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Abstract

Let F be a totally real number field. There have been three p-adic formulas conjectured by
Dasgupta and Dasgupta–Spieß for the Brumer–Stark units of F . These formulas are conjectured
to be equal by Dasgupta–Spieß. In this thesis we first show that two of these formulas are equal
in the case that F is a cubic field. This proof uses only elementary methods involving calculations
of Shintani sets. We then present joint work with Dasgupta which proves that all three of the
conjectural formulas are equal for any totally real field F . Finally, work of Dasgupta–Kakde has
shown that one of the conjectural formulas is equal to the Brumer–Stark unit up to a root of
unity. Recent work of Bullach–Burns–Daoud–Seo proves the minus part of the eTNC away from
2, for finite abelian CM extensions of totally real fields. We show that this recent work implies
that the formulas hold up to a 2-power root of unity.
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Chapter 1

Introduction

Let F be a number field of degree n over Q with ring of integers O = OF . Let p be a prime of
F , lying above a rational prime p, and let H be a finite abelian extension of F such that p splits
completely in H. In 1981, Tate proposed the Brumer–Stark conjecture, [22, Conjecture 5.4],
stating the existence of p-unit u in H, the Brumer–Stark unit. This unit has P-order equal to
the value of a partial zeta function at 0 for a prime P, of H, above p. Since the unit u is only non-
trivial when F is totally real and H is totally complex containing a complex multiplication (CM)
subfield, we assume this throughout this thesis. The Brumer–Stark conjecture is a refinement of a
result of Gross, [16, Proposition 3.8], which proves the existence of an element satisfying the same
property regarding its P-order. However, in this result, the element is in the group of p-units
tensored over Z with Q, rather than being a genuine p-unit. Recent work of Dasgupta–Kakde in
[11] has shown that the Brumer–Stark conjecture holds away from 2.

There have been three formulas conjectured for the Brumer–Stark units. In [8, Definition
3.18], Dasgupta constructed explicitly, in terms of the values of Shintani zeta functions at s = 0,
an element u1 ∈ F ∗p . Dasgupta conjectured, in [8, Conjecture 3.21], that this unit is equal to
the Brumer–Stark unit. This equality has recently been shown to be correct up to a root of
unity by Dasgupta–Kakde in [10]. The key ingredient in the proof of the above theorem is
Dasgupta–Kakde’s proof of the p-part of the integral Gross–Stark conjecture. The other two
formulas are cohomological in nature and were conjectured by Dasgupta–Spieß in [13] and [14],
we denote these formulas by u2 and u3, respectively. In [13, Conjecture 6.1] and [14, Remark
4.5], respectively, u2 and u3 are conjectured to be equal to the Brumer–Stark unit. In this thesis,
we give a complete account of these formulas before considering the progress we have made on
problems related to these formulas.

The first result of this thesis is that u1 is equal to u3 when F is a cubic extension of Q
(i.e., when n = 3). The equality of u1 and u3, for any totally real field F , was conjectured by
Dasgupata–Spieß in [14, Remark 4.5]. They also proved the case when F is a quadratic field
(i.e., when n = 2) in [14, Theorem 4.4]. This first result has been attempted previously by Tsosie
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in [24]. However, as we show in the appendix, we find a counterexample to the statement of
[24, Lemma 2.1.3]; this lemma is necessary for his work. The statement concerns having a nice
translation property of Shintani sets, for more details see Statement A.1.1 in the appendix. The
main contribution of this first result is the methods we develop to recover some control of the
translation properties of Shintani sets. We note that currently we have no way to extend the
arguments used in this proof to allow us to apply this method to work with totally real fields
of any degree. The translation properties of Shintani sets has not previously been studied and
leads to a surprisingly simple conjecture. However, we are unable to prove this conjecture. We
note this conjecture in the appendix. We remark that this conjecture appears to contain the
additional information which would allow us to extend the proof presented in Chapter 7 to work
for any totally real field, rather than only for cubic extensions. We give more detail on this in
the appendix.

The second main result of this thesis is that u1, u2 and u3 are all equal to each other, for any
totally real number field F . This result is joint work with Samit Dasgupta. The approach of this
proof is very different to that used by the author for the prior proof that u1 = u3 when F is a
cubic extension. Firstly, it is possible to show that u2 is equal to u3 by direct calculation. More
precisely, we write each of the cohomological expressions explicitly and then show that these two
elements are equal. For the proof that u1 is equal to u2, we show that each of u1 and u2 satisfy
a strong enough functorial property to force them to be equal. Namely, we show that they each
satisfy a norm compatibility property. This result supersedes the earlier result of u1 = u3 when
n = 3, although its proof is very different in style to the proof of our first result. An immediate
consequence of our main result is that each of the formulas for the Brumer–Stark unit are correct
up to a root of unity. More precisely, that [13, Conjecture 6.1] and [14, Remark 4.5] hold up to
a root of unity. This follows applying our result that u1 = u2 = u3 to Dasgupta–Kakde’s proof,
in [10], that u1 is equal to the Brumer–Stark unit up to a root of unity.

In [14, Conjecture 3.1], Dasgupta–Spieß conjecture a cohomological formula for the principal
minors and the characteristic polynomial of the Gross regulator matrix associated to a totally
odd character of the totally real field F . The diagonal terms of the Gross regulator matrix
are defined via the Brumer–Stark units. Let χ be a chosen totally odd character. Then, the
diagonal terms are expressed via the ratio of the p-adic logarithm and the p-order of the χ−1

component of the Brumer–Stark unit. By considering [14, Conjecture 3.1] for the 1× 1 principal
minors, Dasgupa–Spieß conjectured a formula for this value. This formula is a specialisation of
their formula u3. It follows from our main result that Conjecture 3.1 in [14] holds for the 1 × 1

principal minors. We note that there is no root of unity ambiguity here due to the presence of
logp and norm maps in the definition of the Gross regulator matrix which removes roots of unity.

Finally, we consider the root of unity ambiguity in the result of Dasgupta–Kakde which proves
that u1 is equal to up up to a root of unity. We show that these formulas are in fact correct
up to a 2-power root of unity. In particular, we prove this for u2 and use the equality of the
formulas to obtain this result for u1 and u3. The key result that allows us to prove this theorem
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is the recent work of Bullach–Burns–Daoud–Seo in [2, Theorem B] where they prove the minus
part of the eTNC away from 2 for finite CM extensions of totally real fields. It follows from [3,
Corollary 4.3] of Burns that the integral Gross–Stark conjecture away from 2 is implied by [2,
Theorem B]. We show that the integral Gross–Stark conjecture away from 2 is strong enough to
imply that each of the formulas are correct up to a 2-power root of unity.
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Chapter 2

Background and Conjectures

2.1 The analytic class number formula

L-functions are a central object of study in modern number theory. In particular, there is a focus
on showing relations between special values of these analytic functions and arithmetic objects.
The classical example of this type of relation is the analytic class number formula. Let F be a
number field with ring of integers OF . One can define an analogue of the Riemann zeta function
for F by using the norm of integral ideals, of OF , in place of the natural numbers in the Riemann
zeta function, i.e., we define

ζF (s) = ∑
a⊂OF

1

NF /Q(a)s
, s ∈ C, Re(s) > 1.

Here the sum is over all the non-zero integral ideals of OF . This is the Dedekind zeta function for
F . As with the Riemann zeta function, ζF (s) has a meromorphic continuation to all of C, with
only a simple pole at s = 1. We remark that these objects are purely analytic in nature and that
when F = Q the Dedekind zeta function is equal to the Riemann zeta function. For a number
field F , the class number of F is the order of the class group, which is defined by the quotient
of the group of fractional ideals of OF by the principal ideals of OF . The class group measures
the failure of unique factorisation into primes and is thus a fundamental object of study. We
denote the class number of F by hF . The analytic class number formula provides a precise and
remarkable relationship between the leading term at s = 1 of ζF (s) and the class number of F .

Theorem 2.1.1 (The analytic class number formula). Let F be a number field with [F ∶ Q] = r1+
2r2, where r1 and r2 denote, respectively, the number of real and pairs of imaginary embeddings
of F . Then,

lim
s→1
(s − 1)ζF (s) =

2r1(2π)r2RFhF

ωF

√
∣DF ∣

,

where RF , hF , ωF and DF are, respectively, the regulator, class number, number of roots of unity
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and discriminant of F .

We have defined hF above and will define RF after the next theorem. The analytic class
number formula was proved for quadratic fields by Dirichlet and in general by Dedekind. As
with the Riemann zeta function, ζF satisfies a functional equation. In particular, we have for
s ∈ C,

ΛF (s) = ΛF (1 − s) where ΛF (s) =∣DF ∣
s/2 ΓR(s)

r1ΓC(s)
r2ζF (s).

Here ΓR(s) = π
−s/2Γ(s/2) and ΓC(s) = 2(2π)−sΓ(s), where Γ(s) is the Gamma function. It

follows from the functional equation for ζF (with s = 0) and the analytic class number formula,
that the coefficient of the leading term in the Taylor expansion of ζF , denoted by ζ∗F (0), is given
by

ζ∗F (0) = lim
s→0

srζF (s) = −
hFRF

ωF

where r = r1 + r2 − 1. This value r is also of significance; it is the rank of the group O∗F of units
of F . This follows from the following famous theorem of Dirichlet.

Theorem 2.1.2 (Dirichlet’s unit theorem). The group O∗F of units of a number field F is iso-
morphic to W ×Zr, where W is a finite cyclic group consisting of all the roots of unity in F and
r = r1 + r2 − 1.

The proof of this theorem is where the definition of RF , the regulator of F , first appears.
Since this definition appears throughout this thesis we shall recall it here. We fix the order of
the embeddings σ1, . . . , σr1+r2 of F such that σi is a real embedding if 1 ≤ i ≤ r1 and a complex
embedding if r1 + 1 ≤ i ≤ r1 + r2. Define the Dirichlet regulator l ∶ O∗F → Rr1+r2 such that for
α ∈ O∗F we have l(α) = (l1(α), . . . , lr1+r2(α)) where

li(α) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

log(∣ σi(α) ∣) if 1 ≤ i ≤ r1,

2 log(∣ σi(α) ∣) if r1 + 1 ≤ i ≤ r1 + r2.

The image of O×F is an r-dimensional lattice in Rr1+r2 . As before we have r = r1 + r2 − 1. Letting
u1, . . . , ur ∈ O

∗
F be units such that the set {l(u1), . . . , l(ur)} is a Z-basis of the lattice l(O∗F ), we

define
RF =∣ det(li(uj))i,j=1,...,r ∣ .

We note that changing the choice of basis will only change the sign of the determinant and thus
RF is well defined.

2.2 The Gross–Stark conjecture

As the Dedekind zeta function extends the definition of the Riemann zeta function to arbitrary
number fields, we now want to extend the definition of the Dedekind zeta function to work
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with extensions of arbitrary number fields. We are interested in finite abelian extensions of
number fields H/F . The Galois group of H/F , which we denote G = Gal(H/F ), is the group of
automorphisms of H that fix the base field F . Let R denote a finite set of places of F containing
the infinite places of F and those that are ramified in H. Let χ ∶ G→ C∗ be any character of G.
As usual, we view χ also as a multiplicative map on the semigroup of integral fractional ideals
of F by defining χ(q) = χ(σq) if q is unramified in H and χ(q) = 0 if q is ramified in H. Here σq
is the image of the ideal q under the Artin map of class field theory. We can thus associate to
any such χ the Artin L-function

LR(χ, s) = ∑
(a,R)=1

χ(a)

Nas
= ∏

q∉R

1

1 − χ(q)Nq−s
, s ∈ C, Re(s) > 1.

Here, the sum is over all non-zero integral ideals of OF that are coprime R, i.e., the ideals that
are coprime to each prime ideal in R. The product is over all prime ideals of OF that are not
contained in R. Here and from now on we write N = NF /Q. Similar to the Dedekind zeta function,
if χ is non-trivial, we can analytically continue LR(χ, s) to a holomorphic function on all of C.
Write F for the algebraic closure of F . We now let

χ ∶ Gal(F /F ) → Q
∗

be a character of the absolute Galois group of F . Fix a rational prime p. We fix embeddings
Q ⊂ C and Q ⊂ Cp, so χ may be viewed as taking values in C or Cp. We let H denote the fixed
field of the kernel of χ. We now give the construction of the p-adic L-function. Write P for the
set of primes of F lying above p and let RP = R ∪ P . Partition P as Sp ∪R1, where Sp denotes
the subset of primes that split completely in H and R1 the set of remaining primes of P . Let

ω ∶ Gal(F (µ2p)/F ) → (Z/2pZ)∗ → µ2(p−1)

denote the Teichmüller character. For n ∈ Z>0, we have let µn denote the cyclic group of nth

roots of unity. There is a p-adic meromorphic function

Lp(χω, ⋅) ∶ Zp → Cp

uniquely determined by the interpolation property

Lp(χω, k) = LRP
(χωk, k) for k ∈ Z≥0.

We refer to this function as the p-adic L-function. Under the Leopoldt conjecture, the p-adic
L-function has a simple pole at s = 1 when χ = ω−1. The existence of this function was shown
independently by Deligne–Ribet [15] and Cassou-Nogués [4]. It follows from the functional
equation of LRP

(χωk, s) that Lp(χω, ⋅) is the zero function unless F is totally real and χ is
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totally odd. We say F is totally real if r2 = 0 and fix this choice of F . To define the notion of
totally odd we first note that we can define the sign of χ as the tuple, sign(χ) = (rf)f∈Hom(F,R) ∈

{0,1}#Hom(F,R), such that

χ(aOF ) = ∏
f∈Hom(F,R)

sign(f(a))rf for all a ≡ 1 (mod f).

Here f is the conductor of H/F . We then say χ is totally odd if sign(χ) = (1, . . . ,1). For the
remainder of this section we assume that F is totally real and χ is totally odd. We note that, in
this case, H is a finite cyclic CM extension of F .

The Gross–Stark conjecture was stated by Gross in [16] and gives a relation between the
leading term of a p-adic L-function, twisted by χ, and an algebraic invariant called Gross’s
regulator. Let rχ =#Sp. We refer to this quantity as the rank of the conjecture.

Conjecture 2.2.1 (Gross–Stark conjecture). We have

L
(rχ)
p (χ,0)

rχ!LR(χ,0)
=Rp(χ) ∏

p∈R1

(1 − χ(p)),

where Rp(χ) is a certain regulator of p-units of H, namely Gross’s regulator which we define
below.

Remark 2.2.2. Conjecture 2.2.1 was first proved in the rχ = 1 case, assuming Leopoldt’s conjec-
ture and a technical condition, by Dasgupta–Darmon–Pollack in [9]. Both of these assumptions
were later removed by Ventullo in [25]. The case of arbitrary rank was proved by Dasgupta–
Kakde–Ventullo in [12].

Definition 2.2.3. For each prime p ∈ Sp, we define the group

U ′p = {u ∈H
∗ ∶ ∣ u ∣P= 1 if P does not divide p}.

Here P ranges over all finite and archimedean places of H; in particular, each complex
conjugation in H acts as an inversion on U ′p. We remark that the standard notation for the
above group is Up. However, we require this notation later for a different object, to avoid
confusion we have denoted the above group with a prime. We then write

U ′p,χ ∶= (U
′
p ⊗Z Q)χ

−1

= {u ∈ U ′p ⊗Z Q ∣ σ ⋅ u = χ−1(σ) ⋅ u for all σ ∈ Gal(H/F )}.

The Galois equivariant strengthening of Dirichlet’s unit theorem, by Herbrand (see Chapter I,
§3, §4 of [23]), implies that

dimQ(U
′
p,χ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if p ∈ Sp,

0 otherwise.
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Let up,χ denote any generator (i.e., non-zero element) of the Q-vector space Up,χ. Consider the
continuous homomorphisms

op ∶= ordp ∶ F
∗
p → Z, (2.1)

lp ∶= logp ○NormFp/Qp
∶ F ∗p → Zp. (2.2)

Here, logp ∶ Q∗p → Zp denotes Iwasawa’s p-adic logarithm and NormFp/Qp
is the p-adic norm map

on Fp. Suppose we choose for each p ∈ Sp, a prime Pp of H lying above p. Then, for p, q ∈ Sp we
have

U ′p ⊂H ⊂HPq
≅ Fq.

The isomorphism holds since p splits completely in H. We can thus evaluate oq and lq on
elements of Up, and extend by linearity to maps

oq, lq ∶ U
′
p,χ → Cp.

Note that oq(U ′p,χ) is non-zero if p = q and is zero for p ≠ q. Define the ratio

Lalg(χ)p,q = −
lq(up,χ)

op(up,χ)
,

which is clearly independent of the choice of up,χ ∈ U ′p,χ. Gross’s regulator, Rp(χ), is the
determinant of the (#Sp) × (#Sp) matrix whose entries are given by these values:

Rp(χ) ∶= det(Mp(χ)), where Mp(χ) ∶= (Lalg(χ)p,q)p,q∈Sp .

We refer to Mp(χ) as the Gross regulator matrix. More generally, for any subset J ⊂ Sp, the
principal minor of Mp(χ) corresponding to J is defined by

Rp(χ)J ∶= det(Lalg(χ)p,q)p,q∈J .

We note that both Rp(χ) and Rp(χ)J are independent of all choices. In particular, we note that
for each prime q ∈ Sp, the maps lq and oq depend on the choice of a prime Pq of H lying above
q. If, rather than Pq, one chooses σ(Pq) for some σ ∈ G, then this scales lq and oq by χ(σ).
Hence the diagonal entries are unchanged by this choice. Furthermore, this choice multiplies the
qth row of Mp(χ) by χ(σ)−1 and the qth column of Mp(χ) by χ(σ). It follows that both Rp(χ)

and Rp(χ)J are independent of these choices.
Let J ⊂ Sp be nonempty. Dasgupta–Spieß have constructed, via group cohomology, a formula

which they conjecture, in [14, Conjecture 3.1], to be equal to the value Rp(χ)J . If we take J = {p}
for some p ∈ Sp, then the value of Rp(χ)p is the diagonal entry at p of the Gross regulator matrix,
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i.e.,

Rp(χ)p =Lalg(χ)p,p = −
lp(up,χ)

op(up,χ)
.

2.3 The Brumer–Stark units

We now consider an arbitrary finite abelian field extension H/F . As in the previous section, fix
a prime p of F , above the rational prime p, such that p splits completely in H. As before, we let
R denote a finite set of places of F such that R contains the archimedean places, p ∉ R, and R

contains the places that are ramified in H. The conjectures we wish to consider now are integral
rather then p-adic. I.e., rather then considering the leading term of a p-adic L-function we want
to consider the leading term of an Artin L-function. Furthermore we want the value we consider
to be an integer. Thus, we must define a modified L-function. Let T denote a finite set of places
of F disjoint from R such that T contains two primes of different residue characteristic or one
prime of residue characteristic larger than [F ∶ Q] + 1. We always assume that this condition
holds. Let χ be a character of G = Gal(H/F ). We then define the R-depleted, T -smoothed Artin
L-function of χ,

LR,T (χ, s) = LR(χ, s)∏
q∈T
(1 − χ(q)Nq1−s), s ∈ C, Re(s) > 1.

If χ is nontrivial, then the function LR,T (χ, s) can be analytically continued to a holomorphic
function on all of C. This follows from the equivalent result for LR(χ, s). We can extend χ

so that we can consider χ ∶ C[G] → C. One can package together the Artin L-functions into a
Stickelberger element ΘR,T (s) which lives in the group ring C[G]. This element is defined by the
property that if we specialise it to a character χ of G, then we get the modified Artin L-function
LR,T (χ

−1, s), i.e.,
χ(ΘR,T (s)) = LR,T (χ

−1, s).

An important theorem of Deligne–Ribet [15] and Cassou-Nogués [4] states that the value of the
Stickelberger element at 0, which we denote ΘR,T = ΘR,T (0), is in fact contained in the integral
group ring Z[G].

We also need to modify the class group we are considering. The T -smoothed ray class group
of H, which we denote as ClT (H), is defined to be the quotient of the group of fractional ideals
of OH which are coprime to primes in T , by the principal ideals of OH which are generated
by elements which are congruent to 1 modulo primes of OH above primes of T . The following
conjecture, stated by Tate in [22], is known as the Brumer–Stark conjecture.

Conjecture 2.3.1 (Brumer–Stark conjecture). We have

ΘR,T ∈ AnnZ[G](ClT (H)).

Conjecture 2.3.1 provides another remarkable relation between an analytic object, ΘR,T , and
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an algebraic invariant, ClT (H). This time we have these objects associated to a field extension
H/F . We note that Conjecture 2.3.1 is a generalisation of Stickelberger’s theorem. Let K/Q be
an arbitrary abelian extension of Q. Stickelberger’s theorem and its generalisations provide an
ideal in the group ring Z[Gal(K/Q)] which annihilates the class group of K. Conjecture 2.3.1
extends this to considering arbitrary abelian extensions H/F . We note that Conjecture 2.3.1
is only nontrivial in the case that F is totally real and H is totally complex containing a CM
subfield. We have this assumption for the remainder of this thesis.

Recall we have let p be a prime of F that splits completely in H. We further assume that p is
not contained in the union of R and T . Choose a prime P of H above p. Let σ be an element of
the Galois group G. We then define the partial zeta function ζR,T (σ) to be the σ−1 component
of ΘR,T , such that

ΘR,T = ∑
σ∈G

ζR,T (σ)[σ
−1].

For an element σ ∈ G we write [σ] ∈ Z[G] for the group ring element. When the notation is clear
we will drop the brackets. We note that by our assumption on T we have ζR,T (σ) ∈ Z. We can
also define ζR,T (σ) as the special value of an L-function. Firstly, we define the following.

Definition 2.3.2. For σ ∈ G, we define the partial zeta function

ζR(σ, s) = ∑
(a,R)=1
σa=σ

Na−s, s ∈ C, Re(s) > 1. (2.3)

Here the sum is over all non-zero integral ideals a ⊂ OF that are relatively prime to the elements
of R and whose associated Frobenius element σa ∈ G is equal to σ.

Note that the series (2.3) converges for Re(s) > 1 and has a meromorphic continuation to C,
regular outside s = 1. The zeta functions associated to the sets of primes R and S = R ∪ {p} are
related to each other by the formula

ζS(σ, s) = (1 −Np−s)ζR(σ, s).

If K is a finite abelian extension of F and σ ∈ Gal(K/F ) we use the notation ζR(K/F,σ, s)

for the partial zeta function defined as above but with the equality σa = σ being viewed in
Gal(K/F ). We then define the partial zeta function associated to the sets R and T by the group
ring equation

∑
σ∈G

ζR,T (σ, s)[σ] = ∏
η∈T
(1 − [ση]Nη1−s) ∑

σ∈G
ζR(σ, s)[σ]. (2.4)

Here we define ζR,T (σ, s) to be equal to the σ component on the right hand side of (2.4), after
expanding the product and sum. We then have ζR,T (σ) = ζR,T (σ,0) ∈ Z. I.e., the partial zeta
function associated to σ is equal to the σ−1 component of the Stickelberger element. Conjecture
2.3.1 implies that the ideal

PΘR,T = ∏
σ∈G

σ−1(P)ζR,T (σ)
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is a principal ideal (u) generated by an element u which is congruent to 1 modulo all primes of
OH above primes of T . From now on we write this as u ≡ 1 (mod T ). We further conjecture
that u can be chosen so that its image under complex conjugation is equal to its inverse. It is
this statement that was originally proposed by Tate in [22]. Thus our statement of Conjecture
2.3.1 is slightly weaker than the original statement of Tate. We now give the formulation of the
Brumer–Stark conjecture due to Gross. We note that this statement follows from Conjecture
2.3.1.

Conjecture 2.3.3 (Conjecture 7.4, [17]). Let P be a prime in H above p. There exists an
element uT ∈ U ′p such that uT ≡ 1 (mod T ), and for all σ ∈ G, we have

ordP(u
σ
T ) = ζR,T (H/F,σ,0). (2.5)

Our assumption on T implies that there are no non-trivial roots of unity in H that are
congruent to 1 modulo T . Furthermore, recalling the definition of U ′p from Definition 2.2.3 and
noting that ∣ uv ∣= 1 for all the infinite places we see that the p-unit, if it exists, is unique. Note
also that our uT is actually the inverse of the u in [17, Conjecture 7.4]. The conjectural element
uT ∈ U

′
p satisfying Conjecture 2.3.3 is called the Brumer–Stark unit for the data (S,T,H,P).

Throughout this thesis, for ease of notation, we have T = {λ} for an appropriate choice of λ. In
particular, we choose λ such that Nλ = l for a prime number l ∈ Z and l ≥ n + 2. Recall that
we have denoted n = [F ∶ Q]. It will be convenient for us to work with the following element of
H∗[G]. We define

up = ∑
σ∈G

uσT ⊗ [σ
−1] ∈H∗[G].

Throughout this thesis we will write up(σ) = uσT for the σ−1 component of up. We will also refer
to up as the Brumer–Stark unit, it will always be clear from context if we are referring to up or
uT .

The Brumer–Stark conjecture (Conjecture 2.3.1) has recently been proved, away from 2, by
Dasgupta–Kakde in [11]. In particular, they prove the following theorem.

Theorem 2.3.4 (Theorem 1.2, [11]). We have

ΘR,T ∈ AnnZ[G][1/2] (ClT (H) ⊗Z Z[
1

2
]) .

This theorem is proved by applying Ribet’s method. One of the key parts of [11] is the use
of group ring valued Hilbert modular forms to show the existence of the required cohomology
class. It follows, from the paragraph before Conjecture 2.3.3, that Theorem 2.3.4 implies the
existence of a unit uT ∈ U ′p ⊗Z[ 12 ] satisfying equation (2.5). Equivalently, Theorem 2.3.4 implies
the existence of a unit uT ∈ U ′p that satisfies equation (2.5) up to multiplication by a power of 2.
I.e. for each σ ∈ G, we have

ordP(u
σ
T ) = 2

kζR,T (H/F,σ,0),
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for some k ∈ Z≥0.
There have been three formulas conjectured for the Brumer–Stark unit up in F ∗p ⊗Z[G]. The

first by Dasgupta in [8] is a p-adic analytic formula which we denote by u1. The other two formulas
were defined by Dasgupta–Spieß in [13] and [14], as in the introduction, we denote the elements
given by these formulas by u2 and u3, respectively. Both these formulas are cohomological in
nature and are defined using an Eisenstein cocycle, we give more details on this in §3.5. Each of
the elements, u1, u2 and u3, are conjectured to be equal to the Brumer–Stark unit, up. These
conjectures are due to Dasgupta in [8] and Dasgupta–Spieß in [13] and [14], for u1, u2 and u3

respectively. We combine these three conjectures in the following.

Conjecture 2.3.5. Let i = 1,2,3 then
ui = up.

Recent work of Dasgupta–Kakde in [10] has proved this conjecture for u1 up to a root of
unity under some mild assumptions. In particular, they have proved the following theorem.

Theorem 2.3.6 (Theorem 1.6, [10]). Let p denote the rational prime below p. Suppose that p
is odd,

there exists q ∈ S where q is a prime of F that is unramified in H

and whose associated Frobenius σq is a complex conjugation in H, (2.6)

and
H ∩ F (µp∞) ⊂H

+, the maximal totally real subfield of H. (2.7)

Then, Conjecture 2.3.5 for u1 holds up to multiplication by a root of unity in F ∗p , i.e.,

u1 = up in (F ∗p /µ(F
∗
p )) ⊗Z[G].

We have µ(F ∗p ) for the group of roots of unity of F ∗p .

The key ingredient in the proof of the above theorem is Dasgupta–Kakde’s proof of the p-part
of the integral Gross–Stark conjecture. We give this result in the next section. We note here the
work of Darmon–Pozzi–Vonk [7] which proves a version of Conjecture 2.3.5 in the setting that F
is a real quadratic field and the rational prime p is inert in F . Their work also used deformations
of p-adic modular forms and their associated Galois representations. However, this thesis, and
the work of Dasgupta–Kakde’s, uses “horizontal” tame deformations while Darmon-Pozzi-Vonk
use “vertical” p-adic towers.

The main result of this thesis is the following theorem. This result was conjectured by
Dasgupta–Spieß in [13] and [14].

Theorem 2.3.7. One has,
u1 = u2 = u3.
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Remark 2.3.8. Theorem 2.3.7 and Theorem 2.3.6 imply that we have u2 = u3 = up in
(F ∗p /µ(F

∗
p )) ⊗ Z[G], i.e., in addition to Theorem 2.3.6 holding for u1 it also holds for u2 and

u3. We remark that by following the arguments of [8] and using Proposition 6.3 in [13] one can
show that Theorem 2.3.6 holds for u2 without using Theorem 2.3.7.

Remark 2.3.9. Theorem 2.3.7 would also follow from a proof of Conjecture 2.3.5. However, all
current approaches to this conjecture have a root of unity ambiguity, whereas in Theorem 2.3.7
we have no such ambiguity.

We prove Theorem 2.3.7 in two stages. Initially, we show that u2 = u3 in §8.1. Then, we show
that u1 = u2 in §8.2 and this completes the proof of the theorem. This theorem is joint work
with Dasgupta. Prior to this, we prove in Chapter 7 that u1 = u3 when F is of degree three. The
approach of this proof is very different to the work in Chapter 8.

The final result of this thesis, which we prove in Chapter 9, is the following theorem.

Theorem 2.3.10. Let p denote the rational prime below p. Suppose that p is odd, and (2.6) and
(2.7) hold. Then, Conjecture 2.3.5 for u2 holds up to multiplication by a 2-power root of unity
in F ∗p , i.e.,

u2 = up in (F ∗p /µ2(F
∗
p )) ⊗Z[G].

We write µ2(F
∗
p ) for the group of 2-power roots of unity of F ∗p .

This theorem is another step towards a proof of Conjecture 2.3.5 by reducing the root of unity
ambiguity to a 2-power root of unity. We note that we do not require any additional assumptions
to those used in Theorem 2.3.6.

