9
This electronic thesis or dissertation has been ING S

downloaded from the King’s Research Portal at CO/ / eg €
https://kclpure.kcl.ac.uk/portal/ LONDON

Formulas for Brumer—Stark Units

Honnor, Matthew

Awarding institution:
King's College London

The copyright of this thesis rests with the author and no quotation from it or information derived from it
may be published without proper acknowledgement.

END USER LICENCE AGREEMENT ‘@ @ @ @ \

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

o Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).
° Non Commercial: You may not use this work for commercial purposes.

o No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and
other rights are in no way affected by the above.

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

Download date: 12. Jan. 2025



ING'S
College

LONDON

Formulas for Brumer-Stark Units

Matthew H. Honnor

Submitted for the degree of Doctor of Philosophy in Mathematics



Abstract

Let F be a totally real number field. There have been three p-adic formulas conjectured by
Dasgupta and Dasgupta—Spieft for the Brumer—Stark units of F. These formulas are conjectured
to be equal by Dasgupta—Spief. In this thesis we first show that two of these formulas are equal
in the case that F'is a cubic field. This proof uses only elementary methods involving calculations
of Shintani sets. We then present joint work with Dasgupta which proves that all three of the
conjectural formulas are equal for any totally real field F'. Finally, work of Dasgupta—Kakde has
shown that one of the conjectural formulas is equal to the Brumer—Stark unit up to a root of
unity. Recent work of Bullach-Burns—Daoud—Seo proves the minus part of the eTNC away from
2, for finite abelian CM extensions of totally real fields. We show that this recent work implies

that the formulas hold up to a 2-power root of unity.
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Chapter 1

Introduction

Let F' be a number field of degree n over Q with ring of integers © = Op. Let p be a prime of
F, lying above a rational prime p, and let H be a finite abelian extension of F' such that p splits
completely in H. In 1981, Tate proposed the Brumer—Stark conjecture, [22, Conjecture 5.4],
stating the existence of p-unit v in H, the Brumer—Stark unit. This unit has -order equal to
the value of a partial zeta function at 0 for a prime 3, of H, above p. Since the unit u is only non-
trivial when F' is totally real and H is totally complex containing a complex multiplication (CM)
subfield, we assume this throughout this thesis. The Brumer—Stark conjecture is a refinement of a
result of Gross, [16, Proposition 3.8], which proves the existence of an element satisfying the same
property regarding its 3-order. However, in this result, the element is in the group of p-units
tensored over Z with Q, rather than being a genuine p-unit. Recent work of Dasgupta—Kakde in
[11] has shown that the Brumer—Stark conjecture holds away from 2.

There have been three formulas conjectured for the Brumer—Stark units. In [8, Definition
3.18], Dasgupta constructed explicitly, in terms of the values of Shintani zeta functions at s =0,
an element u; € F;7. Dasgupta conjectured, in [8, Conjecture 3.21], that this unit is equal to
the Brumer—Stark unit. This equality has recently been shown to be correct up to a root of
unity by Dasgupta—Kakde in [10]. The key ingredient in the proof of the above theorem is
Dasgupta—Kakde’s proof of the p-part of the integral Gross—Stark conjecture. The other two
formulas are cohomological in nature and were conjectured by Dasgupta—Spiefs in [13] and [14],
we denote these formulas by us and ug, respectively. In [13, Conjecture 6.1] and [14, Remark
4.5], respectively, us and ugz are conjectured to be equal to the Brumer—Stark unit. In this thesis,
we give a complete account of these formulas before considering the progress we have made on
problems related to these formulas.

The first result of this thesis is that w; is equal to ug when F' is a cubic extension of Q
(i.e., when n = 3). The equality of u; and usg, for any totally real field F', was conjectured by
Dasgupata—Spiefs in [14, Remark 4.5]. They also proved the case when F' is a quadratic field
(i.e., when n = 2) in [14, Theorem 4.4]. This first result has been attempted previously by Tsosie



in [24]. However, as we show in the appendix, we find a counterexample to the statement of
[24, Lemma 2.1.3|; this lemma is necessary for his work. The statement concerns having a nice
translation property of Shintani sets, for more details see Statement A.1.1 in the appendix. The
main contribution of this first result is the methods we develop to recover some control of the
translation properties of Shintani sets. We note that currently we have no way to extend the
arguments used in this proof to allow us to apply this method to work with totally real fields
of any degree. The translation properties of Shintani sets has not previously been studied and
leads to a surprisingly simple conjecture. However, we are unable to prove this conjecture. We
note this conjecture in the appendix. We remark that this conjecture appears to contain the
additional information which would allow us to extend the proof presented in Chapter 7 to work
for any totally real field, rather than only for cubic extensions. We give more detail on this in
the appendix.

The second main result of this thesis is that u;, us and ug are all equal to each other, for any
totally real number field F'. This result is joint work with Samit Dasgupta. The approach of this
proof is very different to that used by the author for the prior proof that u; = us when F is a
cubic extension. Firstly, it is possible to show that us is equal to ug by direct calculation. More
precisely, we write each of the cohomological expressions explicitly and then show that these two
elements are equal. For the proof that u; is equal to us, we show that each of u; and usy satisfy
a strong enough functorial property to force them to be equal. Namely, we show that they each
satisfy a norm compatibility property. This result supersedes the earlier result of u; = u3 when
n = 3, although its proof is very different in style to the proof of our first result. An immediate
consequence of our main result is that each of the formulas for the Brumer—Stark unit are correct
up to a root of unity. More precisely, that [13, Conjecture 6.1] and [14, Remark 4.5] hold up to
a root of unity. This follows applying our result that u; = us = uz to Dasgupta—Kakde’s proof,
in [10], that u; is equal to the Brumer—Stark unit up to a root of unity.

In [14, Conjecture 3.1], Dasgupta—Spiefs conjecture a cohomological formula for the principal
minors and the characteristic polynomial of the Gross regulator matrix associated to a totally
odd character of the totally real field F. The diagonal terms of the Gross regulator matrix
are defined via the Brumer—Stark units. Let y be a chosen totally odd character. Then, the
diagonal terms are expressed via the ratio of the p-adic logarithm and the p-order of the y™*
component of the Brumer—Stark unit. By considering [14, Conjecture 3.1] for the 1 x 1 principal
minors, Dasgupa—Spiefs conjectured a formula for this value. This formula is a specialisation of
their formula ugz. It follows from our main result that Conjecture 3.1 in [14] holds for the 1 x 1
principal minors. We note that there is no root of unity ambiguity here due to the presence of
log,, and norm maps in the definition of the Gross regulator matrix which removes roots of unity.

Finally, we consider the root of unity ambiguity in the result of Dasgupta—Kakde which proves
that u; is equal to u, up to a root of unity. We show that these formulas are in fact correct
up to a 2-power root of unity. In particular, we prove this for u, and use the equality of the

formulas to obtain this result for u; and us. The key result that allows us to prove this theorem



is the recent work of Bullach-Burns-Daoud-Seo in [2, Theorem B] where they prove the minus
part of the eTNC away from 2 for finite CM extensions of totally real fields. It follows from |3,
Corollary 4.3] of Burns that the integral Gross—Stark conjecture away from 2 is implied by [2,
Theorem B]. We show that the integral Gross—Stark conjecture away from 2 is strong enough to

imply that each of the formulas are correct up to a 2-power root of unity.



Chapter 2

Background and Conjectures

2.1 The analytic class number formula

L-functions are a central object of study in modern number theory. In particular, there is a focus
on showing relations between special values of these analytic functions and arithmetic objects.
The classical example of this type of relation is the analytic class number formula. Let F' be a
number field with ring of integers Or. One can define an analogue of the Riemann zeta function
for F by using the norm of integral ideals, of O, in place of the natural numbers in the Riemann

zeta function, i.e., we define

Cr(s)= ). !

————, s5¢eC, Re(s)> 1.
acOp NF/Q(a)S

Here the sum is over all the non-zero integral ideals of ©r. This is the Dedekind zeta function for
F. As with the Riemann zeta function, (r(s) has a meromorphic continuation to all of C, with
only a simple pole at s = 1. We remark that these objects are purely analytic in nature and that
when F' = Q the Dedekind zeta function is equal to the Riemann zeta function. For a number
field F, the class number of F is the order of the class group, which is defined by the quotient
of the group of fractional ideals of O by the principal ideals of ©r. The class group measures
the failure of unique factorisation into primes and is thus a fundamental object of study. We
denote the class number of F' by Apr. The analytic class number formula provides a precise and

remarkable relationship between the leading term at s =1 of {r(s) and the class number of F.

Theorem 2.1.1 (The analytic class number formula). Let F' be a number field with [F : Q] = r1+
2ro, where 1 and ro denote, respectively, the number of real and pairs of imaginary embeddings

of F. Then,
T1 T2
lim(s — 1)Cr(s) = M7
s—1 WE |DF|

where Ry, hp,wr and Dp are, respectively, the regulator, class number, number of roots of unity



and discriminant of F.

We have defined hrp above and will define Rp after the next theorem. The analytic class
number formula was proved for quadratic fields by Dirichlet and in general by Dedekind. As
with the Riemann zeta function, (r satisfies a functional equation. In particular, we have for
seC,

Ap(s)=Ap(1-s) where Ap(s)=| Dp [*? Tr(s)"Tc(s)2Cr(s).

Here T'p(s) = 7%/?I'(s/2) and T'c(s) = 2(27)°T(s), where I'(s) is the Gamma function. It
follows from the functional equation for (r (with s = 0) and the analytic class number formula,
that the coefficient of the leading term in the Taylor expansion of {, denoted by (}.(0), is given
by

Gi(0) = lim 5" (s) = 218
where r = 71 + ro — 1. This value r is also of significance; it is the rank of the group 6y of units

of F. This follows from the following famous theorem of Dirichlet.

Theorem 2.1.2 (Dirichlet’s unit theorem). The group O. of units of a number field F is iso-
morphic to W xZ", where W is a finite cyclic group consisting of all the roots of unity in F' and

r=ry+re—1.

The proof of this theorem is where the definition of Rp, the regulator of F, first appears.
Since this definition appears throughout this thesis we shall recall it here. We fix the order of
the embeddings o1, ...,0.,+r, of F' such that o; is a real embedding if 1 <¢ <7; and a complex
embedding if r; +1 <4 < ry +rg. Define the Dirichlet regulator I : 0 — R"*"2 such that for

a € 0F, we have I(a) = (I1(a), ..., lp +ry (@) where

log(|os(a)|) if1<i<r,
ll(Ot) =
2log(|oi(a) |) ifri+1<i<r +ro.

The image of O is an r-dimensional lattice in R™*"2. As before we have r =7 + ro — 1. Letting
U1, ..., U, € OF be units such that the set {I(u1),...,l(u,)} is a Z-basis of the lattice I(0}F.), we
define

Rp =| det(li(u;))ij=1,....r | -

We note that changing the choice of basis will only change the sign of the determinant and thus
Rpr is well defined.

2.2 The Gross—Stark conjecture

As the Dedekind zeta function extends the definition of the Riemann zeta function to arbitrary

number fields, we now want to extend the definition of the Dedekind zeta function to work
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with extensions of arbitrary number fields. We are interested in finite abelian extensions of
number fields H/F. The Galois group of H/F, which we denote G = Gal(H/F), is the group of
automorphisms of H that fix the base field F'. Let R denote a finite set of places of F' containing
the infinite places of F' and those that are ramified in H. Let x : G — C* be any character of G.
As usual, we view x also as a multiplicative map on the semigroup of integral fractional ideals
of F' by defining x(q) = x(04) if q is unramified in H and x(q) = 0 if q is ramified in H. Here oy
is the image of the ideal q under the Artin map of class field theory. We can thus associate to

any such x the Artin L-function

In(vs)= ¥ Moo

———— s5¢€C, Re(s)>1.
(am-1 No* gp1-x(a)Ng™*

Here, the sum is over all non-zero integral ideals of O that are coprime R, i.e., the ideals that
are coprime to each prime ideal in R. The product is over all prime ideals of Or that are not
contained in R. Here and from now on we write N = Ng/q. Similar to the Dedekind zeta function,
if x is non-trivial, we can analytically continue Lg(x,s) to a holomorphic function on all of C.
Write F for the algebraic closure of F. We now let

x:Gal(F/F) > Q

be a character of the absolute Galois group of F. Fix a rational prime p. We fix embeddings
QcCandQc C,, so x may be viewed as taking values in C or C,. We let H denote the fixed
field of the kernel of y. We now give the construction of the p-adic L-function. Write P for the
set of primes of F' lying above p and let Rp = Ru P. Partition P as S, U Ry, where .S, denotes
the subset of primes that split completely in H and R; the set of remaining primes of P. Let

w: Gal(F (i) [F) ~ (Z/2DL)* > piagpr)

denote the Teichmiiller character. For n € Zsg, we have let u, denote the cyclic group of nt®

roots of unity. There is a p-adic meromorphic function
Ly(xw,") : Zp > C,
uniquely determined by the interpolation property
Ly(xw, k) = Lr, (xw", k) for ke Zs.

We refer to this function as the p-adic L-function. Under the Leopoldt conjecture, the p-adic

L-function has a simple pole at s = 1 when y = w™.

The existence of this function was shown
independently by Deligne-Ribet [15] and Cassou-Nogués [4]. It follows from the functional

equation of Lg,(xw",s) that L,(xw,) is the zero function unless F' is totally real and y is

11



totally odd. We say F is totally real if 7o = 0 and fix this choice of F'. To define the notion of
totally odd we first note that we can define the sign of x as the tuple, sign(x) = (7¢) fetiom(r,r) €
{0, 1}#Hom(FR) “such that

x(abp)= ] sign(f(a))”¥ foralla=1 (mod f).
feHom(F,R)
Here f is the conductor of H/F. We then say x is totally odd if sign(x) = (1,...,1). For the
remainder of this section we assume that F' is totally real and yx is totally odd. We note that, in
this case, H is a finite cyclic CM extension of F'.
The Gross—Stark conjecture was stated by Gross in [16] and gives a relation between the
leading term of a p-adic L-function, twisted by y, and an algebraic invariant called Gross’s

regulator. Let r, = #5,. We refer to this quantity as the rank of the conjecture.

Conjecture 2.2.1 (Gross—Stark conjecture). We have

(rx)
Ly (x,0) = %,(x) T (1 - x(p)),

TX!LR(Xvo) peR,

where Rp(x) is a certain regulator of p-units of H, namely Gross’s requlator which we define

below.

Remark 2.2.2. Conjecture 2.2.1 was first proved in the ry =1 case, assuming Leopoldt’s conjec-
ture and a technical condition, by Dasgupta—Darmon—Pollack in [9]. Both of these assumptions

were later removed by Ventullo in [25]. The case of arbitrary rank was proved by Dasgupta—
Kakde—Ventullo in [12].

Definition 2.2.3. For each prime p € Sy, we define the group
Up={ueH": |ulp=11if P does not divide p}.

Here 3 ranges over all finite and archimedean places of H; in particular, each complex
conjugation in H acts as an inversion on U;. We remark that the standard notation for the
above group is U,. However, we require this notation later for a different object, to avoid

confusion we have denoted the above group with a prime. We then write

Uy, = (U ®2 Q)X
={uel, ®zQ|o-u=x"(0) u for all o € Gal(H/F)}.

The Galois equivariant strengthening of Dirichlet’s unit theorem, by Herbrand (see Chapter I,

§3, §4 of [23]), implies that

1 ifpesS,,

dimg (U ) = neo
0 otherwise.

12



Let uy , denote any generator (i.e., non-zero element) of the Q-vector space Uy ,. Consider the

continuous homomorphisms

op =ordy : [y - Z, (2.1)

ly =log, oNormp, /g, : Fy = Z,. (2.2)

Here, log,, : Q, — Z;, denotes Iwasawa’s p-adic logarithm and Normp, /g, is the p-adic norm map
on F,. Suppose we choose for each p € .S}, a prime P, of H lying above p. Then, for p,q € .S, we
have

U;clT-fclT-fmq = Fy.

The isomorphism holds since p splits completely in H. We can thus evaluate og and [; on
elements of Uy, and extend by linearity to maps

0q:lq: Uy

px = Co-

Note that oq(Uy ,) is non-zero if p = g and is zero for p # q. Define the ratio

lg(up,x)

galg(X)p,q = _Op(up )7
s X

which is clearly independent of the choice of u, € U;yx. Gross’s regulator, R,(x), is the

determinant of the (#S,) x (#S5,) matrix whose entries are given by these values:

glp(X) = det(‘/ﬂp(X))v where ‘ﬂp(X) = (galg(X)p,q)p,qesp-

We refer to Jl,(x) as the Gross regulator matrix. More generally, for any subset J c S, the
principal minor of J,(x) corresponding to J is defined by

Rp(X). = det(Laig(X)p,q)p,qe7-

We note that both R, (x) and R, () are independent of all choices. In particular, we note that
for each prime q € S, the maps /; and o4 depend on the choice of a prime B, of H lying above
q. If, rather than 9,, one chooses o(,) for some o € G, then this scales I; and o4 by x(o).
Hence the diagonal entries are unchanged by this choice. Furthermore, this choice multiplies the
gth row of M, (x) by x(c)™* and the gth column of Jl,(x) by x(c). It follows that both R, (x)
and R, (), are independent of these choices.

Let J c S, be nonempty. Dasgupta—Spief have constructed, via group cohomology, a formula
which they conjecture, in [14, Conjecture 3.1|, to be equal to the value R, (x) . If we take J = {p}
for some p € S,, then the value of R, (x), is the diagonal entry at p of the Gross regulator matrix,

13



ie.,

Ly (up,x)
EJRP(X)P = galg(X)FMP = _O:(’LLZX).
s X

2.3 The Brumer—Stark units

We now consider an arbitrary finite abelian field extension H/F. As in the previous section, fix
a prime p of F', above the rational prime p, such that p splits completely in H. As before, we let
R denote a finite set of places of F' such that R contains the archimedean places, p ¢ R, and R
contains the places that are ramified in H. The conjectures we wish to consider now are integral
rather then p-adic. Le., rather then considering the leading term of a p-adic L-function we want
to consider the leading term of an Artin L-function. Furthermore we want the value we consider
to be an integer. Thus, we must define a modified L-function. Let T denote a finite set of places
of F disjoint from R such that T' contains two primes of different residue characteristic or one
prime of residue characteristic larger than [F : Q] + 1. We always assume that this condition
holds. Let x be a character of G = Gal(H/F). We then define the R-depleted, T-smoothed Artin
L-function of ¥,

LR,T(X,S) = LR(Xa S) H(l - X(q)quis)a S € Ca RG(S) > 1.
qeT

If x is nontrivial, then the function Lr 1(x,s) can be analytically continued to a holomorphic
function on all of C. This follows from the equivalent result for Lr(x,s). We can extend x
so that we can consider x : C[G] — C. One can package together the Artin L-functions into a
Stickelberger element © g 1 (s) which lives in the group ring C[G]. This element is defined by the
property that if we specialise it to a character x of G, then we get the modified Artin L-function
Lrr(x7t,s), ie.,

X(Or1(5)) = Lrr(x,s)-

An important theorem of Deligne-Ribet [15] and Cassou-Nogués [4] states that the value of the
Stickelberger element at 0, which we denote O 7 = O 7(0), is in fact contained in the integral
group ring Z[G].

We also need to modify the class group we are considering. The T-smoothed ray class group
of H, which we denote as CIT(H ), is defined to be the quotient of the group of fractional ideals
of Oy which are coprime to primes in T, by the principal ideals of Oy which are generated
by elements which are congruent to 1 modulo primes of Oy above primes of T'. The following

conjecture, stated by Tate in [22], is known as the Brumer—Stark conjecture.

Conjecture 2.3.1 (Brumer-Stark conjecture). We have
Or,7 € Annge (C17 (H)).
Conjecture 2.3.1 provides another remarkable relation between an analytic object, © g 7, and

14



an algebraic invariant, CIT(H ). This time we have these objects associated to a field extension
H/F. We note that Conjecture 2.3.1 is a generalisation of Stickelberger’s theorem. Let K/Q be
an arbitrary abelian extension of Q. Stickelberger’s theorem and its generalisations provide an
ideal in the group ring Z[Gal(K/Q)] which annihilates the class group of K. Conjecture 2.3.1
extends this to considering arbitrary abelian extensions H/F. We note that Conjecture 2.3.1
is only nontrivial in the case that F' is totally real and H is totally complex containing a CM
subfield. We have this assumption for the remainder of this thesis.

Recall we have let p be a prime of F' that splits completely in H. We further assume that p is
not contained in the union of R and 7. Choose a prime 8 of H above p. Let o be an element of
the Galois group G. We then define the partial zeta function (g 7 (o) to be the o' component
of O 7, such that

Orr =), Cror(o)[o'].

oeG

For an element o € G we write [o] € Z[G] for the group ring element. When the notation is clear
we will drop the brackets. We note that by our assumption on 7" we have (g (o) € Z. We can

also define (g r(o) as the special value of an L-function. Firstly, we define the following.

Definition 2.3.2. For o € G, we define the partial zeta function

Cr(o,s)= ), Na®, seC, Re(s)>1. (2.3)
(a,R)=1

Tq=0
Here the sum is over all non-zero integral ideals a c Op that are relatively prime to the elements

of R and whose associated Frobenius element o4 € G is equal to o.

Note that the series (2.3) converges for Re(s) > 1 and has a meromorphic continuation to C,
regular outside s = 1. The zeta functions associated to the sets of primes R and S = Ru {p} are

related to each other by the formula

(s(0;8) = (1 =Np™)Cr(a, 9).

If K is a finite abelian extension of F' and o € Gal(K/F) we use the notation (g(K/F,0,s)
for the partial zeta function defined as above but with the equality o, = ¢ being viewed in
Gal(K/F'). We then define the partial zeta function associated to the sets R and T by the group
ring equation

> Crr(o,8)o]= TT(1=[oyIN9'™*) 3 (r(0,5)[o]. (2.4)

oeGG neT oeG

Here we define (g r(0,s) to be equal to the o component on the right hand side of (2.4), after
expanding the product and sum. We then have (g1 (o) = (rr(0,0) € Z. Le., the partial zeta
function associated to o is equal to the o~! component of the Stickelberger element. Conjecture
2.3.1 implies that the ideal

m@R,T _ H a.—l(s:B)CR,T(U)

oeG
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is a principal ideal (u) generated by an element u which is congruent to 1 modulo all primes of
Oy above primes of T. From now on we write this as w = 1 (mod 7). We further conjecture
that u can be chosen so that its image under complex conjugation is equal to its inverse. It is
this statement that was originally proposed by Tate in [22]. Thus our statement of Conjecture
2.3.1 is slightly weaker than the original statement of Tate. We now give the formulation of the
Brumer—Stark conjecture due to Gross. We note that this statement follows from Conjecture
2.3.1.

Conjecture 2.3.3 (Conjecture 7.4, [17]). Let B be a prime in H above p. There exists an

element ur € Uy such that ur =1 (mod T'), and for all o € G, we have
ordy (u7) = Cr,r(H/F,0,0). (2.5)

Our assumption on 7T implies that there are no non-trivial roots of unity in H that are
congruent to 1 modulo 7. Furthermore, recalling the definition of U; from Definition 2.2.3 and
noting that | u, |= 1 for all the infinite places we see that the p-unit, if it exists, is unique. Note
also that our wr is actually the inverse of the u in [17, Conjecture 7.4]. The conjectural element
ur € U, satisfying Conjecture 2.3.3 is called the Brumer-Stark unit for the data (5,7, H,%).
Throughout this thesis, for ease of notation, we have T = {\} for an appropriate choice of A. In
particular, we choose A such that NA = [ for a prime number [ € Z and [ > n + 2. Recall that
we have denoted n = [F : Q]. It will be convenient for us to work with the following element of
H*[G]. We define

up= Y up e o' e H[G].
oG
Throughout this thesis we will write u, (o) = uF for the ™! component of u,. We will also refer
to up as the Brumer—Stark unit, it will always be clear from context if we are referring to uy, or
ur.
The Brumer—Stark conjecture (Conjecture 2.3.1) has recently been proved, away from 2, by

Dasgupta—Kakde in [11]. In particular, they prove the following theorem.

Theorem 2.3.4 (Theorem 1.2, [11]). We have

1
@R,T € AnnZ[G][l/g] (CIT(H) ®z Z[i]) .

This theorem is proved by applying Ribet’s method. One of the key parts of [11] is the use
of group ring valued Hilbert modular forms to show the existence of the required cohomology
class. It follows, from the paragraph before Conjecture 2.3.3, that Theorem 2.3.4 implies the
existence of a unit ur € Uy ® Z[%] satisfying equation (2.5). Equivalently, Theorem 2.3.4 implies
the existence of a unit ur € U, that satisfies equation (2.5) up to multiplication by a power of 2.
L.e. for each o € G, we have

ords (ug) = 2°Cr 1 (H|F, 0,0),
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for some k € Zs.

There have been three formulas conjectured for the Brumer—Stark unit u, in Fy ® Z[G]. The
first by Dasgupta in [8] is a p-adic analytic formula which we denote by u;. The other two formulas
were defined by Dasgupta—Spief in [13] and [14], as in the introduction, we denote the elements
given by these formulas by us and ug, respectively. Both these formulas are cohomological in
nature and are defined using an Eisenstein cocycle, we give more details on this in §3.5. Each of
the elements, ui, us and us, are conjectured to be equal to the Brumer—Stark unit, u,. These
conjectures are due to Dasgupta in [8] and Dasgupta—Spief in [13] and [14], for u;, ug and ug

respectively. We combine these three conjectures in the following.

