and Barn [2]) or use technically complex languages
[14]. Other approaches exist that use high domain-level concepts such as MAIA
[12] and INGENIAS [22] for developing social science simulations. However, these
works provide a generic language that developers need to learn how to instantiate
correctly. In this paper we present a methodology for creating DSMLs for ABM
development in a domain-agnostic way such that developers can adapt a language
for their particular domain. We refer to these languages as ‘high-level DSMLs’.
We take inspiration from the vision of DSMLs for ABM development outlined by
Zschaler and Polack [30], and the principles of effective participatory modelling
detailed in the CoSMoS project [27]. We make the following contributions:

1. A novel methodology for DSML-assisted participatory agent-based modelling
2. A review of current approaches to participatory ABM and DSML develop-

ment
3. An ABM case study on infection control in a hospital emergency department

to motivate and illustrate our methodology



A Methodology for DSML-assisted Participatory ABM 3

In section 2, we introduce a participatory modelling case study conducted
in collaboration with St Thomas’ Hospital Emergency Department in London.
We use this case study to motivate the need for a methodology for DSML-
assisted participatory modelling. We discuss some existing methodologies for
participatory agent-based modelling and domain-specific modelling languages in
sections 3 and 4. In section 5, we use the case study to motivate our methodology
for DSML-assisted agent-based modelling.

2 Case study

In this section we detail the case study for our methodology —a modelling case
study conducted in the Spring of 2022 in collaboration with St. Thomas’ Hospital
emergency department (ED) and infection control teams. The intention of the
study was to analyse the infection control measures for COVID-19 and Influenza
introduced in the hospital emergency department during the Winter of 2021. An
ABM was developed for this study, using a healthcare-focused DSML. Below
we provide background information to the case study, and the motivation for
developing a participatory modelling methodology.

At St. Thomas’ Hospital, the infection control team are in regular contact
with the ED to help anticipate, and mitigate, infection control problems. The
product of these meetings is typically a policy-revision for hospital staff. New
policies define how staff should manage patient care such as what tests they
should perform on patients, how to interpret test results, and where patients
should be admitted to according to their infection status [19]. In St. Thomas’
Hospital, these policies are communicated to staff through ‘action cards’ which
are flowchart-like process descriptions that are available on the trust intranet.
As new policies are introduced, these action cards will be updated and replaced.
An example used during a peak of COVID-19 prevalence in 2020 can be found
in figure 1.

During the Winter of 2021, infection control were cautious about the poten-
tial return of Influenza as well as the already expected COVID-19. This would
introduce further complications for infection control as staff would need to miti-
gate the risk of cross-infection between patients with different infectious diseases.
This required new rules on patient isolation, and triggered the introduction of
new rapid tests for Influenza and COVID-19. As part of this planning, a series
of new action cards were developed using our DSML and discussed between the
infection control and ED teams. In the spring of 2022, we modelled the processes
defined in these action cards and evaluated directional changes in infection con-
trol metrics between the different action cards including: infection risk (measured
by the number of infected patients admitted to a non-infectious cohort) and re-
source usage (measured as number of tests used within a particular time-frame).

During the study, we identified some key areas where typical agent-oriented
methodologies are not suitable for the healthcare domain. In a hospital environ-
ment, staff need to make decisions quickly to keep up with the rapid needs
of patient care. Restrictions on time can often make typical ABM develop-



4 T. Godfrey et al.

Fig. 1. Action card example.

ment infeasible due to their time and resource requirements. Strong domain
analysis often requires the developer to spend considerable time within, and
learning about, the domain. Typical agent-oriented methodologies do not for-
malise the findings of domain analysis into re-usable concepts, instead focusing
on application-engineering for a particular case study. This results in poor re-use
of domain concepts in the modelling process and additional development over-
heads for subsequent modelling exercises. Every time a domain process changes
and every time a new model is developed, the developers need to restart the
model conceptualisation and design steps. With a DSML, we expected domain
analysis to contribute additively to the language meta-model. As more models
are developed, we expected the scope and specificity of the language to improve
for the target domain. When specific models are developed in the future, there
should be less requirement to complete any further domain analysis, and instead
the DSML will already provide the necessary concepts to instantiate. This subse-
quently makes the model development process less cumbersome on stakeholders
and developers over time.