2.4 The integral Gross–Stark conjecture

The integral Gross–Stark conjecture or, as it is also known, Gross’s tower of fields conjecture,
is an integral version of the Gross–Stark conjecture (Conjecture 2.2.1). Gross first stated this
conjecture in [17]. In this conjecture, we consider a tower of fields L/H/F , as before F is totally
real. We take H and L to be finite abelian extensions of F that are CM fields such that L
contains H. Write g = Gal(L/F ). Recall that S = R ∪ {p} where p splits completely in H/F .
The integral Gross–Stark conjecture gives a relationship between Brumer–Stark p-units and the
Stickelberger element, ΘL/F

S,T , for L/F . Here T is as in §2.3. Denote by

recp ∶ F ∗p → A∗F → g

the local component of the reciprocity map of class field theory. Since H ⊂ HP ≅ Fp, we can
evaluate recp on H∗. Note that if x ∈ H∗ then recp(x) ∈ Gal(L/H). Let I denote the relative
augmentation ideal associated to g and G, i.e., the kernel of the canonical projection

AuggG ∶ Z[g] ↠ Z[G].
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The key point of the following conjecture is that it is integral, as opposed to the Gross–Stark
conjecture which is p-adic. This integrality is one of the things that makes the following conjecture
so difficult to prove.

Conjecture 2.4.1 (Integral Gross–Stark conjecture). Define

recG(up) = ∑
σ∈G
(recp(up(σ)) − 1)σ̃−1 ∈ I/I2,

where σ̃ ∈ g is any lift of σ ∈ G and up = ∑σ∈G up(σ) ⊗ σ
−1 is the Brumer–Stark unit. Then

recG(up) ≡ Θ
L/F
S,T (mod I2), (2.8)

in I/I2.

To see how this conjecture can provide more information about the Brumer–Stark unit we
first consider the σ component of equation (2.8). Then, since I/I2 ≅ g via the isomorphism
σ − 1↦ σ, one can see that Conjecture 2.4.1 implies

recp(up(σ)) = ∏
τ∈g

τ ∣H=σ−1

τ ζS,T (L/F,τ−1). (2.9)

Taking the inverse of recp on both sides of the above equation allows us to gain more information
about the unit up. In particular it gives us the value of up(σ) ∈ F ∗p /ker(recp). Let f denote the
conductor of H/F . To gain some more precise information one can apply equation (2.9) with
L = K for every H ⊃ K ⊂ Hfp∞ . Here we define Hfp∞ to be the union of the narrow ray class
fields Hfpm for each m ∈ Z≥1. The local reciprocity map at p induces an isomorphism

recp ∶ F ∗p /Ê+(f)p ≅ Gal(Hfp∞/H),

where we write E+(f)p for the totally positive p-units of F which are congruent to 1 (mod f).
Then Ê+(f)p denotes the closure of E+(f)p in F ∗p . Thus we can use (2.9) to give the value of
up(σ) in F ∗p /Ê+(f)p. In [8] Dasgupta develops the methods of horizontal Iwasawa theory to
further refine this kernal and shows that the p-part of Conjecture 2.4.1 implies Theorem 2.3.6.
It is these horizontal methods that we will use in Chapter 9 of this thesis to show that Theorem
2.3.10 follows from the combination of the l-part of Conjecture 2.4.1 for every odd prime l.

The p-part of Conjecture 2.4.1, when p is odd, has recently been proved by Dasgupta–Kakde
[10]. Recall that p lies above p. We give the statement of their theorem below. As with Dasgupta–
Kakde’s proof of the prime-to-2 part of the Brumer–Stark conjecture, the approach is to apply
Ribet’s method again working with group ring valued Hilbert modular forms.

Theorem 2.4.2 (Theorem 1.4, [10]). Let p be an odd prime and suppose that p lies above p.
The integral Gross–Stark conjecture (Conjecture 2.4.1) holds in (I/I2) ⊗Zp.
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Remark 2.4.3. Recent work of Bullach–Burns–Daoud–Seo in [2, Theorem B] has proved the
minus-part of the eTNC away from 2, for finite abelian CM extensions of totally real fields. Burns
has proved in [3, Corollary 4.3] that [2, Theorem B] implies the integral Gross–Stark conjecture.
It follows from this that the l-part of Conjecture 2.4.1 holds for all primes l ≠ 2. Thus, the
following theorem holds.

Theorem 2.4.4. Let l be an odd prime. The integral Gross–Stark conjecture (Conjecture 2.4.1)
holds in (I/I2) ⊗Zl.

The above theorem is crucial in proving the final result of this thesis, i.e., for the proof of
Theorem 2.3.10.
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Chapter 3

Shintani Zeta Functions and the
Eisenstein Cocycle

3.1 Notation

Recall that we let F be a totally real field of degree n over Q with ring of integers O = OF .
Let E = EF = O∗F denote the group of global units. More generally, for a finite set S of non-
archimedean places of F , we denote by ES = EF,S the group of S-units of F . We define

S = {q prime of F ∶ q ∣ q where, for some r ∈ S, r ∣ q}. (3.1)

We also let H/F be a totally complex extension containing a CM subfield. Write E+ for the
totally positive units of F . Let f denote the conductor of the extension H/F . We write E+(f) for
the totally positive units of F which are congruent to 1 (mod f). Write Gf for the narrow ray
class group of conductor f. Let e be the order of p in Gf and suppose that pe = (π) with π ≡ 1

(mod f) and π totally positive. We write O = Op − πOp ⊂ F ∗p .
Define A = AF as the adele ring of F . We define

Ẑ ∶= lim
←Ð
n

Z/nZ =∏
p

Zp,

where the second equality follows from the Chinese remainder theorem. For a Q-vector space
W , fix the notation WẐ =W ⊗Z Ẑ =W ⊗QQ⊗Z Ẑ =W ⊗QAQ. For an abelian group A and prime
number l, we put Al = A⊗Z Ql.

For a place v of F , we put Uv = R+ = {x ∈ R ∣ x > 0} if v ∣ ∞ and Uv = O∗v if v is finite.
For a set S of places of F , we let AS denote the S-adeles. We also define US = ∏v∉S Uv, and
US = ∏v∈S Uv. We shall also use the notation FS = (AS

F ×US) ∩ F
∗.

Finally, we note that if we have a function f ∶ X → Z and X ⊆ Y then we can extend f to a
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function f! ∶ Y → Z by defining

f!(y) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f(y) if y ∈X

0 if y ∈ Y −X.

We call this function the extension of f to Y by 0.

3.2 Shintani zeta functions

Shintani zeta functions are a crucial ingredient in each of the three constructions we are studying.
The first step in defining these modified zeta functions considers the work of Shintani, initially
developed in his paper [19], and the definitions of Shintani cones and domains. We establish the
necessary notation here.

Let R∞ denote the set of infinite places of F . For each v ∈ R∞, we write σv ∶ F → R and fix
the order of these embeddings. We can then embed F into Rn by x ↦ (σv(x))v∈R∞ . We note
that F ∗ acts on Rn with x ∈ F acting by multiplication by σv(x) on the v-component of any
vector in Rn. Let R+ = {x ∈ R ∣ x > 0} denote the positive elements of R. For linearly independent
v1, . . . , vr ∈ Rn

+ , define the simplicial cone

C(v1, . . . , vr) = {
r

∑
i=1
civi ∈ Rn

+ ∶ ci > 0} .

Definition 3.2.1. A Shintani cone is a simplicial cone C(v1, . . . , vr) generated by elements
vi ∈ F ∩Rn

+. A Shintani set is a subset of Rn
+ that can be written as a finite disjoint union of

Shintani cones.

We now give a Lemma of Dasgupta relating to the intersection of two Shintani sets.

Lemma 3.2.2 (Lemma 3.14, [8]). The intersection of two Shintani sets is a Shintani set. For
two Shintani sets D and D′ there exists only a finite number of ϵ ∈ E+ such that ϵD ∩ D′ is
nonempty.

We now give the definition for Shintani zeta functions. Write f for the conductor of the
extension H/F . Let b be a fractional ideal of F relatively prime to S and T , and let D be a
Shintani set. For each compact open U ⊆ Op, define, for Re(s) > 1,

ζR(b,D,U, s) = Nb−s ∑
α∈F∩D, α∈U
(α,R)=1, α∈b−1
α≡1 (mod f)

Nα−s.

Here the sum is over elements of F which are relatively prime to R, congruent to 1 modulo f, and
contained in D, U and b−1. We define ζR,T (b,D,U, s) in analogy with (2.4), i.e., by the group
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ring equation

∑
σb∈G

ζR,T (b,D,U, s)[σb] = ∏
η∈T
(1 − [ση]Nη1−s) ∑

σb∈G
ζR(b,D,U, s)[σb]. (3.2)

It follows from Shintani’s work in [19] that the function ζR,T (b,D,U, s) has a meromorphic
continuation to C. We now want to define conditions on the set of primes T and the Shintani
set D to allow our Shintani zeta functions to be integral at s = 0.

Definition 3.2.3. A prime ideal η of F is called good for a Shintani cone C if

• Nη is a rational prime l; and

• the cone C may be written C = C(v1, . . . , vr) with vi ∈ O and vi ∉ η.

We also say that η is good for a Shintani set D if D can be written as a finite disjoint union of
Shintani cones for which η is good.

Definition 3.2.4. The set T is good for a Shintani set D if D can be written as a finite disjoint
union of Shintani cones D = ∪Ci, so that for each cone Ci, there are at least two primes in T

that are good for Ci (necessarily of different residue characteristic by our earlier assumption) or
one prime η ∈ T that is good for Ci such that Nη ≥ n + 2.

Remark 3.2.5. Given any Shintani set D, it is possible to choose a set of primes T such that T
is good for D. In fact, all but a finite number of prime ideals are good for a given Shintani set.

We can now note the required property to allow our Shintani zeta functions to be integral at
zero. This follows from the following proposition of Dasgupta.

Proposition 3.2.6 (Proposition 3.12, [8]). If the set of primes T contains a prime η that is
good for a Shintani cone C and Nη = l, then

ζR,T (b,C,U,0) ∈ Z[1/l].

Furthermore, the denominator of ζR,T (b,C,U,0) is at most ln/(l−1).

As is noted by Dasgupta at the top of p.15 in [8], the corollary below follows easily from
Proposition 3.2.6.

Corollary 3.2.7. If the set of primes T is good for a Shintani set D, then

ζR,T (b,D,U,0) ∈ Z.

We define a Z-valued measure ν(b,D) on Op by

ν(b,D,U) ∶= ζR,T (b,D,U,0), (3.3)
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for U ⊆ Op compact open.
We are mostly interested in a particular type of Shintani set, one which is a fundamental

domain for the action of E+(f).

Definition 3.2.8. We call a Shintani set D a Shintani domain if D is a fundamental domain
for the action of E+(f) on Rn

+. That is, when

Rn
+ = ⋃

ϵ∈E+(f)
ϵD (disjoint union).

The existence of such domains follows the work of Shintani, in particular from [19, Proposition
4]. We note here some simple equalities which follow from the definitions, more details are given
in §3.3 of [8]. Recall we have written Gf for the narrow ray class group of conductor f. We have
let e be the order of p in Gf, and have pe = (π) with π ≡ 1 (mod f) and π totally positive. Let D

be a Shintani domain and recall that we have defined O = Op − πOp. Then,

ν(b,D,O) = ζS,T (H/F,b,0) = 0, and ν(b,D,Op) = ζR,T (H/F,b,0).

We now give two technical definitions which are necessary for the definition of Dasgupta’s
explicit formula and recall a useful lemma which is used repeatedly in the proof of our later
results. We also generalise to working with V ⊆ E+ rather than with E+(f).

Definition 3.2.9. Let V ⊆ E+ be a finite index free subgroup of rank n − 1. We call a Shintani
set D a Colmez domain for V if D is a fundamental domain for the action of V on Rn

+. That
is, when

Rn
+ = ⋃

ϵ∈V
ϵD (disjoint union).

We note that in the definition of a Colmez domain we allow ourselves to work with V = E+(f).
Thus the definition includes Shintani domains.

Proposition 3.2.10. Let V ⊆ E+ be a finite index free subgroup of rank n− 1. Let D and D′ be
Colmez domains for V . We may write D and D′ as finite disjoint unions of the same number of
simplicial cones

D =
d

⋃
i=1
Ci, D′ =

d

⋃
i=1
C ′i, (3.4)

with C ′i = ϵiCi for some ϵi ∈ V , i = 1, . . . , d.

Proof. [8, Proposition 3.15] proves this result when V = E+(f). The proof of this proposition is
analogous.

A decomposition as in (3.4) is called a simultaneous decomposition of the Colmez domains
(D,D′).

Definition 3.2.11. Let (D,D′) be a pair of Colmez domains. A set T is good for the pair
(D,D′) if there is a simultaneous decomposition as in (3.4) such that for each cone Ci, there
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are at least two primes in T that are good for Ci, or there is one prime η ∈ T that is good for Ci

such that Nη ≥ n + 2.

Definition 3.2.12. Let D be a Colmez domain. If β ∈ F ∗ is totally positive, then T is β-good
for D if T is good for the pair (D,β−1D).

The following lemma is used throughout the remainder of this thesis.

Lemma 3.2.13 (Lemma 3.20, [8]). Let D be a Shintani set and U a compact open subset of
Op. Let b be a fractional ideal of F , and let β ∈ F ∗ be totally positive so that β ≡ 1 (mod f) and
ordp(β) ≥ 0. Suppose that b and β are relatively prime to R and that b is also relatively prime
to T . Let q = (β)p−ordp(β). Then

ζR,T (bq,D,U,0) = ζR,T (b, βD,βU,0).

We end this section with a lemma of Colmez which allows us to give an explicit Colmez
domain. Let α be, up to a sign, one of the standard basis vectors of Rn then we note that its
ray (αR+) is preserved by the action of Rn

+ . We define Cα(v1, . . . , vr) to be the union of the cone
C(v1, . . . , vr) with the boundary cones that are brought into the interior of the cone by a small
perturbation by α, i.e., the set whose characteristic function is given by

1Cα(v1,...,vr)(x) = lim
h→0+

1C(v1,...,vr)(x + hα). (3.5)

Throughout this paper, we use the notation

[x1 ∣ . . . ∣ xn−1] = (1, x1, x1x2, . . . , x1 . . . xn−1).

Let x1, . . . , xn ∈ F . We define the sign map δ ∶ Fn → {−1,0,1} such that

δ(x1, . . . , xn) = sign(det(ω(x1, . . . , xn))), (3.6)

where ω(x1, . . . , xn) denotes the n×n matrix whose columns are the images of the xi in Rn. Note
that we have the convention that sign(0) = 0. The lemma below is equivalent to [6, Lemma 2.2],
rather then using equivalence classes, we write the lemma in terms of the perturbation defined
above.

Lemma 3.2.14 (Lemma 2.2, [6]). Let α be, up to a sign, one of the standard basis vectors of
Rn. Let ε1, . . . , εn−1 ∈ E+ such that V = ⟨ε1, . . . , εn−1⟩ ⊂ E+ is a free subgroup of rank n − 1 and
finite index. Suppose that for all τ ∈ Sn−1 we have

δ([ετ(1) ∣ . . . ∣ ετ(n−1)]) = sign(τ).
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Then the Shintani set
D = ⋃

τ∈Sn−1

Cα([ετ(1) ∣ . . . ∣ ετ(n−1)]),

is a Colmez domain for V .

3.3 Continuous maps

For topological spaces X and Y , let C(X,Y ) denote the set of continuous maps X → Y . If R is a
topological ring we let Cc(X,R) denote the subset of C(X,R) of continuous maps with compact
support. If we consider Y (resp. R) with the discrete topology then we shall also write C0(X,Y )

(resp. C0
c (X,R)) instead of C(X,Y ) (resp. Cc(X,Y )).

Assume now that X is a totally disconnected topological Hausdorff space and A a locally
profinite group. We define subgroups C◇(X,A) ⊆ C(X,A) and C◇c (X,A) ⊆ Cc(X,A) by

C◇(X,A) = C0(X,A) +∑
K

C(X,K),

C◇c (X,A) = C
0
c (X,A) +∑

K

Cc(X,K),

where the sums are taken over all compact open subgroups K of A. So C◇c (X,A) is the sub-
group of Cc(X,A) generated by locally constant maps with compact support X → A and by
continuous maps with compact support X → K ⊆ A for some compact open subgroup K ⊆ A.
Similarly, C◇(X,A) is the subgroup of C(X,A) generated by locally constant maps X → A and
by continuous maps X →K ⊆ A for some compact open K.

The following notation is used in the formulation of u2. Given two arbitary finite, disjoint
sets Σ1, Σ2 of places of F and a locally profinite group A, we put

C?(Σ1,A)
Σ2 = C?((AΣ2

F )
∗/UΣ1∪Σ2 ,A).

where ? ∈ {◇, c,0}. We note that in the notation above, ? is displayed as a subscript. However,
when ? ∈ {◇,0}, this is viewed as superscript. We use this notation below as well. For a set of
places S, we denote by US the subgroup of A∗F of ideles (xv)v with local components xv = 1 if
v ∈ S and xv > 0 if v ∣ ∞, and xv is a local unit if v ∉ S ∪R∞.

We also introduce the following generalisation of the above notation, for S1, S2 disjoint sets
of places of F

C?(S1, S2,A) = C?( ∏
p∈S1

Fp × (AS1

F )
∗/US1∪S2 ,A).

If S3 is an additional disjoint set of places, we also define

C?(S1, S2,A)
S3 = C?( ∏

p∈S1

Fp × (AS1∪S3

F )∗/US1∪S2∪S3 ,A).
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3.4 Measures

Note that the construction in this section is a generalisation of that given in §2 of [13]. We wish
to attach to a homomorphism µ ∶ Cc(X,Z) → Z[G] an A ⊗ Z[G]-valued measure on X for any
abelian group A and finite abelian group G. We write the group operation of A multiplicatively.
Firstly, by tensoring µ with the identity we obtain a homomorphism

µA ∶ Cc(X,Z) ⊗ (A⊗Z[G]) ≅ C0
c (X,A⊗Z[G]) → A⊗Z[G].

To write this map explicitly, we first note that the isomorphism (and its inverse) Cc(X,Z)⊗(A⊗
Z[G]) ≅ C0

c (X,A⊗Z[G]) are given by

f ⊗ α ↦ α ⋅ f with inverse g ↦ ∑
α∈A⊗Z[G]

(α⊗ gα),

where gα(x) = 1 if g(x) = α and 0 otherwise. Here we have f ∈ Cc(X,Z), α ∈ A ⊗ Z[G] and
g ∈ C0

c (X,A⊗Z[G]). Thus, we define the homomorphism µA as

µA(g) = ∑
α∈A⊗Z[G]

(∑
σ∈G
∑
τ∈G

αµσ(gα)
τ ⊗ στ) ,

where α = ∑τ∈G ατ⊗τ , µ(gα) = ∑σ∈G µσ(gα)[σ] and gα is as defined before. Thus, if A is profinite
we can consider the homomorphism

µA ∶= lim←Ð
K

µA/K ∶ lim←Ð
K

Cc(X,A/K ⊗Z[G]) → lim
←Ð
K

A/K ⊗Z[G] = A⊗Z[G],

where K ranges over the open subgroups of A. Since Cc(X,A⊗Z[G]) ⊆ lim←ÐK
Cc(X,A/K⊗Z[G]),

we see that µA extends canonically to a homomorphism Cc(X,A ⊗ Z[G]) → A ⊗ Z[G] (which
we denote by µA as well). For a general A (not necessarily profinite), we have seen that µ
induces a homomorphism Cc(X,K⊗Z[G]) →K⊗Z[G] for every compact open subgroup K ⊂ A.
Combining these maps, we see that µ induces a canonical homomorphism µA ∶ C

◇
c (X,A⊗Z[G]) →

A⊗Z[G]. Define the set of A⊗Z[G]-valued measures on X to be

Meas(X,A⊗Z[G]) = Hom(C◇c (X,A⊗Z[G]),A⊗Z[G]).

The map µ↦ µA defines a homomorphism Hom(Cc(X,Z[G]),Z) →Meas(X,A⊗Z[G]).
For the formulas of interest we will not consider quite this measure but two simpler measures.

The measure we constructed above is a generalisation that includes each of the specialisations
we require.

For u2, we have µ ∈ Hom(Cc(X,Z),Z) rather than in Hom(Cc(X,Z),Z[G]). We include

27



Hom(Cc(X,Z),Z) into Hom(Cc(X,Z),Z[G]) under the map

ι1 ∶ Hom(Cc(X,Z),Z) → Hom(Cc(X,Z),Z[G]),

such that for f ∈ Cc(X,Z)
ι1(µ)(f) = µ(f)[id].

For u3, we want to have a measure on A rather than on A⊗Z[G]. We include C◇c (X,A) into
C◇c (X,A⊗Z[G]) via the map

ι2 ∶ C
◇
c (X,A) → C◇c (X,A⊗Z[G])

such that for x ∈X
ι2(f)(x) = f(x) ⊗ 1.

3.5 Eisenstein cocycles

We now define the Eisenstein cocycle. In our study of the cohomological constructions for u2
and u3 we require a few variations on the Eisenstein cocycle. We define these variations at the
end of this section.

Let OF,Sp denote the ring of Sp integers of F . Recall that Sp is the set of primes of F above
p that split completely in H. Note that Sp ≠ ∅ since p ∈ Sp. For any fractional ideal b ⊂ F
relatively prime to S, we let bSp = b⊗OF OF,Sp denote the OF,Sp -module generated by b. Let

U ⊂ FSp
∶= ∏

q∈Sp

Fq

be a compact open subset. Let D be a Shintani set. For s ∈ C with Re(s) > 1, we define the
Shintani L-function

LR(D,b, U, s) = (Nb)−s ∑
ξ∈D∩b−1Sp

, ξ∈U
(ξ,R)=1

recH/F ((ξ))−1

Nξs
∈ C[G]. (3.7)

Here recH/F denotes the Artin reciprocity map for the extension H/F . It follows from work of
Shintani, in [19], that the L-function in (3.7) has a meromorphic continuation to C. Furthermore,
after fixing D,b and s, the values LR(D,b, U, s) form a distribution on FSp in the sense that, for
disjoint compact open sets U1, U2 ⊂ FSp , we have

LR(D,b, U1 ∪U2, s) = LR(D,b, U1, s) +LR(D,b, U2, s).

Let λ be a prime of F such that Nλ = l for a prime number l ∈ Z and l ≥ n + 2. We assume
that no primes in S have residue characteristic equal to l. We then define the smoothed Shintani
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L-function

LR,λ(D,b, U, s) ∶= LR(D,bλ
−1, U, s) − recH/F (λ)−1l1−sLR(D,b, U, s).

It follows from the work in [5, §4.4] that the following proposition holds.

Proposition 3.5.1. For a compact open subset U ⊂ FSp ,

LR,λ(D,b, U,0) ∈ Z[G].

Let F ∗+ denote the group of totally positive elements of F . Let ESp,+ denote the group of
totally positive units in OF,Sp which we view as a subgroup of F ∗+ . Let x1, . . . , xn ∈ F ∗+ . We recall
the definition of Ce1(x1, . . . , xn) from (3.5) and the definition of δ(x1, . . . , xn) from (3.6). The
following proposition follows directly from [5, Theorem 1.6].

Proposition 3.5.2. Let x1, . . . , xn ∈ ESp,+. For a compact open subset U ⊂ FSp , let

µb,λ(x1, . . . , xn)(U) ∶= δ(x1, . . . , xn)LR,λ(Ce1(x1, . . . , xn),b, U,0).

Then µb,λ is an ESp,+-invariant homogeneous (n − 1)-cocycle yielding a class

κb,λ ∶= [µb,λ] ∈H
n−1(ESp,+,Hom(Cc(FSp ,Z),Z[G])).

Remark 3.5.3. µb,λ(x1, . . . , xn) is viewed as an element of Hom(Cc(FSp ,Z),Z[G]) via the
following canonical integration pairing

(f, µ) ↦ ∫
FR

f(t)dµ(t) ∶= lim
∣∣V∣∣→0

∑
V ∈V

f(tV )µ(V )

where the limit is over increasingly finer covers V of the support of f by compact open subgroups
V ⊆ FSp and tV ∈ V is any element of V .

We define the Eisenstein cocycle associated to λ by

κλ =
h

∑
i=1

recH/F (bi)−1κbi,λ ∈H
n−1(ESp,+,Hom(Cc(FSp ,Z),Z[G])).

Here {b1, . . . ,bh} is a set of integral ideals representing the narrow class group of OF,Sp , i.e., the
group of fractional ideals of OF,Sp modulo the group of fractional principal ideals generated by
totally positive elements of F .

This construction is adapted from the construction of Dasgupta–Spieß given in §2 of [14].
We adapt their construction simply by replacing χ with rec−1H/F . Thus our construction can be
specialised to theirs by applying χ−1. For more details on this construction, see §2 of [14]. The
reason for using rec−1H/F rather than recH/F is to make our formulation of u3 consistent with up,
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u1 and u2. We expand further on this at the start of §6.1. We now give a variation on this
Eisenstein cocycle.

Let E+(f)p denote the group of p-units of F which are congruent to 1 (mod f). We note that
E+(f)p is free of rank n. For x1, . . . , xn ∈ E+(f)p, a fractional ideal b coprime to S and l, and
compact open U ⊂ Fp, we put

νpb,λ(x1, . . . , xn)(U) ∶= δ(x1, . . . , xn)ζR,λ(b,Ce1(x1, . . . , xn), U,0),

where δ is defined as in (3.6). We recall the definition of the Shintani zeta function from (3.2)
and the Shintani set Ce1(x1, . . . , xn) from (3.5). Then, νpb,λ is a homogeneous (n− 1)-cocycle on
E+(f)p with values in the space of Z-distributions on Fp. This follows from Theorem 2.6 of [5].
Hence, we define a class

ωp
f,b,λ ∶= [ν

p
b,λ] ∈H

n−1(E+(f)p,Hom(Cc(Fp,Z),Z)).

Here the νpb,λ is being viewed as an element of Hom(Cc(Fp,Z),Z) via the integration pairing
from Remark 3.5.3. We also consider

ωp
f,λ = ∑

[b]∈Gf/⟨p⟩
recH/F (b)−1ω

p
f,b,λ ∈H

n−1(E+(f)p,Hom(Cc(Fp,Z),Z[G])),

where the sum ranges over a system of representatives of Gf/⟨p⟩. This construction is adapted
from the construction of ωp

f,λ in §3.3 of [14].
We now consider the final variant of the Eisenstein cocycle we require. We do not give

the definition in full generality since the construction is much longer. The ideas required are
all similar to those of the constructions before. We end this section with a proposition which
contains the information, in the cases we require, for this construction for our later applications.

We write W for F considered as a Q-vector space, and W∞ ∶=W ⊗Q R. As before, let λ be a
prime of F such that Nλ = l for a prime number l ∈ Z and l ≥ n + 2. We assume that no primes
in S have residue characteristic equal to l. We also let Wl =W ⊗Q Ql.

We define ϕλ ∈ Cc(Wl,Z) by ϕλ = 1OF⊗Zl
− l1λ⊗Zl

, i.e.,

ϕλ(v) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1 if v ∈ (OF ⊗Zl) − (λ⊗Zl),

1 − l if v ∈ λ⊗Zl,

0 if v ∈Wl − (OF ⊗Zl).

(3.8)

By fixing an ordering of the infinite places, v ∈ R∞, we fix an identification W∞ ≅ Rn such
that x ⋅ ev = σv(x)ev for all v ∈ R∞ and x ∈ F ∗. Here we write ev for the standard basis element
of Rn which has value 1 at the v component. From now on we fix a choice v ∈ R∞ such that

the image of basis element ẽv ∈ Rn is e1. (3.9)
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We define F l,v to be F viewed as a (diagonally embedded) subset of ASl∪{v}
F . The following

proposition is a special case of the much more general construction given in [13]. In order to give
this we first introduce some notation. If D is a Shintani set and Φ ∈ Cc(WẐ,Z) then we define
the Dirichlet series

L(D,Φ; s) = ∑
v∈W∩D

Φ(v)N(v)−s. (3.10)

It is known to converge for Re(s) > 1 and extend to the whole complex plane except for possibly
a simple pole at s = 0. Moreover, if D and Φ are as given in the following proposition then
L(D,Φ; s) is holomorphic. We remark that the set S does not appear in the definition of this
Dirichlet series. In the following proposition we will decorate the L-function with λ since the
choice of Φ incorporates λ into it.

Proposition 3.5.4. Let ω1, . . . , ωn ∈ F
l,v. For a map ϕ ∈ Cc(WẐλ ,Z), let

Eis0F,λ(ω1, . . . , ωn)(ϕ) = δ(ω1, . . . , ωn)Lλ(Ce1(ω1, . . . , ωn),Φ;0),

where Φ = ϕ⊗ ϕλ. Then, Eis0F,λ is an F l,v-homogeneous (n − 1)-cocycle yielding a class

Eis0F,λ ∈H
n−1(F l,v,Hom(Cc(WẐλ ,Z),Z)(δ)).

Proof. This proposition follows the combination of [13, Definiton 4.5] and [13, Lemma 5.1].

In the above proposition we have the following notation. For a subgroup H ⊆ F l,v and an
H-module M , let M(δ) = M ⊗ Z(δ). Thus, M(δ) is the group M with H-action given by
x ⋅m = δ(x)xm for x ∈H and m ∈M .

3.6 Colmez subgroups

In the definitions for the Eisenstein cocycle and its variants, the sign map δ appears. Recall that
we define E+ to be the group of totally positive units of F . For the explicit calculations we later
perform it is convenient if we can work with a subgroup V ⊆ E+ free of rank n − 1 such that
V = ⟨g1, . . . , gn−1⟩ and that we can choose gn = π such that

• ⟨g1, . . . , gn−1⟩ ⊆ E+(f) is a finite index subgroup free of rank n − 1, and

• for τ ∈ Sn we have δ([gτ(1) ∣ . . . ∣ gτ(n−1)]) = sign(τ).

We refer to such subgroups as Colmez subgroups. We define

Log ∶ Rn
+ → Rn, (x1, . . . , xn) ↦ (log(x1), . . . , log(xn)).

We remark that the map Log is the Dirichlet regulator on E+. We defined the full Dirichlet
regulator after Theorem 2.1.2 in §2.1. For z ∈ Rn we write z = (z1, . . . , zn). Let H ⊂ Rn be the
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hyperplane defined by Tr(z) = 0, where Tr(z) = ∑n
i=1 zi. Then, Dirichlet proved that, Log(E+) is

a lattice in H. If z ∈ Rn
+ and Log(z) ∈ Rn is not an element of H, then we define the projection

zH = (z1 . . . zn)
− 1

n ⋅ z. (3.11)

We have that Log(zH) ∈ H. Note that z and zH lie on the same ray in Rn
+ . For any M > 0 and

i = 0,1, . . . , n − 1, write li(M) for the element of H which has value M in the (i + 1) place and
−M/2 in the other places. We endow Rn−1 with the sup-norm. We denote by B(x, r) the ball
centred at x of radius r.

