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Abstract 

Researchers have not yet reached consensus on whether there is a difference in performance 

between STEM and non-STEM firms across different financial markets during economic 

expansion and through economic downturns, such as pandemics and recessions. It is unclear as to 

whether STEM or non-STEM firms, but also graduates with STEM or non-STEM  education 

contribute more, less, or equally to economic inequality. By analysing total wealth at varying 

scales, ranging from individuals, to firms, to entire countries, we demonstrate that the Zipf 

exponent, serving as a proxy for wealth inequality, persistently ramps up as the scale of a system 

increases. At an individual level, analysing the Zipf plots separately for the world's richest 

individuals with STEM and non-STEM graduation, we begin by demonstrating that STEM 

education contributes more to inequality than non-STEM. At a firm level, in contrast to the DAX 

and CAC40 indexes, for firms comprising the S&P 500 index, the average growth rate of STEM 

constituents has been significantly higher than those calculated for non-STEM constituents during 

the most recent economic expansion and the coronavirus pandemic. This insight is particularly 

useful for the financial sector. Secondly, we demonstrate a functional dependence between a 

country's number of patents and its STEM graduates. Finally, motivated by the fact that the U.S. 

heavily surpasses the E.U. in terms of Venture Capital, we model wealth inequality at different 

scales of the economy.  

 

 

 



 

 

 

 

The impact of STEM on the growth of wealth at varying scales, ranging from individuals to 

firms and countries: the performance of STEM firms during the pandemic across different 

markets.  

 “While it is important to invest in STEM education to ensure a future talent pipeline, it’s just 

as important to have a scientifically-literate population to understand why we need to do so“. 

Ron Mobed, CEO, Elsevier  

Source: 100 CEO Leaders in STEM  

I.  INTRODUCTION 

 

'STEM' stands for science, technology, engineering, and mathematics. STEM employees play 

a crucial role in continuing, sustaining, and maintaining the growth and stability of the economy 

across every nation (Bybee, 2010; Koonce et al., 2011; Human Capital Report, 2016; Cai & 

Winters, 2017; Deming & Noray, 2020). Greene et al. (2006, p. 53) pointed out that the central 

principle for STEM education is to support and prepare students for successful careers and deliver 

the skills needed to meet the demands of a new STEM workforce to enable the United States to 

remain competitive in the global marketplace. STEM fields are considered a crucial component 

when it comes to helping countries to achieve future success and dominance over others (Yildirim, 

2016; Lloyd, C. Payne, 2019; Colombo & Piva, 2020).  

In the battle for dominance and survival, for individuals, firms, and countries, the STEM 

disciplines in world economies play a crucial role. Firstly, it is worth mentioning that the fields of 

economics and management share some common origins with biology in that humans are at the 



 

very top of the food chain. Competition, dominance, and survival are fundamental controlling 

processes on different scales, ranging from biological scales to human societies. According to 

Darwin’s theory of natural selection, a species that randomly mutates to better adapt to its 

surroundings increases its chances of surviving and dominating less competitive species by taking 

their territory (Frank, 2012). Similar generalized selection principles may hold, not only for other 

species, but also for high-level human organizations, such as firms and countries. Adam Smith 

observed that self-interest pushes producers to introduce new innovations to accommodate 

changing economic environments and capture rivals’ market shares, equivalent to stealing territory 

in biology (Aghion & Howitt, 1992). 

However, in contrast to living beings, both firms and countries intentionally – and thus non-

randomly – introduce innovations, mainly related to STEM fields, in an attempt to dominate their 

competitors. To this end, over the years, the largest countries have become aware that the nation’s 

well-being and national security depend on STEM technologies, such as cyber, robotics, AI, and 

quantum research. These fields have led to huge advancements, such as driverless cars, the 

diagnosis of varying diseases (Esteva et al., 2017), speech recognition (Artificial Intelligence 

Index Report, 2021), and financial simulations which adequately evaluate financial risk (Dunis et 

al., 2016). The Committee on Prospering in the Global Economy of the 21st Century (2007) and 

the World Economic Forum (World bank, 2021) argue that STEM disciplines are essential for 

economic growth worldwide. More than sixty years ago, Nobel Laureate Robert Solow reported 

that more than half of the U.S. growth during the first fifty years of the last century was due to 

progress in knowledge, most likely with a focus on technology and, thus, involved STEM (Solow, 

1957). Moreover, STEM innovations are responsible for the emergence of fast-growing innovative 

superstar companies (Jones & Kim, 2018; Gabaix et al., 2016) which, ultimately, are more 

efficient. These companies dominate others, taking most of the market share (Dorn et al., 2017; 

Autor et al., 2020). We know that superstar firms generally have a lower fixed cost and, therefore 



 

a substantially smaller labor share (Dorn et al., 2017). Generally, as technologies have become 

more important to economics, this has led to a steady reduction in the proportion of countries’ 

GDP (gross domestic product) attributed to labor (Karabarbounis & Neiman, 2014), questioning 

the widely known Kaldor “stylized facts” of countries’ growth (Kaldor, 1961).  

Superstar firms such as Tesla and Amazon not only require less labor, but they also require 

substantially lower physical capital than the top firms of fifty years ago. Alderman et al. (2022) 

revealed that CEOs with STEM backgrounds are better equipped to help companies handle the 

ambiguity inherent in innovation. Furthermore, the diminishing need for workers in the modern 

economy implies that money is distributed between fewer people, indicating that (STEM) 

technological innovations could also lead to increased inequality (Jones & Kim, 2018; Gabaix et 

al., 2016; Stiglitz, 1969; Piketty & Saez, 2003; Jones, 2015). As stated in Stiglitz’s book (Stieglitz, 

2019), a substantially small percentage of companies in the U.S. economy control the entire 

economy’s sectors and contribute to skyrocketing inequality. Although it is clear that nowadays 

STEM fields mainly drive innovation, we are not yet fully aware of how STEM education 

quantitatively contributes to economic inequality and how STEM and non-STEM firms behave 

during economic downturns, such as recessions and pandemics. These considerations are vital 

when it comes to portfolio fund analyses.  

STEM and non-STEM education affects our propensity for innovation in contradictory ways. 

