

King’s Research Portal

Link to publication record in King's Research Portal

Citation for published version (APA):
Lano, K., Kolahdouz Rahimi, S., & Poernomo, I. (2012). Comparative evaluation of model transformation
specification approaches. International Journal of Software Informatics, 6(2), 233-269.

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 15. Jan. 2025

https://kclpure.kcl.ac.uk/portal/en/publications/7567445a-c9a3-432c-bbb2-44db8c5acd73

Int J Software Informatics, Volume 6, Issue 2 (2012), pp. 233–269 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2012 by ISCAS. All rights reserved. Tel: +86-10-62661040

Comparative Evaluation of Model Transformation

Specification Approaches

Kevin Lano, Shekoufeh Kolahdouz-Rahimi, and Iman Poernomo

(Dept. of Informatics, King’s College London, Strand, London, UK)

Abstract Model transformations have become a key element of model-driven software de-

velopment, being used to transform platform-independent models to platform-specific mod-

els, to improve model quality, to introduce design patterns and refactorings, and to map

models from one language to another. A large number of model transformation notations

and tools exist. However, there are no guidelines on how to select appropriate notations for

particular model transformation tasks, and no comprehensive comparisons of the relative

merits of particular approaches. In this paper we provide a unified semantic treatment of

model transformations, and show how correctness properties of model transformations can

be defined using this semantics. We evaluate several approaches which have been developed

for model transformation specification, with respect to their expressivity, complexity and

support for verification, and make recommendations for resolving the outstanding problems

concerning model transformation specification.

Key words: model transformations; model transformation specification; UML

Lano K, Kolahdouz-Rahimi S, Poernomo I. Comparative evaluation of model transfor-

mation specification approaches. Int J Software Informatics, Vol.6, No.2 (2012): 233–269.

http://www.ijsi.org/1673-7288/6/i120.htm

1 Introduction

Model transformations are mappings of one or more software engineering mod-

els (source models) into one or more target models. The models considered may

be graphically constructed using graphical languages such as the Unified Modelling

Language (UML)[26], or can be textual notations such as programming languages or

formal specification languages.

A large number of model transformation notations and tools have been defined,

however there is no consensus on which kinds of model transformation specification

are appropriate for which types of model transformation problem. In addition, tool

support for demonstrating the correctness of model transformations remains limited:

such correctness must consider whether the transformation is guaranteed to establish

the constraints of the target model, and to preserve (possibly under interpretation)

constraints of the source model, as well as the internal consistency of the transforma-

tion specification itself. Such verification processes require the existence of a sound

semantics for model transformations, independent of any particular model transfor-

mation language.

Corresponding author: Kevin Lano, Email: kevin.lano@kcl.ac.uk
Received 2011-01-04; Revised 2011-06-25; Accepted 2011-09-26; Published online 2012-03-19.

234 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

Section 2 distinguishes different categories of model transformation, Section 3

defines a general semantics for model transformations and defines concepts of cor-

rectness for model transformations. Section 4 surveys techniques for the specification

of transformations, and Sections 5, 6 and 7 apply several model transformation ap-

proaches on three transformation case studies. In Section 8 we give a systematic

comparison of these transformation approaches. Finally in Section 9 we summarise

our results.

2 Categories of Model Transformation

Semantically-based classifications of model transformation approaches were de-

fined in Ref.[25], these considered:

• The languages the transformation operates upon: i.e., program-level versus

model-level transformations and endogenous (source and target language are

the same) versus exogenous (different source and target languages);

• Horizontal (transformation does not change abstraction level) versus vertical

(source and target models are at different abstraction levels) transformation;

• The level of automation and complexity of the transformation, and the semantic

correctness of the transformation.

Criteria for the effectiveness of a transformation language and tool were also pro-

posed, including the ability to compose transformations and to demonstrate syntactic

and semantic correctness.

In this section we use semantically-based criteria to classify transformations, in

particular the criteria of languages used, of abstraction levels and of the semantic

relation between the source and target models.

In this paper we will consider the following three general categories of model

transformations:

Refinements These transformations refine models towards implementations. Ex-

amples include PIM to PSM transformations in the MDA, or code generation

from PSMs. They may remove certain constructs or structures, such as multiple

inheritance, from a model, and represent them instead by constructs which are

available in a particular implementation platform. The semantics of the model

may be changed, but all the properties of the original model should be true in

the new model, via some interpretation. They are usually exogenous, and are

essentially characterised by being vertical transformations (from a higher to a

lower level), and by the target being semantically equivalent to or stronger than

the source.

Quality improvements These transformations do not change the abstraction level

of a model, and usually preserve its semantics (under a suitable interpretation)

but improve its structure and organisation, eg., by factoring out duplicated

elements. They normally operate on a single language. That is, they are en-

dogenous, semantically preserving and horizontal transformations.

Kevin Lano, et al.: Comparative evaluation of model transformation ... 235

Re-expressions These translate a model in one language into its ‘nearest equivalent’

in a different language, such as a different version of the source language. This

is useful for re-engineering, migration, validation and tool integration. These

are exogenous, semantically preserving and horizontal transformations.

Within each category, further subcategories can be distinguished, for example

refactoring is a particular subcategory of quality improvement transformation.

Mappings from one programming language to another would normally be re-

expressions (for languages at the same level of abstraction), whilst transformation

from a formal specification language to code would be a refinement.

3 Semantic Framework for Model Transformations

3.1 Metamodelling framework

We will consider transformations between languages specified using the Meta-

Object Framework (MOF). Figure 1 shows the four-level metamodelling framework

of UML using MOF. At each level, a model or structure can be considered to be an

instance of a structure at the next higher level (MOF is an instance of itself).

Figure 1. UML metamodel levels

Thus, for example, the concept of a class is defined in the UML metamodel (a

model at level M2) by the metaclass Class, with associated collections of ownedAt-

tributes, ownedOperations and other features (Fig. 2). Actual user models (class

diagrams) are instances of this metamodel, and exist at level M1. In discussing model

transformation correctness, we will refer to the M2 level as the language level (the

models define the languages which the transformation relates) and to the M1 level as

the model level (the models which the transformation operates upon).

For each model M at levels M2 and M3, we can define (i) a logical language LM

that corresponds to M , and (ii) a logical theory ΓM in LM , which defines the semantic

meaning of M , including any internal constraints of M . These can also be defined for

M1 models which are themselves UML models such as particular class diagrams.

236 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

Figure 2. UML class diagram metamodel

The first-order language LM consists of type symbols for each type defined in

M , including primitive types such as integers, reals, booleans and strings which are

normally included in models, and semantic types C for each classifier C defined in M.

There are attribute symbols att(c : C): T for each property att of type T in the feature

set of a classifier C. There are attributes C to denote the set of currently existing

instances of each classifier C, ie, its extent. This corresponds to C.allInstances() in

OCL. There are action symbols op(c : C, p : P) for each operation op(p : P) in the

features of C[18]. Collection types and operations on these and the primitive types

are also usually included.

The theory ΓM includes axioms expressing the multiplicities of association ends,

the mutual inverse property of opposite association ends, deletion propagation through

composite aggregations, the existence of generalisation relations, and the logical se-

mantics of any explicit Constraints in M , including pre/post specifications of oper-

ations. For example, if classifier C generalises classifier D , this is expressed by the

axiom D ⊆ C.

For a sentence ϕ in LM , there is the usual notion of logical consequence:

ΓM ` ϕ

means the sentence is provable from the theory of M , and so holds in M .

If M is at the M1 level and is an instance of a language L at the M2 level, then

Kevin Lano, et al.: Comparative evaluation of model transformation ... 237

it satisfies all the properties of ΓL, although these cannot be expressed within LM

itself. We use the notation M |= ϕ to express satisfaction of an LL sentence ϕ in M .

For example, any particular UML class diagram satisfies the language-level prop-

erty that there are no cycles in the inheritance hierarchy.

3.2 Model transformation semantics

Transformations can be regarded as mappings or relations between models. These

models may be in the same or in different modelling languages. Let L1 and L2 be

the languages concerned. We assume these are defined as metamodels using MOF. A

transformation τ then describes which models M1 of L1 correspond to (transform to)

which models M2 of L2.

Let ModelsL be the set of models which interpret the language (metamodel) L.

We may simply write M : L instead of M : ModelsL.

A model transformation τ from language L1 to language L2 can therefore be

expressed as a relation

Relτ : ModelsL1
↔ ModelsL2

Sequential composition τ ; σ of transformations corresponds to relational compo-

sition of their representing relations.

In general it may be that only some models in L1 can have a transformation τ

validly applied to them: this is termed the applicability condition of τ . It is defined

as membership of the domain of Relτ :

dom(Relτ) =
{M : ModelsL1

| ∃M ′ : ModelsL2
· Relτ (M ,M ′)}

A transformation is invertible if it Can be applied in the reverse direction. The

reversed transformation τ−1 is represented by the inverse Rel−1
τ

relation, which is

only defined on the domain

ran(Relτ) =
{M : ModelsL2

| ∃M ′ : ModelsL1
· Relτ (M ′,M)}

The reversed relation may not be functional, since there may be different models of

L1 which map to the same model of L2.

