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Abstract

We study learning dynamics in distributed produc-
tion economies such as blockchain mining, peer-to-
peer file sharing and crowdsourcing. These econ-
omies can be modelled as multi-product Cournot
competitions or all-pay auctions (Tullock contests)
when individual firms have market power, or as
Fisher markets with quasi-linear utilities when ev-
ery firm has negligible influence on market out-
comes. In the former case, we provide a formal
proof that Gradient Ascent (GA) can be Li-Yorke
chaotic for a step size as small as ©(1/n), where
n is the number of firms. In stark contrast, for the
Fisher market case, we derive a Proportional Re-
sponse (PR) protocol that converges to market equi-
librium. The convergence result of the PR dynam-
ics is obtained in full generality, in the sense that it
holds for Fisher markets with any quasi-linear util-
ity functions. Conversely, the chaos results for the
GA dynamics are established in the simplest pos-
sible setting of two firms and one good, and hold
for a wide range of price functions with different
demand elasticities. Our findings suggest that as
multi-agent interactions grow larger, the ensuing
market (instead of game-theoretic) conditions al-
low us to formally derive natural and stable learn-
ing protocols which converge to effective outcomes
rather than being chaotic.

1

Multi-agent learning in production economies is an important
yet underexplored domain. Production economies are classi-
cally modelled as Cournot competitions [Varian, 2010] or im-
perfectly discriminating all-pay auctions (Tullock contests)
[DiPalantino and Vojnovic, 2009]. In these models, partic-
ipating firms have market power, and they can significantly
influence aggregate outcomes (prices or total exerted effort)
with their decisions. However, the advancement of the inter-
net has prompted a rapid paradigm shift in economic com-
petition. Blockchain mining [Arnosti and Weinberg, 2018;
Fiat et al., 20191, peer-to-peer file sharing [Levin et al., 2008]
and crowdsourcing [Horton and Chilton, 2010], among oth-
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ers, all constitute distributed production economies with large
numbers of small competitors (individuals or firms). In con-
trast to the classic Cournot or Tullock models, firms in these
economies typically engage in multiple concurrent competi-
tions. Moreover, due to their relative small sizes, each firm
has negligible influence on prices and hence becomes price-
taker. As a result, this form of competition more closely re-
sembles the economic model of Fisher markets in which firms
take prices as independently given signals, and purchase opti-
mal bundles of goods (or invest on optimal portfolios to pro-
duce goods) given their budget (or capital) constraints.

The question of which adaptive or learning protocols be-
have well in these economies is largely open and actively
researched. In both Cournot competition' and Fisher mar-
kets, firms repeatedly observe the aggregate production, and
adjust their production outputs over time to improve their
own profits. However, empirical results regarding Cournot
competition suggest that standard adaptive algorithms, e.g.,
best response, can lead to unstable and irregular adjust-
ments, even in very simple instances (e.g., when there are
only two firms and one good) [Theocharis, 1960; Puu, 1991;
Wirneryd, 2018]. In contrast, when firms ignore their mar-
ket power and act as price-takers, the outcomes can be
more stable. A line of recent works [Wu and Zhang, 2007,
Zhang, 2011; Birnbaum et al., 2011; Cheung et al., 2012;
Cheung et al., 2020; Cheung et al., 2018; Branzei et al., 2019;
Cheung et al., 2019; Gao and Kroer, 2020] showed that nat-
ural adaptive algorithms, including tatonnement and propor-
tional response (PR), lead to stable adjustments in different
markets, where they converge to market equilibria.”

1.1 Model and Contribution

Motivated by the above, our aim is to study the behavior of
learning dynamics in production economies from a theoreti-
cal perspective. Our research goals are 1) to establish formal

"The mathematical equivalence between Cournot competition
with isoelastic demand and imperfectly discriminating all-pay auc-
tions with proportional success functions or simply Tullock contests
is documented in [Szidarovszky and Okuguchi, 1997; Wirneryd,
2018] (among others). We elaborate on this relation in Section 2.

