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Abstract. There is an increasing number of cyber-systems (e.g., systems for payment, transportation, voting, critical infrastruc-
tures) whose security depends intrinsically on human users. In this paper, we introduce a novel approach for the formal and
automated analysis of security ceremonies. A security ceremony expands a security protocol to include human nodes alongside
computer nodes, with communication links that comprise user interfaces, human-to-human communication and transfers of
physical objects that carry data, and thus a ceremony’s security analysis should include, in particular, the mistakes that hu-
man users might make when participating actively in the ceremony. Our approach defines mutation rules that model possible
behaviors of a human user, automatically generates mutations in the behavior of the other agents of the ceremony to match
the human-induced mutations, and automatically propagates these mutations through the whole ceremony. This allows for the
analysis of the original ceremony specification and its possible mutations, which may include the way in which the ceremony
has actually been implemented or could be implemented. To automate our approach, we have developed the tool X-Men, which
is a prototype that builds on top of Tamarin, one of the most common tools for the automatic unbounded verification of security
protocols. As a proof of concept, we have applied our approach to three real-life case studies, uncovering a number of concrete
vulnerabilities. Some of these vulnerabilities were so far unknown, whereas others had so far been discovered only by empirical
observation of the actual ceremony execution or by directly formalizing alternative models of the ceremony by hand, but X-Men
instead allowed us to find them automatically.

Keywords: Security ceremonies, Socio-technical security, Formal methods, Mutations, Automated reasoning

1. Introduction

1.1. Context and Motivation

Ellison [1] introduced the concept of security ceremony as an extension of the concept of security
protocol, with human nodes alongside computer nodes and with communication links that include UI,
human-to-human communication and transfers of physical objects that carry data. In particular, Ellison
remarked that “what is out-of-band to a protocol is in-band to a ceremony, and therefore subject to design
and analysis using variants of the same mature techniques used for the design and analysis of protocols”.

However, in contrast to security protocol analysis, for which a plethora of mature approaches and tools
exist, security ceremony analysis is a discipline that is still in its childhood, with no widely recognized
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methodologies or comprehensive toolsets. State-of-the-art approaches and tools for security protocol
analysis (e.g., [2–6]) cannot be directly employed for security ceremonies as they take a “black&white”
view and formalize protocols by

• considering one or more attackers that can carry out whatever actions they are able to in order to
attack the protocol, but then

• modeling all other protocols actors (regardless of whether they are computers or human users) as
honest processes that behave only according to the protocol specification.

When considering security ceremonies, in which humans are first-class actors, it is not enough to take
this “black&white” view. It is not enough to model human users as honest processes or as attackers,
because they are neither. Modeling a person’s behavior is not simple and requires formalizing the human
“shades of gray” that such approaches are not able to express nor reason about. It requires modeling the
way humans interact with the protocols, their behavior and the mistakes they may make, independent of
attacks and, in fact, independent of the presence of an attacker.

Some preliminary approaches have been proposed for security ceremony analysis (e.g., [7–16]), but
they have barely skimmed the surface of taking into account human behavioral and cognitive aspects in
their relation with “machine” security.

1.2. Contributions

In this paper, we introduce a novel approach for the formal analysis of security ceremonies that focuses
on the vulnerabilities that result from the mistakes that human users might make.1 More specifically, we
provide three main contributions: formalization, tool support and proof-of-concept by means of three
case studies.

1. Formalization. We define a formal approach that allows security analysts to model possible mistakes
by human users as mutations with respect to the behavior that the ceremony originally specified for such
users. For concreteness, we focus on four main human mutations of a ceremony and their combinations,

• skipping one or more of the actions that the ceremony expects the human user to carry out (such as
sending or receiving a message),

• adding an action (e.g., sending a message twice),
• replacing a message with another one (e.g., sending a sub-message of the original message),
• neglecting to adhere to one or more internal behaviors expected by the ceremony (such as neglecting

to carry out an internal action that is visible only to the agent itself, like a check on the contents of
a message),

but our approach is open to extensions with other mutations.
We formalize algorithms for human mutations, which take in input a ceremony specification and pro-

duce in output a ceremony or a set of ceremonies that result from the mutated actions and/or behavior
of the human agent. These algorithms cannot focus only on the mutations of the human, since human
ceremony mutations will possibly have an effect also on the other agents of the ceremony, honest or ma-
licious as they may be, humans or processes as they may be. Given a human mutation, we can distinguish
two cases:

(1) the other agents are able to reply to the human mutation because the changes are not too relevant
or because the ceremony has somehow made provision for it, or

1This paper extends and supersedes a preliminary conference version that appeared in [17].

2



(2) the other agents are not able to reply to the human mutation.

Case (1) may occur, for instance,

• when the ceremony involves the human agent interacting independently with two or more other
agents, and the human skips the steps with one agent but still has enough information to exchange
messages with the other agents of the ceremony (e.g., when the ceremony is split into independent
phases and the human skips phase 1 with agent 1, but is still able to engage in phase 2 with agent 2,
without agent 2 noticing that phase 1 did not occur),

• when the human agent adds some message exchanges to a ceremony and the other agents can still
participate in the communication (e.g., when the human sends the same message twice and the
intended recipient is able to receive both message instances, possibly considering them as messages
that are part of two different executions of the same protocol),

• when the human agent replaces a message with another one that can however still be received by
the intended recipient (e.g., when the human agents replaces a nonce in the message with a constant
that the recipient is however not able to check for freshness),

• when the mutation is only internal to the mutating human agent (e.g., when the agent neglects to
check the contents of a message he received), or

• when the other agents are still able to carry out their roles in the ceremony (e.g., when their role
includes an if-then-else that captures both original and mutated human behavior; this could happen,
for instance, in the implementation of the ceremony, but also in the original ceremony specification
where the mutation forces the human to visit by mistake only the else branch of the if-then-else).

In all these subcases, we can simply carry out the analysis of the ceremony after the human mutation.
Human mutations will, however, often yield non-executable models as the agents playing the non-

human roles simply won’t reply, thus thwarting attacks implicitly or explicitly caused by the human
mutation. One might therefore be tempted to discard case (2) as not interesting, but we argue that that
is not the case, especially when one considers the way in which the ceremony has actually been imple-
mented or could be implemented.2 In fact, it is often the case that the implementation of a protocol or
ceremony deviates from the original specification. There are several possible reasons for an implemen-
tation not to be fully faithful to its specification. For instance, the implementation might have deviated
from the specification in order to accommodate initially unforeseen behavior by the human users (and
this might actually be one of the reasons for the issues in our first case study, the Oyster ceremony)
or simply because the implementers did some mistakes (as in our second and third case studies, the
SAML-based Single Sign-on for Google Apps [18] and the Coach Service ceremony). Hence, to investi-
gate whether a human mutation may lead to an attack, in addition to the algorithms for human mutations
we formalize algorithms for matching mutations for the other agents (where necessary), which allow
the other agents to “respond” to the human mutation and continue the execution of the ceremony. The
algorithms generate matching mutations from the protocol specification based on the human mutations
(the other role specifications are changed to receive/send messages according to the human mutations)
and propagate mutations throughout the agents’ roles, and thereby create a complete mutated ceremony
specification that can be executed and analyzed for attacks. If no attack is found, then we have an ad-
ditional security guarantee for the ceremony, which is secure even in presence of these mutations. If an

2This is interesting not just when the implementation is actually available (in which case one could even try to extract a
specification from the code by reverse engineering or model inference), but also as a means to show proactively the pitfalls of
a possible implementation.
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Figure 1. The workflow of our approach

attack is found, then it might be a real attack on the ceremony’s (specification and) implementation, or
be just a false positive that results from the mutations and is not applicable to the actual implementation.
In the spirit of mutation-based testing [19–22], the attacks found in this way could be used to generate
and apply test cases for the ceremony implementation, but we leave this extension of for future work.
Figure 1 provides a summary of the workflow of our approach.

2. Tool support. We have developed a prototype tool called X-Men (the name was chosen to suggest
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Figure 2. The workflow of the X-Men tool: from models to mutated models that are input to Tamarin

that it considers human mutations), which fully automates the workflow of our approach, except for the
green box “Security Analyst Checks” in Figure 1, which is carried out by hand by the analyst. As shown
in Figure 2, X-Men creates mutated models that are then automatically used as input to Tamarin [5], one
of the most advanced tools for the automatic unbounded verification of security protocols. X-Men can be
used with human mutations only (without matching, e.g., as in the case of the Coach Service ceremony),
or it can be used with matching mutations that are propagated to create an executable trace that can be
analyzed in search for attacks (as for our two other case studies).

X-Men fully automates the process of generation and analysis of mutated security ceremony models:
it takes in input the specification of a ceremony and its goals, along with the choice of mutations to
be considered, generates a set of mutated ceremony models, inputs them into Tamarin and then pro-
duces a report of the analysis listing all those models for which Tamarin identified vulnerabilities, those
for which Tamarin’s analysis timed out after 10 minutes, and those that Tamarin was able to verify (i.e.,
those models for which the analysis terminated without finding any vulnerability). The models for which
Tamarin identified vulnerabilities will then need to be inspected by a security analyst to check whether
these are vulnerabilities that apply also to the original ceremony and whether the mutations are repre-
sentative of interesting real-life scenarios. This is similar to what happens with mutation-based testing
approaches, where manual intervention of a security analyst is needed (but we point out that tests have
shown that we have been able to improve X-Men with respect to the previous version [17] to reduce
by almost 50% the number of ceremonies that a security analyst needs to manually investigate). As we
remarked above, we leave for future work the extensions that would allow X-Men to generate test cases
from the attack traces and to apply them on the ceremony implementation; here we focus on the analysis
of models, but we remark that the generation of test cases from attack traces could be done along the
lines of [23, 24].

Like for the case in which the automated analysis of a security protocol does not terminate, a security
analyst will need to inspect also the models for which Tamarin did not terminate as these might still lead
to vulnerabilities (although 10 minutes is often a long enough time for Tamarin to produce an output for
short protocols/ceremonies such as the ones we consider in this paper).

3. Proof-of-concept. As a proof-of-concept, we have applied our approach to three real-life case stud-
ies, the Oyster Card ceremony, the SAML-based Single Sign-on for Google Apps protocol [18] and a
Coach Service ceremony, uncovering a number of concrete vulnerabilities. Some of these vulnerabilities
were so far unknown, whereas others had so far been discovered only by empirical observation of the
actual ceremony execution or by directly formalizing alternative models of the ceremony by hand, but
X-Men instead allowed us to find them automatically.
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1.3. Organization

In Section 2, we introduce our motivating and running example, and the other two case studies. In
Section 3, we describe the intuitions that underlie our approach. In Section 4, we describe how we
formally model security ceremonies and then, in Section 5, we describe how we formally model human
mutations of a ceremony. In Section 6, we describe X-Men and its proof-of-concept. In Section 7, we
report on the analysis of the three case studies. In Section 8, we discuss related work. In Section 9, we
draw conclusions and discuss future work. All our formal models and the code of X-Men are available
online at [25]. For readability, we have moved some of the longer figures to the appendix.

2. Three Case Studies

In this section, we describe the three real-life case studies that we consider in this paper, the Oys-
ter Card ceremony, the SAML-based Single Sign-on for Google Apps protocol and a Coach Service
ceremony. We begin by introducing the Oyster Card ceremony, which we will use as a motivating and
running example.

2.1. The Oyster Card Ceremony

The Oyster Card (or just Oyster, for short) is a plastic credit-card-sized, rechargeable, stored-value,
contactless smart card used on public transport in Greater London in the United Kingdom. The Oyster
is a form of electronic ticket that can hold pay-as-you-go credit, travel cards and passes for underground
and overground trains, buses and trams. It is promoted by Transport for London (TfL) and since its
introduction in June 2003, more than 86 million cards have been used [26]. Similar systems are in use in
a large number of other countries in almost all continents, such as France, Italy, Denmark, Finland, South
Africa, Argentina, Chile, Australia and Japan, and, interestingly, most of them suffer from problems
similar to the ones of the Oyster that we will discuss in the next sections.

As shown in Figure 3a, the Oyster is used by touching it on an electronic reader when entering and
leaving the transport system in order to validate it or deduct funds. Actually, this touch-in/touch-out
is part of the ceremony used on the London underground (nicknamed the Tube) and trains, which is
what we focus on in this chapter, whereas on London buses passengers touch in their Oyster only when
boarding (passengers are instead required also to touch out when they alight the bus in Sydney, Australia,
and in some other countries like Denmark, for instance). Figure 3b shows an entrance/exit gate of the
Tube.

Figure 4a gives a Message Sequence Chart (MSC) of the main Oyster ceremony for the Tube, which
is carried out by 3 roles: the human passenger H, the entrance gate GateIn and the exit gate GateOut.

(1) The human passenger H touches the Oyster on the reader at the entrance gate, which amounts to H
sending the Oyster number oyster to GateIn.

(2) The reader writes an identifier on the Oyster, which amounts to GateIn replying with the message
oyster, ginID, where ginID is the identifier of GateIn.

(3) At the end of the journey, the passenger touches the Oyster on the reader at the exit gate, which
amounts to H sending to GateOut the number oyster, the current balance of the card and ginID.

(4) GateOut calculates the journey fare based on the distance traveled from GateIn, subtracts the
amount from the card’s balance, and sends to H the new balance along with the card number
and a finish flag.
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(a) Touching the Oyster on an electronic card reader (b) A gate of the Tube

Figure 3. Using the Oyster Card in the Tube

H GateIn GateOut
oyster

oyster, ginID

oyster, balance, ginID

oyster, balance-fare, finish

(a) The Main Oyster ceremony for the Tube

H GateIn GateOut
card

card, ginID

card, bal(card), ginID

card, bal(card)’, finish

(b) The Generalized Main ceremony for the Tube

Figure 4. The ceremonies for the Tube

Some remarks are in order. First of all, note that we did not obtain this specification from TfL, but
rather we modeled our own experience of using the Oyster. This is fine as we do not need our example to
be real but rather realistic enough to showcase the main features of our approach; still, the vulnerabilities
that we identify are actual problems that the real Oyster system suffers from.

Second, even though the Oyster is based on the MiFare chip, which in its first version (Mifare Classic
family) used the proprietary encryption algorithm Crypto-1, our specification does not use any kind of
encryption for the messages. This does not represent a lack of accuracy as we actually aim to model
the ceremony in a way that is independent of the low-level cryptographic details, thereby also keeping
in mind that our approach focuses on what is under direct influence and control of the human, and
cryptography most likely is not. However, it would not be difficult to include encryption and decryption
in our models, and in fact the language that we describe below does contain cryptographic operators.3

Third, we focused only on the core message-passing of the ceremony and did not include the informa-
tion that is displayed on the screens that are placed above the gate’s reader, which show, e.g., the credit
on the card when entering and exiting, and the fare of the trip when exiting.

3Note also that initial versions of the MiFare chip, and thus of the Oyster, suffered from a number of attacks [27–29], but the
current version of the Oyster does not suffer from these problems any more since it is based on the new MiFare DESFire family
that uses stronger encryption algorithms.
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Figure 5. Warnings issued to the Tube passengers

Fourth, the ceremony in Figure 4a is actually one of the possible ceremonies that could be considered
for the use of the Oyster and several variants could be modeled, such as: a ceremony in which the reader
at the exit gate does not immediately synchronize with the system, a ceremony in which the passenger
does not have enough credit for the entrance gate to open (if the Oyster’s balance is too low, the gate
would display a message to the passenger asking them to top up the credit on the card), or a ceremony
in which the passenger changes from an overground train to an underground train or vice versa, and
thereby touches the Oyster at an intermediate gate to register the change of train. Again, we aim to be
realistic rather than real and, in fact, our approach generalizes to these variants quite straightforwardly.

Finally, passengers are nowadays able to pay not only with the Oyster but also with a contactless credit
or debit card (possibly associated with an Apple Pay or Google Pay device). In that case, the ceremony
is the same as the one in Figure 4a but without the balance and replacing oyster with the number of
the contactless credit/debit card (the physical one used to touch in/out or the one associated with Apple
or Google Pay). To avoid having to distinguish the two cases, let us introduce a generalized ceremony
for the Tube, which passengers can carry out with either their Oyster or a contactless card, as shown
in Figure 4b. Here, we use a public unary function bal that computes the current balance of an Oyster or
simply sends a message “accept” in case of a contactless card. This is what H sends in the third message,
and then GateOut replies in the final message by sending bal(card)′, which is the updated balance of the
Oyster or another “accept” message, respectively.

Before we continue with the discussion of how we formally model security ceremonies in our ap-
proach, let us return to Figure 3a, where the sticker beside the reader reminds passengers to always
touch in and out. In fact, the London underground is quite full of posters like the ones in Figure 5. The
poster on the left of Figure 5 reminds Tube passengers that in order to pay the right fare, they need to
touch in at the start and touch out at the end of all journeys; if they do not, then TfL will not know
where the passenger has traveled, so they cannot charge the right fare for the journey. This is called an
incomplete journey and the passenger could be charged a maximum fare ranging between £8.00 and
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£19.80 [30]. Passengers who do not touch in at the start of a journey are also liable to pay a penalty fare
(or could even be prosecuted).

The poster on the right of Figure 5 warns passengers that if they touch on a reader their purse or
wallet containing two or more cards (be they Oyster cards or contactless payment cards), then they
could experience card clash [31]. This means that when the card reader detects two cards, it could
take payment from a card that the passenger did not intend to pay with, or, more dangerously, that
the passenger could be charged two fares for his journey or even two maximum fares for his journey
(this happens when a passenger mistakenly touches in with one card and touches out with another card,
resulting in two incomplete journeys).

It is interesting to observe that, in both these cases, security is “pushed” from the system to the human
user. But humans do mistakes and this might endanger their security, which here means that they possibly
have to pay considerably more than they should. Our approach allows us to show (in a formal and
automated way) that indeed if passengers forget to touch in or out, or touch with two or more cards at
the same time, then they will be billed unfairly.

Before we explain in detail how we formally model and reason about security ceremonies, let us first
introduce our two other case studies.

2.2. The SAML-based Single Sign-on for Google Apps Protocol

Single Sign-on (SSO) protocols enable entities (companies, associations, institutions or universities,
etc.) to establish a federated environment in which clients sign in the environment once and are then
able to access services offered by different providers in the federation. The Security Assertion Markup
Language 2.0 Web Browser SSO Profile is one of the standards on which several established software
companies have based their SSO implementations. Google, for instance, developed a SAML-based SSO
for its Google Applications Premier Edition, a service for using custom domain names with several
Google web applications such as Gmail, Google Calendar and Google Docs.

The profile is shown in Figure 6, which, like the other figures for this case study, we have taken
directly from [18]. The profile works as follows: a client C aims at getting access to a service or a
resource that is located at the address URI and is provided by the service provider SP, which is one of
the service providers in the federated environment; to that end, SP issues an authentication request of
the form AuthReq(ID, SP), where ID is a string uniquely identifying the request; the identity provider
IdP, who presides over the federated environment as the certification authority able to authenticate the
different clients, challenges C to provide valid credentials (this is typically taken care of at the beginning
of the run when the client types in its username and password) and, upon successful authentication,
IdP builds an authentication assertion AuthAssert(ID,C, IdP, SP) and digitally signs it with its private
key K−1

IdP, which is denoted symbolically by writing {AuthAssert(ID,C, IdP, SP)}K−1
IdP

; SP checks the
authentication assertion and, acknowledging the power of the IdP to issue authentication assertions in
the federated environment, provides the resource to C.

Carrying out a digital signature of a long message such as the authentication assertion is computation-
ally expensive and might slow down the interaction between the user and the machine, so, in their imple-
mentation of this protocol in 2008, Google’s engineers simplified the authentication assertion by remov-
ing two of its parameters, ID and SP, as shown in Figure 7. They simplified AuthAssert(ID,C, IdP, SP)
into AuthAssert(C, IdP) to speed up the digital signature, but it turned out that this allowed a malicious
SP to use this assertion to pose as C in another run of the protocol.
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Figure 6. SAML 2.0 Web Browser SSO Profile (from [18])

Armando et al. [18] formalized a model of this protocol and, by using SATMC, a model checker for
security protocols that is embedded in both the AVANTSSAR Platform [2] and the SPaCIoS Tool [24],
they were able to discover the attack that is illustrated in Figure 8 by considering the following scenario.
Let IdP be a hospital, C be a doctor employed by the hospital and SP a medical insurance company. The
doctor C initiates the protocol in order to get access to a resource provided by the insurance company SP,
say to update the information about one of the doctor’s patients who is insured by SP. However, as usual,
there is no guarantee that the agents participating in a protocol are all honest and a dishonest insurance
company (as denoted by the orange bandit) might want to acquire confidential information about the
patient. Thanks to the simplified signed authentication assertion {AuthAssert(C, IdP)}K−1

IdP
, which in this

scenario is {AuthAssert(doc,H)}K−1
H

, the dishonest insurance company is able to start another run of the
protocol in which it engages with another service provider but pretending to be the doctor. For instance,
the other service provider could be Google Mail or Docs and the insurance company could log in as the
doctor and read confidential information about the patient in the doctor’s email or online documents. The
dishonest service provider thus acts as a man-in-the-middle that participates in two runs of the protocols:
one in which it acts under its real name (as the service provider SP) and one in which it pretends to be
the client (the doctor doc).