A model transformation implementation is said to be change propagating if changes

∆s to the source model s can be used to compute a necessary change ∆t to the tar-

get model, without the need to re-execute the transformation on the entire modified

source model s ⊕ ∆s [32].

If two transformations τ and σ have change-propagating implementations, so

does τ ; σ.

The formalism we have introduced here permits ternary or higher-multiplicity

transformations, for example a transformation

union :L × L ↔ L

which produces a union of two models, can be considered as a relation relating pairs

of source models to single target models. In this paper we will only consider binary

transformations.

238 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

3.3 Model transformation correctness

The following notions of transformation correctness have been defined[33, 3]:

• Syntactic correctness: the transformation always produces syntactically well-

formed models of the target language from valid models of the source language.

This also requires that every semantic constraint of the target language is sat-

isfied by the target model.

• Definedness: the transformation is validly defined on each source model.

• Uniqueness: the transformation produces a unique result from a given starting

model.

• Completeness: for individual rules this means that all aspects of the target

model which cannot be automatically inferred (such as default initial values for

properties) are explicitly specified by the rule.

For the entire transformation it means that each expected transformation rela-

tionship between a pair of models can actually be established by some compo-

sition of transformation rules of the transformation.

• Semantic correctness: for each property of the source model which should be

preserved (correctness properties), the target model satisfies the property, under

a fixed interpretation of the source language into the target language.

This divides into language-level semantic correctness, for properties expressed in

the source language itself, and model-level semantic correctness, for properties

expressed in the language of an individual source model (such as constraints

within the model). Different interpretations usually apply at these different

levels.

The first three properties are termed Strong executability, Totality and Determinism

in Ref. [3].

In our semantics for transformations, we can precisely define these criteria as

follows for a model transformation τ from L1 to L2:

Syntactic correctness For each model which conforms to (is a model in the lan-

guage) L1, and to which the transformation can be applied, the transformed

model conforms to L2:

∀M1 : L1; M2 · Relτ (M1,M2) ⇒ M2 : L2

Definedness This means that the applicability condition of Relτ is true: its domain

is the complete collection of models of L1.

Uniqueness This means that Relτ is functional as a relation from L1 to L2.

Completeness If M1 should be related to M2 by the transformation, then Relτ (M1,M2)

holds.

Kevin Lano, et al.: Comparative evaluation of model transformation ... 239

Semantic correctness 1. Language-level correctness: each language-level property

ϕ : LL1
satisfied by M1 is also satisfied, under an interpretation χ on language-

level expressions, in M2:

∀M1 : L1; M2 : L2 · Relτ (M1,M2) ∧ M1 |= ϕ ⇒ M2 |= χ(ϕ)

2. (Model-level correctness): each model-level property ϕ : LM1
of a source

model M1 is also true, under an interpretation ζ on model-level expressions, in

the corresponding target model M2:

∀M1 : L1; M2 : L2 · Relτ (M1,M2) ∧ ΓM1
` ϕ ⇒ ΓM2

` ζ(ϕ)

It is sufficient to consider ϕ ∈ ΓM1
in this case.

Model-level semantic correctness should be expected for refinement and quality im-

provement transformations. For re-expression transformations there may be cases

where M1 properties cannot be expressed in M2 (ζ will be a partial interpretation),

but all expressible properties should be preserved from M1 to M2. The interpretations

can also be used to map test cases θ of M1 into test cases ζ(θ) of M2.

Some transformations may be inherently non-functional, for example, the trans-

formation (translation) between the abstract syntax trees representing texts in dif-

ferent natural languages. However, as Ref. [3] points out, non-determinism can also

result from specification errors such as under-specification and omission of intended

predicates.

If transformations τ and σ are semantically correct at a particular level, so is

their composition τ ; σ, using the composition of the interpretations χτ , χσ, or ζτ , ζσ .

4 Specification Techniques for Model Transformations

A large number of formalisms have been proposed for the definition of model

transformations: the pure relational approach of Refs. [1, 2], constructive type theory[30],

graphical description languages such as graph grammars[6,31], or the visual notation

of QVT[27], hybrid approaches such as Epsilon[14] and implementation-oriented lan-

guages such as Kermeta[11].

The key problem with the specification of model transformations is that, seman-

tically, model transformations are relations from one (or more) entire model to one or

more entire models, but that such a global description is impractical for non-trivial

languages and transformations. Instead, model transformations are specified in terms

of relations between individual elements in the source model(s) and individual ele-

ments in the target model(s). The model-to-model relation is then derived from some

composition of these individual relations. This gives rise to potential ambiguity and

incompleteness due to possible alternative compositions.

A related problem is that languages such as UML are defined by highly complex

metamodels, in which meta-entities depend on each other. A transformation which

operates on some c : Class in the source model may need to also transform the

Property elements which are owned attributes of C, the Operations which are owned

operations of C, and so forth. In terms of transformation rules, a rule for Class will

typically depend on rules for Property and Operation, which may in turn depend on

rules for other metaclasses, including superclasses of Class , such as Type.

240 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

Ideally, any specification language for model transformations should support val-

idation, modularity, verification, and the implementation of transformations:

Modularity It is possible to organise model transformation rules into modules,

which have high internal cohesion and low coupling. Model transformations

may be composed externally[12] as complete modules, or rules within a trans-

formation may be considered to be modules, and composed internally within

a transformation. Finally, intra-rule composition allows individual rules to be

decomposed into parts.

Validation It is possible to analyse the specification to ensure it represents the cor-

rect intended transformation. This might be done by inspection, animation,

testing, etc.

Verification It should be possible to prove that a transformation is consistent, sat-

isfiable, and semantically correct, ie., that all constraints of the source model

remain true in the target model (possibly under some interpretation).

Implementation The specification can be used to automatically generate an effi-

ciently executable implementation of the transformation, which is correct with

respect to the specification.

Modularity is the key property which supports the other three properties. Transfor-

mations described in a monolithic manner, or as an unstructured set of rules cannot

be easily understood, analysed or implemented. Instead, if transformations can be

decomposed into appropriate smaller units, such as coherent groups of closely-related

rules, these parts can be (in principle) more easily analysed and implemented, and

the verification and implementation of the complete transformation can be composed

from those of its parts.

Suitable modularity mechanisms also improve the flexibility and reusability of

a transformation, making it easier to modify or reuse parts of the transformation

independently of other parts.

Three general styles of specification have been used for defining model transfor-

mations:

Declarative Transformations are described abstractly, eg., as mathematical rela-

tions between source and target models[1,2, 30].

Imperative Transformations are defined as programs which explicitly define the

details of how a source model is transformed into a target model[11].

Hybrid A combination of declarative and imperative, eg., a wide-spectrum speci-

fication language in which a declarative description can be refined within the

same notation into a program-like description[14].

The declarative style has the advantage that (in principle), transformations can be

described more clearly and concisely, omitting the details of strategies for selecting

and modifying model elements, and avoiding explicitly ordering the application of

rules on specific elements. The imperative style on the other hand makes it easier

and more direct to implement the transformation in an executable form. The hybrid

Kevin Lano, et al.: Comparative evaluation of model transformation ... 241

style attempts to combine the other two styles in order to obtain the advantages of

both.

We will compare five transformation specification approaches on three transfor-

mation problems:

1. A re-expression transformation from trees to graphs;

2. A refinement transformation from UML to relational database schemas;

3. A quality improvement transformation on class diagrams, to factor out dupli-

cated attributes within a class hierarchy.

The approaches chosen represent declarative (QVT-Relations, ATL), graph-transform-

ation (VIATRA), hybrid (UML-RSDS) and imperative (Kermeta) specification ap-

proaches.

We will analyse the approaches with regard to their modularity, validation, ver-

ification, complexity, interoperability, usability, the ability to produce executable im-

plementations, and other desirable properties of a model transformation formalism.

The general properties we will consider are:

Level of abstraction The degree to which the specification can abstract from im-

plementation details. A highly abstract notation is usually more concise and

closer to requirements, and so easier to validate. However it Can be inefficient

to implement.

Modularity How the specification can be organised and structured.

Complexity This will be measured by metrics on the case studies, such as counts

of operation calls and call depths.

Interoperability Whether the approach can be used conveniently within a software

development process in combination with other development tools.

Usability The developer effort required to construct and analyse the specification.

Implementability The capability to generate executable implementations of the

transformation.

We will consider also the support provided for showing syntactic correctness, com-

pleteness, definedness and confluence, and the support for bidirectional and change-

propagating transformations.

We will evaluate the ability of the approaches to support a range of different

specification styles, and evaluate their appropriateness for the different types of trans-

formation (re-expressions, refinements, quality improvements) considered here.

5 Case Study 1: Tree to Graph Transformation

Figure 3 shows the source and target metamodels of the transformation from

trees to graphs. The identity constraint in the metamodel means that tree nodes

must have unique names, and likewise for graph nodes.

242 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

Figure 3. Tree to graph transformation metamodels

We can express the requirements of the transformation in OCL, using a conven-

tional mathematical syntax for the logical operators. The tree metamodel has the

language constraint that there are no non-trivial cycles in the parent relationship

(Asm1):

t : Tree and t 6= t .parent implies t 6∈ t .parent+

where r+ is the non-reflexive transitive closure of r . Trees may be their own parent

if they are the root node of a tree.

