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Abstract—The components with molecular communication
(MC) functionalities can bring an opportunity for emerging
applications in fields from personal healthcare to modern indus-
try. In this paper, we propose the designs of the microfluidic
transmitter and receiver with quadruple concentration shift
keying (QCSK) modulation and demodulation functionalities.
To do so, we first present an AND gate design, and then
apply it to the QCSK transmitter and receiver design. The
QCSK transmitter is capable of modulating two input signals to
four different concentration levels, and the QCSK receiver can
demodulate a received signal to two outputs. More importantly,
we also establish a mathematical framework to theoretically
characterize our proposed microfluidic circuits. Based on this, we
first derive the output concentration distribution of our proposed
AND gate design, and provide the insight into the selection of
design parameters to ensure an exhibition of desired behavior.
We further derive the output concentration distributions of the
QCSK transmitter and receiver. Simulation results obtained in
COMSOL Multiphysics not only show the desired behavior of
all the proposed microfluidic circuits, but also demonstrate the
accuracy of the proposed mathematical framework.

Index Terms—AND gate, chemical reactions, microfluidics,
molecular communication, QCSK modulation and demodulation,
signal processing.

I. INTRODUCTION
Over the past few years, molecular communication (MC)

has attracted increasing attention as it can wave revolutionary
and interdisciplinary applications ranging from healthcare, to
industry, and military [2], [3]. The wide range of applica-
tions inspired a bulk of research centering around theoretical
characterizations of MC, such as transmission schemes [4],
[5], propagation characterizations [6], [7], reception mod-
els [8], [9], and detection strategies [10], [11]. To ensure
successful information transmission, signal processing units
are essential components for MC transmitter and receiver
to facilitate modulation-demodulation and encoding-decoding
functionalities. However, how to practically realize these basic
signal processing functions in microscale/nanoscale has been
rarely studied.

The signal processing functions realized in existing MC
works were performed over electrical signals using electronic
devices. In [5], [12]–[15], the transmitted bit sequence was
modulated over the concentration of signaling molecules via
the on/off of an air tank [5], [12], [13], electronic spray [14],
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and light-emitting diode (LED) controlled by Arduino micro-
controller boards and laptops [15]. Their high dependency on
electrical signals/devices can hardly fulfill the biocompatible
and non-invasive requirements of biomedical applications,
such as disease diagnosis and drug delivery [16]. Meanwhile,
the size of electronic devices can hardly meet the requirement
of intra-body healthcare applications promised by MC, where
fully MC functional devices are expected to be miniaturized
into microscale/nanoscale [2].

In nature, signal processing functions can be realized in
molecular domain by exploiting a gene expression process,
where transcription factors bind with genes to either activate or
repress their expression into proteins [17]. If the transcription
factor activates protein expression, the gene expression process
can function as a buffer gate [18]. On the contrary, if the
transcription factor represses protein expression, the gene
expression process can function as a NOT gate [19]. The
signal processing nature of gene expression process motivates
biologists to design more complex artificial genetic circuits to
manipulate molecular concentrations using synthetic biology
[20]. One type of artificial genetic circuit with computing
functions is the Boolean inspired digital logic device. The
sharp state change between a low concentration and a high
concentration is ideal for reliable state transitions and sig-
nal integration, making digital logic particularly useful in
decision-making circuits [21]. For example, the authors of
[19] designed an orthogonal AND gate and coupled it to
nonspecific sensors to increase selectivity [22]. The authors
of [23] constructed a simple NOR logic gate and spatially
configured multiple NOR gates to produce all possible two-
input gates, which have found their utilities in biotechnological
applications [24].

Although the aforementioned genetic circuits have ad-
vantages in biocompatibility and miniaturization over elec-
tric circuits, the experimental realization of genetic circuits
faces challenges, such as slow speed, unreliability, and non-
scalability [25]. These challenges motivate our initial work
on chemical reactions-based microfluidic circuits [26]–[28].
Unlike genetic circuits, chemical circuits are much easier to
be controlled. Moreover, the integration of chemical reac-
tions with microfluidic systems not only endows chemical
circuits with advantages of rapid analysis and low reagent
costs due to a reduction of circuit size [29], but can also
benefit from an additional space level of chemical control
through applying and regulating chemical reactions in different
regions of a microfluidic device. In [26], [27], we designed an
MC microfluidic transceiver based on chemical reactions to
successfully realize binary concentration shift keying (BCSK)
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modulation and demodulation functions. The signal processing
capability of chemical reactions-based microfluidic circuits
was further exploited in [28], where we provided the designs
of AND, NAND, OR, NOR, and XOR gates. These logic
computation units can be applied to environmental monitoring.
For example, the AND microfluidic circuit can improve the
selectivity of a biosensor by producing a measurable signal
only in the presence of multiple chemical signals. As we
discussed in [28], one challenge in realizing signal processing
functions via chemical reactions-based microfluidic circuits
is the theoretical characterization of a logic gate, which
facilitates the selection of design parameters for expected gate
outputs. Although we mathematically modeled the dynamics
of molecular species in microfluidic channels in [26], [27],
this analysis is not scalable with the increase in the number of
microfluidic circuits. Motivated by above, the objective of this
paper is to employ microfluidic logic gates to achieve QCSK
modulation-demodulation function and establish a mathemat-
ical framework to analyze any microfluidic MC circuit. The
main contributions of this paper are as follows:

• We first present a chemical reactions-based microfluidic
AND gate design, based on which, we design the mi-
crofluidic transmitter and receiver with quadruple con-
centration shift keying (QCSK) modulation and demod-
ulation functionalities, to show how logic computations
can process molecular concentrations and realize com-
munication functionalities. The QCSK transceiver design
largely expands the brief investigation of the digital
signal processing capability of microfluidic circuits in
[1]. Most importantly, we show how digital electronics
theory can be applied to and facilitate microfluidic circuit
design, which serves as a foundation for utilizing simple
microfluidic logic gates to achieve more complex MC
functions.

• We develop a novel mathematical framework to char-
acterize our proposed microfluidic circuits, which can
be applied to analyze other new and more complicated
microfluidic circuits. As in [1], we first analyze the
concentration and velocity changes under fluid mixing,
but in this work we also consider the fluid separation
scenario. Then we derive the impulse response of a
straight convection-diffusion channel. Based on these,
we derive the spatial-temporal concentration distribution
of a convection-diffusion-reaction channel with either a
thresholding reaction or an amplifying reaction.

• To evaluate our proposed microfluidic designs, we iden-
tify four elementary microfluidic blocks of the basic
AND gate, and define five corresponding operators to
represent the output concentration distribution of each el-
ementary block. Relying on these, we derive not only the
output concentration distribution of the proposed AND
gate, but also the output distributions for our designed
QCSK transmitter and receiver. The functionalities of
our proposed microfluidic designs and the corresponding
theoretical results are validated via simulations performed
in COMSOL Multiphysics finite element solver.

The remainder of this paper is organized as follows. In Sec.

 

   

     

 

Fig. 1. A microfluidic device for fluid mixing analysis.

II, we provide the basic microfluidic channel analysis. In Sec.
III, we establish a mathematical framework to theoretically
characterize our proposed AND gate. In Sec. IV, we propose
the designs and analysis of the QCSK transmitter and receiver.
Numerical results in Sec. V validate the proposed microflu-
idic designs and their theoretical analyses. Finally, Sec. VI
concludes the paper.

II. BASIC MICROFLUIDIC CHANNEL ANALYSIS

With the ultimate goal of designing and analyzing a mi-
crofluidic system with modulation and demodulation func-
tionalities, the basic characteristics of fluids in microfluidic
channels must be first understood. To do so, we analyze and
derive the concentration and velocity changes for a general
microfluidic device with combining channels (Sec. II-A) and
separation channels (Sec. II-B), which are not fully investi-
gated in the existing literature. We present the new results
as lemmas in order to distinguish them from the known
results in fluid dynamics. In particular, these lemmas hold
under the assumption that the flow is laminar, viscous, and
incompressible. The results provided in this section serve as
the foundation for the analysis in the following sections.

For a Poiseuille flow traveling along the x direction of
a microfluidic channel with rectangular cross-section, the
average velocity can be expressed in terms of volumetric flow
rate Q and cross-sectional area as [30, eq. (5)]

veff = Q/wh, (1)

where w and h are the width and the height of the cross-
section.

A. Fluid Mixing at Combining Connections
In a microfluidic circuit, fluids flowing in different channels

can mix to a single flow at a combining connection, and we
name this behavior as fluid mixing for simplicity.

