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We study the effects of endogenous cost formation in the classic Cournot oligopoly
through an extended two-stage game. The competing Cournot firms produce low-cost

but limited quantities of a single homogeneous product. For additional procurements,

they may refer to a revenue-maximizing supplier who sets a wholesale price prior to their
orders. We express this chain as a two-stage game and study its equilibrium under two

different information levels: complete and incomplete information on the side of the sup-
plier about the actual market demand. In the deterministic case, we derive the unique

subgame perfect Nash equilibrium for different values of the retailers’ capacity levels,

supplier’s cost and market demand. To study the incomplete information case, we model
demand uncertainty via a continuous probability distribution. Under mild assumptions,

we characterize the supplier’s optimal pricing policy as a fixed point of a proper trans-

lation of his expectation about the orders that he will receive from the retailers. If this
expectation is decreasing in his price, then such an optimal policy always exists and is
unique. Based on this characterization, we are able to proceed with comparative statics

and sensitivity analysis, both analytically and numerically. Incomplete information gives
rise to market inefficiencies because the supplier may ask for a too high price. Increasing

supplier’s cost results in increasing wholesale prices, decreasing orders from the retail-

ers and hence decreasing consumer surplus. Increasing retailers’ production capacities
results in decreasing wholesale prices and increasing consumer surplus. Finally, as the

number of second-stage retailers increases, the supplier’s profit may initially rise but
eventually drops.

Keywords: Cournot Nash; Nash Equilibrium; Duopoly; Capacity; Incomplete Informa-

tion; Decreasing Mean Residual Life; Existence; Uniqueness

Mathematics Subject Classification (2000): 91A10, 91A40.

1. Introduction

Modern oligopolistic firms build up their retail stock from various sources that may

include in-house production or procurements from large, internationally operating

∗This research has been supported by the Research Funding Program ARISTEIA II: ”Optimization
of stochastic systems under partial information and applications” of NSRF.
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manufacturers. These suppliers also act strategically by setting wholesale prices to

maximize their revenues. Hence, the robustness and validity of economic intuitions

that have been obtained under classic assumptions of cost rigidity as in the standard

Cournot quantity-competition model need to be revised under more realistic, yet

mathematically tractable cost structures.

The main objective of this paper is to provide the proper game-theoretic frame-

work to study the cost formation as a strategic decision in the standard Cournot

oligopoly. To endogenize the cost, we extend the classic model in a two-stage game.

In the second stage, the competing firms produce limited quantities of the product

up to a specified capacity. For additional procurements, they refer to an external

supplier, who has ample capacity but may be uncertain about the actual demand

that the retailers are facing. The supplier acts as a Stackelberg leader and sets the

wholesale price in the first stage, prior to the decision of the retailers. We study a

complete and incomplete information model and apply the subgame-perfect Nash

and Bayes-Nash equilibrium concepts, respectively, to analyze the strategic deci-

sions of the market participants and gain economic intuition.

In a closely motivated study, Marx and Schaffer [2015] point out that the prob-

lem of strategic cost formation has not yet been appropriately addressed in the quite

extensive Cournot literature. The classic model’s assumption of constant, exoge-

nously given marginal cost does not reflect the complex cost structures of contempo-

rary economic practice. To address this issue, they study the game that arises when

competing Cournot firms purchase their inputs from a common supplier. They ex-

amine contracts, with the competing firms having the bargaining power, and hence,

their analysis departs from the present study. Cachon and Netessine [2004] highlight

the need for a game theoretical analysis of more dynamic settings in oligopolistic

markets. They report only scarce applications of the subgame-perfect equilibrium,

all in settings quite different from ours. Since then, several papers have appeared in

the relevant literature. Esmaeli et al. [2009] apply the Stackelberg-strategy solution

concept to study the interaction between a seller and a buyer. However, their inter-

est shifts to investigating the impact of marketing (advertising) expenditures. Zhao

et al. [2010] study wholesale pricing schemes between manufacturers and retailers,

but their focus is on cooperative mechanisms that result in inventory coordination

and supply chain improvement.

The present paper focuses on the relationship between market demand and

various costs as the key in studying the effects of an exogenous source of supply

for Cournot oligopolists. If the demand is high enough, the competing firms may

have incentive to place orders with an external supplier, depending, of course, on

the price he asks. In such a study, various questions have to be addressed: Do the

firms have production capacities of their own? If yes, then these capacities have to

be assumed bounded (as they are in reality) so that need may arise for additional

procurements. Does the supplier know the actual demand the oligopolists face? If

no, then he may ask for a price that the competing firms will not accept, even if it is

to his advantage not to do so. The latter question implies an incomplete information
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game setup. By viewing the interaction of the competing Cournot oligopolists with

their supplier as a two-stage game, the cost parameter of the classic Cournot model

is endogenized, and answers can be worked out.

1.1. Model summary

In detail, inspired by the classic Cournot oligopoly in which producers/retailers

compete over quantity, we study the market of a homogeneous good differing from

the classic model in the following ways. Each producer/retailer may produce only

a limited quantity of the good up to a specified and commonly known production

capacity. If needed, the retailers may refer to a single supplier to order additional

quantities. The supplier may produce unlimited quantities but at a higher cost than

the retailers, making it best for the retailers to exhaust their production capacities

before placing additional orders. The market clears at a price that is determined by

an affine inverse demand function. The demand parameter or demand intercept is

considered a random variable with a commonly known non-atomic, i.e., continuous,

distribution having a finite expectation.

Depending on the time of the demand realization, two variations of this market

structure are examined, corresponding to a complete and an incomplete information

two-stage game. In the first stage, the supplier fixes a price by deciding his profit

margin and then, in the second stage, the retailers, knowing this price and the

true value of the demand parameter, decide their production quantity – up to

capacity – and place their orders, if any. The decisions of the producers/retailers are

simultaneous. The supplier may – complete information – or may not – incomplete

information – know the true value of the demand parameter before making his

decision. In the second case, when the demand is realized after the supplier has

set his price, the demand parameter or equivalently the supplier’s belief about it

is modelled by a continuous probability distribution. In both variations, demand

uncertainty is resolved prior to retailers’ decision. In this respect, our setup differs

from the usual incomplete information models of Cournot markets, in which demand

uncertainty involves the producers, e.g., see Einy et al. [2010] and references given

therein.

The limited production capacities of the producers/retailers may equivalently

be interpreted as inventory quantities that are drawn at a fixed cost per unit.

If the production capacities are 0, this is a classic Cournot model with the cost

input determined exogenously. This case exhibits independent interest and has been

exhaustively treated in a companion work Leonardos et al. [2021].a. The present

market model aims to describe a wide range of composite cost structures that are

encountered in contemporary practice. The energy market, in which domestic firms

produce up to limited capacities and refer to international suppliers in periods of

aOther related results include Leonardos and Melolidakis [2020]; Leonardos and Melolidakis [2020];
Leonardos and Melolidakis [2021], preliminary versions of which appear in Melolidakis et al. [2018];
Koki et al. [2018].
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high demand, agriculture, apparel, food products and numerous more examples can

be thought of as real economic applications. In all these cases, the suppliers have

ample quantities to cover any domestic demand. Hence, they only need to decide

on the wholesale price that they will ask. However, due to their distance from the

retail market, they may have limited information about the actual retail demand, an

aspect that we implement by treating the demand parameter as a random variable

on the side of the supplier. The realization of the demand after the pricing decision

of the supplier is the device to implement this uncertainty. The model assumptions

are further discussed in Section 8.

1.2. Overview of results

For a more transparent exposition, we first analyze the case of n = 2 competing

retailers (duopoly) and then generalize our results to the case of arbitrary n >

2 competing retailers (oligopoly). We study the equilibrium behavior of the two-

stage game by first determining the unique equilibrium solution of the second-

stage game, which concerns the quantities that the producers/retailers will produce

and the additional quantities they will order from the supplier. The equilibrium

strategies are given in Proposition 1 and Figure 3. The second stage is the same

in both the complete and the incomplete information case. Then, we examine the

first-stage game, which concerns the price the supplier will ask for the product.

In the case of the complete information duopoly, a unique subgame-perfect Nash

equilibrium always exists, which we explicitly determine in Proposition 2 for all

values of production capacities T1, T2, supplier’s cost c and demand level α. While

equilibrium strategies, payoffs of the retailers, and equilibrium payoff of the supplier

are continuous and increasing in the demand level α, the supplier’s optimal pricing

strategy may not be continuous and even not monotonic in α. Under the assumption

of symmetric (identical) retailers, i.e., T1 = T2 = T , the complete information case

simplifies significantly. The resulting equilibrium is given in Theorem 1 and allows

for a discussion on the impact of the retailers’ capacities on the consumer surplus.

Our focus is mainly on the incomplete information case. In Theorem 2, we show

that if a subgame perfect Bayesian-Nash equilibrium exists, then it will necessarily

be a fixed point of a translation of the Mean Residual Lifetime (MRL) function

of the supplier’s belief. If the support of the supplier’s belief is bounded, then

such an equilibrium exists. If the MRL function is decreasing (as in most “well

behaved” distributions), then a subgame perfect equilibrium always exists and is

unique, irrespective of the supplier’s belief support. The fixed point characterization

of the supplier’s equilibrium strategy provides a powerful tool for a transparent

comparative statics and sensitivity analysis.

Accordingly, in Section 5, we study market inefficiencies due to incomplete in-

formation. Through analytical considerations and numerical simulations, we reason

about the supplier’s incentives to charge a too high price, despite running a con-

siderable risk of no transactions between him and the retailers. In Corollary 5, we
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observe that the supplier’s profit margin and wholesale price both exhibit a reverse

monotone relationship to the retailers’ inventory level. Similarly, as the supplier’s

cost increases, his profit margin decreases. However, in this case, the wholesale price

that he asks increases and the total quantity ordered by the retailers decreases, see

Corollary 6. Consequently, the total quantity that is sold to the consumers decreases,

which has a negative impact on consumer surplus. We confirm these observations

numerically. Finally, in Theorem 4 we show that Theorem 2 generalizes to an arbi-

trary number of second-stage retailers which enables the study of their impact on

the supplier’s profit. Numerical simulations with specific distributions reveal that

while the supplier may initially benefit from an increasing number of retailers, even-

tually his profits will drop as their number, and consequently their total in-house

production capacities, continue to increase. Accordingly, our main contributions can

be summarized in the following points

• formulation of a game-theoretic framework to incorporate the complex cost struc-

ture of modern oligopolistic Cournot-firms.

• closed form characterization of the equilibria in both complete and incomplete

information market settings;

• utilization of the MRL function, which, although useful to study stochastic payoff

functions, has received limited attention in the revenue management literature;

and

• comparative statics and sensitivity analysis of the basic model parameters – facili-

tated by the previous characterizations – to understand the economic implications

of the present model, both analytically and numerically.

Still, the complexity and variety of real economic models provide numerous pos-

sibilities for future research and extensions. However, the proposed model aims to

provide a benchmark for related studies, due to its mathematical tractability that is

mainly highlighted by the closed form characterizations of the equilibrium strategies

both in the complete and incomplete information settings. For a more detailed dis-

cussion of the economic assumptions and possible extensions of the present model,

see Section 8 and Section 8.1.

1.3. Related Work

The current work combines elements from various active research areas. Cournot

competition with an external supplier having uncertainty about the retail demand

may be viewed as an application of game theoretic tools in supply chain manage-

ment. However, our interest is in the equilibrium behavior of the complete and

incomplete information two-stage game rather than in building coordination mech-

anisms. The incomplete information of the supplier relates our work to incomplete

information Cournot models, although the lack of information refers to the produc-

ers in most papers in this area, see e.g., Bernstein and Federgruen [2005] or Wu and

Chen [2016].
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Price-only contracts between suppliers and retailers, like the one described here,

continue to attract widespread attention in the literature. Lariviere and Porteus

[2001] argue that the simplicity of price-only contracts makes them particularly at-

tractive if they do not significantly reduce supply-chain efficiency. Since unmodeled

factors are unlikely to reverse the insights derived by such models, they conclude

that as such, they provide (at least in many cases) a benchmark, worst-case analysis.