In contrast to Tsang, who reports that humanities students are more inclined to innovation (Tsang, 

2017), Brunow et al. report that firms that employ STEM graduates are more innovative than 

competing firms that do not (Brunow et al., 2018). A study shows that Georgia’s HOPE 

Scholarship reduced the chances of individuals enrolling onto STEM degrees (Sjoquist & Winters, 

2015). Another study reported that students’ decisions to choose a STEM degree were highly 

dependent on their ethnicity, high school reputation, gender, and SAT math score (Crisp et al., 

2009). Wang similarly found that a STEM major can be affected by a variety of factors, such as 



 

students’ 12th-grade math results, their exposure to STEM courses (particularly science and math) 

during their prior education, and also by receipt of financial aid (Wang, 2013). Mativo et al. (2016) 

investigated the extent to which integrative science, technology, engineering, and mathematics 

(STEM) education programs impacted high school students in the South-East region of the U.S. 

In this paper, we examine the impact of STEM with regard to varying levels of economic 

complexity, ranging from individuals and firms to countries. Firstly, we analyse the Forbes lists 

(Forbes, 2018) to identify the richest individuals in the world over the last two decades. For the 

Zipf plot (Zipf, 1949) of the world’s billionaires, we demonstrate that the ξ exponent for top 

STEM billionaires is systematically larger than for top non-STEM billionaires, implying that 

billionaires with STEM education contribute more to inequality than non-STEM billionaires. Over 

time, the Zipf ξ exponent for STEM billionaires steadily increases and becomes higher than the 

Zipf exponent for the top non-STEM richest.  

At a firm level, for the S&P500 index that is a representative of the U.S. financial market, 

consistently, for each period equal to 1y, 3y, and 5y, taking market capitalization (MCAP) as a 

proxy for the total wealth of a company, the average growth rate for STEM companies is higher 

than the average growth rate for non-STEM companies.  MCAP  is the value of a company 

commonly calculated by multiplying the total number of stocks by the current stock price 

Here, the 1y time span aligns with the 2020 pandemic year, to test whether the performance 

between STEM and non-STEM companies changes during the pandemic. To this end, for the U.S. 

market, we show that the differences between STEM and non-STEM companies exist not only 

during an economic expansion (for either 2014-2019 or 2016-2019), but even for the 2020 

pandemic year. To test whether or not the previous findings stand up worldwide for varying 

financial markets, we analysed the constituents of the German DAX index and the French CAC40 

index. For the CAC40 index, during an economic expansion, the growth rate is significantly higher 

for STEM than for non-STEM firms. This contrasts with the DAX index, for which we find no 



 

difference in performance between STEM and non-STEM firms. Surprisingly, in contrast to the 

S&P500 index, we found no difference in the performance of STEM and non-STEM constituents 

of the CAC40 and the DAX indexes during the pandemic. Furthermore, at a firm level, for both 

STEM and non-STEM companies, we found larger Zipf exponents than those uncovered for the 

top billionaires with STEM and non-STEM education.  

At a national level, the Zipf plots of countries’ MCAP and GDP exhibit an exponent larger than 

those calculated for individuals and firms. In short, the more complex the system, the higher the 

degree of inequality. The results uncovered motivate us to propose a model for firm growth. We 

also posit that the U.S. attracts more global high-tech companies than the E.U., due to its 

substantially larger Venture Capital market. The model combines Simon’s traditional ‘rich-gets-

richer’ model with what we propose as the ‘rich-gets-richer competition mechanism’. In the 

model, we establish that U.S. STEM-orientated companies perform better than non-STEM. 

II. DATA 

 

Every year, the business magazine Forbes (Forbes, 2018) reports the list of the world’s richest 

individuals, providing information on which businesses created their wealth. In the Forbes lists, 

royalty (such as the British Monarch) and dictators are not included. We analyse data between 2013 

and 2019. In 2018, there were 2,208 people on the list, with an average net wealth of $4.1 billion. 

An astonishing Oxfam report revealed that the top eight richest billionaires possess the equivalent 

combined wealth of the world’s poorest half. The Forbes list includes the world’s richest individuals 

engaged in various sectors of the economy, ranging from the banking and financial sector (Warren 

Buffet, Michael Bloomberg), to communication and civil engineering (Carlos Slim), and computer 

software (Jeff Bezos, Bill Gates, Mark Zuckerberg). It also covers a variety of traditional non-STEM 

businesses, such as the chemical and oil industry (the Koch family), the retail industry (the Walmart 

family, the Walton family), and the fashion industry (Bernard Arnault, Amancio Ortega), and 



 

others. 

There are many variations of the STEM definition and, in this manuscript, we use the International 

Standard Classification of Education (ISCED) (UNESCO-UIS, 2012) to define STEM education 

(Podobnik et al., 2020) Within this standard, a person has STEM academic qualification if 

graduated in (i) mathematics, statistics, and natural sciences, (ii) communication technologies and 

information, or (iii) construction, manufacturing, and engineering (Forbes, 2021). In this study, as 

STEM-educated individuals, we also include famous “STEM superstar dropouts”, such as Bill 

Gates and Mark Zuckerberg (Figure  1), who have no formal degree.  

 

 

                        Insert Figure 1 about here 
                                   FIG. 1. Net Worth over time for a set of STEM billionaires.  
 

 

In our daily analysis of Venture Capital (V.C.) data, the data on V.C. investments was obtained 

from the international commercial Zephyr database. This data is widely used in scholarly work 

and has extensive worldwide coverage on IPO and V.C. transaction data.  

We also analyse the daily data on the U.S., French, and German stock markets. As the U.S. 

representative, we use the S&P500 stock market index, which comprises 500 large-cap companies, 

covering approximately 80% of the U.S. equity market with regards to capitalization. We also 

analyse the CAC40 stock market index as a representative French index. The French index 

comprises 40 stocks from the 100 largest firms concerning market capitalization. Finally, we 

analyse the German DAX index, comprising the 30 largest German companies.  

To analyse patents worldwide, we apply the yearly collected data provided by a U.N. agency: 

the World Intellectual Property Organization (WIPO) (Klass et al., 2007). This organisation is 

tasked with several activities, the most important of which include: providing global services that 

register and protect intellectual property (I.P.) in different countries; and offering services for 

protecting I.P.s, such as inventions and trademarks. The WIPO also provides reports and statistics 



 

on I.P. protection. These statistics include information on patent applications and patent grants for 

residents, non-residents, and those abroad. 

