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Abstract

We study the regularity properties of cylindrical Lévy processes and Lévy space-

time white noises, by examining their embeddings on the one hand in the spaces of

general and tempered (Schwartz) distributions, and on the other hand in weighted

Besov spaces. In this manner we analyse when the embedded Lévy object possesses

a regularised version in the sense of Itô and Nawata.

Lévy space-time white noises are defined as independently scattered random

measures and cylindrical Lévy processes are defined by means of the theory of cylin-

drical processes. It is shown that Lévy space-time white noises correspond to an

entire subclass of cylindrical Lévy processes, which is completely characterised by

the characteristic functions of its members. We embed the Lévy space-time white

noise, or the corresponding cylindrical Lévy process, in the space of general and

tempered distributions and establish that in each case the embedded cylindrical

processes are induced by (genuine) Lévy processes in the corresponding space.

We use wavelet analysis to characterise the Lévy measures in weighted Besov

spaces. Then we characterise the ranges of such Besov spaces in which L2(Rd) is or

is not embedded continuously and the embedding is or is not Radonifying. We apply

these results, given a cylindrical Lévy process L in L2(Rd), to characterise when L

is and is not induced by a Lévy process in a given Besov space. These results are

then applied to give sharp Besov regularity analysis to two important classes of

cylindrical Lévy processes, the canonical stable cylindrical process, and ‘hedgehog’

processes constructed as a P -a.s. weakly convergent infinite random sum.
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Chapter 1

Introduction

Stochastic analysis, and in particular the study of stochastic partial differential

equations (SPDEs), has in recent years become a vibrant area of mathematics with

a large and growing body of work being published and recognised. SPDEs are partial

differential equations which are perturbed by a ‘noise’, the definition of which is by

no means trivial. These equations arise naturally in the modelling of randomness in

physical and economic processes (see the Introduction of [24] for many examples).

To model the noise and give rigorous meaning to the notions of solution and well-

posedness and then study these equations has been an active area of research since

the early 1970s; see the essay [98] by Zambotti for a well-written brief history of the

field.

There are a number of approaches to modelling random perturbations of partial

differential equations; usually one follows either a semi-group approach, based on

the work by Da Prato and Zabczyk in [24], or a random field approach, originating

from the work by Walsh in [94]. Gaussian perturbations are most often modelled

either as a cylindrical Brownian motion, corresponding to the former, or a Gaussian

space-time white noise as developed in the latter. It is well known in the Gaussian

case that both models essentially result in the same dynamics as established by

Dalang and Quer-Sardanyons in [26].

Another approach to model such perturbed dynamical systems, e.g. parabolic
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stochastic partial differential equations, is provided by the recently introduced ambit

fields, presented in the monograph [13] by Barndorff-Nielsen, Benth and Veraart, and

their relations to SPDE investigated in [12] by the same authors, where they also

establish the link between this approach and the random field theory of Walsh.

In many situations, it is natural to assume that the noise in the system has

jumps and heavy tails, and to reflect these important features one must use a model

of noise more general than Gaussian. Cylindrical Brownian motions can be natu-

rally generalised to cylindrical Lévy processes by exploiting the theory of cylindrical

measures and random variables. This was accomplished by Applebaum and Riedle

in [6]. In the random field approach, Gaussian space-time white noise is generalised

to Lévy space-time white noise as an infinitely divisible random measure, often rep-

resented by integrals with respect to Gaussian and Poisson random measures. Both

generalisations, cylindrical Lévy processes and Lévy space-time white noises, may

be used as models for random perturbations of complex dynamical systems.

These applications can be found for cylindrical Lévy processes for example in

the monograph Peszat and Zabczyk [67] or in Kumar and Riedle [56], and for Lévy

space-time white noise in Applebaum and Wu [7], Chong [22] and Chong and Kevei

[23] among many others.

It is also possible to define Lévy space-time white noise by Lévy additive sheets

and generalised random processes (that is, random variables in a space of distribu-

tions). Just as the Brownian sheet is the generalisation of a Brownian motion to a

multidimensional index set, additive sheets are defined as the corresponding gener-

alisation of an additive process. Adler et al. [2] first defined additive random fields

on Rd, and termed them ‘Lévy processes’ should they be stochastically continuous.

In [27], Dalang and Walsh discuss Lévy sheets in R2. Additive fields with stationary

increments are considered by Barndorff-Nielsen and Pedersen in [11] and are called

‘homogeneous Lévy sheets’. The study of Lévy white noise as a distribution has
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been undertaken by Dalang, Humeau, Unser and co-authors, e.g. [9, 25, 31, 32].

Probability theory in infinite-dimensional spaces presents many challenges, par-

ticularly outside Hilbert spaces where the underlying geometry interacts with proba-

bility in many complex ways. As an example, one may consider the concepts of type

and cotype in Banach spaces, see e.g. the monograph [41] by Hytönen et al. The con-

cept of cylindrical probability measures arises naturally in the setting of infinite di-

mensions. Cylindrical probability measures are finitely-additive set functions whose

pushforward under projections onto finite dimensional spaces are genuine proba-

bility measures. Their usefulness arises from the fact that the infinite-dimensional

analogue of Bochner’s Theorem links normalised continuous positive-definite func-

tions with cylindrical probabilities (see [92, p. VI.3]). A simple example is that

when generalising a standard normal distribution to an infinite-dimensional Banach

space, in this case the analogue of the standard Gaussian measure is a cylindrical

probability [72]. Indeed, even in a Hilbert space H the function ϕ : H → C given

by

ϕ(h) = exp

(
−
1

2
〈h,Qh〉

)

is the characteristic function of a genuine probability measure if and only if the

covariance operator Q is nuclear [92, Th. 5.4]. As the identity operator Id does not

meet this requirement, this shows that the natural generalisation of the standard

Gaussian is a cylindrical probability.

The task of measuring regularity (or smoothness as described by Triebel in Chap-

ter 1 of [91]) of functions and distributions incorporates concepts of continuity, differ-

entiability, integrability and asymptotic growth/decay. The weighted Besov spaces

allow all these concepts to be addressed within a single multiparametric family.

Besov space analysis has been applied to the study of regularity of sample paths



Chapter 1. Introduction 9

for finite-dimensional Lévy processes [40, 81, 82] and Lévy white noise [9, 25, 31,

32, 93]. The sample path regularity analysis shows the regularity in time, and is

a direct generalisation of the well-known result that the sample paths of Brownian

motion in Rd are a.s. Hölder continuous with exponent < 1
2
. This may be stated in

functional-analytic terms as W (·) ∈ Cs(Rd) P -a.s. for any s < 1
2
, where Cs(Rd) is

the Hölder-Zygmund space with index s. As Lévy processes generally have jumps,

the Hölder-Zygmund spaces of continuous functions are no longer appropriate and

the Besov space scale forms a suitable extension. The Besov spaces Bp,q
s (Rd) are a

natural generalisation of Hölder-Zygmund and fractional Sobolev spaces into a sin-

gle scale [89, 90, 91]. The parameter range is defined for 0 < p, q 6 ∞ and s, w ∈ R.

By way of introduction, the key relations that we have between these spaces are as

follows:

• The Hölder-Zygmund space Cs(Rd) = B∞,∞
s (Rd) for s ∈ R [91, S1.2].

• The fractional Sobolev space H2
s (R

d) = B2,2
s (Rd) for s ∈ R [90, S1.3.2]. In

particular, L2(Rd) = B2,2
0 (Rd).

• Let k0 6= k1 ∈ Z+ and 0 < ϑ < 1. Then, for 1 < p <∞ and 1 6 q 6 ∞ the real

interpolation space of the Sobolev spaces (Hp
k0
(Rd), Hp

k1
(Rd))ϑ,q = Bp,q

s (Rd),

where s = k0(1− ϑ) + k1ϑ [90, S1.6.4].

• Let k ∈ N and 0 < ϑ < 1. Then, for 0 < q 6 ∞ the real interpolation space

(Ck(Rd), C0(Rd))ϑ,q = B∞,q
k(1−ϑ)(R

d) [90, S4.4.2(34)].

Furthermore, there are the related Triebel-Lizorkin spaces F p,q
s (Rd) for the same

range of parameters; these spaces do not feature in this work so their relations are

only quoted here for completeness.

• Bp,p∧q
s (Rd) →֒ F p,q

s (Rd) →֒ Bp,p∨q
s (Rd) for 0 < p < ∞, 0 < q 6 ∞ and s ∈ R

[90, S2.3.2/2]. In particular, F p,p
s (Rd) = Bp,p

s (Rd).
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• The fractional Sobolev space Hp
s (R

d) = F p,2
s (Rd) for s ∈ R and 1 < p < ∞

[90, S1.3.4/3]. In particular, Lp(Rd) = F p,2
0 (Rd) and we have Bp,p∧2

0 (Rd) →֒

Lp(Rd) →֒ Bp,p∨2
0 (Rd).

• The local Hardy spaces hp(Rd) = F p,2
0 (Rd) for 0 < p <∞ [89, S2.3.5].

We may explain the meaning of the s parameter by generalising the Laplacian op-

erator ∆ on Rd. By the theory of Fourier multipliers, we have for f ∈ H2
2 (R

d)

(Id−∆)f = F−1
(
(1 + |·|2)F f

)
,

and thus the fractional powers are given by

(Id−∆)sf = I2sf := F−1
(
(1 + |·|2)s F f

)
.

This definition of Isf makes sense for all f ∈ S∗(Rd) and s ∈ R, thus giving

an extension of (Id−∆)s/2. Then we have the result IsB
p,q
σ (Rd) = Bp,q

σ−s(R
d) for

0 < p, q 6 ∞ and s, σ ∈ R [89, S2.3.8]. In this manner, one may interpret the s

parameter as a measure of generalised fractional differentiability. The p parameter

plays the usual role of a measure of integrability. The cylindrical random variables

and processes we shall analyse are not in general integrable over the whole of Rd.

Indeed, for the integral

∫

R

d

(1 + |x|2)
w
2 dx

to be finite, we require w < −d. More generally, the constants are in the weighted

space Lp(Rd, ω), defined as those f ∈ L0(Rd) such that ωf ∈ Lp(Rd), if ω(x) =

(1+ |x|2)
w
2 for any w < −d

p
, and continuous functions of polynomial growth of order

k at infinity are in such spaces if w < −d
p
− k. With this motivation, we shall study
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the weighted Besov spaces Bp,q
s,w(R

d), which have the simple interpretation that

Bp,q
s,w(R

d) =
{
f ∈ S∗(Rd) : (1 + |·|2)

w
2 f ∈ Bp,q

s (Rd)
}
.

The discussion above regarding the s parameter and the results presented are un-

changed by adding the w parameter, see [91, Ch. 6]. The q parameter in these

Besov spaces, whilst of independent interest, shall not play a role in the analysis in

this work; see Remark 2.1.2. Furthermore, we will focus on the spaces which are

separable and reflexive Banach spaces, and so we shall consider the weighted Besov

spaces Bp
s,w(R

d) := Bp,p
s,w(R

d) for p > 1 and s, w ∈ R.

1.1 Literature Review

The following brief notes are historical in nature and are intended to be neither

comprehensive nor critical.

The lecture notes by Walsh from 1986 [94] are widely recognised as the first

major monograph in the field of SPDEs, where the random field approach is set

out and the theory of Itô integration is extended by the concept of the (worthy)

martingale measure. Then in 1992 Da Prato and Zabyczyk published their book

[24] detailing the semi-group approach, which naturally treats SPDEs as equations

in infinite-dimensional spaces.

One of the first papers analysing SPDEs driven by a Lévy process in a Hilbert

space was by Chojnowska-Michalik [20] from 1987, where necessary and sufficient

conditions for the existence of mild solutions of Ornstein-Uhlenbeck type were pre-

sented. In 1988, Kallianpur and Pérez-Abreu published an analysis [48] of SPDEs

on the dual of a nuclear space driven by semimartingales. A decade passed before

the next such papers were published; Albeverio, Wu and Zhang [4] analysed SPDEs

driven by Poisson white noise with second moments and established existence and
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uniqueness of their solution, and Mueller [62] studied the heat equation with an α-

stable noise constructed as a Poisson random measure, finding sufficient conditions

for the short-time existence of solutions.

Then the following decade saw a significant growth in the area, with a number

of papers examining SPDEs driven by Lévy noise, either as a random measure (e.g.

[3, 7, 10, 17, 60]), a genuine Lévy process in a Hilbert space (e.g. [61, 77, 86]) or as

a distribution-valued random variable (e.g. [3, 60, 65])

A specific example of a cylindrical Lévy process appears in the monograph of 2007

by Peszat and Zabczyk [67, Section 7.2]; the authors term this process an impulsive

cylindrical process, and it is constructed using a Poisson random measure. Further

work by Zabczyk and collaborators saw two alternative constructions of cylindrical

Lévy processes, namely as an infinite sum of real-valued Lévy processes [19, 68, 69],

and as a subordinated cylindrical Brownian motion [18]. A theme arising from both

approaches was to consider a cylindrical process on a Hilbert space H as a genuine

Lévy process on a larger Hilbert space U such that H →֒ U ; a Hilbert-Schmidt

embedding has the property of mapping a cylindrical probability measure on H to

a Radon probability measure on U ; we shall return to this theme in the sequel.

In [18], Brzeźniak and Zabczyk study an Ornstein-Uhlenbeck process driven by

a cylindrical Lévy process and analyse the time and space regularity of solutions; in

particular they find that solutions do not in general have càdlàg modifications. A

similar result is obtained for linear stochastic evolution equations in [19]. However,

in [68], Peszat and Zabczyk find conditions for càdlàg versions of solutions of linear

stochastic equations, and furthermore the authors present the cylindrical càdlàg

property and give conditions under which it holds.

Zhang [99] studies SPDEs driven by an α-stable subordinated cylindrical Brown-

ian motion, and derives the strong Feller property; then, in collaboration with Dong

and Xu [30], the strong Feller property and exponential ergodicity of solutions of
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stochastic Burgers equations are shown. Wang and Rao [96] study the stability of

solutions to SPDEs driven by α-stable cylindrical Lévy processes constructed both

as a series of real-valued stable Lévy processes and as a subordinated cylindrical

Brownian motion; Wang then in [95] gets gradient estimates for linear stochastic

evolution equations driven by a cylindrical Lévy process constructed as a series of

pure-jump real-valued Lévy processes. Chojnowska-Michalik and Goldys [21] study

semilinear stochastic evolution equations driven by a sum of α-stable Lévy processes,

and use the embedding of the resultant cylindrical Lévy process in a larger Hilbert

space to study convergence to an invariant measure. Liu and Zhai [59] use a series-

based α-semistable cylindrical Lévy process to study time regularity of generalised

Ornstein-Uhlenbeck processes in Hilbert spaces and give necessary and sufficient

conditions for càdlàg and weakly càdlàg modifications. In [57], Li uses a construc-

tion of cylindrical Lévy process as a series of α-stable real-valued processes to study

fractional SPDEs and show existence and uniqueness of mild solutions.

Fonseca-Mora has, in a series of papers [34, 36, 35], examined cylindrical Lévy

processes in the dual of a nuclear space, shown that every cylindrical process has

a version which is a genuine Lévy process, and constructed a stochastic integration

theory to study the abstract stochastic Cauchy problem, with multiplicative noise,

in these spaces.

Herren analysed the Besov regularity of the paths of an α-stable process, for

α ∈ (1, 2), on the unit interval [40]. Schilling then presented extensions of this result

to Feller processes on the unit interval and a wider range of Besov space parameters

[82], and then in [81] this result is generalised to weighted Besov and Triebel-Lizorkin

spaces, which furthermore allows for the process to be considered on the entire half-

line. In a series of papers, e.g. [9, 25, 31, 32], Dalang, Humeau, Unser and co-authors

have studied the Lévy white noise Z defined as a distribution. Their model of noise is

initiated from research on developing sparse statistical models for signal and image
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processing. Here, Z is defined as a cylindrical random variable in D∗(Rd), i.e. a

linear and continuous mapping Z : D(Rd) → L0(Ω, P ), with characteristic function

ϕZ : D(Rd) → C, ϕZ(f) = exp

(∫

R

d

ψ
(
f(x)

)
dx

)
,

where ψ : R→ C is defined by

ψ(u) := ipu− 1
2
σ2u2 +

∫

R

(
eiuy − 1− iuy 1B

R

(y)
)
ν0(dy), (1.1.1)

for some constants p ∈ R and σ2 ∈ R+ and a Lévy measure ν0 on R.

The systematic study of cylindrical Lévy processes was introduced by Applebaum

and Riedle in their paper of 2010, [6], based on the theory of cylindrical measures and

cylindrical random variables as developed in the 1970s by Badrakian and Schwartz.

Riedle then developed the theory in a series of papers and a number of co-authors.

In [73] infinitely divisible cylindrical measures are classified in detail. Stochastic

integration is then developed, first in [76] cylindrical Lévy processes in a Hilbert

space with weak second moments, and then, in collaboration with Jakubowski, in

[43] the integration theory was extended to general cylindrical Lévy processes in

Hilbert spaces; the class of integrands in both cases is drawn from adapted Hilbert-

Schmidt operator-valued stochastic processes. In the joint work with Kosmala [53]

the class of integrands is generalised to p-summing operator valued processes. In

[74], cylindrical Ornstein-Uhlenbeck processes in Banach spaces are introduced using

the theory of stochastic integration of deterministic, operator-valued functions. The

stochastic Cauchy problem driven by a stable cylindrical Lévy process is studied in

[75], and, in collaboration with Kumar [55, 56], the general weak and mild solution

of the stochastic Cauchy problem driven by an additive cylindrical Lévy process in a

Hilbert space is derived. Finally, in collaboration with Kosmala, stochastic evolution

equations with multiplicative cylindrical Lévy noise are studied in the variational
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approach in [54] and in the evolution equation approach in [52].

1.2 Outline of Thesis

The main objective of this thesis is to study the regularity properties of cylindrical

Lévy processes and Lévy space-time white noises, by examining their embeddings

on the one hand in the spaces of general and tempered (Schwartz) distributions,

and on the other hand in weighted Besov spaces. In this work rather than studying

the regularity of sample paths, we ask a related question: as cylindrical processes

only exist in a weak sense on their defining space, can they be understood as arising

from genuine stochastic processes in a larger space, and what is the regularity of

the functions and distributions in this space? In this manner we analyse when the

embedded cylindrical process possesses a regularised version in the sense of Itô and

Nawata [42]. This manner of posing the question of regularity fits with the stochastic

evolution equation approach, where the driving noise has a distribution which is

stationary in time but may have spatial dependency. Furthermore, conditions for

when a cylindrical random variable is induced by a (genuine) random variable have

applications in the theory of stochastic integration by cylindrical Lévy processes,

see for example [43, 53, 76].

We focus our studies herein on two different subsets of cylindrical Lévy processes,

the general cylindrical Lévy processes in L2(Rd), and the subset of cylindrical Lévy

processes corresponding to Lévy space-time white noises. The regularisation of (that

is, the existence of a genuine random variable which almost surely gives arise to) a

cylindrical random variable in the space of distributions was demonstrated by Itô

and Nawata in [42], and this result was applied by Fonseca-Mora to cylindrical Lévy

processes in [35].

In order to achieve this, we begin by comparing cylindrical Lévy processes and
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Lévy space-time white noises, and characterising when they are equivalent. Then

we carry on to characterise the Lévy measures in weighted Besov spaces and the

range of these spaces in which L2(Rd) is embedded continuously and in such a

manner that the images under the embedding of cylindrical probabilities and random

variables are (genuine) Radon measures and random variables; in this case we say

the embedding is Radonifying. It is well known that between Hilbert spaces, the

embedding Radonifies every cylindrical random variable if and only if the embedding

operator is Hilbert-Schmidt. Furthermore, this may be generalised to embeddings

between Banach spaces (subject to moment constraints) by the theory of p-summing

operators.

Lévy space-time white noises, defined by means of random measures, do not nat-

urally distinguish the time domain. However, as we compare these with cylindrical

processes, which are naturally indexed by time, we break off one coordinate as the

time domain. For this purpose, we echo Walsh’s definition of a martingale measure

in [94] to define Lévy space-time white noise. To differentiate our setting from the

various other definitions of Lévy space-time white noises in the literature, we call

our model a Lévy-valued random measure. This construction allows us to model the

aforementioned difference in behaviour of the noise in space versus time.

The comparison of cylindrical Lévy processes and Lévy space-time white noises

shows significantly different results vis a vis the Gaussian situation. Only the stan-

dard cylindrical Brownian motion corresponds to the Gaussian space-time white

noise, see e.g. Kallianpur and Xiong [49], and Gaussian space-time white noise al-

ways can be embedded in the space of tempered distributions, see e.g. Gel’fand

and Vilenkin [37]. The property of independent scattering for random measures

restricts the correspondence between cylindrical processes and space-time noises in

the Gaussian setting to the standard case of the identity as the covariance operator.

In the non-Gaussian case, it turns out that there is an entire subclass of cylindrical
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Lévy processes corresponding to Lévy space-time white noises. We call this subclass

independently scattered cylindrical Lévy processes according to its defining property.

We completely characterise the subclass of independently scattered cylindrical Lévy

processes by the particular form of the characteristic function of its members; Theo-

rem 3.3.7 shows that a cylindrical Lévy process in Lp for some p > 1 is independently

scattered if and only if its symbol is of the form

ϑL(f) = i

∫

O

f(x) γ(dx)− 1
2

∫

O

f 2(x) Σ(dx)

+

∫

O×R

(
eif(x)y − 1− if(x)y1B

R

(y)
)
ν(dx, dy)

for certain measures γ, Σ and ν.

In order to develop the theory of when a cylindrical Lévy process in L2(Rd) is in-

duced by a Lévy process in some Besov space, i.e. the embedded cylindrical process

possesses a regularised version, our first task is to characterise the Lévy measures in

weighted Besov spaces. In most Banach spaces, an explicit characterisation of Lévy

measures is not available. One of the exceptions is Lévy measures on the sequence

spaces ℓp due to a result by Yurinskii in [97]. This result in general gives separate

conditions for necessity and sufficiency of a σ-finite Radon measure on a real sepa-

rable Banach space to form a Lévy measure. Using the wavelet characterisation of

Besov spaces, these results by Yurinskii will enable us to derive the characterisation

of Lévy measures on Bp
s,w(R

d) for each p > 1 and s, w ∈ R. Using a definition

based on wavelets, for example one may consider the Daubechies wavelets [28], is

very convenient as it allows us to naturally develop techniques based on a natural

isometry with sequence spaces. We obtain the characterisation, in Theorem 4.1.2,

that a σ-finite Borel measure µ is a Lévy measure on Bp
s,w(R

d) if and only if
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(1) for p > 2,

∫

Bp
s,w

(
‖f‖p

Bp
s,w

∧ 1
)
µ(df) <∞,

∑

j,G,m

(ωj
m)

p

(∫

‖f‖
B
p
s,w

61

[Ψj,G
m , f ]2 µ(df)

)p/2

<∞;

(2) and for p ∈ (1, 2),

∫

Bp
s,w

(
‖f‖2Bp

s,w
∧ 1
)
µ(df) <∞,

∑

j,G,m

(ωj
m)

p

∫ ∞

0

(
1− e

∫
‖f‖

B
p
s,w

61

(
cos τ [Ψj,G

m ,f ]−1
)
µ(df)

)
dτ

τ 1+p
<∞.

In the expressions above, ωj
m are weighting constants and Ψj,G

m are the wavelets used

to define Bp
s,w(R

d).

We then explore the theory of Radonifying embeddings applied to the embed-

dings of L2(Rd) into Bp
s,w(R

d) when such continuous embeddings exist. We present

sharp ranges of when the embedding of L2(Rd) into particular Besov spaces are

Radonifying, both generally and subject to moment conditions. The theory of p-

Radonifying operators and their link to p-summing operators is due to L. Schwartz

(see e.g. [85]); we apply this theory to the embedding operators and then extend

by factorisation. We are also able to apply the characterisation we have developed

of Lévy measures in Besov spaces to give negative results for Radonification in the

cases where we cannot obtain results using the link with p-summing operators, and

in this manner we are able to give the sharp ranges for our results as detailed in

Theorem 4.2.6.

In Figure 1.1, Ep is the region where L2(Rd) is embedded in Bp
s,w(R

d), and Rp

is the subset of Ep such that the embedding is Radonifying.
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Figure 1.1: Triebel diagrams for Radonification

We embed Lévy space-time white noises and, due to the aforementioned cor-

respondence, independently scattered cylindrical Lévy processes, in the space of

distributions and tempered distributions. Although the embedding in the former

case is possible for all Lévy space-time white noises, the embedding to the space

of tempered distribution is restricted to members of a subclass satisfying a certain

integrability condition. For both embeddings, we show that the embedded cylindri-

cal Lévy process is induced by a genuine Lévy process in the space of general or

tempered distributions, i.e. the embedded cylindrical process possesses a regularised

version.

The embedding results enable us to compare the Lévy space-time white noise

with the model of Lévy-type noise in the space of distributions. However, it turns

out that these two models result in the same object only for Lévy space-time white

noises which are additionally assumed to be stationary in space. Similar questions

such as the embedding to the space of tempered distributions and the relation to

independently scattered infinitely divisible random measures are addressed in Dalang

and Humeau [25] and Fageot and Humeau [32] for the Lévy-type noise in the space

of distributions. To complete the analysis, we compare Lévy space-time white noises

with Lévy additive sheets. We establish the relation between Lévy space-time white

noise and additive sheets, which is given by the integration of the Lévy space-time
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white noise in space, i.e. Lévy space-time white noise can be seen as the weak

derivative of a Lévy additive sheet. This relation is established to be one-to-one for

Lévy space-time white noise without fixed point of discontinuity in space.

We then turn our attention to the regularisation question in weighted Besov

spaces. In the restricted case of independently scattered Lévy processes which are

stationary in space, we can combine our results with the work Aziznejad, Fageot and

Unser [9] to determine the range of Besov spaces in which a cylindrical Lévy process

attains its values. This indicates a potential reasoning for the often observed phe-

nomena of irregular trajectories of solutions of heat equations driven by cylindrical

Lévy processes, e.g. in Brzeźniak and Zabczyk [18] and Priola and Zabczyk [69].

