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Abstract

Levitated optomechanics opens the door for many quantum experiments and sens-

ing applications with the advantage of minimising the dissipation to the environ-

ment. It provides a unique research platform to control and cool the motion of

micro/nano-size objects to the quantum regime, pushing the mass limit of ex-

ploring macroscopic quantum phenomena. Apart from the centre-of-mass motion

of levitated nanoparticles, control and cooling of rotational degrees of freedom

are of significant research interest, which explores another avenue for studying

fundamental physics and developing quantum technologies.

This thesis focuses on ro-translational optomechanics with optically levitated

nanoparticles in vacuum. A 1550 nm counter-propagation standing-wave optical

trap experimental platform has been established for studying levitated optome-

chanics in high vacuum. Direct loading, optical trapping and corresponding detec-

tion techniques for high-efficiency measuring ro-translational degrees of freedom

of levitated nanoparticles have been built. A clean, vacuum-compatible method

based on laser-induced acoustic desorption (LIAD) is developed for directly loading

nanoparticles into the optical trap, enabling us to load tailored silicon nanorods

from the substrate with very high efficiency. The translational and rotational

dynamics of levitated nanoparticles in vacuum have been systematically studied.

Besides driving the levitated silicon nanorotor by circularly polarised light, it has

been driven to full rotations at tens of MHz in several millibars in the transverse

plane by transferring transverse orbit angular momentum, achieving five orders

of magnitude higher applied torque compared to other reported nanorotors with

the same optical power. Furthermore, the ro-translational motion of levitated

v



nanoparticles can be cooled by implementing feedback cooling schemes, such as

parametric feedback for centre-of-mass and polarization feedback for librational

motion. These paves way for next-step tests of rotational macroscopic quantum

superposition experiments, such as orientational quantum revivals.
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Chapter 1

Introduction

1.1 Levitated optomechanics

Testing the quantum nature of macroscopic objects is an outstanding challenge

in modern physics [1, 2]. By controlling and cooling the mechanical motion of

a macroscopic oscillator via light-matter interactions, optomechanics provides a

prominent approach to exploring the boundary between the quantum and classical

world [3, 4, 5, 6].

Compared to tethered oscillators, levitated mechanical oscillators take the

advantage of ultra-low dissipation (a quality factor up to Q ∼ 1012 by theoretical

prediction) due to being thermally isolated from the environment in ultra-high

vacuum, leading to very low quantum decoherence and achievement of quantum

ground state [7, 8, 9]. Moreover, the levitated nanoparticle can be released with

free evolution for a macroscopic quantum state, which paves the way to study

macroscopic quantum mechanics [10, 11, 12].

Optically levitating mechanical oscillators in high vacuum were proposed to

observe macroscopic quantum behaviours by cavity cooling its centre-of-mass mo-

tion to the quantum ground state in around 2010 [13, 14, 15]. Such proposals

have been first experimentally demonstrated [16, 17, 18, 19], which is a big step

towards room-temperature quantum experiments with macroscopic mechanical

systems. Remarkable progress has been made in recent years, the cavity cooling

of a levitated silica nanoparticle via coherent scattering has been demonstrated to

1



1 Introduction

the effective mode temperature of a few hundred millikelvin [20, 21], and achieved

motional quantum ground state cooling of a 143 nm diameter nanosphere which

comprises 108 atoms [22].

Without using a cavity, active feedback cooling of an optically levitated 4.7

µm silica particle to millikelvin by an additional three pairs of counter-propagating

cooling beams has been demonstrated [23], and successfully measured the instan-

taneous velocity of a Brownian particle [24]. Meanwhile, a parametric feedback

cooling method applied to cool a 70 nm radius silica nanosphere from room tem-

perature to 50 mK has been presented [25], and this method has been further

developed to phase-based linear feedback cool a nanoparticle to the centre-of-mass

temperature of 450 µK (corresponding to the mean occupation number n̄ ≃ 63)

in ultra-high vacuum (UHV), where the photon recoil heating from a macroscopic

object was directly measured [26]. Another linear measurement-based feedback

technique termed cold damping has been implemented to cool one translational

mode of a levitated nanoparticle to microkelvin temperature [27] and observed

motional sideband asymmetry which is a signature of the quantum ground state

of motion [28]. Later on, optimizations on quantum-limited measurement, op-

timal control and detection efficiency enabled the active feedback technique to

demonstrate quantum ground state cooling at room temperature [29] and cryo-

genic environments [30]. Based on the feedback cooling on centre-of-mass motions,

levitated nanoparticles have been widely used for studying and investigating non-

equilibrium fluctuation theorems [31], nonlinear dynamics and synchronization

[32], collapse model of continuous spontaneous localization (CSL) [11] and ther-

modynamics theorem [33].

Levitated mechanical oscillators possess remarkably high mechanical quality

factors and can be cooled to very low effective temperatures, as they are free

from mechanical vibrations and thermal contact in UHV. These facilitate the

excellent ability and potential in the aspect of technological applications, such as

ultra-sensitive force, torque, acceleration and pressure sensing [34, 35, 36].

2



1.2 Rotational dynamics of levitated nanoparticles

The limit of a detectable force Fmin is based on the thermal energy of the

oscillator:

Fmin =
√√√√4kqkBTCMb

ωqQ
, (1.1)

where kq is the spring constant, kB is the Boltzmann constant, TCM is the temper-

ature of the oscillator, ωq is the resonance frequency, Q is the quality factor and

b is the measurement bandwidth. From Equation (1.1), the higher quality factor

and lower temperature of the oscillator indicate higher sensitivity.

In terms of applications, a yoctonewton force sensitivity experimental scheme

by using a levitated nanoparticle in a cavity optomechanical system was proposed

[37], and attonewton force measurement using a charged levitated microsphere

[38] has been presented, which is expected to detect Casimir forces [39]. Larger

levitated particles are also very sensitive to acceleration, achieving a sensitivity of

0.4 × 10−6 g/Hz for a 12 ng sphere [40]. In addition, levitated mechanical sensors

have been used for searching dark matter [41, 42] and gravitational waves [43].

1.2 Rotational dynamics of levitated nanoparti-

cles
Another distinguishing aspect of the levitated optomechanical system from other

optomechanical systems is that levitated nanoparticles possess the ability to ro-

tate, exhibiting abundant rotational dynamics in both classical and quantum man-

ners [44, 45]. The controllability of rotational dynamics is of fundamental as well

as practical importance, especially for quantum rotations since it determines a

quantum system can be manipulated and brought to a desired target state to

what extent [46].

Typically, the rotational dynamics of optically trapped nanoparticles can be

manipulated through the angular momentum transfer between the light field and

particles via light-matter interactions [47, 48, 49]. The properties of the light

field play a crucial role in the way of transferring momentum, including but not

limited to the form of linearly polarised light, circularly polarised light and struc-

3



1 Introduction

tured light field [50, 51]. The specific characteristics of the nanoparticle and the

way of its interactions with the light field also determine different ways of mo-

mentum transfer and hence influence its motion. If the levitated nanoparticle

has anisotropic polarizability via their geometry [52, 53, 54, 55, 56] or if they

are birefringent [57, 58, 59], they can manifest significant observable dynamics in

rotational degrees of freedom {α, β, γ} in addition to translational modes {x, y, z}.

In this thesis, we mainly focus on the research of geometry-induced anisotropic

polarizability with silicon nanorods. As shown in Figure 1.1, here we define the

propagation direction of the trapping light as along the z-axis, and α is the angle

between x-axis and the projection onto the x-y plane, β is the angle between the

cylinder’s symmetry axis and z-axis, and γ is the angle around the symmetry axis.

y

x

z

α

β

γ

Figure 1.1: Definition of translational and rotational degrees of freedom of a cylinder.
The propagation direction of the trapping light is along the z-axis. All
degrees of freedom that can be observed and possible controlled: transla-
tional {x, y, z} and rotational {α, β, γ}.

Illuminated by the circularly polarised light, levitated nanoparticles in vac-

uum can be optically driven to full rotations up to several GHz [54, 55, 60, 61].

Such high rotation rate nanorotors are promising to detect the long-sought vacuum

friction and weak forces or torque sensing with unprecedentedly high sensitivity

[62, 56, 63], and even possibly tests of the fundamental mechanisms of dissipation

in rotating systems [64, 65, 66].

In another scenario, within a linearly polarised light, the anisotropic nanopar-

ticle would align one of its axes to the polarisation direction of the trapping light

where it has minimum potential energy. When the particle strays away from the

equilibrium angle, a restoring torque pushes it back to its original orientation. This
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1.2 Rotational dynamics of levitated nanoparticles

manifests a librational motion of the levitated nanoparticle [52, 53], which expands

new degrees of freedom {α, β, γ} for studying quantum effects in addition to the

centre-of-mass motion {x, y, z}. Similar to translation, librational motion can be

described as a harmonic oscillator, namely “librator”, which is reasonably promis-

ing to reach a quantum ground state and is therefore a stark contender in the race

towards the quantum regime. In the quantum regime, the non-harmonicity of the

rotational spectrum of the rigid object can give rise to pronounced interference

effects which have no analogy in free centre-of-mass motion [8, 44], which will be

discussed in the next section.

The motion must be cooled first for the preparation of quantum experiments,

since the “hot” particle which occupies a broad distribution of states will average

over all these states during the subsequent evolution, leading to wash-out quan-

tum signatures such as the interference pattern which is the evidence of quantum

superposition [12, 67].