1) Concentration Change: Let us consider a microfluidic
device with n inlets and n combining channels as shown
in Fig. 1. We assume that a solution containing species
Si (1 ≤ i ≤ n) is constantly injected into Inlet i with
concentration CSi0 , average velocity veffi , and volumetric flow
rate Qi. According to the well-known analogy between Hagen-
Poiseuille’s law and Ohm’s law, the pressure drop, the flow
rate, and the flow resistance in hydraulic circuits are analogous
to the voltage drop, the electric current, and the electric
resistance in electric circuits, respectively. On the one hand,
this analogy enables a sound engineering estimate of steady-
state pressure drops, flow rates, and hydraulic resistance of
1D long and straight microchannels, and is still effective even
for channels with non-circular cross-sections that are neither
perfectly straight nor infinite in extent. On the other hand, this
analogy enables the application of electric circuit theory to
microchannel network analysis [30]. Based on the Kirchhoff’s
Current Law, the volumetric flow rate in the nth combining
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channel QCHn is the summation of coming flow rates, such
that 

QCH1 = Q1,

QCH2 = QCH1 +Q2 =
∑2
i=1Qi,

· · · · · · ,
QCHn = QCH(n−1) +Qn =

∑n
i=1Qi.

(2)

Therefore, the mixed concentrations of species S1 and S2 in
the second combining channel are [30]{

CCH2
S1

= Q1

Q1+Q2
CS10

,

CCH2
S2

= Q2

Q1+Q2
CS20

.
(3)

Then, when n ≥ 3, the mixed concentrations of species S1,
S2, · · · , Sn in the nth combining channel become

CCHn
S1

= QCH(n−1)

QCH(n−1)+Qn
C

CH(n−1)
S1

=
∑n−1
i=1 Qi∑n
i=1Qi

C
CH(n−1)
S1

,

CCHn
S2

= QCH(n−1)

QCH(n−1)+Qn
C

CH(n−1)
S2

=
∑n−1
i=1 Qi∑n
i=1Qi

C
CH(n−1)
S2

,

· · · · · · ,

CCHn
Sn

= Qn
QCH(n−1)+Qn

CSn0
= Qn∑n

i=1Qi
CSn0

.

(4)

Lemma 1. For the fluid mixing from n inlets to one combining
channel, the mixed concentration of species Si (1 ≤ i ≤ n)
can be derived as

CCHn
Si =

Qi∑n
i=1Qi

CSi0 , (5)

where Qi and CSi0 are the volumetric flow rate and the species
concentration injected into Inlet i. If all the species are in-
jected with volumetric flow rate Q (i.e., Q1 = · · · = Qn = Q),
species Si will be diluted to 1/n of its injected concentration
in the nth combining channel, that is

CCHn
Si = CSi0 /n. (6)

Proof. The last line of (4) can be reduced to (5) using (3) and
other equations in (4).

Remark 1. From (6), we can conclude that a higher volume
of injected fluids can lead to a decrease of the output concen-
tration of each species.

2) Velocity Change: Injecting fluids into a combining chan-
nel influences not only the species concentration but also the
flow velocity.

Lemma 2. For the fluid mixing from n inlets to one combining
channel, the flow rate in the nth combining channel can be
expressed in terms of average velocity and channel geometry
as

wCHnhCHnvCHn
eff

=wCH(n−1)hCH(n−1)v
CH(n−1)
eff + wnhnveffn ,

(7)

where veffn , wn, and hn are the average velocity, the width,
and the height of Inlet n, and vCHn

eff , wCHn, and hCHn are
the average velocity, the width, and the height of the nth
combining channel, respectively. If all inlets and combining
channels share the same geometry and the same average
velocity veff , the average velocity in the nth combining channel
becomes

vCHn
eff = nveff . (8)

Inlet
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Outlet nDaughter Channel n

Outlet 1Daughter Channel 1

Outlet 2Daughter Channel 2

Outlet n-1Daughter Channel n-1

..
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(b) Hydraulic circuit analog

Fig. 2. A microfluidic device for fluid separation analysis.

Proof. Based on the Kirchhoff’s Current Law and (1), we can
obtain (7).

Remark 2. It is revealed in (8) that a higher volume of
injected fluids can lead to an increase of the average velocity.

B. Fluid Separation at Bifurcation Connections

In a microfluidic circuit, a single flow can be separated
into different flow streams at a bifurcation connection, and
we name this behavior as fluid separation for simplicity. Let
us consider a microfluidic device with one inlet and n outlets
as shown in Fig. 2(a), where a single flow is separated into n
streams travelling over n daughter channels. Assuming that the
solution containing species S1 is injected with concentration
CS10

and average velocity veff, the concentration at each outlet
is the same as CS10

, because species S1 is not diluted by other
species. However, the average velocity in each outlet varies
for different geometry of its daughter channel. To derive the
outlet velocities, we establish the hydraulic circuit model in
Fig. 2(b). Analogous to current division in electric circuits, the
relationship between the volumetric flow rate Qi (1 ≤ i ≤ n)
and the supplied volumetric flow rate Q can be described by
[30, eq. (18)]

Qi = ReqQ/Ri, (9)

where Ri is the hydraulic resistance of the ith daughter
channel and Req is the equivalent resistance of all daughter
channels. Let us denote LDi as the length from the crosspoint
Node A in Fig. 2(b) to outlet i, and wi and hi as the geometry
width and height of the ith daughter channel, Ri [30, eq. (10)]
and Req [30, eq. (13)] can be calculated as

Ri =
12ηLDi

wih3
i

[
1−

∞∑
i=1,3,5,···

192hi
wiπ5i5 tanhi( iπwi2hi

)

] , (10)

and Req = 1/(1/R1 + 1/R2 + · · ·+ 1/Rn). (11)

Lemma 3. For the fluid separation from one inlet to n outlets,
the average velocity veffi in the ith outlet can be derived as

veffi =
Req
Ri

wh

wihi
veff , (12)

where w and h are the width and the height of the injection
channel, wi and hi are the width and the height of the ith
daughter channel, Ri and Req are given in (10) and (11),
respectively. If all daughter channels share the same geometry
(i.e., w1h1 = · · · = wnhn = wh and LD1

= · · · = LDn ), eq.
(12) can be reduced to

veffi = veff/n. (13)
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Fig. 3. The chemical reactions-based microfluidic AND logic gate. To
distinguish convection-diffusion channels and convection-diffusion-reaction
channels, the latter are filled with grey-gradient color.

Proof. Substituting (1) into (9), we can obtain (12). When all
daughter channels share the same geometry, Ri = nReq and
thus (12) can be reduced to (13).

Remark 3. It is indicated from (13) that fluid separation
results in a reduction of average velocity by n times.

III. AND LOGIC GATE DESIGN AND ANALYSIS

In this section, we present the design of the AND logic gate
to demonstrate the logic computation ability of microfluidic
circuits. The chemical reactions used in the AND gate can
be categorized into two forms: 1) Si + Sj → Sk, and 2)
Si + Amp → Si + O. For a reaction with the form of
Si + Sj → Sk, species Si is consumed by species Sj
and the residual species Si will be the part that is above
the concentration of species Sj . Hence, the concentration of
species Sj can be regarded as a threshold for species Si and we
name this reaction as a thresholding reaction. For a reaction
with the form of Si + Amp → Si + O, species O is only
produced in the presence of Si and the concentration of species
O equals the injected concentration of species Amp. This
property allows us to amplify the amount of species O to any
desired level by adjusting the concentration of species Amp,
and thus we name this reaction as an amplifying reaction [31].

We present our proposed AND gate design in Fig. 3. As
shown in Fig. 3, the proposed AND gate consists of the input
species I1 and I2, and the output species O. Throughout this
paper, we use non-zero concentration to represent HIGH state
(bit-1), and zero concentration to represent LOW state (bit-
0). Moreover, we assume that the flows carrying chemical
species are laminar, which is a valid assumption in microfluidic
settings [3]. The two input species I1 and I2 are first converted
to an intermediate species N , so the state of species N will
be HIGH if either I1 or I2 is HIGH. Then, species N flows
into the reaction channel with reaction N + ThL → W
and undergoes a depletion by species ThL. By injecting a
certain amount of species ThL, the remaining concentration
of species N can be larger than zero only when both input
species I1 and I2 are HIGH. Finally, the remaining species
N catalyzes the conversion of species Amp to output species
O via reaction N + Amp → N + O, and the concentration
of species O can be adjusted to a desired level based on the
injected concentration of species Amp.

To derive the output concentration of our designed AND
gate, we first need to study the molecule concentration dis-
tribution in a single channel. For a 3D straight microfluidic
channel, if molecule transport is in the dispersion regime,
molecules will be uniformly distributed across the cross-
section. Thus, the molecule concentration can be described

by a simplified 1D convection-diffusion-reaction equation as
[3, eq. (29)]

∂CSi(x, t)

∂t
= Deff

∂2CSi(x, t)

∂x2

− veff
∂CSi(x, t)

∂x
+ qf [k,CSi(x, t)],

(14)

where CSi(x, t) is the spatial-temporal concentration of
species Si; Deff is the Taylor-Aris effective diffusion coeffi-
cient; veff is the average velocity; q = 1 and q = −1 hold
if species Si is the product and the reactant of any reaction,
respectively; k is the rate constant and f [·] is the reaction
term that in general can account for the presence of multiple
reactions. For a microfluidic channel with rectangular-shaped
cross-section1, Deff can be calculated as [32, eq. (3)]

Deff =

[
1 +

8.5v2
effh

2w2

210D2(h2 + 2.4hw + w2)

]
D, (15)

where h is the cross-section height, w is the cross-section
width, and D is the molecular diffusion coefficient.