For the general case, given a (non-Gaussian) cylindrical Lévy process L in

L2(Rd), we give sharp results for when L is induced by a Lévy process Y in a

Besov space Bp
s,w(R

d). Our technique is to study when the cylindrical Lévy measure

µ of L may be extended to a Radon measure which is a Lévy measure on Bp
s,w(R

d);

in this case we are then able to show the existence of the Lévy process Y in Bp
s,w(R

d)

such that the finite-dimensional projections of Y and L agree almost surely.

This thesis starts with the preliminary Chapter 2, where we collect the definitions

and the fundamental results we shall need regarding weighted Besov spaces, infinitely

divisible random measures and additive sheets. Some of these results could not be

found in the literature so we present proofs in these cases. We further present the

theory of cylindrical Lévy processes as developed by Applebaum and Riedle.

In Chapter 3, we begin by presenting our precise definitions of Lévy-valued ran-

dom measures and Lévy-valued sheets, recall some known results from the literature

and add a few observations particular to our approach. Following on from this, Sec-

tion 3.3 is devoted to the comparison of cylindrical Lévy processes and Lévy-valued

random measures. Our main results here characterise exactly the sub-class of cylin-

drical Lévy processes which correspond to Lévy-valued random measures.
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Chapter 4 presents new results in the study of probability theory in weighted

Besov spaces. In Section 4.1, we characterise the Lévy measures in weighted Besov

spaces. We then in Section 4.2 present the complete theory of Radonifying embed-

dings of L2(Rd) into weighted Besov spaces Bp
s,w(R

d) in terms of the parameter set

(p, s, w).

The final Chapter 5 is dedicated to applications of the theory developed in the

previous Chapters. In Section 5.1 we present our first two main results on the em-

bedding of Lévy-valued random measures in the space of distributions and tempered

distributions. In Section 5.1.1 we complete the picture by establishing Lévy-valued

random measures as the weak derivative of Lévy-valued additive sheets. In Section

5.2 we give a general characterisation of when L2-cylindrical Lévy processes may be

regularised in specific weighted Besov spaces. Finally, we study in depth two im-

portant classes of cylindrical Lévy process: in Section 5.3 we analyse the canonical

symmetric-α-stable process, and Section 5.4 is devoted to the cylindrical Lévy pro-

cess representable as an infinite sum of independent one-dimensional Lévy processes,

which we call the hedgehog process. In both cases we present a full characterisation

of the parameter set where the cylindrical process is and is not regularised.
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Chapter 2

Preliminaries and Notation

We take N = {1, 2, . . .} and Z+ = N∪{0} and R+ = {x ∈ R : x > 0}. All vector

spaces are over R. We shall assume throughout the text that we are working in

R

d for a fixed dimension d, and we fix a probability space (Ω,A, P ). Sequences are

referred to by (xi)i∈I ; stochastic processes are denoted (f(i) : i ∈ I).

Given a normed space (U, ‖·‖U), we use the notation BU := {f ∈ U : ‖f‖U 6 1}

for the closed unit ball in U . For a topological vector space (T, τ), we denote

the Borel σ-algebra generated by the open subsets of T by B(T ) and we denote the

continuous (topological) dual space by T ∗, referred to henceforth simply as the dual.

The dual pairing is denoted 〈t, t∗〉T for t ∈ T, t∗ ∈ T ∗. For B ∈ B(Rd), we define

the δ-ring1 Bb(B) := {A ∈ B(B) : A is relatively compact}. For topological vector

spaces T and S we denote the continuous linear operators from T to S by L(T, S)

and L(T ) := L(T, T ).

Given a measure space (S,A, µ), the space of µ-equivalence classes of measurable

functions f : S → R is denoted by L0(S, µ), and of p-th integrable functions by

Lp(S, µ) for p > 0. For a Borel measure µ on S we define the reflected measure

µ− by µ−(A) := µ(−A) for each A ∈ B(S). The Lebesgue measure on B(Rd) is

denoted by leb. For the case Lp(Rd, leb) we shall just write Lp(Rd). We equip

L0(S, µ) with the topology of convergence in measure (known as convergence in

1A δ-ring is a ring that is closed under countable intersections.
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probability for the case L0(Ω, P )), and we equip the spaces Lp(S, µ) for p > 0 with

their standard metrics and (quasi-)norms, denoted ‖·‖Lp(S,µ) or, where there is no

risk of confusion, ‖·‖Lp. For p > 1 we define p′ = p
p−1

to be the conjugate of p with

the usual modification for p ∈ {1,∞}.

For a ∈ Z+ ∪ {∞} and an open set B ⊆ R

d we denote by Ca(B) the set of

real-valued bounded uniformly continuous functions on B with bounded uniformly

continuous a-th derivative, where C(B) = C0(B) denotes the bounded uniformly

continuous functions without reference to differentiability, and a = ∞ denotes the

functions with bounded uniformly continuous derivatives of all orders. Furthermore,

Ca
c (B) denotes the subset of Ca(B) with compact support within B.

We shall write a . b to mean that there exists a positive constant C such that

a 6 Cb. If the constant C depends on the parameters p1, . . . , pn, we shall also write

C = C(p1, . . . , pn) and .p1,...pn. The expression a h b is equivalent to a . b . a.

By saying s is a multi-index, we mean s = (s1, . . . , sd) ∈ Z
d
+. For a multi-index

s, we define |s| := s1 + · · ·+ sd and the partial differential operator

∂s :=
∂|s|

∂xs11 · · ·∂xsdd
.

Let U be a separable topological vector space with separable dual U∗. We define

Lévy processes in U in the usual manner, that is, a U -valued process L = (L(t) : t >

0) such that L(0) = 0; L has independent and stationary increments; and t 7→ L(t) is

continuous in probability. Cylindrical Lévy processes in U are defined (for example

in [6, 73, 74]) as a family of continuous operators from U∗ to L0(Ω;P ) such that the

d-dimensional projections are Lévy processes in Rd for each d ∈ N.

For an open set O ⊆ R

d let D(O) denote C∞
c (O) equipped with the inductive

topology; that is, D(O) is the strict inductive limit of the Fréchet spaces D(Ki) :=

{f ∈ C∞(Rd) : supp(f) ⊆ Ki} where {Ki}i∈N is a strictly increasing sequence of
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compact subsets of O such that O =
⋃

i∈NKi. The topology of D(Ki) is given by

the family of seminorms ‖·‖D(Ki),r
, r ∈ Z+ defined by

‖f‖D(Ki),r
:= max

|s|6r
sup

x∈D(Ki)

|∂sf(x)| .

The dual space D∗(O) is called the space of distributions, which we equip with

the strong topology, that is the topology generated by the family of seminorms

{ηB}, where for each bounded B ⊆ D(O) we define ηB(f) := supϕ∈B

∣∣〈ϕ, f〉D(O)

∣∣ for

f ∈ D∗(O). In these topologies D(O) and D∗(O) are reflexive [87, p. 376].

Let S(Rd) denote the Schwartz space of rapidly decreasing functions on Rd, that

is S(Rd) :=
{
f ∈ C∞(Rd) : ‖f‖Sr

<∞ for all r ∈ Z+

}
, where the seminorms ‖·‖Sr

,

r ∈ Z+, are defined by

‖f‖Sr
:= max

|s|6r
sup
x∈Rd

(1 + |x|2)r |∂sf(x)| ,

with s a multi-index. With the topology generated by the family of seminorms

(‖·‖Sr
)r∈Z+ , S(Rd) is metrisable, and fn → f in S(Rd) means ‖fn − f‖Sr

→ 0 for

each r ∈ Z+. Furthermore, S(Rd) is a countably Hilbertian nuclear space [49]. The

dual space of S(Rd) is the space S∗(Rd) of tempered distributions, which we shall

again equip with the strong topology. With this topology S(Rd) is reflexive and

separable and densely embedded in S∗(Rd) [71, Th.V.14 Cor.1].

2.1 Weighted Besov Spaces

In preparation for our definition of the weighted Besov spaces, we present a brief mo-

tivation describing how many familiar function spaces can be embedded in S∗(Rd),

and thus may be analysed in a consistent fashion. This will allow us to measure the

smoothness properties of functions and distributions along several scales.
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The spaces Lp(Rd) for 1 6 p 6 ∞ may be interpreted as subspaces of S∗(Rd)

in the following manner. For f ∈ Lp(Rd) and g ∈ Lp′(Rd) for some p ∈ [1,∞] we

define

[f, g] :=

∫

R

d

f(x)g(x) dx.

We make the usual identification 〈f, g〉S(Rd) = [f, g] for f ∈ S(Rd) and g ∈ Lp(Rd)

for some p ∈ [1,∞], and then extend to all g ∈ S∗(Rd). In this manner we shall

interpret all function spaces considered in this work as subspaces of S∗(Rd). Fur-

thermore, for any Banach space B in which S(Rd) is dense, we interpret [f, g] for

f ∈ B as limn→∞[fn, g] for each g ∈ S∗(Rd) such that the limit exists and is finite

whenever (fn)n∈N ⊆ S(Rd) is such that fn → f in B as n → ∞. In this way

we also interpret B∗ as a subspace of S∗(Rd), and furthermore we thus may write

〈f, g〉B ≡ [f, g] ≡ [g, f ]. However, this interpretation means that we do not identify

Hilbert spaces with their duals, except in the case of L2(Rd).

As we are focused on separable reflexive Banach spaces in this work, we shall use

the scale 1 < p <∞. We shall define the weighted Besov spaces Bp
s,w(R

d) for p > 1

and s, w ∈ R in terms of wavelet bases of L2(Rd). We summarise the deposition in

[88, Se. 1.2.3]. We define subsets Gj ⊆ {0, 1}d, j ∈ Z+ as follows:2

Gj :=





{0, 1}d, if j = 0,

{G = (G1, . . . , Gd) : Gi = 1 for at least one i}, if j > 1.

Suppose we are given
(
ΨG

0

)
G∈G0 ⊆ Cc(R

d) which form an orthonormal set in L2(Rd),

which we shall call the parent wavelets. Then, for each j ∈ Z+, G ∈ Gj and m ∈ Zd,

2So thus we have G1 = G2 = · · · .
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we define

Ψj,G
m (x) := 2jd/2ΨG

m(2
jx) := 2jd/2ΨG

0 (2
jx−m), x ∈ Rd .

It is known that for any r ∈ N, there exist such parent wavelets
(
ΨG

0

)
G∈G0 ⊆ Cr

c (R
d)

such that Ψ := {Ψj,G
m : j ∈ Z+, G ∈ Gj , m ∈ Zd} forms an orthonormal basis in

L2(Rd) [91, Th. 1.61]; one example is the Daubechies wavelets [28]. We shall call

such a Ψ a wavelet basis of L2(Rd). Henceforth, we shall refer to the wavelet index

set

W

d :=
{
(j, G,m) : j ∈ Z+, G ∈ Gj , m ∈ Zd

}
. (2.1.1)

Clearly Wd is countable. For the purposes of defining the weighted Besov space

Bp
s,w(R

d), we shall require a minimum smoothness of the wavelet basis depending

on the dimension d and the parameters p and s.

Definition 2.1.1. Let p > 1, s ∈ R, w ∈ R. A wavelet basis Ψ = {Ψj,G
m : (j, G,m) ∈

W

d} of L2(Rd) is called an admissible basis of Bp
s,w(R

d) if Ψ ⊆ Cr
c (R

d) for some

r ∈ N satisfying r > |s|.

Our first step shall be to define the weighted Besov sequence space bps,w for p >

1, s ∈ R, w ∈ R. We introduce the weight constants:

ωj
m = ωj

m(p, s, w) := 2j(s−
d
p
+ d

2
)(1 + 2−2j |m|2)

w
2 , (2.1.2)

for each m ∈ Zd and j ∈ Z+. We define bps,w as the vector space of sequences

λ =
{
λj,Gm ∈ R : (j, G,m) ∈Wd

}
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such that

‖λ‖bps,w :=

(
∑

j∈Z+

∑

G∈Gj

∑

m∈Zd

∣∣∣2−
jd
2 ωj

mλ
j,G
m

∣∣∣
p
)1/p

<∞.

For p > 1, (bps,w, ‖·‖bps,w) forms a Banach space, when p = 2 it forms a Hilbert space.

Now let p > 1 and s, w ∈ R. Let Ψ be an admissible basis of Bp
s,w(R

d). The

weighted Besov space Bp
s,w(R

d) is defined to be

Bp
s,w(R

d) :=



f ∈ S∗(Rd) : f =

∑

j∈Z+

∑

G∈Gj

∑

m∈Zd

λj,Gm 2−
jd
2 Ψj,G

m , λ ∈ bps,w





where the sum is unconditionally convergent in S∗(Rd). When this holds, the asso-

ciated sequence λ is unique and we have

λj,Gm = 2
jd
2 [Ψj,G

m , f ].

A consequence of Ψ being an admissible basis of Bp
s,w(R

d) is that the wavelets are

of sufficient smoothness to guarantee that they are in
(
Bp

s,w(R
d)
)∗

, and so the dual

pairing makes sense. As the sums over j, G andm are unconditional in the definitions

of both the weighted Besov spaces and the weighted Besov sequence spaces, we will

henceforth use the simpler notation
∑

j,G,m to mean
∑

j∈Z+

∑
G∈Gj

∑
m∈Zd . We may

norm Bp
s,w(R

d) by taking ‖f‖Bp
s,w

= ‖f‖Bp
s,w(Rd) := ‖λ‖bps,w , giving

‖f‖Bp
s,w

=

(
∑

j,G,m

(ωj
m)

p
∣∣[Ψj,G

m , f ]
∣∣p
)1/p

. (2.1.3)

Again, we have that Bp
s,w(R

d) is a Banach space, and a Hilbert space for p = 2. We

immediately see from this definition that B2
0,0(R

d) = L2(Rd), consistently with the

relation described in the Introduction.
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Remark 2.1.2. As mentioned in the Introduction, the original definitions of Besov

spaces involved another parameter q. We shall not use the q parameter in this

work. This is due to the fact that the embedding theorems available in weighted

Besov spaces (see Proposition 3 in [31]) show the continuous embedding of Bp,q
s,w(R

d)

into Bp,p
s−ε,w(R

d) for any q ∈ R and ε > 0. The results presented in this work

are generally expressed as strict inequalities on the Besov space parameters, and

as such are unaffected by the arbitrarily small change in the s parameter needed to

incorporate any q parameter. Thus, the theory herein is developed for the case p = q,

and we shall henceforth define Bp
s,w(R

d) := Bp,p
s,w(R

d).

2.1.1 The Dual Spaces

The dual spaces for the unweighted Besov spaces are well-known:
(
Bp

s,0(R
d)
)∗

=

Bp′

−s,0(R
d) for p > 1 and s ∈ R (see e.g. [89, p.179]). We present the generalisation

to the weighted case, for which we could find no reference in the literature.

Theorem 2.1.3. Let p > 1 and s, w ∈ R. The dual space
(
Bp

s,w(R
d)
)∗

may be

identified with Bp′

−s,−w(R
d), with the duality given by

〈f, g〉Bp
s,w

= [f, g] =
∑

j,G,m

[Ψj,G
m , f ][Ψj,G

m , g] (2.1.4)

where Ψ is any admissible basis for Bp
s,w(R

d) (and thus is also an admissible basis

for Bp′

−s,−w(R
d)).

In order to prove this Theorem, we shall first prove some intermediary results

about the weighted Besov sequence spaces defined above; we shall then apply the

isometry between the weighted Besov sequence spaces and the weighted Besov spaces

to complete the proof.
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Lemma 2.1.4. For each p > 1 and s, w ∈ R the operator Υp
s,w : b

p
s,w → ℓp(Wd)

defined by

(
Υp

s,wλ
)j,G
m

:= 2−
jd
2 ωj

mλ
j,G
m (2.1.5)

forms an isometric isomorphism. In the expression above, ωj
m = ωj

m(p, s, w) are the

weight constants defined in (2.1.2).

Proof. We take p > 1 and s, w ∈ R and recall the norm of a sequence (λj,Gm )(j,G,m)∈Wd

is given by

‖λ‖p
bps,w

=
∑

j∈Z+

∑

G∈Gj

∑

m∈Zd

∣∣∣2−
jd
2 ωj

mλ
j,G
m

∣∣∣
p

.

As all terms are positive, convergence is unconditional and we see that ‖λ‖bps,w =
∥∥Υp

s,wλ
∥∥
ℓp(Wd)

. As the multipliers 2−jd/2ωj
m act component-wise and are strictly

positive for all j ∈ Z+ andm ∈ Zd, we see that Υp
s,w is an isometric isomorphism.

Lemma 2.1.5. Let p > 1 and s, w ∈ R. The dual space
(
bps,w
)∗

may be identified

with bp
′

−s+d,−w, with the duality given by

〈λ, κ〉bps,w =
∑

j,G,m

λj,Gm κj,Gm .

Proof. Fix y ∈ ℓp
′
(Wd). Then the map λ 7→ 〈Υp

s,wλ, y〉ℓp(Wd) is linear and continuous,

thus (Υp
s,w)

∗y ∈
(
bps,w
)∗

. By examination of each component, we see that

(
(Υp

s,w)
∗y
)j,G
m

= 2−
jd
2 ωj

my
j,G
m .
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Taking κ := (Υp
s,w)

∗y we have

yj,Gm =
((

(Υp
s,w)

∗
)−1

κ
)j,G
m

= 2
jd
2 (ωj

m)
−1κj,Gm

= 2j(−s+ d
p
)(1 + 2−2j |m|2)

−w
2 κj,Gm

=
(
Υp′

−s+d,−wκ
)j,G
m

thus showing κ ∈ bp
′

−s+d,−w by the isomorphism. As (Υp
s,w)

∗ maps ℓp
′
(Wd) onto

bp
′

−s+d,−w, we conclude bp
′

−s+d,−w ⊆
(
bps,w
)∗

with the duality as defined.

Now fix κ ∈
(
bps,w
)∗

. For each λ ∈ bps,w we have λ = (Υp
s,w)

−1x for some x ∈

ℓp(Wd). Then

〈λ, κ〉bps,w = 〈(Υp
s,w)

−1x, κ〉bps,w = 〈x,
(
(Υp

s,w)
−1
)∗
κ〉ℓp(Wd).

The inclusion bp
′

−s+d,−w ⊇
(
bps,w
)∗

follows by noting that
(
(Υp

s,w)
−1
)∗

=
(
(Υp

s,w)
∗
)−1

=

Υp′

−s+d,−w component-wise. We may then calculate

〈λ, κ〉bps,w = 〈Υp
s,wλ,Υ

p′

−s+d,−wκ〉ℓp(Wd)

=
∑

j,G,m

λj,Gm κj,Gm .

To complete the proof we show the operator norm is equal to the Besov space

norm, which follows from the isometry between bp
′

−s+d,−w and ℓp
′
(Wd).

Lemma 2.1.6. Let p > 1 and s, t, w ∈ R. The space bps,w is isometrically isomorphic

to the space bps+t,w with the isometry given by

D : bps,w → bps+t,w, (Dκ)j,Gm = 2−jtκj,Gm .
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Proof. Let κ ∈ bps,w; thus we have

(
2
j(s−

d
p
)(
1 + 2−2j |m|2

)w
2 κj,Gm

)
=

(
2
j(s+t−

d
p
)(
1 + 2−2j |m|2

)w
2Dκj,Gm

)
∈ ℓp

′

(Wd).

Clearly D is one-to-one and onto. The isometry follows by examination of the

formulae for the respective norms.

Proof of Theorem 2.1.3. First we show (2.1.4) is well-defined. Let f ∈ Bp
s,w(R

d) and

g ∈ Bp′

−s,−w(R
d). Then,

(
2
j(s−

d
p
+
d
2
)
(1 + 2−2j |m|2)

w
2 [Ψj,G

m , f ]
)
j,G,m

∈ ℓp(Wd)

and

(
2
j(−s−

d
p′
+
d
2
)
(1 + 2−2j |m|2)

−w
2 [Ψj,G

m , g]
)
j,G,m

∈ ℓp
′

(Wd);

thus we see the convergence of (2.1.4) as d
p′

= d − d
p
. By Theorem 6.15 in [91] we

have the isometry I : Bp
s,w(R

d) → bps,w given by
(
If
)j,G
m

= 2jd/2[Ψj,G
m , f ]; combining

with Lemma 2.1.6 we obtain an isometry J : Bp
s,w(R

d) → bps+d/2,w given by

(
Jf
)j,G
m

= [Ψj,G
m , f ].

By Lemma 2.1.5, we have that the dual of bps+d/2,w is bp
′

−s+d/2,−w. Applying the same

steps as above we obtain the isometry K : Bp′

−s,−w(R
d) → bp

′

−s+d/2,−w given by

(
Kg
)j,G
m

= [Ψj,G
m , g],

which completes the proof.
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2.2 Random Measures and Additive Sheets

We recall the definition of infinitely divisible random measures from the work [70]

by Rajput and Rosinski. Instead of general δ-rings, it is sufficient for us to restrict

ourselves to the δ-ring Bb(O) of all relatively compact subsets of the Borel set O ∈

B(Rd) as the domain of the random measures.

Definition 2.2.1. A map M : Bb(O) → L0(Ω, P ) is called an independently scat-

tered random measure on Bb(O) if for each collection of disjoint sets A1, A2, . . . ∈

Bb(O) the following hold:

(a) the random variables M(A1), M(A2), . . . are independent;

(b) if
⋃

k∈N

Ak ∈ Bb(O) then M

(
⋃

k∈N

Ak

)
=
∑

k∈N

M(Ak) P -a.s.

An independently scattered random measure M is called infinitely divisible if

(c) the random variable M(A) is infinitely divisible for each A ∈ Bb(O).

Analogously, an independently scattered random measure is called Gaussian (or Pois-

son), if M(A) is Gaussian (or Poisson) distributed for each A ∈ Bb(O).

For an arbitrary infinitely divisible independently scattered random measure M

on Bb(O) it is shown in [70] that there exist

(1) a signed measure γ : Bb(O) → R,

(2) a measure Σ: Bb(O) → R+,

(3) a σ-finite measure ν : B(O ×R) → [0,∞],

such that for each A ∈ Bb(O) the characteristics ofM(A) are given by (γ(A),Σ(A), νA),

where the Lévy measure νA on B(R) is defined by νA(·) := ν(A× ·). For the notion

of measures on a ring see e.g. [39]. We call the triple (γ,Σ, ν) the characteristics of
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M . Furthermore, we may extend the total variation ‖γ‖TV of γ and Σ to σ-finite

measures on B(O). In this case, the mapping

λ : B(O) → [0,∞], λ(A) = ‖γ‖TV (A) + Σ(A) +

∫

R

(|y|2 ∧ 1) ν(A, dy),

defines a σ-finite measure, which is called the control measure of M . We note that

λ(A) < ∞ for A ∈ Bb(O). The control measure λ is called atomless if λ({x}) = 0

for all x ∈ O.

Next we present our definition of additive sheets based on the deposition of

Dalang and Humeau in [25], which extends [2], and results from Pedersen [66]. For

a, b ∈ Rd write a 6 b if aj 6 bj for all j = 1, . . . , d and similarly a < b, and define

boxes (a, b] := {s ∈ Rd : a < t 6 b} and [a, b] := {s ∈ Rd : a 6 t 6 b}; [a, b)

and (a, b) are defined mutatis mutandi. For a function f : Rd → R, we define the

increment of f over (a, b] for a, b ∈ Rd with a < b by

∆b
af :=

1∑

ε1=0

· · ·
1∑

εk=0

(−1)ε1+···+εkf
(
c1(ε1), . . . ck(εk)

)
,

where cj(0) = bj and cj(1) = aj . For example, in the case d = 2 we have

∆b
af = f(b1, b2) − f(b1, a2) − f(a1, b2) + f(a1, a2). Furthermore, we shall extend

the terminology of boxes around the origin to all quadrants (with some abuse of

notation) and use the convention (0, x] :=
∏d

i=1 Ii where, for x = (x1, . . . , xd) ∈ I,

Ii := (0, xi] when xi > 0 and Ii := [xi, 0) when xi < 0. In this case, we adapt the

calculation of the increments accordingly.

The càdlàg property is generalised to random fields in the following way:

Definition 2.2.2. A function f : Rd → R is said to be lamp (limits along monotone

paths) if for every x ∈ Rd and any sequence (xn)n∈N ⊆ R

d converging to x with

either xn,j < xj or xn,j > xj for all n ∈ N and j ∈ {1, . . . , d} where x = (x1, . . . , xd)
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and xn = (xn,1, . . . , xn,d), the limit f(xn) exists as n → ∞ and furthermore f is

called right-continuous if f(xn) → f(x) as n→ ∞ for all sequences with x 6 xn for

all n ∈ N.

We note that the lamp property is a path-based property, and thus in contrast

to random measures we define our sheets as mappings from R

d×Ω → R.

Definition 2.2.3. Let I ⊆ Rd with 0 ∈ I. A real-valued stochastic process (X(x) :

x ∈ I) is called an additive sheet if the following conditions are satisfied:

(a) X(x) = 0 a.s. for all x = (x1, . . . , xd) ∈ I with xj = 0 for some j ∈ {1, . . . , d};

(b) ∆b1
a1X, . . . ,∆

bn
anX are independent for disjoint boxes (a1, b1], . . . , (an, bn] ⊆ I;

(c) X is continuous in probability;

(d) almost all sample paths of X are lamp and right-continuous.

Remark 2.2.4. For relaxing the requirements in Definition 2.2.3 we refer to [2],

e.g. to capture arbitrary initial conditions or sheets which are not continuous in

probability. In particular, it is shown that Conditions (a) – (c) gurantee the existence

of a lamp and right-continuous modification.

If (X(x) : x ∈ I) is an additive sheet then for fixed x ∈ I the random variable

X(x) is infinitely divisible; see Adler [2, Th. 3.1]; let its characteristics be denoted by

(px, Ax, µx). The additive sheet is said to be natural if the mapping x 7→ px, which

is necessarily continuous, is of bounded variation, or equivalently, if there exists an

atomless signed measure γ with px = γ((0, x]) for all x ∈ I. The notation of natural

additive processes is introduced in Sato [80] for the case d = 1.



Chapter 2. Preliminaries and Notation 35

2.3 Cylindrical Lévy Processes

The concept of cylindrical Lévy processes in Banach spaces is introduced in [6]; this

is a natural generalisation of the notion of cylindrical Brownian motion, based on

the theory of cylindrical measures and cylindrical random variables.