Conjecture 2.3.5. Leti=1,2,3 then

Ui = Up-

Recent work of Dasgupta—Kakde in [10] has proved this conjecture for u; up to a root of

unity under some mild assumptions. In particular, they have proved the following theorem.

Theorem 2.3.6 (Theorem 1.6, [10]). Let p denote the rational prime below p. Suppose that p
s odd,

there exists q € S where q is a prime of F' that is unramified in H

and whose associated Frobenius oq is a complex conjugation in H, (2.6)

and
Hn F(up~)c H, the mazimal totally real subfield of H. (2.7)

Then, Congecture 2.3.5 for uy holds up to multiplication by a root of unity in Fy, i.e.,
uy =y in (Fy/u(Fy)) ® Z[G].

We have pu(F,") for the group of roots of unity of F) .

The key ingredient in the proof of the above theorem is Dasgupta—Kakde’s proof of the p-part
of the integral Gross—Stark conjecture. We give this result in the next section. We note here the
work of Darmon—Pozzi—Vonk [7] which proves a version of Conjecture 2.3.5 in the setting that F
is a real quadratic field and the rational prime p is inert in F'. Their work also used deformations
of p-adic modular forms and their associated Galois representations. However, this thesis, and
the work of Dasgupta—Kakde’s, uses “horizontal” tame deformations while Darmon-Pozzi-Vonk
use “vertical” p-adic towers.

The main result of this thesis is the following theorem. This result was conjectured by
Dasgupta—Spief§ in [13] and [14].

Theorem 2.3.7. One has,

U1 = U2 =U3.
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Remark 2.3.8. Theorem 2.3.7 and Theorem 2.5.6 imply that we have uz = uz = up in

(Fy [u(Fy)) ® Z[G], i.e., in addition to Theorem 2.3.6 holding for u it also holds for us and
us. We remark that by following the arguments of [8] and using Proposition 6.3 in [13] one can
show that Theorem 2.3.6 holds for us without using Theorem 2.3.7.

Remark 2.3.9. Theorem 2.3.7 would also follow from a proof of Conjecture 2.3.5. However, all
current approaches to this conjecture have a root of unity ambiguity, whereas in Theorem 2.8.7

we have no such ambiguity.

We prove Theorem 2.3.7 in two stages. Initially, we show that us = ug in §8.1. Then, we show
that u; = uo in §8.2 and this completes the proof of the theorem. This theorem is joint work
with Dasgupta. Prior to this, we prove in Chapter 7 that u; = ug when F' is of degree three. The
approach of this proof is very different to the work in Chapter 8.

The final result of this thesis, which we prove in Chapter 9, is the following theorem.

Theorem 2.3.10. Let p denote the rational prime below p. Suppose that p is odd, and (2.6) and
(2.7) hold. Then, Conjecture 2.3.5 for us holds up to multiplication by a 2-power root of unity
in By, d.e.,

ug = uy in (Fy/u2(Fy)) ® Z[G].
We write pa(Fy) for the group of 2-power roots of unity of Fy .

This theorem is another step towards a proof of Conjecture 2.3.5 by reducing the root of unity
ambiguity to a 2-power root of unity. We note that we do not require any additional assumptions
to those used in Theorem 2.3.6.

2.4 The integral Gross—Stark conjecture

The integral Gross—Stark conjecture or, as it is also known, Gross’s tower of fields conjecture,
is an integral version of the Gross—Stark conjecture (Conjecture 2.2.1). Gross first stated this
conjecture in [17]. In this conjecture, we consider a tower of fields L/H/F, as before F is totally
real. We take H and L to be finite abelian extensions of F' that are CM fields such that L
contains H. Write g = Gal(L/F). Recall that S = Ru {p} where p splits completely in H/F.
The integral Gross—Stark conjecture gives a relationship between Brumer—Stark p-units and the
Stickelberger element, @é)/:f, for L/F. Here T is as in §2.3. Denote by

recy : Fyy > Al > g

the local component of the reciprocity map of class field theory. Since H ¢ Hyp = Fj,, we can
evaluate rec, on H*. Note that if x € H* then rec,(z) € Gal(L/H). Let I denote the relative

augmentation ideal associated to g and G, i.e., the kernel of the canonical projection
Augl, : Z[g] - Z[G].
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The key point of the following conjecture is that it is integral, as opposed to the Gross—Stark
conjecture which is p-adic. This integrality is one of the things that makes the following conjecture

so difficult to prove.

Conjecture 2.4.1 (Integral Gross—Stark conjecture). Define

recg(up) = %(recp(up(o)) -1 tel/I?,

where & € g is any lift of 0 € G and uy = ¥ peq up(0) ® 07t is the Brumer—Stark unit. Then
reca(up) = @é/f (mod I?%), (2.8)
in I/12.

To see how this conjecture can provide more information about the Brumer—Stark unit we
first consider the o component of equation (2.8). Then, since I/I? = g via the isomorphism

0 -1+ o, one can see that Conjecture 2.4.1 implies

recy(up(0)) = ] plsr(LIFTT), (2.9)
TEQY

‘r|H=071

Taking the inverse of rec, on both sides of the above equation allows us to gain more information
about the unit uy,. In particular it gives us the value of u, (o) € Fyy'/ker(recy). Let f denote the
conductor of H/F. To gain some more precise information one can apply equation (2.9) with
L = K for every H > K c Hj,~. Here we define Hjp~ to be the union of the narrow ray class

fields Hypm for each m € Zy;. The local reciprocity map at p induces an isomorphism

recy : Fyy [E.(f)p = Gal(Hjp= [H),

where we write E.(f), for the totally positive p-units of F' which are congruent to 1 (mod f).
Then m denotes the closure of £, (f), in F,. Thus we can use (2.9) to give the value of
up(o) in Fy/E,(f)p. In [8] Dasgupta develops the methods of horizontal Iwasawa theory to
further refine this kernal and shows that the p-part of Conjecture 2.4.1 implies Theorem 2.3.6.
It is these horizontal methods that we will use in Chapter 9 of this thesis to show that Theorem
2.3.10 follows from the combination of the [-part of Conjecture 2.4.1 for every odd prime I.

The p-part of Conjecture 2.4.1, when p is odd, has recently been proved by Dasgupta—Kakde
[10]. Recall that p lies above p. We give the statement of their theorem below. As with Dasgupta—
Kakde’s proof of the prime-to-2 part of the Brumer—Stark conjecture, the approach is to apply

Ribet’s method again working with group ring valued Hilbert modular forms.

Theorem 2.4.2 (Theorem 1.4, [10]). Let p be an odd prime and suppose that p lies above p.
The integral Gross—Stark conjecture (Congjecture 2.4.1) holds in (I/1?) ® Z,.
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Remark 2.4.3. Recent work of Bullach—Burns—Daoud—Seo in [2, Theorem B] has proved the
manus-part of the e TNC away from 2, for finite abelian CM extensions of totally real fields. Burns
has proved in [3, Corollary 4.3] that [2, Theorem B] implies the integral Gross—Stark conjecture.
It follows from this that the l-part of Conjecture 2.4.1 holds for all primes | + 2. Thus, the

following theorem holds.

Theorem 2.4.4. Let 1 be an odd prime. The integral Gross—Stark conjecture (Conjecture 2.4.1)
holds in (I/1%) ® Z;.

The above theorem is crucial in proving the final result of this thesis, i.e., for the proof of
Theorem 2.3.10.
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Chapter 3

Shintani Zeta Functions and the

Eisenstein Cocycle

3.1 Notation

Recall that we let F' be a totally real field of degree n over Q with ring of integers © = Op.
Let ¥ = EF = O denote the group of global units. More generally, for a finite set S of non-
archimedean places of F', we denote by Eg = Er g the group of S-units of F'. We define

S = {q prime of F: q|q where, for some t€ S, t|q}. (3.1)

We also let H/F be a totally complex extension containing a CM subfield. Write E, for the
totally positive units of F'. Let f denote the conductor of the extension H/F. We write E.(f) for
the totally positive units of F' which are congruent to 1 (mod f). Write Gy for the narrow ray
class group of conductor f. Let e be the order of p in G5 and suppose that p¢ = (7) with 7 =1
(mod f) and 7 totally positive. We write O = 6, — 76, c F}.

Define A = Ap as the adele ring of F'. We define

Z = Lir_nZ/nZ =[]z,
n p

where the second equality follows from the Chinese remainder theorem. For a Q-vector space
W, fix the notation W = WeyZ = W®Q(@®ZZ =W ®g Ag. For an abelian group A and prime
number [, we put 4; = A ®7 Q.

For a place v of F, we put U, =R, ={z e R |z >0} if v | o0 and U, = 6} if v is finite.
For a set S of places of F, we let A% denote the S-adeles. We also define U = [Tyes Uy, and
Us = [Tyes Uy- We shall also use the notation F¥ = (A% x Ug) n F*.

Finally, we note that if we have a function f: X - Z and X €Y then we can extend f to a
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function f,:Y — Z by defining

if X
) = f(w) TyG
0 ifyeY - X.

We call this function the extension of f to Y by 0.

3.2 Shintani zeta functions

Shintani zeta functions are a crucial ingredient in each of the three constructions we are studying.
The first step in defining these modified zeta functions considers the work of Shintani, initially
developed in his paper [19], and the definitions of Shintani cones and domains. We establish the
necessary notation here.

Let R. denote the set of infinite places of F'. For each v € R.,, we write o, : F - R and fix
the order of these embeddings. We can then embed F into R™ by x = (0,(2))ver.,- We note
that F'* acts on R™ with x € F acting by multiplication by o,(z) on the v-component of any
vector in R™. Let R, = {z ¢ R |z > 0} denote the positive elements of R. For linearly independent

v1,...,0r € RY, define the simplicial cone

-
C(vy,...,v.) = {chi eRY :¢; > O}.
i=1
Definition 3.2.1. A Shintani cone is a simplicial cone C(v1,...,v,) generated by elements
v, e FnRY. A Shintani set is a subset of R} that can be written as a finite disjoint union of

Shintani cones.
We now give a Lemma of Dasgupta relating to the intersection of two Shintani sets.

Lemma 3.2.2 (Lemma 3.14, [8]). The intersection of two Shintani sets is a Shintani set. For
two Shintani sets D and D' there exists only a finite number of € € E, such that eD n D’ is

nonempty.

We now give the definition for Shintani zeta functions. Write f for the conductor of the
extension H/F. Let b be a fractional ideal of F relatively prime to S and T, and let D be a
Shintani set. For each compact open U ¢ 6,, define, for Re(s) > 1,

Cr(b,D,U,s)=Nb"* Z Na™°.
acFnD, acU
(a,R)=1, aeb™!
as=1l (mod f)

Here the sum is over elements of F' which are relatively prime to R, congruent to 1 modulo f, and
contained in D, U and b™'. We define (g (b, D,U,s) in analogy with (2.4), i.e., by the group
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ring equation

> Crr(b,D,U,8)[op] = [T(1-[04]Nn'™*) 3 Cr(b,D,U,s)[00]. (3.2)

opeG neT opeG

It follows from Shintani’s work in [19] that the function (g (b, D,U,s) has a meromorphic
continuation to C. We now want to define conditions on the set of primes 7" and the Shintani

set D to allow our Shintani zeta functions to be integral at s = 0.

Definition 3.2.3. A prime ideal n of F is called good for a Shintani cone C if
e N7 is a rational prime l; and
e the cone C may be written C = C(vy,...,v,) with v; €© and v; ¢ 1.

We also say that n is good for a Shintani set D if D can be written as a finite disjoint union of

Shintani cones for which n is good.

Definition 3.2.4. The set T is good for a Shintani set D if D can be written as a finite disjoint
unton of Shintani cones D = uC}, so that for each cone C;, there are at least two primes in T
that are good for C; (necessarily of different residue characteristic by our earlier assumption) or

one prime 1 €T that is good for C; such that Nn>n + 2.

Remark 3.2.5. Given any Shintani set D, it is possible to choose a set of primes T such that T

is good for D. In fact, all but a finite number of prime ideals are good for a given Shintani set.

We can now note the required property to allow our Shintani zeta functions to be integral at

zero. This follows from the following proposition of Dasgupta.

Proposition 3.2.6 (Proposition 3.12, [8]). If the set of primes T contains a prime n that is
good for a Shintani cone C' and Nn =1, then

CR,T(b,C, U,O) € Z[l/l].

Furthermore, the denominator of (rr(b,C,U,0) is at most RAGEN

As is noted by Dasgupta at the top of p.15 in [8], the corollary below follows easily from
Proposition 3.2.6.

Corollary 3.2.7. If the set of primes T is good for a Shintani set D, then
(R,T(b7 D, U, 0) c.
We define a Z-valued measure v(b, D) on 0, by

V(bv-DvU) = CR,T(va7U70)7 (33)
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for U € 6, compact open.
We are mostly interested in a particular type of Shintani set, one which is a fundamental

domain for the action of E.(f).

Definition 3.2.8. We call a Shintani set D a Shintani domain if D is a fundamental domain
for the action of E.(f) on RY. That is, when

R?= |J eD (disjoint union).
eeE.(f)
The existence of such domains follows the work of Shintani, in particular from [19, Proposition
4]. We note here some simple equalities which follow from the definitions, more details are given
in §3.3 of [8]. Recall we have written Gy for the narrow ray class group of conductor f. We have
let e be the order of p in Gy, and have p® = (7) with 7 =1 (mod f) and 7 totally positive. Let P
be a Shintani domain and recall that we have defined O = 6, — 70,. Then,

v(6,%,0) =(sr(H/F,6,0)=0, and v(b,D,0,)=_rr(H/F,b,0).

We now give two technical definitions which are necessary for the definition of Dasgupta’s
explicit formula and recall a useful lemma which is used repeatedly in the proof of our later

results. We also generalise to working with V ¢ E, rather than with F,(f).

Definition 3.2.9. Let V ¢ E, be a finite index free subgroup of rank n—1. We call a Shintani
set D a Colmez domain for V if D is a fundamental domain for the action of V on RY. That
is, when

R} = JeD (disjoint union).
eV

We note that in the definition of a Colmez domain we allow ourselves to work with V' = E, ().

Thus the definition includes Shintani domains.

Proposition 3.2.10. Let V ¢ E, be a finite index free subgroup of rank n—1. Let D and D' be
Colmez domains for V.. We may write D and D’ as finite disjoint unions of the same number of

simplicial cones
d d
D=\J¢C;, D'=|C] (3.4)
i=1 i=1
with C} = ¢;,C; for somee; eV, i=1,....d.

Proof. [8, Proposition 3.15] proves this result when V = E,(f). The proof of this proposition is

analogous. O

A decomposition as in (3.4) is called a simultaneous decomposition of the Colmez domains
(D,D").

Definition 3.2.11. Let (D,D") be a pair of Colmez domains. A set T is good for the pair

(D, D") if there is a simultaneous decomposition as in (3.4) such that for each cone C;, there
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are at least two primes in T that are good for C;, or there is one prime n € T that is good for C;
such that Nn >n + 2.

Definition 3.2.12. Let D be a Colmez domain. If B € F* is totally positive, then T is B-good
for D if T is good for the pair (D, D).

The following lemma is used throughout the remainder of this thesis.

Lemma 3.2.13 (Lemma 3.20, [8]). Let D be a Shintani set and U a compact open subset of
Op. Let b be a fractional ideal of F', and let 5 € F* be totally positive so that §=1 (mod §) and
ord,(B) > 0. Suppose that b and B are relatively prime to R and that b is also relatively prime
toT. Let q=(B8)p~ %) Then

CR,T(bq7D7 U70) = CR,T(b7ﬂD7ﬁU)O)'

We end this section with a lemma of Colmez which allows us to give an explicit Colmez
domain. Let « be, up to a sign, one of the standard basis vectors of R™ then we note that its
ray (aR,) is preserved by the action of R”. We define C(v1,...,v,) to be the union of the cone
C(vy,...,v,) with the boundary cones that are brought into the interior of the cone by a small

perturbation by «, i.e., the set whose characteristic function is given by
LG, o1y (@) = 0 Loy 0 (2 4 har). (3.5)
Throughout this paper, we use the notation
[1] .. | zno1] = (L, 21,2129, .o, 1+ .- Tyt )
Let z1,...,2, € F. We define the sign map ¢ : F* - {-1,0,1} such that
0(xy,...,xpn) =sign(det(w(zy,...,z,))), (3.6)

where w(x1,...,2,) denotes the nxn matrix whose columns are the images of the x; in R”. Note
that we have the convention that sign(0) = 0. The lemma below is equivalent to [6, Lemma 2.2],
rather then using equivalence classes, we write the lemma in terms of the perturbation defined

above.

Lemma 3.2.14 (Lemma 2.2, [6]). Let a be, up to a sign, one of the standard basis vectors of
R™. Let e1,...,en-1 € Ey such that V = {(e1,...,en-1) € E, is a free subgroup of rank n -1 and

finite index. Suppose that for all T € S,_1 we have

5([ery |-+ | €r(n-1)]) = sign(7).
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Then the Shintani set
D= U Callerqy |- ler@m-n]),

T€Sn-1

is a Colmez domain for V.

3.3 Continuous maps

For topological spaces X and Y, let C'(X,Y") denote the set of continuous maps X - Y. If Ris a
topological ring we let C.(X, R) denote the subset of C'(X, R) of continuous maps with compact
support. If we consider Y (resp. R) with the discrete topology then we shall also write CY(X,Y)
(resp. CY(X, R)) instead of C'(X,Y) (resp. Co(X,Y)).

Assume now that X is a totally disconnected topological Hausdorff space and A a locally
profinite group. We define subgroups C°(X, A) ¢ C(X,A) and C2(X,A) € C.(X, A) by

C°(X,A)=C°(X,A)+) C(X,K),

CS(XaA) :Cco(XvA)+ZCc(X’K)a
K

where the sums are taken over all compact open subgroups K of A. So C(X, A) is the sub-
group of C.(X,A) generated by locally constant maps with compact support X - A and by
continuous maps with compact support X - K ¢ A for some compact open subgroup K c A.
Similarly, C°(X, A) is the subgroup of C(X, A) generated by locally constant maps X — A and
by continuous maps X - K ¢ A for some compact open K.

The following notation is used in the formulation of us. Given two arbitary finite, disjoint

sets Xq, Yo of places of F' and a locally profinite group A, we put
G (X1, A)™2 = Cr((A32)* [UR1VP2 A).

where ? € {¢,¢,0}. We note that in the notation above, ? is displayed as a subscript. However,
when ? € {¢,0}, this is viewed as superscript. We use this notation below as well. For a set of
places S, we denote by U® the subgroup of A} of ideles (), with local components z,, = 1 if
veSand x, >0if v | oo, and x, is a local unit if v ¢ S U Re.

We also introduce the following generalisation of the above notation, for Sy,.S; disjoint sets
of places of F'

€:(S1, 52, A) = Co([] Fp x (AZ)* /U952 A).
peSy

If S3 is an additional disjoint set of places, we also define

G(S1, 82, A)% = Cy ([ Fp x (A7052)* JUS1052955 4).
pES1
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3.4 Measures

Note that the construction in this section is a generalisation of that given in §2 of [13]. We wish
to attach to a homomorphism p : C.(X,Z) —» Z[G] an A ® Z[G]-valued measure on X for any
abelian group A and finite abelian group G. We write the group operation of A multiplicatively.

Firstly, by tensoring p with the identity we obtain a homomorphism
pa:Co(X,2)® (A Z[G]) 2 CYUX, AR Z[G]) - A® Z[G].

To write this map explicitly, we first note that the isomorphism (and its inverse) C.(X,Z)® (A®
Z[G]) = C%(X, A® Z[G]) are given by

f®ar a-f withinverse g Y (a®ga),
acARZ[G]

where go(z) = 1 if g(x) = « and 0 otherwise. Here we have f € C.(X,Z), a € A® Z[G] and
g€ C%X,A®Z[G]). Thus, we define the homomorphism 4 as

palg) = 3 (Z Zaﬁ"(gﬁ)@m),

aeAQZL[G] \oeG TG

where a =Y . - T, 11(ga) = Yoe Mo (ga)[o] and g, is as defined before. Thus, if A is profinite

we can consider the homomorphism

pra=lm pa i lim Co (X, A/K @ Z[G]) - lim A/K ® Z[G] = A® Z[G],
K K K

where K ranges over the open subgroups of A. Since C.(X, A®Z[G]) < lim Co(X, A/KQZ[G]),
we see that 4 extends canonically to a homomorphism C.(X, A ® Z[G]) - A ® Z[G] (which
we denote by ps as well). For a general A (not necessarily profinite), we have seen that p
induces a homomorphism C.(X, K ® Z[G]) - K ®Z[G] for every compact open subgroup K c A.
Combining these maps, we see that u induces a canonical homomorphism p 4 : C3 (X, A®Z[G]) —
A ®Z[G]. Define the set of A ® Z[G]-valued measures on X to be

Meas(X, A ® Z[G]) = Hom(C? (X, A® Z[G]), A ® Z[G]).

The map p~ py defines a homomorphism Hom(C.(X,Z[G]),Z) - Meas(X, A ® Z[G]).

For the formulas of interest we will not consider quite this measure but two simpler measures.
The measure we constructed above is a generalisation that includes each of the specialisations
we require.

For ug, we have u € Hom(C.(X,Z),Z) rather than in Hom(C.(X,Z),Z[G]). We include
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Hom(C.(X,Z),Z) into Hom(C.(X,Z),Z[G]) under the map
11 : Hom(Cu(X,Z),Z) - Hom(C.(X,Z),Z[G]),

such that for f e C.(X,Z)
u(p)(f) = p(f)[id].

For us, we want to have a measure on A rather than on A®Z[G]. We include C? (X, A) into
C2(X,A®Z[G]) via the map

1o : C2(X,A) > C2(X,ARZ[G])

such that for z € X
w(f)(z)=f(z) el

3.5 Eisenstein cocycles

We now define the Eisenstein cocycle. In our study of the cohomological constructions for us
and ug we require a few variations on the Eisenstein cocycle. We define these variations at the
end of this section.

Let OF s, denote the ring of S), integers of F. Recall that S}, is the set of primes of F' above
p that split completely in H. Note that S, # @ since p € S,. For any fractional ideal b c F
relatively prime to S, we let bg, = b ®¢, OF s, denote the O 5 -module generated by b. Let

UCFSP = H Fq
qeSp

be a compact open subset. Let D be a Shintani set. For s € C with Re(s) > 1, we define the

Shintani L-function

5> rec/r((€))7

SR(DabaUvS) = (I\Ib)_\S Né‘s

e C[G]. (3.7)
geDnb;;7 ceU
(ng)=1

Here recy/r denotes the Artin reciprocity map for the extension H /F. Tt follows from work of
Shintani, in [19], that the L-function in (3.7) has a meromorphic continuation to C. Furthermore,
after fixing D, b and s, the values £g(D,b,U, s) form a distribution on Fj, in the sense that, for

disjoint compact open sets Uy, Us ¢ Fg,, we have
'SR(D7 ba Ul U U2a S) = SR(D7 b7 U17 S) + ER(Da ba U27 S)

Let A be a prime of F' such that N\ = [ for a prime number [ € Z and [ > n + 2. We assume

that no primes in .S have residue characteristic equal to [. We then define the smoothed Shintani
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L-function
LrA(D,b,U,s) = Lr(D,bA", U, s) —recy r(A\) ' *Lr(D,b,U,s).

It follows from the work in [5, §4.4] that the following proposition holds.

Proposition 3.5.1. For a compact open subset U c Fs,
LrA(D,6,U,0) € Z[G].

Let F} denote the group of totally positive elements of F'. Let Eg, , denote the group of
totally positive units in O 5, which we view as a subgroup of F. Let x1,...,2, € F)}. We recall
the definition of C., (z1,...,2,) from (3.5) and the definition of §(x1,...,x,) from (3.6). The

following proposition follows directly from [5, Theorem 1.6].

Proposition 3.5.2. Let z1,...,2, € Eg, .. For a compact open subset U c Fg, let
tox(z,...,zp)(U) =0(x1,... 7xn)£R,>\(6el(Ilv .oy Ty), 0,U,0).
Then pp x is an Eg, -invariant homogeneous (n — 1)-cocycle yielding a class
Ko = (o] € H' Y (Es, +, Hom(C.(Fs,, Z), Z[G])).

Remark 3.5.3. ppx(21,...,2,) is viewed as an element of Hom(C.(Fs,,Z),Z[G]) via the

following canonical integration pairing

(Fomy [ F@du(t) = lim 5 f(tv)u(V)
Fgr 1711-0 v
where the limit is over increasingly finer covers U of the support of f by compact open subgroups

Ve Fs, andty €V is any element of V.

We define the Eisenstein cocycle associated to A by

h
Ky = ZrecH/F(bi)_lﬁbi,)\ € H”_I(Egp,ﬂHom(Cc(ng,ZLZ[G])).
i=1
Here {by,...,by,} is a set of integral ideals representing the narrow class group of Og s, i.e., the
group of fractional ideals of O s, modulo the group of fractional principal ideals generated by
totally positive elements of F'.
This construction is adapted from the construction of Dasgupta—SpieR given in §2 of [14].
We adapt their construction simply by replacing x with rec}}/ - Thus our construction can be
specialised to theirs by applying x!. For more details on this construction, see §2 of [14]. The

reason for using rec}{l/  rather than recy,p is to make our formulation of ug consistent with uy,
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w1 and ug. We expand further on this at the start of §6.1. We now give a variation on this
Eisenstein cocycle.