In previous research, cooling the rotational state into the quantum ground

state has been successfully implemented for small-size molecules [68, 69, 70]. The

theoretical research works on cooling nanometre and micrometre-size particles

have also been proposed, assessing and predicting that efficient cavity cooling and

feedback cooling the ro-translational motion into the quantum regime is achievable

[71, 72, 73, 74]. By coupling rotational and translational degrees of freedom, a

micrometre-size vaterite crystal was observed to be effectively cooled to 40 K with-

out any active cooling method [57]. Rotational cooling via coupling the librations

of nanoscale nitrogen-vacancy(NV) colour centre diamond to its internal quantum

system has been proposed and implemented to a few kelvins [75]. Active feed-

back cooling on the librational motion of levitated silica nanodumbells has been

introduced and achieved sub-kelvin cooling [76], and extended to more degrees

of freedom [77, 78]. Compared to nanospheres and nanodumbells, nanocylinders

with higher geometric aspect ratio and thus larger moment of inertia would be

exploited for exploring rotational quantum phenomena, and might be useful for

quantum information [79, 80].
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1.3 Rotational macroscopic quantum experi-

ments
The superposition principle is the core feature that distinguishes quantum me-

chanics from classical mechanics [2, 10]. One of the most established schemes to

observe macroscopic superpositions is the matter-wave interferometry via diffrac-

tion using optical gratings [81, 82]. The recent highlights include the first demon-

stration of Bragg diffraction of organic molecules through laser beams [83] and the

record-breaking near-field Talbot-Lau interference with 2.5 × 104 amu molecules

[84]. In macroscopic quantum observations, different quantum interference pro-

tocols using even larger mass objects (e.g., micro/nano-scale particles) have also

been proposed and demonstrated [11, 85, 86, 87]. These are all based on the su-

perposition of different centre-of-mass positions before the coherent interactions

with the grating.

Intriguingly, cooling the librational motion of the levitated macroscopic os-

cillator to the quantum regime provides a new approach to testing macroscopic

quantum superpositions [44]. B. Stickler et al. proposed a radically new, exper-

Figure 1.2: The four-step scheme to observe orientational quantum revivals of a levi-
tated nanorotor. (a) The nanorotor is levitated and aligned with a linearly
polarised light (red beam), and its librations are cooled to sub-kelvin tem-
peratures. (b) The orientation states of the nanorotor quickly and freely
disperse after switching off the trapping laser. (c) At integer multiples
of the quantum revival time, a probe light pulse (blue beam) is used to
measure the rotor orientation by light scattering. (d) The nanorotor is
recaptured by the trapping laser after a short distance of free fall and pre-
pared for recycling to experimental repetitions. Reproduced from [88].
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1.3 Rotational macroscopic quantum experiments

imentally viable orientational quantum interference scheme via a single levitated

nanoparticle with librational motion cooling, enabling the first test of macroscopic

angular momentum quantization with massive objects [88]. Figure 1.2 illustrates

the proposed scheme consisting of four steps: (a) alignment, (b) dispersion, (c)

revival and (d) recapture. The basic principle is that an initially tightly oriented

quantum rotor rapidly disperses, and the collective interference of all occupied

angular momentum states leads to a complete re-appearance of the initial state

after multiples of a longer quantum revival time [89, 90]. The width and height

of the orientational quantum revival are determined by the initial librational tem-

perature of the nanorotor, however, the revival time only depends on the moment

of inertia I by Trev = 2πℏ/I.

Figure 1.3 shows the time evolution of the orientational alignment of levitated

carbon nanotubes with the mass M = 1.9 × 105 amu and the length l = 50 nm at

T = 100 µK. For the initial temperature of T = 1 K, it is possible to observe the

rotational quantum revival phenomenon during the free fall with the revival time

Trev ≃ 3.8 ms for carbon nanotubes and Trev ≃ 28 ms for silicon nanorods.

Figure 1.3: The time evolution of orientational alignment signal of levitated carbon
nanotubes (M = 1.9 × 105 amu and l = 50 nm) at 100 µK in the unit of
the revival time Trev. The inset shows the quantum revival for 3 different
initial temperatures of 1 K, 1 mK and 100 µK. Reproduced from [88].
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This strategy requires no beamsplitters, which removes a major technological

hurdle and decoherence source [8]. Meanwhile, it demands moderate motional

temperature (i.e., the initial temperature of rotational motion below 1 K by cav-

ity or feedback cooling) with feasible experimental implementation conditions at

room temperature, which provides an exciting alternative to test the quantum

superposition principle.

1.4 Thesis outline
In this thesis, we aim to develop a new experimental setup that would allow us to

achieve full control and cooling of the ro-translational motion of levitated nanopar-

ticles in vacuum, as this is a necessary prerequisite to achieving quantum control

of motional states in all degrees of freedom and further research on macroscopic

quantum experiments.

This doctoral thesis is divided into three parts: (i) Optical trapping and

levitation in Chapters 2 and 3; (ii) Control of full rotations in Chapter 4; (iii)

Ro-translational optomechanical cooling in Chapter 5.

To be specific, Chapter 2 provides the theoretical framework and the experi-

mental details of our optical levitation platform.

In Chapter 3, we develop and demonstrate a clean and vacuum-compatible

method for direct loading nanoparticles with high efficiency in the optical trap

under vacuum conditions.

Chapter 4 presents the control of full rotations of levitated nanomechanical

rotors by transferring spin angular momentum via circularly polarised light and

orbit angular momentum via structured transverse optical vortices.

Chapter 5 focuses on the implementation of parametric feedback cooling on

centre-of-mass motion of levitated nanoparticles, and proposes a new polarisation

feedback scheme for simultaneous cooling librational motion of levitated nanorods.

This thesis is concluded in Chapter 6 where the main results are summarised

and present an outlook about the coming exciting quantum optomechanics exper-

iments based on the same setup and further sensing applications.
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Chapter 2

Fundamentals of Levitated

Optomechanics

2.1 Introduction

Back in the 1970s, Nobel laureate A. Ashkin invented optical tweezers which can

trap and manipulate micrometre-size particles by the radiation pressure of light in

air [91, 92]. Later on, the research of optical tweezers mainly focused on trapping

in liquid or air for various applications of biophysics and materials research [48,

93]. In recent years, the levitated optomechanical system operating in vacuum is

rapidly developed due to its unique properties differentiating the platform from

conventional mechanical oscillators for exploring macroscopic quantum behaviour.

In this chapter, the experimental system for studying rotational optomechan-

ics with levitated nanoparticles in vacuum is presented. The underlying physical

understanding of the interface between light and levitated mechanical oscillators

is the foundation of the experiments discussed in this thesis. Section 2.2 provides

a basic theoretical description of mechanical oscillators, optical fields, and their

optomechanical interactions. Section 2.3 models the stochastic dynamics of levi-

tated nanoparticles including nanospheres with homogeneous spherical symmetry

and nanocylinders with anisotropic geometry. The last Section 2.4 presents the

details of each component and the performance of the experimental apparatus

constructed for this thesis.
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2 Fundamentals of Levitated Optomechanics

2.2 Optomechanical interactions

2.2.1 Mechanical oscillator

The harmonic oscillator is a prominent and basic model in both classical and

quantum mechanical systems, which is widely found in almost any kind of physical

system in nature. A mechanical oscillator has an oscillation of some parameter

around a central value. Classically, the motion of a mechanical oscillator is given

by:

x(t) = A sin(ωmt + φ), (2.1)

where A is oscillation amplitude which is determined by the initial conditions and

ωm = 2πfm is its eigenfrequency. The phase φ denotes the relative position of

the oscillator to the point of origin at t = 0 and is also determined by the initial

conditions.

The eigenfrequency ωm of the mechanical system is given by:

ωm =
√

k
M

, (2.2)

where M is the mass of the harmonic oscillator and it is driven by a linear restoring

force F :

F = −kx, (2.3)

where k is a positive constant, usually referred to as the spring constant.

For a perfect harmonic oscillator without any damping, the total energy Etot

of the system is conserved:

Etot = Ek + Ep = M

2 ω2
mA2, (2.4)

with its kinetic Ek and potential Ep components varying over time:

Ek(t) = M

2 ẋ2 = k
2A2 cos2(ωmt + φ),

Ep(t) = k
2x2 = k

2A2 sin2(ωmt + φ).
(2.5)

10



2.2 Optomechanical interactions

However, any real mechanical oscillator experiences friction as it interacts

with its environment, which leads to an unavoidable damping term in the system.

This alters the motion and energy of the mechanical oscillator, which will be

discussed in later sections.

If we replace the classical variables with their corresponding quantum me-

chanical Hamiltonian operators, we can obtain the quantum form of a harmonic

oscillator in phase space:

Ĥ = p̂2

2M
+ 1

2Mω2
mx̂2, (2.6)

where x̂ is the position operator, p̂ is the momentum operator. They fulfill the

commutation relation [x̂, p̂] = iℏ, where ℏ is the reduced Plank constant.

In the occupation number representation, the operator x̂ and p̂ can be rewrit-

ten in the form of the creation operator â† and the annihilation operator â [94]:

â = 1√
2

(X̂ + iP̂ ),

â† = 1√
2

(X̂ − iP̂ ),
(2.7)

where X̂ and P̂ are the dimensionless position and momentum operators of the

oscillator with the definition of x̂ =
√
ℏ/(Mωm) X̂ and p̂ =

√
ℏMωm P̂ . The

creation operator â† and the annihilation operator â still obey the commutation

relation
[
â†, â

]
= 1.