Perakis and Roels [2007] highlight the practical prevalence of price-only contracts

and study the efficiency of various decentralized supply chains that use price-only

contracts by measuring the respective Price of Anarchy of the chain. In a similar

fashion to our Theorem 3, they obtain bounds on the market fashion by restricting

attention to the IGFR class of random variables.

David and Adida [2015] study a supply chain with a single supplier and symmet-

ric retailers analytically and find that the supplier prefers to have as many retailers

as possible in the market, even in several restrictive cases. This is in contrast to our

findings in Section 7, which shows that such conclusions may be model-specific. In a

similar model, Wu et al. [2012] investigate the pricing decisions in a non-cooperative

supply chain that consists of two retailers and one common supplier. As the sup-

plier’s decision variables, they consider the wholesale prices to the retailers, and

argue that under active market regulations (Robinson-Patman Act) the supplier is

required to charge a uniform price – and hence not price-differentiate between the

retailers – when the retailers place their orders simultaneously, as in our model. In

their approach however, each retailer’s decision is the sale price to the market, and

hence their analysis differs from ours.

Having capacity constraints for the producers/consumers has also attracted at-

tention in the Cournot literature, see e.g., Bischi et al. [2009]. Bernstein and Fed-

ergruen [2005] investigate the equilibrium behavior of a decentralized supply chain

with competing retailers under demand uncertainty. Their model accounts for de-

mand uncertainty from the retailers’ point of view as well and focuses mainly on

the design of contracts that will coordinate the supply chain. Based on whether the

uncertainty of the demand is resolved prior to or after the retailers’ decisions, they

identify two main streams of literature. For the first stream, in which the present

paper may be placed, they refer to Vives [2001] for an extensive survey.

However, capacity constrained duopolies are mostly studied in view of price

rather than quantity competition. Osborne and Pitchik [1986], and the references

therein are among the classics in this field. Equally common is the study of models

in which the capacity constraints are viewed as inventories kept by the retailers at

a lower cost. Papers in this direction focus mainly on determining optimal policies

in building the inventory over more than one period. Hartwig et al. [2015] and the

references therein are indicative of this field of research.

Einy et al. [2010] examine Cournot competition under incomplete producers’

information about demand and production costs. They provide examples of such

games without a Bayesian Cournot equilibrium in pure strategies, discuss the im-

plication of not allowing negative prices and provide additional sufficient conditions
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that will guarantee existence and uniqueness of equilibrium. Richter [2013] discusses

Cournot competition under incomplete producers’ information about their produc-

tion capacities and proves the existence of equilibrium under the assumption of

stochastic independence of the unknown capacities. He also discusses simplifications

of the inverse demand function that result in symmetric equilibria and implications

of information sharing among the producers.

1.4. Outline

The rest of the paper is structured as follows. In Sections 2–6, we discuss a mar-

ket with one supplier and two producers/retailers. In particular, in Section 2, we

build up the formal setting for the market model. In Section 3, we present some

preliminary results and treat the complete information case. In Section 4, we ana-

lyze the model of incomplete information. In Section 5, we compare the complete

and incomplete information equilibrium outcomes and study both analytically and

numerically the inefficiencies that occur in the incomplete information setting. In

Section 6, we perform sensitivity analysis on the model parameters and perform

numerical simulations to illustrate the results. Finally, in Section 7, we generalize

(2) to the case of n > 2 identical retailers and study their impact on the supplier’s

profits.

To focus on the economic and game-theoretic aspects of the analysis, all proofs

are presented in Appendix A. While proving the statements for the complete in-

formation case is by exhaustive case discrimination, the proofs concerning the in-

complete information case utilize probabilistic results from the theory of the mean

residual life (MRL) function and may be of independent interest. The MRL function

is widely used in reliability analysis, but its formal applications in economics are

still scarce.

Throughout the rest of this paper we drop the double name “produc-

ers/retailers” and use only the term “retailers”.

2. The Model

We consider the market of a homogenous good that consists of two produc-

ers/retailers (R1 and R2) who compete over quantity (Ri places quantity Qi), and

a supplier (or wholesaler) under the following assumptions.

1. The retailers may produce quantities t1 and t2 up to a capacities T1 and T2,

respectively, at a common fixed cost h per unit normalized to zerob.

2. Additionally, they may order quantities q1, q2 from the supplier at a price w set

prior to and independently of their orders. The total quantity Qi (w) , i = 1, 2

that each retailer releases to the market is equal to the sum

Qi (w) := ti (w) + qi (w)

bSee Section 1 for an alternative interpretation of these quantities as inventories.
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or shortly Qi := ti + qi, where, for i = 1, 2, the variable ti ≤ Ti is the quantity

that retailer Ri produces by himself or draws from his inventory (at normalized

zero cost) and qi is the quantity that the retailer Ri orders from the supplier at

price w.

3. The supplier may produce unlimited quantities of the good at a cost c per unit.

We assume that the retailers are more efficient in the production of the good or

equivalently that c > h. After the normalization of the retailers’ production cost

h to 0, the rest of the parameters, i.e., w and c are also normalized. Thus, w

represents a normalized price, i.e., the initial price that was set by the supplier

minus the retailers’ production cost and c a normalized cost, i.e., the supplier’s

initial cost minus the retailers’ production cost. The supplier’s profit margin r is

not affected by the normalization and is equal to

r := w − c

4. After the retailers set the total quantity Q = Q1+Q2 that will be released to the

market, the market clears at a price p that is determined by an inverse demand

function, which we assume to be affinec

p = α−Q (3)

5. The demand parameter α is a non-negative random variable with finite expec-

tation E (α) < +∞ and a continuous cumulative distribution function (cdf) F

(i.e., the measure induced on the space of α is non-atomic). We will assume that

α ≥ h for all values of α, i.e., that the demand parameter is greater or equal

to the retailers’ production cost. The latter assumption is consistent with the

classic Cournot duopoly model, which is resembled by the second stage of the

game (however, the second-stage game is not a classic Cournot duopoly due to

the capacity constraints T1 and T2 and to the possibility of w > α). After nor-

malization, in what follows, we will use the term αH (resp. αL) to denote the

lower upper bound (respectively the upper lower bound) of the support of α.

6. The capacities T1, T2 and the distribution of the random demand parameter α

are common knowledge among the three participants of the market (the retailers

and the supplier).

Based on these assumptions, a strategy si (w) for retailer Ri, i = 1, 2 is a vector

valued function si(w) = (ti(w), qi(w)) or shortly a pair si = (ti, qi) for i = 1, 2.

Equation (3) implies that Qi may not exceed α and hence the strategy set S̃i of Ri

will satisfy

S̃i ⊂ {(ti, qi) : 0 ≤ ti ≤ Ti and 0 ≤ qi + ti ≤ α} (4)

cAfter normalization of the slope parameter (initially denoted with β) of the inverse demand
function to 1, all variables in (3) are expressed in the units of quantity and not in monetary units
and therefore any interpretations or comparisons of the subsequent results should be done with
caution.
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Denoting by s := (s1, s2) a strategy profile, the payoff ui (s | w) of retailer Ri, i =

1, 2 will be given by

ui (s | w) = Qi (α−Q)− wqi = Qi (α− w −Q) + wti (5)

Whenever confusion may not arise, we will write ui(s) instead of ui(s | w). A

strategy for the supplier is the price w he charges to the retailers or equivalently

his profit margin r. From (5), we see that w may not exceed aH , because otherwise

the retailers will not order. Additionally, it may not be lower than c, since in that

case, his payoff will become negative. Hence, in terms of his profit margin r, the

strategy set R of the supplier satisfies

R ⊂ {r : 0 ≤ r ≤ αH − c} (6)

Consequently, a reasonable assumption is that c < αH , because otherwise, the

problem becomes trivial from the supplier’s perspective. For a given value of α, the

supplier’s payoff function, stated in terms of r rather than w = r + c, is given by

us (r | α) = r (q1 (w) + q2 (w)) (7)

On the other hand, it is not necessary for the retailers to know the exact values

of c and r, and hence, from their point of view (second-stage game), we keep the

notation w = r+ c. If the supplier does not know α (incomplete information case),

then his payoff function will be

us (r) := Eus (r | α) (8)

where the expectation is taken with respect to the distribution of α.

2.1. Two market models with different information structure

To proceed with the formal two-stage game model, we recall that both the pro-

duction/inventory capacities T1 and T2 of the retailers and the distribution of the

demand parameter α are common knowledge to the three market participants. We

then have,

• Complete Information Case: The demand parameter α is realized and ob-

served by both the supplier and the retailersd. Then, at stage 1, the supplier fixes

his profit margin r and hence his price w. His strategy set and payoff function

are given by (6) and (7). At stage 2, based on the value of w, each competing

retailer chooses the quantity Qi, i = 1, 2 that he will release to the market by de-

termining how much quantity ti he will draw (at zero cost) from his inventory Ti

and how much additional quantity qi he will order (at price w) from the supplier.

The strategy sets and payoff functions of the retailers are given by (4) and (5),

respectively.

dOf course, this means that there is no randomness in α, so the description of α as a random
variable is redundant in the complete information case. We use it just to give a common formal

description of both the complete and the incomplete information case.
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• Incomplete Information Case: At stage 1, the supplier chooses r without

knowing the true value of α. His strategy set remains the same, but his payoff

function is now given by (8). After r, and hence w = r+ c, are fixed, the demand

parameter α is realized, and along with the price w is observed by the retailers.

Then we proceed to stage 2, which is identical to that of the Complete Information

Case.

All the above are assumed to be common knowledge of the three players.

3. Subgame-perfect equilibria under complete information

First, we treat the case with no uncertainty on the side of the supplier about the

demand parameter α. The subgame perfect equilibria of this two-stage game are

determined in Sections 3.1 and 3.2. As is intuitively expected, it is best for the

retailers to produce up to their capacity constraints or equivalently to exhaust their

inventories before ordering additional quantities from the supplier at unit price w.

For simplicity in the notation of Lemmas 1 and 2, fix i ∈ {1, 2} and let Ti := T . As

above, Qi = ti + qi.

Lemma 1. Any strategy si = (ti, qi) ∈ S̃i with ti < T and qi > 0 is strictly

dominated by a strategy s′i = (t′i, q
′
i) with

(t′i, q
′
i) =

{
(T,Qi − T ) , if Qi ≥ T

(Qi, 0) , if Qi < T

or equivalently by (t′i, q
′
i) =

(
min {Qi, T}, (Qi − T )

+
)
.

Proof. Let Qi ≥ T . Then for any sj ∈ S̃j , (5) implies that ui (si, sj) = ui (s′i, sj)+

w (ti − T ). Since ti < T , the result follows. Similarly, if Qi < T , then for any

sj ∈ S̃j , (5) implies that ui (si, sj) = ui (s′i, sj)− wqi.

Accordingly, we restrict attention to the strategies in

Si =

{
(ti, qi) : 0 ≤ ti < min {α, T}, qi = 0

}⋃
⋃{

(ti, qi) : T = min {α, T}, 0 ≤ qi ≤ (α− T )
+

}
Figure 1a depicts the set Si when T < α and Figure 1b when T ≥ α.

As shown below, Lemma 1 considerably simplifies the maximization of ui (·, sj),
since for any strategy sj of retailer Rj , the maximum of ui (·, sj) will be attained at

the bottom or right-hand side boundary of the region [0,min {α, T}]×
[
0, (α− T )

+
]
.

Moreover, Lemma 1 implies that when α ≤ T , retailer Ri will order no additional
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ti

qi

T

α− T

0

Qi = qi + ti : constant

Dominant strategies

(a) T < α

qi

α

α

T0 ti

Qi = qi + ti : constant

Dominant strategies

(b) T ≥ α

Fig. 1: Retailers strategy set Si.

quantity from the suppliere. Although trivial, we may not exclude this case in

general, since in Section 4, we consider α to be varying.