2 Another relevant and interesting result suggests that when firms
trade resources using PR, the underlying production economy grows
in the long term under mild conditions [Brénzei et al., 2018].
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mathematical arguments that explain the irregular behavior of
greedy learning rules, such as Gradient Ascent and Best Re-
sponse dynamics, and 2) to seek protocols that behave well
under general conditions.

Concerning the first goal, we present the first rigorous
mathematical proof that the constant step-size Gradient As-
cent (GA) algorithm can exhibit Li-Yorke chaos [Li and
Yorke, 1975] in Cournot competition (equivalently, in all-
pay auctions or Tullock contests) even when the firms are
homogeneous. This provides a formal explanation for the
unpredictable evolution of these systems that is frequently
observed in practice. To derive this result, we leverage
Sharkovsky’s theorem which provides a tractable way to ver-
ify the conditions in Li-Yorke’s characterization of chaos
[Palaiopanos et al., 2017]. In the case of GA, our findings
are robust in two aspects: first, chaos emerges for a large
family of price functions induced by different demand elas-
ticities, and second, chaos emerges even when the step-size is
as small as © (1/n). Our results in this direction contribute to
the growing literature that studies various forms of chaos in
game dynamics [Sato et al., 2002; Galla and Farmer, 2013;
Cheung and Piliouras, 2019; Cheung and Piliouras, 2020;
Cheung and Tao, 2021; Chotibut et al., 2021; Leonardos and
Piliouras, 2021].

Informally, a dynamical system is Li-Yorke chaotic if
there are uncountably many pairs of trajectories which get ar-
bitrarily close together (but never intersect) and move apart
indefinitely. When two trajectories are very close to each
other, they become essentially indistinguishable due to the
precision limitation inherent with the environment or com-
puter. In other words, we cannot tell which of the two tra-
jectories will be realized in the future — this is exactly what
unpredictable means. A primary reason for the chaos to arise
is that each firm uses its own market power to strategically
influence the price. When all firms make such strategic ma-
nipulations simultaneously, they aggregately drive prices up
and down without proper control.

While the previous technique does not lead to a formal
proof of Li-Yorke chaos in the case of Best Response (BR)
dynamics, we formalize the (in)-stability properties of the lat-
ter via eigenvalue analysis of the non-linear dynamical sys-
tem. Here, instability refers to abrupt changes in the long
term behavior of the dynamics in response to small perturba-
tions of the systems’ parameters (e.g., firms costs).?

Since robustness is an essential property in distributed
production economies both from a normative and a descrip-
tive perspective, the above results provide a convincing ar-
gument against the use of game-theoretically motivated pro-
tocols. This brings us to our second goal which is to seek
learning protocols that result in stable outcomes.

Our main result in this direction is to propose a market-
motivated Proportional Response (PR) algorithm and show
that it is stable and robust: from any initial condition, the

3This formalization closely mirrors existing empirical results on
BR dynamics [Puu, 1991; Wirneryd, 2018]. Hence, we only present
some indicative visualizations (Figure 3), and defer the formal state-
ment to the full version (https://arxiv.org/abs/2103.08529).
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PR update rule converges to the market equilibrium of an
ensuing Fisher market that captures production economies,
namely Fisher market with quasi-linear utility functions. The
protocol is simple and can be run by each firm independently
using only local and observable (market level) information,
which makes it particularly suitable for these distributed set-
tings. It can be interpreted as a naturally motivated adaptive
algorithm from a firm’s perspective: in each round, each firm
appropriates a certain amount of money, and invests it to the
productions of different goods in proportion to the revenues
received from selling them in the previous round.

One necessary assumption to establish this result is that
as economies grow larger, firms have a negligible influence
on aggregate outputs. However, we formally argue that in
the distributed production economy setting, market equilib-
ria are approximate Nash equilibria. This finding is in line
with the largeness concept in [Cole and Tao, 2016], who
showed that when markets grow large, they become asymp-
totically efficient even under agents’ strategic behaviors. This
implies that the assumption of diminished influence on out-
comes does not significantly affect the equilibrium outcome
of the system. However, it does have important implications
from a technical perspective. In particular, by modeling pro-
duction economies as Fisher markets, we can leverage their
Eisenberg-Gale convex-program formulation [Eisenberg and
Gale, 1959] to draw a direct analogue between our PR algo-
rithm and standard optimization methods like mirror descent.
This allows us to apply tools from optimization theory and
provides a principled approach to derive convergence proofs.