                              Insert Figure 2 about here 

 

FIG. 2. Individual Level. Zipf coefficient ζ vs. time for billionaires with (a) STEM and (b) non-STEM 

graduations contributing to wealth inequality. Plots are shown for the 70, 50, and 25 richest 

billionaires (from top to bottom). 

 

 
III. STEM AFFECTS WEALTH INEQUALITY AT AN INDIVIDUAL LEVEL 

The fractal nature of the wealth data across different scales of the economy, from individuals 

to companies, would assume that there is a unique exponent calculated analysing wealth data for 

each scale. This fractal assumption seems reasonable between individuals and firms because it is 

reasonable to assume that STEM-orientated businesses have predominantly been founded by 

STEM-educated individuals, as is the case with Steven Jobs, Mark Zuckerberg, and Bill Gates. 

Note that, for the future of education, it seems particularly odd that some brilliant college dropouts 

became billionaires without formal education. Here, we hypothesize that STEM and non-STEM 

wealth, defined at different levels of the economy, roughly exhibit fractal behavior. To test this 

hypothesis, this analysis gradually moves from the smallest (individual) to the largest (country) 

scale. 

 

The fractal notion is closely related to power laws describing empirical data, in which dynamics 

are self-similar or fractal over many orders of magnitude (scales). To this end, it is worth noting 

that Jones and Kim (in Baybe, 2010) report that the U.S. income X follows a probability 

distribution with fat tails, P (X) X−1−1/ξ , where the index ξ for the U.S. income from 1980 to 2000 

increased from  ≈ 0.4 to ≈ 0.6. Unfortunately, similar analyses on individuals at an international 

level still fall short due to a lack of income data. Nevertheless, internationally, a good proxy for 

income data is the total wealth of the world's rich individuals. Accordingly, for the list of the top 

400 wealthiest Americans, Klass et al. (2006) report that the tail of the U.S. wealth distribution 



 

comprising the country's top billionaires follows distribution P (X), with power-law 

tails X−1−α (Pareto, 1964). 

Extending this examination from the U.S. to the rest of the world, we analyse the richest billionaires 

globally, focusing on how the world's top STEM billionaires have emerged over time and have begun 

to exert dominance over traditional non-STEM billionaires. Forbes and Bloomberg were used as 

sources of data with regards to billionaires' formal (graduate) and informal educational levels. 

Because the number of billionaires collected between 2013 and 2019  varies over time, in our analysis, 

we always analyse the same number of billionaires - the 300 richest billionaires. To quantify the 

distribution of the richest individuals, we do not analyse the Pareto distribution of wealth – where 

wealth is defined as net worth (Zipf, 1949) – but rather its alternative representation: the Zipf plot of 

net worth vs. rank (Zipf , 1949; Forbes, 2021; Klass et al., 2006; WIPO, 20211; Pareto, 1964), wherein 

billionaires' net worth is ranked from largest to smallest. Suppose power-law scaling asymptotically 

exists in the far tail of the probability distribution of net worth with exponent α. In this case, the same 

scaling equally exists in the tail part of the Zipf plot of net worth vs. rank R, where the Pareto 

exponent α relates to the Zipf exponent ξ (Gabaix & Ibragimov 2011; Podobnik et al., 2011). 

 

ξ = 1/α. (1) 
 

In economics theory, the exponent α commonly serves to quantify the level of economic 

inequality (Pikety & Saez, 2003) where, generally, the smaller the index value α, the fatter the far 

tails or, alternatively, the larger the wealth gap between the rich and the poor (Gabaix & Ibragimov 

2011). For example, for the Pareto distribution of income, Jones and Kim (Cai et al., 2011) show 

that the percentage of income for the top p percentiles equals (100/p)ξ−1. Consequently, changes 

in the power-law parameter directly contribute to changes in income inequality, as previously 

reported with regards to individual wealth data on an international scale. Hereafter, to fit the Zipf 

log-log plots, in order to estimate exponent ξ, we employ a method proposed by Gabaix and 



 

Ibragimov: the so-called R − 1/2 method (Gabaix & Ibragimov 2011).  

In applying this method, Podobnik et al. (2020) recently revealed that STEM graduate education 

contributes to the prosperity and inequality of the world’s richest individuals. For each of the two 

deliberately chosen years, the Zipf plots showed that the richest STEM graduates had significantly 

fatter tails than their non-STEM counterparts (Podobnik et al., 2020), indicating that, at an 

individual level, among the richest, STEM education contributes more to inequality than non-

STEM. However, because the analysis was accomplished in just two years, a crucial question 

about the trend of wealth inequality remains unanswered.  

 To this end, for the 70, 50, and 25 richest billionaires chosen each year, Figures 2(a) and (b) 

show how billionaires who are STEM and non-STEM graduates contribute to wealth inequality. 

Specifically, Figures 2(a) and (b) vividly demonstrate that, for the world’s top billionaires, the 

average ξ is well in agreement with the index ξ value (Jones & Kim, 2018) calculated with regards 

to U.S. income from 1980 to 2000 (Bybee, 2010).  

Relative to non-STEM’s top richest in Figure 2 (b), for STEM’s top richest individuals in 

Figure 2 (a), the Zipf ξ exponent steadily increases faster than the one that corresponds to the top 

non-STEM richest individuals. Here, the upward trend in ξ exponent implies that the 

corresponding α of Eq. (1) decreases, implying that with small fluctuations the wealth inequality 

for STEM graduates persistently increases over time. Additionally, by comparing Figures 2(a) and 

(b), regardless of how many billionaires are analysed, we see that the ξ exponent is consistently 

larger for top STEM billionaires than for top non-STEM billionaires. For each year in Figure 2(b), 

we find that the α value is within a range α ∈ (0, 2) characteristic for Levy distributions. The 

results align themselves with the outcomes reported in scholarly literature on finance and 

economics (Gabaix & Ibragimov, 2011), which argues that a small fraction of outliers 

substantially skew the distribution and violate Gaussian assumptions. The fact that the far tail of 



 

the wealth distribution follows a power-law distribution at an individual level implies that, if we 

find similar exponents at different levels of the economy, wealth inequality is roughly fractal 

(Bybee, 2010).  