3.1. Unique second-stage equilibrium strategies

Restricting attention to Si for i = 1, 2, we obtain the best reply correspondences

BR1 and BR2 of retailers R1 and R2, respectively. To proceed, we notice that

the payoff of retailer Ri, i = 1, 2 depends on the total quantity Qj that retailer

Rj , j = 3− i releases to the market and not on the explicit values of tj , qj , cf. (5).

Lemma 2. The best reply correspondence BRi (Qj) = (ti, qi) of retailer Ri for

i = 1, 2 is given by

BRi(Qj) =


(
T,

α−w−Qj

2 − T
)
, if 0 ≤ Qj < α− w − 2T (1)

(T, 0) , if α− w − 2T ≤ Qj < α− 2T (2)(
α−Qj

2 , 0
)
, if α− 2T ≤ Qj (3)

Proof. See Appendix A. Enumeration (1) , (2) , (3) of the different parts of the

best reply correspondence will be used for a more clear case discrimination in the

subsequent equilibrium analysis.

A generic graph of the best reply correspondence BR1 of retailer R1 to the

total quantity Q2 that retailer R2 releases to the market is given in Figure 2.

The equilibrium analysis of the second stage of the game proceeds in the standard

way, i.e., with the identification of Nash equilibria through the intersection of the

best reply correspondences BR1 and BR2. From the explicit form of the best reply

eIn Proposition 2 we will see that in equilibirum retailer Ri will order no additional quantity if

α ≤ 3T .
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Q1

Q2

T α

2
− w

2

α− w − 2T

α− 2T

α

(1)

(2)

(3)

0

(t1, q1) =
(
T, α−w−Q2

2 − T
)

(t1, q1) = (T, 0)

(t1, q1) =
(

α−Q2

2 , 0
)

Fig. 2: Best reply correspondence of Retailer R1.

correspondence that is given in Lemma 2 (see also Figure 2), it is straightforward

that the equilibrium strategies depend on the values of α and w and their relation

to T1, T2. For convenience, we will denote with Γij the case that the equilibrium

occurs as an intersection of parts i, j for i, j = 1, 2, 3. Since by assumption T1 ≥ T2,

only the cases with i ≥ j (instead of all possible 9 cases) may occur.

Proposition 1. Given the values of α and w, the second-stage equilibrium strate-

gies between retailers R1 and R2 for all possible values of T1 ≥ T2 are given by

Equilibrium Strategies

Case Range of α t∗1 q∗1 t∗2 q∗2

Γ11 (3T1 + w,∞) T1
α−w
3 − T1 T2

α−w
3 − T2

Γ21 (max {3T1 − w, T1 + 2T2 + w} , 3T1 + w] T1 0 T2
α−w−T1

2 − T2

Γ22 (2T1 + T2, T1 + 2T2 + w] T1 0 T2 0

Γ31 (3T2 + 2w, 3T1 − w] α+w
3 0 T2

α−2w
3 − T2

Γ32 (3T2,min {2T1 + T2, 3T2 + 2w}] α−T2

2 0 T2 0

Γ33 [0, 3T2]
α
3 0 α

3 0

Table 1: Second stage equilibrium strategies for all T1 ≥ T2.

The second-stage equilibria regions in the T1−T2 plane are depicted in Figure 3.

One should notice that the conditions under which cases Γij (second column of

Table 1) apply are mutually exclusive, and hence, there exists a unique second-

stage equilibrium. In more detail, if T1 > T2, exactly one of the following two
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mutually exclusive arrangements of the α-intervals will obtain: either (a) 0 < 3T2 <

2T1 + T2 < T1 + 2T2 + w < 3T1 + w < ∞ with case Γ31 empty or (b) 0 < 3T2 <

3T2 + 2w < 3T1 − w < 3T1 + w < ∞ with case Γ22 empty. If T1 = T2, then (a)

obtains and the α-intervals simplify to 0 < 3T < 3T + w < ∞. Also, the retailers’

equilibrium strategies are continuous at the cutting points of the α-intervals, i.e.,

the “Range of α” intervals of Table 1 can be taken as left-hand side closed also.

Generically, in the T1 − T2 plane, the result of Proposition 1 is summarized in

Figure 3. The boundaries of the different regions in Figure 3 (or equivalently the

T1

T2

α

3

α = 2T1 + T2

α = T1 + 2T2 + w

T1 = T2

α

3
− 2w

3

α

3
− w

3

α

3

α

3
− w

3

α

3
+

w

3

(Γ11) (Γ21) (Γ31)

(Γ32)(Γ22)

(Γ33)

0

Fig. 3: Second stage equilibria regions in the T1 − T2 plane.

conditions in Table 1) depend on the values of both w and α. However, the point α
3

on both the T1 and the T2 axes and the line α = 2T1 + T2 that separates the cases

Γ22 and Γ32 depend only on the value of α and not on w. Thus, they will serve as a

basis for case discrimination when solving for the optimal strategy of the supplier

in the first stage.

3.2. First-stage supplier’s equilibrium pricing strategy

Based on Figure 3 (or equivalently on Table 1) and using equation (7), we can

calculate the payoff function, us (r | α), of the supplier as α varies, when the retailers

use their equilibrium strategies at the second stage. To proceed, we denote with

q∗ij (w) := q∗1 (w)+q∗2 (w) the total quantity that the retailers order from the supplier

when case Γij for j ≤ i ∈ {1, 2, 3} occurs in the second stage. Then, we have the

following
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Lemma 3. Assuming that the retailers use their equilibrium strategies in the sec-

ond stage, the supplier’s payoff function is given by

us (r | α) = r ·


q∗31 (r + c) , 0 ≤ r ≤ min

{
1
2 (α− 2c− 3T2) , 3T1 − c− α

}
q∗21 (r + c) , max {0, |α− 3T1| − c} ≤ r ≤ α− c− T1 − 2T2

q∗11 (r + c) , 0 ≤ r < α− c− 3T1

0, else

It is immediate that some cases may not occur for different values of the parame-

ters. Hence, to derive the optimal strategy r∗ of the supplier (see proof of Proposition

2), a further case discrimination is necessary. As we have already noted, the relative

position of α to the quantities 3T1, 3T2 and 2T1 + T2 will serve as a basis for case

discrimination. Maximizing the payoff function of the supplier for each case yields

his optimal strategy r∗ (i.e., the profit margin that maximizes his profits given that

the retailers will play their equilibrium strategies in the next stage) for all possible

values of α and T1, T2.

To simplify the expressions in the statement of Proposition 2, let D := T1 −
T2, ∆ :=

√
3+3
2 D. It will be convenient to distinguish two cases, depending on

whether 0 < c ≤ D or 0 ≤ D < c. Also, as mentioned, the second stage equilib-

rium quantities are continuous at the points at which their expression changes, and

therefore, we allow the subsequent cases to overlap on the cutting points.

Proposition 2. For given T1 ≥ T2, the supplier’s optimal pricing strategy r∗ for

all possible values of α is

Case: r∗ (α) Conditions

Case A: – r∗ ∈ R+ 0 ≤ α ≤ 3T2 + 2c

0 < c ≤ D Γ31 : 1
4 (α− 2c− 3T2) 3T2 + 2c ≤ α ≤ 3T2 +∆−

√
3−1
2 c

Γ21 : 1
2 (α− c− T1 − 2T2) 3T2 +∆−

√
3−1
2 c ≤ α ≤ 3T2 + 2∆+ c

Γ11 : 1
2

(
α− c− 3

2T1 − 3
2T2

)
3T2 + 2∆+ c ≤ α

Case B: – r∗ ∈ R+ 0 ≤ α ≤ T1 + 2T2 + c

0 ≤ D < c Γ21 : 1
2 (α− c− T1 − 2T2) T1 + 2T2 + c ≤ α ≤ 3T2 + 2∆+ c

Γ11 : 1
2

(
α− c− 3

2T1 − 3
2T2

)
3T2 + 2∆+ c ≤ α

Table 2: First stage equilibrium strategies for all α ≥ 0.

Combining Propositions 1 and 2, one obtains the subgame perfect equilibria of

the two-stage game under complete information for the general case of asymmetric

retailers and for all different values of α, c and T1 ≥ T2.

3.3. Higher demand does not imply a higher wholesale price

Although the supplier’s payoff function us (r | α) is continuous at the cutting points

of the α-intervals, the same is not true for the supplier’s optimal strategy as can
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be checked from Proposition 2. For given T1, T2 with T1 ≥ T2, not only r∗ (α) is

not continuous in α, but it is also not increasing in α (although it is increasing on

each sub-interval). At the points of discontinuity the supplier is indifferent between

the left-hand side and right-hand side strategies. However, any mixture of these

strategies does not yield the same payoff since his payoff is not linear in r∗. The

reason for these discontinuities is that the supplier faces a piecewise linear demand

instead of a linear demand. Therefore, at the cutting points there is a “jump” from

the argmax of the first linear part to the argmax of the other linear part, hence the

discontinuity. This also explains the decrease of the optimal price as we move from

certain cutting points to the right, even if the increase in the demand intercept α

is ϵ-small. Of course, one can check that under his optimal strategy, not only the

supplier’s payoff is continuous, but it is also an increasing function of the demand

α, as expected. Formally,

Corollary 1. The retailers’ equilibrium strategies and payoff functions are con-

tinuous in the demand level α. While the supplier’s payoff is also continuous and

increasing in α, his equilibrium pricing policy is neither continuous nor monotonic

in α.

3.4. The symmetric case: identical second-stage retailers

The equilibrium analysis considerably simplifies if we restrict attention to the case

of identical retailers, i.e., T1 = T2 = T . In this case, only symmetric equilibria may

occur in the second stage. The equilibrium strategies depend on the value of α and

its relative position to 3T . The proofs of Corollaries 2 and 3 follow immediately

from Propositions 1 and 2 and are omitted.

Corollary 2. If T1 = T2 = T , then for all values of α, the second stage equilibrium

strategies between retailers R1 and R2 are symmetric, and for i = 1, 2 they are

given by s∗i (w) = (t∗i (w) , q
∗
i (w)) with t∗i (w) = T − 1

3 (3T − α)
+
, and q∗i (w) =

1
3 (α− 3T − w)

+
.

The general form of the supplier’s payoff function us (r | α) is given by (7) and

his strategy set by (6). Obviously, the supplier will not be willing to charge prices

lower than his cost c. Based on the discussion of Corollary 2 and the constraint

w ≥ c (i.e., r ≥ 0), we conclude that a transaction will take place for values of

α > 3T + c and for r ∈ [0, α − 3T − c). In that case, the optimal profit margin of

the supplier is at the midpoint of the r-interval.

To see this, let q∗ (w) := q∗1 (w) + q∗2 (w) denote the total quantity that the

supplier will receive as an order from the retailers when they respond optimally.

By Corollary 2, q∗(w) = 2
3 (α− 3T − w)

+
. Hence, on the equilibrium path and for

r ≥ 0, the payoff of the supplier is

us (r | α) = rq∗ (w) =
2

3
r (α− 3T − c− r)

+
(13)
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We then have

Corollary 3. For T1 = T2 = T and for all values of α, the subgame perfect

equilibrium strategy r∗ (α) of the supplier is given by r∗ (α) = 1
2 (α− 3T − c)

+
.

Corollary 3 implies that if α < 3T + c, then the optimal profit of the supplier

is equal to 0, i.e., he will set a price equal to his cost. Actually, he is indifferent

between any price w ≥ c since in that case, he knows that the retailers will order

no additional quantity. In sum, Corollaries 2 and 3 provide the subgame perfect

equilibrium of the two-stage game in the case of identical (i.e., T1 = T2 = T )

retailers.

Theorem 1. If the capacities of the retailers are identical, i.e., if T1 = T2 =

T , then the complete information two-stage game has a unique subgame per-

fect Nash equilibrium, under which the supplier sells with profit margin r∗ (α) =
1
2 (α− 3T − c)

+
and each of the retailers orders quantity q∗ (w) = 1

3 (α− 3T − w)
+

and produces (releases from his inventory) quantity t∗ (w) = T − 1
3 (3T − α)

+
.