We begin by defining cylindrical measures and cylindrical random variables. Let

U be a topological vector space with separating dual U∗ and let Γ ⊆ U∗. For some

n ∈ N and f1, . . . , fn ∈ Γ we define the projection πf1,...,fn : U → R

n by

πf1,...,fn(u) :=
(
〈u, f1〉U , . . . , 〈u, fn〉U

)
.

Sets of the form

Z(f1, . . . , fn;A) := π−1
f1,...,fn

(A)

= {u ∈ U :
(
〈u, f1〉U , . . . , 〈u, fn〉U

)
∈ A}

for A ∈ B(Rn) are called cylinder sets with respect to (U,Γ), and the set of all

cylinder sets with respect to (U,Γ) is denoted by Z(U,Γ); we also denote Z(U, U∗) =:

Z(U). In general Z(U,Γ) is an algebra; in the case that Γ is finite Z(U,Γ) is a σ-

algebra. We denote C(U) := σ(Z(U)) and note that C(U) ⊆ B(U) with equality

holding if and only if U is Polish [92, p.6].

Note that in the case that U is reflexive, cylinder sets in Z(U∗) can be written

in the form

Z(u1, . . . , un;A) = {f ∈ U∗ :
(
〈u1, f〉U , . . . , 〈un, f〉U

)
∈ A}

for some u1, . . . , un ∈ U and A ∈ B(Rn).

A set function λ : Z(U) → [0,∞] is called a cylindrical measure if for every

finite Γ ⊆ U∗ the restriction of λ to Z(U,Γ) is a measure. A cylindrical measure λ
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is called finite if λ(U) <∞ and a cylindrical probability measure if λ(U) = 1.

Definition 2.3.1. A cylindrical random variable X in U is a linear and continuous

mapping X : U∗ → L0(Ω, P ). A cylindrical process (X(t) : t ∈ I) is a family of

cylindrical random variables indexed by some index set I.

There is a one-to-one correspondence between cylindrical random variables and

cylindrical probability measures: given a cylindrical random variable X on U , then

λ : Z(U) → [0,∞] defined by

λ
(
Z(f1, . . . , fn;A)

)
:= P

(
(Xf1, . . . , Xfn) ∈ A

)

is a cylindrical probability measure, called the cylindrical distribution of X; con-

versely for every cylindrical probability measure λ in Z(U) there exists a probability

space (Ω0,F0, P0) and a cylindrical random variable X : U∗ → L0(Ω0, P0) such that

λ is the cylindrical distribution of X [74].

We note that any (genuine) U -valued stochastic process Y = (Y (t) : t ∈ I)

induces a cylindrical process in U by the prescription, for each f ∈ U∗ and ω ∈ Ω,

(Y (t)f)(ω) := 〈Y (t)(ω), f〉U

which motivates the following

Definition 2.3.2. A U-valued stochastic process Y = (Y (t) : t ∈ I) is said to induce

a cylindrical process X = (X(t) : t ∈ I) in U if, for each t ∈ I and each f ∈ U∗,

X(t)f = 〈Y (t), f〉U P -a.s. .

Next we introduce the cylindrical Lévy process, following Applebaum and Riedle

[6, 74].
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Definition 2.3.3. A cylindrical process (L(t) : t > 0) in U is called a cylin-

drical Lévy process if for all f1, . . . , fn ∈ U∗ and n ∈ N, the stochastic process

((L(t)f1, . . . , L(t)fn) : t > 0) is a Lévy process in Rn.

The following theorem, which is a consequence of Itô’s regularisation theorem,

reduces the study of cylindrical Lévy processes in S∗(Rd) to that of genuine Lévy

processes [35, Th. 3.8].

Theorem 2.3.4. Let L = (L(t) : t > 0) be a cylindrical Lévy process in D∗(Rd)

(respectively, S∗(Rd)) such that for every T > 0 the family {L(t) : t ∈ [0, T ]}

is equicontinuous in probability, equivalently the family of characteristic functions

{ϕL(t)(·) : t ∈ [0, T ]} is equicontinuous at 0. Then there exists a D∗(Rd) (respec-

tively, S∗(Rd))-valued, càdlàg Lévy process Y = (Y (t) : t > 0) such that Y induces

L and furthermore Y is unique up to indistinguishability.

Now let U be a Banach space with separable dual U∗. In order to present

the Lévy-Khintchine formula for a cylindrical Lévy process, we must first give a

definition of the cylindrical version of the Lévy measure. In this definition, we

must specifically exclude sets containing the origin to avoid consistency issues with

finite-dimensional projections. We define the subalgebra Z∗(U) ⊆ Z(U) as

Z∗(U) := {C = Z(f1, . . . , fn;A) ∈ Z(U) : 0 /∈ A}.

Definition 2.3.5. A set function µ : Z∗(U) → [0,∞] is called a cylindrical Lévy

measure if for all f1, . . . , fn ∈ U∗ and n ∈ N the map

µf1,...,fn : B(Rn) → [0,∞], µf1,...,fn(B) = µ ◦ π−1
f1,...,fn

(B\{0})

defines a Lévy measure on Rn.
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The characteristic function of a cylindrical Lévy process (L(t) : t > 0) is given

by

ϕL(t) : U
∗ → C, ϕL(t)(f) = exp

(
tϑL(f)

)
,

for all t > 0. Here, ϑL : U
∗ → C is called the (cylindrical) symbol of L, and is of the

form

ϑL(f) = ia(f)− 1
2
〈f,Qf〉U∗ +

∫

U

(
ei〈g,f〉U − 1− i〈g, f〉U 1B

R

(〈g, f〉U)
)
µ(dg),

where a : U∗ → R is a continuous mapping with a(0) = 0, the mapping Q : U∗ → U∗∗

is a positive, symmetric operator and µ is a cylindrical Lévy measure on U . We call

(a,Q, µ) the (cylindrical) characteristics of L.

Furthermore, for each sequence {fn}n∈N ⊆ U∗ which converges in norm to some

f0 ∈ U∗, we have (|x|2 ∧ 1)(µ ◦ f−1
n )(dx) → (|x|2 ∧ 1)(µ ◦ f−1

0 )(dx) weakly.

2.3.1 Examples

The following examples are from [6].

Example 2.3.6. A cylindrical Brownian motion is an example of a cylindrical Lévy

process, with (cylindrical) characteristics (0, Q, 0), where Q is the covariance oper-

ator of the cylindrical Brownian motion.

Example 2.3.7. Let ζ ∈ U∗∗. Then define the cylindrical Poisson process L =

(L(t) : t > 0) as, for each f ∈ U∗ and t > 0

L(t)f := 〈f, ζ〉U∗N(t)
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where N(t) is a Poisson process in R with intensity λ > 0. Then L is a cylindrical

Lévy process with characteristic function

ϕL(t)(f) = exp
(
λt(ei〈f,ζ〉U∗ − 1)

)
.

The following important example shows the construction of a cylindrical Lévy

process from a series of real-valued Lévy processes [74, Le. 4.2].

Example 2.3.8. Let U be a Hilbert space, {ek}k∈N ⊆ U an orthonormal basis and

let {ℓk}k∈N be a sequence of independent Lévy processes in R, such that for each

k ∈ N the characteristics of ℓk is (bk, σ
2
k, νk). Then, for each t > 0 and f ∈ U∗ the

sum L(t)f :=
∑

k∈N〈ek, f〉Uℓk(t) converges P-a.s. if and only if for each x ∈ ℓ2(R)

we have:

1.
∑

k∈N 1BR(xk)
∣∣∣xk
(
bk +

∫
1<|y|6|xk|

−1 y νk(dy)
)∣∣∣ <∞,

2. (σ2
k)k∈N ∈ ℓ∞(R), and

3.
∑

k∈N

∫
R

(
|xky|

2 ∧ 1
)
νk(dy) <∞.

In this case, if the set {ϕℓk(1) : k ∈ N} is equicontinuous at 0 then L = (L(t) : t >

0) defines a cylindrical Lévy process in U with cylindrical characteristics satisfying,

for each f ∈ U∗,

1. a(f) =
∑

k∈N〈ek, f〉U
(
bk +

∫
R

y
(
1B

R

(〈ek, f〉Uy)− 1B
R

(y)
)
νk(dy)

)
,

2. Qf =
∑

k∈N〈ek, f〉Uσ
2
kek, and

3. (µ ◦ f−1)(dy) =
∑

k∈N(νk ◦m
−1
k,f)(dy),

where mk,f : R→ R : y 7→ 〈ek, f〉Uy.

The support of the cylindrical measure µ of L is in
⋃

k∈N{βek : β ∈ R}, as

(ℓk)k∈N are independent, that is to say the measure only has weight on the axes.

For this reason, we refer to this process as a hedgehog cylindrical process.
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Example 2.3.9. The canonical α-stable cylindrical Lévy process in a Banach space

U , as detailed in [75], has cylindrical characteristic function given by

ϕL(t) : U
∗ → C : f 7→ exp

(
− t ‖f‖αU∗

)
.

The author gives two constructions of a canonical α-stable cylindrical Lévy pro-

cess. The first is detailed in Lemma 3.1: for U separable and α ∈ (0, 2), let W

be a standard cylindrical Brownian motion on U and ℓ an independent α/2-stable

subordinator in R with Lévy measure given by

ν(dy) =
2α/2α/2

Γ(1− α/2)
y−α/2−1 dy.

Then the prescription L(t)f := W (ℓ(t))f , for each f ∈ U∗ defines a canonical α-

stable cylindrical Lévy process in U .

The second construction, detailed in Lemma 3.3, constructs a canonical α-stable

cylindrical Lévy process in Lα′
(O) from a Lévy random measure on R+ × O, for

some O ⊆ Rd, with characteristics (0, 0, ν) and ν(dy) = C |y|−α−1 dy.

In the remainder of this thesis we use the phrase genuine Lévy process in U to

emphasise the difference between a Lévy process in the space U according to the

usual definition, e.g. Definition 4.1 and Definition 14.2 in [67], and a cylindrical

Lévy process as defined above.
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Chapter 3

Modelling Lévy space-time white

noises

In this Chapter, we begin by presenting our precise definitions of Lévy-valued ran-

dom measures and Lévy-valued sheets, recall some known results from the literature

and add a few observations particular to our approach. Following on from this,

the rest of this Chapter is devoted to the comparison of cylindrical Lévy processes

and Lévy-valued random measures. Our main results here characterise exactly the

sub-class of cylindrical Lévy processes which correspond to Lévy-valued random

measures.

3.1 Lévy-valued random measures

We define Lévy-valued random measures by extending Definition 2.2.1 to include a

dynamical aspect, i.e. a time variable. This extension can be thought of as a similar

construction to that of Walsh in [94]. Our construction enforces stationarity in time,

whilst allowing for the distribution to depend on the spatial variable.

Definition 3.1.1. A family (M(t) : t > 0) of infinitely divisible random measures

M(t) on Bb(O) is called a Lévy-valued random measure on Bb(O) if, for every
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A1, . . . , An ∈ Bb(O) and n ∈ N, the stochastic process

(
(M(t)(A1), . . . ,M(t)(An)) : t > 0

)

is a Lévy process in Rn. We shall write M(t, A) :=M(t)(A).

Let (M(t) : t > 0) be a Lévy-valued random measure on Bb(O), and suppose

(γ,Σ, ν) and λ are the characteristics and control measure, respectively, of the in-

finitely divisible random measure M(1). Then, it follows from the stationarity of

the increments of the process (M(t, A) : t > 0) that for each t > 0 the character-

istics of the infinitely divisible random measure M(t, A) are given by (tγ, tΣ, tν),

and the control measure of M(t) is given by tλ. We shall refer to (γ,Σ, ν) as the

characteristics of M and λ as the control measure of M .

Our definition above of Lévy-valued random measures assigns a special role to

the time domain although this is not necessary for infinitely divisible random mea-

sures in general. However, as we will later compare Lévy-valued random measures

with cylindrical Lévy processes, which naturally carry a time domain as generalised

stochastic processes, we found it more illustrative to have the time domain distin-

guished. Indeed, the following theorem shows that a Lévy-valued random measure

corresponds to an infinitely divisible random measure on space-time, defined as the

product space of the time and spatial domains, if the stationarity in the time do-

main is described by the control measure accordingly. As (up to a multiplicative

constant) Lebesgue measure is the unique non-trivial translation-invariant measure

on B(R), this means that the control measure must be of the form leb⊗λ0.

Proposition 3.1.2.

(a) Let M = (M(t) : t > 0) be a Lévy-valued random measure on Bb(O). Then,

there exists a unique infinitely divisible random measure M ′ on Bb(R+×O)

such that M ′((0, t]× A) =M(t, A) for each t > 0 and A ∈ Bb(O).
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(b) Each infinitely divisible random measure M ′ on Bb(R+×O) with control mea-

sure λ = leb⊗λ0 for a σ-finite measure λ0 on B(O) defines by M(t, A) :=

M ′((0, t] × A) for each t > 0 and A ∈ Bb(O) a Lévy-valued random measure

on Bb(O).

Proof. (a) For fixed B ∈ Bb(O), Theorem 3.2 in [80] gives the existence of a unique

infinitely divisible random measure MB on Bb(R+) such that MB((0, t]) = M(t, B)

P -a.s. for each t > 01. Fix Bb(R+) ∋ A =
⋃

n∈N In, where {In}n∈N is a disjoint

collection of half-closed intervals with In = (sn, tn]. We see that

MB(A) =
∑

n∈N

MB(In) =
∑

n∈N

(
M(tn, B)−M(sn, B)

)
P -a.s.

where the convergence is unconditional. Now, suppose that Bb(O) ∋ B =
⋃

m∈NBm

where {Bm}m∈N ⊆ Bb(O) are disjoint. Then, for A as above, we obtain P -a.s.

MB(A) =
∑

n∈N

( ∑

m∈N

M(tn, Bm)−
∑

m∈N

M(sn, Bm)
)

=
∑

m∈N

∑

n∈N

MBm(In) =
∑

m∈N

MBm(A) (3.1.1)

where again the convergence is unconditional.

Let R be the semiring of sets of the form (s, t]× B with 0 6 s < t < ∞ and B

a semi-closed box of the form B =
∏d

i=1(si, ti] ⊆ O. We define a process M ′ on R

by the prescription

M ′(A× B) :=MB(A).

To show σ-additivity on R, we shall follow methods used in the proof of Proposition

1We note that MB({t}) = 0 P -a.s. for each t > 0 by the stochastic continuity of Lévy processes,
and thus whether the endpoints of the intervals are open or closed will not affect MB(In) almost
surely.
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6.6 in [84]. Suppose that {An×Bn}n∈N ∈ R are disjoint and
⋃

n∈NAn×Bn = A×B ∈

R. Then clearly A =
⋃

n∈NAn and B =
⋃

n∈NBn; however, the collections {An}n∈N

and {Bn}n∈N may not be disjoint. As in [84, Prop. 6.6] we generate new disjoint

families {A′
k}k∈N and {B′

ℓ}ℓ∈N of the same form as above such that A =
⋃

k∈NA
′
k

and B =
⋃

ℓ∈NB
′
ℓ and furthermore for each n ∈ N we have An =

⋃
k:A′

k⊆An
A′

k and

Bn =
⋃

ℓ:B′
ℓ⊆Bn

B′
ℓ. Then we have P -a.s., by the σ-additivity of MB and (3.1.1),

M ′(A× B) =MB

( ⋃

k∈N

A′
k

)
=
∑

k∈N

MB(A
′
k) =

∑

k∈N

∑

ℓ∈N

MB′
ℓ
(A′

k).

By the same arguments we see that for each n ∈ N we have P -a.s.

M ′(An ×Bn) =
∑∑

(k,ℓ) : A′
k×B′

ℓ⊆An×Bn

MB′
ℓ
(A′

k),

and thus we obtain P -a.s.

∑

n∈N

M ′(An × Bn) =
∑

n∈N

∑∑

(k,ℓ) : A′
k×B′

ℓ⊆An×Bn

MB′
ℓ
(A′

k) =
∑

k∈N

∑

ℓ∈N

MB′
ℓ
(A′

k),

and the σ-additivity of M ′ on R is shown.

Thus we may apply Theorem 2.15 in [47], considering positive and negative

parts separately, to extend M ′ to an independently scattered random measure on

Bb(R+ ×O). Uniqueness follows from [47, Th. 2.2] and infinite divisibility follows

immediately from that of M .

(b) By reference to Theorem 3.2 in [80], it is sufficient to observe that the con-

dition on the control measure λ implies the stationarity of the increments of the

stochastic processes specified in Definition 3.1.1.

Remark 3.1.3. Gaussian space-time white noise is usually defined equivalently to a

Gaussian random measure on Bb(R+ ×O) in the sense of Definition 2.2.1. Typically,
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one assumes that the measure Σ on Bb(R+ ×O) is either the Lebesgue measure or

of the form Σ = leb⊗Σ0 for a σ-finite measure Σ0 on Bb(O); see e.g. [49, De.

3.2.2]. Thus, Part (b) of Proposition 3.1.2 shows that our definition of a Lévy-

valued random measure naturally extends the class of Gaussian space-time white

noises to a Lévy-type setting.

The relation between random measures and models of Lévy-type noise utilising a

Lévy-Itô decomposition seems to be well known. We rigorously formulate this result

in our setting:

Proposition 3.1.4. Let ζ and η be σ-finite Borel measures on O and let (U,U , ν)

be a σ-finite measure space. Assume that

(a) ρ : Bb(O) → R is a signed measure;

(b) W : Bb(R+ ×O) → L2(Ω, P ) is a Gaussian random measure with characteris-

tics (0, leb⊗ζ, 0);

(c) N : Bb(R+ ×O) ⊗ U → L0(Ω, P ) is Poisson random measure with intensity

leb⊗η⊗ν, independent of W , and with compensated Poisson random measure

Ñ .

Then for any functions

(1) b ∈ L2(O, ζ),

(2) c : O × U → R with
∫
O×U

(
|c(x, y)|2 ∧ |c(x, y)|

)
(η ⊗ ν)(dx, dy) <∞,

(3) d : O × U → R with
∫
O×U

(
|d(x, y)| ∧ 1

)
(η ⊗ ν)(dx, dy) <∞,

we define a mapping M ′ : Bb(R+ ×O) → L0(Ω, P ) by

M ′(B) =
(
leb⊗ρ

)
(B) +

∫

B

b(x)W (ds, dx)

+

∫

B×U

c(x, y) Ñ(ds, dx, dy) +

∫

B×U

d(x, y)N(ds, dx, dy) .
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Then we obtain a Lévy-valued random measure on Bb(O) by the prescription

M(t, A) :=M ′((0, t]×A) for all A ∈ Bb(O), t > 0.

The characteristic function ϕM(t,A) : R→ C of M(t, A) is given by

ϕM(t,A)(u) = exp

(
t

(
iuρ(A)− 1

2
u2
∫

A

b2(x) ζ(dx)

+

∫

A

∫

U

(
eiuc(x,y) − 1− iuc(x, y)

)
ν(dy) η(dx) +

∫

A

∫

U

(
eiud(x,y) − 1

)
ν(dy) η(dx)

))
.

Proof. The existence of the Gaussian integral is guaranteed by [94, Th. 2.5] and that

of the Poisson integrals by [46, Le. 12.13]. The characteristic function, as stated, of

M ′((0, t] × A), see e.g. in [79, Prop. 19.5], shows that M ′ is an infinitely divisible

random measure, and thus applying Proposition 3.1.2 completes the proof.

Example 3.1.5. The class of α-stable random measures is introduced for example

in [78, Se. 3.3]. These can be obtained from Proposition 3.1.4 by defining for B ∈

Bb(R+ ×Rd) the random measure

M ′(B) :=






∫
B×R

y N(ds, dx, dy), if α ∈ (0, 1],

∫
B×R

y Ñ(ds, dx, dy), if α ∈ (1, 2),

whereN is a Poisson random measure on Bb(R+×R
d×R) with intensity leb⊗ leb⊗να,

and

να(dy) =
(
pαy−α−1

1(0,∞)(y) + qα(−y)−α−1
1(−∞,0)(y)

)
dy
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for some p, q > 0 satisfying p + q = 1; see Balan [10] for this construction2. Propo-

sition 3.1.4 guarantees that, by defining M(t, A) := M ′((0, t] × A) for t > 0 and

A ∈ Bb(R
d), we obtain a Lévy-valued random measure M on Bb(R

d). Direct calcu-

lation shows that for α 6= 1, the characteristic function of M(t, A) is given by, for

t > 0, A ∈ Bb(R
d) and u ∈ R,

ϕM(t,A)(u) = exp

(
t · leb(A) ·

(
iβ

α

1− α
u+

∫

R

(
eiuy − 1− iuy 1B

R

(y)
)
να(dy)

))
,

where β := p−q, and thus we see the characteristics of M are
(
β α

1−α
leb, 0, leb⊗να

)
.

The control measure is given by

λ(A) =
( ∣∣∣∣β

α

1 − α

∣∣∣∣ +
2

2− α

)
leb(A) for A ∈ B(Rd).

For the case α = 1, the characteristic function of M(t, A) is given by

ϕM(t,A)(u) = exp

(
t · leb(A) ·

∫

R

(
eiuy − 1− iuy 1B

R

(y)
)
ν1(dy)

)

with control measure λ(A) = 2 leb(A) for A ∈ B(Rd).

Example 3.1.6. Mytnik, in [63], considers a martingale-valued measure (M(t, A) :

t > 0, A ∈ Bb(R
d)) in the sense of Walsh [94], such that for any A ∈ Bb(R

d), the

process (M(t, A) : t > 0) is a real-valued α-stable process (α ∈ (1, 2)), with Laplace

transform

E
[
e−uM(t,A)

]
= e−tuα·leb(A), t > 0, u > 0.

2For the case α = 1 it is required that p = q = 1
2 as then we obtain:

∫

B×B
R

y Ñ(ds, dx, dy) +

∫

B×Bc

R

y N(ds, dx, dy) =

∫

B×R

y N(ds, dx, dy).
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By construction, this process forms a Lévy-valued random measure. The author

terms M an α-stable measure without negative jumps.

Example 3.1.7. Basse-O’Connor and Rosinski in [14, Se. 4] consider an infinitely

divisible random measure M on R×V , for some countably-generated measure space

V , which is invariant under translations over R. By Proposition 3.1.2, M defines a

Lévy-valued random measure on V , where the generalisation to V is straightforward.

3.2 Lévy-valued additive sheets

Similarly as for infinitely divisible random measures, we introduce Lévy-valued ad-

ditive sheets by adding a dynamical aspect in the following definition:

Definition 3.2.1. A family (X(t, ·) : t > 0) of natural, additive sheets (X(t, x) :

x ∈ R

d) is called a Lévy-valued additive sheet if for every x1, . . . , xn ∈ R

d and

n ∈ N, the stochastic process

((
X(t, x1), . . . , X(t, xn)

)
: t > 0

)

is a Lévy process in Rn.

Remark 3.2.2. The existence of Lévy-valued additive sheets is shown in Theorem

3.2.4 by construction from certain Lévy-valued random measures.

The wording ‘Lévy-valued additive sheet’ is motivated by the following result:

Proposition 3.2.3. A Lévy-valued additive sheet (X(t, ·) : t > 0) forms a natural

additive sheet (X(z) : z ∈ R+×Rd).

Proof. The domain of definition and Conditions (a), (b) and (d) of Definition 2.2.3

are clearly met. Regarding stochastic continuity, let (tn, xn)n∈N be a sequence in

R+ ×Rd converging to (0, x). For each n ∈ N the random variable X(1, xn) is
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infinitely divisible, say with characteristics (pxn , Vxn, µxn). As X(1, ·) is a natural,

additive sheet, there exists a signed measure γ such that pxn = γ((0, xn]). Since

the Lévy process (X(t, xn) : t > 0) has stationary increments, it follows that each

X(t, xn) has characteristics (tpxn, tVxn, tµxn) for every t > 0. Theorem 3.1 in [2]

implies that there exist a measure Σ on B(Rd) such that Vxn = Σ((0, xn]), and a

measure ν on B(Rd×R) such that, for each B ∈ B(R), the mapping ν(· × B) is a

measure on B(Rd), and µxn = ν((0, xn] × ·). Therefore, the Lévy symbol ϑX(tn ,xn)

of X(tn, xn) is given by, for u ∈ R,

ϑX(tn,xn)(u) = tn

(
iuγ((0, xn])−

1
2
u2Σ((0, xn])

+

∫

(0,xn]×R

(
eiuy − 1− iuy 1B

R

(y)
)
ν(dx, dy)

)
.

As the set {xn : n ∈ N} is bounded, there exists a bounded box I ⊆ Rd containing

every box (0, xn], n ∈ N. Thus, we obtain for each u ∈ R that

∣∣ϑX(tn,xn)(u)
∣∣ 6 tn

(
u ‖γ‖TV (I) + 1

2
u2Σ(I) +

∫

I×R

(
u2y2 ∧ 1

)
ν(dx, dy)

)
.

Finiteness of the right side follows from the fact that the measures are finite on I.

Therefore, it follows that X(tn, xn) → 0 in probability as (tn, xn) converges to (0, x).

If (tn, xn) is an arbitrary sequence converging to (t, x), stationary increments imply

for each c > 0 that

P (|X(tn, xn)−X(t, x)| > c)

6 P (|X(tn, xn)−X(t, xn)| >
c
2
) + P (|X(t, xn)−X(t, x)| > c

2
)

= P (|X(tn − t, xn)| >
c
2
) + P (|X(t, xn)−X(t, x)| > c

2
).

Consequently, the above established continuity in probability shows the general case,

where we have used that X(t, ·) is continuous in probability for each t > 0 by
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definition.

The fact that X(z) is natural can be seen from the form of the characteristic

function, where we have pz = tγ((0, x]) for z = (t, x).

We are now able to state the link between Lévy-valued random measures and

Lévy-valued additive sheets by formulating a result from Pedersen in [66] in our

setting.

Theorem 3.2.4.

(a) Let (X(t, ·) : t > 0) be a Lévy-valued additive sheet. Then there exists a unique

Lévy-valued random measure M on Bb(R
d) with atomless control measure λ

satisfying M(t, (0, x]) = X(t, x) P -a.s. for each t > 0 and x ∈ Rd.