Paper outline. In Section 2, we present our three models:
Cournot competition with multiple-goods, Tullock contests
and Fisher Markets, and discuss their mathematical connec-
tions. Section 3 contains our main results: convergence of PR
dynamics and chaos and instabilities of GA and BR dynam-
ics. We discuss the techniques we use in Sections 4 and 5;
detailed proofs can be found in the full version.

2 Models and Definitions

In this section, we describe the Cournot competition and
Fisher market models. In their classical descriptions, quan-
tities of goods produced are used as the driving variables
to define the notions of Nash and market equilibria. How-
ever, it will be more convenient to use spendings/investments
on the production of a good as the driving variables here,
since this is the domain of the PR algorithm. In all mod-
els, N = {1,2,--- ,n} is the set of firms (agents) and
M ={1,2,--- ,m} is the set of goods.

Multi-good Cournot competition (CC) with isoelastic de-
mands. Each firm 7 invests an amount b;; > 0 on producing
good j. We write b; := (b;;)jem and b := (b;),. 5. Each
firm ¢ has only finite amount of capital, K, to invest, thus it
is subject to a capital constraint » ;bij < K. We assume
that the marginal cost of producing good j is the same for all
firms, which we denote by o;. Thus, the quantity of good
J produced by firm ¢ is b;;/c;. Each good j has isoelas-
tic demand, i.e., the total sales revenue of the good is con-
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stant, denoted by v;. Thus, the price function* for good j is
P;j(b) = w;/ (>, bij/c), and the revenue of firm i re-
ceived from the sales of good j is Pj(b) - (bj /) := v; - ysj,

where y;; denotes the market share of firm 4 on good j:

yij = big/ Y, buj-

The profit of firm ¢ is its revenue from the sales of all goods
minus its total investment: ., v;y;; — > bij.

ey

Tullock contest (TC). The above setting admits a correspon-
dence to multiple Tullock contests. According to this inter-
pretation, each firm ¢ invests an amount of b;; > 0 on pro-
ducing good j, but now the goods are considered as prizes,
and the probability that firm ¢ wins good j is y;; as defined
in Eqn. (1). This probabilistic interpretation is natural in the
applications of blockchain mining and imperfectly discrimi-
nating all-pay auctions (crowdsourcing). Now, different firms
can have different valuations on the prize, so the parameter v;
in CC may be distinct for different firms; we let v;; denote the
valuation of firm ¢ on good j. The expected profit of firm i is

ui(b;) == Zj VijYij — Zj bij-

While CC and TC have differences in their rationales, they
admit a correspondence in mathematical terms, by replacing
deterministic profit in CC with expected profit in TC, and v;
with v;; for different firms <. Accordingly, we will henceforth
refer to this model as CC/TC or simply TC.

2

Definition 1 (Nash equillibrium). For any 6 > 0, we say
that b* is a 0-Nash Equilibrium (6-NE) of a CC/TC if for
each agent i € N, maxp,.5~ v, <x, ui(bi, bZ;) < (1+6)-
u; (b}, b* ;). In other words, agent ¢ cannot improve her util-
ity by more than an ¢ fraction at b* by unilaterally changing
her own investment portfolio. We call a 0-NE simply a NE.

Fisher market (FM). In a Fisher market, each good j has
a supply which is normalized to one unit. Again, b;; de-
notes the spending of firm ¢ on good j, and each firm ¢ has
a budget of K;, so the constraint > y bi; < K; applies. Let
p= (pj)jEM’ where p; denotes the price of good j. At b;,
firm ¢ gets b;; /p; units of good j and has a quasi-linear utility
function, u; (b; | p), which takes the form

ui(b; | p) =32 vij - (bij/pj) — 22, bijs (©)

where v;; denotes firm ¢’s valuation of one unit of good j. At
price vector p, each firm ¢ select an optimal budget alloca-
tion bzéE in arg maxy, u;(b; | p) which maximizes its utility
subject to the constraint ; bij < K;. Atan optimal budget

vector b¥, a vector x7 := (bfj /pj)jem is called a produc-

tion bundle of agent ¢ at price vector p.
Definition 2 (Market equilibrium). A price vector p# =
(pj’&) jeM 18 a market equilibrium (ME) if there exists an op-

timal budget allocation b# = (bf)ie ~ at p7, such that for

*We also consider more general price functions induced by dif-
ferent demand elasticities in Section 5.
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each good j, >, bf’;—

equilibrium spending.’