The graph metamodel has the constraint that edges must always connect different

nodes (Ens1):

e : Edge implies e.source 6= e.target

and that edges are uniquely defined by their source and target, together (Ens2):

e1 : Edge and e2 : Edge and

e1.source = e2.source and e1.target = e2.target implies e1 = e2

These constraints must therefore be established by any syntactically correct transfor-

mation to graphs.

The transformation relates tree objects in the source model to node objects in

the target model with the same name, and defines that there is an edge object in the

target model for each non-trivial relationship from a tree node to its parent.

We can formally specify the transformation by four global constraints:

C1 “For each tree node in the source model there is a graph node in the target model

with the same name”:

t : Tree implies ∃n : Node · n.name = t .name

C2 “For each non-trivial parent relationship in the source model, there is a unique

edge representing the relationship in the target model”:

t : Tree and t .parent 6= t implies

∃1 e : Edge · e.source.name = t .name and e.target .name = t .parent .name

Kevin Lano, et al.: Comparative evaluation of model transformation ... 243

C3 “For each graph node in the target model there is a tree node in the source model

with the same name”:

g : Node implies ∃ t : Tree · t .name = g .name

C4 “For each edge in the target model, there is a non-trivial parent relationship in

the source model, which the edge represents”:

e : Edge implies ∃1 t : Tree · t .parent 6= t and

t .name = e.source.name and t .parent .name = e.target .name

C3 and C4 are duals of C1 and C2, defining a reverse direction, from graphs to trees,

of the transformation, so that it is (in principle) bidirectional.

We will compare the specifications of this transformation in five different for-

malisms: QVT-Relations[27], ATL[8], VIATRA[29], UML-RSDS[20] and Kermeta[11].

5.1 QVT-relations

The QVT-Relations (QVT-R) formalism is a notation for defining model trans-

formations as sets of rules. Each rule consists of left and right-hand side object models

showing generic structures of instances from the source and target metamodels. There

is also a when clause, specified in OCL, which defines necessary assumptions or pre-

conditions for the valid application of the rule, and a where clause, defining effects

(postconditions) that the rule should establish when it completes. Graphical notation

can be used for rules, here we will use the equivalent textual notation of QVT-R.
The tree to graph transformation can be defined by three QVT rules Tree2NodeMain,

Tree2Node and Tree2Edge:

transformation simpleExample(source : Tree, target : Node) {

top relation Tree2NodeMain {

tn : String;

checkonly domain source s : Tree::Treeclass { tname = tn };

enforce domain target t : Node::Nodeclass { nname = tn };

when { s.parent.oclIsUndefined(); }

}

relation Tree2Node {

tn : String;

checkonly domain source s : Tree::Treeclass { tname = tn };

enforce domain target t : Node::Nodeclass { nname = tn };

}

top relation Tree2Edge {

checkonly domain source s : Tree::Treeclass {};

enforce domain target e : Node::Edgeclass {};

when { not s.parent.oclIsUndefined(); }

where { Tree2Node(s, e.sourceref);

Tree2Node(s.parent, e.targetref); }

244 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

}

}

It was necessary to modify the source metamodel, since the tool used (Medini QVT)

did not accept the 1-multiplicity parent role. Instead this was made into a 0..1 role,

and the test s .parent .oclIsUndefined() identifies if the tree s is a root. Separate name

attributes tname and nname have been defined for trees and nodes.

The specification is structured as a set of rules, called relations , which operate

upon elements termed domains, in this case source and target domains. The notation

enforce means that the rule is enforced by modifying a domain (such as the source

or target models) where necessary. checkonly indicates that the domain is checked

but not modified by the rule. It is possible for both source and target to be enforce,

supporting bidirectional transformations, although there are semantic problems with

such transformations[32]. A top relation is executed upon all elements in the source

model to which it is applicable, in an arbitrary order, other relations are invoked

(directly or indirectly) from top relations.

In this example the rule Tree2Edge maps trees with parents to edges, the source

and target nodes of these edges are recursively created by invoking Tree2Node in the

where clause. The rule Tree2NodeMain maps trees without parents to nodes.

This strategy could be termed recursive descent: that is, the construction of

target model elements involves the recursive construction of their sub-parts, with the

recursion terminating at basic elements without sub-parts (in this example, Node

elements). This is the usual strategy used with QVT-R.

5.2 ATL

The ATLAS Transformation Language (ATL) is a declarative model transforma-

tion language. An ATL specification consists of a set of rules, each rule has a source

and target pattern, specified using OCL. A rule application occurs when the source

pattern of the rule matches some part of the source model, corresponding elements

that satisfy the target pattern are then created in the target model. A rule may im-

plicitly call another rule, or inherit from another rule, and may also explicitly invoke

other rules (similarly to the invocation of relations within the where clause of a QVT

relation).
The tree to graph transformation can be coded as follows in ATL:

module Tree2Node; -- Module Template create OUT : NodeMM from IN :

TreeMM ;

rule Tree2Node { from

t : TreeMM!Tree(t.parent->noEmpty() and not t.parent=t)

to

out : NodeMM!Node(

name <- t.name

),

edg : NodeMM!Edge(

source <- out,

target <- t.parent

)

}

Kevin Lano, et al.: Comparative evaluation of model transformation ... 245

rule Tree2NodeSecond { from

t : TreeMM!Tree(not t.parent->noEmpty() or t.parent=t)

to

out : NodeMM!Node(

name <- t.name

)

}

The first rule processes tree nodes with parents (distinct from the node), and cre-

ates both a new graph node for the tree, and an edge connecting it to (the node

corresponding to) its parent. The second rule processes tree nodes without parents,

and creates only a new corresponding graph node. When setting edg .target , the first

rule implicitly depends upon itself or the second rule to map t .parent to a graph

node which can be assigned to this reference. Again, we needed to modify the source

metamodel, to make parent optional.

5.3 VIATRA

VIATRA[29] is a graph transformation based model transformation language. In

VIATRA, transformation rules are specified by graph matching and graph rewriting:

a pattern language is used to select elements from the model, and a rule defines how

these and related elements are modified. A procedural language, ASM, is used to

explicitly schedule the application of rules using sequencing, loops, conditionals, etc,

so that VIATRA is also a hybrid specification language. Unlike the other approaches

discussed here, VIATRA is not based upon MOF and OCL, but uses a different

metamodelling formalism, VPM[29]. VIATRA is a general framework which supports

the use of many different modelling languages. The notation used for transformation

rules is related to a logic-programming formalism such as Prolog, instead of being

based on OCL.
The tree to graph transformation can be specified in VIATRA as a machine

consisting of two graph transformation rules, each defined by a pre and postcondition
pattern, and a top-level algorithm to control the order of their execution:

machine tree2graph { gtrule mapTreeToNode(in T) =

{ precondition pattern isTree(T,Nme) =

{ tree(T); name(T,Nme); }

postcondition pattern newNode(N,Nme) =

{ node(N); name(N,Nme); }

}

gtrule mapTreeToEdge(in T) =

{ precondition pattern isTreeWithParent(T,N,P,N1) =

{ tree(T); parent(T,P); tree(P); check(T != P);

name(T,Nme1); node(N); name(N,Nme1);

name(P,Nme2); node(N1); name(N1,Nme2);

}

postcondition pattern newEdge(N,N1,E) =

{ edge(E); source(E,N); target(E,N1); }

}

246 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

rule main() =

seq {

forall T with apply mapTreeToNode(T) do skip;

forall T with apply mapTreeToEdge(T) do skip;

}

}

The specification uses a phased approach to produce the target model: basic elements

of the target model are produced in the initial phases of the transformation, then

elements that are constructed from these elements are produced in successive phases,

and so forth.

5.4 UML-RSDS

UML-RSDS is a model-driven development approach which generates executable

systems from high-level specifications consisting of class diagrams, constraints and

state machines[17]. It can be used to specify model transformations by formalising

them as constraints or as operations at the metamodel level. Code generation can

then be used to produce executable implementations of the model transformations.

UML-RSDS defines transformations as particular use cases of a system, and the

behaviour of these use cases is abstractly specified by sets of constraints. From the

constraints, explicit transformation rules as operations can be automatically derived.

In this example, the mapping from trees to graphs could be expressed by two

constraints of a use case tree2graph, with both constraints having context Tree:

∀ t : Tree · ∃n : Node · n.name = t .name

and

∀ t : Tree · t .parent 6= t implies

∃1 e : Edge · e.source = Node[t .name] and e.target = Node[t .parent .name]

The notation Node[x] refers to the node object with primary key (in this case name)
value equal to x , it is implemented in the UML-RSDS tools by maintaining a map
from the key values to nodes. In OCL it would be expressed as

Node.allInstances()→select(name = x)→any()

No changes were needed to the source or target metamodels. UML-RSDS also sup-

ports the definition of metamodel constraints, such as the no-cycles property of the

tree metamodel.