Let E,(f), denote the group of p-units of F' which are congruent to 1 (mod f). We note that
E.(f)p is free of rank n. For x1,...,x, € E,(f)p, a fractional ideal b coprime to S and I, and

compact open U c F},, we put
V)[i)\(xlv cen 7mn)(U) = 5(1'17 .- wxn)CR.,)\(baéel (1'17 .- ~7xn), U,O),

where ¢ is defined as in (3.6). We recall the definition of the Shintani zeta function from (3.2)
and the Shintani set C¢, (21,...,,) from (3.5). Then, v} , is a homogeneous (n - 1)-cocycle on
E.(f)p with values in the space of Z-distributions on Fj,. This follows from Theorem 2.6 of [5].

Hence, we define a class
Wiy = W \] € H'H(BL(F)p, Hom(Co(Fy, 2), 2)).

Here the VE, ) is being viewed as an element of Hom(C.(F,,Z),Z) via the integration pairing

from Remark 3.5.3. We also consider

why= % recmp(b) Wl \ € H' N (EL(f)p, Hom(Co(Fy, 2), Z[G))),
[6]<G/(p)

where the sum ranges over a system of representatives of G5/(p). This construction is adapted
from the construction of w , in §3.3 of [14].

We now consider the final variant of the Eisenstein cocycle we require. We do not give
the definition in full generality since the construction is much longer. The ideas required are
all similar to those of the constructions before. We end this section with a proposition which
contains the information, in the cases we require, for this construction for our later applications.

We write W for F' considered as a Q-vector space, and W, == W ®gp R. As before, let A be a
prime of F' such that NA = [ for a prime number [ € Z and [ > n + 2. We assume that no primes
in S have residue characteristic equal to [. We also let W; = W ®q Q;.

We define ¢y € C.(W;,Z) by ¢x = Lo,ez, — sz, i€

1 if’UE(@F®ZZ)—(>\®Zl),
oa(v) =41-1 fveroZ, (3.8)
0 ifUGWl—(®F®Zl).

By fixing an ordering of the infinite places, v € R, we fix an identification W, 2 R™ such
that - e, = 0,(x)e, for all v € Ry, and x € F*. Here we write e, for the standard basis element

of R™ which has value 1 at the v component. From now on we fix a choice v € R, such that

the image of basis element &, € R™ is e. (3.9
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We define F'? to be F viewed as a (diagonally embedded) subset of A?U{U}. The following

proposition is a special case of the much more general construction given in [13]. In order to give
this we first introduce some notation. If D is a Shintani set and ® € C.(WW5,Z) then we define

the Dirichlet series

L(D,®;s) = ‘;DQ)(U)N(U)_S. (3.10)

It is known to converge for Re(s) > 1 and extend to the whole complex plane except for possibly
a simple pole at s = 0. Moreover, if D and ® are as given in the following proposition then
L(D,®;s) is holomorphic. We remark that the set S does not appear in the definition of this
Dirichlet series. In the following proposition we will decorate the L-function with A since the

choice of ® incorporates A into it.

Proposition 3.5.4. Let wy,...,w, € FYY. For a map ¢ € Cc(Won, Z), let
EisOF)\(wl, o wn) (@) = 0(wiy e Wi ) DA (Cle, (w1, - - - wy), @30),
where ® = ¢ @ ¢». Then, Eis?v)\ is an FY-homogeneous (n — 1)-cocycle yielding a class
Eis) , € H" ' (F"", Hom(C.(Wz, Z), Z)(5)).

Proof. This proposition follows the combination of [13, Definiton 4.5] and [13, Lemma 5.1]. O

In the above proposition we have the following notation. For a subgroup H ¢ F“? and an
H-module M, let M(6) = M ® Z(5). Thus, M(d) is the group M with H-action given by

x-m=0d(x)xm for x € H and m e M.

3.6 Colmez subgroups

In the definitions for the Eisenstein cocycle and its variants, the sign map § appears. Recall that
we define F, to be the group of totally positive units of F. For the explicit calculations we later
perform it is convenient if we can work with a subgroup V ¢ E, free of rank n — 1 such that

V ={g1,--.,9n-1) and that we can choose g,, = 7 such that
e (g1,.--,9n-1) € E;(f) is a finite index subgroup free of rank n - 1, and
e for 7€ .5, we have 0([g-(1) | --. | gr(n-1)]) = sign(7).

We refer to such subgroups as Colmez subgroups. We define

Log: R} = R", (z1,...,2,)~ (log(z1),...,log(zy)).

We remark that the map Log is the Dirichlet regulator on E,. We defined the full Dirichlet
regulator after Theorem 2.1.2 in §2.1. For z € R"® we write z = (21,...,2,). Let # c R™ be the
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hyperplane defined by Tr(z) = 0, where Tr(z) = Y1, ;. Then, Dirichlet proved that, Log(E,) is

a lattice in #. If z ¢ R} and Log(z) € R™ is not an element of #, then we define the projection
29 :(zl...zn)fi - Z. (3.11)

We have that Log(zg) € #. Note that z and zg lie on the same ray in R?. For any M > 0 and
1=0,1,...,n—1, write I;(M) for the element of # which has value M in the (i + 1) place and
~M /2 in the other places. We endow R"™! with the sup-norm. We denote by B(x,r) the ball
centred at = of radius r.

The following lemma, which builds on Lemma 2.1 of [6], allows us to find a collection of
possible subsets V' = (e1,...,e,-1) such that we get a nice sign property that allows us to explicitly

calculate the Eisenstein cocycle more easily.

Lemma 3.6.1. There exists Ry >0 such that for all R> Ry, M > K1(R) (where K1(R) is some
constant we define which depends only on R). We have the following: For i =1,...,n -1 let
gi € By and g, = gr € T B, such that Log(g;) € B(l;(M), R) and Log(g,) € B(lo(M), R). Then

® (g1,-..,9n-1) € E, is a finite index subgroup, and
e For 1e€S, we have 6([g-qy|---|gr(n-1)]) = sign(7).

Proof. This proof largely follows the ideas of Colmez in his proof of Lemma 2.1 in [6]. First, note
that both Log(F, ) and Log(ne E,) are lattices inside #. There exists a constant Ry = R(E,, )
such that for all M >0 and any r > R(E,,7), there exist g1,...,9n-1 € E; and g, € % F, such
that Log(g;) € B(l;(M),r) fori=1,...,n -1 and Log(g,) € B(lo(M),r). The existence of R,
follows from Dirichlet’s unit theorem and, in particular, the non-vanishing of the regulator of a
number field. Since the I;(M) form a basis of %, the Log(g;) form a free family of finite index
in Log(E,). This is only if M is large enough relative to r, say M > k(7).
Now take M satisfying

i) M>2(n-1)%,
ii) M > (n-1)%log(n!),
iii) M > k(r).

For simplicity, let K;(r) = max(2(n - 1)*r, (n - 1)%log(n!), k(r)) so that we only require M >
Kl(T).

Let A=det([g1]-..|gn-1]). Put E; = exp(M(1- :;_21)) and F; = exp(—M(%)). Hence, the
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matrix given by [g1 | ... | gn-1] is written

1 profy BisFs ... BinF,
1 BopEs PBosEs ... Ponky
1 B3oFy fB33E3 ... [3nbn
1 BuoFs BasFs ... BanEnl|
1 ﬁn,2F2 Bn,SFB ce ﬁn,nEn

where by i),
-M M
e2(n-1)3 < 51 j < e2(n-1)3

Expand A and isolate the diagonal term; using the bounds we defined previously we obtain

nM

n
[A-e []Biil< (nl- 1)62“%“2 eMG-7%4)

=2

and therefore
nM , =M _ (=ML M)y
Aze 2 (e2-D? — (pl-1)e 2(-D? »=17) >

according to ii). We show the other required sign properties in the same way. O

After fixing a choice of generators E, = (€1,...,6,-1). Any element ¢ € E, can then be written

uniquely as

We then define, for i = 1,...,n—1, the map ¢, : E, - E, such that if € is as above then ¢;(¢) = £}".
Lemma 3.6.2. There exists

1. Ry, Ry > Ry,

2. My>Kq(Ry) and

3. My > Ki(Ry),

such that we have the following. Firstly, fori=1,...,n—1 we can choose f;, g; € E. such that
Log(f:) € B(l;(M;),R) and Log(g;) € B(l;(M,),R). Furthermore, after writing

Vi=(f1,... fu-1) and Vy={(g1,...9n-1)

we have that [E, : V] is coprime to [E, : Vg].

Proof of Lemma 8.6.2. We firstly choose the f; € E, via Lemma 3.6.1 and let Vy = (f1,... fn-1)-
Le., we have Log(f;) € B(l;(My), Ry) for some Ry > Ry and My > K (Ry). We can then choose
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generators (d1,...,0,-1) such that for ¢ = 1,...,n—1 we have f; = ¢;" with a; >0. We note here
that [E, : V] =115 @i

For ease of notation, let a = ]'I?:_l1 a;. Fori=1,...,n—1 there exists Ry;; >0 and M, ; >0
such that for all M > M, ; there exists « € E, with Log(a) € B(l;(M),Ry,;) and, the positive
integer ¢;(«) is coprime to a. This existence follows from the properties of a lattice. Here ¢; is
the map that gives the §; component.

Now let Ry = max(Ry 1,..., Ry n-1) and choose any M, > K{(R,). Then we can choose, for
i=1,...,n-1, units g; € E,. with Log(g;) € B(l;(My),R,) and, the positive integer ¢;(g;) is
coprime to a. Let V= (g1,...,gn-1), the result follows. O

3.7 1-cocycles attached to homomorphisms

Let g : Fy — A be a continuous homomorphism where A is a locally profinite group. We want
to define a cohomology class ¢, € H'(F}, C.(Fy, A)) attached to g. We define an Fy-action on
C.(F;,Z) by (zf)(y) = f(z71y). The following definition is due to Spiek and first appears in
Lemma 2.11 of [20]. This definition is crucial in making the constructions of Dasgupta—Spiefs’s
cohomological formulas work. We also remark that the definition is unusual in that it appears
as though the cocycle z, should be a coboundary. However, it may not be a coboundary since g

does not necessarily extend to a continuous function on Fj.

Definition 3.7.1. Let g: Fy — A be a continuous homomorphism, where A is a locally profinite
group. Let f e C.(Fy,Z) such that f(0) = 1. We define ¢4 to be the class of the cocycle zf 4 :
Fy — Co(Fy, A) where 25 4(z) = “(1-x)(g- f)", or more precisely

zr.g(@)(y) = (@f)(y) -9(@) + ((f-2f)-9)(y) (3.12)
forx e Fy andy e Fy.

The second term in (3.12) is allowed to be evaluated at 0 € F}, since we can extend continuously

the function from F; to Fy as

(f -2f)(0) =0.

Definition 3.7.1 defines an element ¢, = [27,4] € Hl(Fg,C’c(Fp,K)) for any continuous ho-
momorphism g : Fy - K and any f € C.(Fy,Z) with f(0) = 1. We note that the class is
independent of the choice of f € C.(F,,Z) with f(0) = 1. In particular, we can consider the class
Cid € Hl(ngcc(vaFp))-

For the results we want to show, Definition 3.7.1 is all that we require. For more information
on these objects, see §3.2 of [13] and §3.1 of [14].
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Chapter 4

The Multiplicative Integral Formula

(u1)

In this chapter we will consider the explicit p-adic formula constructed by Dasgupta in [8]. We
begin by reviewing the defintion of this constructed unit. This formula makes use of the Shintani
domains which we gave the definition of in §3.2. Recall that Shintani domains are a fundamental
domain for the action of E.(f) on R?. In the second part of this chapter we will let V c E.(f)
be a free, finite index subgroup, of rank n — 1. Recall n is the degree of F' over Q. We note that
there is no torsion in the group E, since it contains only the totally positive units of the totally
real field F. We then consider the effect on Dasgupta’s formula when we move to considering
a fundamental domain for the action of V' (a Colmez domain) on R7} in place of the Shintani
domain. We refer to this process as “transferring to a subgroup”. Working with the formulas,

after transferring to a subgroup V', will be crucial when we compare the formulas.

4.1 The definition of u;

Definition 4.1.1. Let I be an abelian topological group that may be written as an inverse limit
of discrete groups

I=liml,.
<«

Let vy, : I — 1, denote the projection map. Denote the group operation on I multiplicatively. For
each i € I, we define

Ui={xel|o(x)=1}.

Note that U; is an open subset of I. Suppose that G is a compact open subset of a quotient of
A% . Let f: G — I be a continuous map, and let i1 be a Z-valued measure of G. We define the
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multiplicative integral, written with a cross through the integration sign, by

][ f(@)dp(z) =lim [] Ay
G e,

We remark that this definition of a measure is consistent with the definition we give in §3.4.
As before, let A be a prime of F' such that NA = [ for a prime number [ € Z and [ > n +2. We
assume that no primes in S have residue characteristic equal to I. The first definition we make
towards the formula is that of an element of E, (f). We refer to the element constructed here as
the error term of u;. After the definition, we check that it is well defined.

Definition 4.1.2. Let & be a Shintani domain, and assume that X\ is w-good for . Define the
error term

e(b,2,m)= [] ¢V (0,eDN71D,0p) (4.1)
eeEL(F)

By Lemma 3.2.2, only finitely many of the exponents in (4.1) are nonzero. Corollary 3.2.7
and the assumption that A is m-good for @ imply that the exponents are integers. We recall

from (3.3) that the measure is defined as
v(6,eD N7 D,0,) = CrA(b,eDNT'D,6,,0).

We are now ready to write down Dasgupta’s conjectural formula. We note that for any Shintani
domain @ we can always choose a prime A that is m-good for @. We note that all but a finite
number of primes will satisfy this property. Henceforth, we shall assume that we are in this case.

We now give the main definition of this section.

Definition 4.1.3. Let D be a Shintani domain, and assume that A is w-good for D. Define
up A (b, D) = e(b,@b,ﬁ)WCR‘*(H/F’b’O%x dv(b,2,x) € Fy.

As our notation suggests, we have the following proposition.

Proposition 4.1.4 (Proposition 3.19, [8]). The element u, x(b, D) does not depend on the choice

of generator w of p°.

Dasgupta made the following conjecture concerning his construction. For this conjecture we
recall the definition of A from (3.1).

Conjecture 4.1.5 (Conjecture 3.21, [8]). Let e be the order of p in Gy, and suppose that p© = ()
with 7 totally positive and w =1 (mod f). Let D be a Shintani domain, and let X be w-good for
9. Let b be a fractional ideal of F relatively prime to S and . We have the following.

1. The element uy x(b,D) € F, depends only on the class of b € Gj/(p) and no other choices,
including the choice of D, and hence may be denoted uy x(0p), where oy € Gal(H/F).
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2. The element up x(op) lies in Uy, and up x(0p) =1 (mod X).

3. Shimura reciprocity law: For any fractional ideal a of F prime to S and to X, we have
UpA(0ap) = up,a(0p)7.

As we noted in §2.3, this conjecture has been proved up to a root of unity, under some mild
assumptions, by Theorem 2.3.6. We want to define the formula over Fy ® Z[G] to match with

the cohomological constructions. We thus make the following definition.

Definition 4.1.6. We define

ur= Y upa(b,D)®0y' € Fy ® Z[G].
beGy/(p)

4.2 Transferring to a subgroup

Let V be a finite index subgroup of E.(f), free of rank n — 1. Recall that 7 is totally positive,
congruent 1 modulo f and such that (7) = p® where e is the order of p in Gj. Let Dy, be a
Shintani set which is a fundamental domain for the action of V on RY}. As before, we shall refer
to such Shintani sets as Colmez domains.

We define

w(V,) = tupa(6,D}) = [ mr (R B0 Oneer 0000 f 4 (6, 7,2),  (42)

eV (@)
and write u; (V) = e u1(V,0)®0 1. At this point we have not shown that this definition makes
sense. In fact, it does not make sense for all possible fundamental domains. In Proposition 4.2.2
we show that for the particular choice of domain we require, the definition above is sensible. We
note that u1(V, o) depends on the choice of @y used, we consider this choice in the comparison

result below.

Proposition 4.2.1. Let X and X' be two Colmez domains for V, and A a prime of F such that
A is w-good for K and K'. If X is also good for (K, X'), then up (b, F) = up (b, E").

Proof. Theorem 5.3 of [8] proves this result when V = E,(f). The proof of this proposition is

analogous. O

Let V c E,(f) be a finite index subgroup, free of rank n—1. The following proposition shows

the relation between u; (o) and uy(V, o).

Proposition 4.2.2. Let D be a Shintani domain for E,(f). LetV be a free, finite index, subgroup
of E.(f) of rank n -1, such that E,(f)]V 2 Z/by x -+ x Z]bp_1 with by,...,by_1 > M, where

M=M(m,q1,...,9n-1) is some constant that depends on g1,...,gn-1 and © (up to multiplication
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by an element of E.(f) which we define later). Here, we have chosen gi,...,gn-1 to be a Z-basis
for E.(f) such that gll’l, ., g0 s a Z-basis for V. We now define

n-1

bi-1  bp_1-1 ‘
j1:0 jn—l:O
Then,
tp 2 (b, Dy) = up (b, D) E DV,

Remark 4.2.3. The proof of Proposition 4.2.2 builds on the work of Tsosie and we follow the
strategy in his proof of Proposition 2.1.4 in [24]. We are required to alter the proof as we find
a counterexample to the statement of Lemma 2.1.3 in [24], which is used in his proof. In the
appendiz we give this counterexample explicitly. It is possible to prove Proposition 4.2.2 without
our additional assumption that by,...,b,_1 > M. However, the proof becomes lengthier. Since
our strategy is to make V' small enough to satisfy other properties, we do not lose anything by

including this simplifying assumption.

Proof of Proposition 4.2.2. By a result of Colmez in §2 of [6] (p. 372), we have
[E:(f) : V]G(6,D,U,s) = (0 (b, Dy, U, s).

This immediately implies that

B (1):VICr,2 (0,2,05,0) _ -CrA(6,2v,05,0)

al

and

%x dv(6,2,z) :]{@x dv(b, Dy, x).

It remains to show that

) [E+(P):V]

_ H ECR,X(57€%VOW_1%V7GP :0)

[E+(F):V]
( H ECR,A(b,e%ﬂﬂ_l%,Gp,O))
ce B (f) eV

We now consider 7-'%. By multiplying 7 by an appropriate element of E, (f), we can assume

-1 T ine
el U 9¢it907D,
i1=0  ip-1=0
for some a4, ...,an,-1 € Zs1. If we further impose that gfl .. .g;}lw_li% is not fully contained in
the positive translates of @ and, for each ¢, choosing the minimal «;, then the required element
of F,(f) is chosen uniquely. Since the formula is independent of the choice of 7 we are allowed

this assumption. Now, let M = M (7, g1,...,9n-1) = max(aq,...,Q,-1). Since we have assumed
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b; > M, for each i=1,...,n—1, it is easy to see that

-1 k1b kn-1bn-
9>ch U gt gty Dy
=0 kn 1= =0

For ease of notation, we have, for a Shintani set D, the notation v(D) = (g (b, D,0,,0). We

now calculate

eeV =1 VED)

_ n-1 1
[] emaloeovorov o0 - TT g% where Si:bi(z) (gl (T1a7") Dy na'Dy). (43)
k;=0
J VE)

Here, we have the notation
1 1
AT RN
ki=0) i =0 ki1=0kis1=0  kp_1=0

To make the notation clearer, we note that

n—1
Sy =by z z v(g (TT197")Dv N 'Dy).
j=2

nlO

Consider the power above g; in (4.3). Substituting the domain @y for its definition as a union of
translates of @, on each side of the intersection, and expanding unions and inverting the elements

on the right-hand side of the intersection, we have

n-1 -
1 16— n—1
son(2) (£ ) g ([ gz o)
j=2 I=1 J=2

ktj=0 cy Oal 0

Since 1 -b; <¢; —a; <b; —1, it is possible to rewrite our sums and deduce that the power above

g1 is equal to

n-1 n-1
1 b-1 n—1 n—1
S1=b ( > ) ( > ) [T (b= [ D(g ™ (TT g ™) D 0 n D).
j=2

kij=0 j:2 ml=17bl 1=1 =1
The terms in the sum are only non-zero when 0 < b; + m; < 7 and for j=2,...,n—1, when
Ogijaj lfk‘j:O

OSbj-l-ijOéj lfkal

We now apply this to our sums, working term by term. For the m; sum we shift the index of

the summand by b;. We now expand the ky sum out. For the k3 = 1 part we shift the index of
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the mgy sum by by. Thus, we see that the power above g; in (4.3) is equal to

a1 1\ per \ME n-1
by ). (Z) ( > ) (ma [T (b= mu 1))
= 1=3

m1:1 kj=0 j= m,l=1—bl =3

( % (bg—m2)+ % mg)y(gznl z(Hgb kj+m; E’bﬂﬂ' 192))'

mo=0 mo=1

Cancelling the mqy terms in the sums then gives that the power above g; in (4.3) is in fact

o n—1 by-1 n-1 ne1
biby 3. Z ( > ) ( 2. ) (ma TT(oi=mu [)v (g 193””2(11 gD Al p).
=3 =3

mi= 17TL2 0 k. =0 j= ml=1—bl l=3

Continuing to work term by term for j = 3,...,n—1, and noting that [E.(f) : V] =b1...b,-1, we
are able to deduce that

Qn-1

Sy =[E«(f): V] % Z Y mav(git gl D N D).

mi1=1mg2=0 Mp—1=0

Similarly, the power above g; in (4.3), for i =2,...,n -1, is equal to

m;=1 \m;=0

[E():V] i ( Z ) (g g DN D).

Thus,

n-1 _, [E+(§):V]
1—[ Sra(b, Dy N Dy ,6,,0) _ (H gZS ) 7
eV =1

where

s Qg
Si=3 ( ZO) miv(gi™ ... gr D N D).
i

mizl m =
It remains for us to consider the error term for u, (b, 2). We calculate

Qn-1

H Sra(b, €D D,0,,0) _ H H g;nnl 1)u(g;"1... gl D)
ee B, (f) m1=0  my,_1=0
n—1 S;
= gl .
i=1
This completes the result. O
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Chapter 5

The Cohomological Element uo

In this section we consider the cohomological formula conjectured by Dasgupta—Spief in [13].
We begin by recalling the construction of this element. In the construction of this element we
require a map which we will denote by A,. This map is fairly technical in its construction and
we require the explicit form of the map for our later work. We consider this map in detail in §5.2.
A key element of the formula is a generator of the homology group H,,(E, +,Z), denoted by n,.
Let V ¢ E, , be a free, finite index subgroup, free of rank n. We then consider the effect on the
formula of Dasgupta—Spief when replacing 7, with a generator of H,(V,,Z). As in Chapter 4,

we refer to this as “transferring to a subgroup”.

5.1 The definition of us

Throughout this section we use the notation established in §3.3 for continuous maps. Let F,
denote the group of totally positive p-units of F. We first note that by Dirichlet’s unit theorem
the homology group Hy,(FEy +,Z) is free abelian of rank 1. Let 1, be a generator of H,(Ey ., 7).

Let # be a fundamental domain for the action of F*/E, . on (A})*/UP, then lg is an
element of H(E, .,C(%F,Z)) = (C(F,Z))F»+. Taking the cap product then gives 1z N7, €
H,(Ey ., C(F,7)), since C(F,Z) ® Z= C(F,Z). We now define ¥ € H,,(F*,6.(2,Z)") as the

homology class corresponding to 1g N7, under the isomorphism
H,(E,.,C(F,Z2)) = H,(F*,C.((A})* /U, Z)), (5.1)

that is induced by Co((A%)*/U?,Z) 2 Indf,  C(F,Z).
We now follow the construction of Dasgupta—Spiel as given in §6 of [13]. Cap and cup
products are a crucial element of Dasgupta—Spieft’s formula. For the definitions of these products,

refer to Chapter 6 of [1]. Since the local norm residue symbol for H/F at p is trivial we omit it
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from the reciprocity map, i.e., we consider the homomorphism

reCpH/F (AL = G ZIGT,  w= () v = [ ] recu/po(2).
VEP

Let R’ = R— Ro,. We can view rec?

p/r @ an element of H°(F*,8(R',Z[G])") and denote by

prr € Ho(F*,6.(R',Z[G])")
its image under the following map,
HY(F*,€°(R,Z[G])") » H,(F*, €2 (R, Z[G])"), ¢+~ pni’.
The cap product here is induced by the map
6% (R, Z[G])" x6:(2,2)" > 6. (R, Z[G])", (4,¢) ~> -9, (5-2)

where 1) - ¢ denotes the function zU TP s ¢ (2U R P)p(2UP).
For a locally profinite abelian group A, the bilinear map ® : A x Z[G] » A ® Z[G] induces a

bilinear map
C2(Fyp, A) x 6o (R Z[G])? > 62 (0, R AR Z[G]),  (f,9) - f®g.
This then induces a cap-product pairing
H'(F*,C2(Fy, A)) x Ho(F*,6.(R',Z[G])?) > Hyo1 (F*, 62 (p, R, A® Z[G])).
In particular, we can consider
cia N pryr € Hoot (F7,62(p, R Fy ® Z[G)),

where ¢iq is as defined in Definition 3.7.1. Now choose v € Re such that (3.9) holds. Write
RY, = R — {v}. Recall that we write W for F considered as a Q-vector space. In [13, §5.3],
Dasgupta—Spiefs define the following map.

A, Hoyot(F*, 82 (p, R Fy ® Z[G])) > Hooa(F2,C2(Wan, By ® Z[G])(6)).