When k = 0, eq. (14) reduces to a convection-diffusion
equation. In the following, we first derive the impulse response
of a convection-diffusion channel in Sec. III-A. Based on the
impulse response, we then study the molecule concentration
of a reaction channel either with a thresholding reaction (Sec.
III-B), or an amplifying reaction (Sec. III-C). Furthermore,
relying on the analysis in Sec. II, we define and model
four elementary blocks (Sec. III-D) in order to simplify the
theoretical characterizations of the AND gate in Sec. III-E
and the more complicated microfluidic circuits proposed in
Sec. IV.

A. Convection-Diffusion Channel

Without chemical reactions, the concentration distribution
of species Si can be expressed using a convection-diffusion
equation as [3, eq. (29)]

∂CSi(x, t)

∂t
= Deff

∂2CSi(x, t)

∂x2
− veff

∂CSi(x, t)

∂x
. (16)

Although (16) has been solved in [27], the complex expression
of the solution does not allow the cascaded channels to
be mathematically solvable in closed-form. This shortcoming
motivates us to derive the impulse response of a microfluidic
channel so that the output of a microfluidic circuit can be
written as the convolution of an input and a cascade of the
impulse response of each channel. We solve the impulse
response in the following theorem.

Theorem 1. The impulse response of a straight convection-
diffusion channel is derived as

H(x, t) =
1

2π

∫ ∞
0

[e−jωtC̃Si(x, ω) + ejωtC̃Si(x, ω)]dω, (17)

where

C̃Si(x, ω)

= exp
[
(veffx/2Deff)−

√
x2(v2

eff + 4jωDeff)/4D2
eff

] (18)

1The rectangular-shaped cross-section is a common geometry considered
in MC literature [32]–[34]. The methodology presented in this paper can be
also applied to other cross-section shapes.
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and C̃Si(x, ω) is the complex conjugate of C̃Si(x, ω).

Proof. Please refer to the Appendix A.
From Theorem 1, the concentration of species Si can be

expressed as
CSi(x, t) = CSi0 (t) ∗H(x, t), (19)

where CSi0 (t) is the input concentration of species Si at
channel inlet and “∗” denotes the convolution operator.

B. Reaction Channel with a Thresholding Reaction

When a microfluidic channel contains a thresholding reac-
tion Si + Sj → Sk, according to (14) and [35, eq. (9.13)],
the spatial-temporal concentration distributions of reactant and
product are

∂CSi(x, t)

∂t
= Deff

∂2CSi(x, t)

∂x2

− veff
∂CSi(x, t)

∂x
− kCSi(x, t)CSj (x, t),

(20)
∂CSk(x, t)

∂t
= Deff

∂2CSk(x, t)

∂x2

− veff
∂CSk(x, t)

∂x
+ kCSi(x, t)CSj (x, t).

(21)
Compared with the convection-diffusion equation in (16), the
newly introduced reaction term is fully coupled with convec-
tion and diffusion process, which complicates the resolution
of (20) and (21). A strategy to tackle this coupling is to apply
the “operator splitting” method. It first divides an original
differential equation into several sub-equations, which are
solved separately to give their individual solutions. Then, the
solutions for sub-equations are combined to form a solution
for the original equation [36]. The derived impulse response
of a convection-diffusion channel in Theorem 1 motivates
us to separate a convection-diffusion-reaction equation into a
reaction term and a convection-diffusion term. This separation
can be achieved via 1) assuming the reactants are added into
a virtual reactor, and the unconsumed reactants and generated
product flow into a convection-diffusion channel as soon as
the reaction stops; and 2) treating the solution of the reaction
term as the initial input for the convection-diffusion part.

With species Si and Sj continuously flowing into a channel,
we regard that Si and Sj are continuously added into a
virtual reactor, where the continuous reactant supply is a
superposition of reactant addition with constants at different
times. To solve the reaction part, we consider the following
two scenarios:
• Scenario 1: species Si and Sj are only added at t = 0

with concentration CSi0 and CSj0 ;
• Scenario 2: species Si and Sj are added continuously

with concentration CSi0 (t) and CSj0 (t).
We first derive the concentration changes of reactants and
product for Scenario 1, which will then be applied to Scenario
2 to derive the solutions of the separated reaction term.

1) Scenario 1: Let c(t) denote the consumed concentration
of reactant Si or Sj during the reaction. Note that c(t) can also
represent the concentration of product species Sk due to a one-
to-one stoichiometric relation between reactants and product.

The remaining concentrations of species Si and Sj can be
expressed as

CSi(t) = CSi0 − c(t), (22a)

CSj (t) = CSj0 − c(t). (22b)
Then, the reaction equation can be expressed as [35, eq. (9.13)]

d[CSi0 − c(t)]/dt = −k[CSi0 − c(t)][CSj0 − c(t)]. (23)

After rearrangement, eq. (23) becomes

dc(t)

[CSi0 − c(t)][CSj0 − c(t)]
= kdt. (24)

By taking the integral of the two sides of (24), we yield

c(t)

=


CSi0

CSj0
exp [(CSj0

−CSi0 )kt]−CSi0CSj0
CSj0

exp [(CSj0
−CSi0 )kt]−CSi0

, CSi0 ≤ CSj0 ,
CSi0

CSj0
exp [(CSi0

−CSj0 )kt]−CSi0CSj0
CSi0

exp [(CSi0
−CSj0 )kt]−CSj0

, CSi0 ≥ CSj0 .
(25)

Remark 4. It can be observed from (25) that c(t) is propor-
tional to the rate constant k. The higher the rate constant is,
the faster a reactant is consumed and decreased to zero.

Lemma 4. For reaction Si + Sj → Sk, when reaction rate
k → ∞, the consumed concentration c(t) of reactant can be
derived as

lim
k→∞

c(t) = ϕ(CSi0 , CSj0 ), (26)

where CSi0 and CSj0 are the initial concentrations of species
Si and Sj , and ϕ(·, ·) is defined as

ϕ(x, y) = min {x, y}. (27)

Proof. With k → ∞, eq. (25) can be easily reduced to (26).

2) Scenario 2: Now, we consider the continuous injection
of species Si and Sj with concentrations CSi0 (t) and CSj0 (t).
Scenario 2 can be regarded as a superposition of Scenario 1
in time domain. To apply the analysis of Scenario 1, we first
discretize the reaction process into many time intervals with
step ∆t. Thus, the added concentration of species Si can be
denoted as CnSi,a = CSi0 (n∆t) (n ≥ 0), where the subscript
a refers to addition.2 We also denote CnSi0 and CnSi,r as the
initial and the remaining concentrations of Si at t = n∆t,
respectively. The same notations are also applied to species
Sj .

We propose Algorithm 1 to numerically calculate the
remaining concentrations of Si and Sj for reaction Si +
Sj → Sk. Algorithm 1 describes that for any time interval
[n∆t, (n + 1)∆t], the consumed concentration can be calcu-
lated according to (25), but with different initial concentrations
CnSi0

. The difference in the initial concentration is due to
the fact that the initial concentration of any time interval is
influenced not only by the newly added concentration, but
also by the incompletely consumed concentration that added
in previous intervals. For instance, the initial concentration
C1
Si0

for the time interval [∆t, 2∆t] is the sum of the newly

2Throughout this paper, the superscript for concentration C does not
represent a mathematical operation.
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Algorithm 1: The Calculation of Remaining Concen-
trations of Species Si and Sj

Input: The input concentrations CSi0 (t) and CSj0 (t).
The calculation time interval [0, T ]. The time
step ∆t.

1 Initialization of C0
Si0

=C0
Si,a

and C0
Sj0

=C0
Sj ,a

.
2 for n← 1, bT/∆tc do
3 Calculate the consumed concentration cn−1 during

[(n− 1)∆t, n∆t] according to (25) by
interchanging CSi0→C

n−1
Si0

and CSj0→C
n−1
Sj0

.
4 Update the remaining concentration

CnSi,r=C
n−1
Si0
−cn−1 and CnSj ,r=C

n−1
Sj0
−cn−1.