In contrast to QVT-R and ATL, where the pre and postcondition predicates of

rules simply specify the effect of one step within a transformation, the above con-

straints are intended to hold at the termination of the complete transformation (for

all tree objects). They are therefore at a higher level of abstraction, since they are

independent of particular strategies for executing the transformation.
However, they can also be interpreted in an operational manner to define individ-

ual transformation steps within a transformation. From the constraints, the following
operations of Tree are derived to carry out such steps:

mapTreeToNode()

Kevin Lano, et al.: Comparative evaluation of model transformation ... 247

post:

Node→exists(n | n.name = name)

mapTreeToEdge()

post:

self 6= parent implies Edge→exists1(e |

e.source = Node[name] and

e.target = Node[parent .name])

E→exists(x | P) is the conventional OCL syntax for ∃ x : E · P .

These operations are executed using the phased strategy: the tree-to-node map-

pings are iterated first, then the tree-to-edge mappings:

for t : Tree do t .mapTreeToNode() ;

for t : Tree do t .mapTreeToEdge()

The operations and activity are generated automatically from the constraints, to-

gether with executable Java code, which is correct by construction with respect to

the constraints.

Likewise in the graph to tree direction, a similar use case specification can be de-

fined, consisting of constraints for C3 and C4, and derived operations mapNodeToTree()

on Node and mapEdgeToTree() on Edge which define a tree and its parent association

from a graph.

5.5 Kermeta

Kermeta is a Java-like object-oriented programming language, constructed on the

type system of the OMG Meta Object Framework (MOF)[28], the base UML notation

in which UML metamodels are expressed. Kermeta can be used to define metamodels,

as sets of classes, and to transform instances (models) of these metamodels.
Several different styles of transformation specification are possible with Kermeta.

We could define, within each source language metaclass, operations to specify the
transformation rule(s) applicable to this type of source model element. Alternatively,
a separate transformation metaclass can be defined, independent of the source or
target metamodels:

class Tree2Graph {

operation createNodes(inputParent:TMM1, inputroot:Root) : NMM2 is do

var nodeForParent : NMM2 init NMM2.new

nodeForParent.name := inputParent.name

inputroot.Nodes.add(nodeForParent)

inputParent.child.each{ t |

stdio.writeln("Now create Node for child " + t.name)

var nodeForChild := createNodes(t,inputroot)

var newEdge : EdgeMM init EdgeMM.new

newEdge.source := nodeForChild

newEdge.target := nodeForParent

inputroot.Edges.add(newEdge)

}

result := nodeForParent

248 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

end

operation main() : Void is do

var root : Root init Root.new

var inputModel : TMM1 init loadTMM1()

createNodes(inputModel,root)

var repository : EMFRepository init EMFRepository.new

var resource : Resource init repository.createResource(

"platform:/resource/models/NMM2.xmi",

"platform:/resource/metamodel/NodeMM2.ecore")

resource.instances.add(root)

resource.save()

end

}

The operation createNodes applies a recursion down the structure of a tree, from the

parent to its children, to map trees into nodes and edges. Such operations can be

iterated over all the Tree elements in a set by using an iterator operator such as each:

inputParent.child.each { t | createNodes(t, root) }

Other OCL collection operators such as forAll , select and collect also have implemen-

tations in Kermeta.

A phased strategy could alternatively have been defined. As with QVT and ATL,

it was necessary to alter the source metamodel, in this case to add the inverse role

child of parent .

6 Case Study 2: UML to Relational Database Mapping

This case study concerns the mapping of a data model expressed in UML class di-

agram notation to the more restricted data modelling language of relational database

schemas. Modelling aspects such as inheritance, association classes, many-many as-

sociations and qualified associations need to be removed from the source model and

their semantics expressed instead using the language facilities (tables, primary keys

and foreign keys) of relational databases.

Figure 4 shows the source and target metamodels (as used in the UML-RSDS

version of the specification, these are also close to the metamodels used in QVT-R).

We consider the published specifications of this problem for QVT-R[27], ATL[9],

VIATRA[29], UML-RSDS[23] and Kermeta[5].

6.1 QVT-relations

The specification uses a recursive descent strategy, combined with implicit order-

ing of relations. There are three top relations:

1. PackageToSchema(p, s)

2. ClassToTable(c, t)

3. AssocToFKey(a, fk)

Kevin Lano, et al.: Comparative evaluation of model transformation ... 249

Figure 4. UML to relational database transformation metamodels

These are (loosely) ordered in this order: for a specific class, its package must

already be mapped to a schema before the class can be mapped to a table, due to the

when clause in the definition of ClassToTable:

top relation ClassToTable { cn, prefix : String;

checkonly domain uml c : Class { namespace = p : Package {},

kind = ’Persistent’, name = cn };

enforce domain rbdms t : Table { schema = s : Schema {},

name = cn,

column = cl : Column { name = cn + ’_tid’, type = ’NUMBER’ },

key = k : Key { name = cn + ’_pk’, column = cl } };

when

{ PackageToSchema(p,s); }

where

{ prefix = ’’;

AttributeToColumn(c,t,prefix);

}

}

In turn, AssocToFKey(a, fk) requires that the classes at either end of association a

have been mapped to tables by ClassToTable before the association can be mapped.

However the rules can be otherwise applied in any order.
Classes are mapped to tables by mapping their individual attributes, which is

achieved by the relation AttributeToColumn:

relation AttributeToColumn { checkonly domain uml c : Class {};

enforce domain rdbms t : Table {};

primitive domain prefix : String;

where

{ PrimitiveAttributeToColumn(c,t,prefix);

ComplexAttributeToColumn(c,t,prefix);

250 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

SuperAttributeToColumn(c,t,prefix);

}

}

In the where clause a disjunction of the three relations for primitive, complex and

supertype attributes is invoked, although this is only identifiable by examining the

disjoint matching conditions of these sub-relations: the same where syntax is used for

conjunction of invoked relations.

Table 3 shows the call graph of the specification.

6.2 ATL

The specification of the problem in ATL uses a similar recursive descent approach
to the QVT solution.

rule Class2Table { from c : Class!Class

to

out : Relational!Table (

name <- c.name,

col <- Sequence {key}->union(c.attr->select(e | not e.multiValued)),

key <- Set {key}

),

key : Relational!Column (

name <- ’objectId’,

type <- thisModule.objectIdType

)

}

The rule creates a table out with name set to C’s name, and columns a sequence of

columns starting with the key column, followed by the columns created by implicit

calls of some rule to map an attribute to a column (as in the QVT example, an

implicit disjunction of such rules is also being used here). The key of the table is the

single key column created in the rule, it has a default type, in this case Integer .

The four rules for mapping attributes to columns have disjoint preconditions, to

cover the cases:

• DataTypeAttribute2Column: the attribute is of a data type (not a class type)

and is not multivalued;

• MultiValuedDataTypeAttribute2Column: for multivalued data type attributes;

• ClassAttribute2Column: for single-valued attributes of a class type (ie., 1-

multiplicity associations to the class of the type);

• MultiValuedClassAttribute2Column: for multi-valued attributes of class type,

ie, *-multiplicity associations.

The first case has the form:

rule DataTypeAttribute2Column { from

a : Class!Attribute

(a.type.oclIsKindOf(Class!DataType) and not a.multiValued)

to

Kevin Lano, et al.: Comparative evaluation of model transformation ... 251

out : Relational!Column

(name <- a.name,

type <- a.type

)

}

The transformation does not consider source models with inheritance.

6.3 VIATRA

The VIATRA specification of this transformation consists of a main rule, which

iterates individual rules in a phased construction of the model, from the top down,

and the rules defining the mapping of individual source model elements.
For example, the rule for mapping classes to tables is:

gtrule class2tableR(in Cls) = { precondition pattern lhs (Cls,

ClsNM) =

{ Class(Cls) below models("uml");

NamedElement.name(N1, Cls, ClsNM);

String(ClsNM) below models("uml");

}

action

{ let T = undef in

let R = undef in

let RS = undef in

let RT = undef in seq

{ call createNewTable(value(ClsNM), T);

call createPrimaryKeyInTable(T);

new (class2table(R) in models("ref"));

new (class2table.srcRef(RS,R,Cls));

new (class2table.trgRef(RS,R,T));

print("Class " + fqn(Cls) + "-> Table" + fqn(T) + "\n");

}

}

In contrast to the purely declarative rules mapTreeToNode and mapTreeToEdge of

the tree to graph case study, the rule here is defined operationally with a sequentially-

executed action instead of a postcondition. The first two calls in this action invoke

subordinate rules, the remaining statements create trace information.

The trace is used to look up previously created target data from its corresponding

source data, to support the phased specification strategy. For example the subsequent

rule attr2columnR(in Cls , in Attr) uses the precondition predicates

class2table.srcRef(RS, R, Cls);

class2table(R) below models("ref");

class2table.trgRef(RS, R, Tab);

to find the table generated from Cls .

The overall algorithm is defined in the main rule:

rule main (in UMLStr, in RefStr, in DBStr) = seq { call

initModels(UMLStr, RefStr, DBStr);

252 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

forall C below models("uml") with apply class2tableR(C) do skip;

forall C below models("uml"), A below models("uml")

with apply attribute2columnR(C,A) do skip;

forall A below models("uml") with apply attrOfStringTypeR(A) do skip;

forall A below models("uml") with apply attrOfIntTypeR(A) do skip;

forall A below models("uml") with apply assoc2tableR(A) do skip;

}

The transformation does not consider source models with inheritance, but a code

generator to produce textual schema definition code from the target model is provided.