The attack is due to IdP simply (and wrongly) issuing a simplified certificate {AuthAssert(C, IdP)}K−1
IdP

that intuitively says “I certify that this is the client C. Signed: The Identity Provider IdP”, so that when
the dishonest service provider is shown the certificate, it can first copy it and then claim to be the
client C in another protocol run. The solution to the man-in-the-middle attack is to restore the deleted
information in the authentication assertion, as Google did in the new implementation of their protocol
that they produced after Armando et al. notified them about the attack.

Armando et al. were able to discover the attack by writing a formal model of the protocol as it had
been implemented by Google, with the wrongly simplified authentication assertion, and then analyzing
the model using SATMC. In this paper, instead, we show how the simplified and vulnerable version of
the authentication assertion can be obtained by a human IdP producing a mutated assertion, and how
X-Men allows us to re-discover the attack automatically.
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Figure 7. The SAML-based Single Sign-on for Google Apps protocol (from [18])

Figure 8. The man-in-the-middle attack on the SAML-based SSO for Google Applications (from [18])

2.3. A Coach Service Ceremony

People get to and from airports thanks to different transportation services such as underground, trains,
taxis or coaches (i.e., buses or similar vehicles). As our third case study, we consider a security ceremony
for (the inspection of tickets in) coach services.

The majority of coach services offer essentially two types of tickets: paper tickets and electronic
tickets, or e-tickets for short (we do not consider smart-card tickets because they would require a different
kind of attack and, anyway, smart-card solutions are not as widely adopted for coach services, contrarily
to urban buses). Customers can buy fixed-price paper tickets physically in shops at the airports, in coach
stations or directly from the coach driver on the day of travel. Alternatively, they can buy e-tickets online
on the website (or the app) of the coach service. The procedure to buy an e-ticket requires the customer
to choose the journey specifying the date of travel (or dates in case of a return ticket, unless it is an
“open” return ticket, which has a flexible validity), insert the customer’s details and pay for the ticket.
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Once the payment is concluded, the customer receives a confirmation email for the payment, which also
acts as the e-ticket for the journey.

Different coach services offer e-tickets that share several similarities in terms of information present
on the ticket itself. We considered these similarities to define a realistic standalone e-ticket based on the
information that many different tickets of many different coach services have in common. Our standalone
e-ticket has the following fields: customer name, ticket number, departure date, return date (if it is a
return ticket), departure time, expected arrival time, from (which specifies where the journey starts), to
(which specifies where the journey ends) and the price of the ticket. In case the e-ticket is a return ticket,
there are additionally fields for the return departure time and return arrival time.

A number of coach services (as well as other services that offer e-tickets) enrich the e-ticket with one
or more visual fields like a barcode or a QR code: these aim to simplify and speed up the ticket inspection
process. To that end, the driver is equipped with a device capable of recognizing the information within
the codes so that such information does not have to be controlled manually. The e-ticket may also contain
other information and the terms of condition, which we have omitted here as they are not relevant for
the description nor for the attack that we will discuss later.

There is no available generic and public specification of the ceremony for coach services and how
tickets are bought, delivered and inspected. Thus, rather than considering the specific ceremony of a
specific service, we have observed many different such services in different cities and then synthesized
them into a single plausible Coach Service ceremony.4 In a nutshell, a customer purchases a ticket and
shows it to the driver, who checks the ticket and if it deems it to be valid, allows the customer to board
the coach. There are two ticket inspections sub-ceremonies: one for paper tickets and one for e-tickets.

The sub-ceremony for paper tickets is shown in Figure 9a. The driver receives the paper ticket from
the customer and then checks the journey information such as from/to and the departure time. If this
information is correct, then the driver admits the customer on the coach. Note that there is no real check
on the genuineness of the ticket.

The sub-ceremony for e-tickets keeps the same spirit of the sub-ceremony for paper tickets, but dele-
gating some of the checks to technology (or so one would expect). Here too, upon request of the driver,
the customer shows the e-ticket that comes as the confirmation email of the payment for the journey.
The driver performs a preliminary analysis of the e-ticket to understand the type of the e-ticket checking
also the presence of possible visual fields, such as the check of a QR-code as is shown in the example
of sub-ceremony in Figure 9b. Based on the presence of visual fields, the driver can make two different
choices in order to validate a ticket:

• check if unique details printed on the ticket (e.g., ticket number) are present on a list of allowed
tickets for that journey;

• use the visual fields reading them with an electronic reader.

If the driver decides to check the unique details in the ticket manually, he performs a visual inspection,
looking for a match of any of the unique details (e.g., ticket number, journey references, service numbers,
travel route references, etc.) with a list in his possession (e.g., electronic list using a pad, a printed list).
Once he finds a match, the driver validates the ticket and admits the customer. For instance, the driver
can first identify the ticket number on the e-ticket, and then check whether the ticket number matches a

4So, both our ceremony and tickets are realistic rather than real, but this is more than enough for our purposes in this paper.
We have reviewed a handful of coach services in the UK and abroad, but note that we cannot provide more details on our
observations as that might allow readers to identify the specific coach services or, even worse, identify specific drivers and
ticket inspectors.
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(a) The Paper Ticket Inspection sub-ceremony (b) An example of E-Ticket Inspection sub-ceremony

Figure 9. The Ticket Inspection Sub-ceremonies

list of allowed ticket numbers for that journey on an electronic pad (that synchronizes regularly with the
main system); once (and if) a match is found, the driver validates the ticket number to make it unavailable
for the future and admits the customer.

If the driver decides to use the visual fields, he needs to scan them (or a selection, e.g., QR code,
barcode, etc.) with a device: once the device confirms that the ticket is valid, the driver admits the
customer.

For concreteness, we can then consider the Coach Service ceremony for e-tickets that is shown in
Figure 10. The ceremony has three roles: the Customer, the Driver and the online website WebServer of
the coach service.

(1) The Customer interrogates the WebServer in order to get a list of coaches operating on a specific
date date at a specific time dtime, departing from a specific location from and arriving at a specific
destination to.

(2) The WebServer returns the available solution(s), indicating the price price.
(3) The Customer clicks on the selected option, paying the price of the ticket.5

5The actual online purchase process might, of course, suffer from several possible vulnerabilities, including some that are
potentially due to human mistakes, but we do not consider them in this paper.
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Customer WebServer Driver
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date, dtime, from, to}kS
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date, dtime, from, to},

{Customer, tknumber, price,
date, dtime, from, to}kS

ticket
inspection

tknumber, ‘ack′, ‘valid′

Figure 10. The Coach Service ceremony (for e-tickets)

(4) The WebServer sends to the Customer the e-ticket with the related information, encrypting them
using a shared key kS between the WebServer and the Driver. Encrypting the fields represents
the fact that the Driver recognizes the validity of the e-ticket; this could be seen as applying a
watermarking on the e-ticket.

(5) The Customer, at the time of travel, shows the e-ticket to the Driver.
(6) The Driver performs a ticket inspection and, if successful, admits the Customer to the coach.

A preliminary security analysis of the tickets and of the ceremony is beneficial to understand possible
vulnerabilities. In particular, we looked at flaws that could allow an attacker to travel for free using
forged tickets bypassing the ceremony’s security measures.

Typically, coach services can rely on the difficulty of physically forging accurate copies of paper tick-
ets, which would require specific equipment such as the proper paper, a printing machine, the identical
layout the coach service is using on a digital file, etc., which are not easy to obtain. These difficulties
are reflected in the lower number of checks that the Paper Ticket Inspection sub-ceremony puts in place
with respect to the e-ticket one. Figure 9a shows that, typically, no specific visual checks are performed,
in particular, no checks of unique fields (e.g., ticket number). The checks are limited to the plausibility
of the information only.

E-tickets, on the other hand, represent a different scenario. Coach services rely (or should rely) on the
difficulty of obtaining unique information displayed on the e-ticket to discourage forging. This unique
information can also be used by the coach service companies to generate visual fields that can be printed
on the tickets. However, during our investigation of the processes followed by different services, we en-
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countered a number of visual fields (e.g., a machine-readable representation of numerals and characters
such as a barcode or a QR code) that, even though they could have potentially stored relevant information
for the ceremony, did not contain any information but were just used as graphical means to corroborate
the structure of the e-tickets. This is a potential attack vector: a coach service that offers customers to
choose between different types of e-tickets such as QR code or barcode with no information (e.g., in
case of specific ticket such as discount tickets) can be exploited to execute a successful forging attack.

In the case of e-tickets, the precision with which the checks are carried out is crucial. The inspector
(e.g., the driver) has to perform proper checks on the unique fields displayed on the ticket. However,
as we observed, drivers often apply the Paper Ticket Inspection sub-ceremony also for e-tickets, even
though the Paper Ticket sub-ceremony is not designed to be secure against forged e-tickets. As men-
tioned above, the Paper Ticket sub-ceremony does not consider checks on visual fields and relies on the
complicated procedure to forge paper tickets.

Forging e-tickets, on the other hand, is considerably easier and does not require much expertise or
technical knowledge. One can use a raster graphics editor such as Adobe Photoshop (or even simpler
editors like GIMP) or one can directly use an email client. In fact, after having purchased an e-ticket, a
confirmation email is sent to the customer’s email address. This email also works as ticket, which can
also be saved/exported as PDF file (as most of the email clients allow one to do). Once in possession
of the email, an attacker can forge an e-ticket by modifying it after having exported or received it in
PDF format. Alternatively, a less elaborated method to forge e-tickets is for the attacker to modify the
confirmation email using the email client and to forward the new email to the attacker’s own address.

If the driver, by mistake, applies the Paper Ticket Inspection sub-ceremony to an e-ticket accurately
forged, then the driver will accept the forged e-ticket and the attacker will be able to use the service for
free. To validate these insights, we formalized a mutation that captures the behavioral pattern that gives
rise to mistakes similar to the one made by the driver (namely, to neglect carrying our proper checks on
the data received) and we have applied it to analyze the Coach Service ceremony in Figure 10.

3. Our Approach in a Nutshell

The standard way to formally model and analyze a security protocol/ceremony is to formalize how
agents (attempt to) execute the roles of the protocol/ceremony to achieve one or more security goals in
the presence of an attacker. Roles are sequences of events (sending or receiving messages, generating
fresh values, etc.), which are usually represented graphically by a structure generated by causal interac-
tion such as strands [32] or the vertical lines in MSCs and Alice&Bob notation [33], or less graphically
by a process in a process algebra such as in the Applied Pi Calculus [34]. In Tamarin (and thus in the
X-Men tool), a role is formalized by a so-called role script, which is basically the projection to an in-
dividual role of an extended Alice&Bob specification, and corresponds to a strand or an Applied Pi
Calculus process.

We can represent this graphically by viewing the roles/strands of a ceremony as separate lines of
assembled jigsaw puzzle pieces that can be connected with each other as shown in the example in Fig-
ure 11. When complete, the jigsaw puzzle produces a complete picture: a trace of the ceremony.

Now, we have all been there: you are trying to assemble one of those really difficult jigsaw puzzles,
one of those where the resulting image is so complex that it is difficult to understand which pieces you
should actually interlock. You start from the borders, trying to complete at least one line and proceed
from there, but even that is proving to be difficult as you do not understand which pieces do really fit
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Figure 11. A simple ceremony between a User (left) and a System (right) depicted as a jigsaw puzzle

together. So, what do you do? You try. You try to interlock pieces that appear to fit together even though
this will turn out to be wrong as they will not allow you to produce the desired image — but you do not
know that yet. Or maybe you simply do a mistake and append a piece that does not belong there.

This is illustrated by Figure 12: if the human user does not know how long the edge should be, then
he could terminate it by attaching the piece pictured in red as in Figure 12b; or the human could add one
more piece to the edge as in Figure 12c; or the human could append a wrong piece pictured in red as
in Figure 12d, which raises the question of how the remaining pieces would fit (they are thus drawn with
dotted lines).

Returning to our running example, the human user might not fully understand the ceremony role that
he is supposed to carry out and

• skip some actions, e.g., touching out with an Oyster without having touched in with any card, as
illustrated in Figure 12b by the anticipated termination of the role;

• add some actions, e.g., touch in with two cards, as illustrated in Figure 12c by the additional piece;
• replace an action with another one, e.g., using a contactless credit card to touch out instead of the

Oyster he used to touch in, as illustrated in Figure 12d by the different outgoing connector, which
represents a different message being sent;

• neglect to carry out one or more role-actions, e.g., neglecting to carry out a check on the contents
of a message (such as forgetting to check if the balance is positive), as illustrated in Figure 12e.6

In our approach, we represent these human “mistakes” as mutations with respect to the role as specified
originally — hence the name “X-Men” for our tool, which captures the fact that we are considering
mutations of the original human behavior. Such a mutation does not just have a local effect (for that
event of the role) but will likely have an effect on the subsequent events in the role, which we illustrated
by drawing the subsequent puzzle pieces with dotted lines. This is because the knowledge of the human
agent will likely change depending on what has really happened.

It is, however, not enough to simply allow the human to carry out these unforeseen actions (add, skip,
replace or neglect some parts of the role). In order to reason about what would happen if the human
carried out these mutations, we need to capture the fact that a mutation of the human behavior will likely
have an effect also on the other agents of the ceremony. More specifically, note the difference between
the role-action in the neglect mutation, which is an “internal” action as it only involves the mutating
agent, and the actions in the skip, add and replace mutations, which are instead actions that involve not
only the mutating agent, but also, albeit indirectly, other agents in the ceremony.

To illustrate this, consider again, for simplicity, the ceremony between User and System in Figure 11
and consider the scenario in which a human playing the role User replaces an event of his role with a

6Role-actions, which we will define at the beginning of Section 4.2, are internal actions carried out by the roles in the
ceremony, such as sending or receiving messages, generating fresh messages or checking the contents of messages received.

16



(a) The role User as it was specified (b) The role User as carried out by a human who connects a
piece to terminate the role sooner than specified (skip mu-
tation)

(c) The role User as carried out by a human who connects a
piece to extend the length of the role (add mutation)

(d) The role User as carried out by a human who connects
a different piece than the one specified (replace mutation)

(e) The role User as carried out by a human who connects
a piece that is identical to the expected one except for some
of the checks on the incoming message (neglect mutation)

Figure 12. A human carrying out the role User... and mutating it, by mistake or lack of understanding
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Figure 13. The skip mutation of the role User (as in Figure 12b) and the matching mutation of the role System

Figure 14. The add mutation of the role User (as in Figure 12c) and the matching mutation of the role System

Figure 15. The replace mutation of the role User (as in Figure 12d) and the matching mutation of the role System

different one, i.e., sends a message m′ instead of the specified message m, as depicted in Figure 12d.
As we discussed in the introduction, there are two cases. Let us elaborate more on what we already
remarked by using the Oyster ceremony as a concrete example.

In the first case, the System is able to reply to m′. This means that the System can still receive (and
“understand”) and reply to m′ because the changes with respect to m are not too relevant. For instance,
this might happen when the ceremony does not provide the System with enough information to check
the content of m′, e.g., when the User sends a contactless card number instead of an Oyster card number
but the System does not have previous information that allows it to check whether it received the correct
card number, or when the message has been encrypted with a symmetric key that the System does not
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(yet) possess.7 In this case, we can carry on with our analysis of the ceremony to check whether either
the original or the mutated User role lead to an attack.

In the second case, the System is not able to reply to m′ as that mutation is not envisioned by the
System’s role as specified by the original ceremony. Could it, however, potentially lead to an attack? For
instance, what about the ceremony’s implementation? Does the current implementation really conform
to the specification (and will a future implementation conform)? If it does, then the implementation
of the System role will not reply and we are fine as the run with the mutation m′ will not terminate.
However, what if the ceremony’s developers, after they designed the specification and/or deployed the
implementation, realized that the User could indeed send a different message (or skip some actions
or add some, or neglect a check) and made provisions for this case? For instance, they could have
introduced in the implementation an “if-then-else” that captures both m and m′, i.e.: “if you receive m
then reply with message n else if you receive an m′ 6= m then reply with message n′”.8 To reason about
such a situation, we pair the mutation of the User role with a matching mutation of the System role to
receive/send messages according to the human mutation, and thereby generate an executable trace of the
ceremony. For instance, in the case of the Oyster example, if the human User sends the same message or
a similar message twice, then we change the System to receive both messages, whereas if the User skips
a step, then we change the System to skip a step correspondingly and continue the ceremony (we will
return to this in Section 5.1.1, in which we will give a concrete example of a mutation and its matching
mutation).

This is in line with mutation-based testing [19–22], which is an approach to design software tests
where mutants are based on well-defined mutation operators that either mimic typical programming
errors (such as using the wrong operator or variable name) or force the creation of valuable tests (such
as dividing each expression by zero). In our approach, mutants are based on mutation operators that
mimic typical human mistakes and that force the creation of mutations in the other ceremony agents to
match the human mutation. For concreteness, for the ceremony between User and System in Figure 11,
our approach mutates the role of the System as shown in Figure 13 to match the human User’s skip
mutation of Figure 12b. The mutation of the step of the System to match the mutated step of the human
User possibly entails a mutation of the subsequent steps of the System role (the mutation is propagated),
which we again illustrate with dotted lines.

Similarly, for the same ceremony between User and System in Figure 11, our approach mutates the
role of the System as shown in Figure 14 to match the human User’s add mutation of Figure 12c, and
it mutates the role of the System as shown in Figure 15 to match the human User’s replace mutation
of Figure 12d.

7It could even happen because also the role System is played a human who does a mistake, as we discuss in the case of the
neglect mutation.

8Note that this does not mean that the User is fully aware of this. The User might just be aware of (or have been instructed
about) the “then branch” of the System’s role, which captures the User’s normal behavior; think of the Oyster User who follows
the touch-in-touch-out ceremony as expected. Hence, the User might, unknowingly and unwillingly, fall into the “else branch”
of the System’s role (e.g., by touching out with a contactless card instead of the Oyster card that was used for touch in) and
thus be billed much more than expected. The problem with these “else branches” is that they often were not present in the
original specification of the whole ceremony and were added to the implementation as an afterthought, after having observed
the “wrong” behavior of users, as was likely the case for the Oyster ceremony. Warnings like the ones in Figure 5 are meant to
alert the users about the “else branch” of the ceremony. We believe that rather than adding the “else branch”, it would have been
better to change (the specification and) the implementation of the ceremony to forbid these mistakes (e.g., by programming
the gates to warn the users that they are touching with the wrong card or with two cards), but we recognize that this might
not always be possible, especially if all the software and hardware components of the System have already been deployed and
installed.
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Finally, it is interesting to note that there is no matching mutation for the human User’s neglect mu-
tation of Figure 12e as that mutation is local to the human and has no effect on the other roles of the
ceremony.

If these matching mutations lead to an attack, then we can check (possibly discussing with the cere-
mony designers) whether the mutated specification makes sense and, in any case, use the obtained attack
trace to generate concrete test cases to be applied to the ceremony’s implementation. This will allow us
to check whether the attack entailed by the mutations is a false positive or a real attack.

So, summarizing, our approach takes as input the specification of a ceremony and the goal(s) it should
achieve, and then generates both mutations of the human agent’s role (allowing him to add, skip or
replace human actions or neglect role-actions) and the matching mutations of the other roles of the
ceremony. The resulting mutated ceremony models are then fed into Tamarin to search for attacks. We
leave the step of concretizing the attack traces found into test cases as future work (although we expect
this to be not too difficult by proceeding along the lines of [23, 24]).

4. Formal Modeling of Security Ceremonies

We import, adapt and extend notions that are used in many of the state-of-the-art approaches and
tools for the formal analysis of security protocols. For concreteness, our tool X-Men builds on top of
the Tamarin prover [5, 7, 8] to model and analyze security ceremonies with mutations caused by human
users, but our approach is for the most part general and independent of Tamarin and could be applied
similarly to other tools such as ProVerif [3], Maude-NPA [4], the AVANTSSAR Platform [2] and its
follow-up the SPaCIoS Tool [24].

We first summarize some basic notions (importing them from papers in which Tamarin is presented
and used) and then discuss the formal specification of ceremonies, the execution model, the modeling of
human agents, and the security goals.

4.1. Messages

Definition 1 (Algebra of messages). The term algebra of messages is given by TΣ(V), where Σ is a
signature and V is a countably infinite set of variables. Σ contains three sets Cfresh, Cpub and F that are
pairwise disjoint: Cfresh is a countably infinite set of fresh constants modeling the generation of nonces,
Cpub is a countably infinite set of public constants representing agent names and other publicly known
values, and F is a finite set of function symbols that includes symbols for

• the pairing pair(m1,m2) of two message terms m1 and m2,
• the first projection π1(m1) and second projection π2(m1) of a pair m1 of message terms,
• the hash h(m1) of a message term m1,
• the symmetric encryption senc(m1,m2) of a message term m1 with a message term m2,
• the symmetric decryption sdec(m1,m2) of a message term m1 with a message term m2,
• the asymmetric encryption aenc(m1,m2) of a message term m1 with a message term m2,
• the asymmetric decryption adec(m1,m2) of a message term m1 with a message term m2,
• the signature sign(m1,m2) of a message term m1 with a message term m2, and the corresponding

verification verify(m1,m2,m3) of a signature message term m1 with message terms m2 and m3.