To statistically test the null hypothesis that the growth rates of non-STEM and STEM 

billionaires display the same distribution, we use standard statistics; specifically, the Mann-

Whitney U test (Podobnik et al., 2020), which was designed to quantify the difference between 

two populations or subgroups. Here, identifying the two subgroups as STEM and non-STEM, 

based on the graduate education of billionaires, the test quantifies the distinction between the ranks 

of growth rates with regards to billionaires’ wealth. Precisely, for each billionaire in the 2018 

Forbes list, we determine when they were initially listed. Then, using the initial (W1) and final 

wealth (W2), and the time span T, we calculate the annual wealth growth rate as ln(W 2/W 1)/T . 

Here, the null hypothesis of the statistical test is that the distributions corresponding to the two 

subgroups are equal. Table 1 examines the top billionaires, varying the number of the richest, and 

rejects the null hypothesis. It therefore confirms that there is a significant difference in wealth 

growth between STEM and non-STEM billionaires. 

Insert Table 1 about here 

 

In summary, STEM and non-STEM billionaires perform differently, implying that graduate 

education seems to be linked to the speed at which they accumulate wealth – at least for the richest 

individuals. At the 5% confidence level, STEM billionaires increased their wealth significantly 

more quickly than non-STEM billionaires. However, this study does not address whether or not 

STEM graduate education impacted upon the profiles of the companies created (whether they were 

STEM or non-STEM) even though – for the top richest individuals at least – we know that rich 

STEM individuals created STEM firms. This serves as sufficient motivation for the following 

analysis.  



 

 

IV. STEM AFFECTS WEALTH INEQUALITY AT A FIRM LEVEL 

One should expect that the STEM/non-STEM scaling behavior we found at an individual level 

exists even at a firm level. For example, Zuckerberg made his fortune by developing Facebook, 

whereas Bill Gates became rich because a company he launched – Microsoft – became a powerful 

technology company. STEM dominance among the top largest world companies presumably 

occurs because the marginal costs for STEM-orientated firms are significantly lower than in 

traditional industries. As long as their technology dominates, these firms are natural monopolies. 

It seems reasonable that, if STEM graduates start to exert dominance over non-STEM graduates 

among the richest individuals, a similar STEM dominance might appear at a firm level as well.  

 

 To this end, analysing the companies comprising the S&P500 in 2018, (Podobnik et al., 2020) 

found that, over a three-year period of economic expansion, STEM firms on average had larger 

growth rates than non-STEM. However, insights on the performance of STEM and non-STEM 

firms during economic downturns, such as the pandemic and recessions, are still unclear. It is still 

not adequately understood (a) whether STEM firms generally exhibit better performance than non-

STEM firms in terms of MCAP growth rates not only in the U.S., but worldwide and across 

different financial markets; (b) how STEM and non-STEM firms perform during economic 

downturns, such as pandemics and recessions; and (c) whether STEM or non-STEM firms 

contribute more to economic inequality. 

 

                          Insert Figure 3 about here 
 
FIG. 3. Firm Level. To test the robustness of our results on different definitions, the S&P500 index over the 

last (a) five years, (b) three years, (c) and during 2020 reveal the growth rates for STEM and non-STEM 

companies, randomly presented.  
 

To this end, we begin our analysis of the U.S. market. Here, for each company within a 

representative U.S. financial index – the S&P500 index – we calculate the growth rate as the log 



 

difference during (a) the five-year period between 01/01/2015 and 01/01/2020, and (b) the three-

year period between 01/01/2017 and 01/01/2020; both of which occurred during economic 

expansion. Choosing different time spans helps to confirm the robustness of our findings and 

reveals that our results are relevant irrespective of the time span chosen. For each company from 

the S&P500 index, Figures 3(a)  and (b) show the growth rate calculated over the five and three 

years. We demonstrate that, for STEM companies, the average growth rate is significantly larger 

in comparison to non-STEM firms both over the last five and three years. However, it is especially 

important to determine where money should go during economic downturns. To this end, 

performing (c) an analysis for the pandemic year (2020), we obtain the same result. As such, the 

STEM sector can be seen to perform better than the non-STEM sector, as shown in Figure 3(c). 

This information is important for financial fund managers, as it reveals how varying sectors behave 

during different economic stages. Next, the dominance of the STEM sector is confirmed using a 

statistical test.  

Insert Table 2 about here 

 

 

To this end, applying the Mann-Whitney test for the right tail test for varying time spans, where 

H0: STEM = non-STEM and H1: STEM > non-STEM, Table 2 shows that, for each time span, we 

obtain p-value = 0.00, implying that a randomly selected STEM firm population performs better 

than a randomly selected non-STEM firm population. We see in Tables 3 and 4 that, relative to 

non-STEM sectors, new STEM industries exhibit more promising results than old STEM 

industries. We find that one of the newest STEM industries - the software industry - has the largest 

z value relative to non-STEM industries. In the test for this example, the larger the z value, the 

higher the STEM performance superiority relative to non-STEM industries. 

Insert Table 3 about here 

 



 

 

Insert Table 4 about here 

 

 

For the S&P500 constituents at 2020, to test how STEM and non-STEM firms contribute to 

economic inequality, Figure 4(a) is used as a baseline. It reports a Zipf plot with ξ = 0.69 calculated 

for all firms. We also depict the Zipf plots of non-STEM and STEM firms, revealing that there is 

a substantial and significant difference in Zipf exponents calculated for STEM (ξ = 0.79) and non-

STEM firms (ξ = 0.6), implying that, relative to non-STEM firms, STEM firms contribute more 

to economic inequality (see Equation 1). 

 To test for universality in the previous inequality analysis, we perform the scaling analysis at 

an international level. Considering the largest companies internationally, Figure 4(b) shows the 

Zipf plot of MCAP for the world’s 100 largest companies for 2020 with exponent ξ = 0.63, a value 

very similar to the Zipf exponent ξ = 0.68 obtained for the MCAP of SP500 constituents. The 

result is expecting regarding the fact that U.S. firms remain dominant among the world’s 100 

largest firms. However, these two exponents are significantly larger than the exponents calculated 

for the wealth data of the world’s richest individuals, implying the existence of approximate fractal 

nature in the wealth data, taking into account both individual and firm levels.  