3.5. Mitigating marginal cost effects: increased social welfare

Using the notation of Corollary 2, Q∗
i = t∗i + q∗i is the total quantity of the good

that each retailer releases to the market in equilibrium. If α ≤ 3T , then Q∗
i is

equal to the equilibrium quantity of a classic Cournot duopolist who faces linear

inverse demand with intercept equal to α and has 0 cost per unit. If α > 3T ,

then the equilibrium quantities of the retailers depend on the supplier’s price w.

If w ≥ α − 3T , the retailers will avoid ordering and will release their inventories

to the market. Contrarily, if w is low enough, i.e., if w < α − 3T , they will be

willing to order additional quantities from the supplier. In this case, Q∗
i = t∗i +q∗i =

T + 1
3 (α− 3T − w) = 1

3 (α− w). This quantity is equal to the equilibrium quantity

of a Cournot duopolist who faces linear demand with intercept α and cost per unit

w for all product units, despite the fact that here, the retailers face a cost of 0 for

the first T units and w for the rest. Hence, in this case and as a result of marginal

cost analysis, the market behaves as if there were no inventories, and the most

expensive units are the ones that determine the total quantity sold to the market.

However, if the market coordinates on the unique subgame perfect equilibrium, then

as determined in Theorem 1, the supplier’s optimal price, w∗ (α) = r∗ (α) + c =
1
2 (α− 3T − c)

+
+ c, depends negatively on T , i.e., it decreases as T increases.

Based on these observations, the retailers’ low-cost in-house production (or low-

cost inventory) affects in different ways the total quantity that is released to the

market and thus, it has both a direct and an indirect impact on the consumers’

surplusf : for lower values of the demand parameter, the consumers benefit from

the retailers’ low-cost inventories or production capacities since otherwise no goods

fWe remind that the consumers’ surplus is proportional to the square of the total quantity that is

released to the market.
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would have been released to the market. For higher values of α the total quantity

that is released to the market depends indirectly on T – via a lower wholesale price

set by the supplier – and thus the benefits from the retailers’ integrated low-cost

production channel are again experienced by the consumers.

4. Subgame-perfect equilibrium under demand uncertainty

We now study the equilibrium behavior of the supply chain, assuming that the

supplier has incomplete information about the true value of the demand parameter

α when he sets his price, while the retailers know it when they place their orders

(if any). In the two-stage game context, we assume that the demand is realized

after the first stage (i.e., after the supplier sets his price) but prior to the second

stage of the game (i.e., prior to the decision of the retailers about the quantity they

will release to the market). The case T1 ≥ T2 exhibits significant computational

difficulties and we will restrict our attention to the symmetric case T1 = T2 = T .

Under these assumptions, the equilibrium analysis of the second stage (as pre-

sented in section 3.1) remains unaffected: the retailers observe the actual demand

parameter α and the price w set by the supplier and choose the quantities ti and qi
for i = 1, 2. However, in the first stage, the actual payoff of the supplier depends on

the unknown parameter α for which he has a belief: the distribution F of α, which

induces a non-atomic measure on [0,∞) with finite expectation, as assumed. Given

the value of α and assuming that the retailers respond to the supplier’s choice w

with their unique equilibrium strategies, the supplier’s actual payoff is provided by

equation (13). Taking the expectation with respect to his belief (see also (8)) implies

that when α is unknown and distributed according to F , the payoff function of the

supplier is equal to

us (r) =
2

3
rE (α− 3T − c− r)

+
for r ≥ 0. (14)

Let rH := αH − 3T − c and rL := αL − 3T − c. If rH ≤ 0, then α ≤ 3T + c for all

α, i.e., then, us (r) ≡ 0 and the problem is trivial. Hence, to proceed, we assume

that rH > 0 ⇔ 3T + c < αH . Then, since us (r) = 0 for r ≥ rH , we may restrict

the domain of us (r) and take it to be the interval [0, rH) in (14). To proceed, we

observe that us (r) may be expressed in terms of the Mean Residual Lifetime (MRL)

function, which is defined as, see e.g., Shaked and Shanthikumar [2007] or Belzunce

et al. [2016],

m (t) :=

E (α− t | α > t) =

∫∞
t

(1− F (x)) dx

1− F (t)
if P (α > t) > 0

0 otherwise

(15)

The term MRL stems from the reliability and actuarial literature. In the present

setting, the MRL function denotes the expected additional demand. Despite being a

powerful and well-studied tool to deal with uncertainty, the MRL function has only
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scarce and informal applications in the revenue management literature or economics

in general. Using this representation, one may get the followingg

Lemma 4. For r ∈ (0, rH), the supplier’s payoff function and its derivative are

expressed

through the MRL function by us (r) = 2
3rm(r + 3T + c) (1− F (r + 3T + c)) and

dus

dr
(r) =

2

3
(m (r + 3T + c)− r) (1− F (r + 3T + c)) , (16)

respectively. In addition, the roots of dus

dr (r) in (0, rH) (if any) satisfy the fixed point

equation r∗ = m(r∗ + 3T + c).

Based on the first order conditions stated in Lemma 4, we are now able to derive

necessary and sufficient conditions for the existence and uniqueness of a Bayes-Nash

equilibrium.

Theorem 2 (Necessary and sufficient conditions for Bayesian Nash equi-

libria). Under incomplete information with identical retailers (i.e., for T1 = T2 =

T ) for the non-trivial case rH > 0 and assuming the supplier’s belief induces a

non-atomic measure on the demand parameter space:

(a) (necessary condition) If the optimal profit margin r∗ of the supplier exists

when the retailers follow their equilibrium strategies in the second stage, then it

satisfies the fixed point equation

r∗ = m(r∗ + 3T + c) (17)

(b) (sufficient condition) If the mean residual lifetime m(·) of the demand

parameter α is decreasing, then the optimal profit margin r∗ of the sup-

plier exists under equilibrium, and it is the unique solution of the equation

r∗ = m(r∗ + 3T + c). In that case, if E (α) − αL ≤ αL − 3T − c (= rL), then

r∗ is given explicitly by r∗ = 1
2 (E (α)− 3T − c). Otherwise r∗ ∈

(
r+L , rH

)
.

Corollary 2 and Theorem 2 lead to

Corollary 4. If the capacities of the producers (retailers) are identical, i.e., if

T1 = T2 = T , and if the distribution F of the demand intercept α is of decreas-

ing mean residual lifetime m(·), then the incomplete information two-stage game

has a unique subgame perfect Bayesian Nash equilibrium for the non-trivial case

rH > 0. At equilibrium, the supplier sells with profit margin r∗, which is the unique

solution of the fixed point equation r∗ = m(r∗ + 3T + c), and each of the producers

(retailers) orders quantity q∗ (w) = 1
3 (α− 3T − w)

+
and produces (releases from

his inventory) quantity t∗ (w) = T − 1
3 (3T − α)

+
.

gIt should be stressed that obtaining (16) is not straightforward at all, because the product rule
of differentiation does not apply. In particular, see Lemma 6 and the proof of Lemma 4, all in the
Appendix.
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By the DMRL property, Theorem 2 implies that r∗ ≤ E (α), since

r∗ = m(r∗ + 3T + c) ≤ m(u) ≤ m(0) = E (α) , (18)

for all u such that 0 ≤ u ≤ r∗+3T+c. Finally, if T = 0, then our model corresponds

to a classic Cournot duopoly at which the retailers’ cost equals the price that is set

by a single revenue-maximizing supplier. As shown in our related study, Leonar-

dos et al. [2021], in this case, the milder condition of decreasing generalized mean

residual life (GMRL) is sufficient to yield existence and uniqueness of Bayes-Nash

equilibrium.

5. Why the supplier may charge a high price

Utilizing the characterization of the supplier’s optimal price in Theorem 2, we

compare the complete and incomplete information equilibrium outcomes. It is well

known that markets with incomplete information may be inefficient at equilibrium

in that trades that would be beneficial for all players may not occur under Bayesian

Nash equilibrium, e.g., see Myerson and Satterthwaite [1983]. Namely, under equi-

librium, there exist values of α for which a transaction would have occurred in the

complete information case but not in the incomplete information case. In such a

case, the market will experience a stockout due to lack of coordination between the

supplier and the retailers. We call this phenomenon, an incoordination stockout.

5.1. Measuring market inefficiency

For the incomplete information case and for a particular distribution F of α, let U

be the event that a transaction would have occurred under equilibrium if we had

been in the complete information case, and let V be the event that a transaction

does not occur in the incomplete information case under equilibrium. Our aim is

to measure the inefficiency of our market by studying P (V ∩ U) and P (V | U). By

Corollary 2, a transaction will take place under equilibrium if and only if

α > r∗ + 3T + c (19)

where r∗ stands for the profit margin of the supplier in the incomplete information

case under equilibrium. Using (19) and Corollary 3, a necessary and sufficient con-

dition for a transaction to take place under equilibrium in the complete information

case is α > 3T + c. Using Theorem 2 and the steps at the end of its proof, it is

straightforward to check that if E (α)−αL ≤ rL, then (19) is satisfied for all α > αL

since the ordering is 3T + c < r∗+3T + c ≤ αL. Hence V ∩U = ∅. So let us assume

that E (α)− αL > rL. We then have

Lemma 5. For a given distribution F of α with the DMRL property, let V be the

event that a transaction does not occur in the incomplete information case under
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equilibrium and let U be the event that a transaction would have occurred under

equilibrium if we had been in the complete information case. Then

P (V | U) =
F (r∗ + 3T + c)− F (3T + c)

1− F (3T + c)

In particular, if E (α)−αL ≤ αL−3T−c (= rL), then P (V ∩ U) = P (V | U) = 0.

As in the case when T = 0 (see Leonardos et al. [2021]) the next Theorem shows

that P (V | U) admits a bound which is independent of F .

Theorem 3. For any distribution F of α with the DMRL property, the probabil-

itiy of an incoordination stockout, i.e. the conditional probability P (V | U) that a

transaction does not occur under equilibrium in the incomplete information case,

given that a transaction would have occurred under equilibrium if we had been in

the complete information case, cannot exceed the bound 1− e−1, i.e.,

P (V | U) ≤ 1− e−1 (21)

This bound is tight over all DMRL distributions, because it is attained by the expo-

nential distribution.

5.2. Risk of an incoordination stockout

To gain more intuition about the reasons that make the supplier charge a price that

runs a (sometimes) considerable risk of no transaction, although such a transac-

tion would be beneficial for all market participants, recall the discussion preceding

Lemma 5. To have P (V | U) = 0, the expectation restriction, E(a) ≤ αL + rL,

must apply. So, assuming this restriction applies and keeping everything else

the same (i.e., αL, T and c), start moving probability mass to the right. Then,

E (α) will be increasing which results in the supplier’s optimal profit margin,

r∗ = 1
2 (E (α)− 3T − c), increasing. Thus, there is a threshold for E (α), namely

αL + rL (when the supplier charges r∗ = rL), above which the supplier is willing

to charge a price so high (i.e., above rL) that he will run the risk of receiving no

orders. Notice, that this discussion implies neither monotonicity of the supplier’s

payoff nor monotonicity of the probability of no transaction.

Next, assume that the expectation restriction applies and keeping T and c the

same, start moving αL to the left. Now, E (α) will be decreasing, which results in the

supplier’s optimal profit margin, r∗, decreasing. However, since rL will eventually

become non-positive while E (α) − αL always stays positive, it is easy to see that

again, the same threshold applies for the expectation condition, i.e., eventually we

will get E (α) = αL+rL, the supplier will charge r
∗ = rL there, and for lower values

of αL inefficiencies will appear. In other words, for values of αL below the threshold,

although he is reducing his profit margin, the supplier is asking for a relatively high

price (i.e., above rL) and is willing to take the risk of no transactions. Finally, using

similar arguments, we can see that if we either increase the inventory level T of

the retailers or the cost c of the supplier, all else being kept the same (see also
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Corollaries 5 and 6), the same threshold applies for the appearance of inefficiencies,

determined by E (α) = αL + rL.