The explicit definition of A, is too long to give conveniently here. We study this map in the
next section. In §5.2, we show the results related to A, that we require by writing the map in a
completely explicit way.

Now the canonical pairing, where we recall the definition of HFy from §3.4,

Hom(Ce(Wga, Z), Z) x CZ(Wan, Fy @ Z[G]) - Fy @ Z[G],  (p, f) = pry (),
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induces via cap-product a pairing

n: H" N (FY, Hom(Ce(Wan, Z), Z)(0)) x Ho-1 (FY,CS (W, Fy ® Z[G])(6)) - Fy ® Z[G].
(5.3)
Recall the Eisenstein cocycle, Eis%)\ e H" Y (F",Hom(C.(W3za,Z),Z)(5)), from Proposition
3.5.4. Applying (5.3) with the Eisenstein cocycle Eisy = Eis%)\ and A, (cia N pp/r), we obtain
an element uy = ug ) € Fyy ® Z[G] such that

U2 = UG\ = Z UQ((T) ® [071] = EiSOF N A*(Cid an/F)- (54)
oeG

Dasgupta—Spiefs then conjecture [13, Conjecture 6.1] that the element us is equal to the Brumer—
Stark unit, uy,. We end this section by stating the results that Dasgupta—Spiefl have shown

concerning their cohomological construction.
Proposition 5.1.1 (Proposition 6.3, [13]). The formula us has the following properties.
a) For o € G, we have ord,(uz(0)) = (s,x(0,0).

b) Let L|/F be an abelian extension with L 2 H and put g = Gal(L/F'). Assume that L/F is
unramified outside S and that p splits completely in L. Then we have

us(o) = [] w2(L/F,T).

TeY,T|H=0
¢) Let v be a nonarchimedean place of F with v ¢ SuX. Then we have

ua(SU {7}, 0) = ua(S,0)ua(S,oc0) .

d) Assume that H has a real archimedean place w + v. Then uz(o) =1 for allo € G.

e) Let L/F be a finite abelian extension of F containing H and unramified outside S. Then
we have

recy (u2(o')) - H 7_Cs,,\(K/F,T*lyO).

7eGal(L/F)
Tlg=0"1

5.2 The map A,

In this section, we consider the map A,. We begin by defining it in the case we require and
then give a series of propositions which allows us to calculate the map explicitly in the next
section. For more information and the more general construction we refer readers to §5.3 of

Dasgupta—Spief’s paper [13].
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Throughout this section we let A = Fy ® Z[G] to ease notation. We also note the following
definition which will be used throughout. For sets X7, X5 and a map ¥ : X1 x Xo —» A,

Supp (X1, X2,v) = {z; € X1 | Jrg € Xy with (z1,x2) € supp(¢))}, (5.5)

where supp(%) is the support of ¢. This set is the image of supp(¢) under the projection
X1 x X9 — X;. The following simple proposition is used repeatedly in this construction. Since we

require the explicit isomorphism given by this proposition, we include a proof of this proposition.

Proposition 5.2.1. Let X1, X5 be totally disconnected topological Hausdorff spaces, with X3
discrete. Let A be a locally profinite group. Then the map

CC(Xl,Z) ®7 CS(XQ,A) g Cg(Xl X XQ,A),

fegr (z1,22) = f(21) - g(22))
is an isomorphism.

Proof. We calculate that the inverse map as follows. Let Y; = Supp(X1, X2,1%) be a subset of X;
defined in (5.5). We note that Y; is finite since 9 has compact support. Then define the map

Ve Y Ly @zi(y,) € Ce(X1,Z) 8 C2(Xa, A).

yeYs

It is clear that this map is the inverse of the map in the statement of the proposition and this

completes the proof. O

Corollary 5.2.2. Let S1, S be finite disjoint sets of finite places and let S3 € Ro, be a set of

infinite places. Then there exists an isomorphism,
B (S1, 52, A) > C(F, |Us,, Z) ® B2 (S1, S, A)%5. (5.6)

Proof. Let F§, =TIlyes, Fyy- Since we have

H F, (A§1)*/U31US2 _ ( H F, x (A%U&)*/U&USWSS) x F§3/U53
peS; peSi

and Fg, /Us, is finite, we are able to apply Proposition 5.2.1 and this gives us that the map is

an isomorphism and also allows us to write the map explicitly. Let ¢ € €2 (51,52, A) and write

Y1 = Supp(Fs,/Us,, H F, x (A§1U53)*/U51U52US3,¢).
pESl
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We note that Y7 is finite since 1) has compact support. Then the inverse map is

Vi Y 1, @z 0(y, ) € C(FS,/Us,, Z) ® 62 (S1, 82, A).

yeYn
O

We now fix continuous homomorphisms §,, : F; — {1} = Z* for every w € R, to be the sign

map. We also put Fry = [Tyepy Fiw and define

Opy : Fpe —~ {£1} such that (2y)wery = [T 6w(zw).

v
weRY,

We recall the following notation from the end of §3.5. For a subgroup H ¢ Fj, and an H-
module M, we define M (g ) = M ® Z(gy ). Thus, M(dgs ) is M but the H-action is given by

x-m =gy (x)xm for x € H and m € M. By tensoring the (Fp, -equivariant) homomorphism

C(Fﬁg/UR&,Z) - Z(0ry), [+ Z gy () f(z) (5.7)

weFy [Urg,
with id%g({p}’R,’A)R;’o we obtain, via Corollary 5.2.2, an (A’})*—equivariant map
B({p), R, A) > 62 ({p}, R, A) = (SRy). (5-8)
We now calculate this map explicitly.

Proposition 5.2.3. Let ¢ € J({p}, R', A). The image of ¢ under (5.8) is given by

> Ory (W)Y (y,-),

yeYs
where ’l/)(y, ) € %3({]3}7 Rlv A)R:Q .
Proof. The result follows from Corollary 5.2.2 and (5.7). O

Before giving the second map that we require we recall that we have defined the notation,

for S a finite set of primes, F*° = (A% x Ug) n F*. We now consider the following proposition.

Proposition 5.2.4. We have
Hoor(F" 63 ({p), B A)"™ (05 ) 2 Hot (B, 62 ({p), B, AM(0)), (5.9)
where § is as defined in (3.6). Furthermore, if we write

U=[g1]...| go1]®¢ € Hy o (F*, 6 ({p}, R, A) "= (0ry))
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then the image of ¥ under the isomorphism in (5.9) is

Z f [gl | |gn—1:| ®5U(fv)1/}(fxu1}7')v

fEF*/FXU"

where fy, is the image of f in T1, 5, Fo and (fx,,:) € C6;’({13},R’,A)X’t"’(é),

Proof. 1t is clear to see that

o ’ v Aﬁ&up * o ’ A, 00 r)* o 1 N, 00
G (P} R A () = Ind 20 ) 62 ({0}, B AP (8) 2 Ind (10 62 ({p), R, 4)V ().
F F

Thus, by weak approximation, we have

B2 ({p} R, A) ™ (0ry, ) 2 Indl, 62 ({p}, R/, AN (6).

FAuv

It follows that the required isomorphism holds. The explicit description of the map follows simply
by tracing through the definitions. O

The last map we need to construct before giving the definition of A, is the (A?‘;‘"’)’r -

equivariant map
AY B ({p). R AN > C2 (AN, A) 2 CF (Wan, A), (5.10)

where we have the notation S’ = R'u {p} and note that A}’w = Wss. There exist canonical

homomorphisms
2 (Fy < [] Fy. A) @ 6:(2,2)7 M - € ({p) R, )N, (5.11)
qeR’
C2(T] Fo A) 8 Co(A7N=,2) > C2 (A3, A). (5.12)
qesS’

By Proposition 5.2.1, the first map, (5.11), is an isomorphism. Let FS'X denote the ring of
ideals of F' which are coprime to S’ U\. Since (Afgux’m)*/US,UX"><> is isomorphic to .F5"* | the
ring C62(®,Z)S'UX*°" can be identified with the group ring Z[JS,UX]. We define (5.10) as the
tensor product A}, =i ® Y% where i : Co(Fp x Mger Fyy A) = CZ (Tl ges Fy, A) is the inclusion
map induced by extension by 0 (as defined in §3.1) and 1593 Z[JS'UX] - C’C(Aguxm, Z). Here
maps a fractional ideal a € .F5'U* to the characteristic function of @' = a(ITesrux Oc)
which we denote by char(a(IT.g, 5 Or))-

IS'UX

Proposition 5.2.5. If ¢ € 62 ({p}, R, A)X’“’, then

AAI(¢):Zw(Z,')1®char( [T a1 @))ECE(A}"”,A),

zeZ w finite véS'UN
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where Z = Supp((Al[S;’UX’m)*/US’UX""’,Fp x [lger Fy, %) and we have the notation that for func-
tions f : X1 > A and g : Xo - Z, we have the function f © g : X1 x Xo - A such that
(f @ g)(z1,22) = f(21)g(z2).

Proof. Let 1) € 62 ({p}, R/, A)X*00 and define Z as above. Then the image of 1) under the inverse
map of the isomorphism (5.11) is

¢'—> Z 1/)(27) ®l,.

zeZ

We now calculate the effect of 5"}, First note that the isomorphism
S'uXx S"UX 00\ 1775'UN, 00
j U s (AFU s ) /U )

is given by
me H ﬂgl(q)7
gesm™
where Sy, is the set of places that divide m and m(q) is the integer such that the fractional ideal
q ™ @m is coprime to q and mq is the uniformiser associated to the prime ideal q. We then view
the image as an element of (A?UX’M)* /U S'UX,e0 by imposing that at the places away from Sy,
the value is 1. Thus, when we identify €%(@,Z)5" "> with Z[.F5"**], we map

b Z ( H ﬂ;n(q))mez[js’ux].

megS’ux q€Sm

Applying I S'UX, we have
Z ( H 7T;1(q))mH Z o( H W?(q))ﬂm(ﬂr¢s/ui®r)'
megS'ux  q€Sm megFSUx  q€Sm

Returning to v, we have that under the map Ag

P Z ¢(Za')! ® Z ]]‘Z( H W?(q))lm(nrgs’uXG“)

z€Z meJS’UX qum
= Y 0z, hr@char| [T a@I( T o0 .
zeZ v finite t¢S/UN

Lastly, the image of the above under the map (5.12) is

Zw(z,~)x®char( [T a®&( 1 @J).

zeZ v finite tES/UN
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We are now able to define A, via the composition

* o Ik (5-8)+ * ° APt v
A, :Hn—l(F a%c({p}7R an ®Z[G])) - n—l(F 7%0 ({p}aR 7Fp (X)Z[C;])R(m (5R}jo))

(5-9) AUL o ;o A, 00
—— Hp 1 (FM, 62 ({p}, R, Fy ® Z[G])M*(5))

5.10)4 ~ o *
610). et (FA2,C8 (W, By ® Z[G1)(9)).

5.3 Transferring to a subgroup

Let V be a finite index free subgroup of E, of rank n—1. Let 1, v be a generator of H,,(Ve&(r),Z).
Let Fy be a fundamental domain for the action of F*/(V @ (r)) on (A}.)*/UP. Then, 1g, is
an element of HO(V @ (r), C(Fy,Z)) = (C(Fy,Z))V® ™). Taking the cap product then gives
lg, Nnpv € Hy(V @ (1), C(Fv,Z)), since C(Fy,Z) ® Z = C(Fv,Z). We now define 9}, €
H, (F*,6.(2,Z)") as the homology class corresponding to Lg, N7,y under the isomorphism

H,(V @ (r),C(Fy,Z)) = Hy(F*,Co((A%)* /U, Z)) (5.13)

that is induced by C.((A%)*/UP,Z) = Ind‘I;;(ﬂ)C(GJV,Z). As before, we view rec';{/F
element of HY(F*,€(R’,Z[G])?) and denote by

as an
pury € Ho(F*,6.(R', Z[G])?)
its image under the following map
H°(F*,6° (R, Z[G])") » Ha(F*, 6. (R, Z[G])?), ¢~ ¥nd},
where the cap product is induced by the map (5.2). We then define
up (V) = Bish 0 Av(cia M pryrv)-

Proposition 5.3.1. Let V be a free, finite index, subgroup of E. of rank n—1. Then

ug (V) = Z ug(a)[V:E+] ®cl,
oeG

where

us =y us(o) @
oeG

Proof. We mimic the proof of Theorem 1.5 in [5]. General properties of group cohomology (see
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pp. 112-114, [1]) yield the following commutative diagram.

H(V & (r),C(Fv,Z)) x Hn(VGB(w),Z)QHn(F*,CC((A})*/UP,Z))
resT \LCOres iid (514)
HO(E,p, C(F,2)) x Hy(Eyp,Z) — Ho(F*,Co((A})* /U, 7))

Note that in the above, the cap-products in the top and bottom rows include applying the
isomorphisms (5.1) and (5.13), respectively. By Proposition 9.5 in §3 of [1], we have the following

identities,
cores(np,v) = [Erp: V]np,
res(lg) = Lg,, .
Applying these identities with diagram (5.14) gives
O = [Byp: VIOP

It follows that the proposition holds. O

5.4 Explicit expression for us

Let V ¢ E, be a free, finite index subgroup of rank n — 1 such that if V = (eq,...,e,-1) the g;
and 7 satisfy Lemma 3.6.1. For ease of notation we write €, = m. We now calculate explicitly
the value of uy (V) = Bist n A, (¢ig N PHJF,V)-

Following Spiek [21, Remark 2.1(c)|, we choose the following generator for H,,(V & (7),Z),

np,v = (-1) Y sign(m)[e-qy |- lergy] ® 1.

T€SH

We note here that this choice is consistent with that made in the proof of [14, Proposition 4.6].

We then calculate

19‘\:‘/ =lg, nnpy = (-1) Z Sign(T)[ET(l) |- E‘r(n)] ® 1g, .

T€SH

Using this description of 19?/ that we computed, we have

pu/ey = (-1) Z sign(7)[e-y |- [erm)] ® (rec’;{/F g, ),

T€S
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p

where rec H

7 Lg, is as defined in (5.2). It then follows that ciq N pg/p,v is equal to

canpmry = (F1)"(=1) Y sign(m)[exy |- [erm-n)]®

TES),

((6,,.(1) .. -Er(n—l)) : zid(eT(n)) ® (recz/F : ]lgv )) .

We note that we have the action (z- f)(y) = f(yxz~!) for a continuous map f and unit z. We
also recall the definition of zq = 216, ,id from §3.7. Then zia(er(n)) € C¢(Fp, Fy). By changing
the sign of our choice of the generator 7, v, if necessary, we can remove the factor of (-1)" in
the above. We now apply the map A, to this quantity. In §5.2 A, is defined via the composition
of three maps, namely (5.8),, (5.9) and (5.8).. By Proposition 5.2.3, we have that the image of

¢ia N pgyr,y under (5.8), is given by

(—1)n+1 z Sign(T)[ET(l) | - | 57(n—1)]®

TES

((ET(l) .. ~5T(n—1)) ' zid(ET(n)) ® Z 5320 (y)(rec';{/p(yv ) ) ]]-9\/ (yv ))) ) (515)
YEYr(n)

where

Y‘r(n) = Supp(Fj%},’o/UR}’,o ) FP x (AIIJ:‘URQQ)*/USUR:Q ’ w'r(n))

Here, for ease of notation we have written

w'r(n) = (57(1) .. 67’(71—1)) : Zid(ET(’ﬂ)) ® (I‘GCZ/F . IL?V)

It is now convenient for us to make a choice for Fy,. Let Gy denote the group of fractional ideals
of O, modulo the group of fractional principal ideals generated by elements of V', where Of,j,,
as we defined in §3.5, denotes the ring of p integers of F. Let {by,...,b,} be a set of integral

ideals prime to R’ U A representing Gy. We may then choose
Fy = {bUP,... b, U}

where by,...,by € (A'})* are ideles whose associated fractional O ,-ideals are b; ®¢, Opp,...,
by, ®c, Opp. Thus, for ¢ = 1,...,h we can choose that the b; are totally positive and prime to
R’ U ). This description of Fy, is similar to a construction given in [14] on page 14. From this

description of ¥y we have that Y. (,) is trivial for all n. Thus, (5.15) is equal to

n . RY, R
(_1) + ES: Slgn(T)[ET(l) | s | 5T(n—1)] ® ((57(1) .- ~€T(n—1)) ’ Zid(er(n)) ® (recf;/F ’ ]lgv ) :
TESH
(5.16)
We now apply (5.9). By Proposition 5.2.4, we have that the image of (5.16) under (5.9) is equal
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to

D™t > Y sign(n) flery |-l Eren]®

TE€Sn feF* | ALY

(1) -+ Er(nen) - 25a(Er(my) ® 0 (fo) (vechy 5= (fir) - 1o (fe))) - (5:17)

By our choice of Fy, we have that the sum over F*/F AUv ig also trivial. Hence, (5.17) is equal

to

pUAUGS 1 AUeo

(D)"Y sign(T)[erqy |- | ern-1)] ® ((57(1) e Er(n-1)) - Zid(Er(n)) ® (recyy - Iy )

TES,
(5.18)
We can now finish calculating the effect of A, on ciq N pg/p,v by applying (5.10) to (5.18) and
using Proposition 5.2.5 to calculate that A, (cia N ppypyv) is equal to

(1™ Y sign(r)[er) |- [ermoy]®
T€S,

((87(1)"'5T(n1))'Zid(€7—(n))® Z(rec';;’f;“( ) ]IAUDO 29)
zeZ

Ochar( I1 gordu (=) ( I1 @t))), (5.19)

w finite tES/UN

where

7= Supp((AiLJ)\,OO)*/US LJ)\,oo,}(—vp « l—BI) F;,wr(n))
qeR’

Here, we have ¢,y = (€-(1) - - .eT(n_l))-zid(sT(n))®(rec‘;;/AFU°° IL;“J/‘”) We now apply the measure
Eis} to A.(cianpmyr,yv). Recall that the measure is applied as defined in (5.3). We write yup for
the measure with values in F}y ® Z[G] induced from the Eisenstein series Eis%. We now consider

the function (e-(1)...67(n-1)) - zid(€7(n))- For ease of notation we define, for 7€ S,, and z € Z,
¢T(n),z = (87—(1) . ET(?’L—l)) . Zid(‘g‘r(n)) ® Z (I‘GC,;IU/);,JOO( ) ]lAUOO ))
zeZ

@char( IT « Ord (Z“’) ( TI @)))

w ﬁnite t¢S/UN

We are then able to calculate, after recalling from §3.7 that we can choose ziq = 1, ,ids

1o idps + Lpe, -7 if 7(n) =n,

((57'(1) ve Er(n—l)) ' Zid(ET(n)) = (520)

0p " E7(n) if T(n) *N.

To calculate the measure, we first note that F = (7) ® O and that O = lim,;, e O/1 +p™0,. By
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(5.20), we are able to calculate the value at m and O separately. We now give some additional
notation which we require. Let m > 0 and « € @/1+p™0,. We then write U, = a(1+p™0,). For

o € G, we define the following maps

¢7 Wy, > Z, and PUET LW > Z,

n,z
such that

- 1 ifpp.(zx)=nn®0c !, 1 ifpp.(x)eU,®07t,
ORI nd fso7 @y = {1 Ol
0 else, 0 else.

For 7€ S,, with 7(n) #n, we also define
E,.(n)®(7_1
n,z : W’Z‘)\ -7

such that

T(’!L)®U ( ) 1 if ¢T(n),z($) =E&7r(n) ® 0'_17

T(n) ? 0 else.

The construction of the measure given in §3.4 now allows us to calculate

Eis% 0 (A, (ciq N PHIFV)) = (-1)"*1(-1)( (D)

Y D sign(r) nlll_rgo( > Eis (qu a®7 )(a®a 1))+Elso(¢”®” Yr®o™)

zeZ 0eG | TES, acQ/(1+p™0,)

T(n)=n
+ Y sign(NEBis2 (672 Nermea )| (5:21)
T€SH
T(n)#n
For ease of notation we have written Eis) = Eis}.([e-(1) | --- | €7(n-1)])- Let ¢ € {gb,[{ff’”_l, Zﬁ”_l,

-1
ff);’”w }. Then, by Proposition 3.5.4 we have that

Eisp([er(1) |- | er-1y])(9) = 6([ery | - T er(u-ny DIA(Cey ([eray | - | Er(non)]), 250)

where ® = ¢ ® ¢ and ¢ is as defined in (3.8). We will decorate ® to match with the notation
used for . For example we write (I),[{fz®0 ' (bU“@U '® ¢x. For ease of notation, we let C, =
Ce,([e-(1) | --- | €7(n-1)])- Recall from (3.10) that for s € C with Re(s) > 1 we have

Ly(Cr,®58)= > &(v)Nv

veWnC,
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Fori=1,...,n we define

Bi= U Ceallerqy |- lerm-n])- (5.22)

TS,
T(n)=i

We also write & = B,,. Since we have chosen the ¢; as in Lemma 3.6.1 we have

sign(7)0([er(1) |-+ | €rm-1y]) = 1. (5.23)

Applying (5.23) and the definition in (5.22) to (5.21), we have, after noting (-1)"+!(-1)(»~D (-1

Eisy n (Av(cia N prrv)) =

5 ( lim ( > LA(%,q)T[{fZ@”_I;O)(a@a_l))+L>\(%,<I>Zio_l;0)(7r®a_1)

zeZoeG \"" T acQ/(1+p™0y)

=1

n-1 _
+ 3 La(%B;, ®557 L0) (e ®a‘1)). (5.24)

We now calculate each term in the above expression, beginning with the limit term. Fix m >0
and 0 € G. Let a € O/1 +p™6,. We also let b be a fractional ideal of F', coprime to Su A, and
such that o = 0. For this we need to find the elements z € Z such that gb,[{:;@"_l is not trivial.
For this we require that for some z € [Tqcp Fy,

ol = (rec?/x;w(z, x)- ]I;‘J/XUM(z,x)).
By the definition of #Fy, and the reciprocity map, the above equation is nontrivial only if z €
Fv and T, guire 9o " ) = 571 (a)prd2 () for some (@) € PP'. Recall that we have § as the
conductor of H/F and define P! = {(a) |« € F¥, a =1 (mod f)}. By the description of Fy,
we note that for each o € G there is a unique z € Z that satisfies the above equation. Since
Iy Anite qﬁrd”(z”) = b1 (a)p (@) for (a) e PI', we have that (a)p~*%(*) must be coprime to
pURU since z and b™! are. Thus, for all 7 € (a)p’ord”(“) we have r~! e [Te¢s05 O Thus, we
have

Frb ™ (a)p %@ J] 6)=b"".

g S'uUA

We now define, for a Shintani set A, U ¢ F, compact open, fractional ideal b and s € C with
Re(s) > 1

LR)\(b,A,U,S) = Z gf))\(I)N(I)iG
zeWnNA, zeU,
zeb™, (z,R)=1
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We thus have

lim ( 3 LA(%,@({;';Wbl;o)(a@a‘l))— lim

aLR,A([B@HUa%O) ® 0-61)
m—oo ac0/(11p™6,) m—oo

(
( a0/ (1+p™0Oy)
(]g:c dLp (b, %, ;0)) ® o7,

where the multiplicative integral is as defined in Definition 4.1.1. We can apply similar, and in

fact easier, calculations for the other terms in (5.24) and thus deduce the explicit expression for
u2(V)7

Eis} n (Av(cid N pr/ev)) =

n-1
Z ((H gf/R,)\(b,%iyﬂ'Gp;O))WLRY)\(b,%,ﬂ'GF;O)X(Dx dLRQ\(b,gfs,(E;O)) ® O'gl) . (525>
opeG i=1
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Chapter 6

The Cohomological Element us

In this section we consider the second cohomological formula conjectured by Dasgupta—Spiefs.
This is conjectured in [14]. We begin by recalling the construction of this element. As with the
other cohomological formula of Dasgupta—Spiefs(uz), a key element of the formula is a generator
of a homology group. In this case it is a generator of H,,_1(Es,,+,Z). As was done in Chapter
5, we consider the effect on this formula when Eg, . is replaced by a free, finite index subgroup,

of rank n.

6.1 The definition of us

In [14], Dasgupta—Spieft give two equivalent constructions for their formula. Since we require

each of them in the later chapters we give both here. We denote them by ug and wj. In this

thesis we give slightly different constructions to those given in [14], namely our usz = uz(DS)¥,

and similarly for u5. Here # denotes the involution on Z[G] given by g = ¢! for g € G, and

u3(DS) is the construction in [14]. This is done by modifying the definitions of ) and w;” y in

§3.5. The key adjustment we have is to use recy;p((n)) ™" rather than recy,p((n)) in (3.7).
We begin with us. Recall that in §3.7 and §3.5 we have defined the following objects:

cg € H'(F},Ce(Fy, F})) and ke H"'(Es, ,Hom(C.(Fs,,Z), F, ® Z[G])).

Let r = #5,. We now consider H,;,_1(Es,,+,Z). By Dirichlet’s unit theorem, Eg, | is a free
abelian group of rank n. Hence, Hmr,l(Esp’Jr, Z) = Z. We are thus able to choose a generator
Ve Hpir1(Es, +, 7). We recall that F§p = [ges, Fy and label the elements of S, by p,p2....p,.
We now define a class

Cap € H'(FS , Col Fs, 7))

by

Cid,p = Cid Y Cop, U "+ UCoy
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Here the cup product is induced by the canonical map
Co(Fy, Fy)® -+ ® Co(Fy, Fy) = Co(Fs,,, Fy)

defined by

® far ((xq)qesp — H fq(xq))'

qeSp qeSy

Definition 6.1.1. Let ¥ ¢ Hnw_l(Espﬁ,Z) be a generator. Then we define
uz = cigp N (kan?) € Fy ® Z[G].