5 Update the initial concentration CnSi0 =CnSi,r+C
n
Si,a

and CnSj0 =CnSj ,r+C
n
Sj ,a

for [n∆t, (n+ 1)∆t].
6 end

   

Fig. 4. Illustration of reaction Si+Sj → Sk in a bottle-shaped virtual reactor
and a microfluidic channel. The two reactants are marked with different colors.

added concentration C1
Si,a

and the remaining concentration
C1
Si,r

that added at t = 0.
The value of rate constant k influences the approxima-

tion accuracy. The smaller the k is, the larger volume of
reactants remain. The unconsumed reactants accumulate in
reactor and would participate into the reaction in the following
time interval, which introduces correlation between different
time intervals. By contrast, this correlation does not exist
in practical scenario. As shown in Fig. 4, for time interval
[∆t, 2∆t], the flowing fluid carries remaining reactants added
at t = 0 and t = ∆t forward, preventing them from interacting
with each other. Therefore, in the virtual reactor, we should
make rate constant approach infinity to ensure that reaction is
always complete inside any time interval, thus eliminating the
correlation3. With ∆t → 0, the remaining concentrations of
Si and Sj calculated in Algorithm 1 reduce to

CSi,r(t) = CSi0 (t)− ϕ[CSi0 (t), CSj0 (t)], (28a)

CSj ,r(t) = CSj0 (t)− ϕ[CSi0 (t), CSj0 (t)], (28b)

where ϕ(·, ·) is given in (27).
We derive the output concentrations of species Si, Sj and

Sk in the following lemma.

Lemma 5. For a straight reaction channel with thresholding
reaction Si + Sj → Sk, the output concentrations of species

3In order to eliminate the correlation between different time intervals, the
assumption k → ∞ is only made in Algorithm 1. In practice, k cannot be
infinity and k should be selected to ensure that a reaction is complete for a
given microfluidic channel. Otherwise, there will be a disagreement between
our theoretical analysis and the simulation results under low rate constant
region.

Si, Sj , and Sk can be derived as

CSi(x, t) = CSi,r(t) ∗H(x, t), (29a)
CSj (x, t) = CSj ,r(t) ∗H(x, t), (29b)

CSk(x, t) = ϕ[CSi0 (t), CSj0 (t)] ∗H(x, t), (29c)

where CSi,r(t), CSj ,r(t), H(x, t), and ϕ(·, ·) are given in
(28a), (28b), (17), and (27), respectively.

Proof. Recall that we separate a convection-diffusion-reaction
equation into a reaction part and a convection-diffusion part,
we consider the remaining concentrations of Si in (28a)
and Sj in (28b) as inputs to a straight convection-diffusion
channel. According to (19), we can obtain (29a) and (29b).
The derivation of (29c) can see Appendix B.

C. Reaction Channel with an Amplifying Reaction

Lemma 6. For a straight reaction channel with amplifying
reaction Si + Amp → Si + O, the output concentration of
species O can be derived as

CO(x, t) =
[
CAmp0(t) · 1{CSi0 (t)>0}

]
∗H(x, t), (30)

where CAmp0(t) = CAmp0u(t) and CSi0 (t) are the injected
concentrations of species Amp and Si, u(t) is the Heaviside
step function, 1{·} is the indicator function that represents the
value 1 if the statement is true, and zero otherwise.

Proof. To analyze a straight microfluidic channel with am-
plifying reaction Si + Amp → Si + O, we also separate it
into a reaction term and a convection-diffusion term. For the
reaction term, as species O is only produced in the presence
of Si and the concentration of species O equals the injected
concentration of species Amp [31], the reaction solution can
be expressed as CAmp0(t) ·1{CSi0 (t)>0}. Taking the reaction
solution as the initial input for a convection-diffusion channel,
we derive the concentration of product O in (30).
D. Elementary Blocks

Relying on the analyses of fluid mixing in Lemma 1 and 2,
convection-diffusion channel in Theorem 1, and convection-
diffusion-reaction channel in Lemma 5 and 6, we focus on
the analysis of four elementary blocks of our designed AND
gate (Fig. 3) in Table I. Meanwhile, to simplify the output
expression of a microfluidic circuit, we also define five typical
operators for the four elementary blocks. As shown in Table
I, the operator T [·] represents the output of a convection-
diffusion channel with length LT , and can be expressed as

T [CSi0 (t), n] , CSi0 (t) ∗Hn(LT , t), (31)

where the subscript n of Hn indicates that the average velocity
in the channel is nveff.

For the block with thresholding reaction Si + Sj → Sk,
solutions containing species Si and Sj are injected to a channel
with length LC from two inlets. The initial concentrations of
species Si and Sj are CSi0 (t) and CSj0 (t), and the injection
speeds of species Si and Sj are (n − 1)veff and veff. The
combining of two solutions will result in a concentration
dilution, and the diluted concentrations of Si and Sj are
(n− 1)CSi0 (t)/n and CSj0 (t)/n following (5) in Lemma
1, respectively. Meanwhile, the average velocity will increase
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TABLE I
FOUR ELEMENTARY BLOCKS.

Operator Elementary Block Operator Output

T [CSi0
(t), n]

Eq. (31)
 

 

 

 

 

CSi (t): The output of a
convection-diffusion channel

with length LT .
G[CSi0

(t), CSj0
(t), n]

Eq. (33)
  

 

 

 

 

  

 

 

CSk (t): The concentration of
product Sk with Si + Sj → Sk .

R[CSi0
(t), CSj0

(t), n]

Eq. (34)
CSi (t): The remaining concentration

of Si with Si + Sj → Sk .

A[CSi0
(t), CAmp0 (t), n]

Eq. (35)

   

 

 

  

 

 

 

CO(t): The concentration of
product O with

Si +Amp→ Si +O.

F [CSi0
(t), CSj0

(t), CAmp0 (t), n]

Eq. (36)

 
 

 

  

 

  

 

    

  

 

CO(t): The concentration of
product O with Si + Sj → Sk

and Si +Amp→ Si +O.

to nveff following (7) in Lemma 2. Then, species will flow
to a buffer channel before the convection-diffusion-reaction
channel filled with grey-gradient color.4 The buffer channel
allows reactants to be well mixed before a reaction, and
the reactant mixing along the radial direction only relies on
diffusion. The minimum buffer length LB can be estimated as

LB =
w2 + h2

D
veff. (32)

The term w2+h2

D quantifies the time required for molecules
to be transported over distance

√
w2 + h2 along the radial

direction to achieve a fully diffusional mixing, and (32)
represents how far molecules have traveled along the axial
direction by convection. We define operator G[·] to describe the
concentration of product Sk, and according to (29c), operator
G[·] can be expressed as

G[CSi0 (t), CSj0 (t), n]

,ϕ[(n− 1)CSi0 (t)/n,CSj0 (t)/n]

∗Hn(nLB + LC , t) ∗Hn(LR, t).

(33)

For the same reaction, we define operator R[·] to characterize
the residual concentration of Si. According to (29a), operator
R[·] can be expressed as

R[CSi0 (t), CSj0 (t), n]

,
[
(n− 1)CSi0 (t)/n− ϕ[(n− 1)CSi0 (t)/n,CSj0 (t)/n]

]
∗Hn(nLB + LC , t) ∗Hn(LR, t).

(34)
For the amplifying reaction Si +Amp→ Si +O, operator

A[·] describes the concentration of product O, and can be
expressed using Lemma 6 as

A[CSi0 (t), CAmp0(t), n]

,
[
[CAmp0(t)/n ∗Hn(nLB + LC , t)]

· 1{[((n−1)CSi0
(t)/n)∗Hn(nLB+LC ,t)]>0}

]
∗Hn(LR, t).

(35)

As seen in the AND gate design in Fig. 3, a threshold
reaction is cascaded with an amplifying reaction; thus, we
define operator F [·] as a combination of operators R[·] and

4In practice, by cooling the buffer channel while heating the corresponding
reaction channel, it would allow us to keep the buffer channel thermally
isolated from the reaction channel, which ensures that pre-mixed reactants
do not react until they reach the reaction channel [37].

A[·], which represents the concentration of product O with
Si + Sj → Sk and Si +Amp→ Si +O as

F [CSi0 (t), CSj0 (t), CAmp0(t), n]

,A
[
R[CSi0 (t), CSj0 (t), n], CAmp0(t), n+ 1

]
.

(36)

E. AND Logic Gate Analysis

We denote the initial concentrations of input species I1
and I2 as CI10 (t) and CI20 (t). Remind that we use non-
zero concentration to represent HIGH state (bit-1), and zero
concentration to represent LOW state (bit-0). Therefore, at any
time t, CI10 (t) and CI20 (t) are either greater than or equal
to 0. Species M , ThL, and Amp are injected continuously;
thus, their initial concentrations follow CM0

(t) = CM0
u(t),

CThL0
(t) = CThL0

u(t), and CAmp0(t) = CAmp0u(t). For
simplicity, all reactants are injected using the same average
velocity veff.

Theorem 2. The concentration of product species O in our
designed AND gate in Fig. 3 can be derived as

CO(x5, t)

=F
{
T [CN (x3, t), 4], T [CThL0

(t), 1], T [CAmp0(t), 1], 5
}
,

(37)
where

CN (x3, t)

=
1

2

{
G
[
T [CI10 (t), 1], T [CM0

(t), 1], 2
]

+G
[
T [CI20 (t), 1], T [CM0

(t), 1], 2
]}
∗H2(LA2, t).