Therefore, the Hamiltonian in Equation (2.6) can be expressed as:

Ĥ = ℏωm

(
â†â + 1

2

)
. (2.8)

By solving the Schrödinger equation, the corresponding eigenstates can be

represented by the Number states (or Fock states) {|n⟩, n = 0, 1, 2, · · · } and are

eigenstates of the number operator n̂ = â†â [95]:

â†â|n⟩ = n̂|n⟩ = n|n⟩, |n⟩ =
√

1
n!
(
â†
)n

|0⟩, (2.9)
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2 Fundamentals of Levitated Optomechanics

corresponding to the nth discrete energy levels:

En = ℏωm

(
n + 1

2

)
. (2.10)

The lowest energy state |0⟩, which is also called the ground state for a quantum

mechanical oscillator, is represented in the coordinate representation as:

⟨x̂|0⟩ =
(

Mωm

2ℏ

) 1
4

exp
(

−Mωm

2ℏ x̂2
)

, (2.11)

with the associated minimum non-zero energy “zero-point energy” compatible with

the Heisenberg uncertainty principle:

E0 = 1
2ℏωm. (2.12)

We can also calculate the expectation value for the position operator x̂ and

the position operator squared x̂2 as:

⟨x̂⟩n = ⟨n|x̂|n⟩ = 0,

⟨x̂2⟩n = ⟨n|x̂2|n⟩ = ℏ
Mωm

(
n + 1

2

)
.

(2.13)

From Equation (2.13), the mechanical zero-point fluctuation associated with

zero-point energy is given by:

xzpf =
√

⟨x̂2⟩0 − ⟨x̂⟩2
0 =

√
ℏ

2Mωm

. (2.14)

When a harmonic oscillator is in thermal equilibrium with temperature T , its

average occupation number in the Bose-Einstein distribution can be written as:

n̄ = ⟨n̂⟩ = Tr(e−Ĥ/kBT n̂) = 1
e(ℏωm)/(kBT ) − 1 , (2.15)

where kB is the Boltzmann constant.

In the large temperature limit (i.e., kBT ≫ ℏωm), the average thermal occu-
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2.2 Optomechanical interactions

pation n̄ of the mechanical oscillator becomes:

n̄ ≈ kBT

ℏωm

. (2.16)

However, this approximation does not hold for near the ground state (i.e., n̄ =

O(1)), which has to use the full Bose-Einstein statistics.

For a levitated mechanical oscillator with the mass of ∼ 10−18 kg and the

oscillation frequency of ∼ 500 kHz, its zero-point fluctuation is about 10 pm.

According to Heisenberg’s uncertainty principle, this is the minimum uncertainty

in the position measurement given by the zero-point motion. In order to resolve

the quantum ground state which normally requires n̄ < 1, the effective centre-

of-mass temperature of the mechanical oscillator needs to be cooled down below

Teff ∼ 25 µK.

2.2.2 Gaussian beam

In most cases of levitated optomechanics, the optical field provided by a focused

laser can be simply described by the fundamental Gaussian mode TEM00. A

Gaussian beam with the wavelength of λ has its electric field intensities with

Gaussian function:

E(r, z) = E0
w0

w(z)exp
(

− r2

w(z)2 − ikz − ik
r2

2R(z) + iφG(z)
)

, (2.17)

where r is the radial vector from the centre of the optical axis of the beam, E0 is

the electric field amplitude at the origin point, w0 is the beam waist, k = 2π/λ is

the wavenumber and φG(z) is the Gouy phase.

The beam width w(z) with respect to the axial distance z from the beam

waist is defined as:

w(z) = w0

√
1 +

(
z

zR

)2
, (2.18)

where zR is the Rayleigh range:

zR ≈ πw2
0

λ
. (2.19)
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2 Fundamentals of Levitated Optomechanics

The radius of curvature R(z) is defined as:

R(z) = z

(
1 +

(
zR

z

)2
)

. (2.20)

The intensity distribution of the Gaussian beam can be written as:

I(x, y) = I0e
− 2(x2+y2)

w(z)2 = 2Popt

πw(z)2 e
− 2(x2+y2)

w(z)2 , (2.21)

where Popt is the total power of the laser beam.

The Gaussian beam is focused by a lens with a given numerical aperture

(NA). By using the paraxial approximation of geometric optics with small-angle

limit, the beam waist of the focused Gaussian beam becomes:

w0 ≈ λ

πNA , (2.22)

and the Rayleigh range as:

zR = λ

πNA2 , (2.23)

which is the region around the focus where the electric field wavefronts are mostly

planar for a relatively small NA.

2.2.3 Optical forces

Via the exchange of momentum of light, the nanomechanical oscillator can be

trapped, levitated, and controlled by optical forces. According to the classical

mechanics of Newton’s law, force is a derivative of momentum with respect to

time. Each photon carries energy Ep = hν (with the frequency of ν) and mo-

mentum pp = Ep/c = ℏk0, where c is the speed of light and k0 = 2πν/c is the

vacuum wave vector. The momentum of photons normally can be transferred to

objects in three different ways: photon absorption, photon reflection, and photon

deflection. A dielectric particle can acquire and exchange momentum from a light

field by absorbing and scattering the incident photons.
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2.2 Optomechanical interactions

Optical forces are based on the rate of the exchange of momentum between

light and matter, and their calculations are based on the change in the total

momentum of light before their interaction and after. Depending on the ratio

between the wavelength of light and the size of particles, the calculation of the

optical forces either given by the full solution of Maxwell’s equations or certain

simplified assumptions can be made analytically and numerically.

In our case of dielectric nanoparticles levitated in vacuum, the interaction

between the optical field and levitated nanoparticles can be described by the

dipole approximation model in the Rayleigh regime when the particle radius r is

much smaller than the wavelength λ (r ≪ λ) [96, 47]. The dipole moment induced

by an applied electric field E(r) can be written as [97]:

p(r) = α0E(r), (2.24)

where r is the position of the particle, α0 is the dipolar polarizability determining

the strength of interaction with the light field, which depends on the material

property and geometry of the nanoparticles.

The time-averaged force acting on the dipole is:

⟨F(r)⟩ = 1
2ℜ (α0E(r)∇E∗(r)) , (2.25)

The optical force can be divided into two parts, the gradient force and the scat-

tering force:

⟨F(r)⟩ = ⟨Fgrad(r)⟩ + ⟨Fscat(r)⟩. (2.26)

The first term is the gradient force, representing the force pointing towards the

highest intensity region due to the gradient of the electric field intensity, which

allows three-dimensional confinement in the beam focus. The direction of the scat-

tering force is along the beam propagation axis and therefore pushes the particle

away from the trap centre.

When the dipole is placed in the non-uniform light field, the conservative
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2 Fundamentals of Levitated Optomechanics

gradient force can be calculated with the real part of dipolar polarizability ℜ(α):

⟨Fgrad(r)⟩ = ℜ(α0)∇⟨|E(r)|2⟩
4 , (2.27)

and the non-conservative scattering force is:

⟨Fscat(r)⟩ = σtot

(
S(r)

c
+ c∇ × L

)
, (2.28)

where the total cross-section σtot is the sum of absorption and scattering cross-

sections, and the time-averaged Poynting vector is S = ⟨E × H∗⟩ with magnetic

field H. The scattering force has two contributions: one from the radiation pres-

sure which is proportional to the Poynting vector; the other is a curl force associ-

ated with the distribution of the time-averaged spin density of the light field:

L = − iϵ0

8πν
⟨E × E∗⟩. (2.29)

This curl force must be considered as a significant contribution for a tightly focused

beam, while it becomes zero for a plane wave.

In a stable optical trap, the gradient force must be much larger than the

scattering force. Due to the scattering force mainly resulting from the absorption

(proportional to the imaginary part of polarizability ℑ(α0)) and ℜ(α0)/ℑ(α0) ∝

r3, it is negligible for small and transparent particles in the following discussions.

Moreover, in the standing wave trap formed by a pair of counter-propagation

beams, the scattering force can mostly be cancelled, since the direction of the

scattering force exerted on particles in each arm is opposite [48]. Therefore, the

gradient force dominates the dynamics of the levitated particle. However, the

scattering force is not eliminated even if the experimental set-up is perfect (i.e.,

the laser beams are perfectly aligned) because the momentum transfer from photon

scattering in turn modifies the optical field [96].
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2.2 Optomechanical interactions

2.2.4 Optical potential

When we trap a dielectric nanosphere with the radius of r ≪ λ in a Gaussian beam,

the dynamics of the levitated particle are approximately analysed as a harmonic

oscillator confined in a harmonic potential with the Rayleigh approximation. The

harmonic optical potential Uopt can be obtained by integrating the conservative

force Fopt (here we consider it is provided by the gradient force):

Uopt =
ˆ

FoptdV, (2.30)

and the optical force can be well-approximated in the way of a linear restoring

force:

Fopt = −kqq, (2.31)

where kq is the spring constant (or trap stiffness) for the degrees of freedom of q.

The trapping angular frequency is characterised as:

ωq =
√

kq

M
. (2.32)

Harmonic potential for levitated nanospheres

The polarizability of silica nanospheres, from the Clausius-Mossotti relation, can

be described as [7]:

α = 4πϵ0r
3 (ϵr − 1)
(ϵr + 2) , (2.33)

where ϵ0 is the vacuum permittivity, and ϵr is the relative permittivity which is

dependent on the trapping light frequency.

By neglecting the scattering force on the small nanosphere and considering

small oscillations around the potential minimum, the potential well can be ap-

proximated to be harmonic and the centre-of-mass motion is independent in three

translational degrees of freedom {x, y, z}. The optical potential is given by [7]:

Uopt,sphere = −ℜ(α0)E2
0

4 , (2.34)
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2 Fundamentals of Levitated Optomechanics

where E0 is related to the optical power Popt of Gaussian beam:

Popt = cϵ0πwxwyE2
0

4 , (2.35)

where wx and wy are the beam waist along x and y direction respectively. It

follows w2
0 = wxwy, where w0 is the beam waist shown in Equation (2.21).

Thus, the trap stiffness can be written as:

kq = 4ℑ(α0)Popt(t)
πcϵ0w2

0w2
q

, (2.36)

where wq denotes the beam waist along the q-direction. The time-dependent op-

tical power shows the possibility of controlling the dynamics through this variable

and this ability to dynamically vary the spring constant is a crucial advantage of

optically levitated oscillators.