(b) Let M be a Lévy-valued random measure on Bb(R
d) with atomless control

measure λ. Then any lamp and right-continuous (as in Definition 2.2.2) mod-

ification of the stochastic process X = (X(t, x) : t > 0, x ∈ Rd) defined by

X(t, x) :=





0, if xj = 0 for some j = 1, . . . , d

M
(
t, (0, x]

)
, else

is a Lévy-valued additive sheet3.

Proof. (a) By the Lévy-Itô decomposition [2, Th. 4.6], we may write

X(t, x) = tγ((0, x])+Xg(t, x)+

∫

B
R

y Ñ((0, t]×(0, x], dy)+

∫

Bc
R

y N((0, t]×(0, x], dy)

almost surely, where Xg is a continuous Gaussian additive sheet andN is an indepen-

dent Poisson random measure on R+ ×Rd ×R with intensity measure dt ν(dx, dy).

3See Section 2.2 for the meaning of (0, x] for general x ∈ Rd.
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We apply Proposition 3.1.4 and see that the mapping M ′ : Bb(R+ ×Rd) → L0(Ω, P )

defined by

M ′(B) := (leb⊗γ)(B) +

∫

B×B
R

y Ñ(ds, dx, dy) +

∫

B×Bc
R

y N(ds, dx, dy)

defines a Lévy-valued random measure on Bb(R
d) by M0(t, A) :=M ′((0, t]× A).

We now proceed to define an independently scattered random measure G on

(R+×Rd,Bb(R+ ×Rd)). Let R be the ring consisting of finite unions of disjoint

half-open intervals of the form (w, z] : w, z ∈ R+ ×Rd. On R we define

G(
n⋃

i=1

(wi, zi]) :=
n∑

i=1

(
Xg(zi)−Xg(wi)

)
,

and furthermore we set G({0}) := 0. The random set function G is clearly additive

on R, we now show G is σ-additive. Let (In)n∈N ⊆ R be a sequence of intervals

decreasing to ∅, by the continuity of Xg we have G(In) → 0 P -a.s.. Therefore, we

may apply Theorem 2.15 in [47], considering positive and negative parts separately,

to extend G to an independently scattered random measure on Bb(R+×Rd).

We now define M(t, A) := M0(t, A) + G((0, t] × A) for t ≥ 0 and A ∈ Bb(R
d),

which satisfies the statement (a), where the control measure λ is atomless by the

stochastic continuity of X. Finally, uniqueness follows from Dynkin’s lemma.

(b) It suffices to check that the process (X(1, x) : x ∈ Rd) satisfies conditions (b)

and (c) of Definition 2.2.3. Independence of increments follows from the independent

scattering of the random measure, so it remains to show stochastic continuity. Let

xn → x in Rd. We have, for fixed a > 0,

P (|X(1, x)−X(1, xn)| > a) = P (|M(1, (xn, x])| > a) → 0
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by the atomlessness of λ, as this implies M(1, {x}) = 0 almost surely for each

singleton.

Remark 3.2.5. Theorem 3.2.4 and its proof enables us to conclude a converse

implication of Proposition 3.1.4. If M is a Lévy-valued random measure M with

atomless control measure λ, then it satisfies a Lévy-Itô decomposition of the form

M(t, A) = tγ(A) +G
(
(0, t]× A

)

+

∫

(0,t]×A×B
R

y Ñ(ds, dx, dy) +

∫

(0,t]×A×Bc
R

y N(ds, dx, dy),
(3.2.2)

where γ is a signed measure on O, G is a Gaussian random measure on Bb(R+×O)

and N is an independent Poisson random measure on Bb(R+ ×O × R) with com-

pensated part Ñ . The requirement for λ to be atomless is in order that M has no

fixed discontinuities.

Furthermore, we see that one does not achieve more generality by allowing an

arbitrary measure space (U,U , ν) in Proposition 3.1.4, as the Poissonian components

can be represented as integrals over R.

3.3 Cylindrical Lévy processes

In this section, we establish the correspondence between Lévy-valued random mea-

sures and a certain subclass of cylindrical Lévy processes. We analyse the em-

beddings of Lévy-valued random measures into certain Banach spaces. These em-

beddings are based on the integration theory for independently scattered infinitely

divisible measures developed by Rajput and Rosinski in [70]. Let O ⊆ R

d be an

open set. The multiplicative relation between the characteristics of the infinitely

divisible random measures M(1) and M(t), remarked after Definition 3.1.1, enables

us to apply directly the integration theory for infinitely divisible random measures
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to Lévy-valued random measures (M(t) : t > 0) on Bb(O): for a simple function

f : O → R, f(x) =

n∑

k=1

αk1Ak
(x), (3.3.3)

for αk ∈ R and pairwise disjoint sets A1, . . . , An ∈ Bb(O), the integral is defined as

∫

A

f(x)M(t, dx) :=
n∑

k=1

αkM(t, A ∩ Ak) for all A ∈ B(O), t > 0. (3.3.4)

An arbitrary measurable function f : O → R is said to be M-integrable if the

following hold:

(1) there exists a sequence of simple functions (fn)n∈N of the form (3.3.3) such

that fn converges pointwise to f λ-a.e., where λ is the control measure of M ;

(2) for each A ∈ B(O) and t > 0, the sequence
( ∫

A
fn(x)M(t, dx)

)
n∈N

converges

in probability.

In this case, the integral of f is defined as

∫

A

f(x)M(t, dx) := P− lim
n→∞

∫

A

fn(x)M(t, dx). (3.3.5)

It is clear, by the stationarity of the increments of Lévy processes, that Condition

(2) above holds for all t > 0 if it holds for at least one t > 0. Furthermore, Theorem

3.3 in [70] identifies the set of M-integrable functions as the Musielak-Orlicz space

LM(O, λ) :=

{
f ∈ L0(O, λ) :

∫

O

ΦM (|f(x)| , x) λ(dx) <∞

}
,
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where the modular ΦM : R×O → R is defined as:

ΦM(u, x) := sup
|c|61

|R(cu, x)|+ u2g(x) +

∫

R

(
1 ∧ |uy|2

)
ρ(x, dy), (3.3.6)

with R(u, x) := ua(x) + u

∫

R

y
(
1B

R

(uy)− 1B
R

(y)
)
ρ(x, dy), (3.3.7)

a(x) :=
dγ

dλ
(x), g(x) =

dΣ

dλ
(x).

Here, (γ,Σ, ν) denotes the characteristics of M . The measure ρ(x, ·) is a disinte-

gration of ν over λ, i.e.
∫
O×R

h(x, y) ν(dx, dy) =
∫
O

( ∫
R

h(x, y) ρ(x, dy)
)
λ(dx) for

each measurable function h : O × R → R+. The space LM(O, λ) is a complete,

translation-invariant, linear metric space. Furthermore for all t > 0, the mapping

J(t) : LM(O, λ) → L0(Ω, P ), J(t)f =

∫

O

f(x)M(t, dx), (3.3.8)

is continuous [70, Th. 3.3]. Finally, Proposition 2.6 in [70] allows us to immediately

state the Lévy symbol of J(·)f as, for u ∈ R,

ΨJ(·)f (u) =iu

∫

O

f(x) γ(dx)− 1
2
u2
∫

O

f 2(x) Σ(dx)

+

∫

O×R

(
eiuf(x)y − 1− iuf(x)y 1B

R

(y)
)
ν(dx, dy) . (3.3.9)

We are now ready to state our result defining a cylindrical Lévy process from a given

Lévy-valued random measure.

Theorem 3.3.1. Let M be a Lévy-valued random measure on Bb(O) with charac-

teristics (γ,Σ, ν) and control measure λ. If U is a Banach space for which U∗ is

continuously embedded into LM(O, λ), and the simple functions are dense in U∗,
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then

L(t)f :=

∫

O

f(x)M(t, dx) for all f ∈ U∗, (3.3.10)

defines a cylindrical Lévy processes L in U . In this case, the characteristics (a,Q, µ)

of L is given by

a(f) =

∫

O

f(x) γ(dx) +

∫

O×R

f(x)y
(
1B

R

(f(x)y)− 1B
R

(y)
)
ν(dx, dy),

〈Qf, f〉 =

∫

O

(f(x))2Σ(dx), µ ◦ 〈f, ·〉−1 = ν ◦ χ−1
f ,

for each f ∈ U∗, where χf : O ×R→ R is defined by χf (x, y) := f(x)y.

We first prove an intermediate result, which shall be used again in the sequel.

Lemma 3.3.2. For a Lévy-valued random measure M on Bb(O) let J be defined by

(3.3.8). Then, for any f1, . . . , fn ∈ LM(O, λ) and n ∈ N, we have that

(
(J(t)f1, . . . , J(t)fn) : t > 0

)

is a Lévy process in Rn.

Proof. Let fk for k = 1, . . . , n be simple functions of the form

fk : O → R, fk(x) =

mk∑

j=1

αk,j1Ak,j
(x),

for αk,j ∈ R and Ak,j ∈ Bb(O) with Ak,1, . . . , Ak,mk
disjoint for each k ∈ {1, . . . , n}.

By taking the intersections of all possible permutations of the sets Ak,j, we can

assume that

fk(x) =
m∑

j=1

α̃k,j 1Ãj
(x) for all x ∈ O,
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for all k = 1, . . . , n, where α̃k,j ∈ R and disjoint sets Ã1, . . . , Ãm ∈ Bb(O) for some

m ∈ N. For each 0 6 t1 < · · · < tn we obtain by the definition in (3.3.4) that

J(t1)f1 =
m∑

j=1

α̃1,jM
(
t1, Ãj

)
,

(J(t2)− J(t1))f2 =

m∑

j=1

α̃2,j

(
M(t2, Ãj)−M(t1, Ãj)

)
,

...

(J(tn)− J(tn−1))fn =

m∑

j=1

α̃n,j

(
M(tn, Ãj)−M(tn−1, Ãj)

)
.

Independent increments of the Lévy process
(
M(·, Ã1), . . . ,M(·, Ãm)

)
together with

independence of M(t, Ãi) and M(t, Ãj) for all i, j = 1, . . . , m with i 6= j imply that

the random variables

J(t1)f1,
(
J(t2)− J(t1)

)
f2, . . . ,

(
J(tn)− J(tn−1)

)
fn,

are independent. This property extends to arbitrary functions f1, . . . , fn ∈ LM(O, λ)

by the definition of the integrals in (3.3.5) as a limit of the integral for simple

functions. It follows that the n-dimensional stochastic process
(
(J(t)f1, . . . , J(t)fn) :

t > 0
)

has independent increments.

Furthermore, if f is a simple function of the form (3.3.3) then

J(t)f =

n∑

k=1

αkM(t, Ak) (3.3.11)

is a Lévy process as it is the sum of independent Lévy processes M(·, Ak). Approx-

imating an arbitrary function f ∈ LM(O, λ) by a sequence of simple functions and

passing to the limit in (3.3.11) shows that J(·)f is a Lévy process [5, Th. 1.3.7].
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Let f1, . . . , fn be arbitrary functions in LM (O, λ). As J(·)f has stationary in-

crements it follows that
(
(J(t)f1, . . . , J(t)fn) : t > 0

)
has stationary increments by

linearity. Furthermore, for each c > 0 we have

P
(
|((J(t)f1, . . . , J(t)fn))| > c

)
= P

(
|J(t)f1|

2 + · · ·+ |J(t)fn|
2 > c2

)

6

n∑

k=1

P
(
|J(t)fk|

2
> c2

n

)
,

and thus the stochastic continuity of J(·)f implies that of
(
(J(t)f1, . . . , J(t)fn) :

t > 0
)
. Consequently, the latter is verified as an n-dimensional Lévy process.

Proof of Theorem 3.3.1. Lemma 3.3.2 shows that L is a cylindrical Lévy process in

U . It remains to derive the characteristics of L. For this purpose, let f be a simple

function of the form (3.3.3). For each u ∈ R we obtain from the definition 3.3.4 that

ϕL(t)f (u) =

n∏

k=1

ϕM(t,Bk)(αku)

= exp

(
t

n∑

k=1

(
iαkuγ(Bk)−

1
2
α2
ku

2Σ(Bk)

+

∫

Bk×R

(
eiαkuy − 1− iαkuy 1B

R

(y)
)
ν(dx, dy)

))

= exp

(
t

(
iu

∫

O

f(x) γ(dx)− 1
2
u2
∫

O

f 2(x) Σ(dx)

+

∫

O×R

(
eiuf(x)y − 1− iuf(x)y 1B

R

(y)
)
ν(dx, dy)

))
. (3.3.12)

Continuity of L(t) : U∗ → L0(Ω, P ) implies that the characteristic function of L(t)f
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for simple functions f in (3.3.12) extends to arbitrary functions f ∈ U∗. Conse-

quently, the symbol ϑL of L is given by, for f ∈ U∗,

ϑL(f)

= i

∫

O

f(x) γ(dx)− 1
2

∫

O

f 2(x) Σ(dx) +

∫

O×R

(
eif(x)y − 1− if(x)y 1B

R

(y)
)
ν(dx, dy)

= i

∫

O

f(x) γ(dx) + i

∫

O×R

f(x)y (1B
R

(f(x)y)− 1B
R

(y)) ν(dx, dy)

− 1
2

∫

O

f 2(x) Σ(dx) +

∫

R

(
eiz − 1− iz1B

R

(z)
)
(ν ◦ χ−1

f )(dz).

On the other hand, if (a,Q, µ) denotes the characteristics of L, then we obtain for

f ∈ U∗ that

ϑL(f) = ia(f)− 1
2
〈Qf, f〉+

∫

U

(
ei〈g,f〉 − 1− i〈g, f〉1B

R

(〈g, f〉)
)
µ(dg)

= ia(f)− 1
2
〈Qf, f〉+

∫

R

(
eiz − 1− iz 1B

R

(z)
)
(µ ◦ π−1

f )(dz).

Equating the two representations for ϑL completes the proof.

The integration theory developed in [70] and briefly recalled above guarantees

that (3.3.10) is well defined for every f ∈ LM . However, in order to be in the

framework of cylindrical Lévy processes we need that the domain of L(t) is the dual

of a Banach space (or alternatively is a nuclear space). Since the Musielak-Orlicz

space LM is not in general the dual of a Banach space, for the hypothesis of Theorem

3.3.1 we require the existence of the Banach space U with U∗ continuously embedded

in LM . If the control measure λ of M is finite on O, then the following result, which

will be needed in the sequel, gives us that L2(O, λ) is continuously embedded in

LM(O, λ).

Lemma 3.3.3. Let M be a Lévy-valued random measure on Bb(O) with finite control

measure λ. Then L2(O, λ) is continuously embedded into LM(O, λ).
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Proof. Denote the characteristics of M by (γ,Σ, ν). Note, that for arbitrary g ∈

L1(O, λ), we have

∫

O

g(x) λ(dx) =

∫

O

g(x) ‖γ‖TV (dx) +

∫

O

g(x) Σ(dx)

+

∫

O×B
R

g(x) |y|2 ν(dx, dy) +

∫

O×Bc
R

g(x) ν(dx, dy).
(3.3.13)

Let f ∈ L2(O, λ) be given. It follows from (3.3.13) that

∫

O

|f(x)|2 Σ(dx) 6 ‖f‖2L2(O,λ) <∞

and

∫

O×R

(
1∧ |f(x)y|2

)
ν(dx, dy)

=

∫

O×B
R

(
1 ∧ |f(x)y|2

)
ν(dx, dy) +

∫

O×Bc
R

(
1 ∧ |f(x)y|2

)
ν(dx, dy)

6 ‖f‖2L2(O,λ) +

∫

O×Bc
R

(
1 ∧ |f(x)y|2

)
ν(dx, dy)

6 ‖f‖2L2(O,λ) + λ(O) <∞.

As λ is finite, we have L2(O, λ) →֒ L1(O, λ) continuously. Furthermore we obtain,

recalling the definition of R from (3.3.7), and (3.3.13), that

∫

O

|R(|f(x)| , x)| λ(dx)

=

∫

O

∣∣∣∣|f(x)|
(
a(x) +

∫

R

y
(
1B

R

(|f(x)| y)− 1B
R

(y)
)
ρ(x, dy)

)∣∣∣∣ λ(dx)

6

∫

O

|f(x)| ‖γ‖TV (dx) +

∫

O×R

|f(x)y| |1B
R

(|f(x)| y)− 1B
R

(y)| ν(dx, dy)

6 ‖f‖L1(O,λ) + ‖f‖2L2(O,λ) +

∫

O×Bc
R

|f(x)y|1B
R

(|f(x)| y) ν(dx, dy)

6 ‖f‖L1(O,λ) + ‖f‖2L2(O,λ) + λ(O) <∞. (3.3.14)



Chapter 3. Modelling Lévy space-time white noises 60

From Theorem 2.7 in [70] we obtain f ∈ LM (O, λ) thus showing the stated embed-

ding.

To show that the embedding is continuous, let (fn) converge to 0 in L2(O, λ). We

firstly show that the functions (x, y) 7→ fn(x)y converge to 0 in ν1-measure where

ν1 := ν
∣∣
O×Bc

R

. For given ε > 0 define Mn := {(x, y) ∈ O×Bc
R

: |fn(x)y| > ε}. As ν1

is a finite measure, there exists a compact set K ⊆ O×Bc
R

such that ν1(O×Bc
R

\K) <

ε
2
. Let C := sup{|y| : (x, y) ∈ K}. Define for n ∈ N, x ∈ O and y ∈ R functions

gn(x, y) := fn(x). Since (fn) also converges to 0 in L1(O, λ) it follows from (3.3.13)

that (gn) converges to 0 in L1(O × Bc
R

, ν), and thus in ν1-measure. Consequently,

there exists N ∈ N such that, for n > N ,

ν1
(
{(x, y) ∈ O × Bc

R

: |fn(x)| >
ε
C
}
)
6 ε

2
.

Since Mn ∩K ⊆
{
(x, y) ∈ O ×Bc

R

: |fn(x)| >
ε
C

}
, we obtain

ν1(Mn) = ν1(Mn ∩K) + ν1(Mn\K) 6 ε
2
+ ε

2
for all n > N,

which shows the claim.

Since ν1 is a finite measure, Lebesgue’s theorem for dominated convergence in

ν1-measure implies

lim
n→∞

∫

O×Bc
R

|fn(x)y|1B
R

(|fn(x)| y) ν(dx, dy) = 0.

Similar arguments show that

lim
n→∞

∫

O×Bc
R

(
1 ∧ |fn(x)y|

2 ) ν(dx, dy) = 0.
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For each f ∈ L2(O, λ), by the definition in (3.3.6) of ΦM and Lemma 2.8 in [70] we

obtain

∫

O

ΦM (|f(x)| , x) λ(dx)

=

∫

O

sup
|c|61

|R(c |f(x)| , x)| λ(dx) +

∫

O

|f(x)|2 Σ(dx) +

∫

O×R

(
1 ∧ |f(x)y|2

)
ν(dx, dy)

6

∫

O

∣∣R(|f(x)| , x)
∣∣λ(dx) + 10 ‖f‖2L2(O,λ) + 9

∫

O×Bc
R

(
1 ∧ |f(x)y|2

)
ν(dx, dy).

Consequently, it follows from (3.3.14) that (fn) converges to 0 in LM(O, λ), which

completes the proof.

It is possible as illustrated in the following example to relax the condition on

finiteness of λ, but also the same example shows that there are cases where the

finiteness of λ is necessary for any Lp space to be continuously embedded.

Example 3.3.4. We return again to Example 3.1.5; let M be the α-stable random

measure for some α ∈ (0, 2), where now we consider the domain of definition to

be Bb(O) for a general O ∈ B(Rd). We consider the symmetric case p = q = 1
2
,

where the characteristics of M is given by (0, 0, leb⊗να) and the control measure

by λ(A) = 2
2−α

leb(A), A ∈ B(O). One calculates from (3.3.6) that LM(O, λ) =

Lα(O, leb); see [10, Le. 4].

Thus, if α ∈ (1, 2) then we can always choose F = Lα′
(O, leb). If α ∈ (0, 1] and

O is bounded we can choose F = Lp(O, leb) for any p > 1 since |f(x)|α 6 1+|f(x)|p
′

.

However, if leb(O) = ∞ and α 6 1 then no Lp space is embedded in LM(O, λ) for

p > 1.

Assume α ∈ (1, 2). Then Theorem 3.3.1 implies that (3.3.10) defines a cylindrical

Lévy process L in F = Lα′
(O, leb), and its symbol is given by

ϑL(f) =

∫

O×R

(
eif(x)y − 1− if(x)y1B

R

(y)
)
dxνα(dy) = −Cα ‖f‖

α
Lα(O,leb) ,
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where Cα = Γ(2−α)
1−α

cos πα
2

if α 6= 1 and Cα = π
2

if α = 1.

We now turn to the question of which cylindrical Lévy processes induce Lévy-

valued random measures. For this purpose we introduce the following:

Definition 3.3.5. A cylindrical Lévy process (L(t) : t > 0) in Lp(O, ζ) for some

Borel measure ζ and some p > 1 is called independently scattered if for any disjoint

sets A1, . . . , An ∈ Bb(O) and n ∈ N, the random variables L(t)1A1 , . . . , L(t)1An are

independent for each t > 0.

Theorem 3.3.6. An independently scattered cylindrical Lévy process (L(t) : t > 0)

in Lp(O, ζ) for some Borel measure ζ and some p > 1 defines by

M(t, A) := L(t)1A for all t > 0, A ∈ Bb(O), (3.3.15)

a Lévy-valued random measure M on Bb(O).

Proof. For each t > 0, the map M(t, ·) : Bb(O) → L0(Ω, P ) is well-defined and

M(t, A) is an infinitely divisible random variable for each A ∈ Bb(O). Let (Ak)k∈N

be a sequence of disjoint sets in Bb(O) such that A :=
⋃

k∈NAk ∈ Bb(O). Then, for

each t > 0, by the linearity and continuity of L(t) we have

M(t, A) = lim
n→∞

L(t)1⋃n
k=1 Ak

= lim
n→∞

n∑

k=1

L(t)1Ak
= lim

n→∞

n∑

k=1

M(t, Ak) ,

with the limit in probability and thus almost surely by independence. Clearly,

M(t, ·) is independently scattered for each t > 0, and
(
M(·, A1), . . . ,M(·, An)

)
is a

Lévy process for each A1, . . . An ∈ Bb(O).

Theorem 3.3.7. Let (L(t) : t > 0) be a cylindrical Lévy process in Lp(O, ζ) for

some p > 1. Then L is independently scattered if and only if its symbol is of the
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form

ϑL(f) = i

∫

O

f(x) γ(dx)− 1
2

∫

O

f 2(x) Σ(dx)

+

∫

O×R

(
eif(x)y − 1− if(x)y1B

R

(y)
)
ν(dx, dy) , f ∈ Lp′(O, ζ),

(3.3.16)

for a signed measure γ on Bb(O), a measure Σ on Bb(O) and a σ-finite measure ν

on B(O ×R) such that for each B ∈ Bb(O), ν(B × ·) is a Lévy measure on R.

Proof. If L is independently scattered then Theorem 3.3.6 implies that L defines a

Lévy-valued random measure M by (3.3.15). Denote the characteristics of M by

(γ,Σ, ν) and its control measure by λ. For a simple function f of the form (3.3.3)

we obtain

L(t)(1A f) =
n∑

i=1

αiL(t)(1Ai
1A) =

n∑

i=1

αiM(t, Ai ∩ A) =

∫

A

f(x)M(t, dx) .

(3.3.17)

For an arbitrary function f ∈ Lp′(O, ζ) let (fn)n∈N be a sequence of simple functions

converging to f both pointwise ζ-almost everywhere and in Lp′(O, ζ). We note

that, as L(t)1A = 0 whenever ζ(A) = 0, ζ-null sets have null λ-measure, and thus

we have fn → f pointwise λ-almost everywhere. Since L(t)1A fn → L(t)1A f in

probability for each A ∈ B(O), it follows from (3.3.17) that f ∈ LM (O, λ) and

L(t)f =
∫
O
f(x)M(t, dx). We obtain the stated form of the characteristic function

of L by (3.3.9).

Conversely, if the Lévy symbol is given by (3.3.16), then this form implies for

any disjoint sets A1, . . . , An ∈ Bb(O) that

ϑL

(
n∑

k=1

uk 1Ak

)
=

n∑

k=1

ϑL(uk 1Ak
) for all u1, . . . , un ∈ R .
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Consequently, we obtain for the characteristic function of the random vector

X := (L(1)1A1, . . . , L(1)1An) for all u = (u1, . . . un) ∈ R
n, that

ϕX(u) = ϕL(1)(u11A1 + · · ·+ un1An) = eiΨL(u11A1
+···+un1An )

= ϕL(1)1A1
(u1) · · ·ϕL(1)1An

(un),

which shows that L is independently scattered.

Applying Theorem 3.3.6 to a given cylindrical Lévy process L on Lp(O, ζ) gives

the corresponding Lévy-valued random measure M , say with control measure λ.

The first part of the proof of Theorem 3.3.7 shows that Lp′(O, ζ) is a subspace

of LM (O, λ). The following result guarantees that the embedding is continuous in

non-degenerated cases.

Proposition 3.3.8. Let L be an independently scattered cylindrical Lévy process in

Lp(O, ζ) for some p > 1 with symbol of the form (3.3.16) and M the corresponding

Lévy-valued random measure with control measure λ. If the measures γ,Σ and ν

are such that for each A ∈ Bb(O) with Σ(A) = 0 and ν(A × B) = 0 for each B ∈

B(R) bounded away from 0, we have ‖γ‖TV (A) = 0, then Lp′(O, ζ) is continuously

embedded into LM(O, λ).

Proof. By the first part of the proof of Theorem 3.3.7 we have Lp′(O, ζ) ⊆ LM(O, λ),

and, furthermore, the canonical injection ι : Lp′(O, ζ) → LM(O, λ) is well defined,

as the ζ-equivalence class of f is a subset of the λ-equivalence class of f . For each

t > 0 we consider the operator J(t) : LM(O, λ) → L0(Ω, P ) defined in (3.3.8) and

we see that L(t) satisfies the factorisation L(t) = J(t) ◦ ι.

For establishing ker(J(t)) = {0}, let f ∈ LM(O, λ) satisfy J(t)f = 0. Then, by

considering only the real part of the characteristic function of J(t)f , we have for
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every u ∈ R

−1
2
u2
∫

O

f 2(x) Σ(dx) +

∫

O×R

(
cos(uf(x)y)− 1

)
ν(dx, dy) = 0.