5.3. Numerical simulations

In the simulations presented below, we examine the probability of no transaction,

as determined in Lemma 5 and the supplier’s expected payoff against the expected

demand (mean of demand parameter α). First, we simulate the uniform distribution

α ∼ U [αL, αH ], i.e., f (α) = 1
αH−αL

·1α∈[αL,αH ] with αL = 100 and αH = 100+5 · j
for j = 1, . . . , 100, cost c = 1 and inventories T = 20. The results are shown in

Figure 4 below. The x−axis represents the mean Eα of the respective distribution

of α. Observe that the probability of no transaction becomes positive for Eα >

139 (= αL + rL). The supplier’s expected payoff is strictly positive for all j ≥ 1

and moreover, it increases despite an increasing probability of no transaction. The

Fig. 4: No transaction probability and expected supplier’s payoff as the expected

demand increases.

same behavior is exhibited by the (shifted) exponential distribution. In Figure 5,

we see the simulation results for α ∼ 100 + exp (λ), i.e., f (α) = 1
λe

− 1
λ (x−100) for

x ≥ 100, with λ = 10 · j for j = 1, . . . 50. As above, T = 20 and c = 1 which

implies that the threshold for the appearance of inefficiencies, remains the same,

i.e., Eα > 139 (= αL + rL). In the left figure, we observe that the probability of

no transaction attains the upper bound that is determined in Theorem 3. Having a

constant MRL, the shifted-exponential distribution is DMRL, which shows that this

bound is tight over the class of DMRL distributions. Again, the supplier’s expected

payoff – right figure – is strictly positive for all j ≥ 1 and increasing.

5.4. Lower expected demand but higher wholesale price

The next simulation, shows that a higher expected demand does not necessarily

imply a higher wholesale price. To see this, we compare two gamma distributions α1

and α2 for the market demand, with parameters α1 ∼ 100+Γ (10, 2) and α2 ∼ 100+

Γ (2, 9). We say that α ∼ Γ (k, θ) if α has probability density function f (r | k, θ) =
1

Γ(k)θk r
k−1e−

r
θ . Here, T = 33 and c = 1. The figure on the left, shows that α1

and α1 are incomparable in the usual stochastic order. The figure on the right
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Fig. 5: Exponential distribution: α ∼ 100 + exp (λ).

Fig. 6: Gamma distributions: α1 ∼ Γ (10, 2) and α2 ∼ Γ (2, 9).

shows the MRL functions m1 (r) of α1, m2 (r) of α2 and the diagonal y = r. The

intersection points are precisely the optimal wholesale prices for each distribution.

Here r∗1 = 10.21 and r∗2 = 12.73, despite the fact that Eα1 = 20 > 18 = Eα2. The

supplier’s expected payoff is higher in the first market than in the second, since

us(r∗1) = 100.5 > 95.1 = us(r∗2).

The observation that larger markets (in terms of expectation) do not necessarily

give rise to higher prices confirms the intuition of Lariviere and Porteus [2001] that

”size is not everything” and that price movements are driven by different forces.

In our case the explanation is provided by (17): to obtain a higher price one needs

to compare two markets in terms of the mrl-order (see Shaked and Shanthikumar

[2007]) and not in terms of their means or of the usual stochastic order. Here, α2

eventually dominates α1 in terms of their mrl functions and hence the market that

is described by α2 results in a higher wholesale price.

6. Effect of cost and inventory size on the supplier’s profit margin

and pricing policy

The characterization result of Theorem 2 facilitates the comparative statics analysis

on the parameters that determine the supplier’s pricing policy. Under the DMRL

assumption, if everything else stays the same but retailers’ inventories are rising (but

staying below (αH−c)/3 because of the non-triviality assumption), the supplier will

strictly decrease or keep constant the price he charges at equilibrium, because his

profit margin r∗ will be non-increasing. The reason is that as T increases, the graph
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of m ( · , T, c) := m ( · + 3T + c) shifts to the left, and therefore, its intercept with

the line bisecting the first quadrant decreasesh. By Theorem 2, this intercept is r∗,

and hence the price w∗ = c+ r∗ the supplier asks at equilibrium will be decreasing.

Hence,

Corollary 5. Under the DMRL property, if everything else stays the same and

the retailers’ inventory capacity T increases in the interval [0, (αH − c) /3), then

at equilibrium, the supplier’s profit margin r∗, and hence the wholesale price w∗ =

r∗ + c, both decrease.

The result of Corollary 5 is illustrated in Figure 7 for exponentially distributed

demand with mean λ = 10. The supplier’s cost is constant and equal to c = 1, and

the retailers’ inventory is equal to T = j, with j taking values in j = 1, 2, . . . , 30.

Fig. 7: Basic model quantities as retailer’s inventory increases.

By the same argument, if we take the supplier’s cost c to be increasing (but

staying below αH − 3T ) while everything else stays fixed, then the supplier’s profit

margin r∗ will again be decreasing. However, this time, the price w∗ = c + r∗ the

supplier asks at equilibrium will be increasing. To see this, let c1 < c2. Then, since

m (·) is decreasing, r∗2 ≤ r∗1 . If r
∗
2 = r∗1 , then w∗

1 = r∗1 + c1 < r∗2 + c2 = w∗
2 . If

r∗2 < r∗1 , by Theorem 2, m(r∗2 + 3T + c2) < m(r∗1 + 3T + c1). The DMRL property

then implies that r∗1 + c1 ≤ r∗2 + c2, i.e., w
∗
2 ≥ w∗

1 . So, in this case, we have

Corollary 6. Under the DMRL property, if everything else stays the same and

the supplier’s cost c increases in the interval [0, αH − 3T ), then at equilibrium, the

supplier’s profit margin r∗ decreases while the wholesale price w∗ = r∗+c increases.

The result of Corollary 6 is presented graphically below. Let α ∼ 100 + 100 ·
Beta (1, 2), i.e., the demand parameter α follows a scaled Beta distribution on the

hTo avoid confusion, we use the terms “decreases” in the sense “decreases non-strictly” or “does

not increase”, as we did before.
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interval [αL, αH ] = [100, 200] and let T = 40. The x−axis corresponds to values

for the cost parameter c in the range c = 1, 2, . . . , 30. As predicted by Corollary 6,

Fig. 8: Basic model quantities as supplier’s cost increases (scaled Beta demand)

the wholesale price that the supplier charges increases, whereas his profit margin

decreases. The total order quantity (quantity ordered by both retailers) decreases

and since the inventory parameter T is kept constant, this results in a decrease

in consumers’ surplus. A similar behavior of these quantities is observed when

α ∼ 100 + exp (λ = 10), i.e., when α follows a shifted exponential distribution

with mean λ = 10 and T = 40. For completeness, the results of the simulation are

shown in Figure 9 below Further simulations with uniformly and Pareto distributed

Fig. 9: Basic model quantities as supplier’s cost increases (exponential demand)

demand – which does not satisfy the DMRL property – and for a wide range of their

parameters essentially highlight the same qualitative behavior for these quantities
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(wholesale price, profit margin, supplier’s payoff and total order quantities) and

thus, are omitted.

7. Number of second-stage retailers and supplier’s profits

Theorem 2, the main result of Section 4, admits a straightforward extension to the

case of n > 2 identical retailers, i.e., n retailers each having capacity constraint

Ti = T . Formally, let N = {1, 2, . . . , n}, with n ≥ 2 and denote with Ri retailer i,

for i ∈ N . As in Section 2, a strategy profile is denoted with s = (s1, s2, . . . , sn).

The payoff function of Ri depends on the total quantity of the remaining n − 1

retailers and is given by (5), where now Q denotes the total quantity sold by all n

retailers, i.e.,

Q =

n∑
j=1

Qj =

n∑
j=1

(tj + qj)

Following common notation, let s = (s−i, si) and Q−i = Q − Qi for i ∈ N . It is

immediately evident that Lemma 1 and Lemma 2 still apply, if one replaces Qj with

Q−i and sj with s−i. Hence, one may generalize Proposition 2 as follows

Proposition 3. If Ti = T for i ∈ N , then for all values of α the strategies s∗i (w) =

(t∗i (w) , q
∗
i (w)), or shortly s∗i = (t∗i , q

∗
i ), with t∗i (w) = T− 1

n+1 ((n+ 1)T − α)
+
, and

q∗i (w) = 1
n+1 (α− (n+ 1)T − w)

+
, are second-stage equilibrium strategies among

the retailers Ri, for i ∈ N .

Turning attention to the first stage, the payoff function of the supplier

in the complete information case (cf. Section 3.2) will be given by us (r) =

rq∗ (w) = n
n+1r (α− (n+ 1)T − c− r)

+
, and hence, it is maximized at r∗ (α) =

1
2 (α− (n+ 1)T − c)

+
, which generalizes Proposition 3. Similarly, if the supplier

knows only the distribution and not the true value of α, the arguments of Sec-

tion 4 still apply. Then the payoff function of the supplier - cf. (14) - becomes

us (r) = n
n+1rE (α− (n+ 1)T − c− r)

+
, for r ≥ 0 and hence

us (r) =
n

n+ 1
rm(r + (n+ 1)T + c) (1− F (r + (n+ 1)T + c)) ,

for 0 ≤ r < αH − (n+ 1)T − c. Proceeding as in Section 3.2, we can generalize

Theorem 2 to the case of n ≥ 2 identical retailers. To this end, let r n
L := αL −

(n+ 1)T − c and r n
H := αH − (n+ 1)T − c. Then,

Theorem 4 (Necessary and sufficient conditions for Bayesian Nash equi-

libria). Under incomplete information, for identical retailers (i.e., for Ti = T, i ∈
N) for the non-trivial case r n

H > 0 and assuming the supplier’s belief induces a

non-atomic measure on the demand parameter space:

(a) (necessary condition) If the optimal profit margin r∗ of the supplier exists

when the retailers follow their equilibrium strategies in the second stage, then it
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satisfies the fixed point equation

r∗ = m(r∗ + (n+ 1)T + c)

(b) (sufficient condition) If the mean residual lifetime m(·) of the demand pa-

rameter α is decreasing, then the optimal profit margin r∗ of the supplier

exists under equilibrium, and it is the unique solution of the equation r∗ =

m(r∗ + (n+ 1)T + c). In that case, if E (α)−αL ≤ αL− (n+ 1)T − c (= r n
L ),

then r∗ is given explicitly by r∗ = 1
2 (E (α)− (n+ 1)T − c). Otherwise, r∗ ∈(

(r n
L )

+
, r n

H

)
.

7.1. Increased competition may benefit the supplier

Based on Theorem 4, we study how the number of second-stage retailers affects

supplier’s profit and consumers’ surplus, the latter as expressed by the total quantity

that is sold in the market. In Figure 10, we present the results from simulating the

distribution of α as the uniform distribution on the interval [αL, αH ] = [100, 300],

with c = 1 and T = 5 (T represents the quantity produced by each of the n identical

retailers). For values of n ≤ 5, the supplier benefits from increasing second-stage

Fig. 10: Basic model quantities for increasing number of second-stage retailers.

competition both in terms of quantity ordered and in terms of his overall payoff.

However, as the number of retailers further increases – and hence the total quantity

produced (or held as inventory) also increases – the supplier receives less total orders

and his payoff declines. On the other hand, the total quantity that is released to the

market increases as the number of retailers increases. Under our assumptions, each

additional retailer has access to a constant amount of T low-cost in-house produced

units. This leads to a lower profit margin for the supplier and a lower overall cost

for the retailers that, in turn, leads to the observed increase of the total quantity

that is sold to the consumers. Hence, in the present setting, increased second-stage

competition positively contributes to the total consumer surplus.
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The behavior exhibited in Figure 10 seems typical – based on several simulations

that are omitted for brevity – for a wide range of parameters and distributions

that may (Beta, exponential) or may not (Generalized Pareto) satisfy the DMRL

condition.

8. Discussion & future work

From a game-theoretic perspective, the current model aims to capture and study

the complex cost structure of contemporary Cournot oligopolists through a math-

ematical model that is realistic, but also tractable. The derivation of the market

equilibrium under different information levels and the analytical representation of

the equilibrium strategies of the interacting entities, supplier and retailers, provide

the proper framework for an extensive sensitivity analysis of the model parameters.