The function pk(m1) represents the public key corresponding to the private key m1. For readability,
we will also use the variables k to denote keys and, for brevity, we will denote pair(m1,m2) also by
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〈m1,m2〉 and we will write, say, 〈m1,m2,m3〉 for 〈m1, 〈m2,m3〉〉 when there is no risk of confusion for
the projections. We might also just write, e.g., m1,m2 for 〈m1,m2〉.

A message term m is ground when it contains no variables. We will also call a message term simply
message or term.

Having defined the algebra of messages, we can now define what is a submessage of a message and
what is the format of message.

Definition 2 (Submessage and format of a message). We say that m1 is a submessage of m2, in symbols
m1 ∈ submsg(m2), iff

• m2 = m1;
• m2 = 〈m3,m4〉 for some m3,m4 and m1 ∈ submsg(m3) or m1 ∈ submsg(m4);
• m2 = h(m3) for some m3 and m1 ∈ submsg(m3);
• m2 = ◦(m3, k) for some m3 and k, with ◦ ∈ {senc, aenc, sign}, and m1 ∈ submsg(m3).

The format f = format(m) of a message m is its top-level function symbol:

• if m has no top-level function symbol, then f = m;
• if m = 〈m1,m2〉 for some m1,m2, then f = pair;
• if m = h(m1) for some m1, then f = h;
• if m is ◦(m1, k) for some m1 and k, with ◦ ∈ {senc, aenc, sign}, then f = ◦.

We adopt the equational theory for messages proposed by Dolev and Yao [35], which defines equations
on the relationships between operators for composing and decomposing messages.

Definition 3 (Dolev-Yao-style equational theory). Messages are composed and decomposed using the
standard Dolev-Yao-style equational theory for the functions in F , based on the equations

• π1(〈m1,m2〉) = m1 and π2(〈m1,m2〉) = m2,
• sdec(senc(m1,m2),m2) = m1,
• adec(aenc(m1, pk(m2),m2) = m1,
• verify(sign(m1,m2),m1, pk(m2)) = true.

However, as we do for instance for the Oyster ceremony in Section 7.1, our approach allows us also
not to consider explicitly the presence of a (Dolev-Yao) attacker, and instead focus on capturing the
way human agents might interact insecurely with the other ceremony agents even in the absence of
an attacker. So, all our agents behave honestly and follow the steps of the ceremony, but the human(s)
might make mistakes. In other cases, such as in the SSO ceremony and the Coach Service ceremony (see
Section 7.2 and Section 7.3, respectively), we add an explicit attacker who intentionally tries to make the
ceremony insecure.9 In all these cases, our modeling of the human behavior (through mutations of the
specification of the human(s) and of the agents the human(s) interact with) allows us to identify attacks
that a standard Dolev-Yao attacker would not immediately be able to find.

9We control the Dolev-Yao attacker by using (or not) appropriate channels. The messages used in the Oyster ceremony are
not encrypted, but there is no reason why they could not be. The SSO ceremony, in contrast, includes explicit cryptographic
operations.
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4.2. Ceremony Specification

To formally specify and analyze security ceremonies, we adopt standard notions used for security
protocol analysis in Tamarin, e.g., [5, 7, 8]. We will try to be thorough but also succinct and readers
interested to know more about Tamarin are advised to refer to the papers, to Tamarin’s user manual [36]
and its website http://tamarin-prover.github.io. Note that Tamarin grants quite a lot of freedom to model-
ers, and one might, for instance, find keywords with the same name but different arity in different papers.
For this reason, in the following we clarify the notions and symbols that we use in this paper.

Formally, a role script is a sequence of events e ∈ TΣ∪RoleActions(V), where RoleActions =
{Snd, Rcv, Start, Fresh} is a set of action names with their respective arity as defined below, and each
event e has exactly one function symbol that is in RoleActions at its top-level (i.e., as its format). We will
introduce other Tamarin actions in our specifications. To avoid confusion, in the following we will explic-
itly speak of “human actions” (in a ceremony) and of “role-actions” (in a role specification). As notation,
we denote sequences with square brackets; for instance, in Section 5, we will write [a0, . . . , ai, . . . , an]H

with 0 < i 6 n to denote the subtrace of a human agent H in a ceremony execution.
Send and receive events are of the form Snd(A, l, P,m) and Rcv(A, l, P,m), where A is the role execut-

ing the event, l ∈ LinkProp = {ins, auth, conf , sec} indicates the type of channel over which a message
is sent, P ∈ Cpub is a role’s name, and m ∈ TΣ(V) is a message. The channel types ins, auth, conf
and sec denote insecure, authentic, confidential, and secure channels, respectively, and correspond in the
obvious manner to the channel symbols in the Alice&Bob notation (see [8] as well as [33, 37, 38] for a
detailed discussion of different types of channels, including pseudonymous channels).

In the Snd(A, l, P,m) event, P is the intended recipient of the message m, whereas in Rcv(A, l, P,m)
event, P is the apparent sender, as the attacker may have forged the message, and m is the expected
message pattern.

The fresh event Fresh(A,m) indicates that the role A generates a fresh message m (e.g., a nonce or a
new key).

The start event is the first event of a role script and occurs only once: Start(A,K) indicates the initial
knowledge K of agent A, which is the set of ground terms that A knows at the beginning of the ceremony,
such as the A’s own public and private keys, public keys of other agents, symmetric keys shared with
other agents, etc. The knowledge of agent A starts with A’s initial knowledge and increases monotonically
during the execution of the ceremony as A receives messages or generates fresh terms.

As a concrete example, let us return to the Generalized Main ceremony for the Tube. As shown in Fig-
ure 4b, this ceremony has 3 roles: the human H and the entrance and exit gates GateIn and GateOut. We
remarked above that in this ceremony we do not consider cryptography and, in fact, we do not consider
an explicit attacker (but we easily could, and indeed we do so for the two other example ceremonies we
consider, cf. Sections 4.3.1 and 4.3.2). We represent this by specifying that all messages are sent over
secure channels. Thus, the role scripts for the roles of this ceremony are the ones given in Figure 16.

We take advantage of constants in Tamarin to identify values received and sent during a ceremony.
In [8], constants are used to define “tags” in order to represent the interpretation of the values in the
knowledge of a human agent. We also make use of constants but we use them to define a basic notion
of types, denoted in Tamarin’s notation by writing the name of the type in single quotes, e.g., ‘type’.
In this paper, we only consider types of ground terms, such as the type ‘card’ for card or ‘balance’ for
bal(oyster) as shown in the role scripts and in the agent rules in Figure 17, Figure 18 and Figure 19.10

10This is enough for all ceremonies that we have encountered so far, so we leave a more thorough investigation of types to
future work.
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RoleScriptH =
[Start(H, 〈〈‘GateIn’, ‘GateOut’, ‘card’ ‘balance’〉, 〈GateIn,GateOut, card, bal(card)〉〉),
Snd(H, sec,GateIn, 〈‘card’, card〉),
Rcv(H, sec,GateIn, 〈〈‘card’, ‘ginID’〉, 〈card, ginID〉〉),
Snd(H, sec,GateOut, 〈〈‘card’, ‘balance’, ‘ginID’〉, 〈card, bal(card), ginID〉〉),
Rcv(H, sec,GateOut, 〈〈‘card’, ‘balance’, ‘finish’〉, 〈card, bal(card)′, finish〉〉)]

RoleScriptGateIn =
[Start(GateIn, 〈H, ginID〉),
Rcv(GateIn, sec,H, 〈‘card’, card〉),
Snd(GateIn, sec,H, 〈〈‘card’, ‘ginID’〉, 〈card, ginID〉〉)]

RoleScriptGateOut =
[Start(GateOut, 〈H, gout〉),
Rcv(GateOut, sec,H, 〈〈‘card’, ‘balance’, ‘ginID’〉, 〈card, bal(card), ginID〉〉),
Snd(GateOut, sec,H, 〈〈‘card’, ‘balance’, ‘finish’〉, 〈card, bal(card)′, finish〉〉)]

Figure 16. The role scripts for the roles of the Generalized Main ceremony for the Tube

This allows us to restrict what mutations can do, e.g., constants allow us to express that a payment card
in a message is replaced with another card (instead of with a generic value that is not of type ‘card’).
Still, for readability,

from now on we will often omit constants in role scripts and rules, so that when we write m, the
reader should please mentally replace it with the constant-message pair 〈t,m〉.

4.3. Execution Model

Our approach is based on Tamarin’s execution model [5], which is defined by a multiset term-rewriting
system like in many other security protocol analysis tools (e.g., [2, 4, 38]). In the following, we recall
from the Tamarin manual and papers the definitions of the notions of states, facts, traces, protocol spec-
ification and its rules. A state is a multiset of facts that model resources, including the information that
agents know and exchange. More formally:

Definition 4 (States and facts). A system state is a multiset of facts: linear facts model exhaustible re-
sources and they can be added to and removed from the system state, persistent facts model inexhaustible
resources and can only be added to the system state (persistent fact symbols are prefixed with “!”). The
initial system state is the empty multiset.

A trace is a finite sequence of multisets of role-actions that is generated by multiset rewriting.

Definition 5 (Traces). A trace tr is a finite sequence of multisets of role-actions a and is generated by
the application of labeled state transition rules of the form

prem a−→ conc .
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[]
Start(H,〈〈‘GateIn’,‘GateOut’,‘card’ ‘balance’〉,〈GateIn,GateOut,oyster,balance〉〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(H, 1, 〈GateIn,GateOut, oyster, balance〉)] (H0)

[AgSt(H, 1, 〈GateIn,GateOut, oyster, balance〉)]
Snd(H,sec,GateIn,〈‘card’,oyster〉)−−−−−−−−−−−−−−−−−−→

[AgSt(H, 2, 〈GateIn,GateOut, oyster, balance〉),
Outsec(H,GateIn, 〈‘card’, oyster〉)] (H1)

[AgSt(H, 2, 〈GateIn,GateOut, oyster, balance〉), Insec(GateIn,H, 〈〈‘card’, ‘ginID’〉, 〈oyster, ginID〉〉)]
Rcv(H,sec,GateIn,〈〈‘card’,‘ginID’〉,〈oyster,ginID〉〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(H, 3, 〈GateIn,GateOut, oyster, balance, ginID〉)] (H2)

[AgSt(H, 3, 〈GateIn,GateOut, oyster, balance, ginID〉)]
Snd(H,sec,GateOut,〈〈‘card’,‘balance’,‘ginID’〉,〈oyster,bal(oyster),ginID〉〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(H, 4, 〈GateIn,GateOut, oyster, balance, ginID〉),
Outsec(H,GateOut, 〈〈‘card’, ‘balance’, ‘ginID’〉, 〈oyster, bal(oyster), ginID〉〉)] (H3)

[AgSt(H, 4, 〈GateIn,GateOut, oyster, balance, ginID〉),
Insec(GateOut,H, 〈〈‘card’, ‘balance’, ‘finish’〉, 〈oyster, bal(oyster)′, finish〉〉)]

Rcv(H,sec,GateOut,〈〈‘card’,‘balance’,‘finish’〉,〈oyster,bal(oyster)′,finish〉〉),EndJourney(H,‘card’,oyster)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [] (H4)

Figure 17. The rules for the human agent in the Generalized Main ceremony for the Tube

Such a rule is applicable when the current state contains facts matching the premise prem, and the

rule’s application removes the matching linear facts from the state, adds instantiations of the facts in the

conclusion conc to the state, and records the instantiations of role-actions in a in the trace. The set of

all traces of a set of rulesR is denoted by TR(R).

Consider, for instance, a generic ceremony between a human agent H and possibly pairwise distinct

agents A1, A2, A3, A4, . . .. Trace (1) denotes a trace of the role-actions of the agents in this ceremony,
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[]
Start(GateIn,〈H,ginID〉)−−−−−−−−−−−−−→ [AgSt(GateIn, 1, 〈H, ginID〉)] (Gi0)

[AgSt(GateIn, 1, 〈H, ginID〉), Insec(H,GateIn, 〈‘card’, oyster〉)]
Rcv(GateIn,sec,H,〈‘card’,oyster〉)−−−−−−−−−−−−−−−−−−→

[AgSt(GateIn, 2, 〈H, ginID, oyster〉] (Gi1)

[AgSt(GateIn, 2, 〈H, ginID, oyster〉]
Snd(GateIn,sec,H,〈〈‘card’,‘ginID’〉〈oyster,ginID〉〉),CommitIdentifier(GateIn,H,ginID)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[Outsec(GateIn,H, 〈〈‘card’, ‘ginID’〉, 〈oyster, ginID〉〉)] (Gi2)

Figure 18. Agent rules for the GateIn in the Generalized Main ceremony for the Tube

[]
Start(GateOut,〈H,gout〉)−−−−−−−−−−−−−→ [AgSt(GateOut, 1, 〈H, gout〉)] (Go0)

[AgSt(GateOut, 1, 〈H, gout〉), Insec(H,GateOut, 〈〈‘card’, ‘balance’, ‘ginID’〉, 〈oyster, bal(oyster), ginID〉〉)]
Rcv(GateOut,sec,H,〈〈‘card’,‘balance’,‘ginID’〉,〈oyster,bal(oyster),ginID〉〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(GateOut, 2, 〈H,GateOut, oyster, bal(oyster), ginID〉] (Go1)

[AgSt(GateOut, 2, 〈H,GateOut, oyster, bal(oyster), ginID〉]
Snd(GateOut,sec,H,〈〈‘card’,‘balance’,‘finish’〉,〈oyster,bal(oyster)′,‘finish’〉〉),TouchOut(GateOut,H,‘finish’)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[Outsec(GateOut,H, 〈〈‘card’, ‘balance’, ‘finish’〉, 〈oyster, bal(oyster)′, ‘finish’〉〉)] (Go2)

Figure 19. Agent rules for the GateOut in the Generalized Main ceremony for the Tube

where each Σi represents a possibly empty subtrace:

...Σ1

Rcv(H, l1, A1,m1)
Snd(H, l2, A2,m2)
Rcv(A2, l2,H,m2)

...Σ2

Rcv(H, l3, A3,m3)
Snd(H, l4, A4,m4)
Rcv(A4, l4,H,m4)

...Σ3

(1)

When A1 = A2 = . . . = A, trace (1) reduces to a trace of a ping-pong ceremony between H and a
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system A.

Definition 6 (Protocol model). A protocol model consists of the agent rules, the fresh rule, channel rules
and attacker rules.

These rules are defined in the remainder of this section. The fresh rule

[ ]→ [Fr(x)]

produces the fact Fr(x), where x ∈ Cfresh; no two applications of the fresh rule pick the same element
x ∈ Cfresh and this is the only rule that can produce terms x ∈ Cfresh.

Tamarin comes equipped with standard Dolev-Yao attacker rules and with channel rules (introduced
in [7]) to model the sending and receiving of messages over authentic/confidential/secure channels, and
thus control the ability of the attacker (who, e.g., cannot send, read or replay messages on a secure
channel, although he might still be able to interrupt the communication).

Agent rules specify the agents’ state transitions and communication. For instance, the rules for the
human agent in the Generalized Main ceremony for the Tube are shown in Figure 17, whereas the rules
for the GateIn and GateOut agents are in Figure 18 and Figure 19, respectively (and the rules for the
SSO and Coach Service ceremonies are in Section 4.3.1 and Section 4.3.2, respectively). In general, for
every event e in the script of a role A, we get a transition rule prem a−→ conc as follows: the label of
the rule contains the event, i.e., e ∈ a; prem contains an agent state fact AgSt(A, step, knstep), and conc
contains the subsequent agent state fact AgSt(A, step + 1, knstep+1), where step refers to the role step the
agent is in and knstep is the agent’s knowledge at that step. If e ∈ a is:

• Snd(A, l, P,m), then conc additionally contains an outgoing message fact Outl(A, P,m);
• Rcv(A, l, P,m), then prem contains an incoming message fact Inl(P, A,m);
• Fresh(A,m), then prem contains Fr(m);
• Start(A,m), then it is translated to a setup rule where conc contains the initial agent state

AgSt(A, 0,m).11

We have given the rules of the Oyster case study. Before we introduce the goals of the case studies and
how they can be formalized in Tamarin’s language, let us give the rules for the two other ceremonies we
consider in this paper.

4.3.1. Rules of the SSO ceremony
The agent rules for the Client, IdP and SP in the SSO ceremony are in Appendix A.1 (in Figure 25,

Figure 26 and Figure 27, respectively). These rules model the ceremony as it is depicted in Figure 6,
where a client interacts with an identity provider and a service provider to be able to use its services.

4.3.2. Rules of the Coach Service ceremony
The agent rules for the Customer, WebServer and Driver in the Coach Service are in Appendix A.2

(in Figure 28, Figure 29 and Figure 30, respectively). These rules model the ceremony as it is depicted
in Figure 10, where a customer of a coach service buys an e-ticket from the webserver of the coach

11The translation of the different channels into Tamarin is quite natural, e.g., by means of rules such as Outl(A, P,m) →
Out(A, P,m) for l ∈ {ins, auth} and In(P, A,m)→ Inl(P, A,m) for l ∈ {ins, conf}.
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service company and then uses it to travel after having interacted with a driver. Note that in the rule (D2)

[AgSt(Driver, 2, 〈kS,Customer, tknumber, date, dtime, from, to〉)]
Snd(Driver,sec,Customer,〈tknumber,date,‘ack’,‘valid’〉)

Eq(tknumber,tknumberkS),
Eq(Customer,CustomerkS),

Eq(price,pricekS),
Eq(date,datekS),

Eq(dtime,dtimekS),
Eq(from,fromkS),

Eq(to,tokS)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[AgSt(Driver, 3, 〈kS,Customer, tknumber, date, dtime, from, to〉),
Outsec(Driver,Customer, 〈Customer, tknumber, date, ‘ack’, ‘valid’〉)] (D2)

Tamarin actions are used to model the check the Driver carries out during the ticket inspection. This
check represents a verification of the genuineness of the data encrypted (e.g., using the function Eq to
check that the fields Customer, tknumber, price, date, dtime, from, to match their respective encrypted
fields of the encrypted e-ticket) during the phase of releasing the ticket by the WebServer. Practically, it
could consist in checking a watermark on a ticket, or leaving the check to a device that is connected with
the WebServer itself. To avoid misconceptions, signed fields of the tickets are renamed by affixing kS at
the end of the fields.

4.4. Goals

Goals express the security properties that a ceremony is supposed to guarantee. However, many cere-
monies, such as the Oyster ceremony, as we discussed in Section 2.1, “push” security from the system
to the human agents. This is made evident by the three goals that we define and analyze for the Oyster
ceremony:

GO1: the human ends his journey touching in and out;
GO2: the human ends his journey using the same card to touch in and out;
GO3: the human does not touch two cards in and out.

These goals refer to a single journey, i.e., a single ceremony run. We formalize this in our Tamarin speci-
fications by including explicit restrictions (through the OnlyOnce restriction [36] in the Setup phase; see
our models in [25]) to force the human to carry out a single journey in the ceremony. While these three
goals capture the main warnings issued by TfL (cf. Section 2.1), one could of course consider a number
of other goals, e.g., variants of GO3 that formalize the case in which the human touches in with two
cards (regardless of whether he then touches out with one or two of these cards) or touches out with two
cards (regardless of whether he touched in with one or two of these cards), or goals that span multiple
journeys (i.e., multiple ceremony runs). We leave the investigation of such goals for future work as our
aim here is not to carry out an exhaustive analysis of the Oyster ceremony or of the other case studies,
but rather to use the goals we consider as examples for our proof-of-concept on how one can use our
approach for the analysis of security ceremonies.

We can formalize these three goals using Tamarin’s notation as shown in Section 4.4.1, whereas in
Section 4.4.2 and Section 4.4.3 we formalize some of the goals of the SSO ceremony and of the Coach
Service ceremony, respectively.
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4.4.1. Goal for the Oyster ceremony
Goal GO1 is formalized in Tamarin’s language by the lemma in Listing 1, which, in addition to Rcv,

uses the following role-actions, which already appeared in the agent rules, to express that certain actions
have occurred during the ceremony:

• EndJourney(H,’card’,oyster) expresses that the agent H ends the journey, where a jour-
ney is considered ended when the human has passed through a gate out after touching the oyster
card,

• CommitIdentifier(GateIn,H,ginID) expresses that the agent GateIn writes the iden-
tifier ginID of the gate on the card possessed by the agent H (note that we do not need to specify
the card in this role-action, but rather the gate “gives” the identifier to the human).

lemma complete journey: all-traces
"All H oyster #j.
EndJourney(H,’card’,oyster)@j
==> (Ex GateIn l ginID #i. Rcv(GateIn,l,H,oyster)@i
& CommitIdentifier(GateIn,H,ginID)@i
& i<j)"

Listing 1: Lemma for the security goal GO1

The security goal GO1 can be read as follows: if an agent H ends a journey with an Oyster card
oyster at time instant j (as specified by EndJourney(H,’card’,oyster)@j), which also
represents the end of the ceremony, then there is a previous time instant i, where a GateIn
has received from H the same Oyster card oyster used to end the journey (as specified by
Rcv(GateIn,l,H,oyster)@i) and GateIn wrote its identifier ginID on the card (as specified
by CommitIdentifier(GateIn,H,ginID)@i).