Further, we can derive the angular oscillation frequencies ωx,y and ωz of the

levitated nanosphere as:

ωx,y =

√√√√4ℜ(α0)Popt

Mπcϵ0w4
0

,

ωz =

√√√√ 8ℜ(α0)Popt

Mπcϵ0w2
0z

2
R

,

(2.37)

where wz is given by the Rayleigh range in Equation (2.23) with zR = wz/
√

2 ≈

πw2
0/λ.

Optical potential for anisotropic nanoparticles

In terms of anisotropic particles such as nanocylinders, the polarizability α0 is

a tensor due to its anisotropic geometry [98], and the orientation with respect

to the optical field polarisation axis leads to different interaction strengths [71].

This introduces the ro-translational dynamics of the levitated nanocylinder. The

translational motion depends on mass M , while the rotational motion depends

on the moment of inertial I. Moreover, an anisotropic particle exhibits different

dynamics with different polarisation states of the light field. In the case of lin-
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2.2 Optomechanical interactions

early polarised light, the nanocylinder tends to align with the polarisation axis of

the light; while for circularly polarised light, the levitated nanocylinder starts to

rotate, which demonstrates more degrees of freedom compared to the basis of the

centre-of-mass motion. We use levitated silicon nanorods as an excellent tool for

exploring and controlling all the rotational and translational motions [53, 62].

The polarizability of a levitated nanorod can be described by the form of

susceptibility tensor χ0 = diag(χ⊥, χ⊥, χ∥) with a component χ⊥ perpendicular

and a component χ∥ parallel to the symmetry axis:

χ∥ = ϵr − 1,

χ⊥ = 2(ϵr − 1)
ϵr + 1 .

(2.38)

When the long axis of the nanorod is aligned along the axis of polarisation,

its polarizability achieves a maximal value χ||, when its long axis is orthogonal to

the axis of the polarisation, the polarizability decreases to the minimal value χ⊥.

Compared to a sphere of the equivalent volume, the maximal polarizability of a

cylinder is (ϵr + 2)/3 times larger. This factor is 2 for silica, whereas it is a factor

of 4.6 for silicon [99].

We introduce the rotation matrix R(Ω) to translate between the body-fixed

(coordinates with origin at the centre-of-mass of the particle) and the space-fixed

(coordinates with origin at the focus of the trap) coordinates n̂j = R(Ω)êi with

j ∈ {a, b, c}, where n̂j denoted three orthonormal basis vectors which are aligned

with the main three axes of the cylinder, and êi denotes the common orthonormal

basis with i ∈ {x, y, z}.

The rotation matrix R(Ω) characterizes the orientation Ω for the particle by

the Euler angles α ∈ (0, 2π], β ∈ (0, π] and γ ∈ (0, 2π], and is defined by rotations

around the z-y′-z′′ convention [100]. The α angle is with respect to the x-axis and

the project of the particle in the x-y plane, the β is the angle between the rod’s

symmetry axis and the beam propagation axis z-axis, and the γ quantifies the

angle around the symmetry axis. The orientation-dependent susceptibility tensor
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2 Fundamentals of Levitated Optomechanics

is described by the usual rules of matrix transformation:

χ(Ω) = R(Ω)χ0R(Ω)T. (2.39)

The general form of the optical potential centred of the focus is [73]:

U(Ω) = −ϵ0V

4 E∗
0 · χ(Ω)E0, (2.40)

where E0 is the electric field acting on the dielectric particle and V is the volume

of the particle.

We define linearly polarised light as E = E0e = E0(exêx + eyêy), where E0 is

the amplitude of the electric field and ex, ey are the components in the x and y

space-fixed coordinates respectively satisfying e2
x + e2

y = 1. The optical potential

for a nanorod as a function of its radial displacement r and Euler angles can be

expressed as:

Uopt, rod(r, Ω) = −
ϵ0Vrodχ∥E

2
0

4 f(r)
[

χ⊥

χ∥
+ ∆χ

χ∥
(m · e)2

]
, (2.41)

where Vrod is the volume of the nanorod, ∆χ = χ∥ − χ⊥ is the susceptibility

anisotropy, and the symmetry axis of the rod is aligned along the vector m. f(r) =

cos2(kz) represents a standing wave trap along the beam propagation z-direction.

The dot product term m · e characterises the orientation of the nanorod m with

respect to the polarisation direction of the tapping beam e in terms of Euler angles

{α, β, γ} with m · e = sin β(ex cos α + ey sin α).

From this equation, it is straightforward to show that the minimum potential

for a linearly polarised light along x-direction can be achieved when α = 0 and

β = π/2, which means the trapped nanorod tends to align with the polarisation

of the optical field. For a linearly trapped nanorod, we can consider the angular

momentum with a small deflection from the polarisation axis as harmonic.

For a harmonically trapped nanorod, the translational frequency is ωq =√
kq/M with the translational spring constant kq, whereas the librational fre-
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2.3 Dynamics of levitated nanoparticles

quency is ωθ =
√

kθ/I with the librational spring constant kθ and the moment

of inertia I. Since the mass M ∝ r3 and the moment of inertial I ∝ r5, the

frequencies of the librational modes are normally higher than translational modes

for nanoparticles. The Rayleigh-Gans approximation can be used for numeri-

cally analysing the optical forces on a non-spherical particle in the polarisation-

dependent field [101]. It is worth noticing that this approximation is suitable for

the case that no length scale exceeds the wavelength of the light and at least one

dimension is much smaller than the wavelength of the light [102].

The trapping frequencies (three translational {x, y, z} and two librational

{α, β}) of a levitated nanorod in a harmonical potential are given by [71]:

fx,y = 1
2π

√
8Poptχ∥

πρcw4
0

,

fz = 1
2π

√
4k2Poptχ∥

πρcw2
0

,

fα = 1
2π

√
48Popt∆χ

πρcw2
0l

2 ,

fβ = 1
2π

√√√√48Poptχ∥

πρcw2
0l

2

(
∆χ

χ∥
+ (kl)2

12

)
,

(2.42)

where ρ = 2330 kg m−3 is the density of silicon, and l is the length of the nanorod.

When the trapping light is circularly polarised, the trapping potential in ro-

tational degrees of freedom (i.e., α on the x-y plane) vanishes while the force in

the translational degrees of freedom remains, so that the optical potential confines

the nanorod to rotate in the polarisation plane under a radiation torque. These

physical characteristics of nanorotors provide fertile ground for exploring the rota-

tional quantum behaviours and ultra-sensitive sensing applications such as torque

and pressure measurements, which will be discussed in Chapter 4 in detail.

2.3 Dynamics of levitated nanoparticles

2.3.1 Stochastic differential equation

In a more practical scenario, the nanoparticle is not levitated in a perfect vacuum

with completely adiabatic conditions but coupled to a thermal bath at a tempera-
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2 Fundamentals of Levitated Optomechanics

ture Tb with dissipation rate ΓCM. It has interactions with the environment from

mechanical (collisions with gas molecules) and radiative (blackbody and scatter-

ing) contributions, which leads to dissipation acting on its ro-translational motions

and is the source of the random forces acting on the nanoparticle.

The decoupled centre-of-mass motion can be described by a Langevin equa-

tion in three translational degrees of freedom (q ∈ {x, y, z}) based on the

Fluctuation-Dissipation Theorem:

q̈(t) + ΓCMq̇(t) + ω2
qq(t) = 1

M
Ffluct(t). (2.43)

In most practical purposes, the fluctuation force Ffluct can be considered as

frequency-independent white noise which satisfies:

⟨Ffluct(t)Ffluct(t′)⟩ = 2MΓCMkBTbδ(t − t′), (2.44)

where Tb is the temperature of the bath or environment, ωq is the natural me-

chanical oscillation frequency of the levitated particle in the q-direction and ΓCM

is the total momentum damping rate on the particle. When ωq ≪ ΓCM, it means

the motion is overdamped; critically damped at ωq ≈ ΓCM; and ωq ≫ ΓCM in

underdamped regime. In our scenarios, the levitated nanoparticles are normally

in the underdamped regime.

Figure 2.1 shows the simulations of three translational motions of a 300 nm

diameter silica nanosphere levitated in a standing-wave trap along z-axis with

the total trapping power of 300 mW. The ambient environment is at the pressure

of Pgas = 0.1 mbar (corresponding to a gas damping rate ≃ 150 Hz) at room

temperature Tb = 298 K. Since the trap stiffness of kz is kz/kx,y = (k2w2
0)/2

tighter than that of kx,y from Equation (2.36), we can notice that the oscillation

amplitude in z-direction is about 51 times smaller than x, y-direction, and the

oscillation frequency ωz is about 7 times larger than the other two which is also

shown in Figure 2.2.
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Figure 2.1: Simulation of translational dynamics of a levitated silica nanosphere in
the underdamped regime at a thermal bath of Tb = 298 K. The beam
waist is 2.5 µm. The pressure is set to 0.1 mbar, corresponding to a gas
damping rate of ≃ 150 Hz. The fluctuation term is set as white noise with
a timestep of 10−7 s. The blue and orange lines show the dynamics in
the x and y directions. The green line represents the dynamics in the z
direction and is amplified by 10 times.

The autocorrelation function of the stochastic force is ⟨Ffluc(t)Ffluc(t′)⟩ =

2πSffδ(t − t′), where Sff is the total fluctuation force spectral density, and δ(t − t′)

denotes that each collision on the particle surface by a gas molecule is independent

of any other at any given time.