As both terms are non-positive, we obtain that f = 0 Σ-a.e. and the function

z(x, y) := f(x)y satisfies z = 0 ν-a.e. In particular, for the set A := {x ∈ O :

f(x) 6= 0} we have Σ(A) = 0 and ν(A × B) = 0 for any B ∈ B(R) bounded away

from 0. The hypothesis on γ thus leads to λ(A) = 0, which shows ker(J(t)) = {0}.

Let (fn) be a sequence in Lp′(O, ζ) converging to f ∈ Lp′(O, ζ) and assume

that ιfn converges to some g ∈ LM (O, λ). As limn→∞ J(t)(ιfn) = J(t)g and

limn→∞ L(t)fn = L(t)f = J(t)(ιf), we derive J(t)(g − ιf) = 0. Since J(t) is injec-

tive, we conclude g = ιf λ-a.e., and the closed graph theorem implies the continuity

of ι.

Remark 3.3.9. The foregoing theory can easily be generalised to any space of func-

tions in which the indicator functions to bounded Borel sets in Rd are dense; e.g.

the subset of weighted Besov spaces in which this is the case.

Example 3.3.10. Peszat and Zabczyk in [67, Se. 7.2] define the impulsive cylindri-

cal process in L2(O,B(O), ζ) by

L(t)f :=

∫ t

0

∫

O

∫

R

f(x)y Ñ(ds, dx, dy),

where N is a Poisson random measure on R+ ×O×R with intensity leb⊗ζ ⊗ µ for

a Lévy measure µ on B(R); see also [6, Ex. 3.6]. Since its symbol is given by

ϑL(f) =

∫

O

∫

R

[eif(x)y − 1− if(x)y]µ(dy)ζ(dx),

Theorem 3.3.7 guarantees that L is independently scattered.



Chapter 3. Modelling Lévy space-time white noises 66

Finally, we note that the class of independently scattered cylindrical Lévy pro-

cesses is a strict subclass, as the following counter-example shows:

Example 3.3.11. Let (ℓk)k∈N be a sequence of independent, identically distributed,

symmetric α-stable Lévy processes for some α ∈ (0, 2). Thus, each ℓk has charac-

teristics (0, 0, ρ), with ρ(dβ) = 1
2
1{β 6=0} |β|

−1−α dβ. Let (ek)k∈N be an orthonormal

basis of L2((0, 1), leb) such that e1 ≡ 1 (such bases include the standard polynomial

and trigonometric bases) and let (ak)k∈N ∈ ℓ(2α)/(2−α) with a1 = 1. It follows from

Lemma 4.2 and Example 4.5 in [74] that the hedgehog process

L(t)f :=

∞∑

k=1

〈f, ek〉L2akℓk(t), for all f ∈ L2((0, 1), leb),

defines a cylindrical Lévy process L, say with characteristics (0, 0, µ).

Assume for a contradiction that L is independently scattered and fix two disjoint

sets A,B ∈ B((0, 1)) with leb(A) > 0 and leb(B) > 0. Thus, 〈1A, e1〉L2 = leb(A) > 0

and 〈1B, e1〉L2 = leb(B) > 0.

The Lévy measure of the Lévy process
(
(L(t)1A, L(t)1B) : t > 0

)
in R2 is

given by µ ◦ π−1
1A,1B

. As L(1)1A and L(1)1B are independent, it follows from the

uniqueness of the characteristic functions that

µ ◦ π−1
1A,1B

= ((µ ◦ π−1
1A
)⊗ δ0) + (δ0 ⊗ µ ◦ π−1

1B
)),

where µ ◦ π−1
1A

is the Lévy measure of (L(t)1A : t > 0) and µ ◦ π−1
1B

is the Lévy

measure of (L(t)1B : t > 0). It follows in particular that

µ ◦ π−1
1A,1B

(
R\{0} ×R\{0}

)
= 0. (3.3.18)
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On the other hand, Lemma 4.2 in [74] implies that

µ ◦ π−1
1A,1B

=

∞∑

k=1

(νk ◦ r
−1
k ),

where νk = ρ ◦m−1
ak

, with mγ : R → R is defined by mγ(β) = γβ for some γ ∈ R

and rk : R→ R

2 is defined by rk(β) =
(
〈1A, ek〉L2β, 〈1B, ek〉L2β

)
. In particular, as

we have a1 = 1 we have ν1 = ρ. It follows from (3.3.18) that

0 =
(
ρ ◦ r−1

1

)(
R\{0} ×R\{0}

)
= ρ(R\{0}) = ∞ ,

which results in a contradiction.
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Chapter 4

Lévy measures and Radonifying

embeddings in Besov spaces

In this chapter, we characterise the Lévy measures on Bp
s,w(R

d) for p > 1 and then

we characterise when L2(Rd) is embedded in Bp
s,w(R

d) such that cylindrical random

variables in L2(Rd) are induced by (genuine) random variables in Bp
s,w(R

d).

4.1 Characterisation of Lévy measures

Our first task is to define Lévy measures, which is not as straightforward for Banach

spaces as for finite-dimensional or Hilbert spaces. Let U be an arbitrary separable

Banach space. For an arbitrary finite measure µ on B(U) define the exponential

measure e(µ) by

e(µ) := e−µ(U)
∞∑

m=0

1

m!
µ∗m. (4.1.1)

The exponential measure e(µ) is a compound Poisson distribution with characteristic

function

ϕµ : U
∗ → C, ϕµ(b

∗) = exp

(∫

U

(
ei〈u,u

∗〉U − 1
)
µ(du)

)
.
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Whereas in the finite dimensional case, and in Hilbert spaces, the integrability of

|·|2∧1 characterises the Lévy measures, there are no equivalent conditions known in

arbitrary Banach spaces for when the same function ϕµ but for a σ-finite measure µ

still forms the characteristic function of a probability measure. Thus, Lévy measures

are defined implicitly in the following way, see [58]:

Definition 4.1.1. A σ-finite measure µ on B(U) is a Lévy measure if µ({0}) = 0

and

ϕµ : U
∗ → C, ϕµ(u

∗) = exp

(∫

U

(
ei〈u,u

∗〉U − 1− i〈u, u∗〉U 1BU
(u)
)
µ(du)

)

is the characteristic function of a Radon probability measure, which we shall call

eS(µ), on B(U).

Note, that [58, Th. 5.4.8] guarantees that a σ-finite measure µ on B(U) is a Lévy

measure if and only if its symmetrisation µ+ µ− is a Lévy measure.

We now apply the results obtained in [97] to characterise the Lévy measures in

Bp
s,w(R

d) for p > 1 and s, w ∈ R.

Theorem 4.1.2. A σ-finite measure µ on B(Bp
s,w(R

d)) with µ({0}) = 0 is a Lévy

measure on Bp
s,w(R

d) for some p ∈ (1,∞), s, w ∈ R if and only if

(1) for p > 2,

∫

Bp
s,w

(
‖f‖p

Bp
s,w

∧ 1
)
µ(df) <∞, (4.1.2)

∑

j,G,m

(ωj
m)

p

(∫

‖f‖
B
p
s,w

61

[Ψj,G
m , f ]2 µ(df)

)p/2

<∞; (4.1.3)
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(2) and for p ∈ (1, 2),

∫

Bp
s,w

(
‖f‖2Bp

s,w
∧ 1
)
µ(df) <∞, (4.1.4)

∑

j,G,m

(ωj
m)

p

∫ ∞

0

(
1− e

∫
‖f‖

B
p
s,w

61

(
cos τ [Ψj,G

m ,f ]−1
)
µ(df)

)
dτ

τ 1+p
<∞. (4.1.5)

In the expressions above, ωj
m = ωj

m(p, s, w) are the weight constants defined in

(2.1.2).

Proof. Because of [58, Th. 5.4.8], we can assume that µ is symmetric. Given 0 6

α 6 β 6 ∞ we define

µα,β(A) := µ
(
A ∩ {f ∈ Bp

s,w(R
d) : α 6 ‖f‖Bp

s,w
< β}

)
, A ∈ B(Bp

s,w(R
d)).

Let ε ∈ [0, 1) and suppose the Radon measure eS(µε,1) exists in the sense of Definition

4.1.1. We calculate

∫

Bp
s,w

‖f‖p
Bp

s,w
eS(µε,1)(df) =

∑

j,G,m

(ωj
m)

p

∫

Bp
s,w

∣∣[Ψj,G
m , f ]

∣∣p eS(µε,1)(df)

=
∑

j,G,m

(ωj
m)

p

∫

R

|β|p
(
eS(µε,1) ◦ [Ψ

j,G
m , ·]−1

)
(dβ)

=
∑

j,G,m

(ωj
m)

pE
∣∣ξj,Gm

∣∣p , (4.1.6)

where ξj,Gm is a random variable with distribution eS(µε,1) ◦ [Ψj,G
m , ·]−1 = eS(µε,1 ◦

[Ψj,G
m , ·]−1) for each j ∈ Z+, G ∈ Gj and m ∈ Zd.

For p > 2, Theorem 1.1 in [29] guarantees

E
∣∣ξj,Gm

∣∣p hp

∫

R

|β|p (µε,1 ◦ [Ψ
j,G
m , ·]−1)(dβ) +

(∫

R

|β|2 (µε,1 ◦ [Ψ
j,G
m , ·]−1)(dβ)

)p/2

.
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It follows that, for p > 2,

∫

Bp
s,w

‖f‖p
Bp

s,w
eS(µε,1)(df)

hp

∑

j,G,m

(ωj
m)

p

(∫

R

|β|p (µε,1 ◦ [Ψ
j,G
m , ·]−1)(dβ) +

(∫

R

|β|2 (µε,1 ◦ [Ψ
j,G
m , ·]−1)(dβ)

)p/2
)

=
∑

j,G,m

(ωj
m)

p




∫

Bp
s,w

∣∣[Ψj,G
m , f ]

∣∣p µε,1(df) +

(∫

Bp
s,w

∣∣[Ψj,G
m , f ]

∣∣2 µε,1(df)

)p/2




=

∫

Bp
s,w

‖f‖p
Bp

s,w
µε,1(df) +

∑

j,G,m

(ωj
m)

p

(∫

Bp
s,w

∣∣[Ψj,G
m , f ]

∣∣2 µε,1(df)

)p/2

. (4.1.7)

We begin by showing sufficiency. Suppose the conditions in the hypothesis are

met. Note that Conditions (4.1.2) and (4.1.4) each imply that µε,1(B
p
s,w(R

d)) is

finite. Thus, the exponential measure e(µε,1) defined in (4.1.1) coincides with eS(µε,1)

and Equality (4.1.6) holds.

First we consider the case p > 2. From (4.1.7) we obtain for each ε > 0 that

∫

Bp
s,w

‖f‖p
Bp

s,w
e(µε,1)(df)

.p

∫

Bp
s,w

(
‖f‖p

Bp
s,w

∧ 1
)
µ(df) +

∑

j,G,m

(ωj
m)

p

(∫

‖f‖
B
p
s,w

61

∣∣[Ψj,G
m , f ]

∣∣2 µ(df)
)p/2

.

Thus conditions (4.1.2) and (4.1.3) imply

sup
ε∈(0,1)

∫

Bp
s,w

‖f‖p
Bp

s,w
e(µε,1)(df) <∞. (4.1.8)
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Now, let g ∈
(
Bp

s,w(R
d)
)∗

. By applying Hölder’s inequality twice, Theorem 2.1.3

shows

∫

‖f‖
B
p
s,w

61

〈f, g〉2Bp
s,w
µ(df)

=
∑

j,G,m

∑

k,H,n

[Ψj,G
m , g][Ψk,H

n , g]

∫

‖f‖
B
p
s,w

61

[Ψj,G
m , f ][Ψk,H

n , f ]µ(df)

6



∑

j,G,m

[Ψj,G
m , g]

(∫

‖f‖
B
p
s,w

61

[Ψj,G
m , f ]2 µ(df)

)1/2



2

=




∑

j,G,m

(ωj
m)

−1[Ψj,G
m , g]

(
(ωj

m)
2

∫

‖f‖
B
p
s,w

61

[Ψj,G
m , f ]2 µ(df)

)1/2



2

6

(
∑

j,G,m

(ωj
m)

−p′
∣∣[Ψj,G

m , g]
∣∣p′
)2/p′



∑

j,G,m

(ωj
m)

p

(∫

‖f‖
B
p
s,w

61

[Ψj,G
m , f ]2 µ(df)

)p/2



2/p

.

Since
∑

j,G,m(ω
j
m)

−p′
∣∣[Ψj,G

m , g]
∣∣p′ = ‖g‖p

′

Bp′

−s,−w

, Condition (4.1.3) guarantees

∫

‖f‖
B
p
s,w

61

〈f, g〉2Bp
s,w
µ(df) . ‖g‖2

Bp′

−s,−w

.

Together with (4.1.8) we see that the conditions of Theorem 1.B in [97] are satisfied

and hence µ is a Lévy measure on Bp
s,w(R

d).

Next we consider the case p ∈ (1, 2); in this case, we use the following relation

for a real valued symmetric random variable X with characteristic function ϕX and

q ∈ (0, 2):

E |X|q = cq

∫ ∞

0

1− Re(ϕX(τ))

τ q+1
dτ, (4.1.9)

where cq is a constant depending only on q; see for example [50, Th. 11.4.3].
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Applying Equality (4.1.9) to a random variable with distribution e(µε,1)◦[Ψ
j,G
m , ·]−1

shows, for each ε ∈ (0, 1),

∫

Bp
s,w

‖f‖p
Bp

s,w
e(µε,1)(df)

= cp
∑

j,G,m

(ωj
m)

p

∫ ∞

0

(
1− e

∫
B
p
s,w

(
cos τ [Ψj,G

m ,f ]−1
)
µε,1(df)

)
dτ

τ 1+p

6 cp
∑

j,G,m

(ωj
m)

p

∫ ∞

0

(
1− e

∫
{‖f‖

B
p
s,w61

}

(
cos τ [Ψj,G

m ,f ]−1
)
µ(df)

)
dτ

τ 1+p
.

Thus, Condition (4.1.5) guarantees

sup
ε∈(0,1)

∫

Bp
s,w

‖f‖p
Bp

s,w
e(µε,1)(df) <∞. (4.1.10)

Now, for g ∈ Bp′

−s,−w(R
d), Condition (4.1.4) implies

∫

‖f‖
B
p
s,w

61

〈f, g〉2Bp
s,w
µ(df) 6

∫

‖f‖
B
p
s,w

61

‖f‖2Bp
s,w

‖g‖2
Bp′

−s,−w

µ(df) . ‖g‖2
Bp′

−s,−w

.

Together with (4.1.10), it follows that the conditions of Theorem 1.B in [97] are

satisfied and hence µ is a Lévy measure on Bp
s,w(R

d).

Now suppose conversely that µ is a Lévy measure on Bp
s,w(R

d); as before we

assume µ is symmetric. Proposition 5.4.1 in [58] implies that we have µ
(
Bc

Bp
s,w

)
<∞.

Since µ0,1 is a symmetric Lévy measure on Bp
s,w(R

d) according to [58, Cor. 5.4.4],

the Radon measure eS(µ0,1) exists. Corollary 3.3 in [1] then shows, for all q > 0,

that

∫

Bp
s,w

‖f‖q
Bp

s,w
eS(µ0,1)(df) <∞. (4.1.11)
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We first consider the case p > 2. Since eS(µ0,1) exists we can apply (4.1.7) to

obtain

∫

Bp
s,w

‖f‖p
Bp

s,w
µ0,1(df) +

∑

j,G,m

(ωj
m)

p

(∫

Bp
s,w

[Ψj,G
m , f ]2 µ0,1(df)

)p/2

hp

∫

Bp
s,w

‖f‖p
Bp

s,w
eS(µ0,1)(df) <∞,

which verifies the necessity of Conditions (4.1.2) and (4.1.3) because of (4.1.11).

For the case p ∈ (1, 2), we apply Equality (4.1.9) to a random variable with

distribution eS(µ0,1) ◦ [Ψ
j,G
m , ·]−1 to obtain

∑

j,G,m

(ωj
m)

p

∫ ∞

0

(
1− e

∫
‖f‖

B
p
s,w

61

(
cos τ [Ψj,G

m ,f ]−1
)
µ(df)

)
dτ

τ 1+p

= c−1
p

∫

Bp
s,w

‖f‖p
Bp

s,w
eS(µ0,1)(df) <∞,

which shows the necessity of Condition (4.1.5) because of (4.1.11). Furthermore,

since Bp
s,w(R

d) is isomorphic to ℓp(Wd) and the latter is of cotype 2 for p ∈ (1, 2),

Theorem 2.2 in [8] directly shows the necessity of condition (4.1.4).

Remark 4.1.3. Alternatively, in the proof above for the case of sufficiency when

p ∈ (1, 2), we may replace condition (4.1.5) with condition (4.1.3). Indeed, for

ε ∈ (0, 1) we have

∫

Bp
s,w

‖f‖p
Bp

s,w
e(µε,1)(df) =

∑

j,G,m

(ωj
m)

pE
∣∣ξj,Gm

∣∣p

≤
∑

j,G,m

(ωj
m)

p
(
E
∣∣ξj,Gm

∣∣2 )p/2

.p

∑

j,G,m

(ωj
m)

p

(∫

R

|β|2 (µε,1 ◦ [Ψ
j,G
m , ·]−1)(dβ)

)p/2

≤
∑

j,G,m

(ωj
m)

p

(∫

‖f‖
B
p
s,w

≤1

∣∣[Ψj,G
m , f ]

∣∣2 µ(df)
)p/2

,
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thus showing that, for p ∈ (1, 2), condition (4.1.3) implies

sup
ε∈(0,1)

∫

Bp
s,w

‖f‖p
Bp

s,w
e(µε,1)(df) <∞.

Remark 4.1.4. We may use Theorem 2.3 in [8] to state another sufficient condition

for p ∈ [1, 2]. We have Bp
s,w(R

d) is of type p by the isometry with ℓp(Wd), and thus

a sufficient condition for µ to be a Lévy measure on Bp
s,w(R

d) is

∫

Bp
s,w

(
‖f‖p

Bp
s,w

∧ 1
)
µ(df) <∞.

4.2 Radonifying Embeddings

We continue our analysis of weighted Besov spaces by examining the embedding

structure. The space L2(Rd) may be considered as representing the central point in

the parameter scale of these spaces, as L2(Rd) = B2
0,0(R

d). We shall first present

the general theory of continuous embeddings of Besov spaces, and then examine the

special case, that the canonical embedding operator ι maps each cylindrical random

variable on L2(Rd) to a cylindrical random variable on Bp
s,w(R

d) which is induced

by a (genuine) random variable.

Definition 4.2.1. Let F,G be Banach spaces. A continuous linear operator T : G→

F is called

(i) 0-Radonifying if for each cylindrical random variable X in G, TX is induced

by a random variable in F ;

(ii) p-Radonifying for some p > 0 if, for each cylindrical random variable X in

G such that E |Xg|p < ∞ for each g ∈ G, we have that TX is induced by a

random variable in F with strong moments of order p.
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Weighted Besov spaces form various scales according to the parameters p, s and

w; we present a general result for their continuous embeddings. The positive results,

for when a certain Besov space is continuously embedded in another given Besov

space, are well-known; however, we are unaware of any converse results so we develop

such converses here.

Proposition 4.2.2. Let s0, s1, w0, w1 ∈ R and p0, p1 > 1.

1. Suppose p0 > p1. Then Bp0
s0,w0

(Rd) →֒ Bp1
s1,w1

(Rd) continuously if and only if

s0 > s1 and w0 − w1 > d

(
1

p1
−

1

p0

)
.

2. Suppose p0 6 p1. Then Bp0
s0,w0

(Rd) →֒ Bp1
s1,w1

(Rd) continuously if and only if

s0 − s1 > d

(
1

p0
−

1

p1

)
and w0 > w1.

Proof. The continuous embedding in both cases is given by Proposition 3 in [31].

To prove non-inclusion we first note that for any q > 0, by a duality argument, if

y = (yj,Gm )(j,G,m)∈Wd is such that y /∈ ℓq(Wd)∗ then there exists x ∈ ℓq(Wd) such that
∑

j,G,m x
j,G
m yj,Gm = ∞.

1. Suppose that p0 > p1. First we suppose that w1 − w0 > −d
(

1
p1

− 1
p0

)
. Take

α = p0
p0−p1

and thus α′ = p0
p1

, then we have αp1(w1 − w0) > −d. Thus, for any j > 0

we have

∑

m∈Zd

(
1 + 2−2j |m|2

)αp1(w1−w0)
2 = ∞

(see the proof of [31, Th. 3]) and therefore

∑

j,G,m

2
jαp1(s1−s0−

d
p1

+ d
p0

)(
1 + 2−2j |m|2

)αp1(w1−w0)
2 = ∞



Chapter 4. Lévy measures and Radonifying embeddings in Besov spaces 77

which means

((
ωj
m(p1, s1, w1)

ωj
m(p0, s0, w0)

)p1)

(j,G,m)∈Wd

/∈ ℓα(Wd),

where ωj
m(p, s, w) = 2j(s−

d
p
+ d

2
)(1 + 2−2j |m|2)

w
2 are the weight constants defined in

(2.1.2). We thus have the existence of y ∈ ℓ
p0
p1 (Wd) (which clearly we may assume

has each term non-negative) such that

∑

j,G,m

(
ωj
m(p1, s1, w1)

ωj
m(p0, s0, w0)

)p1

yj,Gm = ∞.

By the isometry (Υp0
s0,w0

)−1 : ℓp0(Wd) → bp0s0,w0
(see Lemma 2.1.4) we have λ ∈ bp0s0,w0

where

λj,Gm = 2
jd
2

(
ωj
m(p0, s0, w0)

)−1
(yj,Gm )

1
p1 .

We then see that

‖λ‖p1
b
p1
s1,w1

=
∑

j,G,m

(
2−

jd
2 ωj

m(p1, s1, w1)λ
j,G
m

)p1

=
∑

j,G,m

(
ωj
m(p1, s1, w1)

ωj
m(p0, s0, w0)

)p1

yj,Gm = ∞,

and so λ /∈ bp1s1,w1
, which shows that bp0s0,w0

* bp1s1,w1
which in turn shows Bp0

s0,w0
(Rd) *

Bp1
s1,w1

(Rd) by the isometry between the weighted Besov spaces and the weighted

Besov sequence spaces [91, Th. 6.15].

Now suppose that s0 6 s1. We define for (j, G,m) ∈Wd

xj,Gm :=

(
ωj
m(p1, s1, w1)

ωj
m(p0, s0, w0)

)p1

.
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We suppose that, for each j ∈ Z+, Sj :=
∑

m∈Zd

(
1 + 2−2j |m|2

)αp1(w1−w0)

2 < ∞

(as otherwise there would be nothing to prove). We have by [31, Th. 3] that Sj is

asymptotically O(2jd) as j → ∞, and thus

∑

j,G,m

∣∣xj,Gm
∣∣α =

∑

j,G

2
αjp1(s1−s0−

d
p1

+ d
p0

)
Sj = ∞

as αp1
(
s1 − s0 −

d
p1

+ d
p0

)
> −d. Thus we have

(
xj,Gm

)
(j,G,m)∈Wd /∈ ℓα(Wd) and the

proof of non-inclusion proceeds as above.

2. Let p1 > p0. First we take s1 − s0 > d( 1
p1
− 1

p0
) so we have 2

jp1(s1−s0−
d
p1

+ d
p0

)
is

unbounded as j → ∞. For (j, G,m) ∈Wd we define

xj,Gm :=

(
ωj
m(p1, s1, w1)

ωj
m(p0, s0, w0)

)p1

.

Then we have
(
xj,Gm

)
(j,G,m)∈Wd /∈ ℓ∞(Wd) and thus have the existence of y ∈ ℓ

p0
p1 (Wd)

such that

∑

j,G,m

(
ωj
m(p1, s1, w1)

ωj
m(p0, s0, w0)

)p1

yj,Gm = ∞,

where we recall the dual of ℓp for p 6 1 is ℓ∞. The proof of the non-inclusion follows

as above.

Finally, taking w0 < w1, we again see that
(
xj,Gm

)
(j,G,m)∈Wd /∈ ℓ∞(Wd) and the

non-inclusion result follows.

We may now identify the set of weighted Besov spaces containing L2(Rd).
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Proposition 4.2.3. Let p > 1. We define

Ep :=






(−∞, 0)× (−∞,−d
p
+ d

2
), if p ∈ (1, 2),

(−∞, 0]× (−∞, 0], if p = 2,

(−∞,−d
2
+ d

p
)× (−∞, 0], if p ∈ (2,∞).

(4.2.12)

Then L2(Rd) →֒ Bp
s,w(R

d) if and only if (s, w) ∈ Ep. When L2(Rd) is embedded in

Bp
s,w(R

d), the embedding is continuous.

Proof. We recall that L2(Rd) = B2
0,0(R

d). The result then follows by applying

Proposition 4.2.2 for the case p0 = 2, p1 = p, s0 = 0, s1 = s, w0 = 0 and w1 = w.

We now investigate for each p > 1 the subset of (s, w) ∈ Ep such that the

canonical embedding operator ι : L2(Rd) → Bp
s,w(R

d) is either p-Radonifying or 0-

Radonifying. We begin by defining the p-summing operators.

Definition 4.2.4. Let F,G be Banach spaces and p > 0. A continuous linear

operator T : G → F is called p-summing if there exists C > 0 such that for every

finite collection (gi)
n
i=1 ⊂ G we have

n∑

i=1

‖Tgi‖
p
F 6 Cp sup

‖y‖G∗61

n∑

i=1

|〈gi, y〉G|
p .

For each p > 0, we have that p-Radonifying operators are p-summing, and 0-

Radonifying operators are p-summing for every p > 0. Furthermore, for p > 1

we have that the classes of p-summing and p-Radonifying operators coincide; see

[92, Ch. VI.5]. If F and G are Hilbert spaces, 0-Radonifying operators coincide

with Hilbert-Schmidt operators [92, Th. VI.5.2], and thus the class of p-summing

operators for all p > 0 coincides with the class of Hilbert-Schmidt operators.