Goal GO2 is formalized in Tamarin’s language by the lemma in Listing 2, which can be read as
follows: if an agent H ends a journey with an Oyster card oyster at time instant j (as specified by
EndJourney(H,’card’,oyster)@j), which also represents the end of the ceremony, then there
is a previous time instant t in which H sent, touching the card on the reader, the card information to the
gate in (as specified by Snd(H,l,’card’,oyster)@t), and there does not exist a time instant c,
which can be equal or not to t, in which another card ccard, different from oyster, is touched on
the reader of the gate in (as specified by Snd(H,l,’card’,ccard)@c). In short, the agent did not
touch in another card.

lemma same card: all-traces
"All H oyster #j.
EndJourney(H,’card’,oyster)@j
==> (Ex l #t. Snd(H,l,’card’,oyster)@t
& t<j)
& not (Ex l ccard #c. Snd(H,l,’card’,ccard)@c
& not (ccard = oyster))"
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Listing 2: Lemma for the security goal GO2

It is important to note here the connection between the role-action CommitIdentifier used in GO1
and the role-action Snd used in GO2. Both role-actions try to capture the action in a moment where the
card touches on the reader of the GateIn. However, while CommitIdentifier(GateIn,H,ginID)
models the point of view of GateIn with the writing of its identifier (denoted also by the fact that
GateIn is the first argument and that CommitIdentifier is only used within GateIn’s agent
rules), Snd(H,l,’card’,oyster) models the point of view of the agent H sending the information
of the Oyster card oyster (H is the first argument and this Snd is only used within H’s agent rules).

Goal GO3 is formalized in Tamarin’s language by the lemma in Listing 3, which uses the role-action
TouchOut(GateOut,H,’finish’) to express that the human agent has touched a card at a gate
out; when an agent touches a card at the gate out, the gate out signals the end of the journey by means
of ’finish’.

lemma Card_Clash_Out: all-traces
"All H GateIn GateOut oyster ginID l1 l2 #j #t.
Rcv(GateOut,l1,H,oyster)@j
& TouchOut(GateOut,H,’finish’)@j
& Rcv(GateIn,l2,H,oyster)@t
& CommitIdentifier(GateIn,H,ginID)@t
& t<j
& not (GateIn = GateOut)
==> not (Ex ccard l #i #k.
Rcv(GateOut,H,ccard)@i
& TouchOut(GateOut,H,’finish’)@i
& Rcv(GateIn,l,H,ccard)@k
& CommitIdentifier(GateIn,H,ginID)@k
& k<i
& not (oyster = ccard))"

Listing 3: Lemma for the security goal GO3

The security goal GO3 can be read as follows: if an agent GateOut receives an Oyster card oyster
from agent H at time instant j (as specified by Rcv(GateOut,l,H,oyster)@j) and signals the end
of the journey at that time instant (as specified by TouchOut(GateOut,H,’finish’)@j), and a
GateIn, different from GateOut, receives the Oyster card oyster from H and writes its identifier
ginID to H at a previous time instant t (as specified by CommitIdentifier(GateIn,H,ginID)@t),
then there does not exist a card ccard different from oyster such that GateOut and GateIn exe-
cute the same transitions with that ccard at time instants i and k, respectively.

It is important to note here the connection between the role-action EndJourney used in both
GO1 and GO2 and the role-action TouchOut used in GO3. Both role-actions try to capture
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the action of a card that has been touched out on the reader of the gate out. However, while
TouchOut(GateOut,H,’finish’) models GateOut’s point of view, (denoted also by the fact
that GateOut is the first argument and that TouchOut is only used within GateOut’s agent
rules), EndJourney(H,’card’,oyster) models H’s point of view (H is the first argument and
EndJourney is only used within H’s agent rules).

4.4.2. Goal for the SSO ceremony
For the SSO ceremony, we have formalized the goal “IdP authenticates only the agent who requires to

be authenticated” as a standard injective-agreement goal in Tamarin as in Listing 4. Other goals could of
course be considered for a full-fledged analysis of the ceremony, but again here we are mainly focused
on showing our approach at work rather than carrying out such a full-fledged analysis. This goal is
formalized in Tamarin’s language by the lemma in Listing 4, which uses, in particular, the following
role-actions:

• Commit(actor, peer, params) expresses that some parameters params are committed
by an actor to a peer,

• Running(actor, peer, params) expresses that an actor is participating in the ceremony
with a peer using some parameters params,

• RevLtk(actor) expresses that a long-term private key belonging to the agent actor has been
revealed, meaning that the agent is compromised.

lemma injective_agree:
"All actor peer params #i.
Commit(actor, peer, params)@i
==>
(Ex #j. Running(actor, peer, params)@j
& j < i
& not(Ex actor2 peer2 #i2.
Commit(actor2, peer2, params)@i2
& not(#i = #i2)))
| (Ex #r. RevLtk(actor)@r)
| (Ex #r. RevLtk(peer)@r)"

Listing 4: Lemma for the security goal of SSO

This security goal can be read as follows: if some parameters params are committed by an actor to a
peer at time instant i (as specified by Commit(actor, peer, params)@i), then there exists a
time instant j at which actor is participating in the ceremony with the peer using the same parameters
(as specified by Running(actor, peer, params)@j) and there does not exist another actor
actor2who has committed the same parameters used by actor to another peer peer2 at time instant
i2 different from i (as specified by Commit(actor2, peer2, params)@i2). Otherwise, either
the long term keys of actor or the long term keys of peer have been revealed to allow another actor2
and peer2 to commit the same params.

30



4.4.3. Goal for the Coach Service ceremony
We consider one security property: authenticity of the ticket. Other properties (e.g., ensuring that

customers are billed properly or the other security properties for the Oyster ceremony) can be modeled
and analyzed similarly. This goal is formalized in Tamarin’s language by the lemma in Listing 5, which
uses, in particular, the following role-actions:

• End(Customer,’ack’,’valid’,tknumber,date) expresses that the agent Customer
receives the acknowledgment ack that the presented ticket, with number tknumber and date
date is valid.

• ValidTicket(WebServer,Customer,’tknumber’,tknumber,date) expresses that
a ticket, with number tknumber, has been issued by the WebServer for the Customer for the
date date.

lemma auth: all-traces
"All Customer tknumber date #i.
End(Customer,’ack’,’valid’,tknumber,date)@i
==> Ex WebServer #j.
ValidTicket(WebServer,Customer,’tknumber’,tknumber,date)@j
& j<i"

Listing 5: Lemma for the authenticity of the ticket in the Coach Service ceremony

The Coach Service ceremony verifies the lemma auth if, when a Customer completes the cer-
emony at time instant i with a ticket tknumber valid for a specific date (as specified by
End(Customer,’ack’,’valid’,tknumber,date)@i, then there is a previous time instant
j at which the ticket tknumber was issued by WebServer for Customer for the date date (as
specified by ValidTicket(WebServer,Customer,’tknumber’,tknumber,date)@j).

As for the Oyster ceremony, this goal refers to a single ticket inspection ceremony, i.e., a single
ceremony run, that comprises also the purchase phase in which that specific ticket has been bought.
If an agent is able to end the ceremony with a ticket that has not been bought for that specific journey
(e.g., the agent has changed the date of an old legit ticket to make the ticket valid once again), then the
security goal is falsified as the two date fields in the role-actions End and ValidTicket do not match.
More complex scenarios could be considered for a full-fledged analysis of the ceremony.

5. Modeling Human Mutations of the Ceremony

The mutations that humans carry out when executing a ceremony have repercussions also on other
agents and thus on the whole ceremony. As we remarked above (cf., in particular, Figure 1), we thus
need to define not only the human mutations, which modify a ceremony trace by mutating the subtrace
of the human agent, but also the mutations on the subtrace(s) of the other agent(s) that are likely (albeit
not necessarily) required to “match” the mutations of the human; for instance, to receive the new or
modified message sent by the human or to mirror the skip of the human actions. By introducing the
human mutations, matching them appropriately (if and when needed), and propagating these mutations
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(if and when needed) throughout the specification, we will eventually obtain fully mutated ceremony
traces, which our tool feeds into Tamarin, first to check if they are executable and then to analyze them
with respect to the corresponding goal(s). Of course, in some cases, depending on what is mutated, a
human mutation might yield a full ceremony trace without having to match this mutation and propagate
the changes.

We first introduce, using a fairly high-level language, the notion of a generic human mutation along
with the notion of a matching mutation.

Definition 7 (Generic human mutation and matching mutation). A generic human mutation is a function

µH : tr 7→ tr′

that takes as input a trace tr and gives as output a new trace µH(tr) = tr′ = JtrKµH
obtained by mutating

H’s subtrace as a consequence of the human H “deviating” from the original role script by skipping
one or more human actions, replacing a message with another one, adding a new human action, or
neglecting one or more role-actions.

A matching mutation for a human mutation is a mutation µm that mutates the subtraces of the ceremony
agents to match and propagate the human mutation.

The combination µH ◦ µm : tr 7→ tr′ of the two mutations takes as input a trace tr and gives as output
a new trace µH ◦ µm(tr) = tr′ = JtrKµH◦µm

in which the human mutation is matched and propagated to
obtain a fully executable trace.

In the following subsections, we will instantiate these generic definitions to define the four human
mutations skip, add, replace and neglect both formally and algorithmically, giving also the algorithmic
definitions of the corresponding matching mutations (Definitions 8, 9, 10 and 11, respectively).

Slightly abusing notation, we will write [a0, . . . , ai, . . . , an]H with 0 < i 6 n to denote the subtrace of
a human agent H in a ceremony execution, and we will apply J_Kµ not just to traces, but also to actions,
messages and knowledge. In fact, we consider mutations that apply generically to traces so that they
apply indirectly also to role scripts and to Tamarin actions. For readability, and to make a clearer point, in
the following descriptions and algorithms, we will sometimes depart from the tight corset of Tamarin’s
notation and consider transitions and their preconditions and postconditions. More specifically, in the
style of multiset rewriting as in [39], we consider an abstract “merged” transition rule in which prem
contains the receipt of a message and conc the sending of the reply:12

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2,m2) ,

where Prei is a set of precondition facts (e.g., fresh facts) at state i, Posti+1 is a set of postcondition
facts at state i + 1, and kni+1 is obtained by extending kni with m1 and with whatever is generated fresh
in Pre1. As usual, kni+1 is such that A can send the message m2 (after closing the knowledge under
the standard rules for message generation and analysis). It is not difficult to translate this transition to
the two corresponding transition rules in Tamarin’s notation (with In, Out, the Tamarin actions and the

12This is in the spirit of the step compression technique that is adopted in several security protocol analysis tools, such as [2].
The idea is that some actions can be safely lumped together. For instance, we can safely assume that if a role is supposed to
send a reply to a message it received, then we can compress the receive and send actions into a single transition.
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constants) and vice versa, and to carry out the corresponding translations in the following descriptions
and algorithms.

Then, the trace (1) can be rewritten as follows, where we now embed A2’s receipt of m2 in Σ2 and
A4’s receipt of m4 in Σ3 as we wish to focus on H’s actions:

...Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2,m2)

...Σ2

AgSt(H, j, kn j), Pre j, Rcv(H, l3, A3,m3) −→
AgSt(H, j + 1, kn j+1), Post j+1, Snd(H, l4, A4,m4)

...Σ3

(2)

5.1. The skip mutation

We can now instantiate the generic human mutation in Definition 7 to the case in which a human skips
one or more actions ai, ai+1, . . . in a subtrace [a0, . . . , ai, . . . , an]H .

Definition 8 (Skip mutation). A skip mutation

µH
skip : tr 7→ tr′

is a human mutation of tr’s human subtrace [a0, . . . , ai, . . . , an]H such that tr′ includes the new human
subtrace [a0, . . . , ai−1, Jai+kKµ, . . . , JanKµ], where ai+k with k > 1 is the action that H executes immedi-
ately after the execution of ai−1 and Jai+kKµ, . . . , JanKµ are the mutations of these actions obtained by H
skipping the actions ai, . . . , ai+k−1 and by matching and propagating this mutation.

For example, Figure 20 shows a human subtrace in which H skips the Snd(H, sec,GateIn, card) ac-
tion in the Oyster ceremony (omitting constants for readability, as discussed), which corresponds to not
touching in. But this is not the only possible skip: H could skip also the receipt of the reply by GateIn
and jump to his next send to GateOut, which would actually make sense as one could argue that if GateIn
does not receive a message from H then it will not reply either; or H could skip both the receipt of a mes-
sage and the sending of the reply; and so on. Note that Figure 20 also serves as an illustration for the need
of matching and propagating mutations: if the human skips the Snd(H, sec,GateIn, card) action, then it
is highly unlikely, albeit not impossible, that the GateIn will be able to send the reply that the human
expects to receive next, so we might need to remove also the action Rcv(H, sec,GateIn, 〈card, ginID〉).
We will return to this more formally, and with more details, later (e.g., in Section 5.1.1).

We have identified five different skip mutations, depending on which send (S ) and receive (R) ac-
tions are skipped: µH

skip(S), µ
H
skip(SR), µ

H
skip(R), µ

H
skip(RS) and µH

skip(RSR). More cases could be considered, but
these five cover the most interesting scenarios, which can be combined to skip bigger “chunks” of the
ceremony execution.

We describe the five skip mutations by showing their effect on the trace (2).
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Start(H, 〈GateIn,GateOut, card, bal〉),

Snd(H, sec,GateIn, card),

Rcv(H, sec,GateIn, 〈card, ginID〉),

Snd(H, sec,GateOut, 〈card, bal(card), ginID〉),

Rcv(H, sec,GateOut, 〈card, bal(card)′, finish〉)

µH
skip(S)−−−−→

Start(H, 〈GateIn,GateOut, card, bal〉),

Snd(H, sec,GateIn, card),

Rcv(H, sec,GateIn, 〈card, ginID〉),

Snd(H, sec,GateOut, 〈card, bal(card), ginID〉),

Rcv(H, sec,GateOut, 〈card, bal(card)′, finish〉)

µH
replace−−−→

Start(H, 〈GateIn,GateOut, card, bal〉),

Snd(H, sec,GateIn, card),

Rcv(H, sec,GateIn, 〈card, ginID〉),

Snd(H, sec,GateOut, 〈card2, bal(card2), ginID〉),

Rcv(H, sec,GateOut, 〈card2, bal(card2)′, finish〉)

µH
add ,µ

H
replace−−−−−−→

Start(H, 〈GateIn,GateOut, card, bal〉),

Snd(H, sec,GateIn, card),

Rcv(H, sec,GateIn, 〈card, ginID〉),

Snd(H, sec,GateOut, 〈card, bal(card), ginID〉), Snd(H, sec,GateOut, 〈card2, bal(card2), ginID〉),

Rcv(H, sec,GateOut, 〈card, bal(card)′, finish〉) Rcv(H, sec,GateOut, 〈card2, bal(card2)′, finish〉)

Figure 20. Examples of mutations in the case of the Oyster ceremony

5.1.1. The skip mutation µH
skip(S)

In this case, H, having arrived at state i+1, skips the sending of m2 and any other action that he would

carry out in Σ2 and continues the trace with the transition j > i +1, which we call the landing transition
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(i.e., the transition where H lands after the “jump” he has made):13

...Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2,m2)

...JΣ2Kµ
AgSt(H, j, Jkn jKµ), Pre j, Rcv(H, l3, A3, Jm3Kµ) −→

AgSt(H, j + 1, Jkn j+1Kµ), Post j+1, Snd(H, l4, A4, Jm4Kµ)
...JΣ3Kµ

(3)

where µ denotes the mutation composed of µH
skip(S) and the matching and propagation entailed by µH

skip(S)

(mutations of constant-message pairs are explained later).
This allows us to illustrate the need for matching and propagation on a concrete example. We namely

need to consider if and how the mutated trace can be completed, for instance when H receives from A3

an m3 that is different from the expected one as a consequence of H’s skipping the sending of m2 to A2.
This immediately raises a number of questions. For instance, for Rcv(H, l3, A3, Jm3Kµ) to be possible, it
must be the case that JΣ2Kµ contains Snd(A3, l3,H, Jm3Kµ), but there is no guarantee that this holds:

• if A3 is able to send m3 even when H does not send m2 to A2, then H can receive m3, but
• if A3 needs first A2 (which is possibly but not necessarily equal to A3) to receive m2 to then be able

to send m3, then A3 does not send m3 in the mutated trace or sends a mutation of m3 built from its
current knowledge.

Our tool implements these options as described in the pseudo-code in Algorithm 1 and Algorithm 2;
note that comments are written in italics and their start is denoted by ..

Algorithm 1 µH
skip(S): skip Snd(H, l2, A2,m2) in transition i, with landing transition j as in the

trace (3)
1: Mutate transition i to

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Posti+1

2: Jkn jKµ ::= kn j = kni+1 . Since Σ2, and thus JΣ2Kµ, does not contain a transition in which H

receives new information

. There are two cases, depending on which message is sent by A3, the original m3 or its

mutation Jm3Kµ

13For simplicity but without loss of generality, in the following we assume that the (fresh and “other”) facts in Pre j never
refer to messages received during the execution of a ceremony, but only to long-term keys, public keys and the like; this entails
that JPre jKµ = Pre j. This assumption allows us to avoid considering mutations of Pre j induced by the situation in which a
message is not received in JΣ2Kµ. This is indeed the case in the Oyster and SSO examples. Extending our approach to capturing
such mutations is cumbersome notationally but not difficult technically: we can define the mutation of the preconditions (and of
the postconditions, if needed) in a way similar to the mutation of the knowledge when one or more messages are not received.
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3: if JΣ2Kµ contains a transition with Snd(A3, l3,H,m3) in its conclusions then
4: transition j is the same as the original one in trace tr, i.e.

AgSt(H, j, kn j), Pre j, Rcv(H, l3, A3,m3) −→
AgSt(H, j + 1, kn j+1), Post j+1, Snd(H, l4, A4,m4)

5: else . JΣ2Kµ contains a transition with Snd(A3, l3,H, Jm3Kµ) in its conclusion for some

mutation Jm3Kµ defined in Algorithm 2

6: Jkn j+1Kµ ::= kn j ∪ {Jm3Kµ} ∪ Pre j

7: build all Jm4Kµ ∈ {(format(m4))(m) | m ∈ submsg(m4)} that can be generated by Jkn j+1Kµ

8: mutate transition j to

AgSt(H, j, kn j), Pre j, Rcv(H, l3, A3, Jm3Kµ) −→
AgSt(H, j + 1, Jkn j+1Kµ), Post j+1, Snd(H, l4, A4, Jm4Kµ)

The pseudo-code is hopefully quite explanatory, also thanks to the comments in the algorithms, but
there are a couple of steps that deserve clarification. First of all, what does it mean that A3 sends a
mutation Jm3Kµ of m3 built from its current knowledge? If we apply the message generation and analysis
rules freely, this is an infinite set of possible messages. We could consider that as there is no guarantee
of termination in our approach anyway, but instead we proceed in a more controlled way that mimics
human users making mistakes when sending the messages or human programmers making mistakes
when implementing a specification:

we consider only mutations of a message m that preserve the format of m.

So, for example, in line 7 of Algorithm 1 we define Jm4Kµ ∈ {(format(m4))(m) | m ∈ submsg(m4)}
of m4, and then, for each of these mutations, we build all the corresponding mutated transitions j. Note
also that we write kn ∪ Prel to mean the extension of some (possibly composite) knowledge kn with all
messages generated freshly in Prel. Finally, note that we do not consider the case in which JΣ2Kµ does
not contain a transition with Snd(A3, l3,H,m3) or Snd(A3, l3,H, Jm3Kµ) in its conclusions. This would
require Algorithm 1 to remove the corresponding receive Rcv(H, l3, A3,m3) or Rcv(H, l3, A3, Jm3Kµ), a
case that is already covered by the trace (4) and Algorithm 8 and Algorithm 9.

Algorithm 2 Matching mutation µm(µH
skip(S)) for µH

skip(S)

1: Consider the transition next(i) in Σ2 that immediately follows the mutated human transition i,

i.e.