From an economic perspective, the model assumptions and the setup that is em-

ployed aim to reflect situations from the real economic practice and thus, to have an

impact on policy development and implementation by active economic stakeholders.

To this end, we further elaborate on the model assumptions and discuss directions

for further research.

Single supplier: The monopoly setting that we employ in the present paper

allows for a transparent study on the pricing decisions of a firm. Similar models, with

a single supplier and multiple retailers have been extensively studied in the relevant

literature, see e.g., Tyagi [1999]; Bernstein and Federgruen [2005]; Yang and Zhou

[2006] and Wu et al. [2012] among others. The absence of upstream competition in

these models is a simplifying factor that concentrates the analysis on the impact

of the supplier’s decisions to the retail market. Our study considers the additional

assumptions of in-house production capacities and demand uncertainty and aims to

contribute in this stream of literature.

The study of such models is also theoretically justified. While one may think,

monopolies are rare in the contemporary congested economies, a more detailed

reflection suggests the opposite. For instance, oligopolistic firms differentiate their

products in such a degree that they monopolize specific market niches. Moreover,

brand loyalty, increasing market protection, government policies, diversification and

technology integration are only some of the prevalent economic factors that still

lead to the formation of monopolies. Hence, monopoly pricing remains relevant and

continues to attract research attention, see e.g., Chen and Frank [2004].

Despite these arguments, it is self-evident from an economic perspective that

upstream competition should be considered as an extension of the present model

in future studies. This research direction will primarily investigate the suppliers’

strategies to avoid straightforward price competition and hence, the trivial Bertrand

equilibrium according to which they will sell at their marginal cost. Such an ap-

proach involves the study of product differentiation, favourable buy-back conditions

and other more involved research & development (R&D) and marketing policies and

as a result shifts the point of interest from pricing to strategic planning. The in-
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sights obtained by the present work can serve as a benchmark for comparison in

such a study.

Uniform pricing: We study a setting in which the supplier has ample quan-

tities to cover any possible demand by the retailers (domestic manufacturers). The

retailers only refer to the supplier if they exhaust their own production capacities

and order quantities that are not comparable in size to the supplier’s capacity (big

international manufacturer). This model aims to capture the prevalent economic

practice, where domestic manufacturers hedge their risks that are associated with

demand fluctuations by reverting to the international spot markets of the same

product in cases of a stockout.

Yet, price discrimination is an interesting and direct extension of the present

study. Price differentiation has been thoroughly studied as a mechanism to increase

supply chain coordination and profits and recent studies corroborate the position

that price differentiation can benefit the social welfare as well, see e.g., Wu and

Zhou [2018].

However, there are certain arguments that still motivate the study of the

uniform-price setting as employed in this paper. In addition to the fact, that price

discrimination is prohibited by law in certain markets (see e.g., Robinson – Pat-

man Act), there are structural properties of contemporary markets that make the

study of supply chains without price differentiation interesting, see e.g. Hu et al.

[2013]. Two notable instances are internet platforms and internationally operating

suppliers as mentioned above. Manufacturers from domestic markets turn to such

markets to procure additional quantities in the case that the short-term demand

exceeds their own production capacities. This is done in an ad-hoc fashion (spot

market) without significant prior communication between the manufacturer and the

global (or internet operating) supplier and in particular, without the opportunity to

develop a more elaborate transaction scheme (contract) between them. In essence,

the globally operating supplier may ignore several characteristics of the market

that he is procuring, such as the level of demand or the number of domestic retail-

ers/manufacturers that operate in this local market. Finally, it is worth mentioning

that recent advances provide evidence that uniform pricing is more profitable for the

supplier than price discrimination for particular market structures, see Matteucci

and Reverberi [2018].

Price-only contracts: Price-only contracts are still studied in the literature

for two interconnected reasons: the first is their simplicity (in terms of implementa-

tion) and the second their relevance to the real economic practice, see e.g., Lariviere

and Porteus [2001] or Perakis and Roels [2007]. More complex contracts often are

costly or hard to implement and hence, the classic price-only contract still prevails

in many vertical markets. However, there is also a third reason that makes the study

of price-only contracts interesting in the particular setting of demand uncertainty.

The supplier and the retailers may well develop more complex contracts that in-
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deed mitigate demand uncertainty and supply chain risks. Yet, under the majority

of the approaches that have been proposed and studied in the relevant literature

(such as dynamic pricing, buy-back contracts etc.), a certain degree of uncertainty

remains unaccounted for. This remaining uncertainty cannot be dealt with and is

precisely captured by the price-only contract. In this direction, Li and Petruzzi

[2017] show that uncertainty reduction may even be undesirable (harmful) for the

involved parties and argue in favor of the use of price-only contracts.

Commitment on prices: Invariably, in most settings, strategic decisions con-

cerning production capacities are more binding than decisions concerning prices.

This explains the extensive literature on models with capacity or quantity (in-

stead of price) pre-commitment. However, while customary and intuitive to as-

sume flexible prices, contemporary research suggests that the opposite may be

true as well, see e.g., Klenow and Malin [2010]; Goldberg and Hellerstein [2011];

Nakamura and Steinsson [2013] (and references cited therein). In fact, price rigidity

or equivalently price stickiness is an economic phenomenon that is evinced in the

real economic practice to a much larger extent than intuition would suggest, see

Kleshchelski and Vincent [2009] and Dhyne et al. [2009] among others. In addition,

in a short term, one-period analysis, as the one that is conducted in the present

paper, it is theoretically justified to assume constant prices.

Recent results provide a further argument in favor of price commitment by

showing that wholesale price commitment can be beneficial in its own right and

thus may be employed by the supplier even in the presence of price flexibility. As

Wu et al. [2012] note in their literature review, early wholesale price commitment

is valuable for realizing downstream operational decisions before the investment is

made, Gilbert and Cvsa [2003], coordinating supply chain performance, Desai et al.

[2004], or deterring the retailer from introducing a store brand, Groznik and Heese

[2010].

Finally, changing or adjusting an unreasonable price is certainly possible in a

multiple-period dynamic setting which can be thought of as a reasonable and inter-

esting extension of the present one-period setting in which prices remain constant.

Indeed, it would be relevant both from a theoretical and a practical perspective to

adjust the present model to account for demand uncertainty that is distributed over

multiple periods.

8.1. Future work

While the influence of the main model parameters has been thoroughly examined,

there are still many directions for more exhaustive comparative statics. From a

technical perspective, affinity of the inverse demand function may not be dropped

if one still wants to express the supplier’s payoff in terms of the MRL function.

Hence, a generalization to models with non-affine inverse demand function is open.

Finally, because the economic practice provides a huge variety of market structures,

the extensions of the present model can be thought of in numerous ways. One im-



July 16, 2021 19:18 WSPC/INSTRUCTION FILE IGTR.cournot.final

30 Stefanos Leonardos and Costis Melolidakis

mediate direction is the strategic determination of the production capacities T (or

Ti if the retailers are asymmetric), which are assumed to be given exogenously (i.e.,

to be pre-specified) in the present model. Because production capacities are usually

more rigid than prices, this should be done in a stage prior to the pricing deci-

sion of the supplier. Challenging the basic model assumptions – e.g., that supplier’s

cost is higher than in-house production cost – to account for different market struc-

tures, while retaining the basic analytical results of the present analysis (equilibrium

strategies characterization) is another possible extension.

9. Conclusions

To study the strategic formation of the competing firms’ cost in a modern Cournot

oligopoly, we extended the classic model to a two-stage game. Oligopolists may

produce limited capacities of a homogeneous good and refer to an external supplier

for additional procurements. The supplier can cover any demand but sets a price

prior to the retailers’ orders without necessarily knowing the exact market param-

eters (retail demand). When the supplier is completely informed about the market

demand, we derived the unique retailers’ and supplier’s equilibrium strategies as

functions of the capacity levels, the demand value and the supplier’s production

cost. While equilibrium strategies, payoffs of the retailers, and equilibrium payoff

of the supplier are continuous and increasing in the demand level α, the supplier’s

optimal pricing strategy may not be continuous and not even monotonic in α. When

the supplier is not informed of the retail demand, his belief is modeled by a con-

tinuous probability distribution function of the demand parameter. Under the mild

assumption that the mean residual expectation of his belief about the actual de-

mand is decreasing (DMRL property), we established existence and uniqueness of a

Bayes-Nash equilibrium. Additionally, we characterized the supplier’s optimal price

as a fixed point of a translation of the MRL function, which enabled a tractable

comparative statics and sensitivity analysis.

A comparison of the complete and incomplete information equilibrium outcomes

in Section 5 indicated that under the supplier’s optimal pricing policy, there is a

considerable risk of no transaction between the supplier and the retailers, although

such a transaction would have been beneficial for everyone. In that case, a reduced

quantity will eventually be released to the consumers. Intuition on the reasons that

lead the supplier to ask such a high price is gained through analytical and numerical

considerations. If the retailers’ production (or inventory) capacity increases, then

(at equilibrium) the supplier’s profit margin and wholesale price both decrease. If

the supplier’s cost increases, then his profit margin decreases, but the wholesale

price that he asks increases. In this case, the retailers’ orders to the supplier and

hence the quantity sold to the consumers, both decrease. Finally, under the assump-

tion that the retailers are symmetric, i.e., each retailer has production capacity T ,

we determined the market equilibrium for any number n of them. Based on this ex-

tension, we studied the impact of an increasing number of retailers on the supplier’s
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profit for various distributions.
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Appendix A. Appendix: General statements and proofs

A.1. Proofs of Section 3

Proof of Lemma 2. For convenience in notation we will give the proof for i = 1

and j = 2 which results in no loss of generality due to symmetry of the retailers.

Let w ≥ c and s2 = (t2, q2) ∈ S2 with Q2 = t2 + q2. Restricting ourselves firstly to

strategies with q1 = 0, we have that

u1 ((t1, 0) , s2) = t1 (α−Q2 − t1)

Let t∗1 = argmax0≤t1≤T u1 ((t1, 0) , s2). Since α − Qi ≥ 0, i = 1, 2, we have that if

α − 2T ≤ Q2, then t∗1 = 1
2 (α−Q2) while if α − 2T > Q2, then the maximum of

u1 ((t1, 0) , s2) is attained at the highest admissible (due to the production capacity

constraint) value of t1 and hence t∗1 = T . Similarly, for strategies with t1 = T and

q1 > 0 we have that the payoff function of retailer R1

u1 ((T, q1) , s2) = Q1 (α− w −Q2 −Q1) + Tw

= T (α−Q2 − T ) + q1 (α− w − 2T −Q2 − q1)

is maximized at q∗1 =
1

2
(α− w − 2T −Q2) under the constraint that q∗1 > 0 or

equivalently Q2 < α−w−2T . If instead q∗1 ≤ 0, then the maximum of u1 ((T, q1) , s2)

is attained at the lowest admissible value of q1 i.e. q1 = 0. Since conditions α−2T ≤
Q2 and Q2 < α− w − 2T cannot apply at the same time, the result obtains.

Proof of Proposition 1. The proof proceeds by examining under what conditions

a second stage equilibrium occurs as an intersection of parts i, j = (1), (2), (3) of

the best reply correspondences of the retailers.

Case Γ11. In this case the best reply correspondences intersect in their parts de-

noted by (1). By rearranging part (1) of the best reply correspondence in Lemma 2

and assuming that Ri replies optimally to Rj for i, j = 1, 2, we obtain that the total

quantities released to the market under equilibrium will be given byQ∗
1 = Q∗

2 = α−w
3

subject to the constraints Q∗
2 < α−w−2T1 and Q∗

1 < α−w−2T2. Substituting the

values Q∗
1 and Q∗

2 in the constraints we find that these solutions are acceptable if
α−w
3 < α−w− 2T1 and α−w

3 < α−w− 2T2 or equivalently if max {T1, T2} < α−w
3

which may be reduced to T1 <
α− w

3
since T2 ≤ T1 is assumed. Combining the

above relations and decomposing Q∗
i as in Lemma 2 we obtain the first line of Ta-

ble 1 that settles case Γ11. Similarly,
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Case Γ21. Now, Q∗
1 = T1 and Q∗

2 = α−w−T1

2 subject to α − w − 2T1 ≤
α−w−T1

2 < α − 2T1 and 0 ≤ T1 < α − w − 2T2. Solving the constraints, yields

max {T1 + T2 + w, 3T1 − w} < α ≤ 3T1 + w.