6.4 UML-RSDS

In UML-RSDS the formal specification of the transformation as a single global

relation between the source and target languages is split into six core constraints, for

example:

C1 “For each persistent attribute in the source model there is a unique column in

the target model, of corresponding type”:

∀ a : Attribute · a.owner .kind = ‘Persistent ′ implies

∃1 cl : Column · cl .rdbId = a.umlId and

cl .name = a.name and cl .kind = a.kind and

(a.type.name = ‘INTEGER′ implies cl .type = ‘NUMBER′) and

(a.type.name = ‘BOOLEAN ′ implies cl .type = ‘BOOLEAN ′) and

(a.type.name 6= ‘INTEGER′ and a.type.name 6= ‘BOOLEAN ′ implies

cl .type = ‘VARCHAR′)

C2 “For each persistent class in the source model, there is a unique table representing

the class in the target model, with columns for each owned attribute”:

∀ c : Class · c.kind = ‘Persistent ′ implies

∃1 t : Table · t .rdbId = c.umlId and t .name = c.name and

t .kind = ‘Persistent ′ and

Column[c.attribute.umlId] ⊆ t .column

Here the lookup of previously processed elements is carried out by a search

based on primary key values, to find the columns derived from c.attribute.

C3 “For each root class in the source model there is a unique primary key in the

target model”:

∀ c : Class · c.kind = ‘Persistent ′ and c.general = {} implies

∃1 k : Key · k .rdbId = c.umlId + “ Pk” and k .name = c.name + “ Pk” and

k .owner = Table[c.umlId] and k .kind = ‘PrimaryKey ′ and

∃1 cl : Column · cl .rdbId = c.umlId + “ Id” and

cl .name = c.name + “ Id” and cl .type = ‘NUMBER′ and

cl : k .column and cl .kind = ‘PrimaryKey ′ and

cl : k .owner .column

Kevin Lano, et al.: Comparative evaluation of model transformation ... 253

As with the tree to graph specification, these constraints define the expected

state of the target model at completion of the transformation, with respect to the

(unmodified) source model.

They can also be interpreted as describing individual transformation steps, and

can be used to derive operation definitions. For example, C2 leads to the following

operation on Class :

mapToTable()

post: kind = ‘Persistent ′ implies

Table→exists1(t | t .rdbId = umlId and t .name = name and

t .kind = ‘Persistent ′ and

Column[attribute.umlId] ⊆ t .column)

The operations are iterated in successive phases, so that the target model is

constructed from basic elements (columns), then tables are constructed from columns,

primary and foreign keys depend on tables, and schemas are constructed from tables.

The primary keys umlId and rdbId play the role of the explicit trace in VIATRA, by

linking the source elements to the target elements that are derived from them.

6.5 Kermeta

The Kermeta solution follows a phased strategy at the top level similar to that

of VIATRA. Classes are mapped to tables, and then attributes mapped to columns,

and associations mapped to foreign keys. In this version also, the tracing facility is

used to store the pairs of classes and their derived tables, and then to look up the

tables of classes. Recursion is used to process attributes of class type and inheritance.
The transformation class is:

class Class2RDBMS { /** Transformation trace: */

reference class2table : Trace<Class, Table>

reference fkeys : Collection<FKey>

operation transform(inputModel : ClassModel) : RDBMSModel

is do

class2table := Trace<Class, Table>.new

class2table.create

result := RDBMSModel.new

getAllClasses(inputModel).select{ c | c.is_persistent }.each{

c | var table : Table init Table.new

table.name = c.name

class2table.storeTrace(c,table)

result.table.add(table)

}

getAllClasses(inputModel).select{ c | c.is_persistent }.each{

c | createColumns(class2table.getTargetElem(c), c, "")

}

fkeys.each{ k | k.createFKeyColumns }

end

254 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

The operation to map attributes to columns is:

operation createColumnsForAttribute(table: Table, att: Attribute,

prefix: String) is do

if PrimitiveDataType.isInstance(att.type)

then

var c: Column init Column.new

c.name := prefix + att.name

c.type := att.type.name

table.cols.add(c)

if att.is_primary then table.pkey.add(c) end

else

var type : Class type ?= att.type

if isPersistentClass(type)

then

var fk : FKey init FKey.new

fk.prefix := prefix + att.name

table.fkeys.add(fk)

fk.references := class2table.getTargetElem(getPersistentClass(type))

fkeys.add(fk)

else

createColumns(table, type, prefix + att.name)

end

end

end

Here also, tracing is used to enable a phased development of the transformation.

The query class2table.getTargetElem(cls) finds the table previously derived from cls ,

and associated to cls by class2table.storeTrace(cls , table).

7 Case Study 3: Quality Improvement

This case study is a typical example of an update-in-place quality improvement

transformation. Its aim is to remove from a class diagram all cases where there are two

or more sibling or root classes which all own a common-named and typed attribute.

It is used as one of a general collection of transformations (such as the removal

of redundant inheritance, or multiple inheritance) which aim to improve the quality

of a specification or design level class diagram.

Figure 5 shows the metamodel for the source and target language of this trans-

formation.

It can be assumed that:

• No two classes have the same name.

• No two types have the same name.

• The owned attributes of each class have distinct names within the class, and do

not have common names with the attributes of any superclass.

• There is no multiple inheritance.

These properties Asm must also be preserved by the transformation.

Kevin Lano, et al.: Comparative evaluation of model transformation ... 255

Figure 5. Basic class diagram metamodel

The informal transformation steps are the following:

• If a class c has two or more immediate subclasses g = c.specialization.specific,

all of which have an owned attribute with the same name n and type t , add an

attribute of this name and type to c and remove the copies from each element

of g .

• If a class c has two or more immediate subclasses g = c.specialization.specific,

and there is a subset g1 of g , of size at least 2, all the elements of which have an

owned attribute with name n and of type t , but there are elements of g without

such an attribute, introduce a new class c1 as a subclass of c and as a direct

superclass of all those classes in g with the attribute. Add an attribute of this

name and type to c1 and remove from each of its direct subclasses.

• If there are two or more root classes all of which have an owned attribute

with name n and of type t , create a superclass c of all such classes and add

an attribute of this name and type to c and remove from each of its direct

subclasses.

It is required to minimise the number of new classes introduced, ie, to prioritise rule

1 over rules 2 or 3.

Unlike the previous examples, rules may be applied repeatedly to the same ele-

ments, and the application of a rule may affect subsequent rule applications, and so

confluence and termination are non-trivial aspects of the problem. We will consider

possible solutions in QVT-R, UML-RSDS and Kermeta.

7.1 QVT-relations

Rule 1 can be encoded as follows in QVT-R, using an adaption of the PullUpAttribute

rule of Ref. [24]:

top relation PullUpDuplicateAttribute { primitive domain n : String;

checkonly domain uml t : Type {};

checkonly domain uml c : Class {};

enforce domain uml p : Property { owner = c, name = n, type = t };

when

256 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

{ c.specialization->size() > 1;

c.specialization.specific->forAll(ownedAttribute->exists(name = n and type = t));

}

}

top relation RemoveFromSubclasses { checkonly domain uml c : Class

{ specialization = g : Generalization { specific = sb : Class {} } };

enforce domain uml p : Attribute { owner = sb };

when

{ sb.ownedAttribute->includes(p);

c.allAttribute().name->excludes(p.name);

}

}

The first relation matches any class that has more than one subclass, all containing

an attribute with the given name and type, and adds an attribute of this name and

type to the class (unless one already exists). The second relation removes from all

subclasses all attributes with a name that clashes with a superclass attribute name.

It must be executed after the first relation.

The other rules can be specified in a similar way. The ability of QVT-R rules to

match multiple elements (in this case, a class, name and type) simplifies the specifi-

cation and makes it close in form to the requirements. On the other hand, there is no

simple way to express the priority of one rule over another when both are enabled.

7.2 UML-RSDS

Rule 1 can be formalised as a constraint on Class :

∀ c : Class · c.specialization→size() > 1 implies

∀ a : c.specialization.specific.ownedAttribute ·
c.specialization.specific→forAll(
ownedAttribute→exists(name = a.name and type = a.type)) implies

∃ p : Property · p.name = a.name and p.type = a.type and

p : c.ownedAttribute and

c.specialization.specific.ownedAttribute→select(name = a.name)→isDeleted()

The other two rules can be similarly formalised as constraints. In contrast to QVT-

R, multiple matching is not directly supported, but is only simulated by means of

multiple quantifiers.

From the constraint, design-level operations can be derived. Since the constraint

both reads and modifies the same data (ownedAttribute), it requires a more complex

implementation than the simple for -loop iteration of the previous examples. Instead,

a schematic iteration of the form:

while some source element s satisfies a constraint lhs do

select such an s and apply the constraint rhs

can be used. This can be explicitly coded as:

running := true; while running do

running := search()

Kevin Lano, et al.: Comparative evaluation of model transformation ... 257

where:

search() : Boolean

(for s : Si do

if SCond then

if Succ then skip

else (s .op(); return true));

return false

and where op applies the constraint succedent.

Priority of rule 1 over rules 2 and 3 is indicated by listing the constraint for rule

1 before the other constraints. In the implementation it is then attempted first in

each iteration of the search for-loop.