= p!. The vector b is called a market

2.1 Connection between TC and FM

The crucial difference between TC and FM is that in TC,
prices are determined endogenously as a function of b,
whereas in FM, prices are viewed as independent inputs that
do not explicitly depend on b. Thus, while both models re-
quire each firm ¢ to make an allocation b; that is subject to
the same budget constraint » j b;; < K;, the methods to de-
termine outcomes differ.

However, if (p,b) are market equilibrium and mar-
ket equilibrium spending respectively of an FM, then
> ;bij/p; = 1 for each good j. Thus, we can translate
bi;/p;, which is the quantity of good j that firm ¢ gets at the
market equilibrium, to the probability that firm ¢ wins good
j in the corresponding TC. Under this translation, the out-
come in the FM is the same as the outcome in the TC. Due to
the well-known properties of Fisher markets, this outcome is
Pareto-optimal, and it is envy-free if K; is identical for all s.

The above suggest that if there is an algorithm that con-
verges to the market equilibrium spending (our Theorem 4
establishes this) of the FM, then it yields a feasible solution
of the corresponding TC. The remaining question is the qual-
ity of this feasible solution, i.e., how close it is to a Nash
equilibrium of the TC. It turns out that if the underlying
distributed production economy satisfies a natural largeness
property, then the market equilibrium spending is also a ¢’-
NE for some small &' > 0. In particular, as we show in
Proposition 3 below, this is the case if the budget of each
firm is small compared to any market equilibrium price, i.e.,
if maxiyj{Ki/pj%} < ¢ for a small § > 0. We may view
as a parameter that describes the largeness of the economy:
the smaller § is, the larger the economy is. (We also need the
bang-per-buck ratio 3; := max;{v;;/ pf} to be sufficiently
high for all firms 7, because otherwise a firm might invest
nothing thus attain zero utility, forcing ¢’ to be +00.)

Proposition 3. Suppose that b* is a market equilibrium
spending vector of a quasi-linear FM, and p* is the corre-
sponding market equilibrium price vector. For every i € N,

let B; = maxj{vij/p?}. Ifmaxi,j{Ki/pf} < 6, then b#
is also a 0'-NE of the corresponding TC, where

{(Z5-1)/6-n}-1

8" = max
:8;>1

1-6
provided that there is no firmiwith 1 — 6 < ; < 1.

It is easy to see that if min,;{3;} grows, then ¢’ tends to-
ward §/(1 — 9).

3 Our Main Results

We present our two main results here. We discuss the method-
ology of proving them in Sections 4 and 5.
The last condition is same as > bf;

/¥ = 1, which is the
classical definition of market equilibrium.
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Algorithm 1 PR-QLIN Learning Protocol
Input: (K, vi1,vi2, ..., Vim, by) for each firm ¢
Output: market equilibrium spending b#.
fort=0,1,2,...do
for every firm ¢ and good j do
yf] — bfj/Zk b;/cj
for every firm ¢ do
St 37, vijui;
if S! > K; then
for every good 5 do
t+1
bJ — (Uijyfj/sf) K
else for every good j do
bZH vijyy; M sameas (vijy;; /S;) - S

1:
2
3
4
5
6:
7.
8
9
0

3.1 Proportional Response in Quasi-Linear FM

In a quasi-linear Fisher market, our PR protocol starts with
each firm ¢ € N investing an arbitrary portfolio by which is
positive, i.e., b;’j > (0 for all j € M. In each round, firms
update their portfolios simultaneously according to the PR-
QLIN protocol in Algorithm 1.