                                                   Insert Fig 4 about here 

FIG. 4. Firm Level. (a) The Zipf plot of  MCAP of the members of the S&P500 index. (b) The Zipf plot of 

the world’s 100 largest companies in 2020.  

 

   To establish whether or not similar results on non-STEM and STEM firms acquired for the U.S. 

stock market can be found for the E.U. stock markets as well, thus potentially confirming the 

universality of STEM dominance, we analyse the French CAC index constituents. For each of the 

40 companies in the CAC40 index, Figure 5(a) shows the growth rate calculated as the log difference 

over a three-year period between 01/01/2016 and 01/01/2019. Separately, for STEM companies, we 



 

obtain an average growth rate equal to 0.166. For non-STEM companies, the average growth rate 

equals 0.062. Applying the Mann-Whitney test for the right tail test, where H0: STEM = non-STEM 

and H1: STEM > non-STEM, at the 5% confidence level, Table 5 gives a p-value equal to 0.0374. 

This reveals that, on average, even for the French market, STEM firms perform better than non-

STEM firms. In order to confirm the previous findings, in Figure 5(b) we also perform a test for the 

five-year period between 01/01/2014 and 01/01/2019, validating the STEM supremacy among 

French firms at the 5% confidence level (p = 0.0258, see Table 5). The results are not surprising: 

both STEM and non-STEM firms are reliant on innovations, but it is plausible that, on average, 

STEM firms apply STEM innovations to a larger extent than non-STEM firms.  

It is reasonable to expect that innovative firms perform better during economic downturns in 

comparison to their less innovative counterparts. However, it is surprising that the calculations for 

the most recent pandemic year – 2020 – reveal results that oppose the U.S. market’s insignificant 

performance differences between French non-STEM and STEM firms. This intriguing result reveals 

that the most recent pandemic was detrimental to all sectors of French industry. However, an 

alternative interpretation is that French STEM firms are not as innovative as U.S. STEM firms. 

 

Insert Table 5 about here 

 

Insert Table 6 about here 

 
 

 We further perform STEM vs. non-STEM analysis for constituents of the German DAX index. 

As with the previous two markets, Figures 6(a) and (b)  show the growth rate calculated as the log 

difference for each of the 30 companies trading on the Frankfurt Stock Exchange within the DAX 

index. Again, we begin by analysing the three-year time span between 01/01/2016 and 01/01/2019, 

applying the Mann-Whitney test for the right tail test where, again, H0: STEM = non-STEM and 

H1: STEM > non-STEM. In contrast to the U.S. and French markets, Table 6 reveals a surprising 

p-value of 0.44, implying that there is no significant difference in performance between non-



 

STEM and STEM firms at the 5% confidence level. Repeating the test, firstly over the five-year 

period between 01/01/2014 and 01/01/2019 and then over the 2020 pandemic year, we again 

confirm that there is no significant difference between STEM and non-STEM German firms (p = 

0.863). When comparing the French and German indexes, it was surprising to find that, over the 

years of expansion, non-STEM and STEM firms significantly varied in the French market in favor 

of STEM firms. However, we found no significant difference in the German market. However, 

for both the French and German financial markets, in contrast to the U.S. market, we surprisingly 

find no significant differences between STEM and non-STEM firms during the pandemic year 

over the time span between 01/01/2020 and 01/01/2021.  

 

Insert Figure 5 about here 

FIG. 5. Firm Level. Constituents of the French financial index, CAC40. The growth rates are calculated over 

(a) a three-year period and (b) a five-year period. 

Insert Figure 6 about here 

Fig. 6. Firm Level. Constituents of the German financial index, DAX. The growth rates are 

calculated over (a) a three-year period and (b) a five-year period. 

 

 

 

V. WEALTH INEQUALITY AT A COUNTRY LEVEL 

 

Generally, in contrast to individuals and firms, it is less clear how countries should be divided 

with regards to STEM and non-STEM. However, it is reasonable to assume that countries with a 

large number of STEM firms and STEM graduates attract foreign STEM students and reign 

supreme with regards to STEM startups and numbers of patents. An important factor in the overall 

graduate demographics is the fraction of STEM graduates because, according to the World 

Economic Forum (WEF), STEM has become the most important fraction for graduates (HRC, 

2016). For 2016, the World Economic Forum (World bank, 2021) revealed that India had 2.6 

million, while the U.S. had 568,000 STEM graduates. Pure numbers say nothing about the quality 



 

of graduates.  

  Here, we assume that there is a functional dependence between a country’s number of patents 

and the number of STEM students, since one would expect that patents are mainly based on STEM 

innovations. In Figure 7, for OECD countries over a nine-year period (2000-2009), we show how 

the average number of STEM students in a given country is associated with the number of patent 

grants over not the same period, but rather during the subsequent nine-year period (2010-2019). 

Figure 7 reveals the significant functional dependence between a country’s number of patents and 

its number of STEM graduates.  

Insert Figure 7 about here 

FIG. 7. Country level. WIPO patents. The more STEM graduates in a country, the larger the number of 

patents. For both patents and STEM graduates, the average is calculated as a logarithm of these variables.  

 

 

Next, we apply our Zipf analysis at a macro (country) level. Because countries are more complex 

economic systems than firms, one can see how the Zipf exponent calculated for countries differs 

from those calculated for firms and individuals. Few studies focus on Zipf analyses, reporting a 

power law on world wealth or GDP per capita (Di Guilmi et al., 2003). Next for 2019, Figure 8(a) 

shows the Zipf plots with corresponding exponents calculated for both GDP at PPP (purchasing 

power parity)  and GDP in constant dollars. We find that the Zipf exponents, ξ = 1.32 calculated 

for GDP at PPP and ξ = 1.2 calculated for GDP in constant dollars, are both significantly larger 

than the one calculated for firms. This suggests that wealth inequality at a country level is generally 

larger than wealth inequality at a firm level. It is intriguing that these exponents, obtained for GDP 

data, are similar to the information obtained when applying the Zipf analysis to the MCAP data in 

Figure 8(b) where, for the largest 60 countries, for 2019 we find the Zipf exponent ξ = 1.24. In 

agreement with individual and firm levels, if we were able to divide countries on STEM and non-

STEM, we can only assume that the Zipf exponent for more STEM-orientated countries would be 



 

larger than the Zipf exponent for less STEM-orientated countries.  