(38)

In (37) and (38), operators T [·], G[·], F [·] are defined in Table
I, LA2 is the travelling distance of the laminar located at the
centre channel from x2 to x3 in Fig. 3.
Proof. To facilitate the understanding of the derivation, we
illustrate the flow velocity changes and the mathematical
descriptions of some elementary blocks in Fig. 5. At position
x = x1, the concentrations of species I1 and I2 can be
expressed as T [CI10 (t), 1] and T [CI20 (t), 1], respectively.
Then, species I1 (or I2) and M flow into the second el-
ementary block defined in Table I, and the output product
species N can be described using operator G[·], that is:
G
[
T [CI10/I20 (t), 1], T [CM0(t), 1], 2

]
. The species N sepa-

rately generated by inputs I1 and I2 merge with each other at
position x = x3. The concentration of species N at x = x3

can be derived as (38), where the coefficient 1/2 explains
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Fig. 5. An illustration of the theoretical characterization of our proposed AND
gate design in Fig. 3 using the four elementary blocks and five operators in
Table I. The average velocity changes are marked using red font.
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Fig. 6. The concentration of species N before and after the reaction N +
ThL→W in the designed AND gate.

the dilution of species N generated in the upper branch by
the flow in the lower branch, or vice versa. Finally, species
N travels over a convection-diffusion channel and enters the
elementary block F [·] consisting of reactions N +ThL→W
and N + Amp → N + O to produce the gate output O.
According to the definition of F [·] in (36), the concentration
of species O at location x = x5 can be derived as (37).

For the thresholding reaction N + ThL → W in Fig. 5,
CThL0

directly determines the gate function. We derive the
constraint for CThL0

in the following lemma.

Lemma 7. To ensure that the designed microfluidic circuit
exhibits AND logic behavior, the concentration of species ThL
needs to satisfy

CCon < CThL0
< 2CCon, (39)

where

CCon =
lim
t→∞

2G
{
T [C0u(t), 1], T [CM0u(t), 1], 2

}
∗ q(t)

lim
t→∞

T [u(t), 1] ∗H5(5LB + LC , t)
.

(40)

In (40), C0 is the HIGH concentration of input species I1
and I2, CM0

is the HIGH concentration of species M , q(t) =
H2(LA2, t) ∗ H4(LT , t) ∗ H5(5LB + LC , t), H(x, t) is the
impulse response derived in (17), and T [·] and G[·] are defined
in (31) and (33), respectively.

Proof. Let C1 and CThL denote the steady-state concentra-
tions of species N and ThL at location x = x4, respectively.
Fig. 6 plots the concentration of species N before and after
reaction N + ThL→W . When only one input is HIGH, the
steady-state concentration C1 can be expressed as

C1 = lim
t→∞

4

5
· 1

2
· G
{
T [C0u(t), 1], T [CM0u(t), 1], 2

}
∗ q(t),

(41)

where the coefficient 4/5 explains the dilution of species N
by species ThL. When both inputs are HIGH, the steady-state

Fig. 7. The truth table and implementation of an electric 2:4 decoder.

concentration becomes 2C1. For species ThL, its steady-state
concentration CThL at x = x4 can be expressed as

CThL = lim
t→∞

1

5
T [CThL0

u(t), 1] ∗H5(5LB + LC , t), (42)

where the coefficient 1/5 explains the dilution of species ThL
by the flow coming from location x3. As shown in Fig. 6, the
blue region represents that both two inputs are HIGH, and the
yellow region represents that only one input is HIGH. The
relationship between C1 and CThL has three cases:
• CThL < C1: After reaction, the remaining concentration

of species N contains the region where one or both the
inputs are HIGH.

• C1 < CThL < 2C1: After reaction, the remaining
concentration of species N only contains the region
where both two inputs are HIGH.

• 2C1 < CThL: After reaction, species N is completely
depleted.

Therefore, to capture the region where both the inputs are
HIGH, the concentration of species ThL needs to satisfy the
condition C1 < CThL < 2C1. Combined with (41) and (42),
we can obtain (39) and (40).

IV. MICROFLUIDIC QCSK TRANSMITTER AND RECEIVER

In this section, we present the microfluidic designs to show
how logic computations can process molecular concentra-
tion so as to achieve QCSK modulation and demodulation.
Meanwhile, we also theoretically characterize the output con-
centration distributions of the proposed QCSK transmitter
and receiver. At the end, we discuss the synchronization of
molecular species in microfluidic circuits.

A. QCSK Transmitter
1) QCSK Transmitter Design: QCSK modulation repre-

sents two digital inputs as four concentration levels of an
output signal, which is analogous to the Amplitude Shift
Keying (ASK) modulation in wireless communication [4]. A
challenge of implementing a QCSK MC transmitter is how
to control the output concentration via four different input
combinations (i.e., “00”, “01”, “10”, and “11”). We solve
this challenge by borrowing the mechanism of an electric 2:4
decoder. In electric circuits, a 2:4 decoder, which has 2 inputs
and 4 outputs, selects exactly one of its outputs according to
the input combination. Fig. 7 presents the truth table and an
implementation of the electric 2:4 decoder, where four AND
gates receive the HIGH or the LOW of inputs I1 and I2.

Inspired by the electric 2:4 decoder, we propose a chemical
reactions-based microfluidic 2:4 decoder (with a combiner) to
realize QCSK modulation as shown in Fig. 8. The proposed
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Fig. 8. The chemical reactions-based microfluidic 2:4 decoder.

microfluidic device is made up of four microfluidic units
corresponding to four different concentration outputs. For ease
of reference, these four units are named as Unit 4, Unit 3,
Unit 2, and Unit 1 from top to bottom. Analogous to the
electric 2:4 decoder in Fig. 7, the AND gate in each unit
takes either I1 and I2 or their complementary species P1 and
P2 as its inputs. Species P1 and P2 are supplied continuously
with a HIGH state so that after reactions I1 + P1 → W1 and
I2+P2 →W2, the remaining concentrations of species P1 and
P2, i.e., CP1/P2

(x1, t), can represent the complementary states
of species I1 and I2, thus achieving the NOT gate. Unlike an
electric 2:4 decoder that an identical voltage level is produced
no matter which unit is selected, the proposed chemical 2:4
decoder will output different concentration levels. As each unit
output CiO(t) is influenced by CiAmp0 through an amplifying
reaction, the concentration variation of transmitted signals is
represented via different concentrations of injected species
Amp as CiAmp0(t) = CiAmp0u(t) (1 ≤ i ≤ 4) for different
units. Here, we set C4

Amp0
> C3

Amp0
> C2

Amp0
> C1

Amp0
to ensure max {C4

O(t)} > max {C3
O(t)} > max {C2

O(t)} >
max {C1

O(t)}. The combiner acts as a transmitter-channel
interface and merely combines the four outputs CiO(t). We
highlight that it does not have an impact on the QCSK
modulation function. Thus, for simplicity we will not consider
it in the following analysis, which also brings flexibility to test
each unit of our proposed design.

2) QCSK Transmitter Analysis: The objective of the fol-
lowing analysis is to derive the transmitter output CiO(t) of
the design in Fig. 8. We first derive the inputs of an AND
gate, i.e., the concentrations of I1, I2, P1, and P2 at location
x = x1. When input species I1 and I2 directly flow into an
AND gate, their concentrations can be expressed as

CI1/I2(x1, t)

=
[
T [CI10/I20 (t), 1] ∗H2(LC + LB1 + LR, t)

]
/2,

(43)

where CI10/I20 (t) is the concentration of input species I1 or
I2, operator T [·] is defined in Table I, the coefficient 1/2
explains the dilution of species I1 by species P1 (or I2 by

P2). When the complementary species P1 and P2 flow into an
AND gate, their concentrations can be expressed as

CP1/P2
(x1, t) = R

{
T [CP10

/P20
(t), 1], T [CI10/I20 (t), 1], 2

}
,

(44)

where CP10/P20
(t) is the input concentration of species P1 or

P2, and operator R[·] is defined in Table I.
With the derived AND gate inputs CI1/I2(x1, t) in (43) and

CP1/P2
(x1, t) in (44), the transmitter output CiO(t) can be

expressed using Theorem 2 by interchanging the parameters
• in (38) via: T [CI10 (t), 1]→ CI1/I2(x1, t) if an AND gate

input is I1/I2, T [CI10 (t), 1]→ CP1/P2
(x1, t) if an AND

gate input is P1/P2, n = 2 → n = 3, H2(LA2, t) →
H3(LA2, t);

• in (37) via: T [CN (x3, t), 4] → T [CN (x3, t), 6],
CAmp0(t)→ CiAmp0(t), n = 5→ n = 7.