AgSt(A2, x, knx), Prex, Rcv(A2, l2,H,m2) −→
AgSt(A2, x + 1, knx+1), Postx+1, Snd(A2, lp, As,mp),

where As is one of the other agents and lp and mp are some channel and message as specified

in Σ2

2: remove Rcv(A2, l2,H,m2) from next(i)
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3: Jknx+1Kµ ::= JknxKµ ∪ Prex, where JknxKµ ::= knx−1

4: build all JmpKµ ∈ {(format(mp))(m) | m ∈ submsg(mp)} that can be generated by Jknx+1Kµ

5: mutate the transition to

AgSt(A2, x, JknxKµ), Prex −→
AgSt(A2, x + 1, Jknx+1Kµ), Postx+1, Snd(A2, lp, As, JmpKµ)

6: let h ::= next(i)

7: if the trace contains a transition next(h) of the form

AgSt(As, s, kns), Pres, Rcv(As, lp, As−1,mp) −→
AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1) then

8: if this next(h) is actually H’s landing transition j already considered in Algorithm 1 then
9: go to 7 with h ::= next(h)

10: else
11: replace mp with JmpKµ

12: Jkns+1Kµ ::= JknsKµ ∪ Pres ∪ JmpKµ, where JknsKµ ::= kns−1

13: build all Jmp+1Kµ ∈ {(format(mp+1))(m) | m ∈ submsg(mp+1)} that can be generated

by Jkns+1Kµ

14: mutate the transition to

AgSt(As, s, JknsKµ), Pres, Rcv(As, lp, As−1, JmpKµ) −→
AgSt(As, s + 1, Jkns+1Kµ), Posts+1, Snd(As, lp, As+1, Jmp+1Kµ)

15: go to 7 with h ::= next(h)

5.1.2. The skip mutation µH
skip(SR)

In this case, H skips Snd(H, l2, A2,m2) in transition i and Rcv(H, l3, A3,m3) in transition j:

...Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2,m2)

...JΣ2Kµ
AgSt(H, j, Jkn jKµ), Pre j, Rcv(H, l3, A3,m3) −→

AgSt(H, j + 1, Jkn j+1Kµ), Post j+1, Snd(H, l4, A4, Jm4Kµ)
...JΣ3Kµ

(4)

The pseudo-code for this case is in Algorithm 8 and in Algorithm 9; for the sake of readability, we
give these and most of the following algorithms in the appendix.
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5.1.3. The skip mutation µH
skip(R)

In this case, H skips Rcv(H, l1, A1,m1) in transition i:

...Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, Jkni+1Kµ), Posti+1, Snd(H, l2, A2, Jm2Kµ)

...JΣ2Kµ
AgSt(H, j, Jkn jKµ), Pre j, Rcv(H, l3, A3, Jm3Kµ) −→

AgSt(H, j + 1, Jkn j+1Kµ), Post j+1, Snd(H, l4, A4, Jm4Kµ)
...JΣ3Kµ

(5)

The pseudo-code for this case is in Algorithm 10 and in Algorithm 11.

5.1.4. The skip mutation µH
skip(RS)

In this case, H skips both Rcv(H, l1, A1,m1) and Snd(H, l2, A2,m2) in transition i:

...Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, Jkni+1Kµ), Posti+1, Snd(H, l2, A2, Jm2Kµ)

...JΣ2Kµ
AgSt(H, j, Jkn jKµ), Pre j, Rcv(H, l3, A3, Jm3Kµ) −→

AgSt(H, j + 1, Jkn j+1Kµ), Post j+1, Snd(H, l4, A4, Jm4Kµ)
...JΣ3Kµ

(6)

The pseudo-code for this case is in Algorithm 12 and in Algorithm 13.

5.1.5. The skip mutation µH
skip(RSR)

In this case, H skips both Rcv(H, l1, A1,m1) and Snd(H, l2, A2,m2) in transition i and Rcv(H, l3, A3,m3)
in transition j:

...Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, Jkni+1Kµ), Posti+1, Snd(H, l2, A2, Jm2Kµ)

...JΣ2Kµ
AgSt(H, j, Jkn jKµ), Pre j, Rcv(H, l3, A3,m3) −→

AgSt(H, j + 1, Jkn j+1Kµ), Post j+1, Snd(H, l4, A4, Jm4Kµ)
...JΣ3Kµ

(7)

The pseudo-code for this case is in Algorithm 14 and in Algorithm 15.
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5.2. The add mutation

There are two different cases for this mutation: the human could

• send at any time any message that is created using the elements of one of the sets in P(kn) \ {∅},
where P(kn) is the powerset of the messages in the human’s current knowledge kn (i.e., the finite
set of all subsets of kn including {kn}), but we exclude the singleton containing the empty set as
it does not make sense to send a message that belongs to the empty set (such a message does not
exist),

• duplicate a send action.14

Note that if we allowed the human to send any message that he can build out of his current knowledge,
then we would have to deal with an infinite set of options since, even if the human knows only one
thing, such as his name, the message generation and analysis rules will allow him to generate an infinite
set of messages (we will have the same problem with the replace mutation). In other words, since an
agent’s knowledge is never empty as it contains at the very least the agent’s name, the closure of that
knowledge under the generation and analysis rules will yield an infinite set. For instance, we can apply
the pairing rule infinitely often to a single message term m to generate 〈m,m〉, 〈m,m,m〉, 〈m,m,m,m〉
and so on. In security protocol analysis, the ability of the attacker to generate infinitely many messages
is a cause of non-termination of the analysis, which is controlled by considering only the messages
that honest agents will actually respond to (and by introducing symbolic techniques, such as the “lazy
intruder” [38], to manage the remaining infinite set of “answerable” messages). In other words, the
attacker messages that cannot be answered by the other agents are simply excluded. In our approach,
we cannot control the ability of the human user to generate, via the add mutation (and similarly for the
replace mutation), infinitely many messages since our approach also generates mutations in the behavior
of the other agents to match these human mutations, so the other agents will be able to respond to any
human message. We thus cannot exclude a priori any of these infinitely many messages. Similar to [8],
we thus restrict our attention to the messages that are already in the human’s current knowledge kn
(rather than in the knowledge’s closure under the generation and analysis rules). More specifically, we
consider the powerset P(kn) of kn, i.e., the finite set of all subsets of kn including {kn} but excluding
the singleton containing the empty set as it does not make sense to send a message that belongs to the
empty set. We leave the investigation of other controlled notions of “sendable” messages to future work.

Definition 9. An add mutation is a mutation

µH
add : tr 7→ tr × tr′

such that the original trace tr = [a0, . . . , ai−1, ai, ai+1, . . . , an] is run in parallel with the new, mutated
trace tr′ = [a0, . . . , ai−1, JaiKµ, Jai+1Kµ, . . . , JanKµ], where ai is a send action and JaiKµ is its possible
mutation obtained either by duplicating ai or by adding an action Snd(H, l, A,m) at state i for some l
with A,m ∈ P for a set P ∈ P(kni) \ {∅} in the powerset of the messages in H’s current knowledge
kni, and Jai+1Kµ, . . . , JanKµ are the mutations of the actions ai, . . . , ai+k−1 obtained by matching and
propagating this mutation.

14Note that we only consider mutations initiated by a human agent; as a consequence, we do not consider the situation in
which the human agent initiates a mutation of the ceremony by adding a receive action as that would require another agent
(human or not) to have added the corresponding send action first. In contrast, the approach of [8] allows human agents to
receive arbitrary messages but without considering mutations for the human or other agents.
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Consider the beginning of the trace (2). The mutation µH
add mutates this to either

...Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,M1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2,M2)

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,M1) −→
AgSt(H, i + 1, kni+1), Snd(H, l, A,M)

...JΣ2Kµ

(8)

for a new message M as described in Definition 9, or

...Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,M1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2,M2)

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,M1) −→
AgSt(H, i + 1, kni+1), Snd(H, l2, A2, JM2Kµ)

...JΣ2Kµ

(9)

The add mutation is best exemplified when combined with the other mutations, e.g.,

• sending at any time any message that the human knows can be combined with a skip mutation (e.g.,
to skip some steps of a ceremony and instead send an arbitrary message before continuing with the
rest of the ceremony),

• duplicating a send action can be combined with a replace mutation (as we do in our case studies).

For example, H could start the Oyster ceremony touching in with one card card1 and then, by mistake,
touch out with two cards; this can be represented by adding a second touch-out send message where the
first card is replaced with the second, thus obtaining the two traces shown in Figure 20.

Our tool implements this mutation as described in the pseudo-code in Algorithm 3 along with Algo-
rithm 4 for the matching mutation.

Algorithm 3 add mutation µH
add as in the subtraces (8) and (9)

1: Add a transition at state i built by either

2: adding a Snd(H, l, A,m) for some l, A and m ∈ P for P ∈ P(kni) \ {∅}, preserving types as

specified by the corresponding constants, where Prei contains only fresh facts (namely those

fresh messages needed to built m; hence Prei could be empty), keeping the premises fixed as

the same as the state i, i.e.

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Snd(H, l, A,m)

3: or duplicating an existing Snd(H, l, A,m2) action, keeping the premises fixed as the same as
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the state i, i.e.

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Snd(H, l, A,m2)

Algorithm 4 Matching mutation for µm(µH
add)

1: Consider the new mutated human transition i

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Snd(H, l, As,m),

where As is one of the other agents and l and m are some channel and message as specified

in Algorithm 3

2: considering the receiver As, take its next(i) transition that immediately follows the mutated

human transition i

3: create a copy next(i) of the next(i) transition and in next(i) remove the Snd event (if any) and

replace the values in the Rcv event with l, m and As, i.e.

AgSt(As, s, kns), Pres, Rcv(As, l,H,m) −→
AgSt(As, s + 1, kns+1)

4: for all transitions x after the transition next(i),

AgSt(A, x, knx) . . . −→ AgSt(H, x + 1, knx+1) . . .,

increment the state increasing the role step the agent is in but keeping the rest of the transitions

intact

Note that in this matching mutation algorithm we allow the agent A to receive two copies of the
message sent by the human, but do not duplicate the ensuing send action by A. This is in line with what
we wrote above about the add mutation being best exemplified when combined with a replace mutation,
and indeed this is what happens in our Oyster example, in which add&replace allows us to consider the
case in which the human touches in with two cards, an Oyster card and a credit card as in Figure 20, and
other similar cases. One could consider an alternative matching mutation algorithm in which A’s send
action is duplicated too and this is propagated accordingly, as well as other algorithms that mix different
ways of adding and duplicating transitions.

5.3. The replace mutation

This mutation captures the fact that a human user may send a message in place of another one (the case
in which H replaces an action of a ceremony with another one is obtained by combining a skip and an
add mutation). Like for the add mutation, we control the infinite set of message options by considering
P(kn) \ {∅}, i.e., the finite set of all subsets of kn including kn but excluding the singleton containing
the empty set, as it does not make sense to send a message which belongs to the empty set. Moreover, to
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simplify further, we restrict our attention to messages of the same type (this can be achieved thanks to
the constants that we use to represent types, as we write in the definition and in the mutation algorithm
below). Again, we leave the investigation of other controlled notions of “sendable” messages to future
work.

Definition 10. A replace mutation

µH
replace : tr 7→ tr′

is a human mutation of tr’s human subtrace [a0, . . . , ai, . . . , an]H such that tr′ includes the new human
subtrace [a0, . . . , JaiKµ, Jai+1Kµ, . . . , JanKµ], where ai is a send action Snd(H, l, A,m) and JaiKµ is its mu-
tation obtained by replacing the message m either with a sub-message (but preserving the format) or
with a message contained in a set P in the powerset P(kni) \ {∅} of the messages in H’s current knowl-
edge kni (but preserving types as specified by the corresponding constants); Jai+1Kµ, . . . , JanKµ are the
mutations of the actions ai+1, . . . , an obtained by matching and propagating this mutation.

Again, we show the effect of the µH
replace mutation by showing its effect on the trace (2):

...Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2, Jm2Kµ)

...JΣ2Kµ
AgSt(H, i + 1, kni+1), Prei+1, Rcv(H, l3, A3, Jm3Kµ) −→
AgSt(H, i + 2, Jkni+2Kµ), Posti+2, Snd(H, l4, A4, Jm4Kµ)

...JΣ3Kµ

(10)

where µ, which denotes the mutation composed of µH
replace and the matching and propagation entailed by

µH
replace, replaces m2 either with Jm2Kµ ∈ {(format(m2))(m) | m ∈ submsg(m2)} or with a message m

that has the same constant as m2 and is obtained from H’s current knowledge as shown in Algorithm 5
along with Algorithm 6 for the matching mutation.15 Note that in the trace (10) we do not have a landing
transition as for the skip mutation in, e.g., the trace (2), since in the trace (10) Σ2, and thus JΣ2Kµ, does
not contain other transitions of H; in other words, j + 1 is the transition of H that immediately follows i
and Σ2, and thus JΣ2Kµ only contains one or more transitions by other agents.

For example, H could start the Oyster ceremony with one card card1 and complete it with another card
card2, thus giving rise to two “incomplete journeys”, as shown in Figure 20 and discussed in Section 7.1.
For another example, see the SSO ceremony in Section 7.2.

Algorithm 5 replace mutation µH
replace as in the trace (10)

1: Build all transitions i obtained by replacing m2 either with each Jm2Kµ ∈ {(format(m2))(m) |

15We give only one algorithm for µH
replace since, contrary to the cases of the skip mutations, the two subcases of µH

replace
proceed in the same way after the replacement of m2.
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m ∈ submsg(m2)} or with each Jm2Kµ that is in a non-empty set in the powerset of H’s current

knowledge kni+1 but preserving types as specified by the corresponding constants, i.e., mutate

transition i to

AgSt(H, i, kni), Prei,Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2, Jm2Kµ)

and for each of these transitions

2: if JΣ2Kµ contains a transition with Snd(A3, l3,H,m3) in its conclusions then . this means that

the new message Jm2Kµ has no influence on m3

3: Jkni+2Kµ ::= kni+2, Jm3Kµ ::= m3, Jm4Kµ ::= m4 and transition i + 1 is

AgSt(H, i + 1, kni+1), Prei+1,Rcv(H, l3, A3,m3) −→
AgSt(H, i + 2, kni+2), Posti+2, Snd(H, l4, A4,m4)

4: else . the new message Jm2Kµ has some influence on m3 and thus A3 sends some Jm3Kµ, so we

consider two cases depending on the choice of Jm2Kµ

5: if m2 was replaced with a Jm2Kµ ∈ {(format(m2))(m) | m ∈ submsg(m2)} then
6: Jkni+2Kµ ::= kni+1 ∪ Jm3Kµ ∪ Prei+1

7: build all Jm4Kµ ∈ {(format(m4))(m) | m ∈ submsg(m4)} that can be generated by

Jkni+2Kµ

8: mutate transition i + 1 to

AgSt(H, i + 1, kni+1), Prei+1,Rcv(H, l3, A3, Jm3Kµ) −→
AgSt(H, i + 2, Jkni+2Kµ), Posti+2, Snd(H, l4, A4, Jm4Kµ)

9: if m2 was replaced with a Jm2Kµ that is in a non-empty set in the powerset of H’s current

knowledge kni+1 but preserving types as specified by the corresponding constants then
10: Jkni+2Kµ ::= kni+1 ∪ Jm3Kµ ∪ Prei+1

11: replace m4 with each Jm4Kµ that is in a non-empty set in the powerset of H’s current

knowledge kni+2 but preserving types as specified by the corresponding constants

12: mutate transition i + 1 to

AgSt(H, i + 1, kni+1), Prei+1,Rcv(H, l3, A3, Jm3Kµ) −→
AgSt(H, i + 2, Jkni+2Kµ), Posti+2, Snd(H, l4, A4, Jm4Kµ)

Algorithm 6 Matching mutation for µm(µH
replace)

1: Consider the transition next(i) that immediately follows the mutated human transition i, i.e.

AgSt(A2, x, knx), Prex, Rcv(A2, l2,H,m2) −→
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AgSt(A2, x + 1, knx+1), Postx+1, Snd(A2, lp, As,mp),

where As is one of the other agents and lp and mp are some channel and message, and m2 is

replaced either by Jm2Kµ ∈ {(format(m2))(m) | m ∈ submsg(m2)} or by a Jm2Kµ in a non-

empty set in the powerset of H’s current knowledge kni+1 but preserving types as specified by

the corresponding constants

2: if Jm2Kµ ∈ {(format(m2))(m) | m ∈ submsg(m2)} then
3: Jknx+1Kµ ::= knx ∪ Prex ∪ Jm2Kµ

4: build all JmpKµ ∈ {(format(mp))(m) | m ∈ submsg(mp)} that can be generated by Jknx+1Kµ

5: mutate the transition next(i) to

AgSt(A2, x, knx), Prex, Rcv(A2, l2,H, Jm2Kµ) −→
AgSt(A2, x + 1, Jknx+1Kµ), Postx+1, Snd(A2, lp, As, JmpKµ)

6: else . Jm2Kµ is in a non-empty set in the powerset of H’s current knowledge kni+1 but

preserving types as specified by the corresponding constants

7: Jknx+1Kµ ::= knx ∪ Prex ∪ Jm2Kµ

8: replace mp with each JmpKµ in a non-empty set in the powerset of A2’s current knowledge

Jknx+1Kµ but preserving types as specified by the corresponding constants, and mutate the tran-

sition next(i) to

AgSt(A2, x, knx), Prex, Rcv(A2, l2,H, Jm2Kµ) −→
AgSt(A2, x + 1, Jknx+1Kµ), Postx+1, Snd(A2, lp, As, JmpKµ)

9: let h ::= next(i)

10: if the trace contains a transition next(h) of the form

AgSt(As, s, kns), Pres, Rcv(As, lp, As−1,mp) −→
AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1) then

11: if this next(h) is actually H’s transition i + 1 already considered in Algorithm 5 then
12: go to 10 with h ::= next(h)

13: else
14: if JmpKµ ∈ {(format(mp−1))(m) | m ∈ submsg(mp−1)} then
15: Jkns+1Kµ ::= JknsKµ ∪ Pres ∪ JmpKµ, where JknsKµ ::= kns−1

16: build all Jmp+1Kµ ∈ {(format(mp+1))(m) | m ∈ submsg(mp+1)} that can be gener-

ated by Jkns+1Kµ

17: mutate the transition next(h) to

AgSt(As, s, JknsKµ), Pres, Rcv(As, lp, As−1, JmpKµ) −→
AgSt(As, s + 1, Jkns+1Kµ), Posts+1, Snd(As, lp, As+1, Jmp+1Kµ)

18: else . JmpKµ is in a non-empty set in the powerset of As−1’s current knowledge but
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preserving types as specified by the corresponding constants

19: Jkns+1Kµ ::= JknsKµ ∪ Pres ∪ JmpKµ, where JknsKµ ::= kns−1

20: replace mp+1 with each Jmp+1Kµ in a non-empty set in the powerset of As’s cur-

rent knowledge Jkns+1Kµ but preserving types as specified by the corresponding constants, and

mutate the transition next(h) to

AgSt(As, s, JknsKµ), Pres, Rcv(As, lp, As−1, JmpKµ) −→
AgSt(As, s + 1, Jkns+1Kµ), Posts+1, Snd(As, lp, As+1, Jmp+1Kµ)

21: go to 10 with h ::= next(h)

5.4. The neglect mutation

This mutation captures the fact that a human user may not adhere to one or more internal behaviors
expected by the ceremony, e.g., the case in which the coach Driver neglects to execute a check on a
particular field on a ticket during the Coach Service ceremony. This is defined by the mutation as the
removal of one of more role-actions.

Definition 11. A neglect mutation

µH
action : tr 7→ tr′

is a human mutation of tr’s human subtrace [a0, . . . , ai, . . . , an]H such that tr′ includes the new human
subtrace [a0, . . . , ai−1, JaiKµ, Jai+1Kµ, . . . , JakKµ, ak+1, . . . , an], where {ai, ai+1, . . . , ak} = a are the role-

actions in the human transition rule prem a−→ conc that has been mutated by the human into prem
JaKµ−−→

conc .

In the specific case that we are considering in this paper, the mutation of a Tamarin role-action in a
transition rule prem a−→ conc means either removing it from a or leaving it unchanged, but, in general, it
could mean also modifying it by changing some of its parameters.

We cannot illustrate this mutation by means of the beginning of the trace (2) as we need to show
the role-actions explicitly, but we can use the Coach Service ceremony and, in particular, consider the
following mutation of the rule (D2) that we gave in Figure 30:
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[AgSt(Driver, 2, 〈kS,Customer, tknumber, date, dtime, from, to〉]
Snd(Driver,sec,Customer,〈tknumber,‘ack’,‘valid’〉)

Eq(tknumber,tknumberkS),
Eq(Customer,CustomerkS),

Eq(price,pricekS),
Eq(date,datekS),

Eq(dtime,dtimekS),
Eq(from,fromkS),

Eq(to,tokS)−−−−−−−−−−−−−−−−−−−−−−−−−−→
[AgSt(Driver, 3, 〈kS,Customer, tknumber, date, dtime, from, to〉,
Outsec(Driver,Customer, 〈Customer, tknumber, date, ‘ack’, ‘valid’〉)]

This mutated rule reflects a mistake of the Driver of the coach who forgets to control that the date
printed on the e-ticket shown by the Customer is, in fact, the original date of the journey for which it
was bought. The removal of this role-action will entail that all the possible traces where this check is
not valid are considered during the analysis of the security goal, whereas these traces would have been
excluded in presence of the check, thus preventing the forging attack that we discussed in Section 2.3.

Our tool implements the neglect mutation as described in the pseudo-code in Algorithm 7. Note that
this mutation is not matched. To clarify this, let us consider the possible cases:

• since we defined a strong correlation between some of the events in Tamarin and some facts (cf. Sec-
tion 4.3), the neglect mutation is not allowed to remove the Tamarin role-actions that correspond
to these facts because otherwise the resulting rule wouldn’t be well-formed (moreover, the removal
or modification of Outl(A, P,m) and Inl(P, A,m) facts are already covered by the other mutations,
cf. Definition 8);

• the neglect mutation is also not allowed to remove a Tamarin role-action that is necessary for a
security goal because otherwise we would obtain a ceremony that is not executable;16

• if the neglect mutation removes one or more Tamarin role-actions that entail some restriction on the
set of traces (e.g., an equality check Eq(date, datekS) like in the example considered here), then the
actual Tamarin restriction is still valid as it is a generic property of the operator (e.g., of the equality
operator Eq) but it simply will not be applied (as Eq(date, datekS) is not present anymore) and the
X-Men tool will thus analyze more traces, possibly including some traces that contain an attack
based on the mutation;

• in the role scripts of the other agents there is nothing that corresponds to the events of another agent
(so the other agents will not notice if one or more Tamarin actions of the human are removed).