We now proceed to study the Radonification properties of embeddings of L2(Rd)

into weighted Besov spaces.
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Theorem 4.2.5. The embedding L2(Rd) →֒ Bp
s,w(R

d) for some p > 1 is p-Radonifying

if and only if

(s, w) ∈ R(p)
p := (−∞,−d

2
)× (−∞,−d

p
). (4.2.13)

Proof. The continuous embedding follows as R
(p)
p ⊆ Ep. Let Ψ be an admissible

basis of Bp
s,w(R

d) and ωj
m = ωj

m(p, s, w) be the weight constants defined in (2.1.2).

Note, that

∑

j,G,m

(ωj
m)

p =
∑

j,G,m

2jp(s−d/p+d/2)(1 + 2−2j |m|2)pw/2 <∞ ⇔ (s, w) ∈ R(p)
p .

This follows from the fact, that the sum over m converges if and only if w < −d
p
,

and in this case is asymptotically O(2jd) as j → ∞ (see the proof of [31, Th. 3]).

Thus the total sum converges if and only if s < −d
2

and w < −d
p
.

For any p > 1, we obtain for f1, . . . , fn ∈ L2(Rd) that

n∑

i=1

‖fi‖
p
Bp

s,w
=
∑

j,G,m

(ωj
m)

p

n∑

i=1

∣∣〈fi,Ψj,G
m 〉L2

∣∣p 6
∑

j,G,m

(ωj
m)

p sup
‖y‖L261

n∑

i=1

|〈fi, y〉L2|p .

Thus, the embedding L2(Rd) →֒ Bp
s,w(R

d) is p-summing if (s, w) ∈ R
(p)
p .

Next, let p > 2 and take fi = Ψji,Gi
mi

∈ Ψ, i = 1, . . . , n to be distinct wavelet basis

vectors (i.e. fi 6= fj for i 6= j). Thus we have |〈fi, y〉L2| 6 1 for each i = 1, . . . , n

and y ∈ L2(Rd) such that ‖y‖L2 6 1. In this case we have

sup
‖y‖L261

n∑

i=1

|〈fi, y〉L2|p 6 sup
‖y‖L261

∑

j,G,m

∣∣〈Ψj,G
m , y〉L2

∣∣p 6 sup
‖y‖L261

∑

j,G,m

∣∣〈Ψj,G
m , y〉L2

∣∣2 = 1.
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Furthermore, we have

n∑

i=1

‖fi‖
p
Bp

s,w
=

n∑

i=1

(ωi)
p,

where ωi = ωj
m when fi = Ψj,G

m for some (j, G,m) ∈Wd. Thus, if
∑

j,G,m(ω
j
m)

p = ∞

then the embedding is not p-summing, and we obtain that the embedding is p-

summing if and only if (s, w) ∈ R
(p)
p . An application of [92, Th. VI.5.4] completes

the proof of the case p > 2.

Necessity of (s, w) ∈ R
(p)
p for p ∈ (1, 2) follows from Theorem 5.3.1, which gives

a counterexample of a cylindrical Lévy process in L2(Rd) with p-th weak moments

that is not induced by a process in Bp
s,w(R

d) P -a.s. for any (s, w) /∈ R
(p)
p . This

result, though later in the text, does not rely upon the result that the embedding

L2(Rd) →֒ Bp
s,w(R

d) is not p-Radonifying for (s, w) /∈ R
(p)
p .

Due to the range of continuous embeddings between the weighted Besov spaces,

it is in many cases possible to factorise the embeddings via a Hilbert space which

allows for a 0-Radonification result.

Theorem 4.2.6. The embedding L2(Rd) →֒ Bp
s,w(R

d) for some p > 1 is 0-Radonifying

if and only if

(s, w) ∈ Rp :=






(−∞,−d
2
)× (−∞,−d

p
), when p ∈ (1, 2],

(−∞,−d+ d
p
)× (−∞,−d

2
), when p ∈ (2,∞).

(4.2.14)

Proof. We show sufficiency by factorising the embedding L2(Rd) →֒ Bp
s,w(R

d) as

follows:

L2(Rd)
ι1
→֒ B2

s1,w1
(Rd)

ι2
→֒ Bp

s,w(R
d),
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for some w1 < −d
2

and s1 < −d
2
. In this case, Theorem 4.2.5 guarantees that

the embedding ι1 is 2-Radonifying, and thus it is 0-radonifying, since 2-summing

operators coincide with 0-Radonifying operators in Hilbert space [92, Th. VI.5.2].

It remains to show that w1 and s1 can always be chosen, such that B2
s1,w1

(Rd) is

continuously embedded into Bp
s,w(R

d), whenever s and w are in the stated ranges.

(i) Let p ∈ (1, 2]. By applying Proposition 4.2.2 we see that ι2 is a continuous

embedding for w < w1 − d
(

1
p
− 1

2

)
and s < s1. Thus, by defining ε := −w− d

p
> 0,

we may take w1 = − ε
2
− d

2
and satisfy all inequalities. A similar argument may be

used for s and s1.

(ii) Let p > 2. By Proposition 4.2.2 we see that ι2 is a continuous embedding for

w < w1 and s < s1 − d
(

1
2
− 1

p

)
. We proceed by similar arguments as above.

The necessity for p = 2 follows from Theorem 4.2.5 since 0-Radonifying and

p-Radonifying operators between Hilbert spaces coincide. To show the necessity

for p 6= 2, we shall refer to Theorem 5.3.1 and Proposition 5.4.12, which provide

counterexamples of cylindrical Lévy processes in L2(Rd) that are not induced by a

process in Bp
s,w(R

d) for any (s, w) /∈ Rp. Although these negative results referred to

are later in the text, they are not based upon this Theorem.

Remark 4.2.7. Comparing the results in Theorem 4.2.5 and Theorem 4.2.6, we see

that when p ∈ (1, 2], we have Rp = R
(p)
p . Outside these ranges, we have instead that

Rp ( R
(p)
p

We summarise the Radonification regions in Figures 4.1 and 4.2 plotting s and

w against 1
p
, which follows naturally from the ranges specified. We refer to diagrams

plotting s and w against 1
p

as Triebel diagrams1.

1Plots of s and w against 1
p

were described in [9] as ‘Triebel diagrams’ and used to illustrate
various properties of the scales of Besov spaces.
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Figure 4.1: Triebel diagrams for 0-Radonification

1
2

1
−d

2

−d

Ec
p

Ep\R
(p)
p

R
(p)
p

1
p

s

1
2

1
−d

2

−d

Ec
p

Ep\R
(p)
p

R
(p)
p

1
p

w
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Chapter 5

Regularisation of Lévy space-time

noises

In this final Chapter we apply the results developed in the prior Chapters to study

when embeddings of the Lévy noises, modelled either as Lévy-valued random mea-

sures or cylindrical Lévy processes, give rise to genuine Lévy processes in larger

spaces.

In Section 5.1 we present our first two main results on the embedding of in-

dependently scattered cylindrical Lévy processes in the space of distributions and

tempered distributions. In Section 5.2 we give a general characterisation of when

L2-cylindrical Lévy processes may be regularised in specific weighted Besov spaces.

Finally, we study in depth two important classes of cylindrical Lévy process: in

Section 5.3 we analyse the canonical symmetric-α-stable process, and Section 5.4 is

devoted to the hedgehog process. In both cases we present a full characterisation of

the parameter set where the cylindrical process is and is not regularised.
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5.1 Lévy-valued random measures

In this section, we embed the Lévy-valued random measure from Definition 3.1.1 into

the spaces of distributions and of tempered distributions. By the correspondence

detailed in Theorem 3.3.1 and Proposition 3.3.6, this is equivalent to the embeddings

of independently scattered cylindrical Lévy processes. These embeddings are based

on the integration theory for Lévy-valued random measures as examined in Section

3.3.

We fix an open set O ⊂ Rd and recall the space D(O) of infinitely differentiable

functions with compact support, and the dual space D∗(O) of distributions, as

defined in Chapter 2. As locally integrable functions and measures are identified

with distributions, we proceed analogously to relate a Lévy-valued random measure

M on Bb(O) to a distribution-valued process. For this purpose, we define for each

t > 0 the integral mapping

JD(t) : D(O) → L0(Ω, P ) , JD(t)f =

∫

O

f(x)M(t, dx). (5.1.1)

We recall from Section 3.3 the definition of the integral with respect to M in (3.3.5)

and the Musielak-Orlicz space LM(O, λ) of M-integrable functions, based on the

modular ΦM defined in (3.3.6). In the proof of Theorem 5.1.1 below we show that

D(O) is continuously embedded in LM(O, λ), and thus the mapping JD(t) is well-

defined.

Theorem 5.1.1. For a Lévy-valued random measure M on Bb(O) let JD be defined

by (5.1.1). Then there exists a genuine Lévy process (Y (t) : t > 0) in D∗(O)

satisfying

JD(t)f = 〈f, Y (t)〉D(O) P -a.s. for all f ∈ D(O), t > 0.
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Proof. We first show that the space D(K) is continuously embedded in LM(O, λ)

for each compact K ⊆ O. Trivially, the space D(K) is continuously embedded in

L∞(K, λ). As K ∈ Bb(O), the control measure λ is finite on K, and it follows

that L∞(K, λ) is continuously embedded in L2(K, λ). The latter is continuously

embedded in LM(K, λ) by Lemma 3.3.3. Because whenever supp(f) ⊆ K we have

∫

O

ΦM(|f(x)| , x) λ(dx) =

∫

K

ΦM(|f(x)| , x) λ(dx),

it follows that D(K) is continuously embedded in LM(O, λ). As D(O) is the induc-

tive limit of {D(Ki)}i∈N, we thus conclude that D(O) is continuously embedded in

LM(O, λ).

Let ι : D(O) → LM(O, λ) be the continuous embedding. We recall the continuous

integral mapping J : LM (O, λ) → L0(Ω, P ) defined in (3.3.8). Then the mapping

JD(t) : D(O) → L0(Ω, P ) can be represented as JD(t) = J(t) ◦ ι for each t > 0,

showing that JD(t) is continuous. Lemma 3.3.2 shows that JD is a cylindrical Lévy

process in D∗(O). Furthermore, since JD(t) is continuous, and D(O) is nuclear [87,

Th. 51.5] and ultrabornological [64, p.447], Theorem 3.8 in [35] implies the existence

of the D∗(O)-valued Lévy process Y .

In the second part of this section, we embed the Lévy-valued random measure

into the space of tempered distribution S∗(Rd), again recalling the definition from

Chapter 2. We define for each t > 0 the integral mapping

JS(t) : S(R
d) → L0(Ω, P ) , JS(t)f =

∫

R

d

f(x)M(t, dx). (5.1.2)

Clearly, the mapping JS(t) is only well defined if S(Rd) is embedded in LM (Rd, λ).

The following theorem gives an equivalent condition for this.
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Theorem 5.1.2. Let M be a Lévy-valued random measure on Bb(R
d) with control

measure λ. Then the following are equivalent:

(a) S(Rd) is continuously embedded in LM(Rd, λ);

(b) there exists an r > 0 such that the function x 7→ (1 + |x|2)−r is in LM(Rd, λ).

In this case, the mapping JS(t) as specified in (5.1.2) is well-defined and continuous

for each t > 0. Furthermore, there exists a genuine Lévy process (Y (t) : t > 0) in

S∗(Rd) satisfying

JS(t)f = 〈f, Y (t)〉S(Rd) P -a.s. for all f ∈ S(Rd), t > 0.

Proof. We begin by showing the implication (b) ⇒ (a), for which we suppose there

exists r > 0 such that x 7→
(
1 + |x|2

)−r
is in LM(Rd, λ). For each f ∈ S(Rd) there

exists K > 0 such that (1 + |x|2)r |f(x)| 6 K for all x ∈ Rd. Since ΦM(·, x) is

monotone for each x ∈ Rd according to [70, Le. 3.1], we have

ΦM(|f(x)| , x) 6 ΦM(K(1 + |x|2)−r, x) for each x ∈ Rd,

which implies f ∈ LM (Rd, λ).

Let (fn)n∈N ⊆ S(Rd) be a sequence converging to 0 in S(Rd). As the convergence

is uniform in x, we have the existence of another K > 0 such that (1+|x|2)r |fn(x)| 6

K for all x ∈ Rd and for all n ∈ N. For fixed x ∈ Rd we have ΦM (|fn(x)| , x) →

ΦM(0, x) = 0 by continuity [70, Le. 3.1], and as
∫
R

d ΦM(K(1+|x|2)−r, x) λ(dx) <∞,

Lebesgue’s theorem for dominated convergence implies

∫

R

d

ΦM(|fn(x)| , x) λ(dx) → 0 as n→ ∞,

which completes the proof of the implication (b) ⇒ (a).
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Conversely, suppose S(Rd) is continuously embedded in LM (Rd, λ). Thus, the

identity mapping ι : S(Rd) → LM (Rd, λ) is continuous. Then, there exists a neigh-

bourhood

U(0; k, δ) :=
{
f ∈ S(Rd) : ‖f‖Sk

< δ
}
,

for some k ∈ N and δ > 0 such that ι maps U(0; k, δ) into the open unit ball of

LM(Rd, λ). Let (fn)n∈N ⊆ S(Rd) be any sequence such that ‖fn‖Sk
→ 0. Then,

(fn) is eventually in U(0; k, δ) and thus (ιfn) is eventually in the unit ball and so is

bounded in LM(Rd, λ). By Proposition 4 of [44, p. 41] we have the continuity of ι

in the semi-norm ‖·‖Sk
, and thus we may extend ι by continuity to the completion

of S(Rd) in this semi-norm. We thus obtain the integrability condition by observing

that the C∞(Rd) mapping x 7→ (1 + |x|2)r has finite semi-norm ‖·‖Sk
for r 6 −k.

As in the proof of Theorem 5.1.1, an application of Lemma 3.3.2 and Theorem

3.8 in [35] establishes the existence of the Lévy process Y in S(Rd).

Remark 5.1.3. In Kabanava [45], it is shown that a Radon measure ζ can be

identified with a tempered distribution in S∗(Rd) if and only if there is a real number

r such that x 7→ (1 + |x|2)r is integrable over Rd with respect to ζ. Our condition

for the mapping JS in Theorem 5.1.2 is analogous.

Remark 5.1.4. By Proposition 3.1.2, we may also view the Lévy-valued random

measure M as an infinitely divisible random measure M ′ on Bb(R+×O), and define

the integral mapping

J ′
D : D((0,∞)×O) → L0(Ω, P ) , J ′

Df =

∫

(0,∞)×O

f(t, x)M ′(dt, dx).

Analogously to Theorem 5.1.1 we obtain an infinitely divisible random variable Y ′

in D∗((0,∞) × O) satisfying 〈f, Y ′〉 = J ′
Df for all f ∈ D((0,∞) × O). Similarly,
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under the conditions of Theorem 5.1.2, we may consider the operator J ′ on the space

S(R+ ×Rd).

5.1.1 Weak derivative of a Lévy-valued random measure

As an immediate application of the embedding, we establish the relation between a

Lévy-valued random measure and a Lévy-valued additive sheet. For this purpose, we

introduce a stochastic integral of deterministic functions f : Rd → R with respect

to a Lévy-valued additive sheet. Instead of following the standard approach starting

with simple functions and extending the integral operator by continuity, we utilise

the correspondence between Lévy-valued additive sheets and Lévy valued random

measures, established in Theorem 3.2.4, and refer to the integration for the latter

developed in Rajput and Rosinksi [70] as presented in Section 5.1. For a Lévy-

valued additive sheet (X(t, x) : t > 0, x ∈ Rd) let M denote the corresponding

Lévy-valued random measure on Bb(R
d) with control measure λ. Then we define

for all f ∈ LM(Rd, λ), A ∈ B(Rd) and t > 0:

∫

A

f(x) dX(t, x) :=

∫

A

f(x)M(t, dx). (5.1.3)

Let (X(t, x) : x ∈ R

d, t > 0) be a Lévy-valued additive sheet and O ⊆ R

d be

open. Then the definition in (5.1.3) allows us to define the same operator JD(t) as

introduced in (5.1.1) for a Lévy-valued additive sheet X:

JD(t) : D(O) → L0(Ω, P ), JD(t)f =

∫

O

f(x) dX(t, x). (5.1.4)
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Theorem 5.1.1 guarantees that JD is well-defined and even more, induces a genuine

Lévy process Y in D∗(O). We define the operator

ID(t) : D(O) → L0(Ω, P ), ID(t)(f) =

∫

O

f(x)X(t, x) dx . (5.1.5)

The mapping ID is well defined because of the lamp property of X(t, ·) for each

t > 0 and as each f ∈ D(O) has compact support in O. Lebesgue’s dominated

convergence theorem shows that ID is continuous, as every convergent sequence in

D(O) is bounded and uniformly compactly supported.

The following result establishes the relation that, if we neglect the embedding

by the operators ID and JD, we have that M may be viewed as the weak derivative

of X. This is in accordance with classical measure theory; if we adapt notions,

the relation M(t, (0, x]) = X(t, x) derived in Theorem 3.2.4 gives that X is the

cumulative distribution function of the random measure M .

Theorem 5.1.5. For a Lévy-valued additive sheet (X(t, ·) : t > 0) and an open

set O ⊆ R

d let ID be defined by (5.1.5). Then there exists a stochastic process

(V (t) : t > 0) in D∗(O) satisfying

ID(t)f = 〈f, V (t)〉D(O) P -a.s. for all f ∈ D(O), t > 0.

Furthermore, we have the equality

(−1)dID(t)(ḟ) = JD(t)(f) P -a.s. for all f ∈ D(O), (5.1.6)

where ḟ = ∂d

∂x1···∂xd
f and JD(t) denotes the operator in (5.1.4).

Proof. We show that, for each f ∈ D(O), the process (ID(t)f : t > 0) has a càdlàg

modification. First we consider a sequence (tn)n∈N decreasing monotonically to some

t > 0. Let K be the support of f . Then, as (tn)n∈N is bounded, there exists a C > 0
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such that tn ∈ [t, t + C] for each n. The lamp property of X implies that X is

bounded on the compact set [t, t+C]×K. Thus, since X(tn, x) converges to X(t, x)

in probability for each x ∈ O, Lebesgue’s dominated convergence theorem (for a

stochastically convergent sequence) implies

P − lim
n→∞

∫

O

f(x)X(tn, x) dx =

∫

O

f(x)X(t, x) dx.

A similar argument establishes that the left limits exists.

The existence of the stochastic process V follows from Theorem 3.2 in [34] (as

D(O) is nuclear [87, Th. 51.5] and ultrabornological [64, p.447]).

To show (5.1.6) we use ideas from [25]. By the fundamental theorem of calculus,

as f has compact support,

f(x) = (−1)d
∫

O

ḟ(y)1{y>x} dy for all x ∈ O.

(We recall that for a, b ∈ R

d we write a > b if aj > bj for all j = 1, . . . , d.)

By utilising an analogue of Fubini’s theorem for Lévy-valued random measures, as

detailed below, we obtain

JD(t)f =

∫

O

f(x)X(t, dx) =

∫

O

(
(−1)d

∫

O

ḟ(y)1{y>x} dy

)
X(t, dx)

= (−1)d
∫

O

(∫

O

1{y>x}X(t, dx)

)
ḟ(y) dy

= (−1)d
∫

O

X(t, y)ḟ(y) dy .

We now show the analogue of Fubini’s theorem to complete the proof. Let M

denote the Lévy-valued random measure corresponding to X according to Theorem
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3.2.4. The Lévy-Itô decomposition (3.2.2) yields that M admits the decomposition

M(t, A) = tγ(A) +G(t, A) +Mc(t, A) +Mp(t, A) for all A ∈ Bb(R
d) and t > 0.

Here, γ is a signed measure, G is a pure Gaussian Lévy-valued random measure

with characteristics (0,Σ, 0), and

Mc(t, A) :=

∫ t

0

∫

A×B
R

y Ñ(ds, dx, dy), Mp(t, A) :=

∫ t

0

∫

A×Bc
R

y N(ds, dx, dy).

The classic Fubini theorem may be applied to γ. The Lévy-valued random measure

Mp is a finite random sum and the Fubini result holds trivially.

For G and the compensated Poisson Lévy-valued random measure Mc we apply

Theorem 2.6 in [94]. We note that (G(t, ·) +Mc(t, ·) : t > 0) forms a martingale-

valued measure. Furthermore, G + Mc meets the orthogonality condition of the

cited Theorem by the pairwise independence of the processes (G(t, A) : t > 0),

(Mc(t, A) : t > 0), (G(t, B) : t > 0) and (Mc(t, B) : t > 0) whenever A,B ∈

Bb(R
d) are disjoint. The covariance process is given by Qt(A,B) = t

(
Σ(A ∩ B) +

∫
(A∩B)×B

R

|y|2 ν(dx, dy)
)
. As the required dominating measure K, one can choose

K(A×B × (0, t]) = tλ(A ∩ B). The required integrability condition follows as f is

compactly supported and bounded.

Remark 5.1.6. According to Proposition 3.2.3, a Lévy-valued additive sheet X de-

fines a natural additive sheet (X(t, x) : t > 0, x ∈ Rd). Due to its lamp trajectories,

we can define the mapping

I ′D : D((0,∞)×Rd) → L0(Ω, P ), I ′D(f) =

∫

(0,∞)×Rd

f(t, x)X(t, x) dt dx.

On the other side, one can conclude as in Theorem 3.2.4 or by [66, Th. 4.1], that

there exists an infinitely divisible random measure M ′ on Bb(R+ ×Rd) satisfying
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M((0, z]) = X(z) for all z ∈ R+ ×Rd. Thus, as in Remark 5.1.4, we can define

J ′
D : D((0,∞)×Rd) → L0(Ω, P ), J ′

D(g) =

∫

(0,∞)

∫

R

d

g(t, x)M ′(dt, dx).

One can conclude as in the proof of Theorem 5.1.5 that there exists a genuine random

variable W in D∗((0,∞)×Rd) satisfying

〈g,W 〉 = I ′D(g) for all g ∈ D((0,∞)×Rd).

Furthermore, we have the equality

(−1)dI ′D(ġ) = J ′
D(g) for all g ∈ D((0,∞)×Rd).

5.1.2 Besov regularity of stationary Lévy white noise

Let M be a Lévy-valued random measure on Bb(R
d) with characteristics (γ,Σ, ν)

and JD(t) the corresponding operator defined in (5.1.1) for t > 0. By comparing

the Lévy symbol in (3.3.9) with (1.1.1) it follows that, for fixed t > 0, the mapping

JD(t) is a Lévy white noise as defined in [25], if and only if

γ = p · leb, Σ = σ2 · leb, ν = leb⊗ν0,

for some p ∈ R, σ2 ∈ R+ and a Lévy measure ν0 on R. It follows that M(t, A)
D
=

M(t, B) for any sets A,B ∈ Bb(R
d) with leb(A) = leb(B). In this case, we call M

stationary in space.
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Dalang and Humeau have shown in [25] that a Lévy white noise in D∗(Rd) with

Lévy symbol (1.1.1) takes values in S∗(Rd) P -a.s. if and only if

∫

Bc
R

|y|ε ν0(dy) <∞ for some ε > 0 .

This result is seemingly different to our Theorem 5.1.2. However, as Lévy-valued

random measures are not necessarily stationary in space, our condition is more

complex. For example, even in the pure Gaussian case with characteristics (0,Σ, 0),

the measure Σ must be tempered; cf. Remark 5.1.3. For the case of a Lévy-valued

random measure which is stationary in space, these results are in fact equivalent,

as shown in the following result. For simplicity, we consider the symmetric non-

Gaussian case.

Theorem 5.1.7. Let M = {M(t, A) : t > 0, A ∈ Bb(R
d)} be a Lévy-valued random

measure with characteristics of the form (0, 0, leb⊗ν) such that ν is symmetric.

Then S(Rd) ⊆ LM (Rd), so that every ϕ ∈ S(Rd) is M-integrable if and only if

there exists ε > 0 such that

∫

Bc
R

|y|ε ν(dy) <∞.

Proof. First, we assume that S(Rd) ⊆ LM(Rd). By Theorem 5.1.2 we have the

existence of r > 0 such that x 7→ (1 + |x|2)−r ∈ LM(Rd, λ). Thus, by [70, Th. 2.7]

we have

∫

R

d ×R

(1 ∧ (1 + |x|2)−2r |y|2) dxν(dy) <∞,
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which implies

∫

R

d

∫

(1+|x|2)r<|y|

ν(dy) dx <∞,

and therefore by Fubini’s Theorem we have

∫

R

R(y) ν(dy) <∞,

where R(y) := leb({x : (1+ |x|2)r < |y|}) for y 6= 0 and R(0) := 0. This leads finally

to the result that

∫

Bc
R

(|y|1/r − 1)1/2 ν(dy) <∞,

which indicates moments of order 1
2r

for M .

To show the converse, suppose that
∫
Bc
R

|y|ε ν(dy) < ∞. Take r = 1
2ε

. Then

clearly we have

∫

Bc
R

(|y|1/r − 1)1/2 ν(dy) =

∫

R

R(y) ν(dy) =

∫

R

d

∫

(1+|x|2)r<|y|

ν(dy) dx <∞.

Thus, by properties of Lévy measures (and further assuming that r > d
2
) we see that

∫

R

d ×R

(1 ∧ (1 + |x|2)−2r |y|2) dxν(dy) <∞,

which in the symmetric case is sufficient to apply [70, Th. 2.7] to show x 7→ (1 +

|x|2)−r ∈ LM (Rd, λ). An application of Theorem 5.1.2 completes the proof.

Regularity of (independently scattered) Lévy white noises in terms of Besov

spaces is studied in [9]. These results can be applied to a Lévy-valued random

measure if it is additionally assumed to be stationary in space, i.e. which can be
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considered as a Lévy white noise in the above sense. We illustrate such an application

in the following example.

Let M be the α-stable random measure, α ∈ (0, 2), described in Example 3.1.5.

For simplicity we consider the symmetric case, i.e. p = q = 1
2
. As the characteristics

of M is given by (0, 0, leb⊗να), it follows that M is stationary in space. Thus, for

a fixed time t > 0, the mapping JD(t) or, equivalently the random variable Y (t),

where Y denotes the Lévy process derived in Theorem 5.1.1, can be considered as

a Lévy white noise in D∗(Rd). Furthermore, since
∫
R

(
|y|ε ∧ |y|2

)
να(dy) < ∞ for

ε < α, we have that Y (t) is in S∗(Rd) P -a.s. By applying the results from [9] we

obtain the following: for p ∈ (0, 2) ∪ 2N∪{∞} and for all t > 0, we have, P -a.s.:

if s < d

(
1

p ∨ α
− 1

)
and w < −

d

p ∧ α
then Y (t) ∈ Bp

s,w(R
d), (5.1.7)

if s > d

(
1

p ∨ α
− 1

)
or w > −

d

p ∧ α
then Y (t) /∈ Bp

s,w(R
d). (5.1.8)

Furthermore, a modification of Y is a Lévy process in any Besov space satisfying

(5.1.7), since its characteristic function is continuous in 0, guaranteeing stochastic

continuity.