B. QCSK Receiver

1) QCSK Receiver Design: From the communication per-
spective, the QCSK microfluidic receiver is required to dis-
tinguish different concentration levels from different input
combinations to achieve demodulation. In this paper, we
consider a Gaussian signal CiO(t) as the input for the receiver,
which can be expressed as

CiO(t) =
CiO0√
2πσ2

e−
(t−µ)2

2σ2 (1 ≤ i ≤ 4), (45)

where the superscript i indicates the four concentration levels
of QCSK, µ is the mean, and σ is the standard deviation.
For simplicity, we use CO(t) to denote the general receiver
input. The motivation of using Gaussian signal as the receiver
input is that it can reveal the dispersion effect of molecule dif-
fusion (i.e., Taylor dispersion) on the transmitted rectangular
signals, thus representing the distortion of transmitted signals
occurred in the propagation channel between a transmitter
and a receiver. For more details on Taylor dispersion, we
refer readers to [29]. To focus on the fundamental principle
and mechanism of our proposed QCSK transceiver, we leave
the analysis of the propagation channel between transmitter
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Fig. 9. Three detection units [27] serve as a front-end processing module.
Each channel is labeled with a channel number to denote channel length as
Lnumber. By setting max {Ci

O(t)} < Ci
T10

< max {Ci+1
O (t)}, the front-

end processing module can distinguish four concentration regions.

TABLE II
THE RELATION BETWEEN THE RECEIVER INPUT CO(t), FRONT-END

MODULE OUTPUT BINARY SIGNAL B, AND RECEIVER OUTPUT BINARY
SIGNAL Y .

max {CO(t)} B3 B2 B1 Y2 Y1
[0, C1

T10
] 0 0 0 0 0

[C1
T10

, C2
T10

] 0 0 1 0 1

[C2
T10

, C3
T10

] 0 1 1 1 0

[C3
T10

,∞) 1 1 1 1 1

and receiver for our future work. We also denote CY1
(t) and

CY2
(t) as the final demodulated concentration signals, which

correspond to the transmitter concentration inputs CI10 (t) and
CI20 (t), respectively.

To detect four concentration levels, we first design three
detection units in Fig. 9 to serve as a front-end processing
module for the QCSK receiver. Each detection unit follows
the receiver design in our initial work [27] and is capable of
generating a rectangular signal if the maximum concentration
of a received signal exceeds a predefined threshold. As shown
in Fig. 9, the only difference among three detection units is
the injected concentration CiT10

(t) = CiT10
u(t) (1 ≤ i ≤ 3) of

thresholding reactant T1. By setting max {CiO(t)} < CiT10
<

max {Ci+1
O (t)}, the concentration region of CO(t) can be

identified for three-bit binary signals B3B2B1 as shown in
Fig. 9. For instance, if max {CO(t)} > C3

T10
, all detection

units will produce a HIGH state with B3B2B1 = 111.
The three detection units in Fig. 9 can only demodulate

CO(t) to three concentration signals C3
B(t), C2

B(t), and C1
B(t)

instead of CY2
(t) and CY1

(t), which means extra signal
processing units are required. Consider the output of front-end
module CB(t) exhibits a rectangular concentration profile and
its digital characteristic is ideal to perform logic computations
[19], this motivates us to design logic circuits to transform
CiB(t) to desired outputs CY2

(t) and CY1
(t). To inspire the

design for this signal transformation, we present the relation
between the binary signal Bi (1 ≤ i ≤ 3) and the binary signal
Yj (j = 1, 2) in the truth table of Table II. Based on Table II,
we express the Boolean equations [38] for Y2 and Y1 as

Y2 = B̄3B2B1 +B3B2B1 = B2B1, (46)

and Y1 = B̄3B̄2B1 +B3B2B1 = B1(B3 �B2), (47)

where B̄3 is the complementary form of B3, B2B1 represents
the AND operation of B2 and B1, and � is the Exclusive NOR
(XNOR) operation. Inspired by (46) and (47), we connect the
front-end module with an AND gate to compute CY2

(t) as

shown in Fig 10(a), as well as an XNOR gate and an AND
gate to calculate CY1

(t) as shown in Fig. 10(b).
Fig. 10 also includes the splitter that acts as a channel-

receiver interface. This interface only has an impact on the
velocities of flows entering the front-end processing module,
which can be revealed by (12) in Lemma 3. Since the design
principle of the QCSK receiver and the mechanisms of all the
involved digital gates are independent of the flow velocities,
we will not consider the channel-receiver interface in the
following analysis.

2) QCSK Receiver Analysis: To theoretically characterize
receiver outputs CY2

(t) and CY1
(t), we denote C[·]0(t) as

the concentration of any injected species [·], and Li as the
length of the microfluidic channel with number i. Moreover,
we assume that the injection velocity of any flow is veff. In
the following, we first derive the front-end processing output
CiB(t) in Fig. 9, and then derive the QCSK receiver outputs
CY2

(t) and CY1
(t) in Fig. 10. In addition, the location and

channel number are in bold in the following so that readers
can easily follow our derivation.

Ci
B(t) Derivation: As shown in Fig. 9, each detection unit

in the front-end processing module consists of a thresholding
reaction O+ T1 →W and an amplifying reaction O+A1 →
O+B. The output of a detection unit can be expressed using
the operator F [·] defined in Table I as

CiB(x5, t)

=F
{
T [CO(t), 1], T [CiT10

(t), 1], T [CA10
(t), 1], 2

}
,

(48)

where CO(t) is the receiver input concentration.
CY2(t) Derivation: As shown in in Fig. 10(a), C2

B(t) and
C1
B(t) flow into an AND gate to produce CY2

(t). At x = x6,
CY2

(t) can be derived as
CY2

(x6, t)

=F
{
T [

1

2

2∑
j=1

CjB(x5, t) ∗H3(
2L2 + L6 + h

2
, t), 6]

T [CT20
(t), 1], T [CA20

(t), 1], 7
}
,

(49)

where 1/2 represents the dilution of C1
B(x5, t) by C2

B(x5, t)
and vice versa, Hn(x, t) is given in Theorem 1 with n
indicating that the average velocity is nveff, and the operator
T [·] is defined in Table I.
CY1(t) Derivation: As shown in Fig. 10(b), an XNOR

gate and an AND gate are linked to the front-end processing
module to produce CY1

(t).
• XNOR Gate Analysis: Relying on the fluid separation

analysis in Lemma 3, at x = x5, CjB(x5, t) (j = 2, 3)
is equally separated from channel 9 to channels 10 due
to the symmetrical microfluidic design from x5 to x9

in Fig. 10(b), resulting in a velocity reduction from 3veff
in channel 4 5 with O + A1 → O + B to 1.5veff in
channels 10. In channels 11, the confluence of C3

B(x5, t)
and C2

B(x5, t) occurs, and then is diluted by species T3

injected at x7. Subsequently, the outer fluid performs

5Since there are three inlets in each unit of the front-end processing module
and a flow at each inlet is injected with veff, the average velocity in channel
4 is 3veff.
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(a) Microfluidic channels to calculate CY2

(b) Microfluidic channels to calculate CY1

Fig. 10. The microfluidic QCSK receiver design. Each channel is labeled with a channel number to denote channel length as Lnumber.

reaction B + T3 → W to capture the region where both
C3
B(x5, t) and C2

B(x5, t) are HIGH as the second case
in Fig. 6, while the inner fluid flows forward without
reaction B+T3 →W . After reactions B+A3 → B+R1

and B + A4 → B + R2, the concentrations of products
R1 and R2 at x = x9 can be expressed as (50) and (51)
in the top of next page, where the superscript “Inner” and
“Outer” represent the outer and inter fluids from x7 to
x9, and 3/4 in (50) represents the dilution of species B
by species T3.
After reaction R1 + R2 → W , the remaining species
R1 at x = x10 will be HIGH when either C3

B(x5, t) or
C2
B(x5, t) is HIGH, thus achieving an XOR gate6. Rely-

ing on (29a) in Lemma 5, the remaining concentration
of species R1 is derived as

CR1
(x10, t)

=
1

2

{
CR1(x9, t)− ϕ[CR1(x9, t), CR2(x9, t)]

}
∗H5(

L2 + L9 + 2w

2
, t) ∗H10(L14, t) ∗H10(L4, t),

(52)
where ϕ[·, ·] is given in (27). The cascaded reaction
R1 + NOT → W functions as a NOT gate similar to
the reaction I1 + P1 → W in the QCSK transmitter in
Fig. 8 in order to achieve the XNOR gate. At x = x11,
the concentration of NOT can be expressed using the
operator R[·] defined in Table I as

6As the inner fluid does not perform any reaction from x7 to x8, after
reaction B + A3 → B + R1, species R1 is HIGH when one or both
C3

B(x5, t) and C2
B(x5, t) are HIGH, thus achieving an OR gate. By contrast,

with reaction B+T3 →W , after reaction B+A4 → B+R2, species R2 is
HIGH only when both C3

B(x5, t) and C2
B(x5, t) are HIGH, thus achieving

an AND gate. Therefore, the XOR gate is consisted of an OR gate, an AND
gate, and a thresholding reaction R1 +R2 →W as shown in Fig. 10(b).