The PR-QLIN protocol can be naturally interpreted. Af-
ter all firms update their investment portfolios in round ¢, one
unit of each good j is allocated to the firms in proportion to
their investments on the good. Thus, firm ¢ gets yﬁj units of
good j (line 3). Then each firm ¢ computes its attained utility,
Sf , without subtracting investment cost (line 5). If Sf > K;,
then firm ¢ will appropriate all of its capital, K;, for invest-
ment in round ¢ 4 1; otherwise it will only appropriate an
amount of S! for investment. Then each firm invests its ap-
propriated capital on each good in proportion to the utility at-
tained from that good in the previous round, i.e., firm ¢ invests
a fraction of v;;y};/S} of its appropriated capital on good j.
Our main result is stated below.

Theorem 4. Given any positive starting point b°, the algo-
rithm PR-QLIN converges to the set of market equilibrium
spending vectors of the quasi-linear Fisher market.

3.2 Gradient Ascent (GA) and Li-Yorke Chaos

To establish our chaos results of the GA dynamics in CC
(hence, also in TC), we consider a CC with one good and
n firms. Since there is only one good, we omit the sub-
script 7 = 1 and use the shorthand a = «; to denote the
marginal cost of producing the good (recall from Section 2
that this is equal for all firms). In this setting, it is more
convenient to use the quantities of the good produced, i.e.,
the variables x; = b;1/«, as the driving variables. Without
loss of generality, let vy 1. Then the utility of firm i is
w;i(x) = /(>4 xx) — ax;. The Gradient Ascent (GA) up-
date rule is given by x! ™' « zt + 5. V,u; (x'), where 1 is
the step-size.

Assuming that the initial point is symmetric, i.e., that =7
is identical for all 7, then in each round ¢ > 0, the a:ﬁ’s remain
identical for all . Thus, a symmetric GA dynamic is essen-
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tially one-dimensional, and its trajectory can be represented
by the sequence {x} };>0 generated by the GA update rule:
n—1
2

2 —a). )

Our main result states that even for such an apparently simple
one-dimensional dynamical system, chaos occurs with step-
size 1) as small as ©(1/n). Here, we refer to Li-Yorke chaos
which is formally defined below.

xﬁ*lexﬁ—kn-(

Definition 5 (Li-Yorke Chaos). A discrete time dynamical
system (z'),y such that z* := f* (2°) for a continuous up-
date rule f : X — X on a compact set X C R is called
Li-Yorke chaotic, if (i) for each k € N, there exists a peri-
odic point £ € X with period k, and (ii) there is an uncount-
ably infinite set S C X that is scrambled, i.e., if for each
xr # 2’ € S it holds that liminf; o | f* (z) — f' (2/)| =
0 < limsup, ., | f* (x) — f () |.

Theorem 6 (Li-Yorke Chaos in n-Player CC/TC). Consider
a symmetric GA dynamic with n firms and marginal cost o >
0. Then for any step-size n > 3(n—1)/n%a?, the essentially-
one-dimensional dynamical system (4) is Li-Yorke chaotic.

This theorem applies with isoelastic price function. In
Section 5, we consider a larger family of price functions and
show that Li-Yorke chaos also occurs in the corresponding
symmetric GA dynamics. We also present theoretical and
empirical evidences that instability arises when the GA rule
is replaced by the Best Response rule.

Remark. In practice, firms may choose to use a large step-size
in a myopic, greedy approach to profit maximization. Given
that chaos occurs with a vanishingly small step-size © (1/n)
as the number of firms increases (cf. Theorem 6), our result
is practically relevant for distributed production economies in
which many small firms are involved. Stability results should
be possible for smaller step sizes, however, such step sizes
are not particularly interesting from a practical perspective.
Finally, the presence of a centralised planner who may en-
force small step sizes is a rather unnatural assumption for the
settings and applications that we consider.

4 Proportional Response (PR) Dynamics

Our proof of Theorem 4 consists of two major steps. In
the first step, we derive a convex program that captures
the market equilibrium (ME) spending of the quasi-linear
Fisher market via the approach of [Birnbaum er al., 2011;
Cole et al., 2017; Cheung et al., 2018]. In the second step,
we show that a general Mirror Descent (MD) algorithm con-
verges to the optimal solution of this convex program; PR-
QLIN is an instantiation of this MD algorithm.