5.2 Cylindrical Lévy processes in L2

We analyse cylindrical Lévy processes in L2(Rd), which we shall identify with its

dual; we first embed these processes in the space of tempered distributions, and then

determine when they arise from a Lévy process in a (larger) Besov space.

Definition 5.2.1. Let H be a Hilbert space continuously and densely embedded in

a topological vector space V . A cylindrical Lévy process L in H is said to be induced
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by a Lévy process Y in V if

L(t)f = 〈Y (t), f〉V P -a.s. for all f ∈ V ∗ and t > 0.

5.2.1 Regularisation in S∗

We now examine cylindrical Lévy processes in L2(Rd). As S∗(Rd) is the dual of a

nuclear space, we are able to give the following universal result for the embedding.

Theorem 5.2.2. Every cylindrical Lévy process L in L2(Rd) is induced by a Lévy

process Y in S∗(Rd) and Y is unique up to indistinguishability.

Proof. The Schwartz space S(Rd) is embedded continuously and densely in L2(Rd);

indeed, the dense inclusion follows from [33, Th. 8.17], and continuity can be seen

by, for ϕ ∈ S(Rd),

‖ϕ‖2L2 =

∫

R

d

(1 + |x|2)−2d(1 + |x|2)2d |ϕ(x)|2 dx ≤ ‖ϕ‖2Sd

∫

R

d

(1 + |x|2)−2d dx <∞.

Let ι be the canonical embedding of L2(Rd) in S∗(Rd) and define

L̃(t) : S(Rd) → L0(Ω), L̃(t)ϕ = L(t)(ι∗ϕ). (5.2.9)

It follows that L̃ := (L̃(t) : t ≥ 0) is a cylindrical Lévy process in S∗(Rd). Since

S(Rd) is a barrelled nuclear space, the family (L̃(t) : t ∈ [0, T ]) of linear maps

from S(Rd) into L0(Ω) is equicontinuous for every T > 0; see the argument in [35,

Cor. 3.11]. Thus, Theorem 3.8 in [35] enables us to conclude that there exists a

S∗(Rd)-valued, càdlàg Lévy process Y = (Y (t))t≥0 such that Y induces L̃ and Y is

unique up to indistinguishability.
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5.2.2 Regularisation in weighted Besov spaces

The literature dealing with the Besov localisation of Gaussian and Lévy processes

is primarily concerned with the path properties of finite-dimensional processes, or

analogously with white noise, conceived as a distribution-valued generalised ran-

dom variable which represents the weak derivative in space and time of a finite-

dimensional process. In this work we generalise from a distribution-valued random

variable to a distribution-valued process by considering the time variable as separate;

in this manner we are primarily assessing the spatial regularity of the process.

We shall now examine conditions on p, s and w (depending on L) such that L

is induced by a process Y taking values in Bp
s,w(R

d). With reference to Definition

5.2.1, we shall only consider Besov spaces which contain L2(Rd). This will allow

us to develop the mathematical theory without the complication arising in the case

that the cylindrical Lévy process L may have a non-trivial kernel and thus may be

induced by a process in a Besov space which does not contain the whole of L2(Rd).

Cylindrical Brownian motions

Let W = (W (t) : t ≥ 0) be a standard cylindrical Brownian motion in L2(Rd). We

may use the correspondence identified in Chapter 3 between independently scattered

cylindrical Lévy processes and distribution-valued white noises to state a result for

W . We recall the characteristic function of W (1) is given by

f 7→ exp

(
−
1

2
‖f‖2L2

)
= exp

(
−
1

2

∫

R

d

|f(x)|2 dx

)
.

This means that we may apply Proposition 3.4 in [9] and conclude that, given p > 1

and s, w ∈ R, W is induced by a Brownian motion in Bp
s,w(R

d) if and only if

s < −
d

2
and w < −

d

p
.
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For a general cylindrical Brownian motion W = (W (t) : t ≥ 0) in L2(Rd), let

the covariance operator of W be Q ∈ L
(
L2(Rd)

)
, with reproducing kernel Hilbert

space HQ. Suppose p > 1 and w, s ∈ R are such that L2(Rd) →֒ Bp
s,w(R

d), then

W is induced by a Bp
s,w(R

d)-valued Brownian motion if and only if the injection

HQ →֒ Bp
s,w(R

d) is γ-Radonifying in the sense of Chapter 9 in [41].

Non-Gaussian cylindrical Lévy processes

The cylindrical Lévy process L = (L(t) : t > 0) on L2(Rd) defines by L′(t)(b∗) :=

L(t)(ι∗b∗) a cylindrical Lévy process L′ = (L′(t) : t > 0) on Bp
s,w(R

d) where ι :

L2(Rd) → Bp
s,w(R

d) is the canonical embedding for (s, w) ∈ Ep and p > 1.

Let µ be the cylindrical Lévy measure of the the cylindrical Lévy process L on

L2(Rd); see [73, Th. 3.4]. The cylindrical Lévy measure µ̃ of L′ is given by µ ◦ ι−1.

We shall study the case when µ̃ extends to a Radon measure on Bp
s,w(R

d). In this

case, we will mildly abuse notation and simply refer to this Radon extension as µ

where the context allows no confusion. The starting point for our analysis shall be

to examine this Radon extension using the results previously developed.

The following result demonstrates that, in the non-Gaussian case, regularisa-

tion of the cylindrical Lévy process results from the extension of the cylindrical

Lévy measure, and furthermore allows us to concentrate in the sequel on symmetric

cylindrical Lévy processes.

Theorem 5.2.3. Let L be a cylindrical Lévy process in L2(Rd) with no Guassian

component and let p > 1 and (s, w) ∈ Ep. Let LS := L− Lc be the symmetrisation

of L, where Lc is an independent copy of L. Then L is induced by a Lévy process

in Bp
s,w(R

d) if and only if the cylindrical Lévy measure of LS has a Radon extension

which is a Lévy measure on Bp
s,w(R

d).

Proof. The ‘only if’ implication is clear. To establish the converse, denoting the

cylindrical Lévy measure of L by µ, we have that LS has cylindrical Lévy measure
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µ+ µ−. Let µ̃S denote the Radon extension of µ+ µ− on Bp
s,w(R

d); by assumption

µ̃S is a Lévy measure. As we have µ 6 µ̃S on each cylinder set of Bp
s,w(R

d), by

[74, Th. 3.4] we have that µ has a Radon extension on Bp
s,w(R

d) which is a Lévy

measure.

We now fix t > 0 and apply Theorem 5.6 in [74] to the function f : [0, t] →

L(L2(Rd), Bp
s,w(R

d)) given by f(u) = ι for all u ∈ [0, t], and we conclude that f is

stochastically integrable with respect to L. (This Theorem actually requires that

the function a : L2(Rd) → R as defined in Equation 3.1 of [74] is weak*-weakly

sequentially continuous, however a careful analysis of the proof indicates that in a

reflexive Banach space such as Bp
s,w(R

d), this requirement is not necessary.)

We then see that the process

Y =

(
Y (t) :=

∫

[0,t]

f(u) dL(u) : t > 0

)

forms a Lévy process in Bp
s,w(R

d) which induces L.

In the sequel we shall make use of the following technique. It is possible to

express the tests in the hypothesis of Corollary 5.2.5 as limits of finite-dimensional

projections. As the sums defining membership of a given Besov space are required

to be unconditionally convergent, we may take any convenient ordering of the terms.

For any enumeration of the countable set of indices j, G and m, we denote a sum

over the first n terms in this enumeration by
∑n

j,G,m, and Ψk refers to the wavelet

Ψjk,Gk
mk

corresponding to the k-th term in this enumeration. We define for each n ∈ N

the projection Pn ∈ L(Bp
s,w(R

d)) onto the subspace spanned by the first n elements

in the enumeration of Ψ, that is

Pnf :=
n∑

j,G,m

[Ψj,G
m , f ]Ψj,G

m , f ∈ Bp
s,w(R

d). (5.2.10)
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Theorem 5.2.4. Let µ be a cylindrical Lévy measure on Bp
s,w(R

d)) for some p > 1

and (s, w) ∈ Ep. Then µ extends to a σ-finite measure on Bp
s,w(R

d) if

lim
R→∞

lim
n→∞

µ
(
{f : ‖Pnf‖Bp

s,w
> R}

)
= 0.

Proof. We shall apply the Theorem on [38, p.327]. This Theorem gives conditions

for when a cylindrical probability measure extends to a Radon probability measure

on a Banach space with a separable dual. In order to apply this Theorem in our

setting, a careful study of the proof indicates that the Theorem may be applied to

any finite cylindrical measure satisfying the continuity condition

lim
k→∞

µ
(
{f : [f, f ∗

1,k] < a1, . . . , [f, f
∗
m,k] < am}

)
= µ

(
{f : [f, f ∗

1 ] < a1, . . . , [f, f
∗
m] < am}

)

(5.2.11)

for µ-almost all a1, . . . , am whenever
∥∥f ∗

i,k − f ∗
i

∥∥
Bp′

−s,−w

→ 0 for each i = 1, . . . , m.

Let {ek}k∈N be an (unconditional) Schauder basis of Bp
s,w(R

d) with coordinate

functionals {e∗k}k∈N such that ‖e∗k‖Bp′

−s,−w(Rd)
= 1 for each k ∈ N. We consider the

cylindrical measure µ1,1 defined by

µ1,1(C) = µ (C ∩ {f : |[f, e∗1]| > 1})

for each cylinder set C in Z(Bp
s,w(R

d), {e∗k}k∈N). Clearly the set of functionals

{e∗k}k∈N is separating, and thus Z(Bp
s,w(R

d), {e∗k}k∈N) generates B(Bp
s,w(R

d)). By

the properties of cylindrical Lévy measures, µ1,1 is a finite cylindrical measure on

Z(Bp
s,w(R

d), {e∗k}k∈N). As µ satisfies limk→∞(|β|2∧1)(µ◦π−1
e∗1,f

∗
1,k...,f

∗
m,k

)(dβ) = (|β|2∧

1)(µ ◦ π−1
e∗1,f

∗
1 ,...,f

∗
m
)(dβ) weakly due to Lemma 4.4 in [73], we see that (5.2.11) is

satisfied for µ1,1 as each finite-dimensional projection only takes weight on |β| >

1. Thus we may apply [38] and extend µ1,1 to a finite Radon measure µ̃1,1 on
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Bp
s,w(R

d). Clearly µ̃1,1 is supported on {f : |[f, e∗1]| > 1}, and for each cylinder set

C ∈ Z(Bp
s,w(R

d), {e∗k}k∈N) we have µ̃1,1(C) = µ(C ∩ {f : |[f, e∗1]| > 1}).

Next, for each n ∈ N we construct cylindrical measures µ1,n+1 by

µ1,n+1(C) = µ

(
C ∩

{
f :

1

n+ 1
< |[f, e∗1]| 6

1

n

})
, C ∈ Z(Bp

s,w(R
d), {e∗k}k∈N).

Applying the same argument as above (using an easy rescaling), we obtain a sequence

of finite Radon measures {µ̃1,n}n∈N with pairwise disjoint support. We define the

measure µ̃1 by

µ̃1(A) =

∞∑

n=1

µ̃1,n(A), A ∈ B(Bp
s,w(R

d)).

By this construction, µ̃1 forms a σ-finite Radon measure on Bp
s,w(R

d) supported on

B1 := {f : |[f, e∗1]| 6= 0}.

We next repeat the procedure on the subspace {f : |[f, e∗1]| = 0}. We start by

defining, for C ∈ Z(Bp
s,w(R

d), {e∗k}k∈N),

µ2,1(C) = µ (C ∩ {f : |[f, e∗1]| = 0, |[f, e∗2]| > 1}) ,

and, for n ∈ N,

µ2,n+1(C) = µ

(
C ∩

{
f : |[f, e∗1]| = 0,

1

n+ 1
< |[f, e∗2]| 6

1

n

})
.

We in this manner obtain a σ-finite Radon measure µ̃2 supported onB2 := {f : |[f, e∗1]| =

0, |[f, e∗2]| 6= 0}. We then continue this procedure to create the set of measures

{µ̃k}k∈N, where for each k ∈ N, µ̃k is supported onBk := {f : |[f, e∗1]| = 0, . . . ,
∣∣[f, e∗k−1]

∣∣ =
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0, |[f, e∗k]| 6= 0}. We observe that the set {Bk}k∈N is pairwise disjoint, and

Bp
s,w(R

d) = {0} ∪
∞⋃

k=1

Bk.

We now finally define the measure µ̃ on Bp
s,w(R

d) by setting µ̃({0}) = 0 and

µ̃(A) =
∞∑

k=1

µ̃k(A), A ∈ B(Bp
s,w(R

d)).

As µ̃ is a sum of σ-finite measures with pairwise disjoint support, it follows that µ̃ is

σ-finite. Let C ∈ Z∗(B
p
s,w(R

d), {e∗k}k∈N), say C = {f : ([f, e∗k1], . . . , [f, e
∗
km

]) ∈ K},

with 0 /∈ K, as the Lévy measure µ ◦ π−1
e∗k1

,...,e∗km
is only defined on such sets. Then

we have

µ̃(C) =
km∑

k=1

µ̃k(C) =
km∑

k=1

µ(C ∩ Bk) = µ(C).

The representation as a finite sum holds as cylinder sets are all defined on the

same finite group of functionals and so µ̃ forms an extension of the restriction of µ

to Z∗(B
p
s,w(R

d), {e∗k}k∈N). As µ̃ is a σ-finite measure on B(Bp
s,w(R

d)), we have by

uniqueness of extensions that µ̃ forms an extension of µ.

We now present a Corollary to Theorem 4.1.2 which characterises when a cylin-

drical Lévy process in L2(Rd) is induced by a (genuine) Lévy process in some given

weighted Besov space.

Corollary 5.2.5. Let L be a cylindrical Lévy process in L2(Rd) with no Gaussian

component and with cylindrical Lévy measure µ. Let p > 1 and (s, w) ∈ Ep. Assume

that µ extends to a σ-finite measure on Bp
s,w(R

d). Then L is induced by a Lévy

process in Bp
s,w(R

d) P -a.s. if and only if for any admissible basis Ψ of Bp
s,w(R

d) we

have
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1. for p > 2,

lim
n→∞

∫

Bp
s,w

(
‖Pnf‖

p
Bp

s,w
∧ 1
)
µ(df) <∞, (5.2.12)

lim
n→∞

n∑

j,G,m

(ωj
m)

p

(∫

Bp
s,w

1B
R

(
‖Pnf‖Bp

s,w

) ∣∣[Ψj,G
m , f ]

∣∣2 µ(df)
)p/2

<∞;

2. for p ∈ (1, 2),

lim
n→∞

∫

Bp
s,w

(
‖Pnf‖

2
Bp

s,w
∧ 1
)
µ(df) <∞, (5.2.13)

lim
n→∞

n∑

j,G,m

(ωj
m)

p

∫ ∞

0

(
1− e

∫
B
p
s,w
1B
R

(
‖Pnf‖Bp

s,w

)(
cos τ [Ψj,G

m ,f ]−1
)
µ(df)

)
dτ

τ 1+p
<∞.

In the expressions above, ωj
m = ωj

m(p, s, w) are the weight constants defined in

(2.1.2).

Proof. By Theorem 5.2.3 we may assume that L and µ are symmetric. Then neces-

sity and sufficiency of the conditions is clear from Theorem 4.1.2.

5.3 Canonical cylindrical α-stable processes

In this section, we apply our previous results to investigate the regularity of some

typical examples of cylindrical Lévy processes as they often appear in the literature;

see e.g. [18, 69]. A cylindrical Lévy process L = (L(t) : t > 0) in L2(Rd) is called

canonical α-stable for some α ∈ (0, 2) if its characteristic function is of the form

ϕL(t)(u) = exp(−t ‖u‖αL2), u ∈ L2(Rd).
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The existence of a cylindrical distribution with this characteristic function is guar-

anteed by Bochner’s theorem for cylindrical measures; see [92, Prop. IV.4.2]; two

possible explicit constructions can be found in [75].

Theorem 5.3.1. Let L be a canonical α-stable cylindrical process in L2(Rd) for

some α ∈ (0, 2). Then L is induced by a Lévy process in Bp
s,w(R

d) P -a.s. for some

p > 1 and (s, w) ∈ Ep if and only if

s < −
d

2
and w < −

d

p
.

Proof. Let Ψ be an admissible basis of Bp
s,w(R

d); we recall Ψ forms an orthonormal

basis of L2(Rd). Lemma 2.4 in [75] shows that the Lévy measure νn := µ ◦ π−1
Ψ1,...Ψn

of any n-dimensional projection is given by

νn(B) =
α

cα

∫

Sn

λn(dξ)

∫ ∞

0

1B(rξ)r
−1−α dr for all B ∈ B(Rn),

where λn is uniformly distributed on the sphere Sn = {ξ ∈ Rn : |ξ| = 1} with

λn(S
n) = rn :=

Γ(1
2
)Γ(n+α

2
)

Γ(n
2
)Γ(1+α

2
)

and cα =






−α cos(απ
2
)Γ(−α), if α 6= 1,

απ
2
, if α = 1.

First we show sufficiency of the conditions. For p ∈ (1, 2] this follows directly

from the fact that the embedding of L2(Rd) →֒ Bp
s,w(R

d) is 0-Radonifying, see Part

(i) of Theorem 4.2.6. For p > 2, we will establish the Borel extension of µ by the

result in Theorem 5.2.4 and then apply Corollary 5.2.5. We choose an enumeration

of the indices j, G and m. We recall the projections Pn as defined in (5.2.10), and
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we define

Σn :=

∫

Bp
s,w

(
‖Pnf‖

p
Bp

s,w
∧ 1
)
µ(df)

=

∫

R

n

(
n∑

j,G,m

(ωj
m)

p
∣∣βj,G

m

∣∣p ∧ 1

)
(µ ◦ π−1

Ψ1,...,Ψn
)(dβ)

=
α

cα

∫

Sn

∫ ∞

0

(
n∑

j,G,m

(ωj
m)

p
∣∣rξj,Gm

∣∣p ∧ 1

)
r−1−α dr λn(dξ)

=
p

cα(p− α)

∫

Sn

(
n∑

j,G,m

(ωj
m)

p
∣∣ξj,Gm

∣∣p
)α/p

λn(dξ). (5.3.14)

Letting λ1n := 1
rn
λn, Jensen’s inequality implies

Σn =
prn

cα(p− α)

∫

Sn

(
n∑

j,G,m

(ωj
m)

p
∣∣ξj,Gm

∣∣p
)α/p

λ1n(dξ)

6
prn

cα(p− α)

(∫

Sn

n∑

j,G,m

(ωj
m)

p
∣∣ξj,Gm

∣∣p λ1n(dξ)
)α/p

.

By Lemma A.2 in [75] we have
∫
Sn

∣∣ξj,Gm

∣∣p λ1n(dξ) =
Γ(n

2
)Γ( 1+p

2
)

Γ( 1
2
)Γ(n+p

2
)

and thus

Σn 6
prn

cα(p− α)

(
n∑

j,G,m

(ωj
m)

pΓ(
n
2
)Γ(1+p

2
)

Γ(1
2
)Γ(n+p

2
)

)α/p

=
p

cα(p− α)

Γ(1
2
)Γ(n+α

2
)

Γ(n
2
)Γ(1+α

2
)

(
Γ(n

2
)Γ(1+p

2
)

Γ(1
2
)Γ(n+p

2
)

)α/p( n∑

j,G,m

(ωj
m)

p

)α/p

.

Since Γ(x+α)
Γ(x)

= xα
(
1 + O(x−1)) as x → ∞ [15, Prop. 2.1.3], we conclude that Σn

converges to a finite limit as n → ∞ since
∑

j,G,m(ω
j
m)

p < ∞ given s < −d
2

and
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w < −d
p

(see the proof of [31, Th. 3]). Next we define

Υn :=
n∑

j,G,m

(ωj
m)

p

(∫

Bp
s,w

1B
R

(
‖Pnf‖Bp

s,w

) ∣∣[Ψj,G
m , f ]

∣∣2 µ(df)
)p/2

=

n∑

j,G,m

(ωj
m)

p

(∫

R

n

1B
R

( n∑

i,H,l

(ωi
l)

p
∣∣∣βi,H

l

∣∣∣
p ) ∣∣βj,G

m

∣∣2 (µ ◦ π−1
Ψ1,...,Ψn

)(dβ)

)p/2

=
n∑

j,G,m

(ωj
m)

p

(
α

cα

∫

Sn

∫ ∞

0

1B
R

( n∑

i,H,l

(ωi
l)

p
∣∣∣rξi,Hl

∣∣∣
p ) ∣∣rξj,Gm

∣∣2 r−1−α dr λn(dξ)

)p/2

=

(
α

cα(2− α)

)p/2 n∑

j,G,m

(ωj
m)

p

(∫

Sn

∣∣ξj,Gm

∣∣2
( n∑

i,H,l

(ωi
l)

p
∣∣∣ξi,Hl

∣∣∣
p )(α−2)/p

λn(dξ)

)p/2

.

Applying first Jensen’s inequality and then Hölder’s inequality, we obtain

Υn 6

(
α

cα(2− α)

)p/2

rp/2n

n∑

j,G,m

(ωj
m)

p

∫

Sn

∣∣ξj,Gm

∣∣p
( n∑

i,H,l

(ωi
l)

p
∣∣∣ξi,Hl

∣∣∣
p )(α−2)/2

λ1n(dξ)

=

(
α

cα(2− α)

)p/2

rp/2n

∫

Sn

( n∑

j,G,m

(ωj
m)

p
∣∣ξj,Gm

∣∣p
)α/2

λ1n(dξ)

6

(
α

cα(2− α)

)p/2

rp/2n

(∫

Sn

n∑

j,G,m

(ωj
m)

p
∣∣ξj,Gm

∣∣p λ1n(dξ)
)α/2

=

(
α

cα(2− α)

)p/2

rp/2n

(
n∑

j,G,m

(ωj
m)

p

)α/2(
Γ(n

2
)Γ(1+p

2
)

Γ(1
2
)Γ(n+p

2
)

)α/2

.

Since by properties of the Gamma function we have

rp/2n

(
Γ(n

2
)Γ(1+p

2
)

Γ(1
2
)Γ(n+p

2
)

)α/2

=

(
Γ(1

2
)Γ(n+α

2
)

Γ(n
2
)Γ(1+α

2
)

)p/2
(
Γ(n

2
)Γ(1+p

2
)

Γ(1
2
)Γ(n+p

2
)

)α/2

= O(1) as n→ ∞,

it follows that Υn has a finite limit as n → ∞ as
∑n

j,G,m(ω
j
m)

p does. We recall the

definition (5.2.10) of the projection Pn onto the subspace spanned by the first n
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elements in the enumeration of Ψ. It follows that we have

‖Pnf‖
p
Bp

s,w
=

n∑

j,G,m

(ωj
m)

p
∣∣[Ψj,G

m , f ]
∣∣p , f ∈ Bp

s,w(R
d).

Let R > 0. It follows that

µ
(
{f : ‖Pnf‖

p
Bp

s,w
> Rp}

)
=

∫

R

n

1

{
∑n

j,G,m(ωj
m)p|βj,G

m |
p
>Rp

} (µ ◦ π−1
Ψ1,...,Ψn

)(dβ)

=
α

cα

∫

Sn

∫ ∞

R(
∑n

j,G,m(ωj
m)p|ξj,Gm |

p
)−1/p

r−1−α dr λn(dξ)

= R−αc−1
α

∫

Sn

(
n∑

j,G,m

(ωj
m)

p
∣∣ξj,Gm

∣∣p
)α/p

λn(dξ)

= R−αp− α

p
Σn.

As Σn → Σ∞ < ∞ as n → ∞, we see we have limR→∞ limn→∞ µ
(
{f : ‖Pnf‖Bp

s,w
>

R}
)
= 0 and we may thus apply Theorem 5.2.4 to show the extension of µ to a

σ-finite measure on Bp
s,w(R

d). As we have shown limn→∞Σn <∞ and limn→∞Υn <

∞, Corollary 5.2.5 verifies the sufficiency for these values of w and s and p > 2.

We now show the necessity of the conditions in the hypothesis. First we consider

the case p > 2. We define An :=
∑n

j,G,m(ω
j
m)

p and, applying Jensen’s inequality to

the concave sum
(∑n

j,G,mA
−1
n (ωj

m)
p
∣∣ξj,Gm

∣∣p
)α/p

we obtain from (5.3.14), using again

[75, Lem. A.2],

Σn =
pA

α/p
n

cα(p− α)

∫

Sn

(
n∑

j,G,m

A−1
n (ωj

m)
p
∣∣ξj,Gm

∣∣p
)α/p

λn(dξ)

>
pA

α/p
n

cα(p− α)

∫

Sn

n∑

j,G,m

A−1
n (ωj

m)
p
∣∣ξj,Gm

∣∣α λn(dξ)

=
pA

α/p
n

cα(p− α)
rn

Γ(n
2
)Γ(1+α

2
)

Γ(1
2
)Γ(n+α

2
)
=

pA
α/p
n

cα(p− α)
.



Chapter 5. Regularisation of Lévy space-time noises 109

For s > −d
2

or w > −d
p

we have An → ∞ as n → ∞ (see the proof of [31, Th. 3]).

Thus we have shown that Σn → ∞ as n → ∞, so Condition 1 of Corollary 5.2.5 is

not met for these values of w and s, and the necessity is shown for the case p > 2.