C2&3
NOT (x11, t)

=R
{
T [CNOT0(t), 1], CR1(x10, t), 11

}
∗H11(

2L2 + L18 + h

2
, t),

(53)

where the superscript 2&3 represents the species NOT
generated by C2

B(x5, t) and C3
B(x5, t).

• AND Gate Analysis: The calculation of receiver output
CY1

(t) also needs C1
B(x5, t). To perform the AND gate,

the product species B (indicated by the red arrow) should
be converted to molecular type NOT via B + V →
NOT . At x = x11, the concentration of species NOT
generated by C1

B(x5, t) can be expressed using operator
G[·] defined in Table I as

C1
NOT (x11, t)

=G
{
C1
B(x5, t) ∗H3(L16, t), T [CV0

(t), 1], 4
}

∗H4(
2L2 + 2L17 + L18 + h

2
, t).

(54)

Finally, we can derive the QCSK receiver output
CY1

(x12, t) as
CY1

(x12, t)

=F
{
T [

4

15
C1
NOT (x11, t) +

11

15
C2&3
NOT (x11, t), 15],

T [CT40
(t), 1], T [CA50

(t), 1], 16
}
,

(55)

where 4/15 represents the dilution of C1
NOT (x11, t) by

C2&3
NOT (x11, t), while 11/15 represents the dilution of

C2&3
NOT (x11, t) by C1

NOT (x11, t).

C. Microfluidic Circuit Synchronization

There are mainly two synchronization cases that need to
be taken into account: 1) species synchronization at the inlets
of microfluidic circuits and 2) species synchronization inside
microfluidic circuits. The first case refers to the simulta-
neous injection of different species to microfluidic circuits.
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CR1
(x9, t)

= A
{
T [

1

2

3∑
j=2

CjB(x5, t) ∗H1.5(
3L2 + L9 + 2L10 + L11 + h+ 2w

2
, t), 3]︸ ︷︷ ︸

CInner
B (x7,t)

∗ 3

4
H4(L2 + L12 + L4, t)

︸ ︷︷ ︸
CInner
B (x8,t)

, T [CA30
(t), 1], 5

}
,

(50)

CR2
(x9, t) =F

{
T [

1

2

3∑
j=2

CjB(x5, t) ∗H1.5(
3L2 + L9 + 2L10 + L11 + h+ 2w

2
, t), 3]︸ ︷︷ ︸

COuter
B (x7,t)

, T [CT30
(t), 1], T [CA40

(t), 1], 4
}
.

(51)

In practice, we can deal with this synchronization issue by
grouping syringe pumps with a microcontroller board (e.g.,
Arduino) and sending the release signal to syringe pumps
at the same time. For the second case, one example is the
synchronization of the two inputs (i.e., C1

NOT (x11, t) and
C2&3
NOT (x11, t)) of the AND gate used in Fig. 10(b). The

synchronization of C1
NOT (x11, t) and C2&3

NOT (x11, t) requires
that C1

NOT (x11, t) and C2&3
NOT (x11, t) should arrive at x11

simultaneously, which can be achieved by ensuring the inputs
CO(t) of three detection units have the same traveling time
from the front-end module to position x11 in Fig. 10(b).
Based on the fact that the convection effect is merely a shift
of the molecular profile in time with average velocity and
without any change of shape [39], the design should satisfy
the following requirement∑

i∈I
Li/vi =

∑
j∈J

Lj/vj , (56)

where I is the set of the microfluidic channels used to generate
C2&3
NOT (x11, t), J is the set of the microfluidic channels used to

generate C1
NOT (x11, t), and Li and vi are the channel length

and the corresponding flow velocity of microfluidic channel
with label i.

V. PERFORMANCE EVALUATION

In this section, we implement our proposed microfluidic
AND gate, QCSK transmitter, and QCSK receiver design7

in Fig. 3, Fig. 8, and Fig. 10 using COMSOL Multiphysics,
which are then used to validate our corresponding theoretical
analysis. The impulse response H(x, t) given in Theorem 1
is computed in Matlab using quadgk. As quadgk is only an
approximation of H(x, t), the computed results may fluctuate
around their steady values. If a computed value is slightly
larger than steady value 0, it can induce an instant change on
the output value of the indicator function in (30) from 0 to 1,
which would further lead to a generation of output signals in
undesired regions after an amplifying reaction. To avoid this
phenomenon, we modify the statement of an indicator function
CSi0 (t) > 0 as CSi0 (t) > 1

10 max {CSi0 (t)}. By doing so,

7The proposed transceiver is a proof-of-concept design for performing
QCSK modulation-demodulation function in molecular domain, and the
corresponding testbed will be used for in vitro experiments. A discussion
about design implementation can be found in our work [27].

(a) The concentration of species N and ThL at x = x4.

(b) The normalized concentrations of input species I1,
I2, and output species O.

Fig. 11. The evaluation of an AND logic gate.

the width of a rectangular output is expected to be smaller
than that of the corresponding simulation result. In COMSOL
simulations, unless otherwise stated, we set veff = 0.1cm/s,
D = 10−8m2/s, w = 20µm, h = 10µm, k = 400m3/(mol·s).
Consider these values and water as solvent, the value of the
Reynolds number is roughly 3, which is less than 2000 so
that the laminar flow assumption is valid. Furthermore, we use
“Ana.” and “Sim.” to abbreviate “Analytical” and “Simulation”
in all figures.

A. AND Logic Gate

Fig. 11 presents the COMSOL simulation results of the
AND logic gate design depicted in Fig. 3. We set the pa-
rameters: CI10 (t) = 8[u(t − 1) − u(t − 3)], CI20 (t) =
8[u(t− 2)− u(t− 4)], CM0

(t) = 8u(t), CAmp0(t) = 12u(t),
LT = 80µm, LC = 20µm, LR = 500µm, LA2 = 120µm. In
order to examine the impact of the injected concentration of
species ThL on the gate behavior, we consider three cases:
CThL0

(t) = 5u(t), CThL0
(t) = 10u(t), CThL0

(t) = 20u(t),
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(a) Unit 4 (b) Unit 3 (c) Unit 2 (d) Unit 1

Fig. 12. The output concentrations of the proposed microfluidic QCSK transmitter.

which correspond to the cases CThL < C1, C1 < CThL <
2C1, and CThL < 2C1 in Fig. 6, respectively.

Fig. 11(a) plots the concentrations of species N and ThL
before reaction N + ThL → W in Fig. 3. We observe that
the simulated concentration points agree with the analyti-
cal concentration curves, thus demonstrating the correctness
of our analysis of convection-diffusion in Theorem 1 and
convection-diffusion-reaction channels in Lemma 5. For the
three different injected concentrations, species ThL is nearly
diluted to one-fifth of its injected concentration due to that
species ThL enters the microfluidic device via the fifth inlet,
which validates the concentration analysis for fluid mixing in
Lemma 1. Moreover, we also plot the concentration constraint
CCon in (40) for species ThL using black dash lines. For
the curves with CThL0

(t) = 5u(t) and 20u(t), these values
do not satisfy the concentration constraint in Lemma 7; as
expected, the microfluidic device fails to achieve the AND
function, which is demonstrated in Fig. 11(b). Fig. 11(b)
plots the normalized inputs and the final output product O
in (37). Only for CThL0

(t) = 10u(t), the width of species
O equals the width where both input species I1 and I2 are
HIGH, demonstrating the desired behavior of an AND gate.
Furthermore, due to the modification of the indicator function
set, we can see the width of (37) is smaller than that of the
simulation results.

B. QCSK Transmitter

Fig. 12 plots the outputs of the proposed microfluidic QCSK
transmitter design in Fig. 8 and their analytical values CiO(t)
in Sec. IV-A2. Species I1 and I2 are injected with either
12[u(t−1)−u(t−3)] representing bit 1 or 0u(t) representing
bit 0. For other molecular types, their injected concentrations
are set as: CP10

(t) = CP20
(t) = 12[u(t − 1) − u(t − 3)],

CM0(t) = 12u(t), CThL0(t) = 16u(t), C4
Amp0

(t) = 24u(t),
C3
Amp0

(t) = 16u(t), C2
Amp0

(t) = 8u(t), and C1
Amp0

(t) = 0.
The buffer channels are configured with LB1 = 100µm,
LB2 = 150µm, LB3 = 350µm, and LB4 = 400µm.

As shown in Fig. 12, for any input combination, only one
unit outputs a HIGH signal except from the case where both
I1 and I2 are LOW due to C1

Amp0
(t) = 0. In addition, for each

unit, it is selected under a specific input combination (e.g., Unit
4 is only selected when both input species I1 and I2 are HIGH)
so that the outputs for other three input combinations are all
in a LOW state and the corresponding curves are completely
overlapped. Moreover, the analytical curves always capture the
simulation points, which again demonstrates the effectiveness
of our theoretical analysis CiO(t) in Sec. IV-A2. As species

TABLE III
THE PARAMETERS OF THE QCSK RECEIVER.