 

Insert Figure 8 about here 

FIG. 8. Country Level. The Zipf plot. GDP in constant dollars and at PPP. The Zipf exponent ξ = 1.32 is 

approximately two times larger than those calculated at individual and firm levels. b) Zipf of MCAP of 

countries, ξ = 1.24, in 2019.  

 

Insert Figure 9 about here 

FIG. 9. Venture Capital Data per capita for OECD countries.  
 

VI. Model for the fractal growth of individuals, firms, and countries  

 

For international business, it is intriguing that the E.U. and the U.S. are similar in GDP and are 

military and economic allies. However, E.U. counterparts of U.S. high-tech companies, such as 

Google, Amazon, and Apple, are hard to find. The economic deterioration of the E.U. was 

accentuated during the pandemic, when the E.U. was forced to buy COVID vaccines from the U.K. 

and the U.S. as not a single “pure” E.U. company manufactured vaccines. Figure 9 speaks for itself. 

It shows, for 2019, how V.C. funding was distributed across different OECD countries (per capita). 

Ranking V.C. investments from largest to lowest, thus using international data, we obtained the Zipf 

exponent ξ = 2.2. The difference between the U.S. and the E.U. is astonishing, and this perhaps 

explains why it is the largest attractor for new technological companies. Here, we propose a simple 

model encompassing the following assumptions: 

a) The U.S. attracts more global high-tech companies than the E.U. due to its larger Venture 

Capital; 

b) In the U.S., STEM-orientated companies are better performers than non- STEM. 

c) The Zipf exponent of wealth consistently increases with the advancing scale of a system, from 

individuals and firms to countries. 



 

To reproduce the growth rates between non-STEM and STEM or U.S. and E.U. firms, and in full 

awareness that the STEM firms generally generate heavier tails in wealth distribution than non-

STEM, we propose an extension of Simon's rich-gets-richer model (Simon, 1955). Simon's rich-

gets-richer model is commonly applied in economic theory for firm growth. For the sake of 

simplicity, we presume that the world economy is comprised of only two countries (or groups of 

countries) - the U.S. and the E.U., for instance. According to a), the model assumes that these two 

countries vary in attracting STEM-risky entrepreneurship, wherein V.C. mainly finances these 

firms. Here, the larger the V.C. (see Figure 9), the larger the probability q of attracting new superstar 

STEM firms. Of course, not all V.C.-financed companies are STEM, but we have sought to make 

the model as simple as possible. We assume that V.C. is generally intended for STEM firms. 

Each Simon model is developed in line with the evolution of either non-STEM or STEM firms. 

Inspired by the preferential attachment (PAI) growth mechanism (Barabasi & Reka, 1999), for non-

STEM firms, we firstly assume that, at the start of the country's economy, thus at initial time t = 

1, there were a few non-STEM firms. The number of these is deliberately chosen. Then, to follow 

a P.A. formalism, at any other time ti, a fixed probability pN a unit of wealth (Barabasi & Reka 1999) 

is given to the country's economy, representing a new firm. With the rest of the probability 1 

− pN, this new unit of wealth can be taken over by one of the country's existing firms. In the P.A. 

mechanism, the larger an existing firm j, the more likely its probability of absorbing the unit of 

wealth (38,39). This probability equals (1 − pN )A(j)/ΣA(k), and A(j) denotes the firm size, as 

measured by the number of units previously attracted.  

 

Proposition 1. At each step ti, the PAI mechanism is applied for STEM firms and STEM 

entrepreneurs (potential billionaires), wherein a new unit of wealth is entered in the economy. To 

account for the faster growth of STEM firms, in contrast with the non-STEM sector, a STEM unit 

is created in the world’s pool and, with the probability of q, the unit is assigned to the U.S. and 1 

− q is assigned to the E.U. Here, in the model, we assume that q linearly depends on the size of 



 

the V.C. market and, accordingly, we approximately establish that q = 19/20, in agreement with 

Figure 9, where V.C. is shown to be much larger in the U.S. than in the E.U. Consequently, at 

each step, the STEM firm’s sector and STEM entrepreneur’s growth equals 1 + q in the U.S. and 

2 − q in the E.U. With a probability pS, the new units are given to the country’s economy as the 

initial wealth of a new independently growing firm and also the wealth of its founder. With a 

probability of 1 − pS, based on PA mechanisms, the new units of wealth created within a country 

are taken over by a pre-existing STEM firm and are independently assumed by an existing 

entrepreneur. For STEM firms only, we assume that, at each time, with probability p’,a fixed 

number of boxes m’ is transferred from the bulk to the tail part of the probability distribution, 

contributing to the growth of firms. The tail part for STEM firms’ scales, with exponent α = 1/(1 

− pS + p’m’/(1 + q)), while the tail part for STEM billionaires (richest entrepreneurs) scales is α 

= 1/(1 − pS). We approximate that the non-STEM firms (entrepreneurs) in both countries grow 

equally (not tested in the data) for one unit at each step. 

Proof: Applying the preferential attachment used in Simon (1955), we first analysed the U.S. 

STEM sector and gradually developed a model. In agreement with Simon (1955), the rate at which 

a firm i (and its founder, potential billionaire) grows is ∂ki/∂t = (1 + q)(1 − pS)ki/(1 + q)t, which 

yields ki(t) = (1 + q)(t/ti)
(1−p

S
 )

. Note that, besides regular growth (unit box), we add an additional 

growth q due to STEM V.C.s, which serve to attract the world’s innovative individuals. Secondly, 

for firms only, we divide STEM firms in the distribution on the tail and the bulk part, assuming 

that firms in the tail part are generally more successful and therefore attract resources and humans 

from the bulk part, making the growth of the tail part even higher. Alongside Simon’s standard 

rich-gets-richer model for STEM firms, we introduce additional rich-gets-richer competition 

mechanisms between the rich and the poor. Hence, we assume that, with a probability p’, m’ boxes 

are taken over from the bulk part, correcting the rate at which firm i in the tail part grows as  

∂ki/∂t = ((1 + q)(1 − pS) + m'p')ki/((1 + q)t) = (1 – p's
  
)ki/t, (2) 

where 1−p'S  = 1−pS +  m'p' /(1+q).  For the bulk part of the probability distribution, m'p' is 