Adapted from [14, Conjecture 3.1] we have the following conjecture.
Conjecture 6.1.2. We have uz = uy

We now give the definition for u5. Recall that in §3.5 we have defined

W)\ € H" (B (), Hom(Ce(Fy, 2), Z[G])).
Definition 6.1.3. Let 9’ € H,,(E.(f)p,Z) be a generator. Then, we define
uf = Cig N (wf’)\ nd). (6.1)

The following Proposition follows from [14, Proposition 3.6].

Proposition 6.1.4. We have uz = uj.

6.2 Transferring to a subgroup

Let ¥y, € H,(V @ (7),Z) be a generator. For z1,...,x, € V & (r) and compact open U c F}, we
put
ngkyv(;vl,...,xn)(U) = 5(9517...,xn)CR’A(b,éel(xh...,xn),U7O).

As before, it follows from Theorem 2.6 of [5] that v} , |, is a homogeneous (n - 1)-cocycle on

V @ (7) with values in the space of Z-distribution on F,. Hence, we obtain a class
whony = Vhay]e H" YV @ (n), Hom(C(Fy, Z),Z)).

We then define

UIB(V) =Cig N (w]?,b,)\,v N 19(/)

The next proposition shows the relation between w4 and u4 (V).

56



Proposition 6.2.1. Let V be a free, finite index, subgroup of E(f) of rank n — 1. Then, we
have
cia N (Wh gy N0Y) = (cian (W, ")) FOV], (6.2)

Proof. This proof is adapted from the proof of Proposition 2.1.4 in [24]. We mimic the proof of

Theorem 1.5 in [5]. For ease of notation, in the following diagrams we write
Meas(Fy,Z) = Hom(C.(Fy,Z),Z).

General properties of group cohomology (see pp. 112-114, [1]) yield the following commutative

diagrams.

H"Y(V,Meas(Fy,Z)) x H,(V & (r),Z) —"— H(V & (1), Meas(Fy,Z))
reST J,COTCS J,COreS (6'3)
H"N(E.(),Meas(Fy, Z))  x  Hu(E.(f) & (r),Z) = Hi(E.(f) ® (7), Meas(F}, Z))

and
HY (F},Ce(Fy, Fy)) Hy(V @ (r),Meas(Fy,Z)) —— Fy

J,id lcores \L‘d (64)
HY(FY,Co(Fy, FY))  x Hy(Bo(f) ® (1), Meas(Fy, Z)) - Fy.

By Proposition 9.5 in §3 of [1], we have following identities,
cores(Vy,) = [E+(f) : V]9,
res(wf,byk) = w?b)\’v.
Diagram (6.3) gives the equality
wy .\ N cores(¥y,) = cores(res(wy , ) NVY).
The identities above then show that

R on N E(]) : V1 = cores(w, v 19%):

Applying diagram (6.4) to the above equality gives us the result. We note the the factor [V :

E, ()] becomes a power due to the multiplicative nature of the formula. O

Let V ¢ E.(f) be a finite index subgroup free of rank n—1. We now note the relation between
us(V) and us(V'). We first give the additional notation required to define u3z(V). Let V ¢ E.

be a free finite index subgroup of rank n — 1. Write

VSP :V®<7Tl7...,7'rr).
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Let 9y € Hn+r_1(Vsp, Z) be a generator. For x1,..., 2, € Vs, and compact open U c F}, we put
Lo v (@1, .., 20)(U) =6(z1, .. 3 20) LR A(Cey (21, .., ,),b,U,0).

As before, it follows from [5, Theorem 2.6] that 1, 1,1 is a homogeneous n — 1-cocycle on Vg,

with values in the space of Z-distribution on Fs,. Hence, we obtain a class

RV = irec(bi)_l[um,\,v] € H"_l(VSp,Hom(CC(FSP,Z),Z[G])).

i=1

We then define

U3(V) =Cid,p N (/i,\,v N ’19\/)

Proposition 6.2.2. Let V be a free, finite index subgroup of E.(f), of rank n—1. We now let V'
be any free, finite index subgroup of E, of rank n—1 such that V' ¢V and [E, : V'] = [E.(f) : V].
Then,

Cig N (w?b,A,v NIy = Cigp N (kavr Ny,
i.e., uzs(V') = uf(V).
Proof. This proposition follows from the proof of [14, Proposition 3.6]. O
Following from this proposition, we have a simple corollary.

Corollary 6.2.3. Let V be a free, finite index, subgroup of E. of rank n—1. Then, for each
oeG@,
uz(V,0) = ug (o) F=V1,

6.3 Explicit expression for ug

Let V = (e1,...,6n-1) € FE, where €1,...,6,-1 and 7 = &, are chosen to satisfy Lemma 3.6.1.
Write €, = m. As before we have the notation Vg, = (e1,..-&n-1,71,...,7). Here we have

m=m1. Asin (5.22), for i = 1,...,n we define

B = U Cel([gT(l) | | 67’(71—1)])'

TS,
T(n)=i

As before, we write % = %,,. We now calculate explicitly the value of uz. We begin by firstly
calculating the value of ¢iq p N (Kp,x, v Ny ). For ease of notation we let £,,4;-1 =m;, fori=1,...,7.

We choose the following generator for H,,-1(Vs,,Z),

Oy = (-1) DD S sign(T)ery | - | Ernar1y] ® 1.

T€Sntr-1
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This choice is stated by Spief in [21, Remark 2.1(c)] and is consistent with the choice we made for
ny at the start of §5.4. We can now calculate, after noting (—1)®=D =1 (_1)r(—1)(n+r-1)(n-1)

= (_I)Ta

kv Ny = (-1)" > sign(T)reav([ery |-l erm-n]) @ [ern) | - - | €rgnar—1)]-

T€Sn+r-1

Recall from §3.7 that we can choose, as a representative of c;q, the inhomogeneous 1-cocycle
Zid = Z1r, ,ids i.e., we take f = 1,6, in Definition 3.7.1. One can easily compute, as is done by
Dasgupta—SpieR in the proof of [14, Proposition 4.6], that for ¢ = 1,...,n+r -1 and i + n, we
have

Eglzid(si) = lro, - €5, (6.5)

and
7 za() = lg-idps + Lo, - 7. (6.6)

Returning to our main calculation, we have

iy 0 (ory 10) = (D7 T [ up((rin |- rrern D)
Sp

T€Sn4r_1
d(sign(7)([er(n) | --- [ €r(ner-n) Do AV ([Er ) | -+ | €1y 1)) (@)
Now we note that for i = 2,...,7 we have that c,, (¢;) = 0 unless 7 = j. Hence, we only get
non-zero terms when 7(k) = k for k =n+1,...,n+r - 1. Therefore, since (—1)’"(—1)’"z =1, we

have

iap (oaw 1) = 3 [ aap((erim | en || enera (@)

TESH s

d(sign(7)([er(n) [ €nst | -+ [ Ensrm1 Do v ([Er) |- [Er(n-1)])) ().

Then, since for i = 2,...,7 and 7 € S,, we can calculate (e-(n)ens1 - Enyic1) ! “Coy, (€1) = 1o, ,
k3 K3

we have
ap 0 (oay 09 = 3 [ ca(lenn ]| fnra (@)
T€S, p

d(sign(T)ermyko v ([Era) |- | er@mony D)@ x []6p,).
j=2

We recall the definition of kp 1y from the start of §6.1. Since we have chosen V and 7 through
Lemma 3.6.1, we can note that, for 7 € S, and a compact open U ¢ ©,, we have by definition
that,

sign(r)kpa v ([ery |- [ €r-1)]) = LrRA(Ce, ([er) | -+ - | Er(n-1)]), ,U,0),
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where £ is as defined in (3.7). Thus,

Cidp N (Kpa,v NJy) = Z&ﬁ‘i&%m@ﬁmﬂx)
T€S, P

d(SR,)\(ael([ET(l) | s | €T(TL—1)])7 b,$ X H®Pj70))'
j=2

Applying (6.5) and (6.6), and piecing together the appropriate Shintani sets, we further deduce

cip N (Ko NOY) :ng d(Lr (B, b,z x H®pj,o))J€ 7 d(Lr2 (B, 6,3 x []0,,0))
j=2 b j2
n-1 r
[Tf, & dCra@ib.ox]]0,.0). (6.7)
i=1770p j=2

We note the switch to products here as after integrating we are in the multiplicative group Fy'.
Considering the first two terms on the right hand side of (6.7), it is clear that

]{)x d(Lr(B, b, x 1‘[@,,3.,0)% 7 d(LrA(B,b,2x []6,,,0))
=2 P

Jj= Jj=2

_ 71_213A(%,b,®sp,0)]gx d(Lr2(B, b,z x H®Pj’0))’
j=2

where Og, = [];_; Oy, c Fs,. We now consider the product on the right hand side of (6.7). It is

straight forward to see that

n_1 r Nl (B, b,70, xTT oy 6p . ;0
H][ i d(Lr A (Bi, b,z x H(gpj’o)) = Hfi Rr.( mOp X1 Op ).
i=1770p j=2 i=1
Hence,
Cid,p N (Keav NVy)
n-1 r T
LR, (Bi,b,m0,x17_50p . ,0)
:(Hé_iRA pX1lj=2O%; )WER’A(%’[”@SP’O)]([D%d(ﬁR,A(%vbvaH®Pj’0))'
i=1 j=2
Thus, we have
h n—1 r
L1, (Bi,bg, 76 xIT)_5 Oy . ,0
uz(V) = 3 vecyp(by) ™ ((H & (3 ey xM-2 O ))WﬂR’*(%’bk’GSWO)
k=1 i=1

][ 2 d(£r (B, b, x []6y,,0)) |
0 i3
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6.4 Explicit expression for v}

For later calculations we also require an explicit expression of uj. Let V be a free, finite index
subgroup of F,(f) of rank n — 1 such that V = (e1,...,e,_1) where ¢1,...,6,-1 and 7 = &, are

chosen to satisfy Lemma 3.6.1. For ¢ =1,...,n write

Bi= U Cellerqy |- lerm-n])-
T€S,
T(n)=i

Let % = %AB,,.As in §5.4, we choose the following generator for H, (E.(f)y,Z),

Wy = (-1) Y sign(7)[erqy |- [erm] @ 1.

TES,

This choice is stated by Spief in [21, Remark 2.1(c)]. We can now calculate

WP ory Ny = (DO Y Y siga(n)wly v (x| T ermen]) @ [ai].

i=1 T€S,
T(n)=i

We recall the definition of w]‘f_b yy from §3.5. For 7 € S, and a compact open U ¢ Oy, we have,
by definition, that

Sign(T)w$7b,A7V([€T(l) | cee | 57’(71—1)]) = CR,)\(b76€1([€T(1) | | g‘r(n—l)])’ U70) (68)

Returning to our main calculation, using (6.8), we have

Cia N (wsb,)\,v n 0%/) = Z Z ]}; zid(Ei)(‘r) d(EiCR,)\(b76€1([ET(1) | s | 57’(n—1)])7$70))'

i=1 T€S,
T(n)=t

Applying (6.5) and (6.6), and piecing together the appropriate Shintani sets, we further deduce
an @y N05) = f @ d(Cra(0.9,2,0)f 7 d(Caa(v,B,,0)
P
n—1
[Tf, & dCra(6.%0.2.0). (6.9)
=177V

We change to products rather then sums here as after integrating we are in the multiplicative

group F. It is clear that we can then write

uy(V,0) = cig N (w;b,/\,v ndy,)

n-1
=11 6Z§R,A(b,@,i,w®p,O)WCR,A(b,%,@,,O)]gx d(Cr.a(b,B,2,0))(z).

i=1
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6.5 A formula for the principal minors of the Gross regula-

tor matrix

As we noted in the Introduction, the construction we give for ug is a generalisation of the
construction by Dasgupta—Spief in [14], for the diagonal entry of Gross’s regulator matrix. In
[14] a formula is given for the minors of the Gross regulator matrix. The simplest case of this
is the diagonal entries. In this section, we give this construction and note how our results allow
for the application of Theorem 2.3.6 and Theorem 2.3.7 to prove that Dasgupta—Spief’s formula
for the diagonal entries holds.

As in §2.2, we let x : Gal(F/F) - Q be a totally odd character. We recall that we have fixed
embeddings Q c C and Q c C,, so x may be viewed as taking values in C or C,. As in §2.2, we
let H denote the fixed field of the kernel of y.

Applying x~! to the measures xy and wg \» defined in §3.5, gives the measures we require for
these constructions. To define this precisely, we first let k£ denote the cyclotomic field generated
by the values of xy. Now let 8 be the prime of k& above p corresponding to the embeddings
kcQc C,p. Let D be a Shintani set and U € 6, be compact open. For s € C with Re(s) > 1, we

define, similar to £ in (3.7), the Shintani L-function

(©)

Lr(D.x.b.Us) = (N0 35 2o

geDnb;;, ceU
(§&,R)=1

Similar to £g x, we define

Lr(D,x,b,U,s):=Lgr(D,x,bA™",U,s) - x(A\)I'*Lg(D, x,b,U,s).
Let x1,...,2, € Eg, . For a compact open subset U c Fs, let

o n (@1, 20 )(U) =6(21, ..o, 20) Lr A (Cey (21, -+, 20), X, b,U,0).

Let K be a finite extension of @, which contains all the values of the character x. Then u, p x

is an Eg, ,-invariant homogeneous (n — 1)-cocycle yielding a class
F,on = [aon] € H' ' (Eg, 1, Hom(C.(Fs,,Z), K)).

Here we are using Remark 3.5.3. We define the Eisenstein cocycle associated to A and x by

h
Ky = 2 X(0:) Ky 0,0 € H' N (Es, +, Hom(C.(Fs,, Z), K)).
=1

Using §3.7, we can define elements c,,,c;, € Hl(F;, Cc(Fp, K)). The homomorphisms o, and
l, are as defined in (2.1) and (2.2). As before, we label the elements of S, by p1,...,p, and let
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J c Sp. We now define classes

Co,ClJ € HT(ng,CC(FSva))

by
Co =Cop U UG, ,
Ci,J = Cgy U“-chr,
where
ly, ified,
gi = o
op, ifi¢J

Definition 6.5.1 (Equation (17), [14]). Let ¥ € Hyvr-1(Es, +,Z) be a generator. Then for any

subset J c Sy, we define
c,gnN (HX,)\ n 19)

con (oo 0) (6.10)

%P(X)J,(m = (_1)

The “an” notation here is only used to distinguish the formula R,(x)jan from the algebraic

quantity R,(x)s. Dasgupta—Spiefs conjectured that their formula R,(x)san is in fact equal to
Rp(X).7-

Conjecture 6.5.2 (Conjecture 3.1, [14]). For each subset J c Sy, we have Rp(x).s = Rp(X) J,an-

We now give the second formulation that Dasgupta—Spie give for R,(x)Jan- We are first
required to generalise our definition of the Shintani zeta function. Let b be a fractional ideal of
F relatively prime to S and X, and let D be a Shintani set. For each compact open U € F,
define, for Re(s) > 1,

Cé(b7D’ U’ 8) = Nb_s Z Na_s.
acFnD, acU
(a,R)=1, aeb™ " ®¢,,Op,
as=1l (mod f)
We define (I‘é’)\(b,D, U, s) in analogy with (2.4). Let E.(f); denote the group of J-units of F
which are congruent to 1 (mod §). We note that F,(f); is free of rank n+j - 1. For x1,...,2, €
E.(f)s, a fractional ideal b coprime to S and [, and compact open U c F}, we put

V[i)\(ﬁl, v ) (U) =6(xq, ... ,xn)gé’)\(b,éel(m, ey ), U, 0)

where 6 and C.,(21,...,7,) are defined as in (3.6) and (3.5), respectively. Then, 1/577/\ is a
homogeneous (n — 1)-cocycle on F,(f); with values in the space of Z-distributions on Fy. This

follows from Theorem 2.6 of [5]. Hence, we have defined a class
Wil = [V a] € H' (B (f) s, Hom(Co(Fy, Z), Z)).
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Here the V[‘i y Is being viewed as an element of Hom(C.(Fy,Z),Z) via the integration pairing

from Remark 3.5.3. We also consider

W%],,\ = Z X(b)W%{b,A € H”fl(EJ,(f)J,Hom(Cc(Fp,Z),Z[G])),
[6]eGy/(p)

where the sum ranges over a system of representatives of G5/(p). This construction is adapted
from the construction of ng in §3.3 of [14]. Write J = {p1,...,p;}. We then define

J— J— ..
Co = Copy Ut UCoy and cp =, U ua,

Proposition 6.5.3 (Proposition 3.6, [14]). Let ¥ € H,(E.(f)p,Z) be a generator. Then, we

have . ,
a, N(wy y,nv')

R an = -1 A T
»(0», ( )Copﬂ(w;,Aﬁﬁ')

i.e., we have a second formula for Rp(X)p,an-
Using the main result of this thesis (Theorem 2.3.7), we can prove the following theorem.
Theorem 6.5.4. Conjecture 6.5.2 holds in the case #J = 1.

Proof. Let p € S, such that J = {p}. By Theorem 2.3.6 of Dasgupta-Kakde, we have
uy =wup in (Fy/u(F,)) ® Z[G].

Recall that p(F,) denotes the roots of unity of F,". Theorem 2.3.7 then gives that uz = u;. By
specialising to x and applying the maps [, and o, respectively, we have the result. Here we have

used the fact that [, and o, are trivial on pu(F)). O
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Chapter 7

Comparing the Formulas for Cubic
Fields

In this chapter we present work from [18] in which we show that u; = us when F is a cubic field.
This result was proved by Dasgupta—SpieRin [14, Theorem 4.4] when F is a quadratic field. We
note that we change the notation of the proof slightly in this thesis to focus more on the units,
whereas in [18] the paper is written to focus more on the diagonal entries of the Gross regulator

matrix. In this chapter, we prove the following theorem.

Theorem 7.0.1. Suppose that F' is a totally real field with [F : Q] =3. Then,
Uy = usg.

We note that this theorem has been attempted previously by Tsosie in [24]. However, as we
show in the appendix, we find a counterexample to the statement of a lemma necessary for his
proof, namely, [24, Lemma 2.1.3]. The statement concerns having a nice translation property of
Shintani sets, for more detail see Statement A.1.1 in the appendix. The main contribution of
this chapter is the methods we develop to recover some control of the translation properties of
Shintani sets. This is done in §7.1. We spend the majority of this chapter proving the following

theorem.

Theorem 7.0.2. Suppose that F is a totally real field of degree 3. Let o € G and let V ¢ E.(f)
for a good choice of V' (we make this choice precise in §7.1). Then,

u(V,o) =us(V,0).

We show at the end of §7.2 that Theorem 7.0.2 implies the result of this chapter, Theorem
7.0.1.
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7.1 Choosing a Colmez domain

We are required to make a good choice of our free, finite index subgroup V c E, (f). We recall
the definition of a Colmez domain we gave in Definition 3.2.9. We initially follow the ideas of
Colmez in [6]. Here, the choice of V' is used to give a nice Colmez domain @y. However, we
need to use our choice of V' to give us both the existence of a suitable Colmez domain @y, and
to give us some control over the translation of @y . This approach was not used in [24]. Instead,
they used a stronger statement, [24, Lemma 2.1.3]. However, we find a counterexample to this
statement. This counterexample is given in the appendix of this thesis. We therefore require a
new approach. In this section, we need to restrict to the case when F' is a field of degree 3, i.e.,
we assume n = 3 henceforth. Note that in this case E, (f) is free of rank 2. The main aim of this
section is to prove the following proposition. We remark that currently we have not been able

to prove such a proposition for n > 3. Thus we have to restrict to the case n = 3.
Proposition 7.1.1. Let w € F,. Then, there exists e1,e,w € E.(f) such that

1) (e1,e2) € E,(f) is a finite index subgroup, free of rank 2,

2) 6([er]e2]) = -6([e2]e1]) = 1,

3) 0([er |wr]) = —0([wr | e1]) = 0([e2 [wr]) = —0([wr | e2]) = 1,

4) wilnteC([er | e2]) uC([e2 ] e1]) uC(1,e169).

Recall the definition of § from (3.6). The choices we make using Proposition 7.1.1 allow us
to form a nice Colmez domain, and in the process of choosing €1,e2,w we also allow ourselves to
have some control over the translation of @y. We note that the hardest part of this proposition
is being able to have 3) and /) simultaneously. We recall from §3.6 the definitions of Log, #
and zg for z € R? but with n = 3 rather than of arbitrary value. As in §3.6, for any M > 0 and
i=0,1,2, write [;(M) for the element of % which has value M in the (i +1) place and —M /2 in
the other places. We endow R? with the sup-norm. We denote by B(x,r) the ball centred at =
of radius r.

Note that if we choose R > R} = max(1l,R(E,(f),7)) in Lemma 3.6.1, then K;(R) =
max(2°R, k(R)). The proof of Lemma 3.6.1, when n = 3, also gives the following corollary.

Corollary 7.1.2. Let R> R} and M >2°R. Fori=1,2, let g; € E.(f) and g, € % E.(f) such
that Log(g;) € B(l;(M),R) + @ and Log(g.) € B(lo(M),R) + @. Then

® 5([g1]92]) =-0([92]11]) =1,

e 0([9119x]) = =0([gx [ 91]) = 6([92 | 9=]) = =6([g [ 92]) = -1.

In considering this corollary, rather than Lemma 3.6.1, we only lose the condition that the

group, generated by g1, go, is free of rank 2. For later use, we let K| (R) = 2°R.
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We need to define a projection that depends on elements g1, g2 € E.(f) that generate a free
group of rank 2 and acts on (R3/ ~). Here, x ~y if 3y € R, such that z = yy. We define below
©(gr.g2) : (R3] ~) > R? such that

1) (P(gl,gz)(gl) = (LO) and 90(91,_(]2)(92) = (07 1)7
11) for a, B € R:}-a Qo(gl,gz)(aﬂ) = cp(ghgz)(a) + @(91,92)(6)'

Write g1 = (91(1),91(2),91(3)) and g2 = (g2(1),92(2),92(3)). Let o € R}/ ~ and write o =
(a1, @2,a3). We recall from (3.11) the notation ag = (alagag)’% o Write age = (age,1, e 2,

ag.3), we define

2 (a) = ( log(ase,2) log(g2(1)) ~ log(as,1) log(g2(2))
(91:92) log(g2(1)) log(g1(2)) - log(g2(2)) log(g1(1))
log(age 2)log(g1(1)) —log(age 1) log(g1(2)) ) (7.1)
log(g1(1)) log(g2(2)) —log(g1(2)) log(g2(1))

Choosing (g1, g2) € E+(f) to be of finite index, combined with Dirichlet’s unit theorem, gives that
the denominators in (7.1) are non-zero and the terms are therefore well defined. This is equivalent
to the fact that {Log(g1),Log(g2)} is a basis for # over R. The idea for the function (g4, 4.)
comes from the following. We take Log(a) and then project it onto the hyperplane # (this is
the same as choosing ag). We write the element of # in terms of the basis {Log(g1),Log(g2)}.
It is clear from the definition that we have the properties i) and ii) as required.

Now consider g1, g2 € E.(f) that satisfy the first two properties of Lemma 3.6.1. We define

D(g1,92) = Ce, ([91 1 92]) U Ce, ([92 | g1])- (7.2)

Since we assume g¢j, g2 satisfy the second property of Lemma 3.6.1, Lemma 3.2.14 gives that
D(g1,92) is a Colmez domain for (g1, g2). Additionally, we let D(g1,g2) be the union of C([g; |
g2]) UC([g2 | g1]) with all of their boundary cones. Then, D(g;,g2) ¢ D(g1,92) and they only
differ on some of the boundary cones. Consider ¢y, 4,)(D(g1,92)). Write

C61(913.92) = @(91,92)(0(1791) U C(l) U O(gl))7
62(91,92) = P(g1,42)(C(1,92) L C(1) UC(g2))-

Thus, ©(g,.9,)(D(g1,92)) is bounded by €1 U B2 U ((0,1) +61) U ((1,0) + B2). We note that 6,
and G, are smooth lines in R? with an increasing or decreasing derivative. Our next aim is to
calculate the derivatives of €1 and 65 at their endpoints. For i =1,2 and ¢ € [0,1], let L;(t) be
the line from (1,1,1) to (g:(1),9:(2),9:(3)). We now calculate the projection of the line L;(t)
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under the map z — zg. Explicitly, we have, for ¢ € [0,1],

)

o (1+ (1) - 1))? )é
Li(t)s ((1 +t(g:(2) - 1)) (1 +t(g:(3) - 1))

( (1+(g:(2) - 1))? )
(1+t(g:(1)-1))(A +t(0:(3) -1)) ) ~

( (1+t(g:(3) - 1)) )3
(1T+(g:(1) = 1)) (L +t(g:(2) = 1))

All the terms in brackets lie in R. We take the cube root in R so that L;(t) € R3. We define
Bi(t) = P(g1,9.) (Li(t)) = (2:(t),y:(t)) and using our formula for L;(t)s, we calculate

(1t(g:(2)-1))? (1+4(g: (1)-1))°
108 ( (g (i (e @y ) 108(92 (1)) =108 (i oy i@y ) 108(92(2)
3(log(g2(1))log(g1(2)) —log(g2(2))log(g1(1))) ’
(14(g:(2)-1))? (1+4(g: (1)-1))°
108 ( (g (i it @y ) 108(91 (1) =108 (i oy By trita@my ) 10891 (2)
3(log(g1(1))log(g2(2)) —log(g1(2))log(g2(1))) '
Let [ > 1 be an integer. For ¢ = 1,2 and ¢ € [0,1], let L;;(t) be the line from (1,1,1) to
(9:(1)!, 9:(2)!, 95(3)1). Similar to before, we write Bi,1(t) = V(g1,90) (Lii(t)) = (ia(t),yi(1))-

d 7 t d i t .
We calculate dii’,igt;(t =0) and %(t =1)fori=1,2and | > 1.