Hospital EDs are continually evolving to keep up with demands. In our ex-
ample above, the series of action card iterations introduced both variations on
existing domain processes, as well as the introduction of entirely new processes.
In a typical agent-based modelling approach, making changes such as these to
the model can be complex and unwieldy. The definition of high-level domain pro-
cesses is distributed across individual agent and environment definitions, making
it challenging to identify and refactor the model implementation. The model de-
veloper (in collaboration with domain stakeholders) would need to decompose
each action card into distinct agent definitions, where each agent has their own
list of behaviours representing part of the overall action card process. If an al-
ternative action card is to be tested, the model developer would need to repeat



A Methodology for DSML-assisted Participatory ABM 5

Fig. 2. The ABM development cycle.

this decomposition process again or attempt to refactor the existing agent imple-
mentations. This activity is manual, time-consuming, and error-prone. Using a
DSML, we expected to largely avoid these issues by capturing high-level domain
processes explicitly in the modelling language. With a high-level DSML, action
cards can be modelled in one central viewpoint (with orthogonal high-level con-
cerns captured in alternative modelling viewpoints). The decomposition of the
global domain process into individual agents and their behaviours is completed
automatically during code generation, making changes to domain processes eas-
ier and quicker to facilitate.

We have identified the potential for using DSMLs in model development, and
how they can benefit collaboration with domain stakeholders and improve re-use
in domain analysis. In the next sections, we discuss methodologies for how to
develop DSMLs, and how DSML development can be incorporated into typical
ABM methodologies. We start with a description of typical ABM methodologies.

3 Agent-based modelling methodologies

Ramanath and Gilbert [24] present a literature review on the topic of participa-
tory ABM development and identify patterns in previous work on social simula-
tions to develop a methodology for participatory modelling. They describe the
participatory design process as consisting of 4 key phases which we present in
figure 2 and discuss below:

The first phase is model conceptualisation in which the model develop-
ers consult domain stakeholders to learn about domain processes, the relevant
domain problems, and the stakeholders’ expectations for model outputs. This
phase is conducted through the use of different example scenarios developed in-
formally by the model developers. The model developers may conduct their own
independent research in the relevant literature prior to this stage in order to
form foundational knowledge of the domain.

The next phase is model design. This step involves taking the results of
scenario analysis into a workshop setting with groups of domain stakeholders.
The intention is to conceptualise and design the model with the end-users, shar-
ing informal model prototypes and discussing model structure requirements. The
aim of this process is to identify the main entities involved in domain processes



6 T. Godfrey et al.

Fig. 3. The DSML development cycle.

(whether active or passive) and to identify their key attributes, behaviours, and
interactions. Ideally, a diverse group of stakeholders should be present in these
activities in order to contribute their respective background knowledge on do-
main processes to be implemented in the model.

The output of the model design phase is formalised during model con-
struction. During this phase, a basic agent-based simulation is developed by
the model developers with input from the domain stakeholders. The developers
will translate the entities identified during model design into agents with their
respective properties and behaviours. The simulation is not intended to be com-
plete, but instead should provide a concrete software artifact for analysis in the
next phase.

The evaluation phase is conducted with the stakeholders in the form of a
user panel. This involves the model developers demonstrating the simulation to
the stakeholders and discussing any ambiguities that remained during its imple-
mentation. For example, the model developers should clarify any issues related
to agent behavioural rules, data availability, etc. that were not resolved during
model construction. The user panel will provide an opportunity for the domain
stakeholders to experience first-hand a version of the model and to provide feed-
back. Lee et al. [17], and Klügl [16] provide excellent resources on ABM output
analysis and validation techniques. The feedback produced from these user pan-
els can be used to inform changes to the model design for further iterations of
development, starting again from model conceptualisation. Once the model
is deemed fit for purpose, it can be used to conduct experiments to provide
meaningful outputs to stakeholders.

4 DSML Methodologies

In this section, we discuss existing approaches to DSML development.
Mernik et al. [18] review a range of DSML-related papers and identify pat-

terns in the development processes. They distil these patterns into a methodology
covering all aspects of development from ‘decision’ of when to develop a DSML
to ‘deployment’ of the language. For the scope of this paper we will focus on
the intermediary steps of domain analysis, design and implementation, which
we present in figure 3 and discuss below:



A Methodology for DSML-assisted Participatory ABM 7

Fig. 4. The methodology cycle.

Analysis involves gathering knowledge about the domain and the scope
of the problem(s) the users wish to address. The intention of this phase is to
establish the terminology used in the domain problem, and the semantics of
different domain concepts. These concepts will then be formalised in the next
phase.