Algorithm 7 neglect mutation µH
action

1: Build all transitions i obtained with JaKµ by removing one or more Tamarin role-actions accord-

ing to the powerset generated from the original Tamarin role-action set {ai, ai+1, . . . , ak} = a,

16Another possibility would be to extend the mutation to deal with the removal of the Tamarin role-actions necessary for a
security goal, but we leave this to future work.
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i.e.

AgSt(H, i, kni), Prei,Rcv(H, l1, A1,m1)
JaKµ−−→

AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2,m2)

2: let h ::= i

3: if the trace contains a transition next(h) of the form

AgSt(As, s, kns), Prey, Rcv(As, lp, As−1,mp)
a′−→

AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1) then
4: if As = H and a′ contains the same one or more Tamarin role-actions that have been re-

moved then
5: remove the same occurrences of one or more Tamarin role-actions from a′ in next(h) to

replace next(h) with

AgSt(As, s, kns), Prey, Rcv(As, lp, As−1,mp)
Ja′Kµ−−−→

AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1)

6: go to 3 with h ::= next(h)

7: else
8: go to 3 with h ::= next(h)

Note that in this algorithm if the human neglects a check at some point, and thus the corresponding
role-action is removed, then the algorithm also removes the same check (and role-action) in all the
following transitions in which the check appears (if at all, since in fact it will depend on the ceremony,
and on how the modeler models it, whether the check is carried out only once or repeated in many
transitions). This models the fact that the human neglects that check altogether. An interesting variant
that could be considered in the future is the case in which the role action is removed in only one transition
but kept in all subsequent ones, thereby modeling a momentary lapse.

6. X-Men: A Tool for the Generation of Mutated Specifications Based on Human Behaviors

In this section, we describe the X-Men Tool and how it generates the mutated models that are then
analyzed using Tamarin.

As we remarked in the introduction, X-Men fully automates the workflow of our approach, except for
the green box “Security Analyst Checks”, which is carried out by hand by the analyst (cf. Figure 1). As
shown in Figure 21, X-Men fully automates the process of generation and analysis of mutated security
ceremony models that are then automatically used as input to Tamarin. X-Men can be used with human
mutations only (without matching, e.g., as in the case of the Coach Service ceremony), or it can be used
with matching mutations that are propagated to create an executable trace that can be analyzed in search
for attacks (as for our two other case studies).

Our approach works in three fully-automated phases as shown in Figure 2:

(1) the preprocessing phase, which prepares the specification file for the mutations,
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(2) the mutation phase, which generates the mutated specifications, and
(3) the analysis phase, which invoke Tamarin to carry out the analysis and outputs a report of the

results.

6.1. The preprocessing phase

The entire execution of the X-Men Tool is managed by two scripts, Wolverine and Xavier, which
are written using the Python programming language and which collaborate with each other to make it
possible to generate mutated models and analyze them automatically. The starting point of the entire
process is the Wolverine script which, in Figure 2, is shown as “Slicer/Joiner”: Wolverine’s primary
functions are to take care of the slicing, and consequently the joining, of the input ceremony models.17

Given a model written using the standard Tamarin syntax and order of rules, the slicing function within
Wolverine splits it into three different parts and produces in output three different files, one file per
part.18 Users of the X-Men Tool must use specific “delimiters” (defined in [25]) to identify these three
parts, which are:

(1) a first part that contains everything from the beginning of the model until the channel rules (in-
cluded),

(2) a second part that contains the functions and all the agent rules,
(3) a third part that contains the restrictions and lemmas.

Once the three files have been generated, Wolverine invokes the X-Men Tool to carry out the mutation
phase.

6.2. The mutation phase

The mutation phase is managed by the X-Men Tool, which is represented in Figure 2 by the black
rectangle with a yellow-black “X” containing the behavioral patterns library. X-Men is written using
the Java programming language following the Model–View–Controller software design pattern. To be
able to read model files written in the Tamarin syntax, X-Men takes advantage of another component
called ANTLR [40], which stands for ANother Tool for Language Recognition. ANTLR is a powerful
parser generator for reading, processing, executing, or translating structured text or binary files. It is
widely used to build tools and frameworks, and its role is to generate from a grammar a parser that can
build and walk through parse trees. We have written the grammar that is the starting point for ANTLR
following the syntax of the Tamarin grammar in [36].

Once Wolverine has invoked X-Men, a Graphical User Interface (GUI) appears as shown in Fig-
ure 21a. The GUI is quite clear and simple, and guides a security analyst through the few steps needed to
generate the mutated models. In fact, when opened, the GUI allows the security analyst only to upload a
model. Once a model has been uploaded, a new interface tab allows the security analyst to select which
mutations he wants to apply. The new tab, shown in Figure 21b, allows the security analyst to select the
four mutations (skip, replace, add, neglect), their variants (e.g., S, SR, R for skip, submessages or type

17We named the script after the mutant Wolverine, a member of the X-Men who possesses retractable adamantium claws that
can slice through (almost) anything.

18In addition to these files, another file is created to preserve the original model file as a backup copy. This file will be restored
at the end of the execution of the X-Men Tool to allow the security analyst to execute the tool as many times as desired with
minimum hassle when dealing with modifications of the original files.
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(a) The main panel of the X-Men Tool (b) The mutations panel in the X-Men Tool

Figure 21. The GUI of the X-Men Tool

for replace, etc...) and their combinations, and any other mutation that will be defined in X-Men’s library
of behavioral patterns in the future.

Once the security analyst has selected the mutations he wants to apply to the model, he can execute
the generation of the mutated models by clicking on the button that is shown in Figure 21a. Once X-Men
has terminated the generation of the mutated models, Wolverine takes back the control of the process
and performs the joining of each mutated model created from part (2), which includes the functions and
all the ceremony agent rules, with the other two parts, part (1) containing the initial definitions and the
channel rules and part (3) containing the restrictions and lemmas. Once the joining has terminated, the
X-Men Tool completes the generation of the mutated models and feeds them to the analysis phase.

6.3. The analysis phase

As we discussed above and as shown for our three case studies in Table 1, X-Men generates a large
number of mutated models. We have implemented the Python script Xavier to tackle this issue.19 In order
to simplify the analysis of such a large number of mutated models, Xavier automates the analysis process
by fetching all the mutated models, inputting them into Tamarin and then, for each model, reporting

• whether one or more properties have been falsified (and thus a vulnerability identified),
• whether Tamarin has timed out before finding a proof (we have set a timeout of 10 minutes, which

is usually a long enough time for Tamarin to produce an output, but of course a longer timeout could
be set, especially for large and complex ceremonies), or

• whether the model has been successfully verified.

19We named the script after the mutant Professor X (Charles Francis Xavier), the founder and leader of the X-Men.
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Table 1 summarizes the reports generated by Xavier for our three case studies. The first column shows
which mutation is considered, the second column shows which version of that specific mutation is con-
sidered, the third column shows if the attacker is enabled. The following columns display the results for
each case study: how many mutated models were generated by X-Men, how many mutated models had
a security property (or more properties) falsified by Tamarin, how many models made Tamarin time out,
and how many models were verified by Tamarin.

Table 1
Mutated models generated by X-Men
(“Yes” indicates that the attacker is activated, “No” indicates that the attacker is not activated, “-” indicates that that mutation is
not considered in that case study)

Mutation Attacker Case Study

Oyster SSO Coach Service

Models Models Models

Generated Falsified Timeout Verified Generated Falsified Timeout Verified Generated Falsified Timeout Verified

skip S No 2 1 0 1 - - - - - - - -

SR No 3 2 0 1 - - - - - - - -

R No 2 1 0 1 - - - - - - - -

RS No 1 0 0 1 - - - - - - - -

RSR No 1 1 0 0 - - - - - - - -

replace submessage Yes - - - - 255 77 178 0 - - - -

type No 3 1 0 2 - - - - - - - -

add No 92 48 2 42 - - - - - - - -

add&replace submessage Yes - - - - 255 0 255 0 - - - -

type No 3 2 0 1 - - - - - - - -

neglect Yes - - - - - - - - 127 95 0 32

It is important to note that, regardless of the performance of the X-Men Tool in the generation of mu-
tated models, the overall performance of the entire analysis process depends on the actual performance
of Tamarin and its prover, in addition to the actual performance of the computer on which X-Men is
run. As is commonly the case in security protocol analysis, the security analyst will need to carry out an
inspection of those models for which Tamarin timed out. Moreover, even though X-Men automates the
entire process, the security analyst will need to inspect the models for which Tamarin identified vulner-
abilities in order to check whether these are vulnerabilities that apply also to the original ceremony and
whether the mutations are representative of interesting real-life scenarios. This manual analysis is made
easier by Tamarin’s graphic mode, which displays attack traces in a graphical and thus human-friendly
way.

As we remarked above, this need for the manual intervention of a security analyst is similar to what
happens with mutation-based testing approaches [19–24], and we leave for future work both extensions
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that would allow for more automation of the manual inspection and extensions that would allow X-Men
to generate test cases from the attack traces and to apply them on the ceremony implementation.

7. Analysis of the three case studies

In this section, we show how our formalization can be used effectively for finding attacks that are due
to the (mis-)behavior of human agents in security ceremonies. As proof-of-concept, we have applied our
tool X-Men to three case studies, the Oyster ceremony, the Single Sign-on ceremony and the Coach Ser-
vice ceremony. As remarked above and shown in Table 1, X-Men generated a large number of mutated
models for these ceremonies. These mutated models are then automatically analyzed by Tamarin thanks
to Xavier activating the attacker rules when necessary (for the SSO and the Coach Service case studies
but not for the Oyster one). The next three subsections summarize the results of the analyses of the three
case studies, and in Section 7.4 we then discuss how to exploit the results of an analysis of a security
ceremony.

7.1. Analysis of the Oyster Ceremony

Table 2 shows some of the attacks found with the models obtained by applying the mutations skip,
replace and add&replace to the Oyster ceremony. The table does not show the results pertaining to the
92 models generated by the add mutation: the report generated by the analysis indicates that 42 of these
models are verified and 2 cause Tamarin to time out, whereas 48 models are falsified and require a check
for false positives by the security analyst. We carried out that check and concluded that all these 48
falsified models are not realistic attacks as they represent cases in which the human agent systematically
tries all the possible combinations of parameters without following the logic behind the ceremony. As
we will discuss in more detail below, although many generated models can be excluded automatically
as they are verified, there are still many models that are falsified (or time out) for which an inspection
by the security analyst is required and it will be useful to provide additional automated support for
this inspection. While it will be challenging to fully automate the inspection, we are currently working
at devising techniques to identify common features among such models and thus group them into a
small(er) equivalence classes, so that the analyst would then need to consider only one model per class.
Distinguishing the falsified models that require matching mutations (like all these 48 models do) from
those that do not require matching already provides some very initial but useful classification.

The column “Mutated model” of Table 2 lists the file identifier of the generated file (as used at [25])
and the table also provides mutation details as well as a brief explanation of the human agent’s behavior
for each model. In addition to the three goals discussed in Section 4.4, we have used Tamarin to check
the functional goal (a.k.a. executable goal) that the mutations did not create models that are not able
to complete the message passing terminating with the last rule. All the models considered in the table
passed this check.

We describe three interesting attacks that Tamarin has been able to find out of the many mutations
generated.

Attack #1. The MSC of the attack (Figure 22) shows how the human agent H may execute the Oyster
ceremony without touching-in at the entrance (as shown by the dotted arrows representing the human
agent who is not touching-in). H touches-out the oyster and GateOut reads the information saved on
the card, which does not specify where H entered as GateIn was not able to write its identifier ginID
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Table 2
Some of the attacks found on the models obtained using the mutations applied to the Oyster ceremony
(“X” indicates that an attack has been found, “×” indicates that no attack was found, “•” indicates that the functional goal is
verified)

Mutation Mutation details Explanation Goal

Mutated complete journey same card card clash functional

model (GO1) (GO2) (GO3)

skip S M0 Skip send in H1 H does not touch in X X × •

M1 Skip send in H2 H does not touch out × × × •

SR M0 Skip send in H1 and re-
ceive in H2

H does not touch in (here H ig-
nores any response from GateIn)

X × × •

M1 Skip send in H1 and re-
ceive in H3

H does not touch in (here H
could receive a response from
GateIn but ignores any response
from GateOut)

X X × •

M2 Skip send in H2 and re-
ceive in H3

H does not touch out (here
H ignores any response from
GateOut)

× × × •

R M0 Skip receive in H2 H does not receive confirmation
of touch in

X × × •

M1 Skip receive in H3 H does not receive confirmation
of touch out

× × × •

RS M0 Skip receive and send in
H2 and receive in H3

H does not receive confirmation
of touch in and does not touch
out (here H could receive a re-
sponse from GateOut)

× × × •

on the card. The security goal GO1 is not verified, entailing what TfL calls an incomplete journey as
mentioned in Section 2.1, and the system charges a penalty fare as it is not able to calculate the journey
of the passenger.

This is a real scenario that occurs when the passenger forgets to touch-in, e.g., when the station has
no proper gates but only card readers at the station entrance, when the gates are already open (TfL
sometimes opens the gates to speed up entry/exit during rush hour or when there are a large number of
passengers), or when the reader is not working properly and does not read/write the Oyster card.

Attack #2. H may use two different cards in a single journey, touching-in with the first and touching-out
with the second, so that GO2 fails with two incomplete journeys. This may appear to be an uncommon
scenario, but several tourists and even Londoners suffered from this problem, and still do. For instance,
a passenger might have two Oyster cards in her pocket and confuse them, or the passenger might use
Apple/Google pay (cf. Section 2.1) but using two different devices, say smartphone and smartwatch,
which will cause two incomplete journeys because the Device Account Number is unique for each device
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Table 2
(Continued) Some of the attacks found on the models obtained using the mutations applied to the Oyster ceremony
(“X” indicates that an attack has been found, “×” indicates that no attack was found, “•” indicates that the functional goal is
verified)

Mutation Mutation details Explanation Goal

Mutated complete journey same card card clash functional

model (GO1) (GO2) (GO3)

RSR M0 Skip receive and send in
H2 and receive in H3

H does not receive confirmation
of touch in and does not touch
out (here H ignores any response
from GateOut)

X × × •

replace M0 Replace oyster with ccard
in whole ceremony

H uses a contactless card instead
of Oyster

× × × •

M1 Replace oyster with ccard
only in H2 and after

H touches out using a different
card

× X × •

M2 Replace bal(oyster) with
bal(ccard)

H uses balance of ccard instead
of Oyster

× × × •

add&replace M0 Similar to “replace M0”
keeping the original cere-
mony

H uses a contactless card instead
of Oyster

× X X •

M1 Similar to “replace M1”
keeping the original cere-
mony

H touches out using a different
card

× X × •

M2 Similar to “replace M2”
keeping the original cere-
mony

H uses balance of ccard instead
of Oyster

× × × •

and is used by TfL as the identifier for a single journey.

Attack #3. The MSC in Figure 23 shows how H may use two cards (e.g., Oyster and a contactless
card), simultaneously touching them both in/out when entering/exiting (as shown by the dotted arrows
representing a parallel second execution of the Oyster ceremony), so that GO3 fails due to a card clash
(cf. Section 2.1). This occurs, e.g., when a passenger touches with a wallet that holds all the passenger’s
cards that the system considers to be valid payment cards.

The attacks on the Oyster ceremony were found using the mutations generated by X-Men as shown
in Table 2. The analysis did not require the activation of a Dolev-Yao attacker as the system, through
the matching mutations, replied and billed the passengers “wrongly” due to their mistakes. Hence, in
this case, the matching mutations represent the concrete behavior of the implementation of the TfL
system. While these attacks are, to some extent, known to TfL (cf. their warnings in Figure 5) and can
be gathered empirically by observing the concrete behavior of the Tube passengers, it is important to
stress that X-Men allows us to find them automatically (based on an analysis of the specification, rather
than out of observations in practice). Other attacks might be found by considering other goals or other
mutations. Moreover, in the style of model-based testing (see the end of Section 3), it is possible to use
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H GateIn GateOut

oyster, balance

oyster, balance-fare, finish

Figure 22. Attack that represents the Incomplete journey scenario for the Oyster ceremony

H GateIn GateOut
oyster

card

oyster, ginID

card, ginID

oyster, balance, ginID

card, balance, ginID

oyster, balance-fare, finish

card, balance-fare, finish

Figure 23. Attack that represents the Card clash scenario for the Oyster ceremony

the attack traces to generate concrete test cases to be executed on the code of the ceremony (if that is
available).

7.2. Analysis of the SSO Ceremony

We have specified SSO as a ceremony in X-Men, considering what would happen if SP was played
by the attacker and IdP was played by a human, who may mistakenly generate and sign a wrong authen-
tication assertion. Indeed, the replace (submessage) mutation generates AuthAssert(C, SP) among other
mutations. We have formalized the goal “IdP authenticates only the agent who requires to be authen-
ticated” as a standard injective-agreement goal in Tamarin as in Listing 4 and indeed we were able to
find the attack. This shows that our approach is able to find an attack that was not present in the original
specification of SAML-based Single Sign-on but was introduced in Google’s implementation [18]. Our
mutations, among other things, capture such possible specification-implementation deviance.
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Table 3
The attack found on the models obtained using the mutations applied to the Single Sign-on ceremony
(“X” indicates that an attack has been found, “×” indicates that no attack was found, “•” indicates that the functional goal is
verified)

Mutation Mutation details Explanation Goal

Mutated injective agree functional

model

SSO M0 Replace the message of
IdP1 with a submessage of
the same message

The message is sent with the
Client and the IdP identifier only
(any information about the ser-
vice provider SP is removed)

X •

Note that, in fact, SSO is a security protocol that does not involve human agents; in particular, the IdP
is not a human, but in other contexts humans might indeed serve as identity providers and they might
make mistakes like the ones we consider here, so we believe this example to be quite useful to illustrate
this issue. When we were looking for a case study that would allow us to show the importance of the
replace mutation, we choose the SSO example since Google engineers had implemented the protocol by
replacing the original message in the standard specification with a submessage. In [18], the attack was
found by human analysts (Armando et al.) inspecting the implementation and writing a specification
that would represent the mistake done by the engineers. In a sense, Armando et al. had perceived that
removing some fields from the messages might lead to attacks and they carried out an automated analysis
to validate their intuition. We decided to use the SSO example to illustrate that, in contrast, our approach
allows us to avoid having to rely on intuition and instead directly start from the actual specification and
then consider an admittedly large number of mutations that however includes the one that gives rise to
the attack. We could have looked for other case studies, but we wanted to show that our approach would
have allowed security analysts to find the possible attack starting from the specification as it was written
in the standard.

7.3. Analysis of the Coach Service Ceremony

The specification of the Coach Service ceremony includes:

• a phase in which the customer buys a genuine e-ticket (this phase is needed to obtain a first e-ticket
that will be modified later, for other journeys) and

• a ticket inspection phase performed by a driver of a coach service.

We have specified the Coach Service as a ceremony in X-Men, considering what would happen if
Customer was played by the attacker and Driver was played by a human, and the neglect mutation
generates a new mutated rule in which the check of the genuineness of the fields is compromised (e.g.,
the check of the date).

The decision to use the attacker rules is due to the following facts:

• the neglect mutation focuses on showing a mistake caused by not carrying out a check rather than
the creation of some messages,

• the creation of a forged ticket by the Customer goes beyond the simple application of a replace
mutation (and is, in a sense, on a higher level than the other mutations),
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• the use of another mutation of the ceremony that affects a different actor, in this case a mutation
of the Customer in addition to the neglect mutation that affects the Driver, would require the two
mutations to interact with each other, which our approach can cope with, although we leave a
detailed formalization of such a situation for a future work.

We considered the scenario in which an attacking Customer reuses an e-ticket bought for a previous
journey, modifying the validity date date into date′. The neglect mutation, as anticipated in Section 5.4,
removes the role-action Eq(date′, datekS) from the rule (D2) of the Driver. The consequence of the
removal of this equality check is that Tamarin will consider traces that were not considered before (as
the restriction prevented them from taking place). We fed our specification into Tamarin, which proved
the existence of the attack in which the forged e-ticket can be accepted as valid by the Driver and the
Customer is admitted to use the coach service, as shown in Figure 24.

Table 4
The attack found on the models obtained using the mutations applied to the Coach Service ceremony
(“X” indicates that an attack has been found, “×” indicates that no attack was found, “•” indicates that the functional goal is
verified)

Mutation Mutation details Explanation Goal

Mutated legit journey functional

model

neglect M0 An equality action is re-
moved

The driver D does not check the
validity of the date on the ticket

X •

7.4. How to exploit the results of the analysis of a security ceremony

We now briefly discuss how to exploit the results of the analysis of a security ceremony carried out
using our approach. Similar to what happens for the formal analysis of security protocols, if the tool
terminates and verifies the model under consideration, then we can provide a security guarantee. In the
case of security ceremonies, our approach allows us to provide such guarantee not only for the original
ceremony but also for its mutations for which Tamarin’s analysis terminates with a proof. To some extent,
this applies also when the analysis times out, although in that case, like in the case of a non-terminating
analysis of a security protocol, an intervention of the security analyst is needed since the tool has not
been able to give a definitive answer.