The following lemma, which builds on Lemma 2.1 of [6], allows us to find a collection of
possible subsets V = ⟨ε1, . . . , εn−1⟩ such that we get a nice sign property that allows us to explicitly
calculate the Eisenstein cocycle more easily.

Lemma 3.6.1. There exists R1 > 0 such that for all R > R1, M >K1(R) (where K1(R) is some
constant we define which depends only on R). We have the following: For i = 1, . . . , n − 1 let
gi ∈ E+ and gn = gπ ∈ πHE+ such that Log(gi) ∈ B(li(M),R) and Log(gπ) ∈ B(l0(M),R). Then

• ⟨g1, . . . , gn−1⟩ ⊆ E+ is a finite index subgroup, and

• For τ ∈ Sn we have δ([gτ(1) ∣ . . . ∣ gτ(n−1)]) = sign(τ).

Proof. This proof largely follows the ideas of Colmez in his proof of Lemma 2.1 in [6]. First, note
that both Log(E+) and Log(πHE+) are lattices inside H. There exists a constant R1 ∶= R(E+, π)

such that for all M > 0 and any r > R(E+, π), there exist g1, . . . , gn−1 ∈ E+ and gπ ∈ πHE+ such
that Log(gi) ∈ B(li(M), r) for i = 1, . . . , n − 1 and Log(gπ) ∈ B(l0(M), r). The existence of R1

follows from Dirichlet’s unit theorem and, in particular, the non-vanishing of the regulator of a
number field. Since the li(M) form a basis of H, the Log(gi) form a free family of finite index
in Log(E+). This is only if M is large enough relative to r, say M > k(r).

Now take M satisfying

i) M ≥ 2(n − 1)4r,

ii) M > (n − 1)2 log(n!),

iii) M > k(r).

For simplicity, let K1(r) = max(2(n − 1)4r, (n − 1)2 log(n!), k(r)) so that we only require M >

K1(r).
Let ∆ = det([g1 ∣ . . . ∣ gn−1]). Put Ei = exp(M(1−

i−2
n−1)) and Fi = exp(−M(

i−1
n−1)). Hence, the
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matrix given by [g1 ∣ . . . ∣ gn−1] is written

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 β1,2F2 β1,3F3 . . . β1,nFn

1 β2,2E2 β2,3E3 . . . β2,nEn

1 β3,2F2 β3,3E3 . . . β3,nEn

1 β4,2F2 β4,3F3 . . . β3,nEn

. . .

1 βn,2F2 βn,3F3 . . . βn,nEn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where by i),
e

−M
2(n−1)3 < βi,j < e

M
2(n−1)3 .

Expand ∆ and isolate the diagonal term; using the bounds we defined previously we obtain

∣∆ − e
nM
2

n

∏
i=2
βi,i ∣≤ (n! − 1)e

M
2(n−1)2 eM(

n
2 −

n
n−1 )

and therefore
∆ ≥ e

nM
2 (e

−M
2(n−1)2 − (n! − 1)e

( M
2(n−1)2

−nM
n−1 )) > 0

according to ii). We show the other required sign properties in the same way.

After fixing a choice of generators E+ = ⟨ε1, . . . , εn−1⟩. Any element ε ∈ E+ can then be written
uniquely as

ε =
n−1
∏
i=1

εai

i .

We then define, for i = 1, . . . , n−1, the map ιi ∶ E+ → E+ such that if ε is as above then ιi(ε) = εai

i .

Lemma 3.6.2. There exists

1. Rf ,Rg > R1,

2. Mf >K1(Rf) and

3. Mg >K1(Rg),

such that we have the following. Firstly, for i = 1, . . . , n − 1 we can choose fi, gi ∈ E+ such that
Log(fi) ∈ B(li(Mf),R) and Log(gi) ∈ B(li(Mg),R). Furthermore, after writing

Vf = ⟨f1, . . . fn−1⟩ and Vg = ⟨g1, . . . gn−1⟩

we have that [E+ ∶ Vf ] is coprime to [E+ ∶ Vg].

Proof of Lemma 3.6.2. We firstly choose the fi ∈ E+ via Lemma 3.6.1 and let Vf = ⟨f1, . . . fn−1⟩.
I.e., we have Log(fi) ∈ B(li(Mf),Rf) for some Rf > R1 and Mf >K1(Rf). We can then choose
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generators ⟨δ1, . . . , δn−1⟩ such that for i = 1, . . . , n − 1 we have fi = δai

i with ai > 0. We note here
that [E+ ∶ Vf ] = ∏n−1

i=1 ai

For ease of notation, let a = ∏n−1
i=1 ai. For i = 1, . . . , n − 1 there exists Rg,i > 0 and Mg,i > 0

such that for all M > Mg,i there exists α ∈ E+ with Log(α) ∈ B(li(M),Rg,i) and, the positive
integer ιi(α) is coprime to a. This existence follows from the properties of a lattice. Here ιi is
the map that gives the δi component.

Now let Rg = max(Rg,1, . . . ,Rg,n−1) and choose any Mg > K1(Rg). Then we can choose, for
i = 1, . . . , n − 1, units gi ∈ E+ with Log(gi) ∈ B(li(Mg),Rg) and, the positive integer ιi(gi) is
coprime to a. Let Vg = ⟨g1, . . . , gn−1⟩, the result follows.

3.7 1-cocycles attached to homomorphisms

Let g ∶ F ∗p → A be a continuous homomorphism where A is a locally profinite group. We want
to define a cohomology class cg ∈ H1(F ∗p ,Cc(Fp,A)) attached to g. We define an F ∗p -action on
Cc(F

∗
p ,Z) by (xf)(y) = f(x−1y). The following definition is due to Spieß and first appears in

Lemma 2.11 of [20]. This definition is crucial in making the constructions of Dasgupta–Spieß’s
cohomological formulas work. We also remark that the definition is unusual in that it appears
as though the cocycle zg should be a coboundary. However, it may not be a coboundary since g
does not necessarily extend to a continuous function on Fp.

Definition 3.7.1. Let g ∶ F ∗p → A be a continuous homomorphism, where A is a locally profinite
group. Let f ∈ Cc(Fp,Z) such that f(0) = 1. We define cg to be the class of the cocycle zf,g ∶
F ∗p → Cc(Fp,A) where zf,g(x) = “(1 − x)(g ⋅ f)”, or more precisely

zf,g(x)(y) = (xf)(y) ⋅ g(x) + ((f − xf) ⋅ g)(y) (3.12)

for x ∈ F ∗p and y ∈ Fp.

The second term in (3.12) is allowed to be evaluated at 0 ∈ Fp since we can extend continuously
the function from F ∗p to Fp as

(f − xf)(0) = 0.

Definition 3.7.1 defines an element cg ∶= [zf,g] ∈ H1(F ∗p ,Cc(Fp,K)) for any continuous ho-
momorphism g ∶ F ∗p → K and any f ∈ Cc(Fp,Z) with f(0) = 1. We note that the class is
independent of the choice of f ∈ Cc(Fp,Z) with f(0) = 1. In particular, we can consider the class
cid ∈H

1(F ∗p ,Cc(Fp, Fp)).
For the results we want to show, Definition 3.7.1 is all that we require. For more information

on these objects, see §3.2 of [13] and §3.1 of [14].
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Chapter 4

The Multiplicative Integral Formula
(u1)

In this chapter we will consider the explicit p-adic formula constructed by Dasgupta in [8]. We
begin by reviewing the defintion of this constructed unit. This formula makes use of the Shintani
domains which we gave the definition of in §3.2. Recall that Shintani domains are a fundamental
domain for the action of E+(f) on Rn

+ . In the second part of this chapter we will let V ⊂ E+(f)
be a free, finite index subgroup, of rank n − 1. Recall n is the degree of F over Q. We note that
there is no torsion in the group E+ since it contains only the totally positive units of the totally
real field F . We then consider the effect on Dasgupta’s formula when we move to considering
a fundamental domain for the action of V (a Colmez domain) on Rn

+ in place of the Shintani
domain. We refer to this process as “transferring to a subgroup”. Working with the formulas,
after transferring to a subgroup V , will be crucial when we compare the formulas.

4.1 The definition of u1

Definition 4.1.1. Let I be an abelian topological group that may be written as an inverse limit
of discrete groups

I = lim
←Ð

Iα.

Let ψα ∶ I → Iα denote the projection map. Denote the group operation on I multiplicatively. For
each i ∈ Iα, we define

Ui = {x ∈ I ∣ ψα(x) = i}.

Note that Ui is an open subset of I. Suppose that G is a compact open subset of a quotient of
A∗F . Let f ∶ G → I be a continuous map, and let µ be a Z-valued measure of G. We define the
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multiplicative integral, written with a cross through the integration sign, by

×∫
G
f(x)dµ(x) = lim

←Ð
∏
i∈Iα

iµ(f
−1(Ui)) ∈ I.

We remark that this definition of a measure is consistent with the definition we give in §3.4.
As before, let λ be a prime of F such that Nλ = l for a prime number l ∈ Z and l ≥ n + 2. We
assume that no primes in S have residue characteristic equal to l. The first definition we make
towards the formula is that of an element of E+(f). We refer to the element constructed here as
the error term of u1. After the definition, we check that it is well defined.

Definition 4.1.2. Let D be a Shintani domain, and assume that λ is π-good for D. Define the
error term

ϵ(b,D, π) ∶= ∏
ϵ∈E+(f)

ϵν(b,ϵD∩π
−1D,Op). (4.1)

By Lemma 3.2.2, only finitely many of the exponents in (4.1) are nonzero. Corollary 3.2.7
and the assumption that λ is π-good for D imply that the exponents are integers. We recall
from (3.3) that the measure is defined as

ν(b, ϵD∩ π−1D,Op) = ζR,λ(b, ϵD∩ π
−1D,Op,0).

We are now ready to write down Dasgupta’s conjectural formula. We note that for any Shintani
domain D we can always choose a prime λ that is π-good for D. We note that all but a finite
number of primes will satisfy this property. Henceforth, we shall assume that we are in this case.
We now give the main definition of this section.

Definition 4.1.3. Let D be a Shintani domain, and assume that λ is π-good for D. Define

up,λ(b,D) ∶= ϵ(b,D, π)π
ζR,λ(H/F,b,0)×∫

O
x dν(b,D, x) ∈ F ∗p .

As our notation suggests, we have the following proposition.

Proposition 4.1.4 (Proposition 3.19, [8]). The element up,λ(b,D) does not depend on the choice
of generator π of pe.

Dasgupta made the following conjecture concerning his construction. For this conjecture we
recall the definition of λ from (3.1).

Conjecture 4.1.5 (Conjecture 3.21, [8]). Let e be the order of p in Gf, and suppose that pe = (π)
with π totally positive and π ≡ 1 (mod f). Let D be a Shintani domain, and let λ be π-good for
D. Let b be a fractional ideal of F relatively prime to S and λ. We have the following.

1. The element up,λ(b,D) ∈ F ∗p depends only on the class of b ∈ Gf/⟨p⟩ and no other choices,
including the choice of D, and hence may be denoted up,λ(σb), where σb ∈ Gal(H/F ).
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2. The element up,λ(σb) lies in Up, and up,λ(σb) ≡ 1 (mod λ).

3. Shimura reciprocity law: For any fractional ideal a of F prime to S and to λ, we have

up,λ(σab) = up,λ(σb)
σa .

As we noted in §2.3, this conjecture has been proved up to a root of unity, under some mild
assumptions, by Theorem 2.3.6. We want to define the formula over F ∗p ⊗ Z[G] to match with
the cohomological constructions. We thus make the following definition.

Definition 4.1.6. We define

u1 = ∑
b∈Gf/⟨p⟩

up,λ(b,D) ⊗ σ
−1
b ∈ F

∗
p ⊗Z[G].

4.2 Transferring to a subgroup

Let V be a finite index subgroup of E+(f), free of rank n − 1. Recall that π is totally positive,
congruent 1 modulo f and such that (π) = pe where e is the order of p in Gf. Let D′V be a
Shintani set which is a fundamental domain for the action of V on Rn

+ . As before, we shall refer
to such Shintani sets as Colmez domains.

We define

u1(V,σ) = up,λ(b,D
′
V ) ∶= ∏

ϵ∈V
ϵζR,λ(b,ϵD′V ∩π

−1D′V ,Op,0)πζR,λ(b,D′V ,Op,0)×∫
O
x dν(b,D′V , x), (4.2)

and write u1(V ) = ∑σ∈G u1(V,σ)⊗σ
−1. At this point we have not shown that this definition makes

sense. In fact, it does not make sense for all possible fundamental domains. In Proposition 4.2.2
we show that for the particular choice of domain we require, the definition above is sensible. We
note that u1(V,σ) depends on the choice of DV used, we consider this choice in the comparison
result below.

Proposition 4.2.1. Let K and K′ be two Colmez domains for V , and λ a prime of F such that
λ is π-good for K and K′. If λ is also good for (K,K′), then up,λ(b,K) = up,λ(b,K

′).

Proof. Theorem 5.3 of [8] proves this result when V = E+(f). The proof of this proposition is
analogous.

Let V ⊂ E+(f) be a finite index subgroup, free of rank n− 1. The following proposition shows
the relation between u1(σ) and u1(V,σ).

Proposition 4.2.2. Let D be a Shintani domain for E+(f). Let V be a free, finite index, subgroup
of E+(f) of rank n − 1, such that E+(f)/V ≅ Z/b1 × ⋅ ⋅ ⋅ × Z/bn−1 with b1, . . . , bn−1 > M , where
M =M(π, g1, . . . , gn−1) is some constant that depends on g1, . . . , gn−1 and π (up to multiplication
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by an element of E+(f) which we define later). Here, we have chosen g1, . . . , gn−1 to be a Z-basis
for E+(f) such that gb11 , . . . , g

bn−1
n−1 is a Z-basis for V . We now define

DV ∶=
b1−1
⋃
j1=0
⋅ ⋅ ⋅

bn−1−1
⋃

jn−1=0
gj11 . . . gjn−1n−1 D.

Then,
up,λ(b,DV ) = up,λ(b,D)

[E+(f)∶V ].

Remark 4.2.3. The proof of Proposition 4.2.2 builds on the work of Tsosie and we follow the
strategy in his proof of Proposition 2.1.4 in [24]. We are required to alter the proof as we find
a counterexample to the statement of Lemma 2.1.3 in [24], which is used in his proof. In the
appendix we give this counterexample explicitly. It is possible to prove Proposition 4.2.2 without
our additional assumption that b1, . . . , bn−1 > M . However, the proof becomes lengthier. Since
our strategy is to make V small enough to satisfy other properties, we do not lose anything by
including this simplifying assumption.

Proof of Proposition 4.2.2. By a result of Colmez in §2 of [6] (p. 372), we have

[E+(f) ∶ V ]ζλ(b,D, U, s) = ζλ(b,DV , U, s).

This immediately implies that

π[E+(f)∶V ]ζR,λ(b,D,Op,0) = πζR,λ(b,DV ,Op,0)

and

(×∫
O
x dν(b,D, x))

[E+(f)∶V ]
= ×∫

O
x dν(b,DV , x).

It remains to show that

⎛

⎝
∏

ϵ∈E+(f)
ϵζR,λ(b,ϵD∩π−1D,Op,0)⎞

⎠

[E+(f)∶V ]

= ∏
ϵ∈V

ϵζR,λ(b,ϵDV ∩π−1DV ,Op,0).

We now consider π−1D. By multiplying π by an appropriate element of E+(f), we can assume

π−1D ⊂
α1

⋃
i1=0
⋅ ⋅ ⋅

αn−1

⋃
in−1=0

gi11 . . . gin−1n−1 D,

for some α1, . . . , αn−1 ∈ Z>1. If we further impose that g−11 . . . g−1n−1π
−1D is not fully contained in

the positive translates of D and, for each i, choosing the minimal αi, then the required element
of E+(f) is chosen uniquely. Since the formula is independent of the choice of π we are allowed
this assumption. Now, let M =M(π, g1, . . . , gn−1) = max(α1, . . . , αn−1). Since we have assumed
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bi >M , for each i = 1, . . . , n − 1, it is easy to see that

π−1DV ⊂
1

⋃
k1=0
⋅ ⋅ ⋅

1

⋃
kn−1=0

gk1b1
1 . . . gkn−1bn−1

n−1 DV .

For ease of notation, we have, for a Shintani set D, the notation ν(D) = ζR,λ(b,D,Op,0). We
now calculate

∏
ϵ∈V

ϵζR,λ(b,ϵDV ∩π−1DV ,Op,0) =
n−1
∏
i=1

gSi

i , where Si = bi
⎛

⎝

1

∑
kj=0

⎞

⎠
j≠i

ν(gbii (∏
j≠i
g
bjkj

j )DV ∩ π
−1DV ). (4.3)

Here, we have the notation

⎛

⎝

1

∑
kj=0

⎞

⎠
j≠i

=
1

∑
k1=0
⋅ ⋅ ⋅

1

∑
ki−1=0

1

∑
ki+1=0

⋅ ⋅ ⋅
1

∑
kn−1=0

.

To make the notation clearer, we note that

S1 = b1
1

∑
k2=0
⋅ ⋅ ⋅

1

∑
kn−1=0

ν(gb11 (
n−1
∏
j=2

g
bjkj

j )DV ∩ π
−1DV ).

Consider the power above g1 in (4.3). Substituting the domain DV for its definition as a union of
translates of D, on each side of the intersection, and expanding unions and inverting the elements
on the right-hand side of the intersection, we have

S1 = b1
⎛

⎝

1

∑
kj=0

⎞

⎠

n−1

j=2

⎛

⎝

bl−1
∑
cl=0

bl−1
∑
al=0

⎞

⎠

n−1

l=1

ν(gb1+c1−a1

1 (
n−1
∏
j=2

g
bjkj+cj−aj

j )D∩ π−1D).

Since 1 − bi ≤ ci − ai ≤ bi − 1, it is possible to rewrite our sums and deduce that the power above
g1 is equal to

S1 = b1
⎛

⎝

1

∑
kj=0

⎞

⎠

n−1

j=2

⎛

⎝

bl−1
∑

ml=1−bl

⎞

⎠

n−1

l=1

n−1
∏
l=1
(bl− ∣ml ∣)ν(g

b1+m1

1 (
n−1
∏
j=2

g
bjkj+mj

j )D∩ π−1D).

The terms in the sum are only non-zero when 0 ≤ b1 +m1 ≤ α1 and for j = 2, . . . , n − 1, when

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 ≤mj ≤ αj if kj = 0

0 ≤ bj +mj ≤ αj if kj = 1.

We now apply this to our sums, working term by term. For the m1 sum we shift the index of
the summand by b1. We now expand the k2 sum out. For the k2 = 1 part we shift the index of
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the m2 sum by b2. Thus, we see that the power above g1 in (4.3) is equal to

b1
α1

∑
m1=1

⎛

⎝

1

∑
kj=0

⎞

⎠

n−1

j=3

⎛

⎝

bl−1
∑

ml=1−bl

⎞

⎠

n−1

l=3

(m1

n−1
∏
l=3
(bl− ∣ml ∣))

(
α2

∑
m2=0
(b2 −m2) +

α2

∑
m2=1

m2)ν(g
m1

1 gm2

2 (
n−1
∏
j=2

g
bjkj+mj

j )D∩ π−1D).

Cancelling the m2 terms in the sums then gives that the power above g1 in (4.3) is in fact

b1b2
α1

∑
m1=1

α2

∑
m2=0

⎛

⎝

1

∑
kj=0

⎞

⎠

n−1

j=3

⎛

⎝

bl−1
∑

ml=1−bl

⎞

⎠

n−1

l=3

(m1

n−1
∏
l=3
(bl− ∣ml ∣))ν(g

m1

1 gm2

2 (
n−1
∏
j=2

g
bjkj+mj

j )D∩ π−1D).

Continuing to work term by term for j = 3, . . . , n−1, and noting that [E+(f) ∶ V ] = b1 . . . bn−1, we
are able to deduce that

S1 = [E+(f) ∶ V ]
α1

∑
m1=1

α2

∑
m2=0

⋅ ⋅ ⋅
αn−1

∑
mn−1=0

m1ν(g
m1

1 . . . gmn−1

n−1 D∩ π−1D).

Similarly, the power above gi in (4.3), for i = 2, . . . , n − 1, is equal to

[E+(f) ∶ V ]
αi

∑
mi=1

⎛

⎝

αj

∑
mj=0

⎞

⎠
j≠i

miν(g
m1

1 . . . gmn−1

n−1 D∩ π−1D).

Thus,

∏
ϵ∈V

ϵζR,λ(b,ϵDV ∩π−1DV ,Op,0) = (
n−1
∏
i=1

g
S′i
i )

[E+(f)∶V ]

,

where

S′i =
αi

∑
mi=1

⎛

⎝

αj

∑
mj=0

⎞

⎠
j≠i

miν(g
m1

1 . . . gmn−1

n−1 D∩ π−1D).

It remains for us to consider the error term for up,λ(b,D). We calculate

∏
ϵ∈E+(f)

ϵζR,λ(b,ϵD∩π−1D,Op,0) =
α1

∏
m1=0

⋅ ⋅ ⋅
αn−1

∏
mn−1=0

(gm1

1 . . . gmn−1

n−1 )
ν(gm1

1 ...g
mn−1
n−1 D∩π−1D)

=
n−1
∏
i=1

g
S′i
i .

This completes the result.
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Chapter 5

The Cohomological Element u2

In this section we consider the cohomological formula conjectured by Dasgupta–Spieß in [13].
We begin by recalling the construction of this element. In the construction of this element we
require a map which we will denote by ∆∗. This map is fairly technical in its construction and
we require the explicit form of the map for our later work. We consider this map in detail in §5.2.
A key element of the formula is a generator of the homology group Hn(Ep,+,Z), denoted by ηp.
Let V ⊆ Ep,+ be a free, finite index subgroup, free of rank n. We then consider the effect on the
formula of Dasgupta–Spieß when replacing ηp with a generator of Hn(Vp,Z). As in Chapter 4,
we refer to this as “transferring to a subgroup”.

5.1 The definition of u2

Throughout this section we use the notation established in §3.3 for continuous maps. Let E+,p
denote the group of totally positive p-units of F . We first note that by Dirichlet’s unit theorem
the homology group Hn(Ep,+,Z) is free abelian of rank 1. Let ηp be a generator of Hn(Ep,+,Z).

Let F be a fundamental domain for the action of F ∗/Ep,+ on (Ap
F )
∗/Up, then 1F is an

element of H0(Ep,+,C(F,Z)) ≅ (C(F,Z))Ep,+ . Taking the cap product then gives 1F ∩ ηp ∈

Hn(Ep,+,C(F,Z)), since C(F,Z) ⊗Z ≅ C(F,Z). We now define ϑp ∈Hn(F
∗, Cc(∅,Z)p) as the

homology class corresponding to 1F∩ ηp under the isomorphism

Hn(Ep,+,C(F,Z)) ≅Hn(F
∗,Cc((Ap

F )
∗/Up,Z)), (5.1)

that is induced by Cc((Ap
F )
∗/Up,Z) ≅ IndF ∗

Ep,+
C(F,Z).

We now follow the construction of Dasgupta–Spieß as given in §6 of [13]. Cap and cup
products are a crucial element of Dasgupta–Spieß’s formula. For the definitions of these products,
refer to Chapter 6 of [1]. Since the local norm residue symbol for H/F at p is trivial we omit it
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from the reciprocity map, i.e., we consider the homomorphism

recp
H/F ∶ (A

p
F )
∗ → G↪ Z[G]∗, x = (xv)v≠p ↦ ∏

v≠p
recH/F,v(x).

Let R′ = R −R∞. We can view recp
H/F as an element of H0(F ∗, C(R′,Z[G])p) and denote by

ρH/F ∈Hn(F
∗, Cc(R

′,Z[G])p)

its image under the following map,

H0(F ∗, C◇(R′,Z[G])p) →Hn(F
∗, C◇c (R

′,Z[G])p), ψ ↦ ψ ∩ ϑp.

The cap product here is induced by the map

C◇(R′,Z[G])p × Cc(∅,Z)p → C◇c (R
′,Z[G])p, (ψ,ϕ) ↦ ψ ⋅ ϕ, (5.2)

where ψ ⋅ ϕ denotes the function xUR′∪p ↦ ψ(xUR′∪p)ϕ(xUp).
For a locally profinite abelian group A, the bilinear map ⊗ ∶ A × Z[G] → A⊗ Z[G] induces a

bilinear map

C◇c (Fp,A) × Cc(R
′,Z[G])p → C◇c (p,R

′,A⊗Z[G]), (f, g) ↦ f ⊗ g.

This then induces a cap-product pairing

H1(F ∗,C◇c (Fp,A)) ×Hn(F
∗, Cc(R

′,Z[G])p) →Hn−1(F
∗, C◇c (p,R

′,A⊗Z[G])).

In particular, we can consider

cid ∩ ρH/F ∈Hn−1(F
∗, C◇c (p,R

′, F ∗p ⊗Z[G])),

where cid is as defined in Definition 3.7.1. Now choose v ∈ R∞ such that (3.9) holds. Write
Rv
∞ = R∞ − {v}. Recall that we write W for F considered as a Q-vector space. In [13, §5.3],

Dasgupta–Spieß define the following map.

∆∗ ∶Hn−1(F
∗, C◇c (p,R

′, F ∗p ⊗Z[G])) →Hn−1(F
l,v,C◇c (WẐλ , F

∗
p ⊗Z[G])(δ)).

The explicit definition of ∆∗ is too long to give conveniently here. We study this map in the
next section. In §5.2, we show the results related to ∆∗ that we require by writing the map in a
completely explicit way.

Now the canonical pairing, where we recall the definition of µF ∗p
from §3.4,

Hom(Cc(WẐλ ,Z),Z) ×C◇c (WẐλ , F
∗
p ⊗Z[G]) → F ∗p ⊗Z[G], (µ, f) ↦ µF ∗p

(f),
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induces via cap-product a pairing

∩ ∶Hn−1(F l,v,Hom(Cc(WẐλ ,Z),Z)(δ)) ×Hn−1(F
l,v,C◇c (WẐλ , F

∗
p ⊗Z[G])(δ)) → F ∗p ⊗Z[G].

(5.3)
Recall the Eisenstein cocycle, Eis0F,λ ∈ H

n−1(F l,v,Hom(Cc(WẐλ ,Z),Z)(δ)), from Proposition
3.5.4. Applying (5.3) with the Eisenstein cocycle Eis0F = Eis0F,λ and ∆∗(cid ∩ ρH/F ), we obtain
an element u2 = uS,λ ∈ F ∗p ⊗Z[G] such that

u2 = uS,λ = ∑
σ∈G

u2(σ) ⊗ [σ
−1] = Eis0F ∩∆∗(cid ∩ ρH/F ). (5.4)

Dasgupta–Spieß then conjecture [13, Conjecture 6.1] that the element u2 is equal to the Brumer–
Stark unit, up. We end this section by stating the results that Dasgupta–Spieß have shown
concerning their cohomological construction.

Proposition 5.1.1 (Proposition 6.3, [13]). The formula u2 has the following properties.

a) For σ ∈ G, we have ordp(u2(σ)) = ζS,λ(σ,0).

b) Let L/F be an abelian extension with L ⊇ H and put g = Gal(L/F ). Assume that L/F is
unramified outside S and that p splits completely in L. Then we have

u2(σ) = ∏
τ∈g,τ ∣H=σ

u2(L/F, τ).

c) Let r be a nonarchimedean place of F with r ∉ S ∪ λ. Then we have

u2(S ∪ {τ}, σ) = u2(S,σ)u2(S,σrσ)
−1.

d) Assume that H has a real archimedean place w ∤ v. Then u2(σ) = 1 for all σ ∈ G.

e) Let L/F be a finite abelian extension of F containing H and unramified outside S. Then
we have

recp(u2(σ)) = ∏
τ∈Gal(L/F )
τ ∣H=σ−1

τ ζS,λ(K/F,τ−1,0).

5.2 The map ∆∗

In this section, we consider the map ∆∗. We begin by defining it in the case we require and
then give a series of propositions which allows us to calculate the map explicitly in the next
section. For more information and the more general construction we refer readers to §5.3 of
Dasgupta–Spieß’s paper [13].
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Throughout this section we let A = F ∗p ⊗ Z[G] to ease notation. We also note the following
definition which will be used throughout. For sets X1,X2 and a map ψ ∶X1 ×X2 → A,

Supp(X1,X2, ψ) ∶= {x1 ∈X1 ∣ ∃x2 ∈X2 with (x1, x2) ∈ supp(ψ)}, (5.5)

where supp(ψ) is the support of ψ. This set is the image of supp(ψ) under the projection
X1×X2 →X1. The following simple proposition is used repeatedly in this construction. Since we
require the explicit isomorphism given by this proposition, we include a proof of this proposition.

Proposition 5.2.1. Let X1,X2 be totally disconnected topological Hausdorff spaces, with X1

discrete. Let A be a locally profinite group. Then the map

Cc(X1,Z) ⊗Z C
◇
c (X2,A) → C◇c (X1 ×X2,A),

f ⊗ g ↦ ((x1, x2) ↦ f(x1) ⋅ g(x2))

is an isomorphism.

Proof. We calculate that the inverse map as follows. Let Y1 = Supp(X1,X2, ψ) be a subset of X1

defined in (5.5). We note that Y1 is finite since ψ has compact support. Then define the map

ψ ↦ ∑
y∈Y1

1y ⊗Z ψ(y, ⋅) ∈ Cc(X1,Z) ⊗Z C
◇
c (X2,A).

It is clear that this map is the inverse of the map in the statement of the proposition and this
completes the proof.