Next, the design and implementation phase then involves converting the
domain model generated in the analysis phase into a DSML definition. This
will include identifying which domain concepts are constant and and which are
variable. We refer to Voelter [29], or Fowler [9] for fundamental concepts of
DSML design.

Once the DSML has been developed, it can then be used in application en-
gineering to generate specific model instances. We refer to this phase as model
generation, which involves identifying which DSML concepts are needed for a
particular model case study, and creating instantiations of those concepts.

5 A Methodology for DSML-assisted Participatory
Agent-Based Modelling

In this section, we propose a methodology for DSML-assisted participatory
agent-based modelling influenced by Mernik et al. [18] for the DSML-side, and
Ramanath and Gilbert [24] for the ABM-side. We adopt the terminology of the
CoSMoS approach [27] to describe the abstraction level of different models de-
veloped in the process. The domain model refers to a description of a domain
problem as understood from observations etc. The platform model refers to the
formal specification of the domain model including technical requirements for
it’s implementation. Finally, the simulation model is the concrete model imple-
mentation itself.

The methodology follows an iterative cycle of steps from system analysis to
evaluation. A diagram of the methodology is shown in figure 4. The steps are
divided into those that constitute domain engineering and those that constitute



8 T. Godfrey et al.

application engineering via the dotted lines. The large boxes named system anal-
ysis, model formalisation, implementation, and model evaluation represent the
ABM development steps. Inside the large boxes, we represent the DSML-related
processes involved. For example, in system analysis, the domain is translated
into a high-level DSML specification. In model formalisation, generation rules
are added to the high-level DSML such that it can be translated into an agent-
oriented DSML. Implementation then constitutes the application engineering
process in which the DSML is instantiated for specific modelling case studies.
At this stage, either the implementation step is repeated to represent develop-
ment of multiple models, or if the DSML is not sufficient to specify a particular
model, then there is a feedback loop to system analysis to show repetition of
the domain engineering steps. The model(s) generated during implementation
will then be validated [16]. At this stage, if the model is not fit for purpose,
then there is a loop back to implementation such that the model (i.e. the DSML
instantiation) can be refined. A final (optional) step is to evaluate the high-level
DSML using comprehension and usability exercises. We discuss each step below:

5.1 System Analysis

During system analysis, the developer will seek to understand the domain to
be modelled. This involves establishing what domain problems are to be ad-
dressed and what the criticality of those problems are. The criticality will de-
pend on what the domain stakeholders wish to learn from the model [13]: Will
the model be used to encourage learning between stakeholders? Will it be used
to explain domain behaviours? Or will it be used to make predictions about
future behaviours? Once the domain problem has been established, the problem
should be decomposed into it’s related domain processes and the stakeholders
involved in those processes. These stakeholders should be consulted so that they
can contribute their domain knowledge about the process from their respective
backgrounds, viewpoints and vocabularies.

In a typical ABM methodology, this step involves the production of informal
design artefacts to form a domain model. This domain model is constructed on
a model-by-model basis with an application-engineering approach —focusing on
identifying and recording domain processes for a particular domain problem.
Using DSMLs introduces a shift towards a domain engineering approach. The
DSML is not intended to be a single-use product, and instead should be used to
construct a variety of models in the same domain. The DSML meta-model will
need to be constructed as an ontology of re-usable, generic, domain concepts
that can be instantiated for specific models as and when they are developed.
The repeated exercise of domain engineering conducted during this step allows
the DSML to mature and reduces the need for further domain analysis in future
case studies.

For a brand-new DSML, domain analysis will involve construction of the
language meta-model. The language developer will take the findings of the do-
main analysis step described above to identify the scope and nature of domain



A Methodology for DSML-assisted Participatory ABM 9

concepts. These concepts will provide the basis for the language abstract syn-
tax, and the vocabulary used by the stakeholders to describe those concepts will
provide the basis for the language concrete syntax. For a more mature DSML,
domain analysis should involve maintenance of the meta-model. The developer
should supplement the DSML with new concepts, or refactor existing concepts,
where appropriate.

Case Study Experience. In our healthcare case study, we identified that
action cards (such as the one shown in figure 1) are a familiar notation for
describing healthcare processes in our target hospital domain. While healthcare
professionals may not think of action card development as ‘modelling’, action
cards can be seen as informal ‘grass-roots’ models [25]. We took these pre-existing
models as the basis for our own DSML design. An example of an action card
written in our DSML is shown in figure 5.