After a period of time ∼ 1/ΓCM, the centre-of-mass motion of the nanoparticle

reaches an effective thermal equilibrium characterized by an effective temperature:

TCM = πSff

kBMΓCM
. (2.45)

In higher pressures (about ≥ 10 mbar), we can consider that the centre-of-

mass temperature TCM is approximately equal to the temperature of the environ-

ment Tb due to very fast energy exchange. The thermal energy of the environment

follows a Maxwell-Boltzmann distribution with a mean value of kBTb. Usually, it

is suggested that the potential depth of a reasonable stable optical trap should be
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2 Fundamentals of Levitated Optomechanics

at least ≈ 10kBTCM to prevent it from escaping, since the probability of finding

the particle with energy ≥ 10kBTCM is less than 0.02% [31].

The position autocorrelation functions of ⟨q(t)q(0)⟩ is a common tool for

analysing the position variable q(t):

⟨q(t)q(0)⟩ = kBTCM

Mω2
q

− 1
2σ2

q (t), (2.46)

where σ2
q (t) is the position variance. The power spectral density (PSD) is defined

by the position autocorrelation function:

Sqq(ω) =
ˆ +∞

−∞
⟨q(t)q(0)⟩eiωtdt. (2.47)

The PSD spectrum converts the time-trace signal to a frequency spectrum,

providing a convenient tool for analysing the response of each degree of freedom

in the frequency domain. Equation (2.45) can be further given by [7]:

Sqq(ω) = kBTCM

πM

ΓCM

(ω2 − ω2
q )2 + Γ2

CMω2 . (2.48)

Figure 2.2 presents the simulated PSD spectra of the centre-of-mass motion

of a levitated nanosphere converted from the dynamics shown in Figure 2.1, from

which we can obtain the oscillation frequency of 23.5 kHz in x, y-direction and

168.6 kHz in z-direction but with different amplitudes. The spectra of x and

y-direction motion are completely overlapped in the simulation because of the

systemic optical potential and perfect spherical shape of the nanoparticle; however,

it shows some discrepancies in the experiments due to the asymmetry of the trap

and geometry of nanoparticles. By fitting the PSD spectrum with Equation (2.48),

the total damping rate ΓCM and the temperature TCM can be extracted. The

integral of the peak area is proportional to the effective temperature of the motion

of the levitated nanoparticle based on Equations (2.46) and (2.47).

In the case of two additional librational modes of the levitated nanorod, we

assume the angle θ between the equilibrium position of the nanorod (normally
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Figure 2.2: PSD spectrum converted from the dynamics of a 300 nm diameter levitated
silica nanosphere in Figure 2.1. The PSD spectra of x, y-direction have the
overlap frequency peak at 23.5 kHz, and a peak at 168.6 kHz appeared in
the PSD spectrum of z-direction.

the polarisation direction of the linearly polarised light) and its angular position

is small and the potential remains harmonic. The decoupled librational motions

(θ ∈ {α, β}), by modifying Equation (2.43) accordingly, can be expressed as:

θ̈(t) + ΓROTθ̇(t) + ω2
θθ(t) = 1

I
Nfluc(t), (2.49)

where Nfluc(t) is the associated stochastic torque which also can be regarded as:

⟨Nfluct(t)Nfluct(t′)⟩ = 2IΓROTkBTbδ(t − t′), (2.50)

with the autocorrelation function of ⟨Nfluc(t)Nfluc(t′)⟩ = 2πSnnδ(t − t′), where Snn

is the total fluctuation torque spectral density.

In analogue to the centre-of-mass motion discussed above, the effective tem-

perature of librational motion becomes:

TROT = πSnn

kBIΓROT
. (2.51)
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and its PSD spectrum is given by:

Sθθ(ω) = kBTROT

πI

ΓROT

(ω2 − ω2
θ)2 + Γ2

ROTω2 . (2.52)

The linear stochastic dynamics of librational modes (α and β) of a levitated

nanorod and its PSD spectrum are similar to translational modes shown in Figure

2.1 and Figure 2.2 but with the unit of the angle of rad2/Hz.

2.3.2 Damping rate

Gas damping

For pressures higher than 10−6 mbar, the stochastic forces due to collisions with

surrounding gas molecules is the dominant contribution to the total damping rate.

The gas damping rate for a spherical nanoparticle is given by [99]:

Γgas = 6πηgasr

M

0.619
0.619 + Kn(1 + ck), (2.53)

where ηgas is the dynamic viscosity coefficient of gas, Kn = l/r is the Knudsen

number for the mean free path l = kBTgas/(
√

2σgasPgas) with the cross-sectional

area σgas of the air molecules at the pressure Pgas. In the Knudsen regime (for

pressures below ∼ 50 mbar), the mean free path of the gas molecules increases

(e.g., l ∼ 60 µm at 1 mbar) which is much larger than the radius of the nanoparticle

Kn ≫ 1, the gas damping rate becomes linear with pressure [103]:

ΓKn>1
gas = 8

3

√
2mgas

πkBTb
r2Pgas, (2.54)

where mgas is the mass of gas molecules.

So far we have not considered the rotational degrees of freedom for a rotating

nanosphere, which is given by:

ΓROT,sphere

2π
= 30cacc

8
√

2π

ηgasσgas

kBTbρ

Pgas

r
, (2.55)

where ρ is the density of particles, cacc is accommodation coefficient character-
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ized by cacc = (Tem − Tgas)/(Tint − Tgas) with the surface temperature Tint and the

temperature of the gas molecules emitted from the surface Tem. The accommoda-

tion coefficient quantifies the fraction of the thermal energy that the colliding gas

molecule removes from the surface of the particle [103].

In our experiments, we also use the nanorod with geometry anisotropy, the gas

damping rate becomes more complicated because the damping rate is orientation

dependent, and the friction coefficient has to be replaced by a tensor [104]:

ΓCM,rod = Γ⊥
CM,rod(1 − m ⊗ m) + Γ∥

CM,rod(1 − m ⊗ m),

Γ⊥
CM,rod =

ngrl
√

2πmgaskBTgas

M

[
2 + cacc

(
−1

2 + πγs

4 + r

l

)]
,

Γ∥
CM,rod =

ngrl
√

2πmgaskBTgas

M

[
4r

l
+ cacc

(
1 − 2r

l
+ πγs

2
r

l

)]
,

(2.56)

where ng is the gas density, and the cylinder has a radius of r and length of l

with symmetry axis m(Ω). γs is given by the ratio of the surface temperature Tint

of the trapped particle with respect to that of the gas temperature Tgas through

γ2
s = Tint/Tgas.

Correspondingly, the rotational damping rate of a cylinder can be expressed

as:

ΓROT,rod = Γ⊥
ROT,rod(1 − m ⊗ m) + Γ∥

ROT,rod(1 − m ⊗ m),

Γ⊥
ROT,rod =

ngrl
√

2πmgaskBTgas

M

l2

3r2 + l2 ·{
2 + 12r3

l3 + cacc

[
−1

2 + πγs

4 + 3r

l
+ 6r2

l2 +
(3πγs

2 − 6
)

r3

l3

]}
,

Γ∥
ROT,rod =

ngrl
√

2πmgaskBTgas

M

l2

3r2 + l2 cacc

(
2 + r

l

)
.

(2.57)

Radiation damping

When the gas pressure decreases to very low values (normally ≤ 10−6 mbar),

the photon shot noise starts to dominate the damping term rather than the gas

damping. The photon shot noise is due to the discrete photon nature of light,
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2 Fundamentals of Levitated Optomechanics

leading to a damping rate of [26]:

Γrad = cdpPscat

Mc2 , (2.58)

where cdp is the coefficient characterizing the direction of motion of the nanopar-

ticle with respect to the polarisation of the laser: cdp = 2/5 for motion parallel to

the polarisation direction while cdp = 4/5 for perpendicular. The scattered light

power Pscat is:

Pscat = σscatIopt, (2.59)

with the scattering section area σscat = (|α0|2k4)/(6πϵ2
0) and trapping light in-

tensity Iopt. The equilibrium temperature provided by the photon energy when

assuming the nanoparticle is only exposed to photon shot noise is given by:

TCM,PSN = ℏν

2kB
, (2.60)

which is generally very high and necessitates continuous additional stabilizing

and cooling [26]. The strong scattering introduces photon recoil heating, which

destroys the coherent particle motion in high vacuum.

The photon shot noise also needs to be considered when we implement a

quantum measurement of the position of levitated nanoparticles and feedback

cooling its motions. There is a standard quantum limit that determines the

minimized measurement uncertainty achieved by the balance between the mea-

surement precision and the backaction from the photon shot noise.

Additional damping

In addition, the random forces and damping can be introduced via external fields

which are under experimental control. For instance, the parametric feedback or

cold damping schemes introduce additional damping to the levitated mechanical

oscillator. This also alters the energy of the levitated nanoparticle with a different

effective temperature which will be further discussed in Chapter 5.
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Quality factor

The quality factor of a mechanical oscillator is defined by the total damping rates

ΓCM and the oscillation frequency ωq:

Q = ωq

ΓCM
. (2.61)

This leads to a mechanical quality factor of levitated nanoparticles ranging from

∼ 10 at 10 mbar to ∼ 108 at 10−6 mbar, even can up to 1012 in ultra-high vacuum.

Such a high-quality factor is normally difficult to achieve in many macroscopic

mechanical systems due to the fundamental limits of dissipation. However, the

significant improvement of quality factor in levitated mechanical oscillators will

be beneficial to facilitate quantum coherent manipulation of mesoscopic objects.

2.4 Experimental apparatus

2.4.1 Overview

In this section, the experimental apparatus developed and implemented over the

course of this thesis is presented in detail. This experimental apparatus is designed

for studying the ro-translational optomechanics of levitated silica nanospheres and

silicon nanorods, including trapping, control and cooling. Figure 2.3 shows the

schematic of the experimental setup. All the optical components are placed on an

air-compressed floating optical table for mechanical vibration isolation.