Corollary 5.2.2. Let S1, S2 be finite disjoint sets of finite places and let S3 ⊆ R∞ be a set of
infinite places. Then there exists an isomorphism,

C◇c (S1, S2,A) → C(F ∗S3
/US3 ,Z) ⊗ C◇c (S1, S2,A)

S3 . (5.6)

Proof. Let F ∗S3
= ∏v∈S3

F ∗v . Since we have

∏
p∈S1

Fp × (AS1

F )
∗/US1∪S2 =

⎛

⎝
∏
p∈S1

Fp × (AS1∪S3

F )∗/US1∪S2∪S3
⎞

⎠
× F ∗S3

/US3

and F ∗S3
/US3 is finite, we are able to apply Proposition 5.2.1 and this gives us that the map is

an isomorphism and also allows us to write the map explicitly. Let ψ ∈ C◇c (S1, S2,A) and write

Y1 = Supp(F ∗S3
/US3 , ∏

p∈S1

Fp × (AS1∪S3

F )∗/US1∪S2∪S3 , ψ).
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We note that Y1 is finite since ψ has compact support. Then the inverse map is

ψ ↦ ∑
y∈Y1

1y ⊗Z ψ(y, ⋅) ∈ C(F
∗
S3
/US3 ,Z) ⊗ C◇c (S1, S2,A)

S3 .

We now fix continuous homomorphisms δw ∶ F ∗w → {±1} = Z∗ for every w ∈ R∞ to be the sign
map. We also put FRv

∞
= ∏w∈Rv

∞

Fw and define

δRv
∞
∶ F ∗Rv

∞

→ {±1} such that (xw)w∈Rv
∞
↦ ∏

w∈Rv
∞

δw(xw).

We recall the following notation from the end of §3.5. For a subgroup H ⊆ F ∗Rv
∞

and an H-
module M , we define M(δRv

∞
) =M ⊗Z(δRv

∞
). Thus, M(δRv

∞
) is M but the H-action is given by

x ⋅m = δRv
∞
(x)xm for x ∈H and m ∈M . By tensoring the (F ∗Rv

∞

-equivariant) homomorphism

C(F ∗Rv
∞

/URv
∞
,Z) → Z(δRv

∞
), f ↦ ∑

x∈F ∗
Rv
∞

/URv
∞

δRv
∞
(x)f(x) (5.7)

with idC◇c ({p},R′,A)R
v
∞

we obtain, via Corollary 5.2.2, an (Ap
F )
∗-equivariant map

C◇c ({p},R
′,A) → C◇c ({p},R

′,A)R
v
∞(δRv

∞
). (5.8)

We now calculate this map explicitly.

Proposition 5.2.3. Let ψ ∈ C◇c ({p},R
′,A). The image of ψ under (5.8) is given by

∑
y∈Y1

δRv
∞
(y)ψ(y, ⋅),

where ψ(y, ⋅) ∈ C◇c ({p},R
′,A)R

v
∞ .

Proof. The result follows from Corollary 5.2.2 and (5.7).

Before giving the second map that we require we recall that we have defined the notation,
for S a finite set of primes, FS = (AS

F ×US) ∩ F
∗. We now consider the following proposition.

Proposition 5.2.4. We have

Hn−1(F
∗, C◇c ({p},R

′,A)R
v
∞(δRv

∞
)) ≅Hn−1(F

λ∪v, C◇c ({p},R
′,A)λ,∞(δ)), (5.9)

where δ is as defined in (3.6). Furthermore, if we write

Ψ = [g1 ∣ . . . ∣ gn−1] ⊗ ψ ∈Hn−1(F
∗, C◇c ({p},R

′,A)R
v
∞(δRv

∞
))
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then the image of Ψ under the isomorphism in (5.9) is

∑
f∈F ∗/Fλ∪v

f ⋅ [g1 ∣ . . . ∣ gn−1] ⊗ δv(fv)ψ(fλ∪v, ⋅),

where fλ∪v is the image of f in ∏w∈λ∪v F
∗
w and ψ(fλ∪v, ⋅) ∈ C

◇
c ({p},R

′,A)λ,∞(δ).

Proof. It is clear to see that

C◇c ({p},R
′,A)R

v
∞(δRv

∞
) ≅ Ind(A

Rv
∞
∪p

F
)∗

(Aλ∪p,∞
F

)∗
C◇c ({p},R

′,A)λ,∞(δ) ≅ Ind(AF )∗

(Av∪λ
F
)∗
C◇c ({p},R

′,A)λ,∞(δ).

Thus, by weak approximation, we have

C◇c ({p},R
′,A)R

v
∞(δRv

∞
) ≅ IndF ∗

Fλ∪v C
◇
c ({p},R

′,A)λ,∞(δ).

It follows that the required isomorphism holds. The explicit description of the map follows simply
by tracing through the definitions.

The last map we need to construct before giving the definition of ∆∗ is the (Aλ,∞
F )∗ -

equivariant map

∆λ
S′ ∶ C

◇
c ({p},R

′,A)λ,∞ → C◇c (A
λ,∞
F ,A) ≅ C◇c (WẐλ ,A), (5.10)

where we have the notation S′ = R′ ∪ {p} and note that Aλ,∞
F ≅ WẐλ . There exist canonical

homomorphisms

C◇c (Fp × ∏
q∈R′

F ∗q ,A) ⊗ Cc(∅,Z)S
′∪λ,∞ → C◇c ({p},R

′,A)λ,∞, (5.11)

C◇c (∏
q∈S′

Fq,A) ⊗Cc(AS′∪λ,∞
F ,Z) → C◇c (A

λ,∞
F ,A). (5.12)

By Proposition 5.2.1, the first map, (5.11), is an isomorphism. Let IS′∪λ denote the ring of
ideals of F which are coprime to S′ ∪ λ. Since (AS′∪λ,∞

F )∗/US′∪λ,∞ is isomorphic to IS′∪λ, the
ring C0

c (∅,Z)S
′∪λ,∞ can be identified with the group ring Z[IS′∪λ]. We define (5.10) as the

tensor product ∆λ
S′ = i⊗ I

S∪λ where i ∶ C◇c (Fp ×∏q∈R′ F
∗
q ,A) → C◇c (∏q∈S′ Fq,A) is the inclusion

map induced by extension by 0 (as defined in §3.1) and IS
′∪λ ∶ Z[IS′∪λ] → Cc(AS′∪λ,∞

F ,Z). Here
IS

′∪λ maps a fractional ideal a ∈ IS′∪λ to the characteristic function of âS
′∪λ = a(∏r∉S′∪λ Or)

which we denote by char(a(∏r∉S′∪λ Or)).

Proposition 5.2.5. If ψ ∈ C◇c ({p},R
′,A)λ,∞, then

∆λ
S′(ψ) = ∑

z∈Z
ψ(z, ⋅)! ⊙ char

⎛

⎝
∏

w finite
qordw(zw)
w ( ∏

r∉S′∪λ
Or)
⎞

⎠
∈ C◇c (A

λ,∞
F ,A),
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where Z = Supp((AS′∪λ,∞
F )∗/US′∪λ,∞, Fp ×∏q∈R′ F

∗
q , ψ) and we have the notation that for func-

tions f ∶ X1 → A and g ∶ X2 → Z, we have the function f ⊙ g ∶ X1 × X2 → A such that
(f ⊙ g)(x1, x2) = f(x1)g(x2).

Proof. Let ψ ∈ C◇c ({p},R
′,A)λ,∞ and define Z as above. Then the image of ψ under the inverse

map of the isomorphism (5.11) is
ψ ↦ ∑

z∈Z
ψ(z, ⋅) ⊗ 1z.

We now calculate the effect of IS
′∪λ. First note that the isomorphism

IS′∪λ → (AS′∪λ,∞
F )∗/US′∪λ,∞

is given by
m↦ ∏

q∈Sm

π
m(q)
q ,

where Sm is the set of places that divide m and m(q) is the integer such that the fractional ideal
q−m(q)m is coprime to q and πq is the uniformiser associated to the prime ideal q. We then view
the image as an element of (AS′∪λ,∞

F )∗/US′∪λ,∞ by imposing that at the places away from Sm

the value is 1. Thus, when we identify C0
c (∅,Z)S

′∪λ,∞ with Z[IS′∪λ], we map

ϕ↦ ∑
m∈IS′∪λ

ϕ( ∏
q∈Sm

π
m(q)
q )m ∈ Z[IS′∪λ].

Applying IS
′∪λ, we have

∑
m∈IS′∪λ

ϕ( ∏
q∈Sm

π
m(q)
q )m↦ ∑

m∈IS∪λ

ϕ( ∏
q∈Sm

π
m(q)
q )1m(∏r∉S′∪λ

Or).

Returning to ψ, we have that under the map ∆λ
S

ψ ↦ ∑
z∈Z

ψ(z, ⋅)! ⊗ ∑
m∈IS′∪λ

1z( ∏
q∈Sm

π
m(q)
q )1m(∏r∉S′∪λ

Or)

= ∑
z∈Z

ψ(z, ⋅)! ⊗ char
⎛

⎝
∏

v finite
qordv(zv)
v ( ∏

r∉S′∪λ
Or)
⎞

⎠
.

Lastly, the image of the above under the map (5.12) is

∑
z∈Z

ψ(z, ⋅)! ⊙ char
⎛

⎝
∏

v finite
qordv(zv)
v ( ∏

r∉S′∪λ
Or)
⎞

⎠
.
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We are now able to define ∆∗ via the composition

∆∗ ∶Hn−1(F
∗, C◇c ({p},R

′, F ∗p ⊗Z[G]))
(5.8)∗
ÐÐÐ→Hn−1(F

∗, C◇c ({p},R
′, F ∗p ⊗Z[G])R

v
∞(δRv

∞
))

(5.9)
ÐÐÐ→Hn−1(F

λ∪v, C◇c ({p},R
′, F ∗p ⊗Z[G])λ,∞(δ))

(5.10)∗
ÐÐÐÐ→Hn−1(F

λ∪v,C◇c (WẐλ , F
∗
p ⊗Z[G])(δ)).

5.3 Transferring to a subgroup

Let V be a finite index free subgroup of E+ of rank n−1. Let ηp,V be a generator ofHn(V ⊕⟨π⟩,Z).
Let FV be a fundamental domain for the action of F ∗/(V ⊕ ⟨π⟩) on (Ap

F )
∗/Up. Then, 1FV

is
an element of H0(V ⊕ ⟨π⟩,C(FV ,Z)) ≅ (C(FV ,Z))V ⊕⟨π⟩. Taking the cap product then gives
1FV

∩ ηp,V ∈ Hn(V ⊕ ⟨π⟩,C(FV ,Z)), since C(FV ,Z) ⊗ Z ≅ C(FV ,Z). We now define ϑpV ∈

Hn(F
∗, Cc(∅,Z)p) as the homology class corresponding to 1FV

∩ ηp,V under the isomorphism

Hn(V ⊕ ⟨π⟩,C(FV ,Z)) ≅Hn(F
∗,Cc((Ap

F )
∗/Up,Z)) (5.13)

that is induced by Cc((Ap
F )
∗/Up,Z) ≅ IndF ∗

V ⊕⟨π⟩C(FV ,Z). As before, we view recp
H/F as an

element of H0(F ∗, C(R′,Z[G])p) and denote by

ρH/F,V ∈Hn(F
∗, Cc(R

′,Z[G])p)

its image under the following map

H0(F ∗, C◇(R′,Z[G])p) →Hn(F
∗, C◇c (R

′,Z[G])p), ψ ↦ ψ ∩ ϑpV ,

where the cap product is induced by the map (5.2). We then define

u2(V ) = Eis0F ∩∆∗(cid ∩ ρH/F,V ).

Proposition 5.3.1. Let V be a free, finite index, subgroup of E+ of rank n − 1. Then

u2(V ) = ∑
σ∈G

u2(σ)
[V ∶E+] ⊗ σ−1,

where
u2 = ∑

σ∈G
u2(σ) ⊗ σ

−1.

Proof. We mimic the proof of Theorem 1.5 in [5]. General properties of group cohomology (see
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pp. 112-114, [1]) yield the following commutative diagram.

H0(V ⊕ ⟨π⟩,C(FV ,Z)) × Hn(V ⊕ ⟨π⟩,Z) Hn(F
∗,Cc((Ap

F )
∗/Up,Z))

H0(E+,p,C(F,Z)) × Hn(E+,p,Z) Hn(F
∗,Cc((Ap

F )
∗/Up,Z))

∩

cores idres
∩

(5.14)

Note that in the above, the cap-products in the top and bottom rows include applying the
isomorphisms (5.1) and (5.13), respectively. By Proposition 9.5 in §3 of [1], we have the following
identities,

cores(ηp,V ) = [E+,p ∶ V ]ηp,

res(1F) = 1FV
.

Applying these identities with diagram (5.14) gives

ϑpV = [E+,p ∶ V ]ϑ
p.

It follows that the proposition holds.

5.4 Explicit expression for u2

Let V ⊆ E+ be a free, finite index subgroup of rank n − 1 such that if V = ⟨ε1, . . . , εn−1⟩ the εi
and π satisfy Lemma 3.6.1. For ease of notation we write εn = π. We now calculate explicitly
the value of u2(V ) = Eis0F ∩∆∗(cid ∩ ρH/F,V ).

Following Spieß [21, Remark 2.1(c)], we choose the following generator for Hn(V ⊕ ⟨π⟩,Z),

ηp,V = (−1) ∑
τ∈Sn

sign(τ)[ετ(1) ∣ . . . ∣ ετ(n)] ⊗ 1.

We note here that this choice is consistent with that made in the proof of [14, Proposition 4.6].
We then calculate

ϑpV = 1FV
∩ ηp,V = (−1) ∑

τ∈Sn

sign(τ)[ετ(1) ∣ . . . ∣ ετ(n)] ⊗ 1FV
.

Using this description of ϑpV that we computed, we have

ρH/F,V = (−1) ∑
τ∈Sn

sign(τ)[ετ(1) ∣ . . . ∣ ετ(n)] ⊗ (rec
p
H/F ⋅ 1FV

),
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where recp
H/F ⋅ 1FV

is as defined in (5.2). It then follows that cid ∩ ρH/F,V is equal to

cid ∩ ρH/F,V = (−1)
n(−1) ∑

τ∈Sn

sign(τ)[ετ(1) ∣ . . . ∣ ετ(n−1)]⊗

((ετ(1) . . . ετ(n−1)) ⋅ zid(ετ(n)) ⊗ (rec
p
H/F ⋅ 1FV

)) .

We note that we have the action (x ⋅ f)(y) = f(yx−1) for a continuous map f and unit x. We
also recall the definition of zid = z1Op ,id from §3.7. Then zid(ετ(n)) ∈ C

◇
c (Fp, F

∗
p ). By changing

the sign of our choice of the generator ηp,V , if necessary, we can remove the factor of (−1)n in
the above. We now apply the map ∆∗ to this quantity. In §5.2 ∆∗ is defined via the composition
of three maps, namely (5.8)∗, (5.9) and (5.8)∗. By Proposition 5.2.3, we have that the image of
cid ∩ ρH/F,V under (5.8)∗ is given by

(−1)n+1 ∑
τ∈Sn

sign(τ)[ετ(1) ∣ . . . ∣ ετ(n−1)]⊗

⎛

⎝
(ετ(1) . . . ετ(n−1)) ⋅ zid(ετ(n)) ⊗ ∑

y∈Yτ(n)

δRv
∞
(y)(recp

H/F (y, ⋅) ⋅ 1FV
(y, ⋅))

⎞

⎠
, (5.15)

where
Yτ(n) = Supp(F ∗Rv

∞

/URv
∞
, Fp × (A

p∪Rv
∞

F )∗/US∪Rv
∞ , ψτ(n)).

Here, for ease of notation we have written

ψτ(n) = (ετ(1) . . . ετ(n−1)) ⋅ zid(ετ(n)) ⊗ (rec
p
H/F ⋅ 1FV

).

It is now convenient for us to make a choice for FV . Let GV denote the group of fractional ideals
of OF,p modulo the group of fractional principal ideals generated by elements of V , where OF,p,
as we defined in §3.5, denotes the ring of p integers of F . Let {b1, . . . ,bh} be a set of integral
ideals prime to R′ ∪ λ representing GV . We may then choose

FV = {b1U
p, . . . , bhU

p}

where b1, . . . , bh ∈ (Ap
F )
∗ are ideles whose associated fractional OF,p-ideals are b1 ⊗OF OF,p, . . . ,

bh ⊗OF OF,p. Thus, for i = 1, . . . , h we can choose that the bi are totally positive and prime to
R′ ∪ λ. This description of FV is similar to a construction given in [14] on page 14. From this
description of FV we have that Yτ(n) is trivial for all n. Thus, (5.15) is equal to

(−1)n+1 ∑
τ∈Sn

sign(τ)[ετ(1) ∣ . . . ∣ ετ(n−1)] ⊗ ((ετ(1) . . . ετ(n−1)) ⋅ zid(ετ(n)) ⊗ (rec
p∪Rv

∞

H/F ⋅ 1
Rv
∞

FV
)) .

(5.16)
We now apply (5.9). By Proposition 5.2.4, we have that the image of (5.16) under (5.9) is equal
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to

(−1)n+1 ∑
τ∈Sn

∑
f∈F ∗/Fλ∪v

sign(τ)f[ετ(1) ∣ . . . ∣ ετ(n−1)]⊗

((ετ(1) . . . ετ(n−1)) ⋅ zid(ετ(n)) ⊗ δv(fv)(rec
p∪Rv

∞

H/F (fλ∪v, ⋅) ⋅ 1
Rv
∞

FV
(fλ∪v, ⋅))) . (5.17)

By our choice of FV , we have that the sum over F ∗/Fλ∪v is also trivial. Hence, (5.17) is equal
to

(−1)n+1 ∑
τ∈Sn

sign(τ)[ετ(1) ∣ . . . ∣ ετ(n−1)] ⊗ ((ετ(1) . . . ετ(n−1)) ⋅ zid(ετ(n)) ⊗ (rec
p∪λ∪∞
H/F ⋅ 1λ∪∞

FV
)) .

(5.18)
We can now finish calculating the effect of ∆∗ on cid ∩ ρH/F,V by applying (5.10) to (5.18) and
using Proposition 5.2.5 to calculate that ∆∗(cid ∩ ρH/F,V ) is equal to

(−1)n+1 ∑
τ∈Sn

sign(τ)[ετ(1) ∣ . . . ∣ ετ(n−1)]⊗

((ετ(1) . . . ετ(n−1)) ⋅ zid(ετ(n)) ⊗ ∑
z∈Z
(recp∪λ∪∞

H/F (z, ⋅) ⋅ 1λ∪∞
FV
(z, ⋅))

⊙char
⎛

⎝
∏

w finite
qordw(zw)
w ( ∏

r∉S′∪λ
Or)
⎞

⎠

⎞

⎠
, (5.19)

where
Z = Supp((AS′∪λ,∞

F )∗/US′∪λ,∞, Fp × ∏
q∈R′

F ∗q , ψτ(n)).

Here, we have ψτ(n) = (ετ(1) . . . ετ(n−1))⋅zid(ετ(n))⊗(rec
p∪λ∪∞
H/F ⋅1λ∪∞

FV
). We now apply the measure

Eis0F to ∆∗(cid∩ρH/F,V ). Recall that the measure is applied as defined in (5.3). We write µF ∗p
for

the measure with values in F ∗p ⊗Z[G] induced from the Eisenstein series Eis0F . We now consider
the function (ετ(1) . . . ετ(n−1)) ⋅ zid(ετ(n)). For ease of notation we define, for τ ∈ Sn and z ∈ Z,

ϕτ(n),z = (ετ(1) . . . ετ(n−1)) ⋅ zid(ετ(n)) ⊗ ∑
z∈Z
(recp∪λ∪∞

H/F (z, ⋅) ⋅ 1λ∪∞
FV
(z, ⋅))

⊙char
⎛

⎝
∏

w finite
qordw(zw)
w ( ∏

r∉S′∪λ
Or)
⎞

⎠

⎞

⎠
.

We are then able to calculate, after recalling from §3.7 that we can choose zid = z1Op ,id,

((ετ(1) . . . ετ(n−1)) ⋅ zid(ετ(n)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1O ⋅ idF ∗p
+ 1πOp ⋅ π if τ(n) = n,

1πOp ⋅ ετ(n) if τ(n) ≠ n.
(5.20)

To calculate the measure, we first note that F ∗p ≅ ⟨π⟩ ⊕O and that O ≅ limm→∞O/1 + pmOp. By
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(5.20), we are able to calculate the value at π and O separately. We now give some additional
notation which we require. Let m ≥ 0 and α ∈ O/1+ pmOp. We then write Uα = α(1+ p

mOp). For
σ ∈ G, we define the following maps

ϕπ⊗σ
−1

n,z ∶WẐλ → Z, and ϕUα⊗σ−1
n,z ∶WẐλ → Z,

such that

ϕπ⊗σ
−1

n,z (x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if ϕn,z(x) = π ⊗ σ−1,

0 else,
and ϕUα⊗σ−1

n,z (x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if ϕn,z(x) ∈ Uα ⊗ σ
−1,

0 else.

For τ ∈ Sn with τ(n) ≠ n, we also define

ϕ
ετ(n)⊗σ−1
n,z ∶WẐλ → Z

such that

ϕ
ετ(n)⊗σ−1

τ(n),z (x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if ϕτ(n),z(x) = ετ(n) ⊗ σ−1,

0 else.

The construction of the measure given in §3.4 now allows us to calculate

Eis0F ∩ (∆∗(cid ∩ ρH/F,V )) = (−1)
n+1(−1)(n−1)(n−1)

∑
z∈Z
∑
σ∈G

⎛
⎜
⎜
⎜
⎝

∑
τ∈Sn

τ(n)=n

sign(τ) lim
m→∞

⎛

⎝
∑

α∈O/(1+pmOp)
Eis0τ(ϕ

Uα⊗σ−1
n,z )(α⊗ σ−1)

⎞

⎠
+Eis0τ(ϕ

π⊗σ−1
n,z )(π ⊗ σ−1)

+ ∑
τ∈Sn

τ(n)≠n

sign(τ)Eis0τ(ϕ
ετ(n)⊗σ−1

τ(n),z )(ετ(n) ⊗ σ
−1)

⎞
⎟
⎟
⎟
⎠

. (5.21)

For ease of notation we have written Eis0τ = Eis0F ([ετ(1) ∣ . . . ∣ ετ(n−1)]). Let ϕ ∈ {ϕUα⊗σ−1
n,z , ϕπ⊗σ

−1

n,z ,

ϕ
ετ(n)⊗σ−1
n,z }. Then, by Proposition 3.5.4 we have that

Eis0F ([ετ(1) ∣ . . . ∣ ετ(n−1)])(ϕ) = δ([ετ(1) ∣ . . . ∣ ετ(n−1)])Lλ(Ce1([ετ(1) ∣ . . . ∣ ετ(n−1)]),Φ;0)

where Φ = ϕ⊗ ϕλ and ϕλ is as defined in (3.8). We will decorate Φ to match with the notation
used for ψ. For example we write ΦUα⊗σ−1

n,z = ϕUα⊗σ−1
n,z ⊗ ϕλ. For ease of notation, we let Cτ =

Ce1([ετ(1) ∣ . . . ∣ ετ(n−1)]). Recall from (3.10) that for s ∈ C with Re(s) > 1 we have

Lλ(Cτ ,Φ; s) = ∑
v∈W∩Cτ

Φ(v)Nv−s.

52



For i = 1, . . . , n we define
Bi ∶= ⋃

τ∈Sn

τ(n)=i

Ce1([ετ(1) ∣ . . . ∣ ετ(n−1)]). (5.22)

We also write B=Bn. Since we have chosen the εi as in Lemma 3.6.1 we have

sign(τ)δ([ετ(1) ∣ . . . ∣ ετ(n−1)]) = 1. (5.23)

Applying (5.23) and the definition in (5.22) to (5.21), we have, after noting (−1)n+1(−1)(n−1)(n−1)

= 1,

Eis0F ∩ (∆∗(cid ∩ ρH/F,V )) =

∑
z∈Z
∑
σ∈G

⎛

⎝
lim
m→∞

⎛

⎝
∑

α∈O/(1+pmOp)
Lλ(B,Φ

Uα⊗σ−1
n,z ; 0)(α⊗ σ−1)

⎞

⎠
+Lλ(B,Φ

π⊗σ−1
n,z ; 0)(π ⊗ σ−1)

+
n−1
∑
i=1

Lλ(Bi,Φ
εi⊗σ−1
i,z ; 0)(εi ⊗ σ

−1)) . (5.24)

We now calculate each term in the above expression, beginning with the limit term. Fix m ≥ 0
and σ ∈ G. Let α ∈ O/1 + pmOp. We also let b be a fractional ideal of F , coprime to S ∪ λ, and
such that σb = σ. For this we need to find the elements z ∈ Z such that ϕUα⊗σ−1

n,z is not trivial.
For this we require that for some x ∈ ∏q∈R′ F

∗
q ,

σ−1 = (recp∪λ∪∞
H/F (z, x) ⋅ 1p∪λ∪∞

FV
(z, x)).

By the definition of FV and the reciprocity map, the above equation is nontrivial only if z ∈
FV and ∏v finite q

−ordv(zv)
v = b−1(α)pordp(α) for some (α) ∈ P f,1. Recall that we have f as the

conductor of H/F and define P f,1 = {(α) ∣ α ∈ F ∗+ , α ≡ 1 (mod f)}. By the description of FV ,
we note that for each σ ∈ G there is a unique z ∈ Z that satisfies the above equation. Since

∏v finite q
ordv(zv)
v = b−1(α)p−ordp(α) for (α) ∈ P f,1, we have that (α)p−ordp(α) must be coprime to

p ∪R ∪ λ since z and b−1 are. Thus, for all r ∈ (α)p−ordp(α) we have r−1 ∈ ∏r∉S′∪λ Or. Thus, we
have

F ∩ b−1(α)p−ordp(α)( ∏
r∉S′∪λ

Or) = b
−1.

We now define, for a Shintani set A, U ⊆ Fp compact open, fractional ideal b and s ∈ C with
Re(s) > 1

LR,λ(b,A,U, s) ∶= ∑
x∈W∩A, x∈U,

x∈b−1, (x,R)=1

ϕλ(x)N(x)−s.
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We thus have

lim
m→∞

⎛

⎝
∑

α∈O/(1+pmOp)
Lλ(B,Φ

Uα⊗σ−1b
n,z ; 0)(α⊗ σ−1)

⎞

⎠
= lim

m→∞

⎛

⎝
( ∏
α∈O/(1+pmOp)

αLR,λ(b,B,Uα;0) ⊗ σ−1b )
⎞

⎠

= (×∫
O
x dLR,λ(b,B, x; 0)) ⊗ σ

−1
b ,

where the multiplicative integral is as defined in Definition 4.1.1. We can apply similar, and in
fact easier, calculations for the other terms in (5.24) and thus deduce the explicit expression for
u2(V ),

Eis0F ∩ (∆∗(cid ∩ ρH/F,V )) =

∑
σb∈G

((
n−1
∏
i=1

ε
LR,λ(b,Bi,πOp;0)
i )πLR,λ(b,B,πOp;0)×∫

O
x dLR,λ(b,B, x; 0)) ⊗ σ

−1
b ) . (5.25)
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Chapter 6

The Cohomological Element u3

In this section we consider the second cohomological formula conjectured by Dasgupta–Spieß.
This is conjectured in [14]. We begin by recalling the construction of this element. As with the
other cohomological formula of Dasgupta–Spieß(u2), a key element of the formula is a generator
of a homology group. In this case it is a generator of Hn+r−1(ESp,+,Z). As was done in Chapter
5, we consider the effect on this formula when ESp,+ is replaced by a free, finite index subgroup,
of rank n.

6.1 The definition of u3

In [14], Dasgupta–Spieß give two equivalent constructions for their formula. Since we require
each of them in the later chapters we give both here. We denote them by u3 and u′3. In this
thesis we give slightly different constructions to those given in [14], namely our u3 = u3(DS)#,
and similarly for u′3. Here # denotes the involution on Z[G] given by g ↦ g−1 for g ∈ G, and
u3(DS) is the construction in [14]. This is done by modifying the definitions of κλ and ωp

f,λ in
§3.5. The key adjustment we have is to use recH/F ((η))−1 rather than recH/F ((η)) in (3.7).

We begin with u3. Recall that in §3.7 and §3.5 we have defined the following objects:

cg ∈H
1(F ∗p ,Cc(Fp, F

∗
p )) and κλ ∈H

n−1(ESp,+,Hom(Cc(FSp ,Z), Fp ⊗Z[G])).

Let r = #Sp. We now consider Hn+r−1(ESp,+,Z). By Dirichlet’s unit theorem, ESp,+ is a free
abelian group of rank n. Hence, Hn+r−1(ESp,+,Z) ≅ Z. We are thus able to choose a generator
ϑ ∈Hn+r−1(ESp,+,Z). We recall that F ∗Sp

= ∏q∈Sp
F ∗q and label the elements of Sp by p,p2 . . . ,pr.

We now define a class
cid,p ∈H

r(F ∗Sp
,Cc(FSp , F

∗
p ))

by
cid,p = cid ∪ cop2

∪ ⋅ ⋅ ⋅ ∪ copr
.
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Here the cup product is induced by the canonical map

Cc(Fp, F
∗
p ) ⊗ ⋅ ⋅ ⋅ ⊗Cc(Fp, F

∗
p ) → Cc(FSp , F

∗
p )

defined by

⊗
q∈Sp

fq ↦
⎛

⎝
(xq)q∈Sp ↦ ∏

q∈Sp

fq(xq)
⎞

⎠
.

Definition 6.1.1. Let ϑ ∈Hn+r−1(ESp,+,Z) be a generator. Then we define

u3 = cid,p ∩ (κλ ∩ ϑ) ∈ F
∗
p ⊗Z[G].

Adapted from [14, Conjecture 3.1] we have the following conjecture.

Conjecture 6.1.2. We have u3 = up

We now give the definition for u′3. Recall that in §3.5 we have defined

ωp
f,λ ∈H

n−1(E+(f)p,Hom(Cc(Fp,Z),Z[G])).

Definition 6.1.3. Let ϑ′ ∈Hn(E+(f)p,Z) be a generator. Then, we define

u′3 ∶= cid ∩ (ω
p
f,λ ∩ ϑ

′). (6.1)

The following Proposition follows from [14, Proposition 3.6].

Proposition 6.1.4. We have u3 = u′3.

6.2 Transferring to a subgroup

Let ϑ′V ∈ Hn(V ⊕ ⟨π⟩,Z) be a generator. For x1, . . . , xn ∈ V ⊕ ⟨π⟩ and compact open U ⊂ Fp we
put

νpb,λ,V (x1, . . . , xn)(U) ∶= δ(x1, . . . , xn)ζR,λ(b,Ce1(x1, . . . , xn), U,0).