Case Γ22. Now, Q∗
i = Ti, for i = 1, 2. These strategies are acceptable if α−w−2T1 ≤

T2 < α−2T1 and α−w−2T2 ≤ T1 < α−2T2 which gives 2T1+T2 < α ≤ T1+2T2+w.

Case Γ31. Now, Q∗
1 =

α−Q∗
2

2 and Q∗
2 =

α−w−Q∗
1

2 . Hence, Q∗
1 = α+w

3 and Q∗
2 = α−2w

3

subject to α − 2T1 ≤ α−2w
3 and 0 ≤ α+w

3 < α − w − 2T2 or equivalently

3T2 + 2w < α ≤ 3T1 − w.

Case Γ32. It is easy to see that Q∗
1 = α−T2

2 and Q∗
2 = T2 subject to α − 2T1 ≤ T2

and α− w − 2T2 ≤ α−T2

2 < α− 2T2, which yields 3T2 < α ≤ 3T2 + 2w. Finally,

Case Γ33. Q
∗
1 = Q∗

2 = α
3 subject to α − 2T1 ≤ α

3 and α − 2T2 ≤ α
3 or equivalently

α ≤ 3T2.

Proof of Lemma 3. By Table 1

q∗31 (w) =
1

3
(α− 2w − 3T2) , if 3T2 + 2w < α ≤ 3T1 − w

q∗21 (w) =
1

2
(α− w − T1 − 2T2) , ifmax {3T1 − w, T1 + 2T2 + w} < α ≤ 3T1 + w

q∗11 (w) =
2

3

(
α− w − 3

2
T1 −

3

2
T2

)
, if 3T1 + w < α

q∗ij (w) = 0, else

and since w = r + c, with c > 0 being a constant and r ≥ 0 being the strategic

variable, the payoff function of the supplier may be written as

us (r | α) = r·


q∗31 (r + c) , 3T2 + 2c+ 2r < α ≤ 3T1 − c− r

q∗21 (r + c) , max {3T1 − c− r, T1 + 2T2 + c+ r} < α ≤ 3T1 + c+ r

q∗11 (r + c) , 3T1 + c+ r < α

0, else

for r ≥ 0, assuming that a subgame perfect equilibrium is played in the second

stage. Re-arranging the conditions in the last column and taking into account the

continuity of us (r | α) at the cutting points of the α-intervals and the non-negativity

constraint for r, the claim follows.

Proof of Proposition 2. The optimal values r∗ are denoted by r∗ij , j ≤ i ∈
{1, 2, 3}, according to the equilibrium that is played in the second stage.

Case A. Let 0 < c ≤ D. Then, 3T2+2c ≤ T1+2T2+c ≤ 2T1+T2 ≤ 3T1−c ≤ 3T1+c

and hence for the different values of α we have

A1. 0 ≤ α ≤ 3T2 + 2c. For all r ∈ R+ we have that us (r | α) ≡ 0 and hence

r∗ = r ∈ R+.
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A2. 3T2 + 2c ≤ α ≤ 2T1 + T2. The supplier’s payoff function is given by

us (r | α) = r ·

{
q∗31 (r + c) , 0 ≤ r ≤ 1

2 (α− 2c− 3T2)

0, else

and hence, as a quadratic polynomial in r, it’s first part is maximized at r∗ = r∗31.

A3. 2T1 + T2 ≤ α ≤ 3T1 − c. Now

us (r | α) = r ·


q∗31 (r + c) , 0 ≤ r ≤ 3T1 − c− α

q∗21 (r + c) , 3T1 − c− α ≤ r ≤ α− c− T1 − 2T2

0, else

As quadratic polynomials in r, the first part is maximized at r∗31 and the second

at r∗21. It is easy to see that 0 ≤ r∗31 ≤ r∗21 ≤ α − c − T1 − 2T2. Hence, in order

to determine the maximum of us (r | α) with respect to r we distinguish three sub-

cases. Let S := T1 + T2, then

A3.1. 0 ≤ r∗31 ≤ r∗21 ≤ 3T1 − c − α. Then the overall maximum of us (r | α) is

attained at r∗31. The inequality r∗21 ≤ 3T1 − c − α holds iff 1
2 (α− c− T1 − 2T2) ≤

3T1 − c− α ⇔ α ≤ 3
2S + 5

6D − 1
3c.

A3.2. 3T1−c−α ≤ r∗31 ≤ r∗21. Then the overall maximum of us (r | α) is attained
at r∗21. The inequality 3T1 − c−α ≤ r∗31 holds iff 3T1 − c−α ≤ 1

4 (α− 2c− 3T2) ⇔
α ≥ 3

2S + 9
10D − 2

5c.

A3.3. 0 ≤ r∗31 ≤ 3T1 − c − α ≤ r∗21. In this case we need to compare the

payoffs us (r∗31 | α) and us (r∗21 | α). The overall maximum is attained at r∗31 iff

us (r∗21 | α) ≤ us (r∗31 | α) ⇔ 1
8 (α− c− T1 − 2T2)

2 ≤ 1
24 (α− 2c− 3T2)

2. Both terms

(α− c− T1 − 2T2) and (α− 2c− 3T2) are non-negative since α ≥ 2T1 + T2 and

c ≤ T1 − T2 hold by assumption. Hence, we may take the square root of both

sides to obtain that us (r∗21 | α) ≤ us (r∗31 | α) if and only if
(√

3− 1
)
α ≤

√
3T1 +(

2
√
3− 3

)
T2 +

(√
3− 2

)
c which is in turn equivalent to α ≤ 3

2S +
√
3
2 D −

√
3−1
2 c.

Now, it is straightforward to check that the following ordering is equivalent to

c ≤ D, which is true by the defining condition of Case A.

2T1 + T2 ≤ 3

2
S +

5

6
D − 1

3
c ≤ 3

2
S +

√
3

2
D −

√
3− 1

2
c ≤ 3

2
S +

9

10
D − 2

5
c ≤ 3T1 − c

Hence, by the previous discussion and after observing that 3
2S +

√
3
2 D −

√
3−1
2 c =

3T2 +∆−
√
3−1
2 c, we conclude that the optimal solution r∗ in this case is given by

r∗ =

r∗31 = 1
4 (α− 2c− 3T2) , if 2T1 + T2 ≤ α ≤ 3T2 +∆−

√
3−1
2 c

r∗21 = 1
2 (α− c− T1 − 2T2) , if 3T2 +∆−

√
3−1
2 c ≤ α < 3T1 − c

A4. 3T1 − c ≤ α ≤ 3T1 + c. Now, the supplier’s payoff function is given by

us (r | α) = r ·

{
q∗21 (r + c) , 0 ≤ r ≤ α− c− T1 − 2T2

0, else
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and hence, as a quadratic polynomial in r, it is maximized at r∗ = r∗21.

A5. 3T1 + c ≤ α. Now

us (r | α) = r ·


q∗11 (r + c) , 0 ≤ r ≤ α− c− 3T1

q∗21 (r + c) , α− c− 3T1 ≤ r ≤ α− c− T1 − 2T2

0, else

Now, the first part is maximized at r∗11 and the second at r∗21. Again, one checks

easily that 0 < r∗11 < r∗21 < α− c− T1 − 2T2. As in Case A3, in order to determine

the maximum of us (r | α) with respect to r we distinguish three sub-cases.

A5.1. 0 < r∗11 < r∗21 ≤ α − c − 3T1. Then the overall maximum of us (r | α) is

attained at r∗11. The inequality r∗21 ≤ α − c − 3T1 holds iff 1
2 (α− c− T1 − 2T2) ≤

α− c− 3T1 ⇔ α ≥ 3
2S + 7

2D + c.

A5.2. α − c − 3T1 ≤ r∗11 < r∗21. Then the overall maximum of us (r | α)
is attained at r∗21. The inequality α − c − 3T1 ≤ r∗11 holds iff α − c − 3T1 ≤
1
2

(
α− c− 3

2T1 − 3
2T2

)
⇔ α ≤ 3

2S + 3D + c.

A5.3. 0 < r∗11 < α − c − 3T1 < r∗21. In this case we need to compare the

payoffs us (r∗11 | α) and us (r∗21 | α). The overall maximum is attained at r∗11 if

and only if us (r∗21 | α) ≤ us (r∗11 | α) or equivalently if 1
8 (α − c − T1 − 2T2)

2 ≤
1
6

(
α− c− 3

2T1 − 3
2T2

)2
. Both terms (α− c− T1 − 2T2) and

(
α− c− 3

2T1 − 3
2T2

)
are positive since α ≥ 3T1 + c holds by assumption. Hence, we may take the

square root of both sides to obtain that us (r∗21 | α) ≤ us (r∗11 | α) if and only if(
3−

√
3
)
T1 +

(
3− 2

√
3
)
T2 +

(
2−

√
3
)
c ≤

(
2−

√
3
)
α which is in turn equivalent

to 3
2S +

(
3
2 +

√
3
)
D + c ≤ α.

Now, since 3
2S +

(
3
2 +

√
3
)
D + c = 3T2 + 2∆+ c and 3T1 + c ≤ 3

2S + 3D + c ≤
3
2S +

(
3
2 +

√
3
)
D + c ≤ 3

2S + 7
2D + c, we conclude that the optimal solution r∗ in

this case is given by

r∗ =

r∗21 = 1
2 (α− c− T1 − 2T2) , if 3T1 + c ≤ α ≤ 3T2 + 2∆+ c

r∗11 = 1
2

(
α− c− 3

2T1 − 3
2T2

)
, if 3T2 + 2∆+ c ≤ α

This concludes case A.

Case B. Let 0 ≤ D < c. Then, 3T1 − c < 2T1 + T2 < T1 + 2T2 + c <

min (3T1 + c, 3T2 + 2c) and hence for the different values of α we have

B1. 0 ≤ α ≤ T1+2T2+c. Now us (r | α) ≡ 0 for all r ∈ R+ and hence r∗ = r ∈ R+.

B2. T1 + 2T2 + c ≤ α ≤ 3T1 + c. Now, the supplier’s payoff function is given by

us (r | α) = r ·

{
q∗21 (r + c) , 0 ≤ r ≤ α− T1 − 2T2 − c

0, else

and hence as a quadratic polynomial in r, it is maximized at r∗ = r∗21.

B3. 3T1+c ≤ α. This case is identical to A5 above. Collecting the results about the

optimal strategy of the supplier in all sub-cases of A and B, we obtain the claim

of Proposition 2.
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A.2. Proofs of Section 4

Lemma 6. The supplier’s payoff function us (r) is continuously differentiable on

(0, rH) and

dus

dr
(r) =

2

3

∫ ∞

3T+c+r

(1− F (x)) dx− 2

3
r (1− F (3T + c+ r)) . (A.11)

Proof. First observe that since (α− 3T − c− r)
+
is non-negative, E(α− 3T − c−

r)+ =
∫∞
0

P ((α − 3T − c − r)+ > y)dy, see e.g.Billingsley [1986] and hence, by a

simple change of variable, E(α−3T−c−r)+ =
∫∞
3T+c+r

(1− F (x)) dx which implies

that

us (r) =
2

3
r

∫ ∞

3T+c+r

(1− F (x)) dx for 0 ≤ r < rH . (A.12)

Hence, to prove the assertion of the Lemma, it suffices to show that
d
drE (α− 3T − c− r)

+
= −(1 − F (3T + c + r)). Then, equation (A.11) as well

as continuity are implied. So, let

Kh (α) := − 1

h

[
(α− 3T − c− r − h)

+ − (α− 3T − c− r)
+
]

(A.13)

and take h > 0. Then,

Kh (α) = 1{α>3T+c+r+h} +
α− 3T − c− r

h
1{3T+c+r<α≤3T+c+r+h}

and therefore limh→0+ Kh (α) = 1{α>3T+c+r}. Since 0 ≤ Kh (α) ≤ 1 for

all α, the dominated convergence theorem implies that limh→0+ E (Kh (α)) =

P (α > 3T + c+ r). In a similar fashion, one may show that limh→0− E (Kh (α)) =

P (α ≥ 3T + c+ r). Since the distribution of α is non-atomic, P (α > 3T + c+ r) =

P (α ≥ 3T + c+ r) and hence, limh→0 E (Kh (α)) = 1 − F (3T + c+ r). By

eq. (A.13), limh→0 E (Kh (α)) = − d
drE (α− 3T − c− r)

+
, which concludes the

proof.