The following sections outline the optical layout, laser intensity and polarisa-

tion modulation, vacuum system, motion detection techniques and feedback loop.

The nanoparticle sample preparation, nanoparticle loading method and its optical

setup will be discussed in Chapter 3 in detail.

2.4.2 Optical layout

The core of the experimental setup is an optical trap formed by two counter-

propagating laser beams and the nanoparticle is trapped at the centre of the optical

trap. Compared to a single-beam dipole gradient dipole trap which requires a very

high numeric aperture lens (e.g., NA > 0.8), the dual-beam optical trap takes the
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Figure 2.3: Schematic of the experimental setup. Two counter-propagating laser
beams focused by a pair of lenses form a dual-beam optical trap inside
a vacuum chamber. All the optical path is built with optical fibres, except
for light propagating in free space output from two fibre collimators before
incident into the vacuum chamber. The main optical path is started with
a 1550nm high-power laser source. The intensity and polarisation state
of two beams can be controlled by an in-fibre Acousto-optic modulator
(AOM), in-fibre Electro-optic modulator (EOM) and polarisation control
paddles (PCP). After the fibre circulator, the light is equally split into two
branches by a 50:50 fibre beam splitter (BS). Before incident into a pair of
focusing lenses inside the chamber, two beams are converted to free space
to form a standing wave trap. The motion of levitated nanoparticles is
detected by different detection schemes by using a single diode photode-
tector (PD) from a fibre circulator for all degrees of freedom, a balanced
detector for z-motion, quadrant photodetector (QPD) for x, y-motion, po-
larisation beam splitter (PBS) and half-wave plate (λ/2) for α-motion and
multimode fibre (MMF) for all degrees of freedom. These detection sig-
nals are sent to a data acquisition unit, lock-in amplifiers, and a computer
with an FPGA module for data recording, processing and feedback. The
vacuum condition is provided by connecting a turbo pump backed by a
roughing pump. A separate optical setup for directly launching nanopar-
ticles in vacuum consists of a 532 nm pulsed laser, reflecting mirrors and
a focusing lens. The nanoparticle sample is held in a designed metal tube
with a thin slot, making it closer to the trap centre and movable by a pair
of magnets.
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advantage of a lower NA lens, longer working distance and a larger trapping region.

This takes the advantage of the scattering force from counter-propagating beams

being mostly cancelled, therefore the gradient force with lower power is sufficiently

strong to form a stable trap in all dimensions of confinements.

The laser source is provided by a 40 mW narrow linewidth, ultra-low fre-

quency and intensity noise seed laser at the wavelength of 1550 nm (Koheras

ADJUSTIK E15, NKT Photonics) and an erbium-doped fibre laser amplifier (Ko-

heras BOOSTIK HP, NKT Photonics) which can amplify the seed laser up to

about 2 W. At the wavelength of λ = 1550 nm, silica and silicon both have a

relatively high permittivity and negligible absorption. After the light propagates

through an optical fibre circulator, the light is equally split into two branches by

a 50:50 fibre splitter. In order to form a standing wave trap, the in-fibre light

becomes free space light with a beam size of 2.27 mm by two triplet fibre optic

collimators (Thorlabs TC12FC-1550) before passing through the vacuum cham-

ber. The two fibre collimators are mounted on two three-dimensional translational

stages, which is not only good for beam alignment but also can adjust the position

of antinodes of the standing wave by moving the stage along z-direction.

Figure 2.4: Parallel focusing lenses holder structure installed inside the vacuum cham-
ber. A pair of aspheric lenses are screwed in and mounted on a designed
and manufactured all-metal lens holder structure with its base firmly and
flatly attached to the flange of the chamber.
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Inside the vacuum chamber, as shown in Figure 2.4, a pair of aspheric lenses

are screwed in and mounted on a designed and manufactured all-metal lens holder

structure with its base firmly attached to the flange of the chamber. We have

used lenses of NA = 0.30, 0.43 and 0.60 (Thorlabs C171TMD-C, C350TMD-C and

C660TME-C) with an effective focal length of 6.20, 4.50 and 2.97 mm respectively,

for different experiments.

During the setup process, these two beams need to be well-aligned with each

other, yielding two beams exactly counter-propagating and focused on the same

point. If these two beams are misaligned, the scattering force from each beam will

not be cancelled, leading to a non-conservative trap and making it hard to trap

particles stably, especially in a vacuum environment with very low gas damping.

We use the fibre circulator for monitoring the quality of the alignment. After beam

alignment, the amount of light in both arms passing the vacuum chamber achieves

about 95%, and more than 50% in total is returned to the opposite collimator.

The reason why the amount of light is not very high is the coupling loss from the

collimator and insertion loss from other fibre components.

2.4.3 Laser intensity and polarisation modulation

By modifying the properties of the trapping light field, we can control the ro-

translational dynamics of the levitated mechanical oscillator, and decrease (or

increase) its energy through feedback control of the trapping laser. The parametric

feedback cooling method we used to cool down the centre-of-mass temperature

of the levitated nanoparticle requires a real-time modulation of light intensity

[25], and the polarisation feedback cooling method for librational motion cooling

requires a modulation of the polarisation state of light.

The light intensity of two beams is controlled by an in-fibre 80 MHz acoustic-

optic modulator (AOM, Gooch & Housego FIBER-Q) before the light is into a

50:50 fibre splitter. The AOM is driven by a digital multi-function RF Synthesizer

(MOGLabs Agile RF Synthesizer). It can also be amplitude-modulated with an

input signal (or feedback signal) from detectors or lock-in amplifier outputs with

a modulation bandwidth of 10 MHz. Normally, the amplitude of modulation is
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small (less than 5%) based on the detection signal of the motion of the particle,

thus the modulation range has a linear response to the input signal within the

maximum driven power of the AOM driver.

The control of the polarisation state of light is achieved by a low-loss, high-

speed lithium-niobate electro-optic polarisation modulator (EOM, EOSPCACE

Polarisation Controller) with the combination of fibre polarisation paddles (PCPs)

to set initial input polarisation state and phase compensation. The calibration

process of the polarisation state is presented in Appendix A in detail.

2.4.4 Vacuum system

The main vacuum chamber (2.75” spherical cube, Kimball Physics) is evacuated

by a combination of roughing pump (nXDS dry scroll pumps, Edwards vacuum) as

first-stage evacuation and turbo-molecular pump (HiPace 300, Pfeiffer vacuum)

with electronic drive unit (TC400, Pfeiffer vacuum) for further pumping. Be-

tween the vacuum chamber and the turbo-molecular pump is a vibration damper

to isolate mechanical vibrations from pumps. A manually actuated angle valve

(AVCO25, Pfeiffer vacuum) is installed between the chamber and the turbo-

molecular pump, which is used to control the pressure inside the chamber and

release the vacuum back into the atmosphere.

For the measurement and reading of the pressure inside the vacuum chamber,

a wide-range vacuum Pirani/cold cathode gauge (PKR 360, Pfeiffer vacuum) is

used and directly connected to the main chamber. This compact pressure gauge

integrates two sensors with different measurement ranges, enabling accurate mea-

surements from 1×10−9 mbar to atmospheric pressure. It also can be read out and

controlled by the digital interface and integrated controller of the turbo-molecular

pump.

In our system, the pressure can ultimately achieve the order of magnitude of

10−7 mbar (without bakeout) after several hours, which satisfies the requirement

of our experimental conditions at the current stage. This vacuum system can

also be modified and upgraded to go to lower pressure (e.g., below 10−9 mbar,

ultra-high vacuum) with an ion pump.
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2.4.5 Measurement techniques

Measurements of the displacement information of levitated nanoparticles are of

critical importance for further manipulation and feedback cooling. Via the in-

teractions with the optical field, the levitated nanoparticle scatters a part of the

trapping light field, and its motion is primarily imprinted into the phase of the

scattered light. Therefore, we can obtain the position information by directly

detecting the scattered light from the nanoparticle, the interference with the

trapping field, or mixing it with other reference signals.

Multi-mode fibre detection

To directly collect the scattered light, a bare, flat polished end of a 1 mm diameter

multimode fibre (MMF, Thorlabs FP1000ERT) is placed close to the position

where the nanoparticle is trapped around the beam waist, orthogonal to the axial

axis of the standing wave trap, as shown in Figure 2.5.

Figure 2.5: The top view of the optical trap with multi-mode fibre detection. The red
arrows indicate the two counter-propagation trapping beams which are
focused by a pair of lenses mounted on a cage structure in the base of a
single-axis fibre bench. The yellow dashed line shows the MMF detection
fibre.

The scattered light collected by MMF contains information on all degrees of

freedom. Specifically for levitated nanorods, the scattered light also contains two

additional rotational degrees of freedom {α, β}. The light is guided by the MMF

and focused on a fast, low-noise, and amplified InGaAs detector with a graded-
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index (GRIN) lens (Thorlabs, GRIN2915) at the output port of MMF. Because

the scattered light from the nanoparticle is very weak and only a proportion of

it gets collected, we normally need to use a very sensitive photodetector with

amplified circuits.

Since the light field scattered by the particle depends on the local intensity,

and the intensity is symmetric about the field maximum, the MMF measurement

returns the second harmonic of the particle motion. Figure 2.6 shows the time

trace (top) and its frequency spectrum (bottom) of a levitated 300 nm diameter

silica nanosphere in the standing wave trap under the pressure of 1 mbar. The first

peak at ∼ 18 kHz frequency represents the trapping frequencies of x, y-direction

and its second harmonic at ∼ 36 kHz. The other two peaks at ∼ 120 and ∼ 240

kHz represent the fundamental and second harmonic oscillation frequencies in

z-direction. In this figure, the fundamental frequencies also appear owing to the

slightly asymmetric position of the MMF, but the amplitude of peaks at the

second harmonics are much stronger than the fundamental ones.