Convex program framework. We first utilize a convex op-
timization framework to derive a convex program that cap-
tures the ME spendings of any quasi-linear FM. The ensuing
framework is summarized in Figure 1. In short, via duality
and variable transformations, the market equilibria of a FM
can be captured by various convex programs, each with a dif-
ferent domain.® Our starting point is a convex program pro-

®For linear Fisher markets, i.e. markets in which each agent has a
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duality

(EG) (D) Program
(EG)
q;:=Inp; (D)
(TD)
SH
(SH) duality (TD) e

Description Variables

Eisenberg-Gale xi; = allocations 2 € N,j € M
Dual pj = prices jeM
Transformed dual qg; = In(p;) JjEM
Shmyrev-type bij =spending i€ N,jeM

Figure 1: Derivation of the PR-QLIN protocol via the Mirror Descent (MD) protocol. Starting from the convex program (D), which is the
dual of a generalized Eisenberg-Gale (EG) program, we move to the transformed dual (TD) and by convex duality to a Shmyrev-type primal
program (SH) which is, hence, equivalent to the initial program (EG). The objective function of (SH) for quasi-linear utilities is 1-Bregman

convex which implies convergence of the MD protocol.

posed by [Cole er al., 2017] that captures ME prices of quasi-
linear Fisher market (which belongs to type (D) in Figure 1).
From this, we derive a new convex program with captures the
ME spendings of the market (which belongs to type (SH));
see the full version for the details. The convex program is

bmin F(b,w,p)

P
n
S.t. Zi:l bij = pj7
m
Zj:l bij +w; = K;, Vi € N,
bij,wizo, ViEN,jEM,
where F(b,w,p) := =371 3700 bijInvg; + 3500 w; +
Z;’;l p; lnp;. For brevity, we will write F'(z). Observe that
the first and second constraints determine the values of w, p
in terms of b;;’s. Thus, we can rewrite the convex program

to have variables b only, and the remaining constraints are
bij > 0 and Z;n:l bl‘j < KZ

Vj e M,

(SH)

4.1 From Mirror Descent to PR

After having the convex program with variables b only, we
can compute a ME spending by the optimization algorithm
of Mirror Descent (MD). To begin, we recap a general result
about MD [Chen and Teboulle, 1993; Birnbaum et al., 2011].

Definition 7 (KL-divergence and L-Bregman convexity). Let
C be a compact and convex set and let i be a convex function
on C. Then, for any z’ € C,z € rint(C) where rint(C) is
the relative interior of C, the Bregman divergence, dy, (7, ),
generated by h is defined by

d(2,2) = h(2) - [h(z) + (Vh(z),2' ~2)].

The Kullback-Leibler (KL) divergence between z' and z is
defined by KL(2'||z) := 3_; 2j-In 2 =37, 2/ 43", 2, which
is the same as the Bregman divergence dj; with regularizer
h(z) == > ;(zj - Inz; — z;). A function Fis L-Bregman
convex w.r.t. the Bregman divergence d, if for any z’ € C
andz € rint(C), F(z) +(VF(z),2' —z) < f(z') < f(z)+
<Vf(Z), 7' — Z> +L- dh(Z/,Z).

utility similar to a quasi-linear utility, but without the subtraction of
investment cost, [Eisenberg and Gale, 1959] derived a convex pro-
gram which captures the ME allocation, where the driving variables
are quantities of goods allocated to the agents. Subsequent works
established that by considering suitable duals and transformations
of Eisenberg and Gale’s convex program, new convex programs can
be derived which capture the ME prices and ME spendings.
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Algorithm 2 MD protocol w.r.t. KL-divergence

Input: A convex set C, a function F' defined on C, a param-
eter I and a point z° € C.
Output: z* = argmin, . F'(2).

1: fort=0,1,2,...do

2: g(z,z') « (VF(z'),z — z') + T - KL(z||z!)

3: z! «— argmin, {g (2,2

For the problem of minimizing a convex function F'(z)
subject to z € C, the MD protocol w.r.t. the KL divergence
is presented in Algorithm 2. In the protocol, 1/T" is the step-
size, which may vary with ¢ (and typically diminishes with ).
However, in the current application of distributed dynamics,
a time-varying step-size is undesirable or even impracticable,
since it requires firms to keep track of a global clock.