As before, it follows from Theorem 2.6 of [5] that νpb,λ,V is a homogeneous (n − 1)-cocycle on
V ⊕ ⟨π⟩ with values in the space of Z-distribution on Fp. Hence, we obtain a class

ωp
f,b,λ,V ∶= [ν

p
b,λ,V ] ∈H

n−1(V ⊕ ⟨π⟩,Hom(Cc(Fp,Z),Z)).

We then define
u′3(V ) = cid ∩ (ω

p
f,b,λ,V ∩ ϑ

′
V ).

The next proposition shows the relation between u′3 and u′3(V ).
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Proposition 6.2.1. Let V be a free, finite index, subgroup of E+(f) of rank n − 1. Then, we
have

cid ∩ (ω
p
f,b,λ,V ∩ ϑ

′
V ) = (cid ∩ (ω

p
f,b,λ ∩ ϑ

′))[E+(f)∶V ]. (6.2)

Proof. This proof is adapted from the proof of Proposition 2.1.4 in [24]. We mimic the proof of
Theorem 1.5 in [5]. For ease of notation, in the following diagrams we write

Meas(Fp,Z) = Hom(Cc(Fp,Z),Z).

General properties of group cohomology (see pp. 112-114, [1]) yield the following commutative
diagrams.

Hn−1(V,Meas(Fp,Z)) × Hn(V ⊕ ⟨π⟩,Z) H1(V ⊕ ⟨π⟩,Meas(Fp,Z))

Hn−1(E+(f),Meas(Fp,Z)) × Hn(E+(f) ⊕ ⟨π⟩,Z) H1(E+(f) ⊕ ⟨π⟩,Meas(Fp,Z))

∩

cores coresres
∩

(6.3)

and
H1(F ×p ,Cc(Fp, F

∗
p )) × H1(V ⊕ ⟨π⟩,Meas(Fp,Z)) F ∗p

H1(F ×p ,Cc(Fp, F
∗
p )) × H1(E+(f) ⊕ ⟨π⟩,Meas(Fp,Z)) F ∗p .

id

∩

cores id
∩

(6.4)

By Proposition 9.5 in §3 of [1], we have following identities,

cores(ϑ′V ) = [E+(f) ∶ V ]ϑ
′,

res(ωp
f,b,λ) = ω

p
f,b,λ,V .

Diagram (6.3) gives the equality

ωp
f,b,λ ∩ cores(ϑ′V ) = cores(res(ωp

f,b,λ) ∩ ϑ
′
V ).

The identities above then show that

ωp
f,b,λ ∩ [E+(f) ∶ V ]ϑ

′ = cores(ωp
f,b,λ,V ∩ ϑ

′
V ).

Applying diagram (6.4) to the above equality gives us the result. We note the the factor [V ∶
E+(f)] becomes a power due to the multiplicative nature of the formula.

Let V ⊆ E+(f) be a finite index subgroup free of rank n−1. We now note the relation between
u′3(V ) and u3(V ). We first give the additional notation required to define u3(V ). Let V ⊆ E+
be a free finite index subgroup of rank n − 1. Write

VSp = V ⊕ ⟨π1, . . . , πr⟩.
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Let ϑV ∈Hn+r−1(VSp ,Z) be a generator. For x1, . . . , xn ∈ VSp and compact open U ⊂ Fp we put

µχ,b,λ,V (x1, . . . , xn)(U) ∶= δ(x1, . . . , xn)LR,λ(Ce1(x1, . . . , xn),b, U,0).

As before, it follows from [5, Theorem 2.6] that µχ,b,λ,V is a homogeneous n − 1-cocycle on VSp

with values in the space of Z-distribution on FSp . Hence, we obtain a class

κλ,V ∶=
h

∑
i=1

rec(bi)−1[µb,λ,V ] ∈H
n−1(VSp ,Hom(Cc(FSp ,Z),Z[G])).

We then define
u3(V ) = cid,p ∩ (κλ,V ∩ ϑV ).

Proposition 6.2.2. Let V be a free, finite index subgroup of E+(f), of rank n−1. We now let V ′

be any free, finite index subgroup of E+, of rank n−1 such that V ′ ⊆ V and [E+ ∶ V ′] = [E+(f) ∶ V ].
Then,

cid ∩ (ω
p
f,b,λ,V ∩ ϑ

′
V ) = cid,p ∩ (κλ,V ′ ∩ ϑV ′),

i.e., u3(V ′) = u′3(V ).

Proof. This proposition follows from the proof of [14, Proposition 3.6].

Following from this proposition, we have a simple corollary.

Corollary 6.2.3. Let V be a free, finite index, subgroup of E+ of rank n − 1. Then, for each
σ ∈ G,

u3(V,σ) = u3(σ)
[E+∶V ].

6.3 Explicit expression for u3

Let V = ⟨ε1, . . . , εn−1⟩ ⊆ E+ where ε1, . . . , εn−1 and π = εn are chosen to satisfy Lemma 3.6.1.
Write εn = π. As before we have the notation VSp = ⟨ε1, . . . , εn−1, π1, . . . , πr⟩. Here we have
π = π1. As in (5.22), for i = 1, . . . , n we define

Bi ∶= ⋃
τ∈Sn

τ(n)=i

Ce1([ετ(1) ∣ . . . ∣ ετ(n−1)]).

As before, we write B = Bn. We now calculate explicitly the value of u3. We begin by firstly
calculating the value of cid,p∩(κb,λ,V ∩ϑV ). For ease of notation we let εn+i−1 = πi, for i = 1, . . . , r.
We choose the following generator for Hn+r−1(VSp ,Z),

ϑV = (−1)
(n−1)(n+r−1)(−1)r ∑

τ∈Sn+r−1

sign(τ)[ετ(1) ∣ . . . ∣ ετ(n+r−1)] ⊗ 1.
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This choice is stated by Spieß in [21, Remark 2.1(c)] and is consistent with the choice we made for
ηV at the start of §5.4. We can now calculate, after noting (−1)(n−1)(n+r−1)(−1)r(−1)(n+r−1)(n−1)

= (−1)r,

κb,λ,V ∩ ϑV = (−1)
r
∑

τ∈Sn+r−1

sign(τ)κb,λ,V ([ετ(1) ∣ . . . ∣ ετ(n−1)]) ⊗ [ετ(n) ∣ . . . ∣ ετ(n+r−1)].

Recall from §3.7 that we can choose, as a representative of cid, the inhomogeneous 1-cocycle
zid = z1πOp ,id, i.e., we take f = 1πOp in Definition 3.7.1. One can easily compute, as is done by
Dasgupta–Spieß in the proof of [14, Proposition 4.6], that for i = 1, . . . , n + r − 1 and i ≠ n, we
have

ε−1i zid(εi) = 1πOp ⋅ εi, (6.5)

and
π−1zid(π) = 1O ⋅ idF ∗p

+ 1Op ⋅ π. (6.6)

Returning to our main calculation, we have

cid,p ∩ (κb,λ,V ∩ ϑV ) = (−1)
r(−1)r

2

∑
τ∈Sn+r−1

∫
FSp

cid,p([ετ(n) ∣ . . . ∣ ετ(n+r−1)])(x)

d(sign(τ)([ετ(n) ∣ . . . ∣ ετ(n+r−1)])κb,λ,V ([ετ(1) ∣ . . . ∣ ετ(n−1)]))(x).

Now we note that for i = 2, . . . , r we have that copi
(εj) = 0 unless i = j. Hence, we only get

non-zero terms when τ(k) = k for k = n + 1, . . . , n + r − 1. Therefore, since (−1)r(−1)r
2

= 1, we
have

cid,p ∩ (κb,λ,V ∩ ϑV ) = ∑
τ∈Sn

∫
FSp

cid,p([ετ(n) ∣ εn+1 ∣ . . . ∣ εn+r−1])(x)

d(sign(τ)([ετ(n) ∣ εn+1 ∣ . . . ∣ εn+r−1])κb,λ,V ([ετ(1) ∣ . . . ∣ ετ(n−1)]))(x).

Then, since for i = 2, . . . , r and τ ∈ Sn we can calculate (ετ(n)εn+1 . . . εn+i−1)−1 ⋅ copi
(εi) = 1Opi

,
we have

cid,p ∩ (κb,λ,V ∩ ϑV ) = ∑
τ∈Sn

∫
Fp

cid([εn+1 ∣ . . . ∣ εn+r−1])(x)

d(sign(τ)ετ(n)κb,λ,V ([ετ(1) ∣ . . . ∣ ετ(n−1)]))(x ×
r

∏
j=2

Opj).

We recall the definition of κb,λ,V from the start of §6.1. Since we have chosen V and π through
Lemma 3.6.1, we can note that, for τ ∈ Sn and a compact open U ⊆ Op, we have by definition
that,

sign(τ)κb,λ,V ([ετ(1) ∣ . . . ∣ ετ(n−1)]) = LR,λ(Ce1([ετ(1) ∣ . . . ∣ ετ(n−1)]),b, U,0),
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where L is as defined in (3.7). Thus,

cid,p ∩ (κb,λ,V ∩ ϑV ) = ∑
τ∈Sn

∫
Fp

ε−1τ(n)zid(ετ(n))(x)

d(LR,λ(Ce1([ετ(1) ∣ . . . ∣ ετ(n−1)]),b, x ×
r

∏
j=2

Opj ,0)).

Applying (6.5) and (6.6), and piecing together the appropriate Shintani sets, we further deduce

cid,p ∩ (κb,λ,V ∩ ϑV ) = ×∫
O
x d(LR,λ(B,b, x ×

r

∏
j=2

Opj ,0))×∫
Op

π d(LR,λ(B,b, x ×
r

∏
j=2

Opj ,0))

n−1
∏
i=1
×∫
πOp

εi d(LR,λ(Bi,b, x ×
r

∏
j=2

Opj ,0)). (6.7)

We note the switch to products here as after integrating we are in the multiplicative group F ∗p .
Considering the first two terms on the right hand side of (6.7), it is clear that

×∫
O
x d(LR,λ(B,b, x ×

r

∏
j=2

Opj ,0))×∫
Op

π d(LR,λ(B,b, x ×
r

∏
j=2

Opj ,0))

= πLR,λ(B,b,OSp ,0)×∫
O
x d(LR,λ(B,b, x ×

r

∏
j=2

Opj ,0)),

where OSp = ∏
r
j=1 Opj ⊂ FSp

. We now consider the product on the right hand side of (6.7). It is
straight forward to see that

n−1
∏
i=1
×∫
πOp

εi d(LR,λ(Bi,b, x ×
r

∏
j=2

Opj ,0)) =
n−1
∏
i=1

ε
LR,λ(Bi,b,πOp×∏r

j=2 Opj
,0)

i .

Hence,

cid,p ∩ (κb,λ,V ∩ ϑV )

= (
n−1
∏
i=1

ε
LR,λ(Bi,b,πOp×∏r

j=2 Opj
,0)

i )πLR,λ(B,b,OSp ,0)×∫
O
x d(LR,λ(B,b, x ×

r

∏
j=2

Opj ,0)).

Thus, we have

u3(V ) =
h

∑
k=1

recH/F (bk)−1 ((
n−1
∏
i=1

ε
LR,λ(Bi,bk,πOp×∏r

j=2 Opj
,0)

i )πLR,λ(B,bk,OSp ,0)

×∫
O
x d(LR,λ(B,bk, x ×

r

∏
j=2

Opj ,0))
⎞

⎠
.
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6.4 Explicit expression for u′3

For later calculations we also require an explicit expression of u′3. Let V be a free, finite index
subgroup of E+(f) of rank n − 1 such that V = ⟨ε1, . . . , εn−1⟩ where ε1, . . . , εn−1 and π = εn are
chosen to satisfy Lemma 3.6.1. For i = 1, . . . , n write

Bi ∶= ⋃
τ∈Sn

τ(n)=i

Ce1([ετ(1) ∣ . . . ∣ ετ(n−1)]).

Let B=Bn.As in §5.4, we choose the following generator for Hn(E+(f)p,Z),

ϑ′V = (−1) ∑
τ∈Sn

sign(τ)[ετ(1) ∣ . . . ∣ ετ(n)] ⊗ 1.

This choice is stated by Spieß in [21, Remark 2.1(c)]. We can now calculate

ωp
f,b,λ,V ∩ ϑ

′
V = (−1)

n(n−1)(−1)
n

∑
i=1
∑

τ∈Sn

τ(n)=i

sign(τ)ωp
f,b,λ,V ([ετ(1) ∣ . . . ∣ ετ(n−1)]) ⊗ [εi].

We recall the definition of ωp
f,b,λ,V from §3.5. For τ ∈ Sn and a compact open U ⊆ Op, we have,

by definition, that

sign(τ)ωp
f,b,λ,V ([ετ(1) ∣ . . . ∣ ετ(n−1)]) = ζR,λ(b,Ce1([ετ(1) ∣ . . . ∣ ετ(n−1)]), U,0). (6.8)

Returning to our main calculation, using (6.8), we have

cid ∩ (ω
p
f,b,λ,V ∩ ϑ

′
V ) =

n

∑
i=1
∑

τ∈Sn

τ(n)=i

∫
Fp

zid(εi)(x) d(εiζR,λ(b,Ce1([ετ(1) ∣ . . . ∣ ετ(n−1)]), x,0)).

Applying (6.5) and (6.6), and piecing together the appropriate Shintani sets, we further deduce

cid ∩ (ω
p
f,b,λ,V ∩ ϑ

′
V ) = ×∫O

x d(ζR,λ(b,B, x,0))×∫
Op

π d(ζR,λ(b,B, x,0))

n−1
∏
i=1
×∫
πOp

εi d(ζR,λ(b,Bi, x,0)). (6.9)

We change to products rather then sums here as after integrating we are in the multiplicative
group F ∗p . It is clear that we can then write

u′3(V,σ) = cid ∩ (ω
p
f,b,λ,V ∩ ϑ

′
V )

=
n−1
∏
i=1

ε
ζR,λ(b,Bi,πOp,0)
i πζR,λ(b,B,Op,0)×∫

O
x d(ζR,λ(b,B, x,0))(x).
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6.5 A formula for the principal minors of the Gross regula-

tor matrix

As we noted in the Introduction, the construction we give for u3 is a generalisation of the
construction by Dasgupta–Spieß in [14], for the diagonal entry of Gross’s regulator matrix. In
[14] a formula is given for the minors of the Gross regulator matrix. The simplest case of this
is the diagonal entries. In this section, we give this construction and note how our results allow
for the application of Theorem 2.3.6 and Theorem 2.3.7 to prove that Dasgupta–Spieß’s formula
for the diagonal entries holds.

As in §2.2, we let χ ∶ Gal(F /F ) → Q be a totally odd character. We recall that we have fixed
embeddings Q ⊂ C and Q ⊂ Cp, so χ may be viewed as taking values in C or Cp. As in §2.2, we
let H denote the fixed field of the kernel of χ.

Applying χ−1 to the measures κλ and ωp
f,λ, defined in §3.5, gives the measures we require for

these constructions. To define this precisely, we first let k denote the cyclotomic field generated
by the values of χ. Now let P be the prime of k above p corresponding to the embeddings
k ⊂ Q ⊂ Cp. Let D be a Shintani set and U ⊆ Op be compact open. For s ∈ C with Re(s) > 1, we
define, similar to L in (3.7), the Shintani L-function

LR(D,χ,b, U, s) = (Nb)−s ∑
ξ∈D∩b−1Sp

, ξ∈U
(ξ,R)=1

χ((ξ))

Nξs
.

Similar to LR,λ, we define

LR,λ(D,χ,b, U, s) ∶= LR(D,χ,bλ
−1, U, s) − χ(λ)l1−sLR(D,χ,b, U, s).

Let x1, . . . , xn ∈ ESp,+. For a compact open subset U ⊂ FSp , let

µχ,b,λ(x1, . . . , xn)(U) ∶= δ(x1, . . . , xn)LR,λ(Ce1(x1, . . . , xn), χ,b, U,0).

Let K be a finite extension of Qp which contains all the values of the character χ. Then µχ,b,λ

is an ESp,+-invariant homogeneous (n − 1)-cocycle yielding a class

κχ,b,λ ∶= [µχ,b,λ] ∈H
n−1(ESp,+,Hom(Cc(FSp ,Z),K)).

Here we are using Remark 3.5.3. We define the Eisenstein cocycle associated to λ and χ by

κχ,λ =
h

∑
i=1
χ(bi)κχ,bi,λ ∈H

n−1(ESp,+,Hom(Cc(FSp ,Z),K)).

Using §3.7, we can define elements cop , clp ∈ H
1(F ∗p ,Cc(Fp,K)). The homomorphisms op and

lp are as defined in (2.1) and (2.2). As before, we label the elements of Sp by p1, . . . ,pr and let
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J ⊂ Sp. We now define classes

co, cl,J ∈H
r(F ∗Sp

,Cc(FSp ,K))

by

co = cop1
∪ ⋅ ⋅ ⋅ ∪ copr

,

cl,J = cg1 ∪ ⋅ ⋅ ⋅ ∪ cgr ,

where

gi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

lpi if i ∈ J,

opi if i ∉ J.

Definition 6.5.1 (Equation (17), [14]). Let ϑ ∈ Hn+r−1(ESp,+,Z) be a generator. Then for any
subset J ⊂ Sp, we define

Rp(χ)J,an ∶= (−1)
cl,J ∩ (κχ,λ ∩ ϑ)

co ∩ (κχ,λ ∩ ϑ)
. (6.10)

The “an” notation here is only used to distinguish the formula Rp(χ)J,an from the algebraic
quantity Rp(χ)J . Dasgupta–Spieß conjectured that their formula Rp(χ)J,an is in fact equal to
Rp(χ)J .

Conjecture 6.5.2 (Conjecture 3.1, [14]). For each subset J ⊂ Sp, we have Rp(χ)J =Rp(χ)J,an.

We now give the second formulation that Dasgupta–Spieß give for Rp(χ)J,an. We are first
required to generalise our definition of the Shintani zeta function. Let b be a fractional ideal of
F relatively prime to S and λ, and let D be a Shintani set. For each compact open U ⊆ FJ ,
define, for Re(s) > 1,

ζJR(b,D,U, s) = Nb−s ∑
α∈F∩D, α∈U

(α,R)=1, α∈b−1⊗OF
OF,J

α≡1 (mod f)

Nα−s.

We define ζJR,λ(b,D,U, s) in analogy with (2.4). Let E+(f)J denote the group of J-units of F
which are congruent to 1 (mod f). We note that E+(f)J is free of rank n+ j − 1. For x1, . . . , xn ∈
E+(f)J , a fractional ideal b coprime to S and l, and compact open U ⊂ Fp, we put

νJb,λ(x1, . . . , xn)(U) ∶= δ(x1, . . . , xn)ζ
J
R,λ(b,Ce1(x1, . . . , xn), U,0)

where δ and Ce1(x1, . . . , xn) are defined as in (3.6) and (3.5), respectively. Then, νJb,λ is a
homogeneous (n − 1)-cocycle on E+(f)J with values in the space of Z-distributions on FJ . This
follows from Theorem 2.6 of [5]. Hence, we have defined a class

ωJ
f,b,λ ∶= [ν

J
b,λ] ∈H

n−1(E+(f)J ,Hom(Cc(Fp,Z),Z)).
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Here the νJb,λ is being viewed as an element of Hom(Cc(Fp,Z),Z) via the integration pairing
from Remark 3.5.3. We also consider

ωJ
f,λ = ∑

[b]∈Gf/⟨p⟩
χ(b)ωJ

f,b,λ ∈H
n−1(E+(f)J ,Hom(Cc(Fp,Z),Z[G])),

where the sum ranges over a system of representatives of Gf/⟨p⟩. This construction is adapted
from the construction of ωJ

f,λ in §3.3 of [14]. Write J = {p1, . . . ,pj}. We then define

cJo = cop1
∪ ⋅ ⋅ ⋅ ∪ copj

and cJl = clp1
∪ ⋅ ⋅ ⋅ ∪ clpj

.

Proposition 6.5.3 (Proposition 3.6, [14]). Let ϑ′ ∈ Hn(E+(f)p,Z) be a generator. Then, we
have

Rp(χ)p,an = (−1)
clp ∩ (ω

p
χ,λ ∩ ϑ

′)

cop ∩ (ω
p
χ,λ ∩ ϑ

′)
,

i.e., we have a second formula for Rp(χ)p,an.

Using the main result of this thesis (Theorem 2.3.7), we can prove the following theorem.

Theorem 6.5.4. Conjecture 6.5.2 holds in the case #J = 1.

Proof. Let p ∈ Sp such that J = {p}. By Theorem 2.3.6 of Dasgupta–Kakde, we have

u1 = up in (F ∗p /µ(F
∗
p )) ⊗Z[G].

Recall that µ(F ∗p ) denotes the roots of unity of F ∗p . Theorem 2.3.7 then gives that u3 = u1. By
specialising to χ and applying the maps lp and op respectively, we have the result. Here we have
used the fact that lp and op are trivial on µ(F ∗p ).
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Chapter 7

Comparing the Formulas for Cubic
Fields

In this chapter we present work from [18] in which we show that u1 = u3 when F is a cubic field.
This result was proved by Dasgupta–Spießin [14, Theorem 4.4] when F is a quadratic field. We
note that we change the notation of the proof slightly in this thesis to focus more on the units,
whereas in [18] the paper is written to focus more on the diagonal entries of the Gross regulator
matrix. In this chapter, we prove the following theorem.

Theorem 7.0.1. Suppose that F is a totally real field with [F ∶ Q] = 3. Then,

u1 = u3.

We note that this theorem has been attempted previously by Tsosie in [24]. However, as we
show in the appendix, we find a counterexample to the statement of a lemma necessary for his
proof, namely, [24, Lemma 2.1.3]. The statement concerns having a nice translation property of
Shintani sets, for more detail see Statement A.1.1 in the appendix. The main contribution of
this chapter is the methods we develop to recover some control of the translation properties of
Shintani sets. This is done in §7.1. We spend the majority of this chapter proving the following
theorem.

Theorem 7.0.2. Suppose that F is a totally real field of degree 3. Let σ ∈ G and let V ⊆ E+(f)
for a good choice of V (we make this choice precise in §7.1). Then,

u1(V,σ) = u
′
3(V,σ).

We show at the end of §7.2 that Theorem 7.0.2 implies the result of this chapter, Theorem
7.0.1.
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7.1 Choosing a Colmez domain

We are required to make a good choice of our free, finite index subgroup V ⊂ E+(f). We recall
the definition of a Colmez domain we gave in Definition 3.2.9. We initially follow the ideas of
Colmez in [6]. Here, the choice of V is used to give a nice Colmez domain DV . However, we
need to use our choice of V to give us both the existence of a suitable Colmez domain DV , and
to give us some control over the translation of DV . This approach was not used in [24]. Instead,
they used a stronger statement, [24, Lemma 2.1.3]. However, we find a counterexample to this
statement. This counterexample is given in the appendix of this thesis. We therefore require a
new approach. In this section, we need to restrict to the case when F is a field of degree 3, i.e.,
we assume n = 3 henceforth. Note that in this case E+(f) is free of rank 2. The main aim of this
section is to prove the following proposition. We remark that currently we have not been able
to prove such a proposition for n > 3. Thus we have to restrict to the case n = 3.

Proposition 7.1.1. Let π ∈ F+. Then, there exists ε1, ε2, ω ∈ E+(f) such that

1) ⟨ε1, ε2⟩ ⊆ E+(f) is a finite index subgroup, free of rank 2,

2) δ([ε1 ∣ ε2]) = −δ([ε2 ∣ ε1]) = 1,

3) δ([ε1 ∣ ωπ]) = −δ([ωπ ∣ ε1]) = δ([ε2 ∣ ωπ]) = −δ([ωπ ∣ ε2]) = 1,

4) ω−1π−1 ∈ C([ε1 ∣ ε2]) ∪C([ε2 ∣ ε1]) ∪C(1, ε1ε2).

Recall the definition of δ from (3.6). The choices we make using Proposition 7.1.1 allow us
to form a nice Colmez domain, and in the process of choosing ε1, ε2, ω we also allow ourselves to
have some control over the translation of DV . We note that the hardest part of this proposition
is being able to have 3) and 4) simultaneously. We recall from §3.6 the definitions of Log, H

and zH for z ∈ R3
+ but with n = 3 rather than of arbitrary value. As in §3.6, for any M > 0 and

i = 0,1,2, write li(M) for the element of H which has value M in the (i + 1) place and −M/2 in
the other places. We endow R3 with the sup-norm. We denote by B(x, r) the ball centred at x
of radius r.

Note that if we choose R > R′1 ∶= max(1,R(E+(f), π)) in Lemma 3.6.1, then K1(R) =

max(25R,k(R)). The proof of Lemma 3.6.1, when n = 3, also gives the following corollary.

Corollary 7.1.2. Let R > R′1 and M > 25R. For i = 1,2, let gi ∈ E+(f) and gπ ∈ πHE+(f) such
that Log(gi) ∈ B(li(M),R) ≠ ∅ and Log(gπ) ∈ B(l0(M),R) ≠ ∅. Then

• δ([g1 ∣ g2]) = −δ([g2 ∣ g1]) = 1,

• δ([g1 ∣ gπ]) = −δ([gπ ∣ g1]) = δ([g2 ∣ gπ]) = −δ([gπ ∣ g2]) = −1.

In considering this corollary, rather than Lemma 3.6.1, we only lose the condition that the
group, generated by g1, g2, is free of rank 2. For later use, we let K ′1(R) = 2

5R.
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We need to define a projection that depends on elements g1, g2 ∈ E+(f) that generate a free
group of rank 2 and acts on (R3

+/ ∼). Here, x ∼ y if ∃γ ∈ R+ such that x = γy. We define below
φ(g1,g2) ∶ (R3

+/ ∼) → R2 such that

i) φ(g1,g2)(g1) = (1,0) and φ(g1,g2)(g2) = (0,1),

ii) for α,β ∈ R3
+, φ(g1,g2)(αβ) = φ(g1,g2)(α) + φ(g1,g2)(β).

Write g1 = (g1(1), g1(2), g1(3)) and g2 = (g2(1), g2(2), g2(3)). Let α ∈ R3
+/ ∼ and write α =

(α1, α2, α3). We recall from (3.11) the notation αH = (α1α2α3)
− 1

3 ⋅ α. Write αH = (αH,1, αH,2,

αH,3), we define

φ(g1,g2)(α) ∶= (
log(αH,2) log(g2(1)) − log(αH,1) log(g2(2))

log(g2(1)) log(g1(2)) − log(g2(2)) log(g1(1))
,

log(αH,2) log(g1(1)) − log(αH,1) log(g1(2))

log(g1(1)) log(g2(2)) − log(g1(2)) log(g2(1))
) . (7.1)

Choosing ⟨g1, g2⟩ ⊆ E+(f) to be of finite index, combined with Dirichlet’s unit theorem, gives that
the denominators in (7.1) are non-zero and the terms are therefore well defined. This is equivalent
to the fact that {Log(g1),Log(g2)} is a basis for H over R. The idea for the function φ(g1,g2)

comes from the following. We take Log(α) and then project it onto the hyperplane H (this is
the same as choosing αH). We write the element of H in terms of the basis {Log(g1),Log(g2)}.
It is clear from the definition that we have the properties i) and ii) as required.

Now consider g1, g2 ∈ E+(f) that satisfy the first two properties of Lemma 3.6.1. We define

D(g1, g2) = Ce1([g1 ∣ g2]) ∪Ce1([g2 ∣ g1]). (7.2)

Since we assume g1, g2 satisfy the second property of Lemma 3.6.1, Lemma 3.2.14 gives that
D(g1, g2) is a Colmez domain for ⟨g1, g2⟩. Additionally, we let D(g1, g2) be the union of C([g1 ∣
g2]) ∪ C([g2 ∣ g1]) with all of their boundary cones. Then, D(g1, g2) ⊂ D(g1, g2) and they only
differ on some of the boundary cones. Consider φ(g1,g2)(D(g1, g2)). Write

C1(g1, g2) = φ(g1,g2)(C(1, g1) ∪C(1) ∪C(g1)),

C2(g1, g2) = φ(g1,g2)(C(1, g2) ∪C(1) ∪C(g2)).

Thus, φ(g1,g2)(D(g1, g2)) is bounded by C1 ∪ C2 ∪ ((0,1) + C1) ∪ ((1,0) + C2). We note that C1

and C2 are smooth lines in R2 with an increasing or decreasing derivative. Our next aim is to
calculate the derivatives of C1 and C2 at their endpoints. For i = 1,2 and t ∈ [0,1], let Li(t) be
the line from (1,1,1) to (gi(1), gi(2), gi(3)). We now calculate the projection of the line Li(t)
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under the map z ↦ zH. Explicitly, we have, for t ∈ [0,1],

Li(t)H =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
(1 + t(gi(1) − 1))

2

(1 + t(gi(2) − 1))(1 + t(gi(3) − 1))
)

1
3

,

(
(1 + t(gi(2) − 1))

2

(1 + t(gi(1) − 1))(1 + t(gi(3) − 1))
)

1
3

,

(
(1 + t(gi(3) − 1))

2

(1 + t(gi(1) − 1))(1 + t(gi(2) − 1))
)

1
3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

All the terms in brackets lie in R. We take the cube root in R so that Li(t) ∈ R3. We define
Ci(t) = φ(g1,g2)(Li(t)) = (xi(t), yi(t)) and using our formula for Li(t)H, we calculate

xi(t) =
log ( (1+t(gi(2)−1))2

(1+t(gi(1)−1))(1+t(gi(3)−1))) log(g2(1)) − log (
(1+t(gi(1)−1))2

(1+t(gi(2)−1))(1+t(gi(3)−1))) log(g2(2))

3(log(g2(1)) log(g1(2)) − log(g2(2)) log(g1(1)))
,

yi(t) =
log ( (1+t(gi(2)−1))2

(1+t(gi(1)−1))(1+t(gi(3)−1))) log(g1(1)) − log (
(1+t(gi(1)−1))2

(1+t(gi(2)−1))(1+t(gi(3)−1))) log(g1(2))

3(log(g1(1)) log(g2(2)) − log(g1(2)) log(g2(1)))
.