7.3 Kermeta

The following is a part of the implementation of the first rule in Kermeta:

class QualityImprovement {

reference quality_improvement : Trace<EMM1, EMM2>

operation transform(inputModel : Root) : Root is do

quality_improvement := Trace<EMM1, EMM2>.new

quality_improvement.create

getAllClasses(inputModel)

result:=inputModel

end

operation getAllClasses (input:Root): EMM1[0..*] is do

result := OrderedSet<EMM1>.new

var myCol1 : set Property[0..*] init kermeta::standard::Set<Property>.new

input.nas.each{c |

if c.getMetaClass == EMM1 then

myCol1 := getSharedProperty(c.asType(EMM1))

updateModel(c.asType(EMM1),myCol1)

end

}

end

operation updateModel(c1 :EMM1 , myCol1 : set Property[0..*]) is do

myCol1.each{p|stdio.writeln(p.name)

c1.specialisation.each { e |

e.specific.ownedAttribute.each{p1 |

if p1.name == p.name and p1.type.name == p.type.name then

e.specific.ownedAttribute.remove(p1)

end

}

}

c1.ownedAttribute.add(p)

}

end

258 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

operation getSharedProperty(cl :EMM1) : set Property[0..*] is do

var myCol1 : set Property[0..*] init kermeta::standard::Set<Property>.new

var myCol2 : set Property[0..*] init kermeta::standard::Set<Property>.new

if cl.specialisation.size() > 1 then // if it has any children

myCol1 := getAllProperty(cl.specialisation.elementAt(0).specific)

cl.specialisation.each { e |

myCol2 := getAllProperty(e.specific)

myCol1.each{ p | if not

myCol2.exists{p1|p1.name == p.name and p1.type.name == p.type.name} then

myCol1.remove(p)

end

}

}

}

end

result:= myCol1

end

operation getAllProperty (input:EMM1): set Property[0..*] is do

result := kermeta::standard::Set<Property>.new

input.ownedAttribute.each{prs | result.add(prs) }

end

This solution finds all attributes that are common to all subclasses of a given

class (getSharedProperty), then removes these common properties from the subclasses

(updateModel). The algorithmic complexity is high, involving multiple nested itera-

tions, although the program logic closely follows the specification.

8 Comparison

In this section we consider the evaluation criteria of Section 4 for each transfor-

mation specification notation and case study.

8.1 QVT-relations

The QVT-R notation is at a relatively high level of abstraction, close to the form

of requirements, so in principle specifications in the notation can be directly validated.

Each QVT-R rule has a mathematical interpretation as a predicate, so permitting, in

principle, formal verification.

The modularity of the notation is only at the level of individual rules, which

can however be interdependent and even mutually recursive. Since the notation is

based closely upon UML and OCL, and the use of MOF metamodels, interoperability

with other UML-based development tools is facilitated. OCL tools could be used

to check the syntax and type-correctness of the rule patterns. However the implicit

ordering of rule applications has the consequence that the transformation computed

by a collection of rules may be unclear to the transformation developer. Syntactic

correctness and definedness for QVT-Relations specifications can be analysed by ex-

pressing these properties as logical formulae in OCL and then using an analysis tool

Kevin Lano, et al.: Comparative evaluation of model transformation ... 259

for OCL[3]. Check-before-enforce semantics in QVT means that if a result matching

can be achieved using existing elements, then new elements are not created. This has

a similar effect to an ∃1 quantifier, and means that the creation of duplicate edges

in the tree to graph case study is avoided. The facility to match multiple elements

as inputs to a rule is useful, especially for re-expression and quality-improvement

transformations.

Confluence of transformations may be difficult to establish, because the execution

order of rules is only implicitly expressed in the rules. In the tree to graph example rule

applications Tree2Node(t) and Tree2Node(t .parent) must be completed before a rule

application Tree2Edge(t) is completed, because of the where clause in the Tree2Edge

rule, however this leaves open many alternative orders of execution. Likewise in

the other case studies. Proof of confluence is therefore necessary, to ensure that

alternative permitted orderings of rule applications do not produce different target

models. Termination may fail even for apparantly trivial specifications[24]. Trace links

are automatically created and managed in QVT-R and do not need to be defined by

the developer. Transformations are executed by an interpreter.

8.2 ATL

ATL rules are at a relatively high level of abstraction, and a logical interpretation

of the rules, similar to that of QVT-Relations rules, can be constructed, to aid com-

parison with requirement constraints. OCL tools could be used to check the syntax

and type-correctness of the rule patterns. Modularity is at the level of rules, which

may be interdependent both implicitly and explicitly (if one rule explicitly invokes

another). ATL is interoperable with other MOF-based development tools[10]. The

implicit execution order of ATL rules may hinder usability, as with QVT-Relations.

There is no direct tool support for syntactic correctness or definedness, although the

techniques of Ref. [3] could in principle be used to support this. There are no checks

for rule completeness or semantic correctness. There are checks for rule consistency:

if two rules are both applicable at the same time to the same model, an error is given.

This helps to identify some cases of ambiguity in the specification, but does not ensure

confluence in all cases.

There is no direct support for multiple input element matching, or for update-

in-place transformations, which may hinder its applicability for quality improvement

transformations. Trace links are automatically created and managed and do not need

to be defined by the developer. ATL rules are compiled into an executable format,

ATL VM[10].

8.3 VIATRA

The declarative style of VIATRA specification is at a relatively high level of ab-

straction, and VIATRA specifications are organised in a modular manner, as modules

with sets of rules and a control algorithm. In addition, VIATRA allows the factoring

out of parts of rules into separate procedures, which can then be reused in several

rules. Such a mechanism is particularly useful in transformations involving complex

expressions, such as the third case study above.

To use VIATRA with other development methods, input and output converters

need to be specified. Usability may be hindered by the unusual notation and formal-

260 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

ism used. Syntactic correctness is not checked, nor is definedness or completeness or

semantic correctness. Confluence problems may arise, because some ASM constructs,

such as forall , execute their statements in an indeterminate order. Matching of mul-

tiple input elements by rules is directly supported, as are update-in-place transfor-

mations. The hybrid nature of the notation gives a high degree of flexibility, enabling

the specification of transformations using a combination of declarative and imperative

styles.

Tracing needs to be managed explicitly by the developer. The rules can be

executed by interpretation, or compiled to a directly executable form. The expression

language used in VIATRA is simpler than OCL, and so may be more effectively

verified.

8.4 UML-RSDS

The level of abstraction of the constraint-based specification of UML-RSDS is

relatively high, and is close in form to requirements, without additional syntax, so

facilitating direct validation. Modularity is based upon the object-oriented modu-

larity of UML models (class diagrams and behaviour models). Transformations are

characterised as use cases consisting of sets of constraints. These use cases may be ex-

ternally composed by sequencing and conditional choice, or invoked as sub-procedures

(the includes composition of use cases), or combined using conjunction (the extends

composition of use cases) subject to their correctness constraints (assumptions Asm

and effects Cons). Complex sub-expressions within constraints can be factored-out as

query operations. Since UML-RSDS is based upon MOF and UML, interoperability

with other UML development methods and tools should be possible. Usability should

be high, since no new notation beyond UML is required.

The correctness of the generated operations with respect to the constraints is

ensured by reasoning in the axiomatic semantics (Chapter 6 of Ref. [19]) of UML-

RSDS. For example, in the first case study we can show that

t : Tree ⇒ [t .mapTreeToNode()](∃ n : Node · n.name = t .name)

and hence

[for t : Tree do t .mapTreeToNode()](∀ t : Tree · ∃n : Node · n.name = t .name)

because the individual applications of mapTreeToNode() are independent and non-

interfering. [stat]P is the weakest precondition of predicate P with respect to state-

ment stat (Chapter 6 of Ref. [19]).

Syntactic correctness of individual rules can be proved by using an automated

translation from UML-RSDS to the B formal notation[16], and applying proof within

B[20]. Definedness is checked by the generation of syntactic conditions (e.g., that the

precondition of each called operation is true at the point of call) for the transformation

design.

The UML-RSDS tools check completeness of rules by checking that all data

features of an object are set in the operation which creates it. For example, in the op-

eration mapTreeToEdge, an error message would be given if there was no assignment

to the target of the new edge. Procedures for checking general semantic correctness

exist but have not been automated. There are rules to determine when unordered

Kevin Lano, et al.: Comparative evaluation of model transformation ... 261

iterations are confluent[20], which are implemented by checks on the write and read

frames of constraints: confluence holds if these frames are disjoint for each constraint,

and if the written data is updated in an order-independent manner. This condition

holds in the first two case studies, but not in the third, so requiring a more complex

implementation strategy.

Matching of multiple input elements is not directly supported, but update-in-

place transformations are supported. A combination of declarative and imperative

specification styles can be used.

Tracing of rule applications must be performed explicitly by the developer if

required. The use of identity attributes is recommended as an alternative means

of propagating changes from the source model to the target model, by identifying

which target model elements are semantically linked to which source model elements

(in the first case study, a tree is implicitly linked to the graph node with the same

name, likewise for tables and classes in the second case study, via umlId and rdbId),

independently of which model transformation rules were used to create the target

model from the source. Implementation is by translation to Java. The generated code

is close in structure to the specification, in the cases of refinement and re-expression

transformations, which assists in comprehension.