Theorem 8. Suppose F' is an L-Bregman convex function
w.r.t. the Bregman divergence dy, and z' is the point reached
after t applications of the MD update rule in Algorithm 2 with
parameter I' = L. Then F(z') — F(z*) < L-d(z*,z°)/t,
where z* = arg min, . F'(2).

Proof sketch: We first prove Lemma 9 below. Then we
show that PR-QLIN is an instantiation of Algorithm 2 with
I' = 1. This is achieved by identifying the variables b in
PR-QLIN as the variables z in Algorithm 2, and the domain
{b|b;; > 0and ZTZI bi; < K;} as the convex set C' in
Algorithm 2. Thus, Theorem 8 guarantees the updates of
PR-QLIN converge to an optimal solution of the convex pro-
gram (SH), and hence Theorem 4 follows.

Lemma 9. The objective function F(z) of (SH) is a 1-
Bregman convex function w.r.t. the KL-divergence.

5 GA and Best Response Dynamics

To establish Theorem 6 about the GA dynamics in Eqn. (4)
for n = 2 (the technique is similar for any n > 2), let
f (@) :=2+n (L — a);note that 2" = f(z!) by Eqn. (4).
To prove that Li- Yorke chaos occurs, we use a seminal theo-
rem of [Li and Yorke, 1975], which states that if f has two
easy-to-verify properties, then the dynamical system is Li-
Yorke chaotic. The two properties are: (i) an invariant set of
f that includes a fixed point =*, i.e., an interval I = [L, U]
such that f (I) C I with a point L < z* < U satisfying
f(z*) = =z*, and (ii) a point 2’ € I other than z* with pe-
riod 3, i.e., f® (') = 2/, where f©®) (z) := (fo fo f) ().
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These properties are formally established in the full version A
visualization of Theorem 6 is provided in the first two panels
of Figure 2. It can be seen that chaos may emerge even for
small step-size and for asymmetric marginal costs.

General price functions. The two conditions that are re-
quired in the theorem of Li and Yorke can be also verified
numerically (via computer software) in the case of the para-
metric price function X ~7, where X := ). x; and y > 0 is
the inverse of the demand elasticity ¢, see e.g., [Lopez and
Vives, 2019]. The lower bound of the step-size 7 at which
chaos emerges (in the symmetric case) is decreasing as de-
mand becomes more elastic, cf. third panel of Figure 2.

Best response dynamics. We conclude by revisiting the
well-studied Best Response (BR) dynamics and formally es-
tablish that they can be unstable even in the simplest setting
of two firms and one good. The general BR update rule is
ot argmax, . ui(zg,z' ;). For TC with isoelastic de-
mand the BR dynamlcs take the form 2 < (2!, /)% —
xt,, for i = 1,2, where «; is the marginal cost of firm 4.
BR dynamics in Cournot duopoly with isoelastic functions
have been studied by [Puu, 1991] and, in the framework of
contests, by [Wirneryd, 2018]. Both papers suggest that the
stability of the unique fixed point, (z3,3), depends on the
degree of asymmetry between the two firms, captured by the
ratio 7 := a3 /ao with instabilities emerging as the asymme-
try increases. While our previous technique does not lead to
a formal proof of Li-Yorke chaos in BR dynamics, we for-
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malize the (in)-stability properties of the latter via eigenvalue
analysis of the non-linear system, cf. full version. The result
is visualized in Figure 3 which shows how the trajectories of
the dynamics may change dramatically in response to even
small perturbations of the model parameters (firms’ costs).

6 Conclusions

The current work brings together multi-agent learning with
optimization, market theory and chaos theory. Our findings
suggest that by considering production economies from a
market rather than a game-theoretic perspective, we can for-
mally derive a natural learning protocol (PR) which is stable
and converges to effective outcomes rather than being chaotic
(GA). Due to its simple form and mild informational require-
ments, PR can be used to study real-world multi-agent set-
tings from an Al perspective. Since distributed production
economies capture many important applications (blockchain,
peer-to-peer networks, crowdsourcing), our contributions are
significant both for theoretical and practical purposes.
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