Let l ≥ 1 be an integer. For i = 1,2 and t ∈ [0,1], let Li,l(t) be the line from (1,1,1) to
(gi(1)

l, gi(2)
l, gi(3)

l). Similar to before, we write Ci,l(t) = φ(g1,g2)(Li,l(t)) = (xi,l(t), yi,l(t)).
We calculate dyi,l(t)

dxi,l(t)(t = 0) and dyi,l(t)
dxi,l(t)(t = 1) for i = 1,2 and l ≥ 1.

Lemma 7.1.3. We have

dyi,l(t)

dxi,l(t)
(t = 0) = (−1)

(2gi(2)
l − gi(1)

l − gi(3)
l) log(g1(1)) − (2gi(1)

l − gi(2)
l − gi(3)

l) log(g1(2))

(2gi(2)l − gi(1)l − gi(3)l) log(g2(1)) − (2gi(1)l − gi(2)l − gi(3)l) log(g2(2))
,

and

dyi,l(t)

dxi,l(t)
(t = 1) =

(−1)
(2gi(2)

−l − gi(1)
−l − gi(3)

−l) log(g1(1)) − (2gi(1)
−l − gi(2)

−l − gi(3)
−l) log(g1(2))

(2gi(2)−l − gi(1)−l − gi(3)−l) log(g2(1)) − (2gi(1)−l − gi(2)−l − gi(3)−l) log(g2(2))
.

Proof. The calculation is long but straightforward. L’Hôpital’s rule is required in both calcula-
tions.

In Lemma 7.1.4, we show that under conditions on the units g1, g2, we have some control over
the derivatives of the curves C1,l(t) and C2,l(t) at t = 0 and t = 1 for large enough l. We then
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show in Lemma 7.1.5 that there exist units as in Lemma 3.6.1 which satisfy these conditions.

Lemma 7.1.4. Let g1, g2 be as above. Assume further that

• g1(2) > g1(1)
−2 > g1(1)

−1 > 1, and

• g2(1) < g2(2) < 1.

Then, we have the limits

1)

lim
l→∞

dy1,l(t)

dx1,l(t)
(t = 0) = (−1)

2 log(g1(1)) + log(g1(2))

2 log(g2(1)) + log(g2(2))
> 0,

2)

lim
l→∞

dy1,l(t)

dx1,l(t)
(t = 1) = (−1)

− log(g1(1)) + log(g1(2))

− log(g2(1)) + log(g2(2))
< 0,

3)

lim
l→∞

dy2,l(t)

dx2,l(t)
(t = 0) = (−1)

− log(g1(1)) + log(g1(2))

− log(g2(1)) + log(g2(2))
< 0,

4)

lim
l→∞

dy2,l(t)

dx2,l(t)
(t = 1) = (−1)

log(g1(1)) + 2 log(g1(2))

log(g2(1)) + 2 log(g2(2))
> 0.

Proof. We first note that since g1, g2 ∈ E+(f) we have gi(3) = gi(1)−1gi(2)−1. We work with each
statement individually. Considering 1), we have

lim
l→∞

dy1,l(t)

dx1,l(t)
(t = 0) = lim

l→∞
(−1)

(2g1(2)
l − g1(1)

l − g1(1)
−lg1(2)

−l) log(g1(1)) − (2g1(1)
l − g1(2)

l − g1(1)
−lg1(2)

−l) log(g1(2))

(2g1(2)l − g1(1)l − g1(1)−lg1(2)−l) log(g2(1)) − (2g1(1)l − g1(2)l − g1(1)−lg1(2)−l) log(g2(2))
.

Dividing the numerator and denominator by g1(2)l, we see that

lim
l→∞

dy1,l(t)

dx1,l(t)
(t = 0) =

lim
l→∞
(−1)

(2 − ( g1(1)
g1(2))

l
− ( g1(1)

−1

g1(2)2 )
l

) log(g1(1)) − (2 (
g1(1)
g1(2))

l
− 1 − ( g1(1)

−1

g1(2)2 )
l

) log(g1(2))

(2 − ( g1(1)
g1(2))

l
− ( g1(1)

−1

g1(2)2 )
l
) log(g2(1)) − (2 (

g1(1)
g1(2))

l
− 1 − ( g1(1)

−1

g1(2)2 )
l
) log(g2(2))

.

Since g1(2) > g1(1)−2 > g1(1)−1 > 1, the fractions ( g1(1)
g1(2))

l
, ( g1(1)

−1

g1(2)2 )
l

→ 0. Hence,

lim
l→∞

dy1,l(t)

dx1,l(t)
(t = 0) = (−1)

2 log(g1(1)) + log(g1(2))

2 log(g2(1)) + log(g2(2))
.
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This value is greater than 0 as, from the conditions we assume, 2 log(g1(1)) + log(g1(2)) > 0 and
2 log(g2(1)) + log(g2(2)) < 0, thus giving 1).

For 2), we have

lim
l→∞

dy1,l(t)

dx1,l(t)
(t = 1) = lim

l→∞
(−1)

(2g1(2)
−l − g1(1)

−l − g1(1)
lg1(2)

l) log(g1(1)) − (2g1(1)
−l − g1(2)

−l − g1(1)
lg1(2)

l) log(g1(2))

(2g1(2)−l − g1(1)−l − g1(1)lg1(2)l) log(g2(1)) − (2g1(1)−l − g1(2)−l − g1(1)lg1(2)l) log(g2(2))
.

Multiplying the numerator and denominator by g1(1)−lg1(2)−l, we see that

lim
l→∞

dy1,l(t)

dx1,l(t)
(t = 1) = lim

l→∞
(−1)

(2 ( g1(1)
−1

g1(2)2 )
l

− ( g1(1)
−2

g1(2) )
l

− 1) log(g1(1)) − (2 (
g1(1)−2
g1(2) )

l

− ( g1(1)
−1

g1(2)2 )
l

− 1) log(g1(2))

(2 ( g1(1)
−1

g1(2)2 )
l
− ( g1(1)

−2

g1(2) )
l
− 1) log(g2(1)) − (2 (

g1(1)−2
g1(2) )

l
− ( g1(1)

−1

g1(2)2 )
l
− 1) log(g2(2))

.

Since g1(2) > g1(1)−2 > g1(1)−1 > 1, the fractions ( g1(1)
−1

g1(2)2 )
l

, ( g1(1)
−2

g1(2) )
l

→ 0. Hence,

lim
l→∞

dy1,l(t)

dx1,l(t)
(t = 1) = (−1)

− log(g1(1)) + log(g1(2))

− log(g2(1)) + log(g2(2))
.

From the conditions we assume, − log(g1(1)) + log(g1(2)) > 0 and − log(g2(1)) + log(g2(2)) > 0.
Hence, we get the correct sign.

For 3), consider liml→∞
dy2,l(t)
dx2,l(t)(t = 0) and multiply the numerator and denominator of the

corresponding fraction by g2(1)lg2(2)l. Since g2(1)l, g2(2)l → 0, we see that

lim
l→∞

dy2,l(t)

dx2,l(t)
(t = 0) = (−1)

− log(g1(1)) + log(g1(2))

− log(g2(1)) + log(g2(2))
.

From the conditions we assume, − log(g1(1)) + log(g1(2)) > 0 and − log(g2(1)) + log(g2(2)) > 0.
Hence, we get the correct sign.

Finally, for 4), consider liml→∞
dy2,l(t)
dx2,l(t)(t = 1) and multiply the numerator and denominator

of the corresponding fraction by g2(1)l. Since g2(1)l, g2(2)l → 0, we see that

lim
l→∞

dy2,l(t)

dx2,l(t)
(t = 1) = (−1)

− log(g1(1)) − 2 log(g1(2))

− log(g2(1)) − 2 log(g2(2))
= (−1)

log(g1(1)) + 2 log(g1(2))

log(g2(1)) + 2 log(g2(2))
.

From the conditions we assume, log(g1(1)) + 2 log(g1(2)) > 0 and log(g2(1)) + 2 log(g2(2)) < 0.
Hence, we get the correct sign.

We now show that it is possible to find elements that satisfy the properties in the statement
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of Lemma 7.1.4. Note that in Lemma 7.1.5 we do not show that g1, g2 generate a finite index
subgroup in E+(f). After the proof of the lemma, we choose r and M to be large enough so that
the conditions of Lemma 3.6.1 are satisfied as well.

Lemma 7.1.5. There exists R2 > 0 such that, for all R > R2 and M > K2(R) (where K2(R)

is some constant we define which depends only on R), we have the following. For i = 1,2, there
exists gi ∈ E+(f) such that Log(gi) ∈ B(li(M),R) and if we write gi = (gi(1), gi(2), gi(3)),

i) g1(2) > g1(1)
−2 > g1(1)

−1 > 1,

ii) g2(1) < g2(2) < 1.

Proof. We only give the proof for g1 since the proof for g2 is similar and easier. Recall that
l1(M) = (−M/2,M,−M/2). Since Log(E+(f)) is a lattice inside H, we are able to fix R2 > 0

such that if R > R2 then, for all M > 0, there exists x = (x1, x2, x3) ∈ E+(f) such that

• Log(x) ∈ B(l1(M),R),

• log(x1) +
M
2
> 0,

• log(x2) −M > 0.

We let K2(R) = 2R and impose that M >K2(R). With this assumption we then have, in addition
to the properties above, log(x1) < 0. The result now follows by noting that i) is equivalent to

i′) log(g1(2)) > −2 log(g1(1)) > − log(g1(1)) > 0.

We fix r > max(R′1,R2,1) and M1 > max(K1(r),K2(r),4K
′
1(r)). We choose g1, g2 ∈ E+(f)

such that, for i = 1,2, Log(gi) ∈ B(li(M1), r) and satisfies i) and ii) in the statement of Lemma
7.1.5, respectively. We remark that the reason for taking 4K ′1(r) rather than simply K ′1(r) will
not be apparent until Lemma 7.1.8. The choices we make here are henceforth fixed. For clarity,
we note that under these conditions we have, by Lemma 3.6.1 and Lemma 7.1.5, the existence
of g1, g2 ∈ E+(f) such that

• ⟨g1, g2⟩ ⊆ E+(f) is a finite index subgroup, free of rank 2,

• δ([g1 ∣ g2]) = −δ([g2 ∣ g1]) = 1,

• g1(2) > g1(1)
−2 > g1(1)

−1 > 1,

• g2(1) < g2(2) < 1.

We fix this choice of g1 and g2 for the remainder of the chapter. We now show that when choosing
our subgroup V , we are allowed to raise our current choices to positive powers. This enables us
to make use of the controls we obtained in Lemma 7.1.4.
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Proposition 7.1.6. For all l ≥ 1, we have

1) ⟨gl1, g
l
2⟩ ⊆ E+(f) is a finite index subgroup, free of rank 2,

2) δ([gl1 ∣ g
l
2]) = −δ([g

l
2 ∣ g

l
1]) = 1.

Proof. Since ⟨g1, g2⟩ is free of rank 2 and finite index, we must have that ⟨gl1, g
l
2⟩ is also free

of rank 2 and finite index. Let i = 1,2 and since Log(gi) ∈ B(li(M1), r), we have Log(gli) ∈
B(li(M1l), rl). Thus, rl ≥ r > R′1 and lM1 > 25rl. By the work immediately following the
statement of Proposition 7.1.1, we therefore get that 2) holds as well.

We are now able to use our choices to control the curves C1,l(t) and C2,l(t).

Corollary 7.1.7. There exists L1 > 0 such that for any l > L1,

i) y1,l(t) ≥ 0,

ii) x2,l(t) ≤ 0,

iii) 0 ≤ x1,l(t) ≤ l,

iv) 0 ≤ y2,l(t) ≤ l,

for all t ∈ [0,1].

Proof. By Lemma 7.1.4, there exists L1 > 0 such that for all l > L1

dy1,l(t)

dx1,l(t)
(t = 0) > 0,

dy1,l(t)

dx1,l(t)
(t = 1) < 0,

dy2,l(t)

dx2,l(t)
(t = 0) < 0,

dy2,l(t)

dx2,l(t)
(t = 1) > 0.

We recall the definition of D(gl1, g
l
2) from (7.2) and note that from 2) in Proposition 7.1.6 we have

the sign properties required to show that D(gl1, g
l
2) forms a fundamental domain for the action

of ⟨gl1, g
l
2⟩ on R3

+. This follows from [6, Lemma 2.2]. From this we deduce two key properties.
Firstly, we have

C1,l ∩ ((0, l) + C1,l) = ∅ and C2,l ∩ ((l,0) + C2,l) = ∅.

Secondly, the curves C1,l and C2,l can only intersect at the endpoints. More precisely, we have

C1,l ∩ C2,l = {(0,0)},

((0, l) + C1,l) ∩ C2,l = {(0, l)},

C1,l ∩ ((l,0) + C2,l) = {(l,0)},

((0, l) + C1,l) ∩ ((l,0) + C2,l) = {(l, l)}.
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Henceforth, we choose l > L1. Note that the map φ(g1,g2) is equivalent to taking a projection
followed by the Log map, followed by a base change. It therefore maps straight lines in R3

+,
which are not contained in rays, to continuous strictly convex curves in R2. We have strictly
convex curves as we can never obtain straight lines in R2 from straight lines in R3

+ that are not
contained in rays. More precisely, let γ(t), t ∈ [0,1], be any straight line of finite length in R3

+
where γ(0) and γ(1) are not both lying on the same ray. Then, we have

{φ(g1,g2)(γ(0)) + k(φ(g1,g2)(γ(1)) − φ(g1,g2)(γ(0))) ∣ k ∈ [0,1]} ∩ {φ(g1,g2)(γ(t)) ∣ t ∈ [0,1]}

= {φ(g1,g2)(γ(0)), φ(g1,g2)(γ(1))}.

We first show ii). Proceeding by contradiction, we suppose that x2,l(T ) > 0 for some T ∈ [0,1].
Since C2,l is strictly convex and contains the points (0,0) and (0, l), we deduce that x2,l(t) ≥ 0
for all t ∈ [0,1]. Since

dy2,l(t)

dx2,l(t)
(t = 0) < 0 and

dy2,l(t)

dx2,l(t)
(t = 1) > 0,

there exist T1, T2 ∈ [0,1] such that y2,l(T1) < 0 and y2,l(T2) > l.
Consider C1,l. Since dy1,l(t)

dx1,l(t)(t = 0) > 0 and C1,l is strictly convex, we must have that y1,l(t) ≤ 0
for all t ∈ [0,1]. Note that if we had y1,l(t) > 0 for some t ∈ [0,1] then C1,l and C2,l would intersect
on at least one point other than (0,0).

We now consider the curve (0, l)+C1,l. Since we have C2,l∩((0, l)+C1,l) = {(0, l)}, y1,l(t) ≤ 0
for all t ∈ [0,1] and the existence of T1, there exists K ∈ [0,1] such that

• l + y1,l(K) < 0,

• x1,l(K) = 0, and

• x1,l(t) ≤ 0 for all t ∈ [0,K].

These three conditions imply that C1,l ∩ ((0, l) + C1,l) ≠ ∅ which is a contradiction. This gives a
contradiction to the existence of T ∈ [0,1] such that x2,l(T ) > 0. Hence, we have that x2,l(t) ≤ 0
for all t ∈ [0,1] and so ii) holds.

To prove i) we again work by contradiction and suppose that y1,l(T ) < 0 for some T ∈ [0,1].
As before, we deduce that y1,l(t) ≤ 0 for all t ∈ [0,1]. Since

dy1,l(t)

dx1,l(t)
(t = 0) > 0 and

dy1,l(t)

dx1,l(t)
(t = 1) < 0,

there exist T1, T2 ∈ [0,1] such that x1,l(T1) < 0 and x1,l(T2) > l. As before, we consider the curve
(0, l)+ C1,l. Using a similar argument as above, we are able to show that C1,l∩((0, l)+ C1,l) ≠ ∅.
This contradiction then gives us that i) holds.

From what we deduced about the derivatives and the fact that the first two statements hold,
it is clear that iii) and iv) must also hold.

73



The results of Corollary 7.1.7, combined with the fact that C1,l and C2,l are strictly convex
curves, gives us that the image of C1,l ∪ C2,l ∪ ((0, l) + C1,l) ∪ ((l,0) + C2,l) is always in a similar
form to the following example. Note that in the image below we choose an example where we
can take l = 1. Throughout the following proofs, one should try to keep the image below in mind.
We give more details on the explicit choices and calculations needed to form this image in the
appendix. Although the image appears to show that the lines C1,l and (l,0)+ C2,l overlap in the
bottom right corner, this in fact does not happen. This only appears in the diagram due to the
fixed thickness of the lines.

Figure 7.1: A Colmez domain chosen as in Corollary 7.1.7.

Using the corollary above, the next lemma shows that we are now able to find an element
of π−1HE+(f) which satisfies properties similar to 3) and 4) of Proposition 7.1.1. Note that the
element we find in the next lemma directly gives rise to an element which satisfies 3) and 4) of
Proposition 7.1.1.

Lemma 7.1.8. There exists L2 > 0 such that for all l > max(L1, L2), there exists α ∈ π−1HE+(f)

such that

• α ∈ C([gl1 ∣ g
l
2]) ∪C([g

l
2 ∣ g

l
1]) ∪C(1, g

l
1g

l
2),

• Log(α) ∈ B(−l0(lM1),4lr).

Proof. We assume that l > L1. By Lemma 7.1.4, we have the limit

d2 = lim
l→∞

dy2,l(t)

dx2,l(t)
(t = 1) > 0.

Then, there exists L′2 > 0 such that for all l > L′2,

dy2,l(t)

dx2,l(t)
(t = 1) >

d2
2
.
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Let θ = arctan(d2/2) > 0, and for Q > 0 define T (θ,Q, (l, l)) to be the triangle drawn below.

(l,l)(l −Q cos(θ),l)

Q

θ

We choose Q big enough such that for all l > 0, there exists α ∈ π−1HE+(f) ∩ T (θ,Q, (l, l)). As
seen in the proof of Lemma 3.6.1, the existence of such a Q follows from Dirichlet’s unit theorem
and, in particular, the non-vanishing of the regulator of a number field. The next idea of the
proof is to make l big enough such that the triangle T (θ,Q, (l, l)) is guaranteed to be contained
inside C([gl1 ∣ g

l
2]) ∪C([g

l
2 ∣ g

l
1]) ∪C(1, g

l
1g

l
2). The triangle is chosen such that, for all l > L′2, it

lies to the left of the curve (l,0) + C2,l. Again by Lemma 7.1.4, we have the limit

d1 = lim
l→∞

dy1,l(t)

dx1,l(t)
(t = 1) < 0.

Then, there exists L′′2 > 0 such that for all l > L′′2 ,

0 >
dy1,l(t)

dx1,l(t)
(t = 1) >

d1
2
.

Note that the first inequality above follows from our assumption that l > L1. Let γ =
− arctan(d1/2) > 0 and define T (γ, (l, l)) to be the triangle drawn below.

(l,0)

(l,l)

γ

Note that for all l > max(L′2, L
′′
2), we have T (θ,Q, (l, l)) ∩ T (γ, (l, l)) ⊂ C([gl1 ∣ g

l
2]) ∪C([g

l
2 ∣

gl1])∪C(1, g
l
1g

l
2). Since the size of T (θ,Q, (l, l)) is fixed, there exists L′′′2 such that for all l > L′′′2 ,

T (θ,Q, (l, l)) ⊂ T (γ, (l, l)). Thus, if we choose L̃2 =max(L′2, L
′′
2 , L

′′′
2 ), then for l > L̃2, there exists

α ∈ π−1HE+(f) such that α ∈ C([gl1 ∣ g
l
2]) ∪C([g

l
2 ∣ g

l
1]) ∪C(1, g

l
1g

l
2). Since Log(gi) ∈ B(li(M1), r),

we have Log(gl1g
l
2) ∈ B(−l0(lM1),2lr). The size of the triangle T (θ,Q, (l, l)) is fixed and always
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has a point at (l, l). It is therefore clear that for l big enough (say l > L̃2
′
) the pre-image of the

triangle before the change of basis is contained in B(−l0(lM1),4lr). Note that we achieved this
by simply doubling the radius of the ball. We finish by setting L2 =max(L̃2, L̃2

′
) to ensure that

we obtain all the required conditions.

We are now ready to prove the proposition we stated at the start of this section.

Proof of Proposition 7.1.1. Let l > max(L1, L2), and write εi = gli for i = 1,2. By Proposition
7.1.6, we get 1) and 2) in Proposition 7.1.1. By Lemma 7.1.8, there exists α ∈ π−1HE+(f) such
that

• α ∈ C([gl1 ∣ g
l
2]) ∪C([g

l
2 ∣ g

l
1]) ∪C(1, g

l
1g

l
2),

• Log(α) ∈ B(−l0(lM1),4lr).

We then define ω = α−1π−1H ∈ E+(f). Since α = π−1H ω−1 = k ⋅π−1ω−1 for some k ∈ R>0, in the second
equality we consider the elements as vectors in R3

+. Hence, we have

ω−1π−1 ∈ C([gl1 ∣ g
l
2]) ∪C([g

l
2 ∣ g

l
1]) ∪C(1, g

l
1g

l
2) ⊂ Ce1([ε1 ∣ ε2]) ∪Ce1([ε2 ∣ ε1]).

Thus, we obtain 4) of the proposition. Now, let gπ = α−1 = πHω. Then,

Log(gπ) ∈ B(l0(lM1),4lr).

Since M1 > 4K
′
1(r) = 4 ⋅ 2

5r, we have lM1 >K
′
1(4lr). Thus, by Lemma 3.6.1, we obtain 3). This

completes the proof of the proposition.

We fix the choice of ε1, ε2 and, for ease of notation, write π = ωπ, as is prescribed by
Proposition 7.1.1. We assume, in addition to the properties given by Proposition 3.6.1, that
⟨ε1, ε2⟩ ≅ Z/b1Z×Z/b1Z with b1, b2 large enough to satisfy the conditions required in Proposition
4.2.2. This is achieved by simply choosing a larger l than in the proof of Proposition 7.1.1, if
required. Let

B ∶= Ce1([ε1 ∣ ε2]) ∪Ce1([ε2 ∣ ε1]).

By 2) of Proposition 7.1.1 and Lemma 3.2.14, this is a Colmez domain for ⟨ε1, ε2⟩. We also define

B1 ∶= Ce1([ε2 ∣ π]) ∪Ce1([π ∣ ε2]),

B2 ∶= Ce1([ε1 ∣ π]) ∪Ce1([π ∣ ε1]).

Then by 3) of Proposition 7.1.1, B1 is a fundamental domain for the action of ⟨ε2, π⟩ on R3
+ and

B2 is a fundamental domain for the action of ⟨ε1, π⟩ on R3
+. We are now ready to show that,

through our choice of ε1, ε2 and π, we can obtain control over the π−1 translate of B.
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Proposition 7.1.9. With the choice of π fixed as before, we have

π−1B⊂
1

⋃
k1=0

2

⋃
k2=0

εk1

1 ε
k2

2 B.

Remark 7.1.10. The purpose of the careful choice of ε1 and ε2 is to obtain this proposition.
In [24], a stronger statement than this is used, [24, Lemma 2.1.3]. However, as stated before,
we obtain a counterexample to this. This counterexample is given explicitly in the appendix. We
note that in the appendix we also give a conjecture which predicts the existence of units such that
a statement similar to [24, Lemma 2.1.3] can hold.

Proof of Proposition 7.1.9. The result of Proposition 7.1.9 follows from the proof of containments
below.

i) π−1C(1, ε1) ⊂B∪ ε1B∪ ε2B∪ ε1ε2B,

ii) π−1C(1, ε2) ⊂B∪ ε2B.

It is enough to show i) and ii) since there are no holes in ⋃1
k1=0⋃

2
k2=0 ε

k1

1 ε
k2

2 B. Thus, if we can
show that the boundary of B lies in ⋃1

k1=0⋃
2
k2=0 ε

k1

1 ε
k2

2 B, then we are done. The combination of
i) and ii) gives us exactly this.

We begin with i). We consider the curves under our map φ(g1,g2). Throughout this proof,
we refer to the positive second coordinate as “up”, the positive first coordinate as “right”, and
similarly for “down” and “left”. Since π−1 is chosen to be in the interior of B, and by Corollary
7.1.7, we must have that φ(g1,g2)(π

−1) lies above C1,l in R2. Since the curve C1,l is strictly
convex, as defined before, we see that the curve

φ(g1,g2)(π
−1) + C1,l lies above ⋃

k∈Z
((kl,0) + C1,l).

By 2) of Proposition 7.1.1, B forms a fundamental domain. From this, it follows that C1,l must
lie between ⋃k∈Z((0, kl) + C2,l) and ⋃k∈Z((l, kl) + C2,l). Hence,

⋃
k∈Z
((0, kl) + C2,l) is to the left of φ(g1,g2)(π

−1) + C1,l is to the left of ⋃
k∈Z
((2l, kl) + C2,l).

At this point, we have shown that

π−1C(1, ε1) ⊂ ⋃
k2≥0

εk2

2 (B∪ ε1B).

Now, suppose that π−1C(1, ε1) ∩ ε22(B∪ ε1B) ≠ ∅. This means that after moving back to R2

we see that there exists a point on C1,l whose value in the second component is greater than 1.
Consider the cone C(1, π−1ε). By 3) of Proposition 7.1.1, we have that B2 is well defined, and
thus π−1B2 is also well defined. Hence, in R2 we must have that φ(g1,g2)(C(1, π

−1ε)) is above
C1,l but also passes below φ(g1,g2)(π

−1). Yet, since there exists a point on C1,l whose second
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component has value greater than 1, the curve φ(g1,g2)(C(1, π
−1ε)) cannot be strictly convex.

This gives us a contradiction. Hence, i) holds.
For ii), we use similar methods as above to deduce that

⋃
k∈Z
((kl,0) + C1,l) is below φ(g1,g2)(π

−1) + C2,l is below ⋃
k∈Z
((kl,2l) + C1,l).

Using Corollary 7.1.7, we have

π−1C(1, ε2) ⊂ ⋃
k1≤0

εk1

1 (B∪ ε2B).

As before, we then use 3) of Proposition 7.1.1 to deduce that C(1, ε2) ∩ π−1C(1, ε2) = ∅. This
allows us to conclude.

Remark 7.1.11. We remark here that for some choices of π, ε1 and ε2 we have the stronger
inclusion

π−1B⊂
1

⋃
k1=0

1

⋃
k2=0

εk1

1 ε
k2

2 B.

In the next section, we need to divide into these two cases. In this section we include examples
of how each case can look to aid the reader when considering our proofs.

7.2 Explicit calculations

Let V = ⟨ε1, ε2⟩, where ε1, ε2 are as chosen before and write ε3 = π. Before continuing we are
required to choose an auxiliary prime λ such that

• λ is π-good for B and DV , where DV is as defined in Proposition 4.2.2,

• λ is good for (DV ,B).

In [8] (after Definition 3.16), Dasgupta notes that given a Shintani domain D all but finitely
many prime ideals η of F , with Nη prime, are π-good for D. In particular, Dasgupta notes that
the set of such primes has Dirichlet density 1. Again in [8] (after the proof of Theorem 5.3),
Dasgupta notes that for any pair of Shintani domain (D,D′) all but finitely many prime ideals
η of F , with Nη prime, are good for D.

It follows that there are an infinite number of primes λ which satisfy the properties written
above. Note that moving from a Shintai domain to a Colmez domain does not cause any issues
here. Hence, such a choice of λ is always possible. We fix this choice of λ henceforth. Proposition
4.2.1 implies

up,λ(b,B) = up,λ(b,DV ).

To prove Theorem 7.0.2, we show, for our choice of V and therefore B, that

up,λ(b,B)) = cid ∩ (ω
p
f,b,λ,V ∩ ϑ

′
V ).
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We show the above equality by explicitly calculating each side. In §6.4, we calculated that

cid ∩ (ω
p
f,b,λ,V ∩ ϑ

′
V ) =

2

∏
i=1
ε
ζR,λ(b,Bi,πOp,0)
i πζR,λ(b,B,Op,0)×∫

O
x d(ζR,λ(b,B, x,0))(x).

We recall the definition

up,λ(b,B)) = ∏
ϵ∈V

ϵζR,λ(b,ϵB∩π−1B,Op,0)πζR,λ(H/F,b,0)×∫
O
x dν(b,B, x) ∈ F ∗p .

Thus, since ζR,λ(b,B,Op,0) = ζR,λ(H/F,b,0), it only remains for us to prove the equality

2

∏
i=1
ε
ζR,λ(b,Bi,πOp,0)
i = ∏

ϵ∈V
ϵζR,λ(b,ϵB∩π−1B,Op,0).

By Proposition 7.1.9, we have

∏
ϵ∈V

ϵζR,λ(b,ϵB∩π−1B,Op,0) = ε
∑2

k2=0
ζR,λ(b,ε1εk2

2 B∩π−1B,Op,0)
1 ε

∑2
k2=1

∑1
k1=0

k2ζR,λ(b,εk1
1 ε

k2
2 B∩π−1B,Op,0)

2 .

Thus, it remains for us to show that the following two equalities hold.

ζR,λ(b,B1, πOp,0) =
2

∑
k2=0

ζR,λ(b, ε1ε
k2

2 B∩ π−1B,Op,0), (7.3)

ζR,λ(b,B2, πOp,0) =
2

∑
k2=1

1

∑
k1=0

k2ζR,λ(b, ε
k1

1 ε
k2

2 B∩ π−1B,Op,0). (7.4)

We begin by considering the left hand side and note that for i = 1,2 by Proposition 3.2.13,

ζR,λ(b,Bi, πOp,0) = ζR,λ(b, π
−1Bi,Op,0).

It is useful for our remaining calculations to make explicit the boundary cones that are
contained in B, B1 and B2. To achieve this, we first define

B′ = C(1) ∪C(1, ε1) ∪C(1, ε2) ∪C(1, ε1ε2) ∪C(1, ε1, ε1ε2) ∪C(1, ε2, ε1ε2).

By Lemma 3.2.13 and the fact that B and B′ are equal up to translation of the boundary cones
by E+(f), we note that for any k1, k2 ∈ {0,1,2} we have

ζR,λ(b, ε
k1

1 ε
k2

2 B∩ π−1B,Op,0) = ζR,λ(b, ε
k1

1 ε
k2

2 B′ ∩ π−1B′,Op,0).

Here we are also making use of the fact that in Proposition 7.1.9 we made no assumptions about
the boundary cones of B. Thus, we henceforth assume that B = B′. We now consider B1 and
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B2. For a, b, c ∈ {0,1}, we define the Shintani sets

B′1(a, b) = C(π
a) ∪C(πb, ε2π

b) ∪C(1, π) ∪C(1, ε2π) ∪C(1, ε2, ε2π) ∪C(1, π, ε2π),

B′2(a, b) = C(π
a) ∪C(πb, ε1π

b) ∪C(1, π) ∪C(1, ε1π) ∪C(1, ε1, ε1π) ∪C(1, π, ε1π).