For simpler processes, the action card DSML offered sufficient scope to model
the domain processes our domain stakeholders were interested in. For example,
to model the rapid COVID-19 test described in section 2, we simply used the
DSML to define an action in an action card that made reference to the rapid
test, which included a property for time duration. The tests are conducted at
the bedside and results are available within a very short time period. However,
we later needed to make additions to the language for more complex processes
—for example, the introduction of a point-of-care test called a LIAT [4]. The
LIAT requires staff to swab the patient, and then transport the sample to an
analyser machine which can process the sample and return a result within 30
minutes. Because of the longer execution time, and the more complex testing
process, our DSML did not expose a suitable level of granularity to accurately
model this type of test.

In identifying this gap, we needed to update our DSML design. We added a
new language concept to represent a testing process — effectively a sub-process
that can be defined for each type of test in the DSML which can be referenced
by the existing action card concept. The DSML generator automatically weaves
the testing process definition into the action card where appropriate. While
these processes are inter-dependent, they can be captured in their own distinct
viewpoint and vocabulary in the DSML allowing for a multi-view modelling
approach to model development [5].

5.2 Model Formalisation

From the previous step, a domain problem has been identified and represented
using a high-level DSML. In typical participatory ABM methodologies, the next
step would be to translate the domain model into a platform model (i.e. translate
the informal design artefacts into an agent-oriented formalisation). However,
rather than creating a domain model for a singular problem, we have developed
a DSML suitable for capturing a variety of domain problems. The next stage,
therefore, is to establish how these DSML concepts can be translated into an



10 T. Godfrey et al.

Fig. 5. Action card concrete syntax.

executable model. Primarily, this will involve implementing generation rules for
each domain concept added to the DSML during the system analysis step. The
developer will need to consider how these new generation rules will interact
with each other, and with the concepts that already exist in the language from
previous development cycles, if any.

In line with [30], we do not translate domain-level concepts directly into
a platform model written in a general-purpose language, but instead develop
an internal agent-oriented DSML to sub-divide the code generation process.
Either existing agent-oriented language can be adopted (such as DSL4ABMS
[26], ReLogo [21], or ESL [6]) or the language developer can implement their own.
The developer, in collaboration with domain stakeholders, will then determine
how the high-level DSML concepts should translate into ABM concepts in the
agent-oriented language. In collaborating on developing these generation rules,
the developers explicitly encode knowledge about the domain that may otherwise
remain implicit. As the DSMLs mature and less language refactoring is required,
this step should become simpler and quicker to complete.

The benefits of dividing the DSML generation in this way include: improving
model traceability, reducing the risk of abstraction errors, and allowing for mod-
ularity in the implementation technique of the model. For example, while in the
current work we focus on agent-based modelling, it is possible (and sometimes
desirable [8]) to use alternative modelling techniques such as system dynam-
ics, Monte Carlo modelling etc. [15] either alongside, or in place of, agent-based
modelling. Alternative internal DSMLs can be developed and ‘swapped-in’ to
provide the specific implementation details.

Case Study Experience. From our own experience, we identified action cards
as an important concept during system analysis and so designed our DSML such
that action cards could be encoded explicitly in the language, using graphical
language elements. This high-level DSML is then automatically generated into an
agent-oriented internal DSML as discussed above. This allowed for a separation
of concerns, simplifying the generators for the DSML by splitting the generation
process in two. The structure of the DSML is shown in figure 6.

Figure 7 shows a sample of the generated actor language code. Specifically
shown is the actor rules for the ‘lateral flow test’ action, detailing how an agent



A Methodology for DSML-assisted Participatory ABM 11

Fig. 6. The DSML Structure.

Fig. 7. Actor language concrete syntax.

should administer a lateral flow COVID-19 test (LFD) on a patient. Shown is the
trigger for this behaviour (in this case, the patient arriving in the department),
and the sub-steps for the action including taking the patient to a respiratory
cubicle, using the LFD on the patient, and asking the patient to go back to the
waiting room.

5.3 Implementation

During implementation, the DSML will then be used to specify a specific model
instance. The language concepts will be used to construct the model which will
get automatically generated into computer-readable code according to the gen-
eration rules implemented in the previous step. If the DSML is not sufficient to
express a particular model, then the development cycle should be restarted from
the ‘system analysis’ step (see feedback loop ‘refine DSML’ in figure 4).