Figure 2.6: The time trace (top) and its frequency spectrum (bottom) of a levitated
300 nm diameter silica nanosphere in the standing wave trap under the
pressure of 1 mbar. The peaks at the frequency of ∼ 18 and ∼ 36 kHz rep-
resent the trapping frequencies of x, y-direction and its second harmonic.
The other two peaks at ∼ 120 and ∼ 240 kHz represent the fundamental
frequency and its second harmonic in z-direction.
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Differential detection

The differential detection method is a conventional interferometric detection tech-

nique for motion detection. It is based on the superposition of the unscattered

field and the forward scattered field with a phase difference, which requires the

common propagation path for both the trapping and scattered fields with matched

wavefronts and phases.

In our experimental setup, the lens on each side naturally becomes the col-

lection lens for the transmitted light from the other side. In the paraxial ap-

proximation, the scattered power coupled to the collection lens is approximately

proportional to (NA)2, which means increasing the NA of the illumination and

collection optics would increase the amount of scattered field collected from the

trap and the overall measurement cooperativity [105]. This is crucial for feedback

cooling levitated oscillators by acquiring more information of their motion.

The interference of two fields has a constant phase relation of ∆φ = π/2

due to the Gouy phase of transmitted light, which is detected by a photodetec-

tor. Therefore, the photodetector is sensitive to the phase of the scattered field

imprinting the information of motion [31]. In this scenario, it has the highest sen-

sitivity to the motion along the z-axis. In order to cancel the constant background

trapping light offset, we focus a second beam (split from one of the trapping beams

before the trap, as shown in Figure 2.3) on another port of the balanced detector

with equal intensity.

In order to enhance the detection of the transverse motion in x- and y-

direction, we use a quadrant photodiode detector (QPD) to detect x- and y-

motion. When the nanoparticle moves in the transverse directions, its scattered

field shifts with respect to the focus, causing a deflection of the transmitted light

field in vertical x-direction or horizontal y-direction. A displacement in x-direction

results in a light intensity increase of the top two quadrants of QPD while the bot-

tom two decrease when the nanoparticle moves up, and vice versa. Similarly, a

displacement in the y-direction results in an intensity change in the left and right

halves of the detected interference on the QPD.
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Figure 2.7: The frequency spectrum of a levitated 300 nm diameter silica nanospheres
in the standing wave trap at 1 mbar. The x, y-direction signal (a) and (b)
is detected by a QPD and z-direction (c) from a balanced detector.

Figure 2.7 shows the PSD spectrum of a levitated 300 nm diameter silica

nanosphere with a pair of NA = 0.43 lenses and total trapping power of ∼ 300 mW

under the pressure of 1 mbar. In practice, it shows a small z-motion in x-direction

detector, but the elimination of the y-motion. This can be explained by the

imperfect alignment of the optics. Similarly, the frequency spectrum of z-motion

also contains the x, y-motion which in principle should be completely suppressed.

As a critical experimental technical challenge in various optomechanical systems,

the laser intensity fluctuations and drifts cause the drifts of trapping frequencies,

as shown in three subfigures of the frequency drift in z-motion at different data
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acquisition time. This laser intensity noise could heat up the levitated mechanical

oscillator and increase the phase error in the feedback scheme, which may need to

be suppressed by intensity stabilization techniques.

For detecting the rotational motion of levitated nanorods, we implement a

differential detection based on a polarisation measurement. The nanorod rotates

the polarisation of the trapping light [53]. A polarizing beam splitter (PBS) and

a half waveplate are placed in front of a balanced detector which is sensitive to

the α-motion. A similar detection scheme for β-motion in the transverse plane is

implemented, which is not shown in Figure 2.3.

Figure 2.8 (a) and (b) present the frequency spectrum from α-motion detec-

tor of a levitated silicon nanorod trapped with linearly polarised and circularly

Figure 2.8: Frequency spectrum from α-direction detector of a levitated silicon
nanorod trapped with linearly polarised light (a) and circularly polarised
light (b). With the linearly polarised light, the nanorod shows a libra-
tional motion at ∼ 60 kHz in addition to x, y-motion at ∼ 9 kHz and
z-motion (red line) at ∼ 128 kHz. When the polarisation state of the
trapping light switches to circularly polarised, the librational mode van-
ishes and the nanorod is driven to a full rotation in the polarisation plane
(α-direction), and a signal at ∼ 1.5 MHz is observed corresponding to a
rotation rate of ∼ 0.75 MHz.
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polarised light respectively. With the linearly polarised light, the nanorod ex-

hibits a librational motion at ∼ 60 kHz in addition to x, y-motion at ∼ 9 kHz

and z-motion at ∼ 128 kHz. When the polarisation state of the trapping light

switches to circularly polarised, the librational mode vanishes and the nanorod

is driven to a full rotation in the polarisation plane (α-direction) and a signal at

∼ 1.5 MHz observed corresponding to a rotation rate of ∼ 0.75 MHz.

Balanced homodyne and heterodyne detection

Alternatively, we can choose a different reference beam with adjustable optical

intensity, rather than using the trapping field discussed above, mixing with the

scattered light for balanced interferometric detection. When the reference beam

has the same optical frequency as the frequency of the signal, the detection scheme

is called homodyne detection; on the contrary, the reference beams have different

oscillation frequencies in heterodyne detection. By adopting the balanced scheme,

it can effectively cancel out the average DC components while the high frequency

oscillation term remains.

Figure 2.9 sketches the balanced homodyne and heterodyne detection meth-

ods. The homodyne detection has two inputs: one is from the scattered field

Escat and another is an independent reference ELO from the local oscillator. After

being mixed by a beam splitter, two outputs E+ and E− are sent to a balanced

Escat

ELO

(homo)

E+

E−
ELO (hetero)

50:50

BS

B
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d 
D
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to
r

Figure 2.9: Sketch of balanced homodyne (red) and heterodyne (green) detection
methods for detecting the scattered filed (blue) of levitated nanoparti-
cles. Two input fields are mixed by a 50:50 beam splitter, and two outputs
E+ and E− are differentiated by a balanced detector.
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photodetector with:

E+ = 1√
2
(
Escate

iφscat + ELOeiφLO
)

,

E− = 1√
2
(
Escate

iφscat + ELOei(φLO+π)
)

,
(2.62)

for the case of two outputs with equal intensity. The output from the balanced

detector is:

Iout = 2EscatELO cos(φscat − φLO), (2.63)

where the phase of the reference beam φLO is adjustable for measuring the phase

quadrature of the signal (i.e., the scattered field). Usually, the amplitude of the

signal Escat is much weaker than the reference beam, thus it can be amplified by

ELO. Therefore, the amplitude of the reference beam ELO can be optimised to

acquire an optimal signal-to-noise ratio.

For a balanced heterodyne measurement with a frequency difference ∆ν, the

balanced detector output becomes:

Iout = 2EscatELO cos(φscat − φLO + ∆νt). (2.64)

Looking at the spectrum of balanced detector output, it is shifted to ∆ν with

sidebands at ∆ν ± ωscat. This is beneficial to shift high frequencies with a lower

noise floor when choosing ∆ν ≫ ωscat. In contrast to homodyne detection, where

the phase relationship between two fields is fixed, the reference beam from the local

oscillator) in the heterodyne measurement is continuously scanning between the

amplitude and phase quadrature of the output. By using a lock-in amplifier that

locks to the modulation frequency ∆ν, we can measure the amplitude and extract

the phase information. The heterodyne detection can be used to perform an out-of-

loop measurement of the particle’s energy via Raman scattering thermometry by

measurement of the ratio of the Stokes and anti-Stokes scattering rates [30, 29, 27].
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2.4.6 Feedback loop
In order to feedback cool the centre-of-mass and rotational motion of the levitated

particle by modulating the intensity and polarisation of the trapping light, it is

crucial to build a high-speed, low-electronic noise feedback loop. In a simple way,

the feedback electronics consists of a bandpass filter, a phase shifter, a frequency

doubler, an amplitude amplifier, and an adder [25], which are already integrated

into the 50 MHz lock-in amplifier (HF2LI, Zurich Instruments). We use the phase-

locked loop (PLL) of the lock-in amplifier to simultaneously track the phase of the

particle’s motion at different oscillation frequencies and generate a feedback signal.

A PLL uses a local voltage-controlled oscillator (VCO), and a phase com-

parator to maintain a constant phase difference between the local oscillator and

an input signal from photodetectors. The VCO has a starting phase, and a phase

detector measures the difference between this and the input signal. The resulting

error signal is then passed through a filter system which removes phase noise and

generates a DC signal. The DC signal is used to feed into the VCO and used to

change the VCO output frequency. This loop continues until the phase difference

between the input signal and VCO is minimal or reaches some set phase difference.

The output signal from PLLs is added and amplified as needed before sending

to the amplitude modulation input of the AOM driver in parametric feedback

cooling, or EOM in polarisation feedback cooling.

This function also can be achieved by programming a fast FPGA module

(e.g., STEMlab 125-10, Red Pitaya) which is expected to meet the requirement

of high-speed signal acquisition, processing, and output signals in the range of

several hundreds of kHz.
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Chapter 3

Direct Loading of Nanoparticles

in Vacuum

3.1 Introduction

Controllable nanoparticle loading into an optical trap in vacuum is one of the

main challenges for optical levitation and control. There are some strategies to

transport externally trapped particles into the chamber using a load-lock technique

[106, 107] or a hollowcore fibre [108]; however, developing direct loading methods

in vacuum is also important for precision measurements and sensing applications.

Due to the conservative nature of optical potentials, a dissipation mechanism

is required to load nanoparticles into the optical trap. A current common direct

loading technique is to suspend nanoparticles in a solvent and then introduce them

into the gas phase through nebulization in ambient conditions. The particles then

diffuse to the optical trap and are captured, typically after a few minutes in the

atmosphere, after which the pressure is reduced for the next step of experiments.