By the definition of Bi, for i = 1,2, there exists ai, bi ∈ {0,1} such that Bi and B′i(ai, bi) are
equal up to a translation of the boundary cones by E+(f). Thus, by Lemma 3.2.13 we have the
equalities

ζR,λ(b, π
−1B1,Op,0) = ζR,λ(b, π

−1B′1(a1, b1),Op,0),

and
ζR,λ(b, π

−1B2,Op,0) = ζR,λ(b, π
−1B′2(a2, b2),Op,0).

Henceforth, we assume that ai = bi = 1 for i = 1,2 and write Bi =B
′
i(1,1) for i = 1,2. The proof

of our main result in all other cases follows with exactly the same ideas and the calculations are
almost identical. Hence, we fix the choices of B, B1 and B2 we have made. Note that we can
make the same choice of B in all cases. We now recall that from this point on we assumed

B= C(1) ∪C(1, ε1) ∪C(1, ε2) ∪C(1, ε1ε2) ∪C(1, ε1, ε1ε2) ∪C(1, ε2, ε1ε2),

B1 = C(π) ∪C(π, ε2π) ∪C(1, π) ∪C(1, ε2π) ∪C(1, ε2, ε2π) ∪C(1, π, ε2π),

B2 = C(π) ∪C(π, ε1π) ∪C(1, π) ∪C(1, ε1π) ∪C(1, ε1, ε1π) ∪C(1, π, ε1π).

With these choices, we now show that the equalities (7.3) and (7.4) hold. We begin with the
following simple lemma.

Lemma 7.2.1. We have the following inclusions

π−1B1 ⊂B∪ ε2B,

π−1B2 ⊂
1

⋃
k1=0

1

⋃
k2=0

εk1

1 ε
k2

2 B.

Proof. We begin by considering B1. By definition we have that π−1B1 is bounded by the cones

C(1),C(π−1),C(ε2),C(ε2π
−1),C(1, ε2),C(1, π

−1),C(ε2, ε2π
−1),C(π−1, ε2π

−1).

Note that not all of the above cones are contained in π−1B1. By the definition of B and the fact
that π−1 ∈B, we see that all of the following Shintani cones are contained in B∪ ε2B,

C(1),C(π−1),C(ε2),C(ε2π
−1),C(1, ε2),C(1, π

−1),C(ε2, ε2π
−1).

It remains for us to show that C(π−1, ε2π−1) ⊂B∪ ε2B. Since C(π−1, ε2π−1) and
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C(ε1π
−1, ε1ε2π

−1) are boundary cones for π−1B, Proposition 7.1.9 gives the inclusions

C(π−1, ε2π
−1) ⊂

1

⋃
k1=0

2

⋃
k2=0

εk1

1 ε
k2

2 B,

C(ε1π
−1, ε1ε2π

−1) ⊂
1

⋃
k1=0

2

⋃
k2=0

εk1

1 ε
k2

2 B.

These inclusions together imply that

C(π−1, ε2π
−1) ⊂

2

⋃
k2=0

εk2

2 B.

If we write φ(g1,g2)(π
−1) = (a, b) then, by the choices made in Lemma 7.1.8, we see that

b < l. Hence, by Corollary 7.1.7, the curve φ(g1,g2)(C(π
−1, ε2π

−1)) = φ(g1,g2)(π
−1) + C2,l lies

strictly below the curve (0,2l) + C2,l, while still being contained in ⋃2
k2=0 ε

k2

2 B. Hence, we have
C(π−1, ε2π

−1) ⊂B∪ ε2B. This gives us the result for B1.
The proof of the result for B2 is almost identical. As before, we use Proposition 7.1.9 to deal

with the cone C(π−1, ε1π−1).

Using the above lemma, we deduce

ζR,λ(b, π
−1B1,Op,0) = ζR,λ(b, (π

−1B1 ∩B) ∪ ε
−1
2 (π

−1B1 ∩ ε2B),Op,0)

and

ζR,λ(b, π
−1B2,Op,0) = ζR,λ(b, (π

−1B2 ∩B) ∪ ε
−1
1 (π

−1B2 ∩ ε1B),Op,0)

+ ζR,λ(b, π
−1B2 ∩ (ε2B∪ ε1ε2B),Op,0).

We now need to consider two possible cases. It is possible that the final zeta function in the sum
above is 0. This will happen when, as noted in Remark 7.1.11, we have the stronger inclusion

π−1B⊂
1

⋃
k1=0

1

⋃
k2=0

εk1

1 ε
k2

2 B,

rather than that which is written in the statement of Proposition 7.1.9. We note that in this
case, the sums on the right hand side of (7.3) and (7.4) become

1

∑
k2=0

ζR,λ(b, ε1ε
k2

2 B∩ π−1B,Op,0)

and
1

∑
k1=0

ζR,λ(b, ε
k1

1 ε2B∩ π
−1B,Op,0),
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respectively.
In the following proposition, we need to divide the proof into two cases to deal with this

possibility. In the case of the stronger inclusion, the following proposition completes the proof
of Theorem 7.0.2. We refer to the case of the stronger inclusion as Case 1 and the other as Case
2. We now include two pictures showing how Case 1 and Case 2 can arise in the example from
before by making different choices of π. Note that we can choose π up to a factor of E+(f).
Both these diagrams are calculated by making explicit choices. As before we give more details
in the appendix. In each of the diagrams the blue lines are boundary cones of the translates of
B required in each case, and the red lines are the boundary cones of π−1B for each choice of π.
We note as before that although the image appears to show that some of the lines overlap, this
does not happen. This only occurs in the diagram due to the fixed thickness of the lines.

Figure 7.2: Case 1 Figure 7.3: Case 2

Remark 7.2.2. Figure 7.3, which concerns Case 2, is not chosen by the methods outlined in
Lemma 7.1.8. The reason for this is that the calculations necessary to draw the figures work
poorly when working with subgroups V ⊂ E+(f) of large index. Thus, for the units we chose for
the figures, Lemma 7.1.8 cannot give rise to an element π so that we are in Case 2. However,
to give the reader an idea of how this case would look we find a choice of π−1 that lies in the
Colmez domain and is close to the region that Lemma 7.1.8 gives to contain π−1. Note that when
working with subgroups V ⊂ E+(f) of large index, we are not able to guarantee that there exists
a choice of π−1 in the region given by Lemma 7.1.8 such that we always land in Case 1. Hence,
we must continue to work with both cases.
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Proposition 7.2.3. In Case 1, we have

ζR,λ(b, (π
−1B1 ∩B) ∪ ε

−1
2 (π

−1B1 ∩ ε2B),Op,0) =
1

∑
k2=0

ζR,λ(b, ε1ε
k2

2 B∩ π−1B,Op,0),

ζR,λ(b, (π
−1B2 ∩B) ∪ ε

−1
1 (π

−1B2 ∩ ε1B),Op,0) =
1

∑
k1=0

ζR,λ(b, ε
k1

1 ε2B∩ π
−1B,Op,0).

In Case 2, we have

ζR,λ(b, (π
−1B1 ∩B) ∪ ε

−1
2 (π

−1B1 ∩ ε2B),Op,0) =
2

∑
k2=0

ζR,λ(b, ε1ε
k2

2 B∩ π−1B,Op,0),

ζR,λ(b, (π
−1B2 ∩B) ∪ ε

−1
1 (π

−1B2 ∩ ε1B),Op,0) =
1

∑
k1=0

2

∑
k2=1

ζR,λ(b, ε
k1

1 ε
k2

2 B∩ π−1B,Op,0).

Proof. We first calculate

2

∑
k2=0

ζR,λ(b, ε1ε
k2

2 B∩ π−1B,Op,0) = ζR,λ(b,
2

⋃
k2=0

ε−11 ε−k2

2 (ε1ε
k2

2 B∩ π−1B),Op,0),

1

∑
k1=0

2

∑
k2=1

ζR,λ(b, ε
k1

1 ε
k2

2 B∩ π−1B,Op,0) = ζR,λ(b,
1

⋃
k1=0

2

⋃
k2=1

ε−k1

1 ε−k2

2 (ε
k1

1 ε
k2

2 B∩ π−1B),Op,0).

Thus, if we can show the following equalities of Shintani sets

(π−1B1 ∩B) ∪ ε
−1
2 (π

−1B1 ∩ ε2B) =
2

⋃
k2=0

ε−11 ε−k2

2 (ε1ε
k2

2 B∩ π−1B), (7.5)

(π−1B2 ∩B) ∪ ε
−1
1 (π

−1B2 ∩ ε1B) =
1

⋃
k1=0

2

⋃
k2=1

ε−k1

1 ε−k2

2 (ε
k1

1 ε
k2

2 B∩ π−1B), (7.6)

then we are done. To show the above, we need to calculate each side in terms of explicit Shintani
cones. We begin by showing (7.5). Recall that we defined the following

B= C(1) ∪C(1, ε1) ∪C(1, ε2) ∪C(1, ε1ε2) ∪C(1, ε1, ε1ε2) ∪C(1, ε2, ε1ε2),

π−1B1 = C(1) ∪C(1, ε2) ∪C(1, π
−1) ∪C(π−1, ε2) ∪C(π

−1, ε2, ε2π
−1) ∪C(1, ε2, π

−1).

Let α ∈ C(π−1, ε2π−1) ∩C(ε2, ε1ε2), we then have

π−1B1 ∩B= C(1) ∪C(1, ε2) ∪C(1, π
−1) ∪C(π−1, ε2) ∪C(ε2, π

−1, α) ∪C(1, ε2, π
−1)

and
π−1B1 ∩ ε2B= C(ε2, α) ∪C(ε2, α, ε2π

−1).
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We can now explicitly write the left hand side of (7.5). In particular, we have

(π−1B1 ∩B) ∪ ε
−1
2 (π

−1B1 ∩ ε2B)

= C(1) ∪C(1, ε2) ∪C(1, π
−1) ∪C(π−1, ε2) ∪C(ε2, π

−1, α) ∪C(1, ε2, π
−1)

∪C(1, ε−12 α) ∪C(1, ε−12 α,π−1).

We now consider the right hand side of (7.5). Suppose that we are in Case 1. Then, the right hand
side of (7.5) becomes ε−11 (ε1B∩π

−1B)∪ε−11 ε−12 (ε1ε2B∩π
−1B). Let β ∈ C(ε1, ε1ε2)∩C(π−1, π−1ε1).

We can then calculate

ε1B∩ π
−1B=

C(β) ∪C(β, ε1ε2) ∪C(β, ε1π
−1) ∪C(ε1ε2, ε1π

−1) ∪C(ε1ε2, β, ε1π
−1) ∪C(ε1ε2, ε1α, ε1π

−1)

and

ε1ε2B∩ π
−1B= C(ε1ε2) ∪C(ε1ε2, ε2β) ∪C(ε1ε2, ε1α) ∪C(ε1ε2, ε1ε2π

−1)

∪C(ε1ε2, ε1α, ε1ε2π
−1) ∪C(ε1ε2, ε2β, ε1ε2π

−1).

Using the fact that β ∈ C(ε1, ε1ε2), we have

(ε1B∩ π
−1B) ∪ ε−12 (ε1ε2B∩ π

−1B)

= C(ε1) ∪C(ε1, ε1ε2) ∪C(ε1, ε1π
−1) ∪C(ε1π

−1, ε1ε2) ∪C(ε1ε2, ε1π
−1, ε1α) ∪C(ε1, ε1ε2, ε1π

−1)

∪C(ε1, ε1ε
−1
2 α) ∪C(ε1, ε1ε

−1
2 α, ε1π

−1).

By multiplying the above by ε−11 , it is then clear that (7.5) holds in Case 1. The proof of (7.5) in
Case 2 is very similar. The extra calculations which arise from being in Case 2 are very similar
to those which we deal with in our proof of (7.6) in Case 2.

We now consider (7.6). In Case 1, the proof is symmetric to the proof of (7.5) in Case 1. So
it only remains to show (7.6) when we are in Case 2. Let α ∈ C(π−1, ε1π−1) ∩ C(ε2, ε1ε2) and
β ∈ C(π−1, ε1π

−1) ∩C(ε1ε2, ε
2
1ε2). Using similar calculations as before, we deduce

(π−1B2 ∩B) ∪ ε
−1
1 (π

−1B2 ∩ ε1B)

= C(1) ∪C(1, ε2) ∪C(1, ε1) ∪C(1, ε
−1
1 β) ∪C(1, π−1) ∪C(π−1, ε1) ∪C(π

−1, ε1ε2)

∪C(1, ε2, ε
−1
1 β) ∪C(1, π−1, ε−11 β) ∪C(1, π−1, ε1) ∪C(ε1, π

−1, ε1ε2) ∪C(π
−1, α, ε1ε2).

We are able to calculate that the same is also true for ⋃1
k1=0⋃

2
k2=1 ε

−k1

1 ε−k2

2 (ε
k1

1 ε
k2

2 B′ ∩ π−1B′)

and thus we complete the proof.
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This final proposition completes the proof of Theorem 7.0.2.

Proposition 7.2.4. If we are in Case 2, then

ζR,λ(b, (ε2B∪ ε1ε2B) ∩B2,Op,0) = ζR,λ(b, (ε1ε2B∪ ε
2
2B) ∩ π

−1B,Op,0).

Proof. Lemma 3.2.13 implies that it is enough to show the following equality of Shintani sets

(ε2B∪ ε1ε2B) ∩B2 = ε
−1
2 ((ε1ε2B∪ ε

2
2B) ∩ π

−1B).

Again letting α ∈ C(π−1, ε1π−1) ∩C(ε2, ε1ε2) and β ∈ C(π−1, ε1π
−1) ∩C(ε1ε2, ε

2
1ε2), we are able

to calculate that each side of the above equation is equal to

C(ε1ε2) ∪C(α, ε1ε2) ∪C(ε1ε2, β) ∪C(α, ε1ε2, β).

This concludes the result.

We end this chapter by proving Theorem 7.0.1. The key step is to note that since we have
shown

up,λ(b,DV ) = cid ∩ (ω
p
f,b,λ,V ∩ ϑ

′
V ),

then by Proposition 4.2.2 and Proposition 6.2.1, we have

up,λ(b,D) = γ[E+(f)∶V ](cid ∩ (ω
p
f,b,λ ∩ ϑ

′)),

where γ[E+(f)∶V ] is a root of unity of order [E+(f) ∶ V ]. To prove Theorem 7.0.1, it is thus enough
for us to find two free subgroups, V,V ′ ⊆ E+(f), such that they are small enough to use in our
work for Theorem 7.0.2 and such that gcd([E+(f) ∶ V ], [E+(f) ∶ V

′]) = 1.

Proof of Theorem 7.0.1. When we choose g1 and g2, we do so such that Log(gi) ∈ B(li(M1), r)

where r and M1 are as we write after Lemma 7.1.5. Note that there is no upper bound on these
choices. It is therefore clear that if we allow r and M1 to be large enough, we can choose g1, g2
and g′1, g

′
2 such that

• ⟨g1, g2⟩ and ⟨g′1, g
′
2⟩ are free of rank 2,

• g1, g2 and g′1, g
′
2 satisfy the properties of Lemma 7.1.5, and

• [E+(f) ∶ ⟨g1, g2⟩] and [E+(f) ∶ ⟨g′1, g
′
2⟩] are coprime.

Next, we raise g1, g2 by a large power l in Corollary 7.1.7 and Lemma 7.1.8. Again, the only
condition on l is that it is greater than a fixed lower bound. Hence, we can choose l and l′ such
that they are coprime to each other and to

[E+(f) ∶ ⟨g1, g2⟩][E+(f) ∶ ⟨g
′
1, g
′
2⟩].
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We then get V = ⟨gl1, g
l
2⟩ and V ′ = ⟨(g′1)

l′ , (g′2)
l′⟩. Following our work for Theorem 7.0.2, we then

see that

up,λ(b,DV ) = cid ∩ (ω
p
f,b,λ,V ∩ ϑ

′
V ) and up,λ(b,DV ′) = cid ∩ (ω

p
f,b,λ,V ′ ∩ ϑ

′
V ′).

Hence,
up,λ(b,D) = γ[E+(f)∶V ](cid ∩ (ω

p
f,b,λ ∩ ϑ

′)),

and
up,λ(b,D) = γ[E+(f)∶V ′](cid ∩ (ω

p
f,b,λ ∩ ϑ

′)).

In the above, γ[E+(f)∶V ] is a root of order [E+(f) ∶ V ] and γ[E+(f)∶V ′] is a root of order [E+(f) ∶ V ′].
Our choice of V and V ′ gives that gcd([E+(f) ∶ V ], [E+(f) ∶ V

′]) = 1. By the above equations
we see that γ[E+(f)∶V ] = γ[E+(f)∶V ′]. Since the orders of these roots of unity are coprime we can
deduce that, in fact, γ[E+(f)∶V ] = γ[E+(f)∶V ′] = 1. Thus we have the result.
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Chapter 8

Comparing the Formulas for
General Fields

In this chapter, we prove the main result of this thesis. In particular we prove Theorem 2.3.7.
The work we present in this chapter is joint with Dasgupta. We prove that u1 = u2 = u3 for any
totally real field F . We show this in two steps. We firstly show that u2 = u3. This proof does not
offer much insight into the formulas as it is largely computational in nature. We then present
the proof which shows that u1 = u2. The proof here, compared to the proof of u2 = u3, is much
more elegant; rather than working completely explicitly with the formulas, we show that they
each satisfy a functorial property which we then show is strong enough to imply that they must
in fact be equal. More precisely, we show that u1 and u2 satisfy a norm compatibility relation.

8.1 Proof that u2 is equal to u3

In this section, we begin our proof of the main result of this thesis, namely Theorem 2.3.7. We
prove the following theorem.

Theorem 8.1.1. We have
u2 = u3.

Proof. Let V be finite index subgroup of E+ free of rank n − 1. We show that

u2(V ) = u3(V ).

By Proposition 5.3.1 and Proposition 6.2.1, we have that for each σ ∈ G,

u2(V,σ) = u2(σ)
[E+∶V ] and u3(V,σ) = u3(σ)

[E+∶V ].

Then, by working with subgroups of coprime orders, as in the proof of Theorem 7.0.1, we have
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the result of the theorem. We now recall the explicit calculations for u2(V ) and u3(V ) as given
in §5.4 and §6.3, respectively.

u2(V ) = Eis0F ∩ (∆∗(cid ∩ ρH/F,V )) =

∑
σb∈G

((
n−1
∏
i=1

ε
LR,λ(b,Bi,πOp;0)
i )πLR,λ(b,B,πOp;0)×∫

O
x dLR,λ(b,B, x; 0)) ⊗ σ

−1
b ) ,

and

u3(V ) =
h

∑
k=1

recH/F (bk)−1 ((
n−1
∏
i=1

ε
LR,λ(Bi,bk,πOp×∏r

j=2 Opj
,0)

i )πLR,λ(B,bk,OSp ,0)

×∫
O
x d(LR,λ(B,bk, x ×

r

∏
j=2

Opj ,0))
⎞

⎠
.

Let i = 1, . . . , n and k = 1, . . . , h. We now note that for U ⊆ Op, and s ∈ C with Re(s) > 1, we have

LR(Bi,bk, U ×
r

∏
j=2

Opj , s) = (Nbk)
−s

∑
ξ∈Bi∩(bk)−1Sp

, ξ∈U×∏r
j=2 Opj

(ξ,R)=1

recH/F ((ξ))−1

Nξs

= (Nbk)
−s

∑
ξ∈F∩Bi, ξ∈U
ξ∈b−1k (ξ,R)=1

recH/F ((ξ))−1

Nξs
. (8.1)

We write
LR,λ(Bi,bk, U ×

r

∏
j=2

Opj ,0) = ∑
σ∈G

LR,λ(σ,Bi,bk, U,0) ⊗ σ
−1

where LR,λ(σ,Bi,bk, U,0) ∈ Z. We recall that in §3.4 we have defined that for L = ∑σ∈G aσ ⊗σ ∈

Z[G] we have, for α ∈ F ∗p ,
αL = ∑

σ∈G
αaσ ⊗ σ−1.

It then follows from the definitions of LR,λ and LR,λ, and the calculation in (8.1), that for α ∈ F ∗p ,

h

∑
k=1
∑

σb∈G
αLR,λ(σb,Bi,bk,U,0) ⊗ σ−1bi

σ−1b = ∑
σb∈G

αLR,λ(b,Bi,U ;0) ⊗ σ−1b .

This completes the proof that u2(V ) = u3(V ).

8.2 Proof that u1 is equal to u2

In this section, we complete the proof of Theorem 2.3.7. We show the following theorem.
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Theorem 8.2.1. For all σ ∈ G, we have

u1(σ) = u2(σ).

Here we have no assumptions on the degree of F . The approach of this proof is very different
to that used in Chapter 7 and §8.1. Rather than explicitly calculating the error terms, we show
a strong enough functorial property for each of the formulas which forces them to be equal. In
particular, we prove a norm compatibility property for each of the formulas u1 and u2. This
approach allows us to avoid the complexities arising from working explicitly with Shintani sets
and their translates, as we saw in Chapter 7.

Let H ⊂ H ′ be two finite abelian extensions of F in which p splits completely. Let ff′ be the
conductor of H ′/F where, as before, f is the conductor of H/F . Let σ ∈ G. Write u1(σ,H) and
u2(σ,H) for σ components of the formulas u1 and u2, for the extension H/F and Galois group
element σ. We show for i = 1 in §8.3, and for i = 2 in §8.4, that

ui(σ,H) = ∏
τ∈G′
τ ∣H=σ

ui(τ,H
′). (8.2)

We refer to (8.2) as norm compatibility for ui. For now we assume that the above equality holds
for i = 1,2. We prove this in the following sections of this chapter. We now prove the following
proposition, note that here the congurences are taken multiplicatively.

Proposition 8.2.2. We have

u1(σ,H) ≡ u2(σ,H) (mod E+(f)).

Proof. Let V be a free, finite index subgroup of E+(f) of rank n − 1 satisfying the conditions
given in the statement of Proposition 4.2.2. We then let V ′ be a free, finite index subgroup of
E+ of rank n − 1, contained in V , such that [E+ ∶ V ′] = [E+(f) ∶ V ]. Furthermore, we can choose
V ′ such that if V ′ = ⟨ε′1, . . . , ε

′
n−1⟩ then the ε′i with π′ satisfy Lemma 3.6.1. By Theorem 8.1.1

and Proposition 6.2.2, we have

u2(V
′, σ) = u3(V

′, σ) = u′3(V,σ).

We now recall from §6.4 the explicit description of u′3(V,σ),

u′3(V,σ) = cid ∩ (ω
p
f,b,λ,V ∩ ϑ

′
V )

=
n−1
∏
i=1

ε
ζR,λ(b,Bi,πOp,0)
i πζR,λ(b,B,Op,0)×∫

O
x d(ζR,λ(b,B, x,0))(x).

89



In (4.2), we defined

u1(V,σ) = ∏
ϵ∈V

ϵζR,λ(b,ϵB∩π−1B,Op,0)πζR,λ(b,B,Op,0)×∫
O
x dν(b,B, x),

where
B= ⋃

τ∈Sn−1

Ce1([ετ(1) ∣ . . . ∣ ετ(n−1)]).

Thus, u1(V,B,b) ≡ u′3(V,σ) (mod E+(f)) and hence u1(V,B,b) ≡ u2(V,σ) (mod E+(f)). Work-
ing with coprime choices for V allows us to complete the proof of this proposition.

Assuming that (8.2) holds, we can give the proof of the main theorem of this section.

Proof of Theorem 8.2.1. From Proposition 8.2.2, we have that for each τ ∈ G′,

u1(τ,H
′) ≡ u2(τ,H

′) (mod E+(ff
′)).

Our assumption that (8.2) holds then gives that for each σ ∈ G,

u1(σ,H) ≡ u2(σ,H) (mod E+(ff
′)).

Repeating this for enough field extensions H ′/H/F shows that

u1(σ,H) = u2(σ,H).

This completes the proof.

8.3 Norm compatibility for u1

To work with the definition for u1(σ,H ′), we introduce some additional notation. The reciprocity
map identifies Gal(H ′/H) with

{β ∈ (OF /ff
′)∗ ∣ β ≡ 1 (mod f)}/E+(f)p. (8.3)

We let Df be a Shintani domain for E+(f) and define

Dff′ = ⋃
γ∈E+(f)/E+(ff′)

γDf,

where the union is over a set of representatives {γ} for E+(ff′) in E+(f). Let e′ be the order of p
in Gff′ , and suppose that pe

′

= (π′) with π′ totally positive and π′ ≡ 1 (mod ff′). We can choose
π′ such that π′ = πα for some α ≥ 1. We then define O′ = Op − π′Op.

Let B denote a set of totally positive elements of OF which are relatively prime to S and λ

and whose images in (OF /ff′)∗ are a set of distinct representatives for (8.3).
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The following theorem is stated by Dasgupta in [8, Theorem 7.1]. For completeness, we
include a proof of this theorem here.

Theorem 8.3.1 (Theorem 7.1, [8]). We have

u1(σb,Df) = ∏
β∈B

u1(σb(β), β
−1Dff′).

The strategy of this proof is to explicitly calculate the product over β ∈ B and show that it
is equal to u1(σb,Df). The key to these calculations is to use translation properties of Shintani
sets. We begin by introducing some additional notation that will be used for the proof of this
theorem. For a subset A, of equivalence classes of (8.3), we let νA(b,D, U) = ζAR,λ(b,D, U,0),
where ζAR is the zeta function

ζAR(b,D, U, s) = Nb−s ∑
α∈b−1∩D, α∈U
α∈A, (α,R)=1

Nα−s.

This definition extends to ζAR,λ as in (2.4). Throughout this section we will use the following
simple equality,

ν{π−1}(b,D, U) = ν{1}(b, πD, πU).

This follows from Lemma 3.2.13. Let β ∈ B. We recall the following definition,

u1(σb(β), β
−1Dff′) = ϵ(b(β), β

−1Dff′ , π
′)(π′)ζR,λ(Hff′ /F,b(β),0)×∫

O′
x dν(b(β), β−1Dff′ , x).

It is clear from the definition of B that Theorem 8.3.1 follows from the following theorem.

Theorem 8.3.2. Let β ∈ B. We then have

u1(σb(β), β
−1Dff′)

=
⎛

⎝
∏

ϵ∈E+(f)
ϵνB(b(β),ϵβ−1Df∩π−1β−1Df,Op)⎞

⎠
πνB(b(β),Df,Op)×∫

O
x dνB(b(β), β

−1Df, x).

The proof of Theorem 8.3.2 is largely an exercise in explicit calculation. We begin by consid-
ering the multiplicative integral in u1(σb(β), β−1Dff′).
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Lemma 8.3.3. We have

×∫
O′
x dν(b(β), β−1Dff′ , x)

= (
α−1
∏
i=1

πiν(b(β),Dff′ ,π
iO))
⎛

⎝

α−1
∏
i=0

∏
ϵ∈E+(ff′)

ϵν{π−i}(b(β),ϵβ
−1Dff′∩π−iβ−1Dff′ ,O)⎞

⎠

⎛

⎝
∏

γ∈E+(f)/E+(ff′)
γνA(b(β),γβ−1Df,O)⎞

⎠
×∫
O
x dνB(b(β), β

−1Df, x).

Proof. Since π′ = πα and O′ = Op − π′Op, we have O′ = ⋃α−1
i=0 π

iO. Then

×∫
O′
x dν(b(β), β−1Dff′ , x) =

α−1
∏
i=0
×∫
πiO

x dν(b(β), β−1Dff′ , x).

For ease of notation we define I(β) to be equal to the multiplicative integral in u1(σb(β), β−1Dff′).
By a change of variables and then factoring out πi, we have

I(β) = (
α−1
∏
i=1

πiν(b(β),Dff′ ,π
iO))

α−1
∏
i=0
×∫
O
x dν(b(β), β−1Dff′ , π

ix)

= (
α−1
∏
i=1

πiν(b(β),Dff′ ,π
iO))

α−1
∏
i=0
×∫
O
x dν{π−i}(b(β), π

−iβ−1Dff′ , x).

We now note that we can write, for i = 1, . . . , α − 1,

π−iDff′ = ⋃
ϵ∈E+(ff′)

(ϵDff′ ∩ π
−iDff′).

Then,

α−1
∏
i=0
×∫
O
x dν{π−i}(b(β), π

−iβ−1Dff′ , x)

=
α−1
∏
i=0

∏
ϵ∈E+(ff′)

×∫
O
x dν{π−i}(b(β), ϵβ

−1Dff′ ∩ π
−iβ−1Dff′ , x)

=
⎛

⎝

α−1
∏
i=0

∏
ϵ∈E+(ff′)

ϵν{π−i}(b(β),ϵβ
−1Dff′∩π−iβ−1Dff′ ,O)⎞

⎠
×∫
O
x dνA(b(β), β

−1Dff′ , x)

where A = {1, π−1, . . . , πα−1}. Then, since Dff′ = ⋃γ∈E+(f)/E+(ff′) γDf, we can write

×∫
O
x dνA(b(β), β

−1Dff′ , x) =
⎛

⎝
∏

γ∈E+(f)/E+(ff′)
γνA(b(β),γβ−1Df,O)⎞

⎠
×∫
O
x dν⟨A,E⟩(b(β), β

−1Df, x)
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where E = E+(f)/E+(ff′). Thus we have, noting that B = ⟨A,E⟩,

I(β) = (
α−1
∏
i=1

πiν(b(β),Dff′ ,π
iO))
⎛

⎝

α−1
∏
i=0

∏
ϵ∈E+(ff′)

ϵν{π−i}(b(β),ϵβ
−1Dff′∩π−iβ−1Dff′ ,O)⎞

⎠

⎛

⎝
∏

γ∈E+(f)/E+(ff′)
γνA(b(β),γβ−1Df,O)⎞

⎠
×∫
O
x dνB(b(β), β

−1Df, x).

We now consider the powers of π given in the definition of u1(σb(β), β−1Dff′) and arising in
the result of Lemma 8.3.3. Recall that π′ = πα.