€T (t) =

yi(t) =

Lemma 7.1.3. We have

dyii(t) (t=0) = (-1) (29:(2)' - 9:(1)" = gi(3)") log(g1 (1)) - (29:(1)" = g:(2)" - g:(3)") log(91(2))
dw; (1) (29:(2)! = gi(1)! = gi(3)1) log(g2(1)) = (29:(1)! = gi(2)! - gs(3)") log(g2(2))’

and

dyi,l(t) 1y
dra ()
(-1) (20:(2) " = gi(1) " = gi(3) ) log(g1 (1)) = (20:(1) ™" = gi(2) ™" = 9 (3) ") log(g1(2))

(20:(2)7" - gi(1)7 - 9:(3) ™) log(g2(1)) = (20:(1) ™ - g:(2) ™ - 6 (3) ™) log(92(2))

Proof. The calculation is long but straightforward. L’Hépital’s rule is required in both calcula-
tions. O

In Lemma 7.1.4, we show that under conditions on the units g1, g2, we have some control over
the derivatives of the curves €;,;(t) and B2 ,;(t) at t =0 and ¢ = 1 for large enough {. We then
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show in Lemma 7.1.5 that there exist units as in Lemma 3.6.1 which satisfy these conditions.
Lemma 7.1.4. Let g1,9> be as above. Assume further that

¢ 1(2)>a(1)*>gq(1)">1, and

e go(1) < ga(2) < 1.

Then, we have the limits

1)
dyra(t) o\ _ o 1y 2log(g1(1)) +1log(g1(2))
P2 @ ™ " D 000 (1)) + 0 (2(2)) "
2)
dyia(t) ,, .\ _ 4y~ log(g1(1)) +log(g1(2))
B ey ™D D Do (g(1)) + g (ga(2)) <
9
Cdgailt) o loa(a (1) + log(1(2)
B a0 0 ) T (g (1) + Tog(02(2)) <
4
dy?l( )( _ ) ( )log(gl(l))+2log(91(2))

2o dg, (1) log(g2(1)) +2log(g2(2))

Proof. We first note that since g1, g2 € E, (f) we have g;(3) = g;(1)"1g;(2)". We work with each

statement individually. Considering 1), we have

iy Fy1a(t) dy1,(t)
l—oo dxy l(t)
(2g1(2)" = g1(1) = g1 (1) g1 (2) ") log (g1 (1
(29:1(2)' = g1 (1) = g1 (1)7'g1(2)7") log(g2 (1

(t=0)= hm( 1)

)= (201 (1)" = 1(2)" = g1 (1) ' g1(2) ") log(g1(2))
)= (291 (1) = g1(2)! = g1 (1)7'g1(2)7") log(g2(2))

)
)
Dividing the numerator and denominator by g;(2)!, we see that

o W (1)
l—>oo dxq l(t)

S (1=0) =

! -1\ l RN
lim (~1) (2- (gigi) B (ggll((12))2 ) )log(g1(1)) - (2(318;) -1- (ggll((12))2 ) )log(g1(2))

l—>o0 l 1\ ! l RN .
- (23) - (%287 ) ) os(e:(1)) - @(245) ~1- (253 ) ) los(g2(2)

! N
Since ¢1(2) > g1(1)™2 > g1 (1) > 1, the fractions (gi—g;) ,(%) — 0. Hence,

im dy1.(t)
l—>ood(£ (t)

2log(g1(1)) +log(g1(2))
210g(g2(1)) +log(g2(2))

(t=0)=(-1)
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This value is greater than 0 as, from the conditions we assume, 2log(g1(1)) +log(g1(2)) > 0 and

2log(g2(1)) +log(g2(2)) <0, thus giving 1).
For 2), we have

dy1,1(t) :
: t=1)=1 -1
i ™D = im D)

(20:2)"' -1 ()" =1 (1)'g1(2)") log (g1 (1)) = (29:(1) ™" = g1(2) ™" = 1. (1)'91(2)") log (91 (2))
(201(2)7 = g1(1)7" = g1 (1)!g1(2)") log(g2(1)) = (29:(1) 7" = g1(2) 7L = 92(1)'91(2)") log(g2(2))

Multiplying the numerator and denominator by g1 (1)~ g1 (2)~}, we see that

dy1,(t)
1m
l—o00 dxl,l(t)

() ! ()72 ! ()72 ! ()™ !
(2(21(2)2) _(ggl(g) ) _1)10g(91(1))_(2(9g1(2) ) _(991(2)2) _1)10g(91(2))

()t ! 1(1)2 ! (1)~ ! ()t ! .
(2(21(2)2) _(ggl(z) ) _1)10g(92(1))_(2(g91(2) ) _(ggl(g)z) _1)10g(92(2))

(t=1) = lim(-1)

N 2yl
Since g1(2) > g1(1)72 > g1(1)7! > 1, the fractions (9;1((12))2 ) ,(9258;) — 0. Hence,

—log(g1(1)) +log(g1(2))
~log(g2(1)) +log(g2(2))

dyy (1)
11m
l—>o0 dl‘l,l(t)

(t=1)=(-1)

From the conditions we assume, —log(g:1(1)) +1log(g1(2)) > 0 and —log(g2(1)) +log(g2(2)) > 0.

Hence, we get the correct sign.

dy2 .1 (t)
dxa,i(t)
corresponding fraction by go(1)'g2(2)!. Since go(1)!,92(2)! - 0, we see that

For 3), consider lim;_, (t = 0) and multiply the numerator and denominator of the

dy2,1(t)
1m
l—>o0 dIQ,l(t)

—log(g1(1)) +log(g1(2))
~log(g2(1)) +log(g2(2))

(t=0)=(-1)

From the conditions we assume, —log(g;(1)) +log(g1(2)) > 0 and —log(g2(1)) +log(g2(2)) > 0.

Hence, we get the correct sign.

dyz2,1(t)
dwa,(t)
of the corresponding fraction by go(1)!. Since go(1)!,g2(2)! = 0, we see that

Finally, for 4), consider lim;_, o (t = 1) and multiply the numerator and denominator

i W21y Cqy2loelen(1)) = 2log(1(2)) _ gy loa(g1(1)) + 2log(61(2))
(oo dag,i(t) —log(g2(1)) - 2log(92(2)) log(g2(1)) +2log(g2(2))

From the conditions we assume, log(g1(1)) + 21log(g1(2)) > 0 and log(g2(1)) + 21log(g2(2)) < 0.

Hence, we get the correct sign.
O

We now show that it is possible to find elements that satisfy the properties in the statement
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of Lemma 7.1.4. Note that in Lemma 7.1.5 we do not show that g;,gs generate a finite index
subgroup in F, (f). After the proof of the lemma, we choose r and M to be large enough so that

the conditions of Lemma 3.6.1 are satisfied as well.

Lemma 7.1.5. There exists Ry > 0 such that, for all R > Ry and M > K3(R) (where Ko(R)
is some constant we define which depends only on R), we have the following. For i =1,2, there
exists g; € E,(f) such that Log(g;) € B(l;(M), R) and if we write g; = (g:(1),9:(2),9:(3)),

i) 1(2)> g1 (1) > g1 (1) >1,
ii) g2(1) < g2(2) < 1.

Proof. We only give the proof for g; since the proof for gs is similar and easier. Recall that
L(M)=(-M/2,M,-M/2). Since Log(E,(f)) is a lattice inside #, we are able to fix Ry > 0
such that if R > Ry then, for all M > 0, there exists « = (z1,22,23) € E.(f) such that

e Log(z) e B(l1(M),R),
e log(zy) + % >0,
e log(xze) - M >0.

We let K2(R) = 2R and impose that M > K3(R). With this assumption we then have, in addition
to the properties above, log(x1) < 0. The result now follows by noting that i) is equivalent to

i) log(g1(2)) > -2log(g1(1)) > —log(g1(1)) > 0.
0

We fix r > max(R], Ra,1) and M; > max(K;(r), Ko(r),4K1(r)). We choose g1,g2 € E.(f)
such that, for i = 1,2, Log(g;) € B(l;(M1),r) and satisfies i) and %) in the statement of Lemma
7.1.5, respectively. We remark that the reason for taking 4K7(r) rather than simply K7 (r) will
not be apparent until Lemma 7.1.8. The choices we make here are henceforth fixed. For clarity,
we note that under these conditions we have, by Lemma 3.6.1 and Lemma 7.1.5, the existence
of g1, g2 € E+(f) such that

e (g1,92) € E,(f) is a finite index subgroup, free of rank 2,
o 5([g1192]) =-0([92191]) =1,

° 1(2)>q(1)?> g (1) > 1,

e g2(1) <g2(2) < L.

We fix this choice of g; and g5 for the remainder of the chapter. We now show that when choosing
our subgroup V, we are allowed to raise our current choices to positive powers. This enables us

to make use of the controls we obtained in Lemma 7.1.4.

71



Proposition 7.1.6. For alll>1, we have
1) (g4, gk) c EL(f) is a finite index subgroup, free of rank 2,

2) 6([g} | g5]) = -6(lgh | g4]) = 1.

Proof. Since (g1, g2) is free of rank 2 and finite index, we must have that (g}, gl) is also free
of rank 2 and finite index. Let i = 1,2 and since Log(g;) € B(I;(M;),r), we have Log(g!) €
B(l;(Myl),rl). Thus, rl > r > R} and [M; > 2°rl. By the work immediately following the
statement of Proposition 7.1.1, we therefore get that 2) holds as well. O

We are now able to use our choices to control the curves €1,(t) and Bz, (1).
Corollary 7.1.7. There exists L1 >0 such that for any [ > L1,
i) y1a(t) 20,
i) xo,(t) <0,
i) 0<xy(t) <1,
w) 0<ya(t) <1,
for all t € [0,1].

Proof. By Lemma 7.1.4, there exists L; > 0 such that for all [ > Ly

dyii(t) dyii(t)
a1 1(1) (t=0)>0, a1 0(1) (t=1)<0,
dy2.(t) ,, dyz(t) ,,
7dm2,l(t) (t=0)<0, 7@271“) (t=1)>0.

We recall the definition of D(g!, g}) from (7.2) and note that from 2) in Proposition 7.1.6 we have
the sign properties required to show that D(g},gb) forms a fundamental domain for the action
of (g, g%) on R2. This follows from [6, Lemma 2.2]. From this we deduce two key properties.

Firstly, we have
@1 ((0,))+G1) =2 and By ((1,0) +6z,) = 2.
Secondly, the curves €;,; and 62 can only intersect at the endpoints. More precisely, we have

61,,n 62, ={(0,0)},

((0,1) +€1,0) N G2, = {(0, 1)},

G100 ((1,0) +62,) ={(1,0)},

((0,1) +B11) n ((1,0) +B2,) = {(I,1)}.
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Henceforth, we choose [ > L;. Note that the map ¢4, 4,) is equivalent to taking a projection
followed by the Log map, followed by a base change. It therefore maps straight lines in R3,
which are not contained in rays, to continuous strictly convex curves in R%. We have strictly
convex curves as we can never obtain straight lines in R? from straight lines in R? that are not
contained in rays. More precisely, let y(t), t € [0,1], be any straight line of finite length in R3
where v(0) and (1) are not both lying on the same ray. Then, we have

{6(g1.92)(7(0)) + (241 ,90) (V(1)) = ©(g1,92) (7(0))) [ K € [0, 1]} N {p(g,,40) (¥ (£)) | £ € [0, 1]}
= {90(91792) (7(0))5 @(91,92)(7(1))}

We first show ii). Proceeding by contradiction, we suppose that 2 ;(T") > 0 for some 7" € [0, 1].
Since Ba; is strictly convex and contains the points (0,0) and (0,7), we deduce that xo;(¢) >0
for all ¢t € [0,1]. Since

dys(t)
dxg,l(t)

dys,(t)
dJCQJ(t)

(t=0)<0 and (t=1)>0,

there exist Ty, T5 € [0,1] such that yo;(77) <0 and yq;(T2) > 1.
Consider 6; ;. Since j;’iigg (t=0) >0 and 6y is strictly convex, we must have that y; ;(t) <0
for all ¢ € [0,1]. Note that if we had y1 ;(¢) > 0 for some ¢ € [0, 1] then €1 ; and B2, would intersect
on at least one point other than (0,0).

We now consider the curve (0,1) +%;;. Since we have B2 ;N1 ((0,1)+%B1,;) = {(0,1)}, y1,(¢) <0

for all t € [0,1] and the existence of T, there exists K € [0,1] such that

° l+y1,l(K)<O,
e 1 ;(K)=0, and
o 11,(t) <0 forall te[0,K].

These three conditions imply that 61, N ((0,{) +61,) # @ which is a contradiction. This gives a
contradiction to the existence of T' € [0,1] such that z5;(7") > 0. Hence, we have that z3,(¢) <0
for all ¢t € [0,1] and so #) holds.

To prove i) we again work by contradiction and suppose that y1 ;(T") < 0 for some T € [0, 1].
As before, we deduce that y;;(¢) <0 for all ¢ € [0,1]. Since

dyz,(t)
d.l?ljl(t)

dyl,l(t)
dl‘Ll(t)

(t=0)>0 and (t=1)<0,
there exist T1,T» € [0, 1] such that z1;(T1) <0 and x1 ,(T2) > I. As before, we consider the curve
(0,1) +%61,. Using a similar argument as above, we are able to show that €1 ;1 ((0,1)+9%;1 ;) # @.
This contradiction then gives us that ) holds.

From what we deduced about the derivatives and the fact that the first two statements hold,

it is clear that 444) and v) must also hold. O
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The results of Corollary 7.1.7, combined with the fact that 6;; and €5 ; are strictly convex
curves, gives us that the image of €1,;U62,; U ((0,1) +B1,;) U ((1,0) +B2,;) is always in a similar
form to the following example. Note that in the image below we choose an example where we
can take [ = 1. Throughout the following proofs, one should try to keep the image below in mind.
We give more details on the explicit choices and calculations needed to form this image in the
appendix. Although the image appears to show that the lines @; ; and (,0) + 62, overlap in the
bottom right corner, this in fact does not happen. This only appears in the diagram due to the
fixed thickness of the lines.

121
/,,—,
1}
0.8
0.6
0.4
021
./’/
ot
0.4 0.2 0 0.2 0.4 0.6 0.8 1

Figure 7.1: A Colmez domain chosen as in Corollary 7.1.7.

Using the corollary above, the next lemma shows that we are now able to find an element
of 75 E,(f) which satisfies properties similar to 3) and /) of Proposition 7.1.1. Note that the
element we find in the next lemma directly gives rise to an element which satisfies 3) and 4) of

Proposition 7.1.1.

Lemma 7.1.8. There exists Ly > 0 such that for all | > max(Li, L), there exists a € 1o E4(f)
such that

e acC(lgi]gs)) vC([gh|gi]) L C(1,digh),
° Log(a) € B(—lo(lM1)74l7“).

Proof. We assume that [ > Ly. By Lemma 7.1.4, we have the limit

dy2,1(t)
ds = : t=1)>0.
2 [—o00 dIgyl(t)( )
Then, there exists L} > 0 such that for all I > L,

dys2,(t)
dxa(t)

do

(t:1)>3.
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Let 0 = arctan(ds/2) > 0, and for Q > 0 define T(6,Q, (I,1)) to be the triangle drawn below.

(I-Qcos(6),l) ()

We choose @ big enough such that for all [ > 0, there exists a € 73! E, (f) n T(0,Q, (1,1)). As
seen in the proof of Lemma 3.6.1, the existence of such a () follows from Dirichlet’s unit theorem
and, in particular, the non-vanishing of the regulator of a number field. The next idea of the
proof is to make [ big enough such that the triangle T'(0, @, (I,1)) is guaranteed to be contained
inside C([¢} | b)) v C([gh | g1]) u C(1,44gh). The triangle is chosen such that, for all [ > L}, it
lies to the left of the curve (1,0) + 62,;. Again by Lemma 7.1.4, we have the limit

i dyy,(t)
I=oo dxy (1)

d1: (t:].)<0

Then, there exists L) > 0 such that for all [ > LY,

dy1.1(t)

dy
>
dxu(t)

(t=1)>?.

Note that the first inequality above follows from our assumption that [ > Li. Let ~ =
—arctan(d;/2) > 0 and define T'(7, (,1)) to be the triangle drawn below.

(1,0)

Note that for all I > max (L}, LY), we have T(6,Q, (1,1)) nT(v,(1,1)) c C([¢} | 4]) u C([ g5 |
g HuC(1,gl4%). Since the size of T'(0,Q, (1,1)) is fixed, there exists L}’ such that for all [ > LY’
T(0,Q,(1,1)) c T(~,(1,1)). Thus, if we choose Ly = max (L4, Ly, LY'"), then for [ > L5, there exists
a € 1y B+ (f) such that o€ O([g1 | 95]) u C([g5 | 91]) uC(1, g1 g5). Since Log(gi) € B(Li(M),7),
we have Log(glg}) € B(~lo(IMy),2lr). The size of the triangle T'(0, Q, (1,1)) is fixed and always
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has a point at (I,1). It is therefore clear that for [ big enough (say [ > EI) the pre-image of the
triangle before the change of basis is contained in B(-lg(IM;),4lr). Note that we achieved this
by simply doubling the radius of the ball. We finish by setting Lo = max(fg, f;) to ensure that

we obtain all the required conditions. O
We are now ready to prove the proposition we stated at the start of this section.

Proof of Proposition 7.1.1. Let | > max(Ly, Ly), and write &; = g} for i = 1,2. By Proposition
7.1.6, we get 1) and 2) in Proposition 7.1.1. By Lemma 7.1.8, there exists a € 73" E4(f) such
that

o aeC([g1 1)) uC([ga|g1]) v C(1,9195),
o Log(a) € B(-lg(IMy),4lr).
We then define w = a7 ' 7y} € B, (). Since a = m3!w™ = k-7 'w™! for some k € R, in the second

equality we consider the elements as vectors in R?. Hence, we have

wlr e C([gh | 92)) uC([gs | i) U C(1,g195) € Co, ([e1 | £2]) L Ce, ([e2 | 1))
Thus, we obtain 4) of the proposition. Now, let g, = a™! = m%w. Then,
Log(gx) € B(lo(IM7),4lr).

Since M; > 4K/ (r) = 4-25r, we have IM; > K| (4lr). Thus, by Lemma 3.6.1, we obtain 3). This
completes the proof of the proposition. O

We fix the choice of €1,¢2 and, for ease of notation, write m = wm, as is prescribed by
Proposition 7.1.1. We assume, in addition to the properties given by Proposition 3.6.1, that
(€1,82) 2 Z/b1Z x Z]b1Z with by, bs large enough to satisfy the conditions required in Proposition
4.2.2. This is achieved by simply choosing a larger [ than in the proof of Proposition 7.1.1, if
required. Let

B :=Ce,([e1]e2]) U Ce, ([e2] e1]).

By 2) of Proposition 7.1.1 and Lemma 3.2.14, this is a Colmez domain for (g1,e2). We also define

Then by 3) of Proposition 7.1.1, %, is a fundamental domain for the action of (g5, 7) on R? and
Bs is a fundamental domain for the action of {1, 7) on R3. We are now ready to show that,

through our choice of €1,e5 and 7, we can obtain control over the 7~! translate of %.
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Proposition 7.1.9. With the choice of m fixed as before, we have

7B c O L2J 5?155293.
k1=0 k=0
Remark 7.1.10. The purpose of the careful choice of €1 and €9 is to obtain this proposition.
In [24], a stronger statement than this is used, [24, Lemma 2.1.8]. However, as stated before,
we obtain a counterexample to this. This counterexample is given explicitly in the appendiz. We
note that in the appendiz we also give a conjecture which predicts the existence of units such that

a statement similar to [24, Lemma 2.1.3] can hold.

Proof of Proposition 7.1.9. The result of Proposition 7.1.9 follows from the proof of containments

below.
i) 771C(1,e1) c BUe1BUB UE162%B,
i) 71O (1,62) c BUea®B.

It is enough to show i) and ii) since there are no holes in U,lﬁzo Ué:o k2. Thus, if we can
show that the boundary of % lies in U,lcﬁo Ui2=o 5]1"155293, then we are done. The combination of
i) and ii) gives us exactly this.

We begin with i). We consider the curves under our map ¢, 4,). Throughout this proof,
we refer to the positive second coordinate as “up”, the positive first coordinate as “right”, and
similarly for “down” and “left”. Since 7! is chosen to be in the interior of %, and by Corollary
7.1.7, we must have that ga(gl’gz)(w’l) lies above 6;; in Ry. Since the curve @;; is strictly

convex, as defined before, we see that the curve

@(ghgz)(ﬂ'_l) +®y,; lies above | J((Kl,0) +B1,).
keZ
By 2) of Proposition 7.1.1, & forms a fundamental domain. From this, it follows that €;; must
lie between Ugez((0, k1) + B2,1) and Ugez((1, k1) + B2,). Hence,

U ((0,kl) +B2,) is to the left of ¢y, 4,y (7") + By, is to the left of | J((2L, kl) +Bay).
keZ keZ

At this point, we have shown that

0, e1) c | 2 (BueiB).
k220
Now, suppose that 7 1C(1,61) Nne3(BueB) # @. This means that after moving back to R?
we see that there exists a point on 6;; whose value in the second component is greater than 1.
Consider the cone C(1,77t¢). By 8) of Proposition 7.1.1, we have that %, is well defined, and
thus 77'%; is also well defined. Hence, in R? we must have that ¢(,, 4,)(C(1,77'€)) is above

61, but also passes below (g, 4,)(77"). Yet, since there exists a point on 6;; whose second
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component has value greater than 1, the curve ¢y, 4,)(C(1,77'€)) cannot be strictly convex.
This gives us a contradiction. Hence, i) holds.

For ii), we use similar methods as above to deduce that

U ((kl,O) + C@Ll) is below @(91’92)(7&'_1) + C@QJ is below U((k}l,ZZ) + %l,l)-
keZ keZ

Using Corollary 7.1.7, we have

71C(1,e) ¢ | M (Buea®).
k1<0
As before, we then use 3) of Proposition 7.1.1 to deduce that C(1,e5) n 7 1C(1,e2) = @. This

allows us to conclude. O

Remark 7.1.11. We remark here that for some choices of m, €1 and €5 we have the stronger
inclusion L
B c U U feba.
E1=0 k=0
In the next section, we need to divide into these two cases. In this section we include examples

of how each case can look to aid the reader when considering our proofs.

7.2 Explicit calculations

Let V' = (e1,e2), where €1,e9 are as chosen before and write €3 = 7. Before continuing we are

required to choose an auxiliary prime A such that

e )\ is m-good for B and Dy, where Dy is as defined in Proposition 4.2.2,
e )\ is good for (Dy,%B).

In [8] (after Definition 3.16), Dasgupta notes that given a Shintani domain D all but finitely
many prime ideals n of F, with Ny prime, are m-good for D. In particular, Dasgupta notes that
the set of such primes has Dirichlet density 1. Again in [8] (after the proof of Theorem 5.3),
Dasgupta notes that for any pair of Shintani domain (D, D’) all but finitely many prime ideals
n of F, with Nn prime, are good for D.

It follows that there are an infinite number of primes A which satisfy the properties written
above. Note that moving from a Shintai domain to a Colmez domain does not cause any issues
here. Hence, such a choice of A is always possible. We fix this choice of A henceforth. Proposition
4.2.1 implies

Up A (b, B) = up A (b, Dy ).

To prove Theorem 7.0.2, we show, for our choice of V' and therefore 9%, that
up A (6, B)) = cia 0 (W] \ v NIY).
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We show the above equality by explicitly calculating each side. In §6.4, we calculated that

2
tan (@ ony n95) =] sf&*(“*%”@v’°>W<Rﬁk<"v%v@vv% 2 d(CrA(b, B, ,0))(x).
i=1
We recall the definition

up 2 (b, B)) = H ECR,A(b,e%nwflgs,Gp,O)ﬂ-CR,,\(H/F,b,O)]gw dv(b, B, z) € Fp*
eV

Thus, since (g (b, 9B,0,,0) = Cr A (H/F,b,0), it only remains for us to prove the equality

8§R,A(h,%i,w@p,o) _ H egR,A(b,eganfl%,op,o).

2
i=1

eV

By Proposition 7.1.9, we have

K _ ky _k _
H egR.A(b,e%ﬁw’l%,(%,O) —5zi2=0 Croa(be1e5* BT l%aGon)gzifl leel=0 k2Cra(b,e, e5” BT 1%16;’70)
—*1 2 :

eV

Thus, it remains for us to show that the following two equalities hold.