 

replaced by -m’p. However, here we are predominantly interested in the tail part. Then, following 

Barabasi and Reka (1999), the probability that firm i is smaller than k, P (ki(t) < k) alternatively 

equals P (ti > ((1 + q)/k) 1/(1-p’
S

) t). Assuming that new boxes are entered into the economy 

homogeneously in time (Barabasi & Reka, 1999), it is easy to obtain = P (ti > ((1 + q)/k) 1/(1-p’
S

) t) 

= 1 − P (ti ≤((1+q)/k)1/(1-p’
S

)t) = 1 −((1+q)/k) 1/(1-p’
S

)  t/((1+q)t+m0). Finally, following Barabasi 

and Reka (1999), the probability density P (k) derives from the cumulative distribution P (k) = ∂P 

(ki(t) < k)/∂k, which asymptotically leads to a stationary solution that, in the tail part, resembles 

the form P (k) ∝ k−1/(1-p’
S

) -1  with power-law exponent α = 1/(1 − pS +p’m’/(1 + q)) and (see Eq. 

(1)) 

             ξ = 1 − pS + p'm' /(1 + q).                                                (3) 

Here, the model parameters can be set to mimic the empirical findings in Figure 4, where the larger 

pS value follows the smaller ξ value (and the larger α value). Similarly, the larger the rich-gets-

richer competition mechanism (p’m’/(1 + q)), the larger the ξ value. For STEM billionaires, there 

are no additional competition mechanisms, and the tail part has an exponent  

               ξ = 1 − pS                            (4).  

In short, for STEM firms, while we introduce q to take into account that the richer market as a 

whole attracts experts and resources from the outside, the last term p’m’ in Eq. (3) is added to 

explain a similar flow inside the market, from the poor to the rich. For STEM firms, we expand 

Simon’s rich-gets-richer model through additional rich-gets-richer competition mechanisms, 

accounting for the larger levels of inequality existing among STEM firms relative to STEM 

billionaires. Thus, the growing ξ exponent, moving from individual to firm level (see Figs. 2 and 

4), is modelled by the competition mechanism, where the larger the difference between their ξ 

exponents in Eq. (3) and (4), the larger the competition mechanism. For the E.U. STEM market, 



 

q in the above formulas should be replaced with (1 − q). For non-STEM firms, the formulas are 

similar, where pS is replaced by pN . In our model, for non-STEM sectors, pN is generally larger 

than pS, and the competition mechanism is generally weaker for non-STEM than for the STEM 

sector, enabling larger inequalities in the STEM sector relative to the non-STEM. Q.E.D. 

Proposition 2. To include a variety of countries in the growth of STEM economy, we assume 

that each country is labelled by index n. We change Proposition 1 only by assuming that m new 

boxes are added internationally, where the probability that they will be taken by country n equals 

P (n) = (γ −1)/nγ, where γ > 1, represents the fractal wealth transfer at a country level. Unlike in 

Proposition 1, there is no unit of wealth generated for each country. The total wealth of country 

n evolves as W(n) = mt(γ − 1)/nγ. 

Proof: The rate at which firm i in country n will add new boxes is ∂kn,i/∂t = ((1 − pS)mP (n) 

+m’p’)/(mP (n)t) kn,i, which yields kn,i(t) = mP (n)(t/ti)
1-ps + m’p’/(mP(n)). Again, m’p’ is introduced to 

account for the transfer of capital and experts within a country; i.e., the term represents the wealth 

transfer at a firm level. We could even have entered the transfer of capital and experts between 

countries to account for the competition at a country level. Finally, the stationary solution of the 

probability density at country n tends to P (k) ∝ k−α
n

−1 with exponent ξn ≡ 1/αn = 1 − pS + m’p’/(mP 

(n)). In this model, the aggregated firm wealth serves as a proxy for the market capitalization of 

country n, which evolves as MCAP (n) = mt(γ − 1)/nγ. Taking logarithm, we obtain 

ln(MCAP ) = ln(mt(γ − 1)) − γ ln(n) (4) 

where, to mimic the results in Figure 8(b), we can approximately set γ = 4/3.  

 

VII Discussion and Conclusion  

 

Only a few years ago, the Japanese government suggested that its universities close or 

substantially reduce their social sciences and humanities departments in size to “serve areas that 



 

better meet society’s needs” (The Diplomat, 2015). This demonstrates the ways in which STEM 

has become increasingly important in the battle for world dominance. 

Thus, in this study, motivated by Stieglitz  (2019)  who stated that a small fraction of companies 

in the U.S. economy control the entire industrial  sectors and contribute to increasing inequality, 

we extand this Stieglitz’s notion  to varying scales of economy and demonstrate that wealth and 

inequality at varying levels of economy, ranging from individuals and firms to countries, roughly 

exhibit fractal natures, in which STEM disciplines play a crucial role. This fractal nature is 

approximate because the Zipf exponent, set to quantify the wealth inequality, persistently 

increases as the scale of a system grows, from individuals to firms and countries. Applying the 

Zipf methodology, we reveal how inequality grows, moving from a smaller to a larger scale, from 

individual and firm to country level. At an individual level, the Zipf plot of the wealth of the 

world’s richest STEM individuals exhibits a steady increase in wealth inequality, where the Zipf 

exponent for STEM billionaires increases faster than the Zipf exponent for non-STEM 

billionaires.  

At a firm level, analysing the constituents of the S&P500 index, the French CAC40 index, and 

the German DAX index for the S&P500 index and the CAC40 index, we obtain that STEM firms 

are better performers than non-STEM firms during good years or economic expansion. 

Surprisingly, for the DAX index, we find no significant difference between non-STEM and STEM 

firms during years of economic expansion. However, as the main difference relative to the E.U. 

market, only for the S&P500 index, STEM firms performed better during the 2020 pandemic year 

than non-STEM. With these results in mind, we can only speculate that better STEM performance 

over non-STEM in the U.S. is, on the one hand, due to much larger Venture Capital market in the 

U.S. compared to the E.U., and on the other hand because the U.S. attracts more international 

students than the E.U. does.  