8.5 Kermeta

The level of abstraction of Kermeta specifications is relatively low compared to

the other approaches, the specification explicitly defines model management steps

(such as the addition of new elements to the target model) which are implicit in the

other notations considered here. Kermeta allows the definition of pre and post condi-

tions for operations (and invariants for classes). These can be checked at runtime to

detect erroneous processing of models, and represent a step towards hybrid specifica-

tion. Modularity is provided in an object-oriented manner, by classes and packages.

Transformations may be easily combined using programming constructions. Kermeta

provides mechanisms to import and export models as objects. Interoperability with

other MOF-based tools is possible. In contrast to QVT-Relations and ATL, the or-

der of rule applications is explicit, and must be defined by the programmer. While

this can result in larger and more complex specifications, the direct control by the

developer over the transformation processing may reduce the possibilities of semantic

errors and reduce development effort.

Matching of multiple input elements must be programmed explicitly by searches

through models, as in the third case study example. Update-in-place transformations

are supported.

There is no direct support for establishing syntactic correctness, however asser-

tions and invariants could be used to check this for individual models. There is no

support for checking definedness, completeness, semantic correctness or confluence.

Tracing must be implemented explicitly by the developer. The language is itself

executable.

8.6 Summary

Table 1 summarises the differences between the approaches we have surveyed.

Under ‘Specification’ we consider the level of abstraction of the approach, whether

262 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

the order of application of transformation rules are given explictly or implicitly, and

what form of specification structuring and modularity is provided.

Table 1 General properties of model transformation approaches

Approach Specification Validation Verification Implementation

QVT-R Abstract, implicit, Tool checks By OCL By

rules on syntax analyser interpretation

ATL Abstract, implicit, Tool checks on By OCL ATL virtual

rules syntax, consistency analyser machine

VIATRA Abstract, explicit, Tool checks Interpreter and

modules on syntax compiler

UML-RSDS Abstract, explicit, Tool checks on B translation, Code

classes, use syntax, confluence, inference rules generation

cases completeness (Java)

Kermeta Imperative, explicit, Tool checks Embedded Already

classes on syntax, assertions executable

testing

Under ‘Validation’ we consider how a transformation specification in the ap-

proach can be validated against the transformation requirements, and checked for

local correctness properties such as the consistency and completeness of individual

rules. Under ‘Verification’ we consider how the specification can be checked for seman-

tic correctness properties, such as confluence. Under ‘Implementation’ we consider

how the transformation is executed.

With regard to the properties listed in Section 4, we have the following compar-

isons:

Level of abstraction Apart from the constraint-based specification approach in

UML-RSDS, ATL is the notation at the highest level of abstraction, using

implicit invocation of rules to compose transformation relations operating on

composite elements and their components. QVT-R is also highly declarative,

whilst VIATRA and UML-RSDS are hybrid and Kermeta is implementation-

oriented.

Modularity The notations all support a concept of module, consisting of collec-

tions of closely-related rules. In ATL rules can be linked by implicit or explicit

invocation, or by inheritance. In QVT-R there is implicit (for top relations)

and explicit invocation, and VIATRA has explicit invocation. In UML-RSDS

and Kermeta the usual object-oriented concepts of classes and objects are used

to encapsulate groups of rules, as operations. Use cases are used to structure

transformations in UML-RSDS. Explicit algorithms can be defined to control

the order of rule applications within a module, in Kermeta, VIATRA and UML-

RSDS. The usual composition of rules in UML-RSDS is a sequential phasing

within a use case, which can also be used in VIATRA and Kermeta. VIATRA is

the only notation with specific support for intra-rule modularisation, although

this can be imitated by the use of query operations in other notations.

Interoperability VIATRA provides specific import and export facilities, and ATL,

QVT-R (Medini QVT) and Kermeta can be executed within the Eclipse tool,

Kevin Lano, et al.: Comparative evaluation of model transformation ... 263

supporting, in principle, interoperation with other Eclipse-hosted tools. UML-

RSDS uses simple text file representations of models for input and output.

Usability In our case studies we found that developer effort was lowest in the

case of Kermeta, because of the familiarity of the object-oriented programming

paradigm, this required the least work to construct and analyse the specifica-

tion. Implicit ordering of rule invocation, as found in ATL and QVT-R, partic-

ularly hindered comprehension and analysis. The unusual logic-programming

paradigm of VIATRA also increased developer effort.

Syntactic and semantic correctness All the tools surveyed provide basic syntax

checking of specifications, to identify errors in syntax, however there is a lack

of semantic correctness analysis. UML-RSDS provides a completeness check

on objects created by rules, and confluence checks for rules. ATL provides a

runtime consistency check to detect situations where more than one rule is ap-

plicable to a model at one time. Other semantic checks, such as the detection

of potentially unbounded recursion between rules, would also be beneficial for

developers. Proof that metamodel constraints are established or preserved by

transformations (syntactic and semantic correctness) is important in maintain-

ing the integrity and correctness of a system, however only partial support is

provided for syntactic correctness, and none for semantic correctness.

Definedness In UML-RSDS this is checked by syntactic conditions on the specifi-

cation, that preconditions of rules are true at the point of their call, that there

are no undefined expression evaluations in rules, and that loops terminate. De-

finedness can be checked for QVT-R and ATL by translation into OCL[3].

Rule completeness In UML-RSDS this is checked by examining the syntactic form

of the rule postconditions. If an object is created in a postcondition, then all its

data features should be assigned values in the postcondition, either explicitly or

by implicit derivation.

Confluence ATL provides a check that no two rules are both enabled simultaneously

on the same model, however this does not ensure confluence in all cases (a

specification could contain a single rule which is iterated over a set of elements

of the source model, with the order of execution being recorded in the target

model). UML-RSDS provides syntactic restrictions to ensure confluence in some

cases[20].

Change propagation Tracing facilities are provided in ATL, QVT, Kermeta and

VIATRA. There is no direct support for change propagation in any of the ap-

proaches. QVT-R supports bidirectional transformations.

We compare the complexity of the approaches by applying metrics of size and

call graph complexity to the specifications of the first and second case studies.

When comparing the specification sizes (measured by the lines of specification

text, not including metamodel definitions), it should be considered that the VIATRA

and Kermeta specifications both include model management code (as in the main

method in Kermeta) that should be counted separately from the core transformation

264 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

rules. In addition, the ATL and VIATRA specifications of case study two are some-

what simpler in scope than the others because they do not consider inheritance in the

source model.

Table 2 shows the size metrics for the first two case studies. One surprising

feature of these measures is that the declarative approaches of QVT and VIATRA have

sizes larger than the imperative Kermeta approach, even though they omit explicit

algorithmic details (completely so in the case of QVT). Both QVT and VIATRA

include significant amounts of additional declaration syntax to establish the context

of a transformation fragment, which are absent in the program-like syntax of Kermeta.

Table 2 Size metrics of case studies

Approach case study 1 case study 2 case study 3 (rule 1)

QVT 27 180 19

VIATRA 22 180

Kermeta 15 174 52

ATL 12 86

UML-RSDS 11 75 7

The complexity of a specification can be measured by analysing its call graph.

A call graph is a directed graph that represents calling relationships between sub-

routines in a program. In the call graph each node represents functions or rules and

edges represent calls between nodes. The size of the call graph affects the complexity

of the program. The greater the number of arcs in the call graph, the higher is the

dependency between different parts of the program, and so the greater is the complex-

ity. Recursive calls have a substantial effect on complexity. Depending on the input

model we can go through a recursion several times, which makes the transformation

difficult to understand and verify.

Table 3 shows the call graphs of the different specifications on the second case

study. Each node represents a rule and edges represent the calls from one rule to

another, both implicit and explicit calls.

Table 4 compares the complexities of the approaches, based on the total number

of calls and depth of calls. Depth1 is the maximum depth of call chains not involving

recursive loops, and Depth2 the maximum length of a recursive loop.

This analysis shows considerable differences in the styles of specification adopted,

with recursion being used substantially in some solutions (Kermeta and QVT), and

not used at all in the other solutions. The problem does naturally lead to a recursive

solution, because of the recursive structure of class diagrams (mapping a class to a re-

lational table involves mapping its super or sub-classes also, and its owned attributes,

which may be of a class type), however a phased solution is also possible, where ba-

sic elements (such as attributes of non-class type, and classes without subclasses) are

mapped before elements composed from these elements. Such a phased solution could

be defined in Kermeta. The QVT solution contains a potentially unbounded recur-

sion (mapping attributes of a class type in the case of mutual dependencies between

two classes), and only specifies local ordering restrictions between rules (for example,

that the classes at either end of an association must be mapped before the association

itself). This provides greater flexibility in execution order than a fixed scheduling of

rules, and hence improves the potential for optimising execution efficiency, however

it makes the proof of confluence and correctness of the transformation more difficult.

Kevin Lano, et al.: Comparative evaluation of model transformation ... 265

Table 3 Call graphs of UML to relational database schema transformations

266 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

Table 4 Complexity of UML to relational database transformations

Approach Total number recursive calls Depth2 non-recursive calls Depth1

of calls

Kermeta 22 9 2 13 4

VIATRA 16 0 0 16 3

QVT 10 4 2 6 4

UML-RSDS 11 0 0 11 1

ATL 6 0 0 6 2

In terms of the scope of the different approaches, all support multiple source

model to multiple target model transformations. Only QVT-R directly supports bidi-

rectional transformations, however. VIATRA has specific support for code generation

(model to code transformations).