2
Cra(b,B1,m0,,0) = Y (ra(b,e1652B 7B, 06,,0), (7.3)
k?2=0
2 1
Cra(b, B, 0,,0) = > > koCra(b,e'eb?B 7B, 6,,0). (7.4)
k?2=1 k)1=0

We begin by considering the left hand side and note that for i = 1,2 by Proposition 3.2.13,
CR,)\(bv g‘)’h 7r®p ) 0) = CR,)\(ba ’/Tilg‘)’i, ®p 5 0)

It is useful for our remaining calculations to make explicit the boundary cones that are

contained in 9B, %B; and %B,. To achieve this, we first define
%, = C(l) U 0(1761) U 0(1,52) @] 0(178182) @] 0(1,8178182) @] 0(1,8275152).

By Lemma 3.2.13 and the fact that % and %’ are equal up to translation of the boundary cones
by E,(f), we note that for any ki, ks € {0,1,2} we have

Cra(b,eMel2Bnn7138,6,,0) = Cra(b, M ek B n 1B, 6,,0).

Here we are also making use of the fact that in Proposition 7.1.9 we made no assumptions about

the boundary cones of %. Thus, we henceforth assume that % = %B’. We now consider %; and
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PBs. For a,b,ce{0,1}, we define the Shintani sets

B (a,b) = C(n) U C(n°, eam®) UC(1, ) UC(1,e2m) UC(1,e9,e9m) UC(1,,e97),
Bh(a,b) = C(n*) uC(xl,e1n®) U C(1,7) UC(1,e1m) UC(1,e1,e1m) UC(L, T, e17).

By the definition of %;, for ¢ = 1,2, there exists a;,b; € {0,1} such that %; and B(a;,b;) are
equal up to a translation of the boundary cones by E.(f). Thus, by Lemma 3.2.13 we have the
equalities

Croa (0,771 %B1,0,,0) = Croa(b, 77 B (a1,b1),0p,0),

and
CR,A(b; 71'719327@370) = CR,)\(b7 7771935(@2, 62)a®p7 O)

Henceforth, we assume that a; = b; =1 for i = 1,2 and write %; = B(1,1) for i = 1,2. The proof
of our main result in all other cases follows with exactly the same ideas and the calculations are
almost identical. Hence, we fix the choices of %, %B; and 9By we have made. Note that we can

make the same choice of 9 in all cases. We now recall that from this point on we assumed

B=C(1)uC(l,e1)uC(l,e2) uC(1,e162) UC(L,e1,6182) UC(1,69,21€2),
9B = C(ﬂ') UO(TF,SQTF) UC(I,ﬂ') UC(l,EQﬂ') UC(1,€2,€27T) UC(I,ﬂ',&QTF),
By =C(m)uC(mem)uC(L,m)uC(l,em) uC(l,e1,e9m) U C (1, T, e17).

With these choices, we now show that the equalities (7.3) and (7.4) hold. We begin with the

following simple lemma.

Lemma 7.2.1. We have the following inclusions

TR c BUeLB,

11
By |J UMb
k1=0 ko=0

Proof. We begin by considering %;. By definition we have that 719, is bounded by the cones
C(1),C(r™1),C(e2),Ceam™),C(1,62),C(1, 7)), Cleg, eam™), C(n ™, eom™).

Note that not all of the above cones are contained in 7'%;. By the definition of % and the fact

that 771 € B, we see that all of the following Shintani cones are contained in % U 2%,
C(1),C(x"),C(e2),Cleam™),C(1,82),C(1,77"),Ceg,e0m ).

It remains for us to show that C'(7~ !, ean™) c BuUea®B. Since C(n !, eam™!) and
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C(eynt, e1eom™1) are boundary cones for 719, Proposition 7.1.9 gives the inclusions
1 1 YR ke
C(rear ) U U el'es? B,
k1:0 k}2:0

12
Clerm terear ™) c U U elebea.
k1=0 ko=0

These inclusions together imply that

2
Ot ean ™) c | eb2a.
ko=0

If we write (g, 4,)(7™") = (a,b) then, by the choices made in Lemma 7.1.8, we see that
b < I. Hence, by Corollary 7.1.7, the curve ¢y, 4,)(C(77 " e2m™1)) = ©(g.00)(771) + By lies
strictly below the curve (0,20) + 62, while still being contained in Uifo 5’;2%. Hence, we have
C(r 1, eom™) c BuUeyB. This gives us the result for B;.

The proof of the result for %, is almost identical. As before, we use Proposition 7.1.9 to deal
with the cone C(77 !, g7 1). O

Using the above lemma, we deduce
Cra(0, 77 B1,0,,0) = Cra(b, (77 By nB) uer' (77 By NeaB),6,,0)

and

<R7)\(b771'_1%27®p70) = CR,X(EL (ﬂ-_l%Q N E%) U <C"11(7‘-_15%2 081%)761370)
+ CR7)\(5,7T71@)2 n (82% ] 5152%),@;3,0).

We now need to consider two possible cases. It is possible that the final zeta function in the sum

above is 0. This will happen when, as noted in Remark 7.1.11, we have the stronger inclusion
11
B c U UMb,
k}l =0 k‘g =0

rather than that which is written in the statement of Proposition 7.1.9. We note that in this
case, the sums on the right hand side of (7.3) and (7.4) become

1
> Cra(b,e1el? B B,6,,0)
k220

and

1
> Cra(b e esB 7%, 6,,0),
k1=0
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respectively.

In the following proposition, we need to divide the proof into two cases to deal with this
possibility. In the case of the stronger inclusion, the following proposition completes the proof
of Theorem 7.0.2. We refer to the case of the stronger inclusion as Case 1 and the other as Case
2. We now include two pictures showing how Case 1 and Case 2 can arise in the example from
before by making different choices of w. Note that we can choose 7 up to a factor of E,(f).
Both these diagrams are calculated by making explicit choices. As before we give more details
in the appendix. In each of the diagrams the blue lines are boundary cones of the translates of
B required in each case, and the red lines are the boundary cones of 7' for each choice of 7.
We note as before that although the image appears to show that some of the lines overlap, this

does not happen. This only occurs in the diagram due to the fixed thickness of the lines.

25 T T T T T 3.5

25

Figure 7.2: Case 1 Figure 7.3: Case 2

Remark 7.2.2. Figure 7.3, which concerns Case 2, is not chosen by the methods outlined in
Lemma 7.1.8. The reason for this is that the calculations necessary to draw the figures work
poorly when working with subgroups V c E.(f) of large index. Thus, for the units we chose for
the figures, Lemma 7.1.8 cannot give rise to an element w so that we are in Case 2. However,
to give the reader an idea of how this case would look we find a choice of m~' that lies in the
Colmez domain and is close to the region that Lemma 7.1.8 gives to contain m~t. Note that when
working with subgroups V c E.(f) of large index, we are not able to guarantee that there exists
a choice of T in the region given by Lemma 7.1.8 such that we always land in Case 1. Hence,

we must continue to work with both cases.
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Proposition 7.2.3. In Case 1, we have

1
CR,)\(ba (Wﬁlg‘gl n %) U€§1(W71%1 N 52%),63370) = Z CR,A(b;i?li?gz% nﬂ—il%aGPaO)a
ko=0

1
Ca(b, (T Ba N B) UeT (T Ba N e1B),05,0) = > Cra(b,efeaBn771B,0,,0).
k?1=0

In Case 2, we have

2
Cra(0, (7' B nBY U (77 By NeaB),05,0) = > (ra(b,e1’ BB, 6,,0),
k2=0
1 2
Cra(0, (T ' BonBYUeT (7 B ne1B),0,,0) = > > Lpa(b,elreh2 BB, 0,,0).
k1:0k2:1

Proof. We first calculate

2 2
Z C&,\(@Elfgg% N 77_1937@,3,0) =Cr(b, U 5{15;” (51552% n W_l%)7®p,0),
ko=0 ko=0

1

2 1 2
S (b el e B ATTIRB,6,,0) = Cra(b, U U e (F1 b2 B B),6,,0).
k1=0 ko=1 k1=0ko=1

Thus, if we can show the following equalities of Shintani sets

2
(' BN B) Uy (m By neaB) = | e1'e,2 (6162 B n 171 B), (7.5)
kzIO
1 2
(7' B B)uei (n ' BanerB) = |J U e er™ (Ve B 'B), (7.6)
k1=0ko=1

then we are done. To show the above, we need to calculate each side in terms of explicit Shintani

cones. We begin by showing (7.5). Recall that we defined the following

B = C(].) U 0(1,61) U C(].,Z:‘Q) @] 0(1,5152) @] 0(176176162) @] 0(1,52,6182)7
7B =C(1HuC(Le)uC(L,m HuC(nte)uC(nteg,eam ) UC (1,0, 77 h).

Let a e C(m7 1, e9m7 1) nC(eg,e162), we then have
T BN B=CA)uC(l,e2) UC(L,m )UC(r 7t e2) UC(ea, 7, @) UC(1, 60,7 1)

and

77_1%1 ﬁ&‘g% = C(Eg,O&) UO(82,(1,827T_1).
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We can now explicitly write the left hand side of (7.5). In particular, we have

(77 BN B) U, (77 B N2 B)
=C(1)uC(1l,e)uC1,mHuC(r ) uC(eg, 7, @) UC(L,e9,77h)
uC(l,e5'a)uC(1, 65 a, 77h).

We now counsider the right hand side of (7.5). Suppose that we are in Case 1. Then, the right hand
side of (7.5) becomes 7! (e1 BN B)ueer! (e162BNT 1 B). Let B € Ce1,e182)nC (771, w7 1ey).

We can then calculate

e BNT R =
C(ﬂ) U 0(675152) U 0(57517(—1) U 0(81827517(_1) U 0(5182u 67517[-_1) U 0(818275106, 817‘—_1)

and

6162% n 7T'_1% = C(€1€2) @] C(ElEQ,SQﬂ) @] C(€1€2,€1a) @] 0(5152761627&'_1)

uCl(ereg, 610, 615277‘1) uC(ere2,e20, 515271'_1).

Using the fact that 8 € C(eq,e162), we have

(61BN ' B)Uey (e162B N1 B)
=C(e1)uC(e1,e182) U 0(817517(_1) u C(El’ﬁ_l,€1€2) u 0(51527517r_1,5104) u 0(81761627817T_1)

u C(sl,elegla) uCl(ey, 6165104,51#_1).

By multiplying the above by e7!, it is then clear that (7.5) holds in Case 1. The proof of (7.5) in
Case 2 is very similar. The extra calculations which arise from being in Case 2 are very similar
to those which we deal with in our proof of (7.6) in Case 2.

We now consider (7.6). In Case 1, the proof is symmetric to the proof of (7.5) in Case 1. So
it only remains to show (7.6) when we are in Case 2. Let a € C(77',e;77 1) nC(e2,2162) and

BeC(nteim ) nC(e162,63¢2). Using similar calculations as before, we deduce

(m ' By n B)uel (7 By N1 B)
=C(1)uC(1l,e)uC(le))uC(1er'BuCA,a HuC(rte)uC(rt e1e9)
UC(L,e,e7'B)uC(l,m e’ B)uC(l,m er) UC(er,m  e1e2) UC (7Y e169).

We are able to calculate that the same is also true for U,lelzo Uifl €Ik1€;k2 (6’1“5]2“293' nr 1R
and thus we complete the proof.
O]
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This final proposition completes the proof of Theorem 7.0.2.

Proposition 7.2.4. If we are in Case 2, then
Cra(b, (22B UE1£2%B) N Bz, 6,,0) = (pa (b, (162B UESB) N ' B, 6,,0).
Proof. Lemma 3.2.13 implies that it is enough to show the following equality of Shintani sets
(e9B UE1E9B) N By =5 ((e160B UESB) N ' RB).

Again letting o € C(771,e1771) N C(eq,e162) and B e O(n 7L, e1m7 ) n O (e169,6362), we are able

to calculate that each side of the above equation is equal to
Ce1e2) U C(a,e169) UC(e189,8) U C(a, 162, B).

This concludes the result. ]

We end this chapter by proving Theorem 7.0.1. The key step is to note that since we have

shown

up,)\(b,%\/) =Ciq N (w?}b,)\ﬂ\/ N ’19,‘/),

then by Proposition 4.2.2 and Proposition 6.2.1, we have

Up,,\(b, %) = 7[E+(f):V](Cid N (w?,b,)\ n 7‘9,))7

where (g, ():v] 18 a root of unity of order [E.(f) : V]. To prove Theorem 7.0.1, it is thus enough
for us to find two free subgroups, V,V' ¢ E,(f), such that they are small enough to use in our
work for Theorem 7.0.2 and such that ged([EL(f) : V], [E+(f) : V']) = 1.

Proof of Theorem 7.0.1. When we choose g; and g2, we do so such that Log(g;) € B({;(M;),r)
where r and M, are as we write after Lemma 7.1.5. Note that there is no upper bound on these
choices. It is therefore clear that if we allow r and M; to be large enough, we can choose g1, go

and g/, g5 such that
e (g1,92) and (g1, g5) are free of rank 2,
e g1,92 and ¢}, g} satisfy the properties of Lemma 7.1.5, and

o [E:(§): {91,92)] and [E.(f) : (91, 95)] are coprime.

Next, we raise g1,g2 by a large power [ in Corollary 7.1.7 and Lemma 7.1.8. Again, the only
condition on [ is that it is greater than a fixed lower bound. Hence, we can choose [ and I’ such

that they are coprime to each other and to

[E+(F) : (91, 92) B+ (F) : {91, 92)]-
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We then get V = (g}, g4) and V' = ((¢})", (¢3)"). Following our work for Theorem 7.0.2, we then
see that

Up A (b, Dy ) =cign (w?’b)\y ndy) and  up (b, Dyr) =cia N (w;b,k,v' n9y).
Hence,

up A (0,D) = V&, (5):v1(cia N (w;”b’)\ nd')),

and

up A (6,D) = vE, (v (ia 0 (W] 5 D).

In the above, ¥, ()] is a root of order [E, () : V'] and v(g, (s):v+] is a root of order [E, () : V'].
Our choice of V' and V' gives that gcd([E+(f) : V],[E+(f) : V']) = 1. By the above equations
we see that Yg, ():v] = V&, (f):v7]- Since the orders of these roots of unity are coprime we can

deduce that, in fact, v[g, ():-v] = V[E.(j):v/] = 1. Thus we have the result. O
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Chapter 8

Comparing the Formulas for
General Fields

In this chapter, we prove the main result of this thesis. In particular we prove Theorem 2.3.7.
The work we present in this chapter is joint with Dasgupta. We prove that u; = us = uz for any
totally real field F'. We show this in two steps. We firstly show that us = ug. This proof does not
offer much insight into the formulas as it is largely computational in nature. We then present
the proof which shows that u; = us. The proof here, compared to the proof of us = ugz, is much
more elegant; rather than working completely explicitly with the formulas, we show that they
each satisfy a functorial property which we then show is strong enough to imply that they must

in fact be equal. More precisely, we show that u; and us satisfy a norm compatibility relation.

8.1 Proof that u, is equal to ug

In this section, we begin our proof of the main result of this thesis, namely Theorem 2.3.7. We

prove the following theorem.

Theorem 8.1.1. We have

U2 = U3.

Proof. Let V be finite index subgroup of E, free of rank n — 1. We show that
ug (V) = ug(V).
By Proposition 5.3.1 and Proposition 6.2.1, we have that for each o € G,
us(V,0) = ua (o)1 and  ug(V,0) = uz(o)P+V1,
Then, by working with subgroups of coprime orders, as in the proof of Theorem 7.0.1, we have
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the result of the theorem. We now recall the explicit calculations for us (V) and uz(V') as given

in §5.4 and §6.3, respectively.

ug(V) = Eis% N (A (cianpuiryv)) =

n—1
Z ((H €fR">\(b’%i’ﬂ’@p;o))TLR’A(b’%’W(@p;O)]{D$ dLRv)\(b,%,I;O)) ® Ubl)v

opeG i=1

and

h n-1 X
£ RBi,bp,mO -5 0p.,0 5
U3(V) _ Z I‘G‘CH/F(bk)_l ((H e R,A( kT pXHJ 2P ))7T£R,>\(£B1bk:7®5'p’0)

%
k=1 =1

][ € d(SR,)\(%a bk,fE X H®Pj70)) .
@) j=2

Leti=1,...,nand k=1,...,h. We now note that for U ¢ 0,, and s € C with Re(s) > 1, we have

r . rec &)t
»SR(%i)bkaUXHGp]’vS) :(ka’) Z }I/;I‘il(s))
j=2 €eBin(br) 5, EUXIT;_50p,
(&,R)=1
s rec/r((§))7
- (Nby,) 3 H/f\;—(g) (8.1)
EeFnB;, &eU 3

geby! (&,R)=1

We write

QR,)\(%D bk; U x H ©p]‘70) = Z SR,)\(O-7Q‘)’Z'; bkv Uvo) ® 0-71
j=2 oeG

where £r \(0,B;, by, U,0) € Z. We recall that in §3.4 we have defined that for L =Y .qa, ®0 €
Z[G] we have, for a e F,

al = Z a% @c .
geG

It then follows from the definitions of £ x and Lg x, and the calculation in (8.1), that for a € Fy;,
h
Z Z O[ER,A(Um%nmeﬂ) ® O.b—ilo.[:l - Z aLR,)\(ba%iaU§0) ® 0-[:1.
k=10peG opeG

This completes the proof that us (V') = uz(V). O

8.2 Proof that u; is equal to us

In this section, we complete the proof of Theorem 2.3.7. We show the following theorem.
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Theorem 8.2.1. For all o € G, we have

'LL1(O') = UQ(J).

Here we have no assumptions on the degree of F'. The approach of this proof is very different
to that used in Chapter 7 and §8.1. Rather than explicitly calculating the error terms, we show
a strong enough functorial property for each of the formulas which forces them to be equal. In
particular, we prove a norm compatibility property for each of the formulas u; and us. This
approach allows us to avoid the complexities arising from working explicitly with Shintani sets
and their translates, as we saw in Chapter 7.

Let H c H’' be two finite abelian extensions of F' in which p splits completely. Let ff’ be the
conductor of H'/F where, as before, f is the conductor of H/F. Let o € G. Write u; (o, H) and
us (o, H) for o components of the formulas u; and us, for the extension H/F and Galois group
element 0. We show for 7 =1 in §8.3, and for ¢ = 2 in §8.4, that

ui(o,H) = [] w(r,H). (8.2)
TeG’
T|lH=0

We refer to (8.2) as norm compatibility for u;. For now we assume that the above equality holds
for 4 = 1,2. We prove this in the following sections of this chapter. We now prove the following

proposition, note that here the congurences are taken multiplicatively.
Proposition 8.2.2. We have

ui(o,H) =us(o,H) (mod E.(f)).

Proof. Let V be a free, finite index subgroup of F,(f) of rank n — 1 satisfying the conditions
given in the statement of Proposition 4.2.2. We then let V'’ be a free, finite index subgroup of
E, of rank n -1, contained in V, such that [F, : V'] = [E.(f) : V]. Furthermore, we can choose
V’ such that if V' = (e],...,e),_;) then the &/ with 7’ satisfy Lemma 3.6.1. By Theorem 8.1.1

and Proposition 6.2.2, we have
uas (V' o) =us(V',0) = uy(V, o).
We now recall from §6.4 the explicit description of u5(V, o),

uy(V,0) = cig N (w}’yb)\’v ndJy)

n-1
=TT e R O8O0 4 (¢ (b,%,2,0)) (@),

i=1
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In (4.2), we defined

‘/'7 = CRA(b’G%nﬂil%a@Pao) CRA(ILQ&@F’O)X d b7%7 ’
u1(V,0) He T @:v v 7)

eV
where
B= U Ce(lery |- ler@mn)])-
T€Sn-1
Thus, u1 (V,%,b) = u4(V,0) (mod E, (f)) and hence u1(V,%,b) = uz(V,0) (mod E,(f)). Work-
ing with coprime choices for V' allows us to complete the proof of this proposition. O

Assuming that (8.2) holds, we can give the proof of the main theorem of this section.

Proof of Theorem 8.2.1. From Proposition 8.2.2, we have that for each 7€ G’,
uy (7, H') =ua(m, H')  (mod E,(ff)).
Our assumption that (8.2) holds then gives that for each o € G,
u1(o,H) =uz(o, H) (mod E,(ff')).
Repeating this for enough field extensions H'/H/F shows that
ui (o, H) =us(o, H).

This completes the proof. O

8.3 Norm compatibility for u,

To work with the definition for u; (o, H'), we introduce some additional notation. The reciprocity
map identifies Gal(H'/H) with

{Be@r/ff)" 18=1 (modf)}/E.(f)y. (8.3)
We let @5 be a Shintani domain for E,(f) and define

Dy = U 9y
veEL (F)/E+ (Ff")

where the union is over a set of representatives {7} for E,(ff') in E,(f). Let ¢’ be the order of p
in Gyy, and suppose that p¢ = (7') with 7’ totally positive and 7' =1 (mod ff'). We can choose
7" such that 7’ = 7% for some a > 1. We then define O’ = 6, — 7’0,

Let B denote a set of totally positive elements of O which are relatively prime to S and A

and whose images in (O/ff')* are a set of distinct representatives for (8.3).
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The following theorem is stated by Dasgupta in [8, Theorem 7.1]. For completeness, we

include a proof of this theorem here.

Theorem 8.3.1 (Theorem 7.1, [8]). We have

uy (06, D5) = [] w1(o6es), B Djyr).
BeB

The strategy of this proof is to explicitly calculate the product over 5 € B and show that it
is equal to u;(op, D). The key to these calculations is to use translation properties of Shintani
sets. We begin by introducing some additional notation that will be used for the proof of this
theorem. For a subset A, of equivalence classes of (8.3), we let v4(b,D,U) = Cg))\(b,%,U,O),

where Cé is the zeta function

(r(b,D,U,s)=Nb~* 3 Na™*.

aeb_lﬂ@, aelU
acA, (o,R)=1

This definition extends to Cg  as in (2.4). Throughout this section we will use the following
simple equality,
V{ﬂ-—l}(b, E’b, U) = V{l}(b, 7'('%, 7TU)

This follows from Lemma 3.2.13. Let 5 € B. We recall the following definition,
ur (o) B Dyyr) = €(b(B), B~ Dy, ") (") <o i/ 150().0) Jg z dv(b(B), B~ Dy, z).

It is clear from the definition of B that Theorem 8.3.1 follows from the following theorem.

Theorem 8.3.2. Let § € B. We then have

u (o), B D)

= ( H EVB(b(B)76B_1%fOTr_1B_1%f1®P)) ﬂ.uB(b(ﬂ)@h@p)]gx dVB(b(ﬁ)7ﬁ_1925f,$)-
eeE. ()

The proof of Theorem 8.3.2 is largely an exercise in explicit calculation. We begin by consid-

ering the multiplicative integral in uy (og(gy, 87 Djy ).
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Lemma 8.3.3. We have

| o avo(s). 57 a.2)

a-1 P a-1 1 i ool
_ (H ﬂ_zu(b(ﬁ),%“/,w @)) H H EV{W—i}(b(,@),eﬁ Dy B %ff/,@))
=1 1=0 eeE, (ff')

( ,yuA(b(ﬂ):’Yﬁ‘lgbf:@))]gx dVB(b(ﬁ),ﬁ_l%f,l’).
veEL(§)/E+ (f)

Proof. Since 7' = 7 and Q' = 6, - 7/0,, we have O’ = U 7°Q. Then

a-1
]([D),x dv(b(B), B~ Dy, x) = Z-llj{ri@x dv(b(B3), B~ Dy, ).

For ease of notation we define I(3) to be equal to the multiplicative integral in u; (o), ﬁ‘l%ff:).

By a change of variables and then factoring out 7, we have
a-1 P a-1 .
1(8) = (H () e ®’) [T = dv(e(8), 87 By, 7'0)
i=1 i=0
a-1 P a-1 )
_ (H ,/Tzu(b(ﬁ),@bff/,w @)) H]([Dx dV{ﬂ——i}(b(ﬂ),’ﬂ'ilBilg)ﬁr,(L‘).
i=1 i=0
We now note that we can write, for i =1,...,a -1,

W_ig’bﬁu = U (Gg’bﬁcl N W_ig’bff/).
ec B, (ff")

Then,

a-1 .

Hf(;) € dV{ﬂ‘l}(b(B)a 77_16_12%]‘]"7 il?)
=0

a-1

i l_g EI_(Iff )Jébx vy (6(B), B~ Dy 1™ B Dy, )
=0 eeE, (ff'

a-1 _ —i o
:(H H iy (0(B),eB7 Dy 19mr,@))]gx dVA(b(ﬂ),ﬁfl(‘Q)ﬁr,x)

i=0 e, (1)

where A = {1,771, ... 7%}, Then, since Diyr = Uyer, (1)/2. (577) VDj, We can write

]{Dm dva(b(B), B Dy, ) = ( 7"”‘("([3)’751%%@))]{)% dvia,my(6(B), 57 Dy, )

veE+(H)/E+(Ff')
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where E = E,(f)/E,(ff'). Thus we have, noting that B = (4, E),

a-1 ; a-1 .
1(B) = (H ﬂ_iu(b(ﬁ),%”/,ﬂ"@)) H H EI/{W_i}(b(ﬁ),eﬁ_l%ff/nw_’ﬁ_l%ff/,@)
i=1 =0 ecEL (ff')

( ,yyA(b(ﬂ)v’Yﬁ'l%f»@))ng dVB(b(B),ﬁ_lgﬁf,J?).
veEL(F)/E+(JT')

O

We now consider the powers of 7 given in the definition of u1 (o (s), B’lg’bﬁ/) and arising in
the result of Lemma 8.3.3. Recall that 7’ = 7.