If the analysis of a security protocol model instead terminates with the discovery of an attack, typically
the attack trace can be used to distill a fix to the protocol specification; one would also usually wish to
check whether the attack on the model also applies for the concrete implementation (assuming that it
is available), so the attack trace can also be used to devise test cases for the implementation (see, e.g.,
[23, 24, 41]). The same applies in the case of our mutated ceremonies when the model did not need to
match and propagate mutations. Then, we can use the attack trace to distill a fix and generate test cases.
If the model contains matching mutations, then the security analyst should check whether the matching
of mutations yields a false positive that makes little sense in real life or whether the attack is a real attack
(and then one would want to generate test cases similar to what is done in mutation-based testing).

In both these cases (real attack or false positive), given the presence of human users, one can also
think of using the attack trace to distill recommendations and guidelines for the users of the ceremony
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Customer WebServer Driver
date, dtime, from, to

date, dtime, from, to, price

price, ‘ok’

{Customer, tknumber, price,
date, dtime, from, to},

{Customer, tknumber, price,
date, dtime, from, to}kS

forge an e-ticket using
a previously bought

e-ticket for date date′:
{Customer, tknumber, price,

date′, dtime, from, to},
{Customer, tknumber, price,

date, dtime, from, to}kS

{Customer, tknumber, price,
date′, dtime, from, to},

{Customer, tknumber, price,
date, dtime, from, to}kS

Eq(tknumber,tknumberkS),
Eq(Customer,CustomerkS,

Eq(price,pricekS),
Eq(date′, datekS),
Eq(dtime,dtimekS),
Eq(from,fromkS),

Eq(to,tokS)
tknumber, ‘ack′, ‘valid′

Figure 24. Attack on the Coach Service ceremony (for e-tickets): the Customer uses a forged e-ticket and the Driver validates
it

so that they interact with it in a way that does not endanger security. After noticing the issues caused
by the unexpected use of the Oyster/credit cards at the in/out gates, the posters in Figure 5 were hung
in the London underground to remind users about the expected use of the cards, and one could use
our approach to distill similar recommendations from a formal analysis before the system is actually
deployed and the issues observed in practice. Similarly, one could use the attack traces as a basis to
devise specific training for the ticket inspectors of the coach ceremony (as well as for humans acting
as identity providers like in the SSO example), pointing out which behaviors and mistakes will lead to
attacks. The rules of [8] that restrict how the human can deviate from the protocol specification are a
good example for such guidelines. In future work, we aim to investigate if and how recommendations
and guidelines could be generated (semi-)automatically from the analysis of security ceremonies and
their mutations (similar to the generation of test cases), and how they could be communicated to human
users in an effective way. To that end, we plan to exploit also our works on how to provide security
explanations to laypersons [42–45] and on how to beautify security ceremonies [46–48] and thus make
their secure use more appealing to human users.
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8. Related Work

In this section, we discuss related work, expanding on the discussions that we have already given in
previous sections. We compare our approach with [8], which is the most closely related work, but we
also consider research that has inspired our work or that might provide interesting future synergies.

In [6], Paulson introduced the Oops rule to model mistakes done by agents when executing a security
protocol, such as the loss (by any means) of a session key. However, the notion of security ceremony and
the explicit investigation of the consequences of explicitly considering human agents and their mistakes
was introduced by Ellison in [1], one of the pioneers of socio-technical security.

One of the first formal approaches to investigate security ceremonies is the concertina model intro-
duced in [9], which spans over a number of socio-technical layers, focusing in particular on the socio-
technical protocol between a user persona and a computer interface, but without explicitly considering
human mistakes nor accounting for an explicit attacker. Similarly, the approaches in [10, 49] provide a
formal model to reason about how a Dolev-Yao-style attacker can attack the communication between hu-
mans and computers, including storing of human knowledge, but without explicitly considering human
mistakes.

In contrast, Basin et al. [8] provide a formal model for reasoning about some errors that humans
involved in security protocols may make. They specify rules formalizing different types of humans
(untrained, infallible or fallible humans), modeling a human who can send and receive any messages,
resulting in attacks because a human discloses information, but also in attacks because the human just
enters the same information on the wrong device or accepts a received message he should not. They
successfully applied their model to analyze some authentication protocols. Although their approach is
similar in spirit to ours and there are some affinities, there are fundamental technological, methodological
and philosophical differences between our approach and that of [8]. The four main differences are the
following ones.

First, there are possible human behaviors that we consider that [8] does not. For instance, they consider
a rule that allows humans to send “controlled” messages that are in their current knowledge. This over-
laps with our add mutation and, to some extent, with the replace mutation, but their approach does not
have an exact equivalent for the skip mutation nor for the neglect mutation. They can model a situation
in which a human sends a message that he was meant to send much later in a ceremony, and that amounts
indirectly to a form of skip, but our skip mutations cover a more general landscape. The approach of [8]
includes an ICompare(H, tag) predicate that “states that whenever the human H receives a message with
tag tag, he compares it to the message associated with the same tag in his initial knowledge. The effect
of this predicate, in combination with the untrained human rules, is that the human agent either ignores
the entire message or verifies the tagged subterm.” This is different from our neglect mutation, in which
the human neglects to adhere to one or more internal behaviors expected by the ceremony, such as ne-
glecting to carry out an internal action that is visible only to the agent itself, like a check on the contents
of a message.

Second, Basin et al. only consider scenarios in which the Dolev-Yao attacker actively attacks the
protocol, whereas our approach works also when the attacker is not present thanks to the matching
mutations. Fundamentally, as is standard in security protocol analysis, their approach takes the point of
view of the Dolev-Yao attacker, in the sense that they look for what the Dolev-Yao attacker can do when
human agents make the mistakes that they model in their approach. We do not take this point of view,
but instead, in a sense, take the one of the human agent as we consider whether attacks can occur due
to human mutations even in the absence of the Dolev-Yao attacker, as we do for instance in the case of
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the Oyster case study. This is not just technologically different (as the modeling is different) but also
philosophically as via the mutations the human agent “forces” the attack on herself even in the total
absence of an attacker (as in the Oyster example). We also include the possibility in which the Dolev-
Yao attacker might be present and exploit the human’s mistakes, as in the case of the SSO and Coach
Service examples. In fact, the Coach Service ceremony also lends itself well to consider two humans, a
customer who attacks by replacing some fields of a ticket and a ticket inspector who neglects to carry
out all checks. While our mutations could possibly be modeled by restricting or extending the Dolev-
Yao behavior, this would make us lose the philosophical difference that our approach works also in the
absence of the attacker.

Third, while our approach allows a security analyst to consider only human mutations like [8], we
formalize also matching and propagating mutations. Many of the human mistakes that we consider, if left
to themselves, would not lead to an attack as the ceremony analysis would not terminate. As we discussed
earlier, by matching and propagating the mutations, we investigate how they could lead to attacks, thus
providing a wider (and in a sense also deeper) analysis. It is thanks to these mutations that X-Men is able
to (re-)discover automatically the attacks on Oyster, SSO and Coach Service. If we did not have these
mutations, then our approach, like a Dolev-Yao-based one that only considers the original specification
even in the presence of human mistakes, would not be able to discover many of them as the ceremony
execution would not terminate. Even if we took the Dolev-Yao-centric approach, we would still need to
extend the Dolev-Yao attacker to be able to match the mutation (e.g., to be able to receive any message,
in addition to being able to send any message). So, our approach, in contrast to that of [8] and instead
similar to mutation-based testing, is not sound in the sense that we get false positives that the security
analyst should check to identify attacks that would not exist if, e.g., the specification was implemented
as originally specified since then the other agents would not respond to the human mutations. In return,
however, our approach also encompasses the cases in which the original specification would allow them
to respond, and we do so for more possible human mistakes.

Fourth, there are features of the approach of [8] that our approach does not yet capture. For instance,
the approach of [8] allows human agents to receive arbitrary messages (with a certain structure). Since
we only consider mutations initiated by a human agent, we do not consider the situation in which the
human agent initiates a mutation of the ceremony by adding a receive action as that would require
another agent (human or not) to have added the corresponding send action first. We will consider adding
this case in the future.

Moreover, the rules of [8] that restrict how the human can deviate from the protocol specification
provide guidelines for users to interact with a protocol in a secure way. As we remarked above, in future
work we plan to investigate how to extend our mutation-based approach to generate recommendations
and guidelines, and how they could be communicated to human users in an effective way.

Another quite closely related work is that of Bella, Giustolisi and Schürmann in [50], which was partly
inspired by our previous joint work [51] as well as the preliminary version of this paper [17]. In contrast
to our approach, all technical components in their approach are assumed to behave as intended, and they
consider explicitly distributed and interacting human threats, so that every human may misbehave for his
personal sake, without any fixed prescription to collude with others, yet may directly favor someone else.
There are also differences in the formal modeling of security ceremonies, since they employ epistemic
modal logic, which allows them to formalize ceremonies, threats, and properties in a way that many
readers will find more intuitive than when using Tamarin’s constructs, but this comes at the cost of an
extra effort for their encoding into the prover of choice (Tamarin or another tool).

59



We have also joined forces with Bella and Giustolisi in previous works, in particular [51], in which
we have given a systematic definition of an encompassing method to build the full threat model chart
for security ceremonies from which one can conveniently reify the threat models of interest for the
ceremony under consideration. To demonstrate the relevance of the chart, we formalized this threat
model using Tamarin and analyzed three real-life ceremonies that had already been considered, albeit at
different levels of detail and analysis, in the literature: MP-Auth [7], Opera Mini [47], and the Danish
Mobilpendlerkort ceremony [31]. The full threat model chart suggested some interesting threats that
had not been investigated although they are well worth of scrutiny. In particular, we found out that the
Danish Mobilpendlerkort ceremony is vulnerable to the combination of an attacking third party and
a malicious phone of the ticket holder. The threat model that leads to this vulnerability had not been
considered before and arose thanks to our charting method. We are currently working at combining the
threat model chart with the mutation-based approach that we presented in this paper, which we believe
will help us identify novel vulnerabilities but also, we hope, reduce the number of mutations that need
to be considered.

Other related approaches are those of [11, 12, 15, 52, 53]. Similar to [8], Curzon et al. [11] propose a
formal human model that includes a specific attacker able to exploit the errors against the human user.
The errors considered are those caused by the humans’ interpretation of the system and by the design
of the interfaces, but not those entailed by human choices or mistakes as we do. Moreover, they do not
consider communication channels.

Johansen and Jøsang [12] define probabilistic processes to model the actions of a human agent, sepa-
rating the model of the human and that of the user interface. They introduce a “compilation” operation in
order to capture the interaction of the human agent and the user interface. Their probabilistic model for
the human agent is an extension of the persona model [54]. Their approach provides only a preliminary
formalization without a security analysis.

Beckert and Beuster [52] provide a formal semantics for GOMS models augmented with formal mod-
els of the application and the user’s assumptions about the application, but they do not consider human
mistakes in detail.

Pavlovic and Meadows [53] employ actor-networks as a formal model of computation and communi-
cation in networks of computers, humans and their devices, but they too do not consider human mistakes
in detail.

Radke and Boyd [15] introduce the notion of human-followable security wherein a human user can un-
derstand the process and logic behind authentication protocols. They focus on showing how to transform
existing authentication protocols into protocols with human-followable security.

While our approach is quite radically different from the research in [11, 12, 15, 52, 53], we believe
that there might be interesting synergies between our mutations and the way in which they model the
assumptions and perceptions of the human users, which we plan to investigate in future work.

9. Conclusions

At the end of this long paper, let us take stock, and summarize the main points and discuss some future
work. Our approach allows us to treat humans as first-class actors in security ceremonies as they should
be considered to be, since it is not enough to take the “black&white” view of security protocol analysis,
in which there is a Dolev-Yao attacker (the black agent) against a set of honest agents (the white agents).
It is namely not enough to model human users as “honest processes” or as attackers, because they are
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neither, and we need to model the behavior of human users of ceremonies as “shades of gray”. Our
approach allows us to model, by means of mutations, some of the ways humans interact with the other
agents, their behavior and the mistakes they may make, independent of attacks and, in fact, possibly
independent of the presence of an attacker since attacks may occur even without the presence of an
attacker.

Our approach does, however, come at a price, explicited mainly by the large amount of mutations that
are generated and by the need for the security analyst to intervene with a manual inspection to check
for potential false positives or in case Tamarin times out. While the latter is a common problem in the
analysis of security protocols/ceremonies, where many of the tools do not terminate as the search space
is infinite in the presence of a Dolev-Yao-style attacker, the former is an issue akin to what happens
in mutation-based testing. As future work, we plan to investigate how to improve the efficiency of our
approach by

• reducing the number of generated mutated models (e.g., by identifying isomorphic models),
• automatically or at least semi-automatically checking whether attacks are real or not (thereby re-

ducing the effort required of the security analyst in the green box in Figure 1).

We are also investigating how to link our formal analysis to mutation-based testing by generating test
cases out of the attack traces, which will allow us to test concrete implementations of the ceremonies.

In Section 7.4, we have discussed how to exploit the results of the analysis of a security ceremony
carried out by means of X-Men and in there and in the rest of the paper, we have already mentioned a
number of directions for future work. We believe that the most interesting ones are the following ones.

Our current mutations are restricted by a number of constraints that we have imposed to be able
to manage them efficiently, such as constraints on the types and formats of the messages. We plan to
improve them by weakening of some of these constraints, say to consider other controlled notions of
“sendable” message or the case in which the right message is composed in a wrong format.

We also plan to extend X-Men’s library of behavioral patterns with other mutations, which will hope-
fully allow us to identify novel vulnerabilities in the ceremonies that we considered here and in the ones
that X-Men will be applied to in the future. For instance, in this paper we do not model the fact that a
human might forget some information as we follow the standard approach in which the knowledge of the
agents increases monotonically, be they “machines” or humans. Forgetting could be modeled by a fifth
human mutation, which would remove terms from the current knowledge of a human and thus limit the
number of messages that the human can send at that stage. For example, this could be useful to model
ceremonies for password recovery.

In addition to improving the four mutations considered here and to considering new mutations, we
believe that it will be interesting to formalize complex combinations of mutations, in the spirit of the
add&replace that we employed in this paper. To that end, it will be useful to attempt to prove com-
positionality results, e.g., showing under which conditions the analysis of composed mutations can be
decomposed into the simpler analysis of the individual mutations (similar to what can be done for the
analysis of composed security protocols, which, in some cases, can be split into the simpler problem of
the analysis of the individual component protocols [55]).

As we mentioned in the introduction, security ceremony analysis is a discipline that is still in its child-
hood. Our mutation-based approach is, in our opinion, very promising and can investigate scenarios that
were not possible before, but there are still a number of open problems, including the more philosophical
question if mutations are the optimal way to go. They are possibly not, but they do help model the be-
havior of human users, and we are currently working with colleagues expert in psychology to investigate
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if their behavioral studies can be of help. After all, behavioral mutations are investigated commonly in
psychology studies (as well as in other disciplines such as epigenetics).

To tackle security ceremonies in full there is thus much more work that needs to be carried out.
Other interesting extensions of this work, and of security ceremony analysis in general, are the ones that
consider additional abilities of the attacker (e.g., as in [56]) or that consider explicitly the content of
messages instead of handling them symbolically as we did here (similar to the case of cyber-physical
systems, where message integrity is one of the crucial security properties [57]).

Finally, we plan to consider other, even more complex, case studies, ideally starting from real cere-
monies’ models or implementations.
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[]
Start(Client,〈SP〉)−−−−−−−−−→ [AgSt(Client, 1, 〈SP〉)] (C0)

[AgSt(Client, 1, 〈SP〉)] Snd(Client,ins,SP,〈aenc(〈‘get’,URI,Client,‘nil’〉,pkSP)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[AgSt(Client, 2, 〈SP,URI〉), Outins(Client, SP, 〈aenc(〈‘get’,URI,Client, ‘nil’〉, pkSP)〉)] (C1)

[AgSt(Client, 2, 〈SP,URI〉), Inins(SP,Client, 〈sign(〈‘code302’, IdP, 〈idSP, SP〉,URI, ‘nil’〉, ltkSP)〉)]
Rcv(Client,ins,SP,〈sign(〈‘code302’,IdP,〈idSP,SP〉,URI,‘nil’〉,ltkSP)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(Client, 3, 〈SP,URI, IdP, idSP〉)] (C2)

[AgSt(Client, 3, 〈SP,URI, IdP, idSP〉)]
Snd(Client,sec,IdP,〈aenc(〈‘get’,IdP,〈idSP,SP〉,URI,‘nil’〉,pkIdP)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(Client, 4, 〈SP,URI, IdP, idSP〉),
Outsec(Client, IdP, 〈aenc(〈‘get’, IdP, 〈idSP, SP〉,URI, ‘nil’〉, pkIdP)〉)] (C3)

[AgSt(Client, 4, 〈SP,URI, IdP, idSP〉),
Insec(IdP,Client, 〈aenc(〈sign(〈‘code200’, ‘nil’, SP,

sign(〈idSP,Client, IdP, SP〉, ltkIdP),URI〉, ltkIdP)〉), pkClient)〉)]
Rcv(Client,sec,IdP,〈aenc(〈sign(〈‘code200’,‘nil’,SP,

sign(〈idSP,Client,IdP,SP〉,ltkIdP),URI〉,ltkIdP)〉),pkClient)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[AgSt(Client, 5, 〈SP,URI, IdP, idSP〉)] (C4)

[AgSt(Client, 5, 〈SP,URI, IdP, idSP〉)]
Snd(Client,ins,SP,〈aenc(〈‘post’,SP,‘nil’,sign(〈idSP,Client,IdP,SP〉,ltkIdP),URI〉,pkSP)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(Client, 6, 〈SP,URI, IdP, idSP〉),
Outins(Client, SP, 〈aenc(〈‘post’, SP, ‘nil’, sign(〈idSP,Client, IdP, SP〉, ltkIdP),URI〉, pkSP)〉)] (C5)

[AgSt(Client, 6, 〈SP,URI, IdP, idSP〉), Inins(SP,Client, 〈sign(〈‘code200’,URI, ‘resource’〉, ltkSP)〉)]
Rcv(Client,ins,SP,〈sign(〈‘code200’,URI,‘resource’〉,ltkSP)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [] (C6)

Figure 25. Agent rules for the Client in the SSO ceremony

Appendix A. Agent rules for the SSO ceremony and the Coach Service ceremony

A.1. Agent rules for the SSO ceremony

The agent rules for the Client, IdP and SP in the SSO ceremony are in Figure 25, Figure 26 and
Figure 27, respectively.
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[]
Start(IdP,〈‘init’〉)−−−−−−−−−→ [AgSt(IdP, 1, 〈‘init’〉)] (IdP0)

[AgSt(IdP, 1, 〈‘init’〉), Insec(Client, IdP, 〈aenc(〈‘get’, IdP, 〈idSP, SP〉,URI, ‘nil’〉, pkIdP)〉)]
Rcv(IdP,sec,Client,〈aenc(〈‘get’,IdP,〈idSP,SP〉,URI,‘nil’〉,pkIdP)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(IdP, 2, 〈‘init’〉)] (IdP1)

[AgSt(IdP, 2, 〈‘init’〉)]
Snd(IdP,sec,Client,〈aenc(〈sign(〈‘code200’,‘nil’,SP,

sign(〈idSP,Client,IdP,SP〉,ltkIdP),URI〉,ltkIdP)〉),pkClient)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[AgSt(IdP, 3, 〈‘init’〉),
Outsec(IdP,Client, 〈aenc(〈sign(〈‘code200’, ‘nil’, SP,

sign(〈idSP,Client, IdP, SP〉, ltkIdP),URI〉, ltkIdP)〉), pkClient)〉)] (IdP2)

Figure 26. Agent rules for the IdP in the SSO ceremony

A.2. Agent rules for the Coach Service ceremony

The agent rules for the Customer, WebServer and Driver in the Coach Service are in Figure 28,
Figure 29 and Figure 30, respectively.
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[]
Start(SP,〈idSP〉)−−−−−−−−→ [AgSt(SP, 1, 〈idSP〉)] (SP0)

[AgSt(SP, 1, 〈idSP〉), Inins(Client, SP, 〈aenc(〈‘get’,URI,Client, ‘nil’〉, pkSP)〉)]
Rcv(SP,ins,Client,〈aenc(〈‘get’,URI,Client,‘nil’〉,pkSP)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(SP, 2, 〈idSP,URI,Client〉)] (SP1)

[AgSt(SP, 2, 〈idSP,URI,Client〉)]
Snd(SP,sec,Client,〈sign(〈‘code302’,IdP,〈idSP,SP〉,URI,‘nil’〉,ltkSP)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(SP, 3, 〈idSP,URI,Client〉),
Outsec(SP,Client, 〈sign(〈‘code302’, IdP, 〈idSP, SP〉,URI, ‘nil’〉, ltkSP)〉)] (SP2)

[AgSt(SP, 3, 〈idSP,URI,Client〉),
Inins(Client, SP, 〈aenc(〈‘post’, SP, ‘nil’, sign(〈idSP,Client, IdP, SP〉, ltkIdP),URI〉, pkSP)〉)]

Rcv(SP,ins,Client,〈aenc(〈‘post’,SP,‘nil’,sign(〈idSP,Client,IdP,SP〉,ltkIdP),URI〉,pkSP)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[AgSt(SP, 4, 〈idSP,URI,Client〉)] (SP3)

[AgSt(SP, 4, 〈idSP,URI,Client〉)]
Snd(SP,ins,Client,〈sign(〈‘code200’,URI,‘resource’〉,ltkSP)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[Outins(SP,Client, 〈sign(〈‘code200’,URI, ‘resource’〉, ltkSP)〉)] (SP4)

Figure 27. Agent rules for the SP in the SSO ceremony

A.3. Algorithms for mutations and matching mutations

In this appendix, we give the algorithms for mutations and matching mutations that we did not include
in the body of the paper.