At a country level, for OECD countries, we find a significant relationship between the number 



 

of patents and the number of STEM students. It is likely that the patents are predominantly based 

on STEM innovations. 

To validate our finding that wealth inequality rises with the scale of the economy, we propose 

a variant of the Simon model alongside additional competition mechanisms. This reveals that, at 

any moment, the richer can take wealth from the poorer. We involve the competition mechanism 

in the model because it is plausible that this mechanism increases, moving from individuals to 

firms and countries. After all, firms have more recourses than individuals, and countries have more 

resources than individuals and firms. Unlike individuals and firms, countries are entitled to impose 

sanctions against opponents. In our model, the larger the competition mechanism on a given scale, 

the larger the ξ exponent or, the larger the degree of wealth inequality. 

In the Western world, particularly in the U.S. and in Europe, due to weak interest in STEM 

disciplines among domestic students, international students are attracted. In 2018, in contrast to 

the interest of U.S. students, 62% of international students in U.S. colleges and universities studied 

STEM disciplines, such as science and engineering. International students made up 81% of all 

graduate students in petroleum and electrical engineering, 69% of students in statistics, 75% in 

industrial engineering, 59% in civil engineering, 63% in mechanical engineering and economics, 

and 57% in chemical engineering (NFAP, 2017). In computer science (C.S.), where students study 

cyber security and A.I. – both topics of huge interest for a nation’s security – U.S. students made 

up only 21% of the cohort (NFAP, 2017). 69% of U.S. public school teachers teaching students 

from fifth through to eighth grade lack a degree in mathematics. This may be contributing to a 

weak interest in STEM disciplines among young Americans. Even more disturbing is that 93% of 

U.S. public school students have teachers with no degree in physics teaching physics (National 

Center for Education Statistics, Qualifications of the Public School Teacher Workforce, 2003). 

U.S. officials are particularly worried, because the U.S. higher education system relies on 

international students. Of these, 69% are from the most competitive Asian nations (National 



 

Science Board, 2018). These percentages reveal that, if STEM departments in leading U.S. higher 

education institutions relied on U.S. students alone, they would probably not survive.  

While most international students achieving U.S. STEM Ph.D. degrees would like to stay in 

the U.S., the number of STEM Ph.D. recipients from China and India who wish to stay in the U.S. 

has decreased (AIP, 2018). Once these students receive their Ph.D., most return to their own 

countries, helping them compete against the U.S. in research, leading to high-tech supremacy. 

This ongoing competition for high-tech supremacy reminds us to a high degree of a similar 

competition between the Americans and the Russians seven decades ago. Namely, when the 

Russians launched Sputnik into space in the 1960s, ensuring their initial dominance in the airspace 

program. This event propelled the U.S. into action, resulting in a rapid increase in expenditure for 

aeronautical disciplines, reshaping educational programs to take the lead in space disciplines. 

Nowadays, a similar threat from the Far East Asian countries with regard to A.I. and STEM 

disciplines will most likely make Americans focus on these disciplines to maintain their leading 

position in advanced technologies. The U.S. will enter into a new educational transition phase 

(National Science Board, National Science Foundation, 2020) where, firstly, departments in 

higher education will have to collaborate more with other departments, especially STEM and non-

STEM, and secondly, the focus will most likely be shifted from a predominance of undergraduate 

studies, based on pure Social Science, Arts, and Humanities, to studies based more on STEM-

orientated disciplines.  

The National Science Foundation of the USA defines interdisciplinary research as: a mode of 

research, conducted by teams or individuals, by integrating different methodological perspectives 

(e.g., information, data, techniques and tools), concepts and/or theories from two or more 

disciplines to solve problems (National Science Foundation, 2020). The best universities 

worldwide are shifting towards a joint interdisciplinary program, with STEM on the one hand and 

the Social Sciences, Arts, and Humanities on the other. A good example of this would be Aalto in 

https://link.springer.com/article/10.1007/s11192-020-03750-9#ref-CR17


 

Finland, which aims to improve students' "soft" skills, combined with data literacy and textual and 

math literacy, closely linked to STEM and non-STEM education. The high school educational 

system is also challenged by a growing number of individuals without formal education who can 

accomplish respectable careers if trained in Data Science.  

Education is generally considered important because it greatly impacts industry (Agasist et al., 

2021). Developments in science and technology that occur at universities create new occupations 

and substantially affect labor demand (Börner et al., 2018; Frank, 2019) in the form of a feedback 

mechanism, wherein changes in labor demand influence what university graduates will choose to 

study in the future (Kutner et al., 2020). Brynjolfsson and McAfee describe how the rapid 

expansion of technology urges us to quickly update our skills, organizations, and institutions 

(Brynjolfsson & McAfee, 2014), particularly concerning two technologies—Cloud Robotics and 

Deep Learning. These may substantially impact the labor force and its progress (Pratt, 2015). With 

these technologies, every robot learns from all of the other robots. Algorithms help robots learn 

from common, cloud-based training sets (Pratt, 2015). Suppose the labor force has a high 

proportion of highly trained workers. In that case, it assumes a large volume of skill-

complementary technologies that, in turn, increase the productivity of highly skilled 

workers (Acemoglu, 1998). Briefly, nations with innovation policies and economies based on 

innovations will rule the world (Atkinson & Ezell, 2012). 

Finally, by linking innovations in science, technology, education, academia, and industry, the 

government could likely build a synergistic output much larger than the sum of its separate parts, 

eliciting a nonlinear boost to ccountries' growth (Börner et al., 2018; Park et al., 2020). This 

knowledge then increasingly becomes more important than the student’s place of graduation. 

In summary, at multiple levels of analysis, STEM pushes the boundaries of what is possible 

and propels a country's growth (Bruno & Faggini, 2021). The findings of our study hold 

implications for monetary funds with regards to policies, particularly those evoked during a 



 

pandemic. Furthermore, our results can impact public policy as well. Economic policies can 

involve the results of our research when uncovering responses to questions pertaining to the 

direction in which education policy should evolve at national and regional levels. Future emphasis 

should be on STEM-related areas in interdisciplinary research preferences. To properly compete 

with the U.S. and Far East Asian countries, the E.U. must increase its investment in STEM 

education and research (Colombo & Piva, 2020). In the race for high-tech supremacy, those who 

are better educated in STEM topics seem to be integral to success. 
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