Molecular Type Concentration (mol/m3) Molecular Type Concentration (mol/m3)
A1 9u(t) T2 14u(t)
A2 24u(t) T3 7u(t)
A3 20u(t) T4 37u(t)
A4 20u(t) NOT 22u(t)
A5 51u(t) V 28u(t)

Amp is supplied with different injected concentrations for
each unit, we see that the selected unit reaches different
concentration levels, proving that the proposed microfluidic
QCSK transmitter successfully modulates input bits to the
concentration level of output species O.

C. QCSK Receiver

To evaluate the proposed QCSK receiver design in Fig. 10,
we consider Gaussian signals CO(t) with four peak amplitudes
as the receiver input: C1

O0
= 0, C2

O0
= 0.85, C3

O0
= 1.7, and

C4
O0

= 2.55, with the mean µ = 2 and standard deviation
σ = 0.34. Accordingly, to distinguish these four concentration
levels, the concentration of species T1 for three units in Fig.
9 are set as: C3

T10
(t) = 2.2u(t), C2

T10
(t) = 1.2u(t), and

C1
T10

(t) = 0.8u(t). Other parameters and the geometry are
summarized in Table III and IV.

Fig. 13 plots the outputs of the proposed QCSK receiver
design in Fig. 10 and the corresponding analytical results
of CY2

(t) in (49) and CY1
(t) in (55). First, we can see

that although simulation curves are not in precise agreement
with analytical curves, the close match can still confirm the
correctness of the mathematical characterization of CY2(t) and
CY1(t). Second, we observe that the width difference between
analytical and simulation curves for CY1

is larger than that for
CY2

. This is because the modification of the statement of an
indicator function results in the width difference in each ampli-
fying reaction, and the more amplifying reactions are utilized
to compute CY1 in Fig. 10(b), the bigger the width difference
is. Third, we see that the proposed receiver design can well
demodulate the received signal CO(t) to two outputs CY2

and
CY1

. Recall that we use non-zero concentration to represent
HIGH state (bit-1), and zero concentration to represent LOW
state (bit-0). We also observe that the relationship between the
maximum concentration of the receiver input max {CO(t)},
the concentration of species T1, and binary signals Y2 and
Y1 is in consistent with the truth table of Table II, which
demonstrates the effectiveness of our proposed design.
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TABLE IV
THE GEOMETRY OF THE QCSK RECEIVER.

Channel Number Length (µm) Channel Number Length (µm) Channel Number Length (µm) Channel Number Length (µm)
1 80 6 200 11 180 16 1911
2 20 7 350 12 200 17 50
3 100 8 400 13 250 18 300
4 500 9 170 14 500 19 750
5 150 10 180 15 550 20 800

(a) max{CO(t)} = 3 (b) max{CO(t)} = 2 (c) max{CO(t)} = 1 (d) max{CO(t)} = 0

Fig. 13. The output concentrations of the proposed microfluidic QCSK receiver.

VI. CONCLUSION

In this paper, we considered the realization of QCSK modu-
lation and demodulation functionalities for MC using chemical
reactions-based microfluidic circuits. We first presented an
AND gate design to demonstrate the logic computation capa-
bilities of microfluidic circuits, and then showed how to utilize
logic computations to achieve QCSK modulation and demod-
ulation functions. To theoretically characterize a microfluidic
circuit, we established a general mathematical framework
which is scalable with the increase of circuit scale and can be
used to analyze other new and more complicated circuits. We
derived the output concentration distributions of the AND gate,
QCSK transmitter and receiver designs. Simulation results ob-
tained from COMSOL Multiphysics showed all the proposed
microfluidic circuits responded appropriately to input signals,
and closely matched our derived analytical results. The QCSK
design can be extended to general nth order CSK modulation
scheme by using a microfluidic n : 2n decoder constructed
from 2n AND gates. This extension reveals the scalability and
extendibility of our proposed microfluidic circuit design. Thus,
we believe that this paper provides not only a design principle
and mathematical framework for microfluidic MC circuits, but
also a foundation for utilizing simple microfluidic logic gates
to produce diverse and complex signal processing functions.

The proposed mathematical framework is a deterministic
model and the COMSOL simulation results describe the de-
terministic responses of our proposed microfluidic circuits. Al-
though COMSOL Multiphysics simulator can simulate flows
in the most accurate way, proposing a statistical model for
microfluidic circuit to provide more communication insights is
an interesting direction for future work. This statistical model
can include the noise caused by the mechanical limitations of
the solution injections devices (e.g., syringe pump), the noise
caused by the chemical reactions, and the noise caused by
the external observation equipment (e.g., spectrometer or pH
meter). Furthermore, the incorporation of transmitter-channel
interface, propagation channel, and the channel-receiver inter-
face into the model makes the model more comprehensive and
complete.

APPENDIX A
PROOF OF THEOREM 1

To derive the impulse response H(x, t), we formulate the
following initial and boundary conditions for (16)

CSi(0, t) = δ(t), (57a)
CSi(x, 0) = 0, x ≥ 0, (57b)

and
∂CSi(x, t)

∂x
|x=∞ = 0, t ≥ 0, (57c)

where δ(·) is the Kronecker delta function. The Laplace
Transform of (16) with respect to t is

Deff
∂2C̃Si(x, s)

∂x2
− veff

∂C̃Si(x, s)

∂x
− sC̃Si(x, s) = 0, (58)

where C̃Si(x, s) is the Laplace Transform of CSi(x, t). The
general solution for (58) can be expressed as

C̃Si(x, s) = d1e
veff+
√
v2eff+4Deffs

2Deff
x

+ d2e
veff−
√
v2eff+4Deffs

2Deff
x
, (59)

where d1 and d2 are two constants. To determine d1 and d2,
we also apply Laplace Transform to (57a) and (57c), which
are

C̃Si(0, s) = 1, (60)

∂C̃Si(x, s)

∂x
|x=∞ = 0. (61)

Constrained by these two conditions, we arrive at the particular
solution for (58) as

C̃Si(x, s) = e
veff−
√
v2eff+4Deffs

2Deff
x
. (62)

In order to obtain the impulse response, we need to calculate
the inverse Laplace Transform of (62), i.e., L−1

{
C̃Si(x, s)

}
.

In the following, we provide two methods to derive
L−1

{
C̃Si(x, s)

}
. The first method relies on the table provided
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in [40]. According to [40, eqs. (1.3) and (5.58)], the inverse
Laplace Transform8 can be derived as

L−1
{
C̃Si(x, s)

}
=

x

2
√
πDefft3

e
veffx
2Deff

− veff
2t2+x2

4Defft . (63)

However, when we consider a much more practical scenario,
e.g., a time-varying distribution of average velocity due to the
imperfectness of syringe pumps, the first method may become
infeasible. Therefore, the second method is more general.
This method resorts to the Gil-Pelaez theorem and regards
L−1

{
C̃Si(x, s)

}
as a probability density function whose char-

acteristic function9 is C̃Si(x, ω). The cumulative distribution

function (CDF) for L−1
{
C̃Si(x, s)

}
can be expressed as [41]

F (x, t) =
1

2
− 1

π

∫ ∞
0

e−jωtC̃Si(x, ω)− ejωtC̃Si(x, ω)

2jω
dω,

(64)

where C̃Si(x, ω) is the complex conjugate of C̃Si(x, ω). Take
the derivative of F (x, t) with respect to t, we can arrive at
(17).

APPENDIX B
THE DERIVATION OF THE CONCENTRATION OF PRODUCT

SPECIES Sk IN (29c)

To derive the concentration of product Sk, we combine (20)
and (21) and denote C(x, t) = CSi(x, t) + CSk(x, t), which
yields

∂C(x, t)

∂t
= Deff

∂2C(x, t)

∂x2
− veff

∂C(x, t)

∂x
. (65)

The sum concentration has the following initial and boundary
conditions

C(0, t) = CSi0 (0, t), (66a)

C(x, 0) = 0, x ≥ 0, (66b)

and
∂C(x, t)

∂x
|x=∞ = 0, t ≥ 0. (66c)

As these conditions are the same as (57a)-(57c), we can write

C(x, t) = CSi0 (0, t) ∗H(x, t). (67)

Combined with (28a) and (29a), the concentration of product
Sk is

CSk(x, t) = C(x, t)− CSi(x, t)
= ϕ[CSi0 (t), CSj0 (t)] ∗H(x, t).

(68)

8In Matlab, we need to manually set value 0 for (63) when t = 0 as Matlab
returns the scalar “not a number” (NaN).

9The Fourier Transform of a probability density function is its characteristic
function. The Laplace Transform C̃Si (x, s) can be converted to the corre-
sponding Fourier Transform C̃Si (x, ω) via s = jω.
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