Note that the matching algorithms for µm(µH
skip(SR)), µm(µH

skip(RS)) and µm(µH
skip(RSR)) (Algorithms 9, 13 and 15,

respectively) are the same as the matching Algorithm 2 for µm(µH
skip(S)); this is because, ultimately, agent

A2 does not receive message m2 and reacts accordingly. Still, we give all of them as they refer to their
corresponding mutation algorithm.

Note also that for the mutations µH
skip(SR) and µH

skip(RSR) we could remove Snd(A2, lp, As,mp) in the
mutation of the transition next(i) since H will not receive the message, but we decided to keep it to
minimize the changes to agent A2 (and to keep the uniformity with the other matching algorithms).

Algorithm 8 µH
skip(SR): skip Snd(H, l2, A2,m2) in transition i and Rcv(H, l3, A3,m3) in landing

transition j as in the trace (4)
1: Mutate transition i to
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[]
Start(Customer,〈WebServer,Driver〉)−−−−−−−−−−−−−−−−−−−→ [AgSt(Customer, 1, 〈WebServer,Driver〉)] (H0)

[AgSt(Customer, 1, 〈WebServer,Driver〉)]
Snd(Customer,sec,WebServer,〈date,dtime,from,to〉)−−−−−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(Customer, 2, 〈WebServer,Driver, date, dtime, from, to〉),
Outsec(Customer,WebServer, 〈date, dtime, from, to〉)] (H1)

[AgSt(Customer, 2, 〈WebServer,Driver, date, dtime, from, to〉),
Insec(WebServer,Customer, 〈date, dtime, from, to, price〉)]

Rcv(Customer,sec,WebServer,〈date,dtime,from,to,price〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[AgSt(Customer, 3, 〈WebServer,Driver, date, dtime, from, to, price〉)] (H2)

[AgSt(Customer, 3, 〈WebServer,Driver, date, dtime, from, to, price〉)]
Snd(Customer,sec,WebServer,〈price,‘ok’〉)−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(Customer, 4, 〈WebServer,Driver, date, dtime, from, to, price〉),
Outsec(Customer,WebServer, 〈price, ‘ok’〉)] (H3)

[AgSt(Customer, 4, 〈WebServer,Driver, date, dtime, from, to, price〉),
Insec(WebServer,Customer, 〈〈Customer, tknumber, price, date, dtime, from, to〉,

senc(〈Customer, tknumber, price, date, dtime, from, to〉, kS)〉)]
Rcv(Customer,sec,WebServer,〈〈Customer,tknumber,price,date,dtime,from,to〉,

senc(〈Customer,tknumber,price,date,dtime,from,to〉,kS)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[AgSt(Customer, 5, 〈WebServer,Driver, date, dtime, from, to, price, tknumber〉)] (H4)

[AgSt(Customer, 5, 〈WebServer,Driver, date, dtime, from, to, price, tknumber〉)]
Snd(Customer,sec,Driver,〈〈Customer,tknumber,date,dtime,from,to〉,

senc(〈Customer,tknumber,date,dtime,from,to〉,kS)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[AgSt(Customer, 6, 〈WebServer,Driver, date, dtime, from, to, price, tknumber〉),
Outsec(Customer,Driver, 〈〈Customer, tknumber, date, dtime, from, to〉,

senc(〈Customer, tknumber, date, dtime, from, to〉, kS)〉)] (H5)

[AgSt(Customer, 6, 〈WebServer,Driver, date, dtime, from, to, price, tknumber〉),
Insec(Driver,Customer, 〈Customer, tknumber, date, ‘ack’, ‘valid’〉)]

Rcv(Customer,sec,Driver,〈tknumber,date,‘ack’,‘valid’〉),End(Customer,‘ack’,‘valid’,tknumber,date)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [] (H6)

Figure 28. Agent Rules for the Customer in the Coach Service ceremony
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[]
Start(WebServer,〈kS,Driver〉)−−−−−−−−−−−−−−−→ [AgSt(WebServer, 1, 〈kS,Driver〉)] (WS0)

[AgSt(WebServer, 1, 〈kS,Driver〉), Insec(Customer,WebServer, 〈date, dtime, from, to〉)]
Rcv(WebServer,sec,Customer,〈date,dtime,from,to〉)−−−−−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(WebServer, 2, 〈kS,Driver, date, dtime, from, to〉] (WS1)

[AgSt(WebServer, 2, 〈kS,Driver, date, dtime, from, to〉]
Snd(WebServer,sec,Customer,〈date,dtime,from,to,price〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(WebServer, 3, 〈kS,Driver, date, dtime, from, to, price〉),
Outsec(WebServer,Customer, 〈date, dtime, from, to, price〉)] (WS2)

[AgSt(WebServer, 3, 〈kS,Driver, date, dtime, from, to, price〉, Insec(Customer,WebServer, 〈price, ‘ok’〉)]
Rcv(WebServer,sec,Customer,〈price,‘ok’〉)−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(WebServer, 4, 〈kS,Driver, date, dtime, from, to, price〉] (WS3)

[AgSt(WebServer, 4, 〈kS,Driver, date, dtime, from, to, price〉)]
Snd(WebServer,sec,Customer,〈〈Customer,tknumber,price,date,dtime,from,to〉,

senc(〈Customer,tknumber,price,date,dtime,from,to〉,kS)),
ValidTicket(WebServer,Customer,‘tn’,tknumber,date)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[AgSt(WebServer, 5, 〈kS,Driver, date, dtime, from, to, price, tknumber〉,
Outsec(WebServer,Customer, 〈〈Customer, tknumber, price, date, dtime, from, to〉,

senc(〈Customer, tknumber, price, date, dtime, from, to〉, kS)〉)] (WS4)

Figure 29. Agent Rules for the WebServer in the Coach Service ceremony

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Posti+1

2: Jkn jKµ ::= kn j = kni+1 . Since Σ2, and thus JΣ2Kµ, does not contain a transition in which H

receives new information

3: Jkn j+1Kµ ::= kn j ∪ Pre j

4: build all Jm4Kµ ∈ {(format(m4))(m) | m ∈ submsg(m4)} that can be generated by Jkn j+1Kµ

5: mutate transition j to

AgSt(H, j, kn j), Pre j −→
AgSt(H, j + 1, Jkn j+1Kµ), Post j+1, Snd(H, l4, A4, Jm4Kµ)
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[]
Start(Driver,〈kS〉)−−−−−−−−−−→ [AgSt(Driver, 1, 〈kS〉)] (D0)

[AgSt(Driver, 1, 〈kS〉),
Insec(Customer,Driver, 〈〈Customer, tknumber, price, date, dtime, from, to〉,

senc(〈CustomerkS, tknumberkS, pricekS, datekS, dtimekS, fromkS, tokS〉, kS)〉)]
Rcv(Driver,sec,Customer,〈〈Customer,tknumber,price,date,dtime,from,to〉,

senc(〈CustomerkS ,tknumberkS ,pricekS ,datekS ,dtimekS ,fromkS ,tokS〉,kS)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[AgSt(Driver, 2, 〈kS,Customer, tknumber, date, dtime, from, to〉] (D1)

[AgSt(Driver, 2, 〈kS,Customer, tknumber, date, dtime, from, to〉)]
Snd(Driver,sec,Customer,〈tknumber,date,‘ack’,‘valid’〉)

Eq(tknumber,tknumberkS),
Eq(Customer,CustomerkS),

Eq(price,pricekS),
Eq(date,datekS),

Eq(dtime,dtimekS),
Eq(from,fromkS),

Eq(to,tokS)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[AgSt(Driver, 3, 〈kS,Customer, tknumber, date, dtime, from, to〉),
Outsec(Driver,Customer, 〈Customer, tknumber, date, ‘ack’, ‘valid’〉)] (D2)

Figure 30. Agent Rules for the Driver in the Coach Service ceremony

Algorithm 9 Matching mutation µm(µH
skip(SR)) for µH

skip(SR)

1: Consider the transition next(i) in Σ2 that immediately follows the mutated human transition i,

i.e.

AgSt(A2, x, knx), Prex, Rcv(A2, l2,H,m2) −→
AgSt(A2, x + 1, knx+1), Postx+1, Snd(A2, lp, As,mp),

where As is one of the other agents and lp and mp are some channel and message as specified

in Σ2

2: remove Rcv(A2, l2,H,m2) from next(i)

3: Jknx+1Kµ ::= JknxKµ ∪ Prex, where JknxKµ ::= knx−1

4: build all JmpKµ ∈ {(format(mp))(m) | m ∈ submsg(mp)} that can be generated by Jknx+1Kµ

5: mutate the transition to

AgSt(A2, x, JknxKµ), Prex −→
AgSt(A2, x + 1, Jknx+1Kµ), Postx+1, Snd(A2, lp, As, JmpKµ)
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6: let h ::= next(i)

7: if the trace contains a transition next(h) of the form

AgSt(As, s, kns), Pres, Rcv(As, lp, As−1,mp) −→
AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1) then

8: if this next(h) is actually H’s landing transition j already considered in Algorithm 8 then
9: go to 7 with h ::= next(h)

10: else
11: replace mp with JmpKµ

12: Jkns+1Kµ ::= JknsKµ ∪ Pres ∪ JmpKµ, where JknsKµ ::= kns−1

13: build all Jmp+1Kµ ∈ {(format(mp+1))(m) | m ∈ submsg(mp+1)} that can be generated

by Jkns+1Kµ

14: mutate the transition to

AgSt(As, s, JknsKµ), Pres, Rcv(As, lp, As−1, JmpKµ) −→
AgSt(As, s + 1, Jkns+1Kµ), Posts+1, Snd(As, lp, As+1, Jmp+1Kµ)

15: go to 7 with h ::= next(h)

71



Algorithm 10 µH
skip(R): skip Rcv(H, l1, A1,m1) in transition i, with landing transition j as in the

trace (5)

1: Jkni+1Kµ ::= kni ∪ Prei

2: build all Jm2Kµ ∈ {(format(m2))(m) | m ∈ submsg(m2)} that can be generated by Jkni+1Kµ

3: mutate transition i to

AgSt(H, i, kni), Prei −→
AgSt(H, i + 1, Jkni+1Kµ), Posti+1, Snd(H, l2, A2, Jm2Kµ)

4: Jkn jKµ ::= Jkni+1Kµ . Since Σ2, and thus JΣ2Kµ, does not contain a transition in which H

receives new information

. There are two cases, depending on which message is sent by A3, the original m3 or its

mutation Jm3Kµ

5: if JΣ2Kµ contains a transition with Snd(A3, l3,H,m3) in its conclusions then
6: Jkn j+1Kµ ::= Jkn jKµ ∪ {m3} ∪ Pre j

7: build all Jm4Kµ ∈ {(format(m4))(m) | m ∈ submsg(m4)} that can be generated by Jkn j+1Kµ

8: mutate transition j to

AgSt(H, j, Jkn jKµ), Pre j, Rcv(H, l3, A3,m3) −→
AgSt(H, j + 1, Jkn j+1Kµ), Post j+1, Snd(H, l4, A4, Jm4Kµ)

9: else . JΣ2Kµ contains a transition with Snd(A3, l3,H, Jm3Kµ) in its conclusion for some

mutation Jm3Kµ defined in Algorithm 11

10: Jkn j+1Kµ ::= Jkn jKµ ∪ {Jm3Kµ} ∪ Pre j

11: build all Jm4Kµ ∈ {(format(m4))(m) | m ∈ submsg(m4)} that can be generated by Jkn j+1Kµ

12: mutate transition j to

AgSt(H, j, Jkn jKµ), Pre j, Rcv(H, l3, A3, Jm3Kµ) −→
AgSt(H, j + 1, Jkn j+1Kµ), Post j+1, Snd(H, l4, A4, Jm4Kµ)
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Algorithm 11 Matching mutation µm(µH
skip(R)) for µH

skip(R)

1: Consider the transition next(i) in Σ2 that immediately follows the mutated human transition i,

i.e.

AgSt(A2, x, knx), Prex, Rcv(A2, l2,H,m2) −→
AgSt(A2, x + 1, knx+1), Postx+1, Snd(A2, lp, As,mp),

where As is one of the other agents and lp and mp are some channel and message as specified

in Σ2

2: replace Rcv(A2, l2,H,m2) with Rcv(A2, l2,H, Jm2Kµ)
3: Jknx+1Kµ ::= JknxKµ ∪ {Jm2Kµ} ∪ Prex, where JknxKµ ::= knx−1

4: build all JmpKµ ∈ {(format(mp))(m) | m ∈ submsg(mp)} that can be generated by Jknx+1Kµ

5: mutate the transition to

AgSt(A2, x, JknxKµ), Prex, Rcv(A2, l2,H, Jm2Kµ) −→
AgSt(A2, x + 1, Jknx+1Kµ), Postx+1, Snd(A2, lp, As, JmpKµ)

6: let h ::= next(i)

7: if the trace contains a transition next(h) of the form

AgSt(As, s, kns), Pres, Rcv(As, lp, As−1,mp) −→
AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1) then

8: if this next(h) is actually H’s landing transition j already considered in Algorithm 10 then
9: go to 7 with h ::= next(h)

10: else
11: replace mp with JmpKµ

12: Jkns+1Kµ ::= JknsKµ ∪ Pres ∪ JmpKµ, where JknsKµ ::= kns−1

13: build all Jmp+1Kµ ∈ {(format(mp+1))(m) | m ∈ submsg(mp+1)} that can be generated

by Jkns+1Kµ

14: mutate the transition to

AgSt(As, s, JknsKµ), Pres, Rcv(As, lp, As−1, JmpKµ) −→
AgSt(As, s + 1, Jkns+1Kµ), Posts+1, Snd(As, lp, As+1, Jmp+1Kµ)

15: go to 7 with h ::= next(h)
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Algorithm 12 µH
skip(RS): skip Rcv(H, l1, A1,m1) and Snd(H, A2, l2,m2) in transition i, with landing

transition j as in the trace (6)

1: Jkni+1Kµ ::= kni ∪ Prei

2: mutate transition i to

AgSt(H, i, kni), Prei −→
AgSt(H, i + 1, Jkni+1Kµ), Posti+1

3: Jkn jKµ ::= Jkni+1Kµ . Since Σ2, and thus JΣ2Kµ, does not contain a transition in which H

receives new information

. There are two cases, depending on which message is sent by A3, the original m3 or its

mutation Jm3Kµ

4: if JΣ2Kµ contains a transition with Snd(A3, l3,H,m3) in its conclusions then
5: Jkn j+1Kµ ::= Jkn jKµ ∪ {m3} ∪ Pre j

6: build all Jm4Kµ ∈ {(format(m4))(m) | m ∈ submsg(m4)} that can be generated by Jkn j+1Kµ

7: mutate transition j to

AgSt(H, j, Jkn jKµ), Pre j, Rcv(H, l3, A3,m3) −→
AgSt(H, j + 1, Jkn j+1Kµ), Post j+1, Snd(H, l4, A4, Jm4Kµ)

8: else . JΣ2Kµ contains a transition with Snd(A3, l3,H, Jm3Kµ) in its conclusion for some

mutation Jm3Kµ defined in Algorithm 11

9: Jkn j+1Kµ ::= Jkn jKµ ∪ {Jm3Kµ} ∪ Pre j

10: build all Jm4Kµ ∈ {(format(m4))(m) | m ∈ submsg(m4)} that can be generated by Jkn j+1Kµ

11: mutate transition j to

AgSt(H, j, Jkn jKµ), Pre j, Rcv(H, l3, A3, Jm3Kµ) −→
AgSt(H, j + 1, Jkn j+1Kµ), Post j+1, Snd(H, l4, A4, Jm4Kµ)
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Algorithm 13 Matching mutation µm(µH
skip(RS)) for µH

skip(RS)

1: Consider the transition next(i) in Σ2 that immediately follows the mutated human transition i,

i.e.

AgSt(A2, x, knx), Prex, Rcv(A2, l2,H,m2) −→
AgSt(A2, x + 1, knx+1), Postx+1, Snd(A2, lp, As,mp),

where As is one of the other agents and lp and mp are some channel and message as specified

in Σ2

2: remove Rcv(A2, l2,H,m2) from next(i)

3: Jknx+1Kµ ::= JknxKµ ∪ Prex, where JknxKµ ::= knx−1

4: build all JmpKµ ∈ {(format(mp))(m) | m ∈ submsg(mp)} that can be generated by Jknx+1Kµ

5: mutate the transition to

AgSt(A2, x, JknxKµ), Prex −→
AgSt(A2, x + 1, Jknx+1Kµ), Postx+1, Snd(A2, lp, As, JmpKµ)

6: let h ::= next(i)

7: if the trace contains a transition next(h) of the form

AgSt(As, s, kns), Pres, Rcv(As, lp, As−1,mp) −→
AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1) then

8: if this next(h) is actually H’s landing transition j already considered in Algorithm 12 then
9: go to 7 with h ::= next(h)

10: else
11: replace mp with JmpKµ

12: Jkns+1Kµ ::= JknsKµ ∪ Pres ∪ JmpKµ, where JknsKµ ::= kns−1

13: build all Jmp+1Kµ ∈ {(format(mp+1))(m) | m ∈ submsg(mp+1)} that can be generated

by Jkns+1Kµ

14: mutate the transition to

AgSt(As, s, JknsKµ), Pres, Rcv(As, lp, As−1, JmpKµ) −→
AgSt(As, s + 1, Jkns+1Kµ), Posts+1, Snd(As, lp, As+1, Jmp+1Kµ)

15: go to 7 with h ::= next(h)
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Algorithm 14 µH
skip(RSR): skip Rcv(H, l1, A1,m1) and Snd(H, A2, l2,m2) in transition i, and

Rcv(H, l3, A3, Jm3Kµ) in landing transition j as in the trace (7)

1: Jkni+1Kµ ::= kni ∪ Prei

2: mutate transition i to

AgSt(H, i, kni), Prei −→
AgSt(H, i + 1, Jkni+1Kµ), Posti+1

3: Jkn jKµ ::= Jkni+1Kµ . Since Σ2, and thus JΣ2Kµ, does not contain a transition in which H

receives new information

4: Jkn j+1Kµ ::= Jkn jKµ ∪ Pre j

5: build all Jm4Kµ ∈ {(format(m4))(m) | m ∈ submsg(m4)} that can be generated by Jkn j+1Kµ

6: mutate transition j to

AgSt(H, j, Jkn jKµ), Pre j −→
AgSt(H, j + 1, Jkn j+1Kµ), Post j+1, Snd(H, l4, A4, Jm4Kµ)
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Algorithm 15 Matching mutation µm(µH
skip(RSR)) for µH

skip(RSR)

1: Consider the transition next(i) in Σ2 that immediately follows the mutated human transition i,

i.e.

AgSt(A2, x, knx), Prex, Rcv(A2, l2,H,m2) −→
AgSt(A2, x + 1, knx+1), Postx+1, Snd(A2, lp, As,mp),

where As is one of the other agents and lp and mp are some channel and message as specified

in Σ2

2: remove Rcv(A2, l2,H,m2) from next(i)

3: Jknx+1Kµ ::= JknxKµ ∪ Prex, where JknxKµ ::= knx−1

4: build all JmpKµ ∈ {(format(mp))(m) | m ∈ submsg(mp)} that can be generated by Jknx+1Kµ

5: mutate the transition to

AgSt(A2, x, JknxKµ), Prex −→
AgSt(A2, x + 1, Jknx+1Kµ), Postx+1, Snd(A2, lp, As, JmpKµ)

6: let h ::= next(i)

7: if the trace contains a transition next(h) of the form

AgSt(As, s, kns), Pres, Rcv(As, lp, As−1,mp) −→
AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1) then

8: if this next(h) is actually H’s landing transition j already considered in Algorithm 14 then
9: go to 7 with h ::= next(h)

10: else
11: replace mp with JmpKµ

12: Jkns+1Kµ ::= JknsKµ ∪ Pres ∪ JmpKµ, where JknsKµ ::= kns−1

13: build all Jmp+1Kµ ∈ {(format(mp+1))(m) | m ∈ submsg(mp+1)} that can be generated

by Jkns+1Kµ

14: mutate the transition to

AgSt(As, s, JknsKµ), Pres, Rcv(As, lp, As−1, JmpKµ) −→
AgSt(As, s + 1, Jkns+1Kµ), Posts+1, Snd(As, lp, As+1, Jmp+1Kµ)

15: go to 7 with h ::= next(h)
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