The structure of the source or target model often influences the modular de-

composition of a transformation. Usually there is some hierarchical structure to the

source language (eg, classes are parts of packages, and attributes parts of classes, in

the UML 2 class diagram metamodel), and a model transformation can be organised

according to this hierarchy: processing subordinate components of an element as part

of the processing of that element. All the approaches described here support such

hierarchical processing. An alternative is to use sequencing or phasing of process-

ing, for example to order the transformation steps so that subordinate elements are

mapped from source to target models before elements which refer to them (eg., in the

tree to graph transformation in UML-RSDS and VIATRA, all tree nodes are mapped

to graph nodes before creating edges that refer to the graph nodes). The approaches

surveyed here do support phasing, although in QVT-R and ATL the hierarchical ap-

proach is more naturally expressed (as a recursive descent). Transformations may

apply only to small numbers of elements within the model, leaving the remainder

unchanged. In this case an efficient means for copying the unchanged source model

elements to the target model is needed, or the transformation should be specified as an

in-place update. ATL provides a particular mechanism (called the refining mode) to

support such transformations. The other approaches described here support in-place

update of models.

For refinement and re-expression transformations in particular, it is important

that the transformation preserves semantic meaning. That is, the information of

the source model is preserved in the target model, possibly under some interpreta-

tion. None of the approaches described here provides tool support to construct model

interpretations and verify semantic correctness.

Table 5 compares the appropriateness of the approaches for the three different

forms of transformation considered in this paper. For refinement and re-expression

transformations either a phased or recursive descent strategy are usually applicable,

with phased decomposition generally more modular and flexible. Quality-improvement

transformations are usually update-in-place, requiring support for such a mechanism,

and also have more complex behaviour than refinements or re-expressions, since the

application of one restructuring step may affect subsequent steps: the transforma-

tion may be non-confluent and difficult to express except as local model rewrite rules.

Matching of multiple elements in the source model for a single rule application may be

Kevin Lano, et al.: Comparative evaluation of model transformation ... 267

necessary for re-expression and quality-improvement transformations, in contrast re-

finement transformations more usually map single source elements to multiple target

elements.

Table 5 Appropriatenes of model transformation approaches

Approach Refinement Re-expression Quality improvement

QVT-R Recursive descent Recursive descent Rule-based specification

strategy, implicit strategy, implicit usually concise and

phasing phasing close to informal

specification

ATL Recursive descent Recursive descent Does not support

strategy strategy update-in-place

transformations

VIATRA Phased or Phased or Multiple-element rule

recursive strategies recursive strategies matching directly

supported.

UML-RSDS Phased strategy Phased strategy Complex specifications

recommended recommended and code

Kermeta Phased or Phased or Complex explicit

recursive strategies recursive strategies algorithms

9 Conclusion

The significant differences between model transformation approaches concern

their specification paradigm, levels of abstraction and choice of implicit or explicit

rule sequencing. Our results suggest that the explicit programming paradigm of Ker-

meta is the most straightforward for novice model transformation developers to apply,

at least on simple transformations. It may be expected that developers who are expert

in UML would instead adopt more easily a notation close to UML, such as QVT-R

or UML-RSDS. In general, explicit control over rule execution seems preferable for

usability and analysis, however with the disadvantage of producing larger and more

(apparantly) complex specifications. For refinement transformations relatively sim-

ple control strategies and matching strategies are usually sufficient, so favouring the

use of more explicit approaches (Kermeta and the imperative features of VIATRA

and UML-RSDS) with a phased implementation. For re-expressions, multiple input-

element matching may be required in some cases (eg, where a group of source elements

are amalgamated into a single element in the target), so requiring intrinsic support

for such matching, as provided by VIATRA and QVT-R. If such matching is not

required then the explicit approaches are recommended. For quality improvements,

support for update-in-place transformation is necessary, as is support for multiple-

element matching. Explicit approaches may involve extremely complex programming

(as in the UML-RSDS and Kermeta solutions to case study three), so favouring the

implicit style of QVT-R for such transformations.

The most important omission from many model transformation languages and

methods is support for showing semantic correctness properties, both internal prop-

erties of a particular specification, such as definedness and confluence, and the effect

268 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

of the transformation on the constraints of the source and target models.

Development approaches for model transformations have been formulated[7,13],

however most model transformation development remains focussed upon the imple-

mentation level. Ideally, model-driven development should be applied to model trans-

formations, with verification of the correctness and consistency of the transformations

being carried out as an integral part of such development.

References

[1] Akehurst D, Howells W, McDonald-Maier K. Kent model transformation language. Model

Transformations in Practice. 2005.

[2] Akehurst D, Kent S. A relational approach to defining transformations in a metamodel. Proc.

UML 2002. LNCS 2460, Springer-Verlag, 2002.

[3] Cabot J, Clariso R, Guerra E, De Lara J. Verification and validation of declarative model-to-

model transformations through invariants. Journal of Systems and Software, 2009 (preprint).

[4] Czarnecki K, Helsen S. Feature-based survey of model transformation approaches. IBM Systems

Journal, 2006, 45(3): 621–645.

[5] Drey Z, Faucher C. et al.. Kermeta language reference manual. http://www.kermeta.org/docs

/KerMeta-Manual.pdf. April 2009.

[6] Ehrig H, Engels G, Rozenberg HJ, eds. Handbook of graph grammars and computing by graph

transformation. Volume 2, World Scientific Press, 1999.

[7] Guerra E, de Lara J, Kolovos D, Paige R, Marchi dos Santos O. transML: A family of languages

to model model transformations. MODELS 2010. LNCS 6394, Springer-Verlag, 2010.

[8] Jouault F, Kurtev I. Transforming Models with ATL. MoDELS 2005. LNCS 3844, Springer-

Verlag, 2006. 128–138.

[9] Jouault F, Allilaire F, Bezivin J, Kurtev I. ATL: A model transformation tool. Science of

Computer Programming, 2008, 72: 31–39.

[10] Jouault F, Kurtev I. On the interoperability of model-to-model transformation languages. Sci-

ence of Computer Programming, 2007, 68: 114–137.

[11] Kermeta, http://www.kermeta.org, 2010.

[12] Kleppe A. 1st European workshop on composition of model transformations (CMT ’06). Tech-

nical report TR-CTIT-06-34, University of Twente, 2006.

[13] Kolahdouz-Rahimi S, Lano K. A model-based development approach for model transformations.

FSEN 2011. Iran.

[14] Kolovos D, Paige R, Polack F. The epsilon transformation language. ICMT 2008. LNCS 5063,

Springer-Verlag, 2008. 46–60.

[15] Kurtev I, Van den Berg K, Joualt F. Rule-based modularisation in model transformation lan-

guages illustrated with ATL. Proc. 2006 ACM Symposium on Applied Computing (SAC 06).

ACM Press, 2006. 1202–1209.

[16] Lano K. The B Language and Method. Springer-Verlag, 1996.

[17] Lano K. Constraint-driven development. Information and Software Technology, 2008, 50: 406–

423.

[18] Lano K. A compositional semantics of UML-RSDS. SoSyM, February 2009, 8(1): 85–116.

[19] Lano K. (ed.).UML 2 Semantics and Applications. Wiley, 2009.

[20] Lano K, Kolahdouz-Rahimi S. Specification and Verification of Model Transformations using

UML-RSDS. IFM 2010.

[21] Lano K, Kolahdouz-Rahimi S. Slicing of UML models using Model Transformations. MODELS

2010.

[22] Lano K, Kolahdouz-Rahimi S. Migration case study using UML-RSDS. TTC 2010. Malaga,

Spain, July 2010.

[23] Lano K, Kolahdouz-Rahimi S. Model-driven development of model transformations. ICMT

2011. June 2011.

[24] Markovic S, Baar T. Refactoring OCL Annotated Class Diagrams. MoDELS 2005. LNCS 3713,

Kevin Lano, et al.: Comparative evaluation of model transformation ... 269

Springer-Verlag, 2005.

[25] Mens T, Czarnecki K, Van Gorp P. A taxonomy of model transformations. Dagstuhl Seminar

Proc. 04101. 2005.

[26] OMG. UML superstructure, version 2.1.1. OMG document formal/2007-02-03. 2007.

[27] OMG. Query/View/Transformation Specification. 2009.

[28] OMG. Meta Object Facility (MOF) Core Specification. OMG document formal/06-01-01. 2006.

[29] OptXware. The VIATRA-I Model Transformation Framework Users Guide. 2010.

[30] Poernomo I. Proofs-as-Model-Transformations. Proc. of ICMT 2008. LNCS 5063, Springer-

Verlag, 2008.

[31] Schurr A. Specification of graph translators with triple graph grammars. WG ’94. LNCS 903,

Springer. 1994. 151–163.

[32] Stevens P. Bidirectional model transformations in QVT. SoSyM, 2010, 9(1).

[33] Varro D, Pataricza A. Automated formal verification of model transformations. CSDUML 2003

Workshop. 2003.