Lemma 8.3.4. We have

-1 )
(Oi_I Wiu(b(ﬁ)7%ff’77‘—l©)) ﬂ—aCR‘A(Hff’/Fvb(IB):O) - ﬂ—VB(b(B)’Q)f7®P).
i=1

Proof. Since 7'Q = 7ri®p - 77“16,3 we have, by a telescope argument,

a-1 . a-1 .
Z iv(b(B), Dy, 7'0) = —(ar = 1)v(b(B), Dy, 70y ) + Z v(b(B), Dy, 7'0y).
i=1 i=1

Recalling the definition of @y we also note that for ¢ =0,...,a~1, we have

V(b(ﬂ)agz)ff’awi®lﬂ) = VE(b(ﬂ)7925f77Ti®P)‘

Thus, we can calculate, using the fact that (g x(Hsp/F,b(5),0) = v(b(8), D5, 06p),

a-1 .
( H ﬂ_iu(b(,@’),%ff/,ﬂ’@)) 1SR (Hypr [F,6(8),0)
i=1

a-1 )
= ( H Wu(b(ﬂ)7%ff’7ﬂ-l(5p)) ﬂ_—(a—l)u(b(ﬁ),%ff,,w(’@p )ﬂay(b(ﬁ)7@ff’7©}1)
i=1

a-1 )
_ ( I WVE(b(ﬁ)»%fW@p)) 7 (@=DB(6(8),D5,7°0,) —avp (6(8),D,0p)
i=1

Leti=1,...,a. By Lemma 3.2.13, we have that,

VE(b(ﬂ)vg)bﬁﬂ-i@p) = VE,{Tr’i}(b(B)aﬂ-_igbf)GP)'
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We can then write Wi%f =User, () 095 N W‘i@f. Then

VE){ﬂ-—i}(b,’]T_i%f,Gp) = Z VE,{ﬂ-—i}(ba 5gbf n W_igbf, @p)
deEL ()

= Z Z/E7{7T—z:}(b,9)fﬂ5ﬂ'7igbf,®p)
deEL ()

= VE’{ﬂ-—'i}(b7 g’bf, @p)

Remarking that {7~*} = {1} then allows us to use the above calculations to deduce that

a-1 ) a-1
(H 7Tiu(b(ﬁ);.;z;ff,,Trl@)) 7GR (Hypr[F0(5),0) _ I1 aVE iy (00B8),27,00) _ w4 ;) (6(8),D5,0p)
i=1 i=0

Noting again that B = (A, F) completes the proof. O

We now consider the error term in the definition of ul(ab(g),ﬁ_l%ffr) and the products of
elements of F,(f) which arise in Lemma 8.3.3. Considering Lemma 8.3.3 and Lemma 8.3.4, we

can see that to prove Theorem 8.3.2 it is enough to prove the following proposition.

Proposition 8.3.5. We have

Err(8) = ] evB(b(B),eB7 Dyt F719;,0p)
e, (F)

where

a-1 _ i o
Err(B3) = G(b(ﬂ),ﬁ_lgﬁ’,ﬁ,)(n II Vinmiy (0(B), €87 Dy 8 lgbff”@))

i=0 ce B, (')

( ,y»mw)wl@zf,@)) ,
7€, (/B4 (57)

For clarity, we perform the calculations required for this proposition in a few lemmas.

Lemma 8.3.6. We have

-1 )
Err(ﬁ):( I euE(b(ﬁ),eﬁl%m“ﬁl%f@p))((h I1 Guw,{,,i})(bw),eﬁ19);%%1%,@)).

ceEL(f) i=1 eeBL ()
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Proof. Considering the definition of @jy, we can calculate

6(b(ﬂ), ﬁ_lgff’v 7(,)
- I e/ (0(B).eB™ Dy B Dr,0)
ce B (ff)
7 (0(B),ex B DT B gy, 0p)
ce B (') veB. (D B+ (1)

,y—u(b(ﬁ),'yﬂl%f,(fip)) ( H eu(b(ﬁ),eﬂ192)fr17ra51§25ff/,©p)) . (84)
ecEL (f)

(“/EE+(?)/E+(ff’)

Similarly, we have

eu(b(ﬁ),eﬁflgfnf“ﬁ*@”,@p)
eeEL (f)

(7€E+(f)/E+(ff’)

,yu(b(ﬁ),'yﬂ_“ﬁ_l%f@p))( H eVE(b(ﬁ),eﬂ_l%fﬁﬂ_aﬁ_l%h@p)). (8.5)
eeE, (f)

We can also calculate, for i=1,...,a -1,

eu{ﬂ,i}(b(B),eB’l(QZ)ff/nw’iﬁ’l(QZ)H/,@)
ecEL(f')
_ ( H ,y—u{,r_i}(b(ﬂ)ﬁﬁl%rv@)w{ﬂ—i)(b(ﬁ)fwiﬁl%rv@))
YeE+ (§)/E+(F)
[T €/, (=i (0 (B), 87D 0m 8T 90) (g )
eeEL(f)

We now note the following equalities, both of which hold via telescope sum arguments.

1.

[

T ,Y—V{W-i}(b(ﬁ)ﬁﬂ_lgh@)) ( I 7m(b(ﬁ)nﬁ197>f,<0>))
veE (F)/E+(ff)
_ I 7u(lv(/ﬂ)nﬁ*@?w)

veEL (D/E+ (')

i=1 (v€E+(f)/E+(ff’)
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a-1

E (yeE+(f)/E+(ff’)

= [T AT Dm0 v (6(8) 57 B1.6)
~yeE+ (§)/E+(5§)

SO A o) e o)
yeE+ (§)/E+(§§)

WV{Wi}(b(B),wwiﬁlgf@))

Combining these two equalites with the calculations in (8.4), (8.5) and (8.6) gives the result. O

If & =1 then Lemma 8.3.6 is equivalent to Proposition 8.3.5 and thus we are finished in the
case « = 1. Henceforth, we assume that a > 1.

Lemma 8.3.7. If a>1, then

Err(5)
_ ( I euB<b<ﬁ>,661%mwlﬁl%f@p)) ( I 5uE(b(ﬁ),sﬁlwl%mwaﬁl%f,@p))
€€ B, (f) 5B, (f)
"ﬁ [T e ¥imiron(bE)hDrnn 5719, 70,)
1=1 ecE.(f)
a-1 .
H H (;V(E,{W—i})(b(ﬁ)yfﬁflflgﬁfﬂﬂﬂﬁfl%f,@).
=2 §e B, (f)
Proof. For i =2,...,a, we have

7ri92§f: U 7r_1592§fm77_i92>f.
deE.(f)

Thus, applying this to the result of Lemma 8.3.6, we have
Err(3)
- ( I1 euE(b(m,eB'l%fnw'lB*%f,ep)) ( I 5VE<b(ﬁ),66'1w'l%fmw'%*@f,@p))

ee B, (f) deE,(f)

[

az -1 1,51
( H EV(E,{”ﬂ'})(b(,ﬁ),eB DynmT BT Ds,0)

i=1 \eeE, ()

§ViB. iy (0(8), €67 n T Dynr ™ 571 91,0) |
deE, ()

Remarking that [Tseg, (1) V48, x-1y (0(B).ef ™ m Dy 571 D5,0) 1, since 8~ r ' D 371D = @,

gives the result of this lemma. O
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If a = 2, it is straightforward to see that Lemma 8.3.7 is equivalent to Proposition 8.3.5. Thus
we are also done in the case a = 2. We henceforth assume that a > 2. From Lemma 8.3.7, one

can see that to prove Proposition 8.3.5 it is enough for us to show

1 — H 5VE([J(ﬁ),(sﬂil‘n'ilg}fﬂ‘n'iaﬂil%f,@p)
0eE, (F)

a-1 -1 1,51
H H eV -y (0(B),€B™ DT 7 Ds 0y )

=1 eeEa(f)
a-l -1_-1 —ig-1
H H 6V(E,{7r’i})(b(ﬁ)y56 m DB %%@). (8.7)
i=2 8B4 (f)

To do this, we first show the following lemma.

Lemma 8.3.8. We have that for j = 1,...,a—1 the right hand side of (8.7) is equal to e(j),

where we define

e(j)=( [1 5VE(5(5),5ﬁ17rj%f”’”uﬁl%f’GP))
55E+(f)

Oﬁl H G-D(Ey{ﬂ,i})(b(/3),65*1w*“*“@;mﬂﬁ*l@,,w@n)
i=j eeE, ()
a-1 ] .
H H 6V<E7{,r,i})(b(ﬁ),aﬁflffgzsfmﬂﬁflezsf,@).
i=j+15e B, ()

Note that for j = a—1 the last product is empty. We also remark that it is implicit in the

statement of this lemma that e(1) =---=e(a—-1).

Proof. We prove this by induction. The case j = 1 holds trivially. We now assume it holds
for j and prove the result for j + 1, i.e., we show e(j) = e(j +1). To do this we note that for
i=j+2,...,a, we have
W_igbf = U 7r_(j+1)/~€gbf n W_i%f.
weE4(f)
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Thus, e(j) is equal to the product of the following elements,

( H 6uE(b(,8),5B'17r_j9bfﬁﬂ_(j“)ﬁ'li%f,®p))( H KUE(b(B)ﬁﬂ—lw—(ﬁl)@fmw-aﬁ—lgf,©p)) (8.8)
SeEL(F) reE. (f)

a-1 j J

H H G_V(E,{w*ih(5(5)765_1W_(J_l)%f””ﬂﬁ_lgjf’”GP) (8.9)
i=j €€E+(f)

a-1 j j

[T TI §UE iy (B(8).687 m I By 0HD g7 9p;,0) (8.10)
i=j+1 §eE,(f)

a-1 1 —(i+ i e

H H (B (i (0(B) w87 g s '2;,0) (8.11)

1=j+2 ke By (f)

We remark that the first bracketed term in (8.8), and (8.11) are already products in e(j + 1).

We now consider (8.10) and calculate that it is equal to

—1 ) )
‘i—I I §7 =iy (0(B), 87 D D™ 5y w6 )
i=j+1 5eE, (f)

a-1 -1_-j -(+1) g-1
I 1I 5V (e (0(8).687 m I B B @m0y | (8.12)
i=j+1 e, (f)

We now consider the way the terms in (8.12) interact with (8.9). Multiplying (8.12) by (8.9)

gives

-1 . .
‘i—I [ €t n Dm0 057 a5,70,)
=i 1 ce B ()

1—[ E—V(E’{",(a,l)})(b(5)75ﬁ717r7(j71)§bfn7r7jﬁ71%f’ﬂ-@p) ) (813)
€€E+(f)

The first term in (8.13) is the term we were missing from e(j +1). Thus it only remains to
show that the second bracketed term in (8.8) multiplied by the second bracketed term in (8.13)

is equal to one. This is shown by the following calculation,

§ve(0(8).687 Dy gan; 0,)
JeEL(f)
- I] s, (e (0(8),887 n UV g1 ey 70y

deE.(f)

I 5V (n- (a1 (0(8), 087 m= VD 0n I 57Dy 10, )
b
0eE.(f)

we can thus deduce that
e(j)=e(j+1)
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as claimed. This completes the proof of the lemma. O
We are now ready to prove Proposition 8.3.5.

Proof of Proposition 8.3.5. We consider e(a—1). From Lemma 8.3.8, we have that e(a—1) is
equal to the right hand side of (8.7). Then

e(a-1) = ( I1 5VE(b(ﬂ),66‘1w‘(”‘”9>mw‘”6‘1%f,©p))
deE.(f)

VB gamta-Dyy (0(B),ef T (D aynn (D g7lan 76, )

eeEL(F)

Since {7} = {7V} it is clear that
e(a-1)=1.

This completes the proof of Proposition 8.3.5 and thus proves Theorem 8.3.1. O

8.4 Norm compatibility for us

We are now able to give the theorem that completes our proof of Theorem 8.2.1 and consequently
Theorem 2.3.7. We recall the definition

us= Y up(o)®[o7'] = Eis% n A, (ciq N PH/F)-
oeG

Write ug(0) = ug,,». In this section, we prove the following theorem.

Theorem 8.4.1. We have for any o € G,

US N0, H = H US N\, 7, H'-
TeG’
T|lu=0
Remark 8.4.2. This theorem has been proved by Dasgupta—SpiefS in Proposition 5.1.1. We
include the proof for completeness. We note also that the proof of the norm compatibility for us
is much simpler than that for uy. This is a result of the additional structure we have due to the

cohomological nature of the construction.
Proof of Theorem 8.4.1. We consider the natural map

Y Fy @ Z[G'] - F, ® Z[G]
Z n,[r]~ Z( H n.)® o]

TeG! ceG e
T|u=0
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Then, we begin by considering the action of i) on the element ug » f-,

P(usr )= Y ([T usarm)e®lo].
oeG  reG’
T|lg=0

We can also consider the action of ¢ on the cohomological description of ug x a-,
P(usmr) = P(Bisy 0 Ay (cia N prryr))

= Eis% NP AL (ca N PH'/F)
=Eis% n A, (¢ N VuprF)-

The only equality of note here is the final one. This follows since we can commute 1, with A,.
This clearly follows from the calculations done in §5.2 and §5.4. Finally, since ¥.pn//r = pr/r,

we have the result. O
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Chapter 9

The Root of Unity Ambiguity

In this chapter, we prove that the formulas for the Brumer—Stark units hold up to a 2-power
root of unity. We prove Theorem 2.3.10. In particular, we show this result for us, i.e., we prove,

that under some mild assumptions,
ws =y in (B} fa(Fy)) ® Z[G]

where we write MQ(FP*) for the group of 2-power roots of unity of F. As we noted in §2.3 and
§2.4, the key result required for our proof of this result is the I-part of the integral Gross—Stark
conjecture (Theorem 2.4.4). As noted in Remark 2.4.3, this theorem follows from the recent
work of Bullach-Burns-Daoud—Seo in [2, Theorem B] which proves the minus-part of the eTNC

away from 2, for finite abelian CM extensions of totally real fields.

9.1 Equality of the formula up to a 2-power root of unity

As before, we let f be the conductor of the extension H/F and write E, (f) for the totally positive
units of F' which are congruent to 1 modulo §f. Let g denote the product of the finite primes
in S that do not divide fp. Then we define Hg = Hspqy~. Here, H(jyq) is the union of the
narrow ray class fields Hjapeqe for all positive integers a, b, c. For v | fg, let U, 5 denote the group

of elements of 0, which are congruent to 1 modulo fO;. In particular, U,; = 0} for v | g. Let
Ujg = [Tojg Uv,j-

Proposition 9.1.1 (Proposition 3.4, [8]). Conjecture 2.4.1 is equivalent to the existence of an

element uy € U, with uy =1 (mod X\) and

UO'[,’l :WCR,T(H/FVE’1O) I d‘LL b,x
( A ) OxUjg/E+(F) ( )

in (Fy x Usg)/EL(F) for all fractional ideals b relatively prime to S.
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Since the full strength of the integral Gross—Stark conjecture (Conjecture 2.4.1) has not yet
been proved, we work with the following corollary. This corollary instead uses the [-part of the

integral Gross—Stark conjecture.

Corollary 9.1.2. Theorem 2.4.4 is equivalent to the existence of an element uy € U, with uy =1
(mod \) and

ul®, 1 = qér A (H/Fb,0) x du(b,
(1) OxUj o /B+ (1) (,)

in ((Fy x Usg)/E+(F)) ® Zy for all fractional ideals b relatively prime to S.

Define

D(f,9) ={z e Fy : (z,1) € E.(f) € Fy x Usq}.

Dasgupta notes in [8] that Proposition 9.1.1 may be interpreted as stating that Conjecture 2.4.1
is equivalent to a formula for the image of uy in Fy /D(f,g). Similarly, Corollary 9.1.2 states
that Theorem 2.4.4 is equivalent to a formula for the image of uy in (Fy/D(f,9)) ® Z;. The

reciprocity map of class field theory induces an isomorphism

recg : (F; X %fg)/E+(f)p = Gal(Hs/H)

As before, we have defined E, (f), as the group of totally positive p-units congruent to 1 modulo

f.

Proposition 9.1.3. Assume Conjecture 2.4.1. Let o € G. The construction, us(c), is equal to
the Brumer—Stark unit, uy (o), in Fy/D(f,9), i.e.,

uz(0) =uy(o) (mod D(f,g)).

Proof. We consider the unit us(o) and apply recg to (uz(0),1), then by e) of Proposition 5.1.1

we have

recs((uz2(0),1)) = H Csa(Hs/F.r™h,0) =recs((up(0), 1))
TeGal(Hg/F),
Tlg=c"t
where the second equality follows from (2.9) which, as we noted in §2.4, follows from Conjecture
2.4.1. Thus, we have the result. O

Again, since the full strength of the integral Gross—Stark conjecture (Conjecture 2.4.1) has
not yet been proved, we work with the following corollary. It is clear that we have the following
corollary which gives the weaker result obtainable by using the I-part of the integral Gross—Stark

conjecture (Theorem 2.4.4).

Corollary 9.1.4. Let o € G. The construction, us(0o), is equal to the Brumer—Stark unit, u, (o),
in (Fy ® Z1)/D(F, 9)-
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Let q be a prime of F' that is unramified in H and whose associated Frobenius o4 is a complex

conjugation in H.

Lemma 9.1.5. Let !l be a rational prime, and m € Zs1. There exists a finite set of prime ideals
{v1,...,ts} in the narrow ray class of q modulo f such that the group D(f,t1...ts) does not

contain ). (FF). Moreover, p). (F}) is the set of non-trivial roots of unity of order I™.
Hy p 1] P

Proof. We follow the ideas in the proof of Lemma 5.17 in [8]. Let € € ;. then there exists a
prime, t, of I’ such that t is in the narrow ray class of g modulo f and such that ¢ is not congruent
to 1 modulo .

Suppose now that € € D(f,t). Then by the definition of D(f,t), and in particular the definition
of Us., we see that e =1 (mod t). This contradicts our choice of . Letting the v; consist of such

an ideal prime t, for each element ¢ € y1},,, completes the proof. O
The following corollary is stated as a remark in [13]. We include the proof for completeness.

Corollary 9.1.6 (Remark 6.4 (c), [13]). Suppose q € S. Let t be a nonarchimedean place of F
with v ¢ SUX and v in the narrow ray class of ¢ modulo §. Put "= S u{t}. Then, we have

UQ(S,7U) = UQ(Sva)Q'

Proof. From c¢) of Proposition 5.1.1, we have uy(S’,0) = ua (S, 0)uz(S,0.0)~t. Applying c) again
and writing S” = S - {q}, we deduce

uz (S, 0) = (ua (8", o )ua (S, O'qO')_l)(’LLQ(S”, o) Fug (S, 0q0:0))

= (uz(S",0)ua(S",0q0) ) (u2(S", 040) tua(S”, 7))
= uy(S,0)>.

We are now able to prove the main theorem of this chapter.

Proof of Theorem 2.3.10. The proof of this proposition follows the ideas of the proof of Theorem
5.18 in [8]. We begin by noting that the roots of unity in F,; have order that divides p*(Np - 1)
for some a € Zso. Let I™ be an odd prime power that exactly divides p®(Np - 1). We show that

us(9) = () in F g eperyjim (5. (9.1)

Repeating this for each such odd prime power, we have the result. Fix such a prime power ™.
Let {t1,...,ts} be a finite set of prime ideals as in Lemma 9.1.5, and let v be one of the t;. It

follows from
CRU{t}(H/F,J,S) = CR(H/Fv 0’,8) _NtisCR(H/Fa 0—0;173)
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that the Brumer—Stark units attached to S and S u {t} are related by

up(S,0)

up(Su{r}, o) = W

= UP(SaU)Qa

where this last equation follows from the fact that complex conjugation acts as inversion on Ul;.

Thus, if we let S":=SuU{ry,...,ts}, then we inductively obtain

up(S',0) = up(S,0)?. (9.2)
Applying Corollary 9.1.6 inductively, we also have

us (S, 0) = ua(S,0)% . (9.3)

We showed in Corollary 9.1.4 that ua(S’,0) = up(S’,0) (mod D(f,t1...t)) in Fy ® Z;. By
our choice of the t;, we have that p}.. is not contained in D(f,t;...t,). Since the roots of unity
in Z; are of order [ -1, tensoring Fy; by Z; does not add in any additional roots of unity of order
™. Tt then follows from Theorem 2.3.6 and Corollary 9.1.4 that (9.1) holds. As we noted above,

repeating this for each prime power which exactly divides p®(Np — 1) gives us the result. O
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Appendix A

Appendix

A.1 Translating Shintani domains

Overcoming the lack of a nice translation property for Shintani domains in §7.1 is the main work
of Chapter 7. In this appendix, we first provide an explicit counterexample which shows why this
work is necessary. We then show the calculations which give rise to the figures. These figures
demonstrate our method to overcome this counterexample, namely, Figure 7.1, Figure 7.2, and
Figure 7.3. We begin by finding a counterexample to the following statement of Tsosie in [24].
The statement below is given for F' of any degree n > 1. We provide a counterexample when F

is a cubic field as this is the case we work with in Chapter 7.

Statement A.1.1. Let V be a finite index subgroup of E.(f) and let €1,...,€e,-1 be a Z-basis
for V. Furthermore, let D be a fundamental domain for the action of V on R? and 7' € D.
Then for e = [1}5" ™,

DD =
unless m; € {0,1}, 1<i<n-1.

We note that in general there appears to be no bounds that can be put on the set which
the m;’s are allowed to be in to make this statement hold. However, we do not provide explicit

evidence for this here.

Remark A.1.2. It is straightforward to show that this statement holds when F is of degree 2. It
is for this reason that Dasgupta—SpiefS’s proof that uy = us, in the case F is of degree 2, is much

shorter.

The computations used to find our counterexample below are done using Magma. Let F' be
the number field with defining polynomial 223 —422 —2+1 over Q. F is then a totally real number
field of degree 3. We define

H=F(/-2).
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H is then totally complex. It is also a degree 2 extension of F' so H is a CM extension of F'. We

note that the extension H/F is abelian. Now, choose y € F' such that we can write

F =Q(y).

Let § be the conductor of H/F. We calculate, as the generators of F,(f), the elements ¢g; =
—96y2 + 152y + 113 and g = 160y? + 32y — 31, i.e., we have

(-96y% + 152y + 113, 160y + 32y - 31) = E, ().

We choose as our rational prime p = 113. We make this choice as there are two primes of F
above 113 and both of them split completely in H. We choose p | p, a prime ideal of F that splits
completely in H. We find that the order of p in G5 is 2. We choose an element 7 to satisfy the

following

e 7 is totally positive,

o =1 (mod §),

o (m)=p%

o 71 eCe ([91]92])UCe, ([92] 91])-

In particular, we choose 7 = 192y? — 488y + 177. Let @ = C., ([g1 | 92]) u Ce, ([92 | 91]) and note
that this is a Shintani domain. With these choices, we calculate that 77'9 n g195'® # @ and
71D N g3'D # @. This completes our counterexample to Statement A.1.1. Furthermore, the
curved nature of the domains, as illustrated further with Figure A.1 below, gives a good reason
as to why results bounding where 7719 is contained should not be possible without considerable
work.

To make our example clearer, we include below a plot of DUg1 DU gD U g1 92D (in blue) and
71D (in red) under the map ¢y, 4,y (Figure A.1). This plot is drawn using MATLAB. Notice
that the boundary of 7719 falls outside that of D U g1 D U goD U g1g2D. As we remarked with
the other diagrams, although the image appears to show that some of the lines overlap, this does
not happen. This only appears in the diagram due to the fixed thickness of the lines.

We now make note of the calculations we made to obtain Figure 7.1, Figure 7.2, and Figure

7.3. We continue to hold all of the choices made thus far in this appendix. We define
€1 :gl_?’gg1 and e :91_5-

These choices are found using Magma so that 7 and e, satisfy the conditions in Lemma 7.1.5.
We find that when considering Corollary 7.1.7, we can choose [ = 1 to satisfy the conditions
given, i.e., €1 and o are already good enough to obtain Corollary 7.1.7. Using MATLAB, we
plot Figure 7.1. We define

-6 2 -6
m =g, gom and g =g] goT,
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Figure A.1: A counterexample

where 7 is as defined before. Using 7 as our choice of w, and using MATLAB, we plot Figure
7.2 which shows Case 1. Similarly, using 7o as our choice of 7, Figure 7.3 shows Case 2.

We end this appendix by giving a conjecture regarding these Shintani domains in a more
general setting. The proving of this conjecture should allow one to give a direct proof that
uy = ug in the same style as in Chapter 7.

Let 1,21,...,2n-1 € R} be linearly independent vectors where 1 = (1,...,1). Then

D = U 661(['777'(1) | | J37’(7%1)])

T€SNH-1

is a fundamental domain for the action of E = (x1,...,2,-1) on R}.

Conjecture A.1.3. For all R >0 and 0 < r < R/2, there exists y1,...,yn-1 € E such that we
have the following.

1. V=(y1,..,Yn-1) is a subgroup of E, free of rank n - 1.

2. If we write
B = U 061([yr(1) | cee | yr(n—l)]);

TE€SH-1

then

o for all y € B there exists z € B(y, R) such that B(z,r) € B(y,R) n% and
o for all z € B such that B(z,r) € B we have

2B (YY) B =0
unless aj € {0,1} for j=1,...,n-1.
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Remark A.1.4. We first note that 2. in Conjecture A.1.8 is equivalent to
1 1
2B - U W ynn)B.

Furthermore, Conjecture A.1.3 is trivial when n = 2. Even with n =3, we currently are not able

to prove a statement as strong as this conjecture. Instead we prove Proposition 7.1.9.
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