Case Study Experience. We include another feedback loop for ‘build another
model’. For example, as discussed in our case study, we wished to model not just
a single action card but to compare a series of different action cards. For example,
during our case study one alternative action card we wished to model involved
adding a test for whether the patient has had a recent contact with a COVID-19
infectious person, and a workflow for deciding whether the patient should be
admitted to a side room or not. By this stage of development, we were able to
implement alternative action cards like these without making further changes to
the DSML.



12 T. Godfrey et al.

Once the developer has produced the models they are interested in, they can
be automatically generated into code and then evaluated in the next step.

5.4 Evaluation

Model Evaluation. The generated model can now be calibrated and evalu-
ated. Calibration involves testing the model under different parameter values
and updating these parameter values until model outputs are representative of
real-world data [17]. Evaluation then involves using the calibrated parameter
values to check that the model behaviour matches real-world observations and
data under different concrete scenarios [16]. We note that the level of detail re-
quired during evaluation should depend on the criticality of the domain problem
as established during system analysis. If the model is to be used for prediction,
then it is especially important that the model is evaluated to a high standard.
There is less requirement for detailed evaluation if the model is to be used for
explanation, and less so again for learning. There should be an appropriate bal-
ance between a well-evaluated model and a model that can produce results more
quickly. If the model is deemed unfit for purpose then the developer should re-
turn to the implementation step to check that the model has been implemented
correctly in the DSML.

DSML Evaluation (optional). Primarily, the DSML will be evaluated nat-
urally via completion of the development cycle, specifically during the ‘refine
DSML’ feedback loop and via repeated modelling exercises. The system analysis
step will highlight any issues in language coverage via missing concepts in the
DSML syntax which can be added where appropriate. However, if time permits,
the DSML can be evaluated more formally according to the language compre-
hensibility and usability. To evaluate the comprehensibility of the DSML, we
refer to Moody’s ‘cognitive framework’ [20] metrics, and for usability evaluation,
we refer to Barišić et al. [3] and Alaca et al. [1].

Case Study Experience. As part of our healthcare case study we found that
the DSML aided parts of the evaluation steps. Because the model design artefacts
were explicitly and formally encoded in the language, we were able to more easily
conduct face validity with the domain stakeholders. We could refer directly to the
model definition in the DSML during model execution, rather than using more
informal design documents. For example, we were able to discuss the definition
of an action card in our DSML with staff from the ED and infection control
teams at St. Thomas’ Hospital. Even before executing the model, we were able
to discuss and resolve any ambiguities in the modelling requirements. The staff
were able to identify errors in the action card definition, but were also able to
identify potential practical issues with the action card in vivo and were able to
suggest real-world changes to the action card that could be investigated. Our
interaction indicated that the healthcare staff were able to understand the action
card DSML without significant previous experience, and they were able to use



A Methodology for DSML-assisted Participatory ABM 13

the model to identify and discuss issues with real-world clinical practise even
before execution.

Upon executing the model, the stakeholders could then observe the different
staff and patient agents moving through a representation of the hospital wards
in a graphical interface. Simultaneously, we displayed the action card definition
implemented using our high-level DSML. This allowed us to directly relate prop-
erties of the model execution to the related concepts in the DSML, encouraging
discussion with the stakeholders about potential errors. Of any errors, either the
model definition was wrong and so the model should be updated in the DSML,
or the model had not been implemented correctly and so the DSML itself should
be inspected (see feedback loops for ‘refine model’ and ‘refine DSML’ in figure 4).

It should be noted, however, that using DSMLs did not significantly impact
model calibration. This is a process that relies on statistical comparison of model
outputs with real-world data and is typically conducted through the use of sta-
tistical software packages (such as RRepast [10]). These tools usually require the
developer to define scripts for data analysis, and for model inputs and outputs
to be in particular formats. The only benefit of our DSML was that it could gen-
erate the relevant scripts and fulfil the relevant formatting requirements during
model generation.