Proof of Lemma 4. The formulas for us (r) and dus

dr (r) are immediate using

eq. (A.12), eq. (A.11), and eq. (15). We remark that since E (α− 3T − c− r)
+

=

m(3T + c+ r) (1− F (3T + c+ r)), one may be tempted to use the product rule to

derive its derivative and hence show that us (r) is differentiable. However, the prod-

uct rule does not apply, since the two terms in this expression of E (α− 3T − c− r)
+

may both be non-differentiable, even if α has a density and its support is con-

nected (e.g. consider the point rL in case rL > 0). Finally, if r ∈ (0, rH), then

1− F (3T + c+ r) is positive. Hence, equation (16) implies that the critical points

r∗ of us (r) (if any) satisfy r∗ = m(r∗ + 3T + c).

Proof of Theorem 2. Due to Lemma 4, if a non-zero optimal response of the

supplier exists at equilibrium, it will be a critical point of us (r), i.e. it will satisfy

(17). It is easy to see that such a response always exists when the support of α
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is bounded, i.e. when αH < ∞. However, this is not the case when αH = ∞. So,

let us determine conditions under which such a critical point exists, is unique and

corresponds to a global maximum of the supplier’s payoff function. To this end, we

study the first term of (16), namely g(r) := m (r + 3T + c)− r.

Clearly, g (r) is continuous on (0, rH). We first show that limr→0+ g(r) > 0 by

considering cases. If rL > 0, then for 0 < r < rL, m (r + 3T + c) = E(α) − r −
3T − c. Hence, limr→0+ g(r) = E(α) − 3T − c > rL > 0. If rL ≤ 0, then we use

Proposition 1f of Hall and Wellner [1981], according to which m (t) ≥ (E (α)− t)
+

with equality if and only if F (t) = 0 or F (t) = 1. So, take first rL < 0, which

implies αL < 3T + c < αH . Hence, 0 < F (3T + c) < 1 and (by Proposition 1f)

m (3T + c) > E (α− 3T − c)
+ ≥ 0. Hence, limr→0+ g (r) > 0 if rL < 0. Finally,

if rL = 0, then m (3T + c) = m (αL) = E (α) − αL > 0, which again implies that

limr→0+ g (r) > 0.

We then examine the behavior of g (r) near rH . If αH < +∞, then

limr→rH− g (r) = −rH < 0 and by the intermediate value theorem an r∗ ∈ (0, rH)

exists such that g (r∗) = 0. For αH < +∞, we also notice that to get uniqueness of

the critical point r∗, it suffices to assume that the Mean Residual Lifetime (MRL)

of the distribution of α is decreasingi, in short that F has the DMRL property. On

the other hand, if αH = +∞, then the limiting behavior of m (r) as r increases to

infinity may vary, see Bradley and Gupta [2003a], and an optimal solution may not

exist. But, if we assume as before that m (r) is decreasing, then g (r) will eventually

become negative and stay negative as r increases and hence, existence along with

uniqueness of an r∗ such that g (r∗) = 0 is again established.

Now, 1− F (3T + c) > 0 since 3T + c < αH and hence limr→0+
dus

dr (r) > 0, i.e.

us (r) starts increasing on (0, rH). Assuming that F has the DMRL property, the

first term of (16) is negative in a neighborhood of rH while the second term goes

to 0 from positive values. Hence, dus

dr (r) < 0 in a neighborhood of rH , i.e us (r)

is decreasing as r approaches rH . Clearly, for ϵ sufficiently small, us (r) will take a

maximum in the interior of the interval [ϵ, rH − ϵ] if rH < ∞ or a maximum in the

interior of the interval [ϵ,∞) if rH = ∞. Since us (r) is differentiable, the maximum

will be attained at a critical point of us (r), i.e. at the unique r∗ given implicitly by

(17).

Equation (17) actually characterizes r∗ as the fixed point of a translation of

the MRL function m (·), namely of m (·+ 3T + c). Its evaluation sometimes has to

be numeric, but in one interesting case it may be evaluated explicitly: If rL > 0,

then α − 3T − c > 0 for all α, which implies that E(α) − 3T − c > 0. Then, if
1
2 (E (α)− 3T − c) ≤ rL, we get r

∗ = 1
2 (E(α)− 3T − c). To see this, notice that the

previous equation is equivalent to m (αL) ≤ rL, i.e. to m (rL + 3T + c) ≤ rL. Then,

by the DMRL property m (r + 3T + c) < r for all r > rL. This implies that r∗ ≤ rL
or equivalently that r∗ + 3T + c ≤ αL. In this case m (r∗ + 3T + c) = E (α) −

iWe use the terms “decreasing” in the sense of “non-increasing” (i.e. flat spots are permitted), as

they do in the pertinent literature, where this use of the term has been established.
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(r∗ + 3T + c) and hence r∗ will be given explicitly by r∗ = 1
2 (E (α)− 3T − c).

Intuitively, this special case occurs under the conditions that (a) the lower bound

of the demand αL exceeds the particular threshold 3T + c, (i.e. αL > 3T + c or

rL > 0), and (b) the expected excess of α over its lower bound αL is at most equal

to the excess of αL over 3T + c (i.e. E (α) − αL ≤ αL − 3T − c = rL). Of course,

since E (α)−αL > 0, condition (b) suffices. In that case, compare with the optimal

r∗ of the complete information case (Proposition 3).

Finally, if rL > 0 and 1
2 (E (α)− 3T − c) > rL (i.e, if E (α) > rL + αL) we get

that r∗ > rL, for if r∗ ≤ rL, then m (r∗ + 3T + c) ≥ m(αL), i.e. r
∗ ≥ E (α) − αL.

The latter implies that then rL ≥ E (α)− αL which contradicts the assumption.

Proof of Proposition 3. For i ∈ N , the best reply correspondence of retailer Ri

is given by Lemma 2 if we replace Qj by Q−i. Hence, we may simplify the proof by

fixing i ∈ N and distinguishing the following cases:

Case 1. Let 0 ≤ α ≤ (n+ 1)T and for N ∋ j ̸= i let t∗j = 1
n+1α, q

∗
j = 0. Then,

Q∗
−i =

n−1
n+1α ≥ α− 2T . Hence, by Lemma 2, BRi

(
Q∗

−i

)
= (t∗i , q

∗
i ) =

(
α

n+1 , 0
)
.

Case 2. Let (n+ 1)T < α ≤ (n+ 1)T + w and for N ∋ j ̸= i let t∗j = T, q∗j = 0.

Then Q∗
−i = (n− 1)T with α − w − 2T ≤ Q∗

−i < α − 2T . Hence, by Lemma 2,

BRi
(
Q∗

−i

)
= (t∗i , q

∗
i ) = (T, 0).

Case 3. Let (n+ 1)T + w < α and for N ∋ j ̸= i let t∗j = T, q∗j =
1

n+1 (α− (n+ 1)T − w). Then Q∗
−i = n−1

n+1 (α− w) < α − w − 2T . As above

BRi
(
Q∗

−i

)
= (t∗i , q

∗
i ) =

(
T, 1

n+1 (α− (n+ 1)T − w)
)
. Summing up, we obtain the

equilibrium strategies as given in Proposition 3.

A.3. Proofs of Section 5

Proof of Lemma 5. Using S for the support of F , we get U =

{α | α ∈ S and α > 3T + c} and V = {α | α ∈ S and α ≤ r∗ + 3T + c}.
So, V ∩ U = {α | α ∈ S and 3T + c < α ≤ r∗ + 3T + c}, and therefore

P (V ∩ U) = F (r∗ + 3T + c)− F (3T + c) and

P (V | U) =
F (r∗ + 3T + c)− F (3T + c)

1− F (3T + c)

Since, by assumption E (α) − αL > rL, Theorem 2 implies that the supplier

will sell at r∗ ∈
(
r+L , rH

)
in equilibrium. So, there are two cases, either (a) rL > 0

or (b) rL ≤ 0. In case (a), we get 3T + c < αL < r∗ + 3T + c < αH , hence

V ∩ U = [αL, r
∗ + 3T + c] ∩ S. In case (b), αL ≤ 3T + c < r∗ + 3T + c < αH ,

hence V ∩U = (3T + c, r∗ + 3T + c]∩S (notice that for α ≤ 3T + c no transaction

would have taken place under complete information also). Hence, P (V ∩ U) =

F (r∗ + 3T + c)− F (3T + c) which concludes the proof.
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Proof of Theorem 3. Firstly, we express the distribution function F in terms of

the MRL function, e.g. see Guess and Proschan [1988], to get

1− F (t) =
E (α)

m (t)
exp

{
−
∫ t

0

1

m (u)
du

}
for 0 ≤ t < αH (A.16)

We will use the DMRL property, cf. (18), to derive an upper bound for P (V | U).

To this end, we use (A.16) first for t = r∗ + 3T + c, then for t = 3T + c, and then,

dividing the two equations (division by 0 is no danger, see the discussion preceding

Lemma 5), we get

1−F (r∗ + 3T + c) = (1− F (3T + c))
m (3T + c)

m (r∗ + 3T + c)
exp

{
−
∫ r∗+3T+c

3T+c

1

m (u)
du

}
.

Hence, since P (V ∩ U) = 1− F (3T + c)− (1− F (r∗ + 3T + c)), we have that

P (V ∩ U) = (1− F (3T + c))

(
1− m(3T + c)

m (r∗ + 3T + c)
exp

{
−
∫ r∗+3T+c

3T+c

1

m (u)
du

})
,

which shows that P (V | U) = 1 − m(3T+c)
m(r∗+3T+c) exp

{
−
∫ r∗+3T+c

3T+c
1

m(u)du
}
. By in-

equality (18) for 3T + c ≤ u ≤ r∗ +3T + c and the monotonicity of the exponential

function

exp

{
− 1

m (r∗ + 3T + c)

∫ r∗+3T+c

3T+c

du

}
≤ exp

{
−
∫ r∗+3T+c

3T+c

1

m (u)
du

}
.

Using the fact that r∗ = m(r∗ + 3T + c), the last inequality becomes exp {−1} ≤
exp

{
−
∫ r∗+3T+c

3T+c
1

m(u)du
}
. Substituting in P (V | U) we derive the following upper

bound for P (V | U)

P (V | U) ≤ 1− m(3T + c)

m (r∗ + 3T + c)
e−1

Since m (r∗ + 3T + c) ≤ m(3T + c) by the DMRL property, the upper bound may

be relaxed to P (V | U) ≤ 1 − e−1. To see that this bound is indeed tight, let

α ∼ exp (λ), i.e. f (α) = λe−λα1{0≤α<∞}, with λ > 0 and let T ≥ 0. Since m (t) =
1

λ
− t · 1{t≤0}, F is DMRL. By Theorem 2, the optimal strategy r∗ of the supplier

is independent of T, c and is given by r∗ = 1
λ . The conditional probability of no

transaction P (V | U) is also independent of T, c and equal to 1 − e−1 due to the

memoryless property of the exponential distribution (i.e. P (α > s+ t | α > t) =

P (α > s)). Indeed,

P (V | U) = P (α ≤ r∗ + 3T + c | α > 3T + c)

= 1− P (α > r∗ + 3T + c | α > 3T + c)

= 1− P (α > r∗) = F (1/λ) = 1− e−1

implying that the inequality in (21) is tight over all DMRL distributions.
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