For p ∈ (1, 2) we define

Λn :=

∫

Bp
s,w

(
‖Pnf‖

2
Bp

s,w
∧ 1
)
µ(df)

=

∫

R

n



(

n∑

j,G,m

(ωj
m)

p
∣∣βj,G

m

∣∣p
)2/p

∧ 1


 (µ ◦ π−1

Ψ1,...Ψn
)(dβ)

=
α

cα

∫

Sn

∫ ∞

0



(

n∑

j,G,m

(ωj
m)

p
∣∣rξj,Gm

∣∣p
)2/p

∧ 1


 r−1−α drλn(dξ)

=
2

cα(2− α)

∫

Sn

(
n∑

j,G,m

(ωj
m)

p
∣∣ξj,Gm

∣∣p
)α/p

λn(dξ).

For p > α, we can conclude as above for Σn that Λn → ∞ as n→ ∞ and Condition

2 of Corollary 5.2.5 is not met for these values of w and s, which shows the necessity.

For p < α, applying Jensen’s inequality this time to
∫
Sn

(∑n
j,G,m(ω

j
m)

p
∣∣ξj,Gm

∣∣p
)α/p

λ1n(dξ)

gives us

Λn =
2rn

cα(2− α)

∫

Sn

(
n∑

j,G,m

(ωj
m)

p
∣∣ξj,Gm

∣∣p
)α/p

λ1n(dξ)

>
2rn

cα(2− α)

(∫

Sn

n∑

j,G,m

(ωj
m)

p
∣∣ξj,Gm

∣∣p λ1n(dξ)
)α/p

=
2rn

cα(2− α)

(
n∑

j,G,m

(ωj
m)

pΓ(
n
2
)Γ(1+p

2
)

Γ(1
2
)Γ(n+p

2
)

)α/p

.

Since Γ(x+α)
Γ(x)

= xα
(
1 +O(x−1)) as x → ∞, see [15, Prop. 2.1.3], and

∑
j,G,m(ω

j
m)

p =

∞, it follows Λn → ∞ as n→ ∞. Applying Corollary 5.2.5 completes the proof.

Remark 5.3.2. Recall that Rp denotes the (s, w)-plane where the embeddings L2(Rd) →֒

Bp
s,w(R

d) are 0-Radonifying. For p 6 2, Theorem 5.3.1 states that L is induced by
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a Lévy process in Bp
s,w(R

d) P -a.s. if and only if (s, w) ∈ Rp. However, for p > 2

the Theorem gives a stronger result, in that the region of the (s, w)-plane where L

is induced by a Lévy process in Bp
s,w(R

d) P -a.s. is a proper superset of Rp.

Remark 5.3.3. This result is somewhat surprising, in that there is no dependency

on α for the regularisation. Indeed, the same result holds for the standard cylin-

drical Brownian motion in L2(Rd). This contrasts with the result (5.1.7) for the

independently scattered case. However in this case, for α ∈ (1, 2), the Musielak-

Orlicz space LM(Rd, leb), which is the domain of integrable functions, is Lα′
(Rd).

This means that the independently scattered cylindrical Lévy process which this re-

sult holds for is a cylindrical process in Lα′
(Rd). It can be shown that the embedding

Lα′
(Rd) →֒ Bp

s,w(R
d) is 0-Radonifying for s < d

(
1

p∨α
− 1
)

and w < − d
p∧α

, which is

consistent with (5.1.7). In this manner, the regularisation is seen to be a property

of the domain of definition of the cylindrical Lévy process in this case.

5.4 Hedgehog cylindrical Lévy process

In this section, we apply our previous results to investigate the regularity of some

typical examples of cylindrical Lévy processes as they often appear in the literature;

see e.g. [18, 69]

In this section let L be a cylindrical Lévy process in L2(Rd) of the form

L(t)f =

∞∑

k=1

[f, ek]akℓk for all f ∈ L2(Rd), t > 0, (5.4.15)

where (ek)k∈N is an orthonormal basis of L2(Rd) and (ℓk)k∈N are identically dis-

tributed and independent symmetric real-valued Lévy processes with characteristics

(0, 0, ρ) for a Lévy measure ρ 6= 0 in R. By Theorem 5.2.3 it is sufficient for our

analysis to focus on the symmetric case. The sequence (ak)k∈N is real-valued and
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satisfies

∞∑

k=1

∫

R

(
|akckβ|

2 ∧ 1
)
ρ(dβ) <∞ (5.4.16)

for each (ck)k∈N ∈ ℓ2(R). This condition guarantees that the sum in (5.4.15) con-

verges P -a.s. in R; see [74, Lem. 4.2]. To avoid redundancies in the representation,

we assume ak 6= 0 for all k ∈ N.

The support of the cylindrical measure µ of L is in
⋃

k∈N{βek : β ∈ R}, as

(ℓk)k∈N are independent, that is to say the measure only has weight on the axes.

For this reason, we refer to this process as a hedgehog cylindrical process.

We first present further Corollaries to Theorem 4.1.2 and Remark 4.1.4 tailored

to this setting.

Corollary 5.4.1. Let L be a cylindrical Lévy process of the form (5.4.15). Let

p > 1 and (s, w) ∈ Ep, and furthermore suppose the orthonormal basis used in

(5.4.15) satisfies {ek}k∈N ⊆ Bp′

−s,−w(R
d). Then L is induced by a Lévy process in

Bp
s,w(R

d) P -a.s. if and only if

1. for p > 2,

∞∑

k=1

∫

R

(
‖akek‖

p
Bp

s,w
|β|p ∧ 1

)
ρ(dβ) <∞,

∑

j,G,m

(ωj
m)

p

(
∞∑

k=1

∣∣[Ψj,G
m , akek]

∣∣2
∫

|β|6‖akek‖
−1

B
p
s,w

β2 ρ(dβ)

)p/2

<∞;

2. for p ∈ (1, 2),

∞∑

k=1

∫

R

(
‖akek‖

2
Bp

s,w
|β|2 ∧ 1

)
ρ(dβ) <∞,

∑

j,G,m

(ωj
m)

p

∫ ∞

0

(
1− e

∑∞
k=1

∫
β6‖akek‖

−1

B
p
s,w

(cos τ [Ψj,G
m ,akek]β−1) ρ(dβ)

)
dτ

τ 1+p
<∞.
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Proof. Let Ψ be an admissible basis for Bp
s,w(R

d). Lemma 4.2 in [74] and Lemma

3.10 in [51] show the Lévy measure µ of L extends to a σ-finite Borel measure on

L2(Rd) with projection on the n-th partial sum given by

(µ ◦ π−1
e1,...,en

)(dβ1 · · ·dβn) =
n∑

k=1

(ρ ◦mak)(dβk) (5.4.17)

where mak : R→ R is defined by mak(β) = akβ. We henceforth identify µ with its

pushforward measure on Bp
s,w(R

d) under the canonical injection.

For p > 1 we define q := p ∨ 2 and calculate for each n ∈ N, applying (5.4.17),

∫

Bp
s,w




(
∑

j,G,m

∣∣∣∣∣ω
j
m

n∑

k=1

[Ψj,G
m , ek][ek, f ]

∣∣∣∣∣

p)q/p

∧ 1



 µ(df)

∫

R

n



(
∑

j,G,m

∣∣∣∣∣ω
j
m

n∑

k=1

[Ψj,G
m , ek]βk

∣∣∣∣∣

p)q/p

∧ 1


 (µ ◦ π−1

e1...en
)(dβ1 · · ·dβn)

=
n∑

k=1

∫

R



(
∑

j,G,m

∣∣ωj
m[Ψ

j,G
m , ek]akβ

∣∣p
)q/p

∧ 1


 ρ(dβ)

=

n∑

k=1

∫

R

(
‖akek‖

q
Bp

s,w
|β|q ∧ 1

)
ρ(dβ).

By taking the limit as n→ ∞ we obtain

∫

Bp
s,w

(
‖f‖q

Bp
s,w

∧ 1
)
µ(df) =

∞∑

k=1

∫

R

(
‖akek‖

q
Bp

s,w
|β|q ∧ 1

)
ρ(dβ),

which shows µ satisfies the first conditions in (1) or (2) in Theorem 4.1.2.
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For p > 2 we calculate, for (i, H, l) ∈Wd and n ∈ N that

∫

R

n

1B
R

(
∑

j,G,m

(ωj
m)

p

∣∣∣∣∣

n∑

k=1

[Ψj,G
m , ek]βk

∣∣∣∣∣

p) ∣∣∣∣∣

n∑

k=1

[Ψi,H
l , ek]βk

∣∣∣∣∣

2

(µ ◦ π−1
e1,...,en)(dβ1 · · ·dβn)

=

n∑

k=1

∫

R

1B
R

(
∑

j,G,m

(ωj
m)

p
∣∣[Ψj,G

m , ek]akβ
∣∣p
)∣∣∣[Ψi,H

l , ek]akβ
∣∣∣
2

ρ(dβ)

=

n∑

k=1

∫

|β|6‖akek‖
−1

B
p
s,w

∣∣∣[Ψi,H
l , akek]β

∣∣∣
2

ρ(dβ).

Since Lebesgue’s dominated convergence theorem shows

∑

j,G,m

(ωj
m)

p

(∫

‖f‖
B
p
s,w

61

[Ψj,G
m , f ]2 µ(df)

)p/2

=
∑

j,G,m

(ωj
m)

p

(
∞∑

k=1

∣∣[Ψj,G
m , akek]

∣∣2
∫

|β|6‖akek‖
−1

B
p
s,w

β2 ρ(dβ)

)p/2

,

applying Theorem 4.1.2 shows that µ is a Lévy measure on Bp
s,w(R

d). Following the

method of the proof of Corollary 5.2.5 completes the proof of Part (1).

Part (2) follows by a similar calculation and from applying Theorem 4.1.2 and

the methods of the proof of Corollary 5.2.5.

Corollary 5.4.2. Let p ∈ [1, 2] and (s, w) ∈ Ep. A cylindrical Lévy process L of the

form (5.4.15) with {ek}k∈N ⊆ Bp′

−s,−w(R
d) is induced by a Lévy process in Bp

s,w(R
d)

P -a.s. if

∞∑

k=1

∫

R

(
‖akek‖

p
Bp

s,w
|β|p ∧ 1

)
ρ(dβ) <∞.

Proof. By Remark 4.1.4 it suffices to show

∫

Bp
s,w(Rd)

(
‖f‖p

Bp
s,w

∧ 1
)
µ(df) <∞,
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which follows using the same calculation as in the proof of Corollary 5.4.1.

To characterise the Besov membership of a hedgehog process L we introduce

some indices in terms of the Lévy measure of the real-valued Lévy processes ℓk in

the representation (5.4.15). For this purpose, let ρ be a Lévy measure in R and

define for q ∈ R+

τ (q) := inf
τ>0

{
lim sup

ξ↓0
ξ−τ

∫

Bc
R

(
ξq |β|q ∧ 1

)
ρ(dβ) = ∞

}
, (5.4.18)

τ (q) := inf
τ>0

{
lim inf

ξ↓0
ξ−τ

∫

Bc
R

(
ξq |β|q ∧ 1

)
ρ(dβ) = ∞

}
. (5.4.19)

In all definitions above we apply the convention sup ∅ = −∞ and inf ∅ = ∞. It is

easy to see that τ (q) 6 τ (q) 6 q when ρ 6= 0. The Examples following Theorem 5.4.5

show calculations of these indices in a number of standard situations.

The following Proposition establishes a simple interpretation of τ (q). We recall

that a Lévy process with Lévy measure ρ has finite p-th moments if and only if
∫
Bc
R

|β|p ρ(dβ) <∞.

Proposition 5.4.3. For a Lévy measure ρ 6= 0 on R define

pmax := sup

{
p > 0:

∫

Bc
R

|β|p ρ(dβ) <∞

}
.

If pmax > 0 then τ (q) = pmax ∧ q and thus (pmax ∧ q) 6 τ (q) 6 q for all q > 0.

Remark 5.4.4. The index pmax is the same as defined in [9] and has a close relation-

ship with the index β0 introduced by Schilling in [83] and known as the Blumenthal-

Getoor index at zero. In particular, we have the relationship

β0 = pmax ∧ 2.
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Proof of Proposition 5.4.3. To demonstrate this, we shall consider the following in-

dices:

τ
(q)
1 := sup

{
τ > 0: lim sup

ξ↓0
ξ−τ

∫

1<|β|6ξ−1

ξq |β|q ρ(dβ) <∞

}
for q ∈ R+,

τ 2 := sup

{
τ > 0: lim sup

ξ↓0
ξ−τ

∫

|x|>ξ−1

ρ(dβ) <∞

}
.

We define a finite measure ρ := ρ
∣∣
Bc
R

; clearly we may replace ρ with ρ in the

definitions of τ
(q)
1 and τ 2. By Markov’s inequality we have, for ξ < 1 and p < pmax,

ρ
(
{|β| > ξ−1}

)
6 ξp

∫

R

|β|p ρ(dβ) = ξp
∫

Bc
R

|β|p ρ(dβ),

thus showing τ 2 > pmax. On the other side, for τ < τ 2 there exists a constant C > 0

such that

ρ
(
{|β| > t}

)
6 Ct−τ for all t > 1.

The tail formula for the integral shows for 0 < p < τ that

∫

Bc
R

|β|p ρ(dβ) =

∫

R

|β|p ρ(dβ) =

∫ ∞

0

ρ
(
{|β|p > t}

)
dt 6 ρ(R) + C

∫ ∞

1

t−
τ
p dt <∞,

which enables us to conclude pmax > τ 2 and hence τ 2 = pmax.
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Next choose some τ < τ 2 ∧ q. Then Fubini’s theorem implies

∫

1<|β|6ξ−1

|β|q ρ(dβ) =

∫ ∞

0

ρ
(
{|β|q 11<|β|6ξ−1 > t}

)
dt

=

∫ 1

0

ρ
(
{1 < |β| 6 ξ−1}

)
dt+

∫ ξ−q

1

ρ
(
{t

1
q < |β| 6 ξ−1}

)
dt

6 ρ
(
{1 < |β| 6 ξ}

)
+

∫ ξ−q

1

ρ
(
{t

1
q < |β|}

)
dt

6 ρ(R) + C

∫ ξq

1

t−
τ
q dt . 1 + ξτ−q.

It follows ξq−τ
∫
1<|β|6ξ−1 |β|

q ρ(dβ) < ∞ for all ξ < 1, implying τ 6 τ
(q)
1 . As

τ < τ 2∧ q is arbitrary we have shown that τ
(q)
1 > τ 2∧ q. As we have τ (q) = τ

(q)
1 ∧ τ 2,

we thus conclude τ (q) = pmax ∧ q.

The following result gives conditions such that a hedgehog process is induced by

a Lévy process in a certain Besov space. The critical value will be the parameters

τ (min{p,2}) and τ (max{p,2}).

Theorem 5.4.5. Let L be defined by (5.4.15) and let p > 1 and (s, w) ∈ Ep. Define

qmin := inf

{
q > 0:

∞∑

k=1

‖akek‖
q
Bp

s,w
<∞

}
.

Then,

(a) L is induced by a Lévy process Y in Bp
s,w(R

d) P -a.s. if one of the following is

satisfied:

(i) (s, w) ∈ Rp;

(ii) (s, w) ∈ Rc
p and qmin < τ (min{p,2}).

(b) L is not induced by a process in Bp
s,w(R

d) P -a.s. if:

(s, w) ∈ Rc
p and qmin > τ (max{p,2}).
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Proof. Part (a): the first alternative condition follows from the 0-Radonification in

Theorem 4.2.6. To show the second alternative, we note that Bp
s,w(R

d) is of type

min{p, 2} by isometry with ℓp(Wd) (see (2.1.5)). Then, by Proposition 7.1.16 in [41],

if q 6 min{p, 2} is such that E |ℓ1|
q <∞ then

(
‖akek‖Bp

s,w

)
k∈N

∈ ℓq(R) implies that

∑
k∈N akekℓk(1) converges in Bp

s,w(R
d) in q-th mean and thus converges strongly P -

almost surely. Finally we note that, by Proposition 5.4.3, ℓ1 has moments of order

τ (q) for any q 6 2.

Part (b): the first condition shows that Radonification does not apply. By

Corollary 5.4.1, L is not induced by a Lévy process in Bp
s,w(R

d) if

∞∑

k=1

∫

R

(
‖akek‖

max{2,p}

Bp
s,w

|β|max{2,p} ∧ 1
)
ρ(dβ) = ∞. (5.4.20)

Due to the hypothesis, we can choose q > τ (max{2,p}) such that
(
‖akek‖Bp

s,w

)
k∈N

/∈

ℓq(R). It follows that there exists a constant K0 such that, for large enough k, we

have

∫

Bc
R

(
‖akek‖

max{2,p}

Bp
s,w

|β|max{2,p} ∧ 1
)
ρ(dβ) > K0 ‖akek‖

q
Bp

s,w
,

which establishes (5.4.20).

Remark 5.4.6. We may conclude that (s, w) ∈ Rp implies that qmin 6 τ (max{2,p}),

as otherwise Part (a) and (b) of Theorem 5.4.5 would contradict. This equality can

also be proven analytically. Furthermore, one can show that (s, w) ∈ Ep implies that
(
‖ek‖Bp

s,w

)
k∈N

∈ ℓ∞(N) for any orthonormal basis (ek)k∈N.

The first two examples we present show that, in the case each ℓk has moments

of all orders, the critical summability is of a particularly simple form.

Example 5.4.7. Let L be a cylindrical Lévy process of the form (5.4.15) with

ρ = δ1; thus each of the ℓk is a Poisson process with unit intensity. We have
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(ak)k∈N ∈ ℓ∞(N). As ρ has moments of all orders we have τ (q) = τ (q) = q for each

q ∈ R+. Thus, the critical summability needs to satisfy qmin < p ∧ 2 for inclusion

and qmin > p ∨ 2 for exclusion.

Example 5.4.8. Let ρ(dβ) = 1β 6=0 |β|
−ζ e−|β| dβ for some ζ ∈ (0, 3), this gives rise

to tempered stable processes. For ζ = 1 this gives the symmetric Gamma process

and for ζ = 3
2

this gives the symmetric inverse Gaussian process. For q > ζ − 1 we

have

∫

R

|β|q−ζ e−|β| dβ = 2Γ(q − ζ + 1) <∞;

and we conclude that ρ has moments of all orders and thus again we have τ (q) =

τ (q) = q for each q ∈ R+. Thus, the critical summability again needs to satisfy

qmin < p ∧ 2 for inclusion and qmin > p ∨ 2 for exclusion.

Next we examine the symmetric-α-stable case, where the limits on moments

comes into play.

Example 5.4.9. Let ρ(dβ) = 1β 6=0 |β|
−1−α dβ for some α ∈ (0, 2); by Example 4.5

in [74] we have (ak)k∈N ∈ ℓ2α/(2−α)(R). Then τ (q) = q∧α for each q 6 2 and τ (q) = α

for each q > 2.

Let p > 1 and (s, w) ∈ Ep. In this case, we obtain the following dichotomy in

the critical regime (s, w) ∈ Rc
p ∩ Ep:

(a) L is induced by a Lévy process Y in Bp
s,w(R

d) P -a.s. if qmin < p ∧ α;

(b) L is not induced by a process in Bp
s,w(R

d) P -a.s. if qmin > α.

The following example gives a construction whereby τ (q) 6= τ (q).
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Example 5.4.10. Let α1 ∈ (1, 2) and α2 ∈ (α1, 2). Let ρ be given by

ρ(dβ) =

∞∑

k=0

(
1(2k,2k+1](β) |β|

−1−α1 dβ + 1(2k+1,2k+2](β) |β|
−1−α2 dβ

)
.

Then it is straightforward to see that τ (q) = q ∧ α1 for each q 6 2 and τ (q) = α2 for

each q > 2. Let p > 1 and s, w ∈ Ep. In this case, we obtain for (s, w) ∈ Rc
p ∩ Ep:

(a) L is induced by a Lévy process Y in Bp
s,w(R

d) P -a.s. if qmin < p ∧ α1;

(b) L is not induced by a process in Bp
s,w(R

d) P -a.s. if qmin > α2.

Example 5.4.11. Let α ∈ (0, 2) and let ρ be given by

ρ(dβ) = 1β 6=0 |β|
−1−α v(|β|)dβ,

where v is a slowly varying function; see e.g. Definition 1.2.1 in [16]. An application

of Proposition 1.5.10 in [16] shows that τ (q) = q ∧ α for each q 6 2. However,

it is known, see [16, p.16], that there exist slowly varying functions v such that

lim infβ→∞ v(β) = 0 and lim supβ→∞ v(β) = ∞. Thus, we cannot in general improve

on the bound q ∧ α 6 τ (q) 6 q for this class of processes, which form a subclass of

the subexponential Lévy processes.

5.4.1 Hedgehog process defined on wavelet basis

We may further analyse the symmetric-α-stable case by selecting an admissible

wavelet basis of Bp
s,w(R

d) as the orthonormal basis of L2(Rd), as in this case we

may directly calculate the summability of the basis norms. This will allow us to

construct counterexamples which show that, for p > 2, the region of the (s, w)-plane

for which the embedding L2(Rd) →֒ Bp
s,w(R

d) is 0-Radonifying is exactly Rp.
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Let Ψ = {Ψj,G
m : (j, G,m) ∈ Wd} be an admissible basis for Bp

s,w(R
d) for some

p > 1 and (s, w) ∈ Ep and let (ℓj,Gm )(j,G,m)∈Wd be a family of independent iden-

tically distributed canonical α-stable processes for some α ∈ (0, 2), i.e. ρ(dx) =

1x 6=0 |x|
−1−α dx. We consider a cylindrical Lévy process L of the form

L(t)f =
∑

j,G,m

[f,Ψj,G
m ]aj,Gm ℓj,Gm for all f ∈ L2(Rd), t > 0. (5.4.21)

As in Example 5.4.9, Condition (5.4.16) is satisfied if
(
aj,Gm

)
j,G,m

∈ ℓ
2α
2−α (Wd).

The following Proposition allows us to determine sharp boundaries for each p > 1

of the 0-Radonification region Rp of the (s, w) plane in the parameter space defining

the weighted Besov spaces.

Proposition 5.4.12. Let p > 2 and (s, w) ∈ Ep\Rp. Then for any α ∈ (0, 2) there

exists a sequence
(
aj,Gm

)
j,G,m

∈ ℓ
2α
2−α (Wd) such that L as constructed in (5.4.21) is

not induced by a process in Bp
s,w(R

d) P -a.s..

We first state an intermediate result on the summability of the Besov space

weights.

Lemma 5.4.13. Let ωj
m = ωj

m(p, s, w) be the wavelet weight constants for Bp
s,w(R

d)

for some p > 0, s < d
p
− d

2
and w < 0. Then

(
ωj
m

)
j,G,m

∈ ℓk(Wd) for some k > 0 if

and only if

k > max

{
−
d

w
,

2dp

2d− dp− 2ps

}
.

Proof. We must assess the convergence of

∑

j>0

2jk(s−
d
p
+ d

2
)
∑

G∈Gj

∑

m∈Zd

(1 + 2−2j |m|2)
kw
2 .
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We first consider Sj :=
∑

m∈Zd(1 + 2−2j |m|2)
kw
2 . We have Sj < ∞ for each j

if and only if kw < −d (see the proof of [31, Th. 3]) which gives the first term

in the maximum above, recalling that w < 0. If Sj < ∞ for each j, then Sj is

asymptotically O(2jd) as j → ∞ according to [31, Th. 3], and thus

∑

j>0

2jk(s−
d
p
+ d

2
)
∑

G∈Gj

Sj = 2dS0 + (2d − 1)
∑

j>1

2jk(s−
d
p
+ d

2
)Sj,

which is finite if and only if k(s − d
p
+ d

2
) < −d. As k > 0 and s − d

p
+ d

2
< 0 this

condition is equivalent to k > −d
s− d

p
+ d

2

, which completes the proof.

Proof of Proposition 5.4.12. We note that
∥∥Ψj,G

m

∥∥
Bp

s,w
= ωj

m, where ωj
m = ωj

m(p, s, w)

are the weight constants for Bp
s,w(R

d), and we have
(
ωj
m

)
j,G,m

∈ ℓ∞(Wd) as (s, w) ∈

Ep.

For 0 < q < 2α
2−α

, we have that the sum

∑

j,G,m

∥∥aj,Gm Ψj,G
m

∥∥q
Bp

s,w(Rd)
=
∑

j,G,m

∣∣aj,Gm ωj
m

∣∣q

is finite for every
(
aj,Gm

)
j,G,m

∈ ℓ
2α
2−α (Wd) if and only if

( ∣∣ωj
m

∣∣q )
j,G,m

∈
(
ℓ

2α
q(2−α) (Wd)

)∗
= ℓ

2α
2α+αq−2q (Wd). (5.4.22)

If we further assume that p > 2, we have that (s, w) ∈ Ep implies s < d
p
− d

2
and

w 6 0. For the case w = 0, we note that
∑

j,G,m(ω
j
m)

k = ∞ for any k > 0, and thus

there exists
(
aj,Gm

)
j,G,m

∈ ℓ
2α
2−α (Wd) such that

∑
j,G,m

∣∣aj,Gm ωj
m

∣∣α = ∞. We continue

to consider the case w < 0. By applying Lemma 5.4.13, we see that (5.4.22) is

satisfied if and only if

2αq

2α + αq − 2q
> max

{
−
d

w
,

2dp

2d− dp− 2ps

}
.
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As q < 2α
2−α

, we have 2α + αq + 2q > 0, and thus we have

2αq

2α + αq − 2q
> −

d

w
⇔ q >

2αd

2d− αd− 2αw
, (5.4.23)

where we note that 2d − αd − 2αw > 0 as α < 2 and w < 0. Furthermore, as

s < d
p
− d

2
we have 2d− dp− 2ps > 0 and so

2αq

2α + αq − 2q
>

2dp

2d− dp− 2ps
⇔ q >

αdp

αd− αdp− αps+ dp
(5.4.24)

where we have αd − αdp − αps + dp > dp(1 − α
2
) > 0. Taking q = α, we see that

there exists
(
aj,Gm

)
j,G,m

∈ ℓ
2α
2−α (Wd) such that

∑
j,G,m

∣∣aj,Gm ωj
m

∣∣α = ∞ when either

w > −d
2

by (5.4.23), or s > −d+ d
p

by (5.4.24).

By referring to the conditions shown in Example 5.4.9, it follows that if L is

constructed using such a sequence
(
aj,Gm

)
j,G,m

, the summability index qmin as defined

in Theorem 5.4.5 has qmin > α, and so L is not induced by a process in Bp
s,w(R

d)

P -a.s..
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