6 Conclusions

We motivated our work by a participatory modelling exercise conducted in the
domain of infection control in emergency care. We intend for our methodology
to reflect the practical demands of participatory modelling, including the limited
capacity for stakeholder involvement and the need for rapid model results. While
we initially assumed that the benefit of DSMLs would be the ability for domain
stakeholders to directly interact with model implementation, we found that the
primary benefits were the promotion of communication between stakeholders on
domain problems, and the re-use of domain concepts for improving the pace
of system analysis. Our future work will focus on evaluating the methodology
through further modelling case studies. Open research topics include investi-
gating the use of bi-directional feedback of model execution to DSML design
as discussed by Zschaler and Polack [30] and the full integration of model and
domain through a digital twin as discussed by Barat et al. [2].

References

1. Alaca, O.F., Tezel, B.T., Challenger, M., Goulão, M., Amaral, V., Kardas,
G.: AgentDSM-Eval: A framework for the evaluation of domain-specific mod-
eling languages for multi-agent systems. Computer Standards & Interfaces
76, 103513 (2021). https://doi.org/https://doi.org/10.1016/j.csi.2021.103513,
https://www.sciencedirect.com/science/article/pii/S0920548921000088

2. Barat, S., Kulkarni, V., Clark, T., Barn, B.: An actor based sim-
ulation driven digital twin for analyzing complex business systems.



14 T. Godfrey et al.

In: 2019 Winter Simulation Conference (WSC). pp. 157–168 (2019).
https://doi.org/10.1109/WSC40007.2019.9004694

3. Barišić, A., Amaral, V., Goulao, M., Barroca, B.: Quality in use of domain-specific
languages: a case study. In: Proceedings of the 3rd ACM SIGPLAN Workshop on
Evaluation and Usability of Programming Languages and Tools. pp. 65–72 (2011)

4. Blackall, D., Moreno, R., Jin, J., Plotinsky, R., Dworkin, R., Oethinger, M.: Per-
formance Characteristics of the Roche Diagnostics cobas Liat PCR System as a
COVID-19 Screening Tool for Hospital Admissions in a Regional Health Care De-
livery System. Journal of clinical microbiology 59(10), e01278–21 (2021)

5. Bork, D., Sinz, E.J.: Bridging the gap from a multi-view modelling method to
the design of a multi-view modelling tool. Enterprise Modelling and Information
Systems Architectures (EMISAJ) 8(2), 25–41 (2013)

6. Clark, T., Kulkarni, V., Barat, S., Barn, B.: Esl: An actor-based platform for devel-
oping emergent behaviour organisation simulations. In: Demazeau, Y., Davidsson,
P., Bajo, J., Vale, Z. (eds.) Advances in Practical Applications of Cyber-Physical
Multi-Agent Systems: The PAAMS Collection. pp. 311–315. Springer International
Publishing, Cham (2017)

7. Crooks, A.T., Heppenstall, A.J.: Introduction to agent-based modelling. In: Agent-
based models of geographical systems, pp. 85–105. Springer (2012)

8. Fakhimi, M., Anagnostou, A., Stergioulas, L., Taylor, S.J.E.: A hybrid agent-based
and discrete event simulation approach for sustainable strategic planning and sim-
ulation analytics. In: Proceedings of the Winter Simulation Conference 2014. pp.
1573–1584 (2014). https://doi.org/10.1109/WSC.2014.7020009

9. Fowler, M.: Domain Specific Languages. Addison-Wesley Professional, 1st edn.
(2010)

10. García, A.P., Rodríguez-Patón, A.: Analyzing repast symphony models in r with
rrepast package. bioRxiv p. 047985 (2016)

11. Garro, A., Russo, W.: EasyABMS: A domain-expert oriented methodology for
agent-based modeling and simulation. Simulation Modelling Practice and Theory
18(10), 1453–1467 (2010)

12. Ghorbani, A., Bots, P., Dignum, V., Dijkema, G.: MAIA: a framework for de-
veloping agent-based social simulations. Journal of Artificial Societies and Social
Simulation 16(2), 9 (2013)

13. Heldal, R., Pelliccione, P., Eliasson, U., Lantz, J., Derehag, J., Whittle,
J.: Descriptive vs prescriptive models in industry. In: Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering Lan-
guages and Systems. p. 216–226. MODELS ’16, Association for Computing Ma-
chinery, New York, NY, USA (2016). https://doi.org/10.1145/2976767.2976808,
https://doi.org/10.1145/2976767.2976808

14. Iba, T., Matsuzawa, Y., Aoyama, N.: From conceptual models to simulation mod-
els: Model driven development of agent-based simulations. In: 9th Workshop on
economics and heterogeneous interacting agents. vol. 28, p. 149. Citeseer (2004)