Lemma 8.3.4. We have

(
α−1
∏
i=1

πiν(b(β),Dff′ ,π
iO))παζR,λ(Hff′ /F,b(β),0) = πνB(b(β),Df,Op).

Proof. Since πiO = πiOp − π
i+1Op we have, by a telescope argument,

α−1
∑
i=1

iν(b(β),Dff′ , π
iO) = −(α − 1)ν(b(β),Dff′ , π

αOp) +
α−1
∑
i=1

ν(b(β),Dff′ , π
iOp).

Recalling the definition of Dff′ we also note that for i = 0, . . . , α − 1, we have

ν(b(β),Dff′ , π
iOp) = νE(b(β),Df, π

iOp).

Thus, we can calculate, using the fact that ζR,λ(Hff′/F,b(β),0) = ν(b(β),Dff′ ,Op),

(
α−1
∏
i=1

πiν(b(β),Dff′ ,π
iO))παζR,λ(Hff′ /F,b(β),0)

=(
α−1
∏
i=1

πν(b(β),Dff′ ,π
iOp))π−(α−1)ν(b(β),Dff′ ,π

αOp)παν(b(β),Dff′ ,Op)

=(
α−1
∏
i=1

πνE(b(β),Df,π
iOp))π−(α−1)νE(b(β),Df,π

αOp)πανE(b(β),Df,Op).

Let i = 1, . . . , α. By Lemma 3.2.13, we have that,

νE(b(β),Df, π
iOp) = νE,{π−i}(b(β), π

−iDf,Op).
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We can then write πiDf = ⋃δ∈E+(f) δDf ∩ π
−iDf. Then

νE,{π−i}(b, π
−iDf,Op) = ∑

δ∈E+(f)
νE,{π−i}(b, δDf ∩ π

−iDf,Op)

= ∑
δ∈E+(f)

νE,{π−i}(b,Df ∩ δπ
−iDf,Op)

= νE,{π−i}(b,Df,Op).

Remarking that {π−α} = {1} then allows us to use the above calculations to deduce that

(
α−1
∏
i=1

πiν(b(β),Dff′ ,π
iO))παζR,λ(Hff′ /F,b(β),0) =

α−1
∏
i=0

πνE,{π−i}(b(β),Df,Op) = πν⟨A,E⟩(b(β),Df,Op).

Noting again that B = ⟨A,E⟩ completes the proof.

We now consider the error term in the definition of u1(σb(β), β−1Dff′) and the products of
elements of E+(f) which arise in Lemma 8.3.3. Considering Lemma 8.3.3 and Lemma 8.3.4, we
can see that to prove Theorem 8.3.2 it is enough to prove the following proposition.

Proposition 8.3.5. We have

Err(β) = ∏
ϵ∈E+(f)

ϵνB(b(β),ϵβ−1Df∩π−1β−1Df,Op)

where

Err(β) = ϵ(b(β), β−1Dff′ , π
′)
⎛

⎝

α−1
∏
i=0

∏
ϵ∈E+(ff′)

ϵν{π−i}(b(β),ϵβ
−1Dff′∩π−iβ−1Dff′ ,O)⎞

⎠

⎛

⎝
∏

γ∈E+(f)/E+(ff′)
γνA(b(β),γβ−1Df,O)⎞

⎠
.

For clarity, we perform the calculations required for this proposition in a few lemmas.

Lemma 8.3.6. We have

Err(β) =
⎛

⎝
∏

ϵ∈E+(f)
ϵνE(b(β),ϵβ−1Df∩π−αβ−1Df,Op)⎞

⎠

⎛

⎝

α−1
∏
i=1

∏
ϵ∈E+(f)

ϵν⟨E,{π−i}⟩(b(β),ϵβ
−1Df∩π−iβ−1Df,O)⎞

⎠
.
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Proof. Considering the definition of Dff′ , we can calculate

ϵ(b(β), β−1Dff′ , π
′)

= ∏
ϵ∈E+(ff′)

ϵν(b(β),ϵβ
−1Dff′∩π−αβ−1Dff′ ,Op)

= ∏
ϵ∈E+(ff′)

∏
γ∈E+(f)/E+(ff′)

ϵν(b(β),ϵγβ
−1Df∩π−αβ−1Dff′ ,Op)

=
⎛

⎝
∏

γ∈E+(f)/E+(ff′)
γ−ν(b(β),γβ

−1Df,Op)⎞

⎠

⎛

⎝
∏

ϵ∈E+(f)
ϵν(b(β),ϵβ

−1Df∩π−αβ−1Dff′ ,Op)⎞

⎠
. (8.4)

Similarly, we have

∏
ϵ∈E+(f)

ϵν(b(β),ϵβ
−1Df∩π−αβ−1Dff′ ,Op)

=
⎛

⎝
∏

γ∈E+(f)/E+(ff′)
γν(b(β),γπ

−αβ−1Df,Op)⎞

⎠

⎛

⎝
∏

ϵ∈E+(f)
ϵνE(b(β),ϵβ−1Df∩π−αβ−1Df,Op)⎞

⎠
. (8.5)

We can also calculate, for i = 1, . . . , α − 1,

∏
ϵ∈E+(ff′)

ϵν{π−i}(b(β),ϵβ
−1Dff′∩π−iβ−1Dff′ ,O)

=
⎛

⎝
∏

γ∈E+(f)/E+(ff′)
γ−ν{π−i}(b(β),γβ

−1Df,O)+ν{π−i}(b(β),γπ
−iβ−1Df,O)⎞

⎠

∏
ϵ∈E+(f)

ϵν⟨E,{π−i}⟩(b(β),ϵβ
−1Df∩π−iβ−1Df,O). (8.6)

We now note the following equalities, both of which hold via telescope sum arguments.

1.

α−1
∏
i=1

⎛

⎝
∏

γ∈E+(f)/E+(ff′)
γ−ν{π−i}(b(β),γβ

−1Df,O)⎞

⎠

⎛

⎝
∏

γ∈E+(f)/E+(ff′)
γνA(b(β),γβ−1Df,O)⎞

⎠

= ∏
γ∈E+(f)/E+(ff′)

γν(b(β),γβ
−1Df,O)
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2.

α−1
∏
i=1

⎛

⎝
∏

γ∈E+(f)/E+(ff′)
γν{π−i}(b(β),γπ

−iβ−1Df,O)⎞

⎠

= ∏
γ∈E+(f)/E+(ff′)

γν(b(β),γβ
−1Df,πOp)−ν{π−α}(b(β),γπ−αβ−1Df,Op)

= ∏
γ∈E+(f)/E+(ff′)

γν(b(β),γβ
−1Df,πOp)−ν(b(β),γπ−αβ−1Df,Op).

Combining these two equalites with the calculations in (8.4), (8.5) and (8.6) gives the result.

If α = 1 then Lemma 8.3.6 is equivalent to Proposition 8.3.5 and thus we are finished in the
case α = 1. Henceforth, we assume that α > 1.

Lemma 8.3.7. If α > 1, then

Err(β)

=
⎛

⎝
∏

ϵ∈E+(f)
ϵνB(b(β),ϵβ−1Df∩π−1β−1Df,Op)⎞

⎠

⎛

⎝
∏

δ∈E+(f)
δνE(b(β),δβ−1π−1Df∩π−αβ−1Df,Op)⎞

⎠

α−1
∏
i=1

∏
ϵ∈E+(f)

ϵ−ν⟨E,{π−i}⟩(b(β),ϵβ
−1Df∩π−1β−1Df,πOp)

α−1
∏
i=2

∏
δ∈E+(f)

δν⟨E,{π−i}⟩(b(β),ϵβ
−1π−1Df∩π−iβ−1Df,O).

Proof. For i = 2, . . . , α, we have

πiDf = ⋃
δ∈E+(f)

π−1δDf ∩ π
−iDf.

Thus, applying this to the result of Lemma 8.3.6, we have

Err(β)

=
⎛

⎝
∏

ϵ∈E+(f)
ϵνE(b(β),ϵβ−1Df∩π−1β−1Df,Op)⎞

⎠

⎛

⎝
∏

δ∈E+(f)
δνE(b(β),δβ−1π−1Df∩π−αβ−1Df,Op)⎞

⎠

α−1
∏
i=1

⎛

⎝
∏

ϵ∈E+(f)
ϵν⟨E,{π−i}⟩(b(β),ϵβ

−1Df∩π−1β−1Df,O)

∏
δ∈E+(f)

δν⟨E,{π−i}⟩(b(β),ϵβ
−1π−1Df∩π−iβ−1Df,O)⎞

⎠
.

Remarking that∏δ∈E+(f) δ
ν
⟨E,{π−1}⟩(b(β),ϵβ

−1π−1Df∩π−1β−1Df,O) = 1, since ϵβ−1π−1Df∩π
−1β−1Df = ∅,

gives the result of this lemma.
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If α = 2, it is straightforward to see that Lemma 8.3.7 is equivalent to Proposition 8.3.5. Thus
we are also done in the case α = 2. We henceforth assume that α > 2. From Lemma 8.3.7, one
can see that to prove Proposition 8.3.5 it is enough for us to show

1 = ∏
δ∈E+(f)

δνE(b(β),δβ−1π−1Df∩π−αβ−1Df,Op)

α−1
∏
i=1

∏
ϵ∈E+(f)

ϵ−ν⟨E,{π−i}⟩(b(β),ϵβ
−1Df∩π−1β−1Df,πOp)

α−1
∏
i=2

∏
δ∈E+(f)

δν⟨E,{π−i}⟩(b(β),ϵβ
−1π−1Df∩π−iβ−1Df,O). (8.7)

To do this, we first show the following lemma.

Lemma 8.3.8. We have that for j = 1, . . . , α − 1 the right hand side of (8.7) is equal to e(j),
where we define

e(j) =
⎛

⎝
∏

δ∈E+(f)
δνE(b(β),δβ−1π−jDf∩π−αβ−1Df,Op)⎞

⎠

α−1
∏
i=j

∏
ϵ∈E+(f)

ϵ−ν⟨E,{π−i}⟩(b(β),ϵβ
−1π−(j−1)Df∩π−jβ−1Df,πOp)

α−1
∏

i=j+1
∏

δ∈E+(f)
δν⟨E,{π−i}⟩(b(β),δβ

−1π−jDf∩π−iβ−1Df,O).

Note that for j = α − 1 the last product is empty. We also remark that it is implicit in the
statement of this lemma that e(1) = ⋅ ⋅ ⋅ = e(α − 1).

Proof. We prove this by induction. The case j = 1 holds trivially. We now assume it holds
for j and prove the result for j + 1, i.e., we show e(j) = e(j + 1). To do this we note that for
i = j + 2, . . . , α, we have

π−iDf = ⋃
κ∈E+(f)

π−(j+1)κDf ∩ π
−iDf.
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Thus, e(j) is equal to the product of the following elements,

⎛

⎝
∏

δ∈E+(f)
δνE(b(β),δβ−1π−jDf∩π−(j+1)β−1Df,Op)⎞

⎠

⎛

⎝
∏

κ∈E+(f)
κνE(b(β),κβ−1π−(j+1)Df∩π−αβ−1Df,Op)⎞

⎠
(8.8)

α−1
∏
i=j

∏
ϵ∈E+(f)

ϵ−ν⟨E,{π−i}⟩(b(β),ϵβ
−1π−(j−1)Df∩π−jβ−1Df,πOp) (8.9)

α−1
∏

i=j+1
∏

δ∈E+(f)
δν⟨E,{π−i}⟩(b(β),δβ

−1π−jDf∩π−(j+1)β−1Df,O) (8.10)

α−1
∏

i=j+2
∏

κ∈E+(f)
κν⟨E,{π−i}⟩(b(β),κβ

−1π−(j+1)Df∩π−iβ−1Df,O). (8.11)

We remark that the first bracketed term in (8.8), and (8.11) are already products in e(j + 1).
We now consider (8.10) and calculate that it is equal to

⎛

⎝

α−1
∏

i=j+1
∏

δ∈E+(f)
δ
ν
⟨E,{π−(i−1)}⟩

(b(β),δβ−1π−(j−1)Df∩π−jβ−1Df,πOp)⎞

⎠

⎛

⎝

α−1
∏

i=j+1
∏

δ∈E+(f)
δ−ν⟨E,{π−i}⟩(b(β),δβ

−1π−jDf∩π−(j+1)β−1Df,πOp)⎞

⎠
. (8.12)

We now consider the way the terms in (8.12) interact with (8.9). Multiplying (8.12) by (8.9)
gives

⎛

⎝

α−1
∏

i=j+1
∏

ϵ∈E+(f)
ϵ−ν⟨E,{π−i}⟩(b(β),ϵβ

−1π−jDf∩π−(j+1)β−1Df,πOp)⎞

⎠

⎛

⎝
∏

ϵ∈E+(f)
ϵ
−ν
⟨E,{π−(α−1)}⟩

(b(β),ϵβ−1π−(j−1)Df∩π−jβ−1Df,πOp)⎞

⎠
. (8.13)

The first term in (8.13) is the term we were missing from e(j + 1). Thus it only remains to
show that the second bracketed term in (8.8) multiplied by the second bracketed term in (8.13)
is equal to one. This is shown by the following calculation,

∏
δ∈E+(f)

δνE(b(β),δβ−1π−jDf∩π−(j+1)β−1Df,Op)

= ∏
δ∈E+(f)

δν⟨E,{π}⟩(b(β),δβ−1π−(j−1)Df∩π−jβ−1Df,πOp)

= ∏
δ∈E+(f)

δ
ν
⟨E,{π−(α−1)}⟩

(b(β),δβ−1π−(j−1)Df∩π−jβ−1Df,πOp),

we can thus deduce that
e(j) = e(j + 1)
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as claimed. This completes the proof of the lemma.

We are now ready to prove Proposition 8.3.5.

Proof of Proposition 8.3.5. We consider e(α − 1). From Lemma 8.3.8, we have that e(α − 1) is
equal to the right hand side of (8.7). Then

e(α − 1) =
⎛

⎝
∏

δ∈E+(f)
δνE(b(β),δβ−1π−(α−1)Df∩π−αβ−1Df,Op)⎞

⎠

∏
ϵ∈E+(f)

ϵ
−ν
⟨E,{π−(α−1)}⟩

(b(β),ϵβ−1π−(α−2)Df∩π−(α−1)β−1Df,πOp).

Since {π} = {π−(α−1)}, it is clear that

e(α − 1) = 1.

This completes the proof of Proposition 8.3.5 and thus proves Theorem 8.3.1.

8.4 Norm compatibility for u2

We are now able to give the theorem that completes our proof of Theorem 8.2.1 and consequently
Theorem 2.3.7. We recall the definition

u2 = ∑
σ∈G

u2(σ) ⊗ [σ
−1] = Eis0F ∩∆∗(cid ∩ ρH/F ).

Write u2(σ) = uS,λ,σ. In this section, we prove the following theorem.

Theorem 8.4.1. We have for any σ ∈ G,

uS,λ,σ,H = ∏
τ∈G′
τ ∣H=σ

uS,λ,τ,H′ .

Remark 8.4.2. This theorem has been proved by Dasgupta–Spieß in Proposition 5.1.1. We
include the proof for completeness. We note also that the proof of the norm compatibility for u2
is much simpler than that for u1. This is a result of the additional structure we have due to the
cohomological nature of the construction.

Proof of Theorem 8.4.1. We consider the natural map

ψ ∶ F ∗p ⊗Z[G′] → F ∗p ⊗Z[G]

∑
τ∈G′

nτ ⊗ [τ] ↦ ∑
σ∈G
( ∏

τ∈G′
τ ∣H=σ

nτ) ⊗ [σ].
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Then, we begin by considering the action of ψ on the element uS,λ,H′ ,

ψ(uS,λ,H′) = ∑
σ∈G
( ∏

τ∈G′
τ ∣H=σ

uS,λ,τ,H′) ⊗ [σ].

We can also consider the action of ψ on the cohomological description of uS,λ,H′ ,

ψ(uS,λ,H′) = ψ(Eis0F ∩∆∗(cid ∩ ρH′/F ))

= Eis0F ∩ ψ∗∆∗(cid ∩ ρH′/F )

= Eis0F ∩∆∗(cid ∩ ψ∗ρH′/F ).

The only equality of note here is the final one. This follows since we can commute ψ∗ with ∆∗.
This clearly follows from the calculations done in §5.2 and §5.4. Finally, since ψ∗ρH′/F = ρH/F ,
we have the result.

100



Chapter 9

The Root of Unity Ambiguity

In this chapter, we prove that the formulas for the Brumer–Stark units hold up to a 2-power
root of unity. We prove Theorem 2.3.10. In particular, we show this result for u2, i.e., we prove,
that under some mild assumptions,

u2 = up in (F ∗p /µ2(F
∗
p )) ⊗Z[G]

where we write µ2(F
∗
p ) for the group of 2-power roots of unity of F ∗p . As we noted in §2.3 and

§2.4, the key result required for our proof of this result is the l-part of the integral Gross–Stark
conjecture (Theorem 2.4.4). As noted in Remark 2.4.3, this theorem follows from the recent
work of Bullach–Burns–Daoud–Seo in [2, Theorem B] which proves the minus-part of the eTNC
away from 2, for finite abelian CM extensions of totally real fields.

9.1 Equality of the formula up to a 2-power root of unity

As before, we let f be the conductor of the extension H/F and write E+(f) for the totally positive
units of F which are congruent to 1 modulo f. Let g denote the product of the finite primes
in S that do not divide fp. Then we define HS ∶= H(fpg)∞ . Here, H(fpg)∞ is the union of the
narrow ray class fields Hfapbgc for all positive integers a, b, c. For v ∣ fg, let Uv,f denote the group
of elements of O∗v which are congruent to 1 modulo fO∗v . In particular, Uv,f = O∗v for v ∣ g. Let
Ufg = ∏v∣fgUv,f.

Proposition 9.1.1 (Proposition 3.4, [8]). Conjecture 2.4.1 is equivalent to the existence of an
element uλ ∈ Up with uλ ≡ 1 (mod λ) and

(uσb

λ ,1) = πζR,T (H/F,b,0)×∫
O×Ufg/E+(f)

x dµ(b, x)

in (F ∗p × Ufg)/E+(f) for all fractional ideals b relatively prime to S.
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Since the full strength of the integral Gross–Stark conjecture (Conjecture 2.4.1) has not yet
been proved, we work with the following corollary. This corollary instead uses the l-part of the
integral Gross–Stark conjecture.

Corollary 9.1.2. Theorem 2.4.4 is equivalent to the existence of an element uλ ∈ Up with uλ ≡ 1
(mod λ) and

(uσb

λ ,1) = πζR,λ(H/F,b,0)×∫
O×Ufg/E+(f)

x dµ(b, x)

in ((F ∗p × Ufg)/E+(f)) ⊗Zl for all fractional ideals b relatively prime to S.

Define
D(f,g) = {x ∈ F ∗p ∶ (x,1) ∈ E+(f) ⊂ F

∗
p × Ufg}.

Dasgupta notes in [8] that Proposition 9.1.1 may be interpreted as stating that Conjecture 2.4.1
is equivalent to a formula for the image of uλ in F ∗p /D(f,g). Similarly, Corollary 9.1.2 states
that Theorem 2.4.4 is equivalent to a formula for the image of uλ in (F ∗p /D(f,g)) ⊗ Zl. The
reciprocity map of class field theory induces an isomorphism

recS ∶ (F ∗p × Ufg)/E+(f)p ≅ Gal(HS/H).

As before, we have defined E+(f)p as the group of totally positive p-units congruent to 1 modulo
f.

Proposition 9.1.3. Assume Conjecture 2.4.1. Let σ ∈ G. The construction, u2(σ), is equal to
the Brumer–Stark unit, up(σ), in F ∗p /D(f,g), i.e.,

u2(σ) ≡ up(σ) (mod D(f,g)).

Proof. We consider the unit u2(σ) and apply recS to (u2(σ),1), then by e) of Proposition 5.1.1
we have

recS((u2(σ),1)) = ∏
τ∈Gal(HS/F ),

τ ∣H=σ−1

τ ζS,λ(HS/F,τ−1,0) = recS((up(σ),1))

where the second equality follows from (2.9) which, as we noted in §2.4, follows from Conjecture
2.4.1. Thus, we have the result.

Again, since the full strength of the integral Gross–Stark conjecture (Conjecture 2.4.1) has
not yet been proved, we work with the following corollary. It is clear that we have the following
corollary which gives the weaker result obtainable by using the l-part of the integral Gross–Stark
conjecture (Theorem 2.4.4).

Corollary 9.1.4. Let σ ∈ G. The construction, u2(σ), is equal to the Brumer–Stark unit, up(σ),
in (F ∗p ⊗Zl)/D(f,g).
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Let q be a prime of F that is unramified in H and whose associated Frobenius σq is a complex
conjugation in H.

Lemma 9.1.5. Let l be a rational prime, and m ∈ Z≥1. There exists a finite set of prime ideals
{r1, . . . , rs} in the narrow ray class of q modulo f such that the group D(f, r1 . . . rs) does not
contain µ′lm(F

∗
p ). Moreover, µ′lm(F

∗
p ) is the set of non-trivial roots of unity of order lm.

Proof. We follow the ideas in the proof of Lemma 5.17 in [8]. Let ε ∈ µ′lm then there exists a
prime, r, of F such that r is in the narrow ray class of q modulo f and such that ε is not congruent
to 1 modulo r.

Suppose now that ε ∈D(f, r). Then by the definition ofD(f, r), and in particular the definition
of Ufr, we see that ε ≡ 1 (mod r). This contradicts our choice of r. Letting the ri consist of such
an ideal prime r, for each element ε ∈ µ′lm , completes the proof.

The following corollary is stated as a remark in [13]. We include the proof for completeness.

Corollary 9.1.6 (Remark 6.4 (c), [13]). Suppose q ∈ S. Let r be a nonarchimedean place of F
with r ∉ S ∪ λ and r in the narrow ray class of q modulo f. Put S′ = S ∪ {r}. Then, we have

u2(S
′, σ) = u2(S,σ)

2.

Proof. From c) of Proposition 5.1.1, we have u2(S′, σ) = u2(S,σ)u2(S,σrσ)−1. Applying c) again
and writing S′′ ∶= S − {q}, we deduce

u2(S
′, σ) = (u2(S

′′, σ)u2(S
′′, σqσ)

−1)(u2(S
′′, σrσ)

−1u2(S
′′, σqσrσ))

= (u2(S
′′, σ)u2(S

′′, σqσ)
−1)(u2(S

′′, σqσ)
−1u2(S

′′, σ))

= u2(S,σ)
2.

We are now able to prove the main theorem of this chapter.

Proof of Theorem 2.3.10. The proof of this proposition follows the ideas of the proof of Theorem
5.18 in [8]. We begin by noting that the roots of unity in F ∗p have order that divides pa(Np − 1)

for some a ∈ Z≥0. Let lm be an odd prime power that exactly divides pa(Np − 1). We show that

u2(σ) = up(σ) in F ∗p /µpa(Np−1)/lm(F
∗
p ). (9.1)

Repeating this for each such odd prime power, we have the result. Fix such a prime power lm.
Let {r1, . . . , rs} be a finite set of prime ideals as in Lemma 9.1.5, and let r be one of the ri. It
follows from

ζR∪{r}(H/F,σ, s) = ζR(H/F,σ, s) −Nr−sζR(H/F,σσ
−1
r , s)
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that the Brumer–Stark units attached to S and S ∪ {r} are related by

up(S ∪ {r}, σ) =
up(S,σ)

up(S,σσ−1r )
= up(S,σ)

2,

where this last equation follows from the fact that complex conjugation acts as inversion on U ′p.
Thus, if we let S′ ∶= S ∪ {r1, . . . , rs}, then we inductively obtain

up(S
′, σ) = up(S,σ)

2s . (9.2)

Applying Corollary 9.1.6 inductively, we also have

u2(S
′, σ) = u2(S,σ)

2s . (9.3)

We showed in Corollary 9.1.4 that u2(S′, σ) ≡ up(S′, σ) (mod D(f, r1 . . . rs)) in F ∗p ⊗ Zl. By
our choice of the ri, we have that µ′lm is not contained in D(f, r1 . . . rs). Since the roots of unity
in Zl are of order l− 1, tensoring F ∗p by Zl does not add in any additional roots of unity of order
lm. It then follows from Theorem 2.3.6 and Corollary 9.1.4 that (9.1) holds. As we noted above,
repeating this for each prime power which exactly divides pa(Np − 1) gives us the result.
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Appendix A

Appendix

A.1 Translating Shintani domains

Overcoming the lack of a nice translation property for Shintani domains in §7.1 is the main work
of Chapter 7. In this appendix, we first provide an explicit counterexample which shows why this
work is necessary. We then show the calculations which give rise to the figures. These figures
demonstrate our method to overcome this counterexample, namely, Figure 7.1, Figure 7.2, and
Figure 7.3. We begin by finding a counterexample to the following statement of Tsosie in [24].
The statement below is given for F of any degree n > 1. We provide a counterexample when F

is a cubic field as this is the case we work with in Chapter 7.

Statement A.1.1. Let V be a finite index subgroup of E+(f) and let ϵ1, . . . , ϵn−1 be a Z-basis
for V . Furthermore, let D be a fundamental domain for the action of V on Rn

+ and π−1 ∈ D.
Then for ϵ = ∏n−1

i=1 ϵ
mi

i ,
ϵD∩ π−1D = ∅

unless mi ∈ {0,1}, 1 ≤ i ≤ n − 1.

We note that in general there appears to be no bounds that can be put on the set which
the mi’s are allowed to be in to make this statement hold. However, we do not provide explicit
evidence for this here.

Remark A.1.2. It is straightforward to show that this statement holds when F is of degree 2. It
is for this reason that Dasgupta–Spieß’s proof that u1 = u3, in the case F is of degree 2, is much
shorter.

The computations used to find our counterexample below are done using Magma. Let F be
the number field with defining polynomial 2x3−4x2−x+1 over Q. F is then a totally real number
field of degree 3. We define

H = F (
√
−2).
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H is then totally complex. It is also a degree 2 extension of F so H is a CM extension of F . We
note that the extension H/F is abelian. Now, choose y ∈ F such that we can write

F = Q(y).

Let f be the conductor of H/F . We calculate, as the generators of E+(f), the elements g1 =
−96y2 + 152y + 113 and g2 = 160y2 + 32y − 31, i.e., we have

⟨−96y2 + 152y + 113 , 160y2 + 32y − 31⟩ = E+(f).

We choose as our rational prime p = 113. We make this choice as there are two primes of F
above 113 and both of them split completely in H. We choose p ∣ p, a prime ideal of F that splits
completely in H. We find that the order of p in Gf is 2. We choose an element π to satisfy the
following

• π is totally positive,

• π ≡ 1 (mod f),

• (π) = p2,

• π−1 ∈ Ce1([g1 ∣ g2]) ∪Ce1([g2 ∣ g1]).

In particular, we choose π = 192y2 − 488y + 177. Let D = Ce1([g1 ∣ g2]) ∪Ce1([g2 ∣ g1]) and note
that this is a Shintani domain. With these choices, we calculate that π−1D∩ g1g−12 D ≠ ∅ and
π−1D∩ g−12 D ≠ ∅. This completes our counterexample to Statement A.1.1. Furthermore, the
curved nature of the domains, as illustrated further with Figure A.1 below, gives a good reason
as to why results bounding where π−1D is contained should not be possible without considerable
work.

To make our example clearer, we include below a plot of D∪g1D∪g2D∪g1g2D (in blue) and
π−1D (in red) under the map φ(g1,g2) (Figure A.1). This plot is drawn using MATLAB. Notice
that the boundary of π−1D falls outside that of D∪ g1D∪ g2D∪ g1g2D. As we remarked with
the other diagrams, although the image appears to show that some of the lines overlap, this does
not happen. This only appears in the diagram due to the fixed thickness of the lines.

We now make note of the calculations we made to obtain Figure 7.1, Figure 7.2, and Figure
7.3. We continue to hold all of the choices made thus far in this appendix. We define

ε1 = g
−3
1 g42 and ε2 = g

−5
1 .

These choices are found using Magma so that ε1 and ε2 satisfy the conditions in Lemma 7.1.5.
We find that when considering Corollary 7.1.7, we can choose l = 1 to satisfy the conditions
given, i.e., ε1 and ε2 are already good enough to obtain Corollary 7.1.7. Using MATLAB, we
plot Figure 7.1. We define

π1 = g
−6
1 g22π and π2 = g

−6
1 g2π,
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Figure A.1: A counterexample

where π is as defined before. Using π1 as our choice of π, and using MATLAB, we plot Figure
7.2 which shows Case 1. Similarly, using π2 as our choice of π, Figure 7.3 shows Case 2.

We end this appendix by giving a conjecture regarding these Shintani domains in a more
general setting. The proving of this conjecture should allow one to give a direct proof that
u1 = u3 in the same style as in Chapter 7.

Let 1, x1, . . . , xn−1 ∈ Rn
+ be linearly independent vectors where 1 = (1, . . . ,1). Then

D ∶= ⋃
τ∈Sn−1

Ce1([xτ(1) ∣ . . . ∣ xτ(n−1)])

is a fundamental domain for the action of E = ⟨x1, . . . , xn−1⟩ on Rn
+ .

Conjecture A.1.3. For all R > 0 and 0 < r < R/2, there exists y1, . . . , yn−1 ∈ E such that we
have the following.

1. V = ⟨y1, . . . , yn−1⟩ is a subgroup of E, free of rank n − 1.

2. If we write
B= ⋃

τ∈Sn−1

Ce1([yτ(1) ∣ . . . ∣ yτ(n−1)]),

then

• for all y ∈B there exists z ∈ B(y,R) such that B(z, r) ⊆ B(y,R) ∩B and

• for all z ∈B such that B(z, r) ⊆B we have

zB∩ (yα1

1 . . . yαn−1

n−1 )B= ∅

unless αj ∈ {0,1} for j = 1, . . . , n − 1.
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Remark A.1.4. We first note that 2. in Conjecture A.1.3 is equivalent to

zB⊆
1

⋃
α1=0
⋅ ⋅ ⋅

1

⋃
αn−1=0

(yα1

1 . . . yαn−1

n−1 )B.

Furthermore, Conjecture A.1.3 is trivial when n = 2. Even with n = 3, we currently are not able
to prove a statement as strong as this conjecture. Instead we prove Proposition 7.1.9.
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