15. Katsaliaki, K., Mustafee, N.: Applications of simulation within the healthcare con-
text. Journal of the operational research society 62(8), 1431–1451 (2011)

16. Klügl, F.: A validation methodology for agent-based simulations. In: Proceedings
of the 2008 ACM symposium on Applied computing. pp. 39–43 (2008)

17. Lee, J.S., Filatova, T., Ligmann-Zielinska, A., Hassani-Mahmooei, B., Stonedahl,
F., Lorscheid, I., Voinov, A., Polhill, J.G., Sun, Z., Parker, D.C.: The complexities
of agent-based modeling output analysis. Journal of Artificial Societies and Social
Simulation 18(4) (2015)



A Methodology for DSML-assisted Participatory ABM 15

18. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM computing surveys (CSUR) 37(4), 316–344 (2005)

19. Merrick, B., Noronha, M., Batra, R., Douthwaite, S., Nebbia, G., Snell, L.,
Pickering, S., Galao, R., Whitfield, J., Jahangeer, A., Gunawardena, R., God-
frey, T., Laifa, R., Webber, K., Cliff, P., Cunningham, E., Neil, S., Get-
tings, H., Edgeworth, J., Harrison, H.: Real-world deployment of lateral
flow SARS-CoV-2 antigen detection in the emergency department to pro-
vide rapid, accurate and safe diagnosis of COVID-19. Infection Prevention in
Practice 3(4), 100186 (dec 2021). https://doi.org/10.1016/J.INFPIP.2021.100186,
https://linkinghub.elsevier.com/retrieve/pii/S2590088921000755

20. Moody, D.: The “physics” of notations: toward a scientific basis for constructing vi-
sual notations in software engineering. IEEE Transactions on software engineering
35(6), 756–779 (2009)

21. Ozik, J., Collier, N.T., Murphy, J.T., North, M.J.: The ReLogo agent-based mod-
eling language. In: 2013 Winter Simulations Conference (WSC). pp. 1560–1568.
IEEE (2013)

22. Pavón, J., Gómez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools.
In: Agent-oriented methodologies, pp. 236–276. IGI Global (2005)

23. Pohl, K., Böckle, G., Van Der Linden, F.: Software product line engineering, vol. 10.
Springer (2005)

24. Ramanath, A.M., Gilbert, N.: The design of participatory agent-based social sim-
ulations. Journal of Artificial Societies and Social Simulation 7(4) (2004)

25. Sandkuhl, K., Fill, H.G., Hoppenbrouwers, S., Krogstie, J., Leue, A., Matthes, F.,
Opdahl, A.L., Schwabe, G., Uludag, Ö., Winter, R.: Enterprise modelling for the
masses – from elitist discipline to common practice. In: Horkoff, J., Jeusfeld, M.A.,
Persson, A. (eds.) The Practice of Enterprise Modeling. pp. 225–240. Springer
International Publishing, Cham (2016)

26. Santos, F., Nunes, I., Bazzan, A.L.: Model-driven agent-based simulation develop-
ment: A modeling language and empirical evaluation in the adaptive traffic signal
control domain. Simulation Modelling Practice and Theory 83, 162–187 (2018)

27. Stepney, S., Polack, F.: Engineering Simulations as Scientific Instruments: A Pat-
tern Language: With Kieran Alden, Paul S. Andrews, James L. Bown, Alastair
Droop, Richard B. Greaves, Mark Read, Adam T. Sampson, Jon Timmis, Alan
F.T. Winfield (01 2018). https://doi.org/10.1007/978-3-030-01938-9

28. Voinov, A., Bousquet, F.: Modelling with stakeholders. En-
vironmental Modelling & Software 25(11), 1268–1281 (2010).
https://doi.org/https://doi.org/10.1016/j.envsoft.2010.03.007,
https://www.sciencedirect.com/science/article/pii/S1364815210000538, thematic
Issue - Modelling with Stakeholders

29. Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L.,
Visser, E., Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages. dslbook.org (2013), http://www.dslbook.org

30. Zschaler, S., Polack, F.A.C.: A family of languages for trustworthy agent-based
simulation. In: Proceedings of the 13th ACM SIGPLAN International Conference
on Software Language Engineering. p. 16–21. SLE 2020, Association for Computing
Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3426425.3426929,
https://doi.org/10.1145/3426425.3426929