This method has some drawbacks, one of which is the risk of easily contaminating

the vacuum system and delicate optics in the trapping region. In addition, ab-

sorption of the solvent into porous dielectric nanoparticles. Nebulization also relies

on having a large number of nanoparticles available, since the method is highly

probabilistic, therefore, it is not suitable for small samples of tailored nanorods

we used for the research of rotational optomechanics in this thesis.
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3 Direct Loading of Nanoparticles in Vacuum

In this chapter, we report on a dry and vacuum-compatible method for di-

rectly launching nanoparticles into optical traps, namely Laser-Induced Acoustic

Desorption (LIAD). In this method, a high-energy pulsed laser is focused onto the

back side of a substrate upon which particles are distributed or grown. The pulse

can generate acoustic shock waves through thermo-mechanical stress to locally

eject particles from the substrate, and then fall into the optical trap.

LIAD has been used for launching biological cells [109], strands of DNA [110]

and silicon particles [17]. This method can overcome Van der Walls force between

the particles coated onto a surface, and launch tethered silicon nanoparticles di-

rectly from their silicon substrate. The particles are only ejected from the region

of the laser focus, allowing selective and efficient launching. LIAD works for di-

electric particles from <100 nm up to several micrometres at pressures down to 1

mbar or even lower for other types of traps (e.g., Paul traps) [111]. This method

is also possible to practically launch individual nanoparticles during each launch.

We characterized the LIAD method as a technique for loading nanoparticles

into our standing-wave optical trap, presenting an efficient, flexible, clean, and

vacuum-compatible tool for the field of levitated optomechanics.

3.2 Launch mechanism

3.2.1 Buffer gas model

The interactions between nanoparticles and residual gas molecules provide the

dissipative mechanism when we use LIAD to load nanoparticles directly into the

conservative optical trap. Different from the previously mentioned nebulization

techniques, this loading method does not over-rely on the diffusion of nanoparticles

into the trapping region; on the contrary, nanoparticles are directed towards the

trapping region by the LIAD mechanism, dramatically increasing the efficiency of

trap loading. During the transit through a gas, launched nanoparticles get slowed

down and lose some energy before reaching the conservative trap.

We begin by assuming that the nanoparticles are launched with a constant

initial vertical velocity without initial transverse velocity spread. The equation
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3.2 Launch mechanism

describing this process, without considering diffusion, is given by:

Mẍ = −Mg − Γgasẋ, (3.1)

where M is the mass of nanoparticles, g is the acceleration due to gravity, and x

is the position of the nanoparticle where positive x is upwards. In this chapter,

we consider the total damping rate is only from the gas damping Γgas.

By solving Equation (3.1), the vertical position (along the gravity direction)

of the particles is:

x(t) =
(

1 − e− Γgast

M

)(
gM2

Γ2
gas

+ v0M

Γgas

)
− gMt

Γgas
, (3.2)

where v0 is the initial velocity, which, in our case, is negative, and normally of the

order 30 ms−1 (referring to the experimentally measured data shown in Figure 3.7

(a) in Section 3.4).

In the experiment, we detect the scattered light of nanoparticles only when

they arrive at the optical trap, from which we can extract the information on how

long they take during falling and how fast they are going. The distance between

the substrate and the optical trap centre is defined as xtrap, the time to reach the

trap centre as ttrans, and the velocity at the trap as vfin. It is straightforward to

numerically solve Equation (3.2) to extract ttrans for a given xtrap. The velocity is

then found by differentiating Equation (3.2):

vfin = − gM

Γgas
+
(

gM

Γgas
+ v0

)
e− Γgasttrans

M . (3.3)

The momentum damping coefficient for the nanoparticle Γgas gives the rate at

which an object of a given mass relaxes to its terminal velocity vT:

Γgas(vT) = gM

vT
. (3.4)

The terminal velocity vT depends on the viscosity µN of the fluid, Nominally,

viscosity is independent of pressure, however, one must consider the interaction
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with the surface of the particle when considering fluid dynamics, as well as the fact

that small particles can travel quite some distance in gas between collisions. The

slip factor CS accounts for this, and is shape dependent. The terminal velocity is

given by:

vT = 4ρSRSgCS

18µN
. (3.5)

For a spherical nanoparticle,

CS = 1 + l

2r

(
2.34 + 1.05e

−0.39 2r

l

)
, (3.6)

where l is the mean free path of the gas molecules with number density ng and

effective radius of N2 gas rb given by:

l = 1
4
√

2πngrb
, (3.7)

and the viscosity of N2 gas µN is gas temperature Tgas dependent, given by:

µN = 1.781 × 10−5 411.55
T + 11

(
Tgas

300.55

) 3
2

. (3.8)
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Figure 3.1: The simulation of a nanosphere during transit of a buffer gas with a set
initial velocity. The particle is launched downwards at v0 = 50 ms−1

through room temperature N2 of varying pressure from a substrate with
the distance away from the trap of xtrap = 5 cm. (a) The final velocity
approaches the terminal velocity (red line) at high pressures. (b) The
divergence of the beam sharply increases with pressure, since the particle
has more time to undergo multiple collisions with the gas, as shown in (c).
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3.2 Launch mechanism

The simulation of the effect of buffer gas on the velocity of a nanoparticle

of a fixed initial velocity v0 is shown in Figure 3.1 (a). The velocity vfin at the

plane of interest xtrap decreases with increasing pressure, until it reaches the ter-

minal velocity vT, which for these conditions is less than 1 mm s−1 by 10−1 mbar.

Practically, nanoparticles are not launched with a single velocity, but with a ve-

locity distribution. In Figure 3.2, we consider the effect of a buffer gas on an

initial Maxwell-Boltzmann distribution of velocities. As the pressure of the buffer

gas increases, once the particles reach xtrap they have been redistributed to lower

velocity.
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Figure 3.2: Simulation on the effect of buffer gas on nanoparticles with a Maxwell-
Boltzmann velocity distribution. Here the distribution has a mean value
of 25 ms−1 with a width of 10 ms−1. As the pressure of the gas increases,
the lowest velocity class is predominantly populated. The vertical scale in
the first two is 6 times smaller than the latter two.

For other types of nanoparticles in which we are interested, nanorods are

roughly cylinders of length l and radius r, with the aspect ratio of p = l/(2r). In

order to compare the behaviour of these particles to nanospheres, it is convenient

to define the equivalent sphere radius R̃S of a sphere with the same volume as

the nanorod. We also define an effective hydrodynamic (or Stokes) radius R̃C to

describe the interaction of the sphere with the gas, which for a cylinder is [112]:

R̃C

R̃S
= 1.0304 + 0.0193lnp + 0.06229(lnp)2

+ 0.00476(lnp)3 + 0.00166(lnp)4

+ 2.66 × 10−6(lnp)7.

(3.9)
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Due to the fact that cylinders in dilute fluids (i.e., low pressure gas) have

not been studied much, we assume the slip factor CS in Equation (3.6) should

be applicable for any solid object. Thus, for the slip factor CC of a cylinder, we

simply replace the radius in the Equation (3.6) by R̃C. The diffusion constant for

translational motion of a cylinder Dt becomes [113]:

Dt = CCkBTgas(lnp + ct)
3πµNL

, (3.10)

where ct is the translational end-effect coefficient, given by [113]:

ct = 0.312 + 0.565
p

− 0.1
p2 . (3.11)

The translational momentum damping factor Γt is then given by the Fluctuation-

Dissipation theorem as Γt = kBT/Dt, and this also can be applicable for the

sphere by following the same process.
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Figure 3.3: Comparison of the hydrodynamic radius and momentum damping rate of
cylinders and spheres with the same volume and mass. Solid blue lines
show the cylinder data and dashed black lines are spheres. These results
are for N2 at 1 mbar pressure. The diameter of cylinders is fixed to 300 nm.
(a) The variation in hydrodynamic radius with cylinder length. When the
length and diameter of the cylinders are similar the cylinders and spheres
behave similarly, but the radii diverge when the cylinders become disc-like
(L ≪ d) or very long (L ≫ d). (b) The variation in momentum damping
rate Γt/M with cylinder length. It is noted that the cylinders only vary
from the spheres when they become very disc-like or very long.
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The hydrodynamic radius R̃C and the momentum damping factor Γt for cylin-

ders is compared to the equivalent quantities for spheres in Figure 3.3. Neither

quantity varies by a significant amount compared to a sphere, unless the rods are

very long and thin, or very disc-like. In our experiments, p ≈ 2 ∼ 5, and hence

all of the conclusions showed in this chapter hold for spheres and rods.

Another important discussion is about the rotation of the nanorods or

nanospheres. It is possible to calculate the damping on this motion, but it is con-

siderably smaller than the translational damping [113]. The translational damping

on the motion of a sphere is approximately proportional to r, whereas the rota-

tional damping is proportional to r3, and both types of damping have proportion-

ality constants of the same order of magnitude. The same proportionalities hold

for cylinders, but one must consider the length l replaced by r. This means that

for a cylinder of length 1 µm the rotational damping is 12 orders of magnitude

smaller than the translational damping. The argument holds for all axes of rota-

tion. This means buffer gasses are not a good way of slowing rotation, only very

viscous fluids have the capability. This is also consistent with our experimental

observations on the slowing of rotating nanorods.

3.2.2 Brownian diffusion

In this section, we consider the effect of diffusion in the transverse direction

(s ∈ {y, z}) during the falling of launched nanoparticles due to Brownian motion.

The mean transverse position of the particle should be zero ⟨s(t)⟩ = 0 due to the

average force being zero; however, its variance or the mean-square displacement

is non zero [99]:

σ2
s(t) =

〈
[s(t) − s(0)]2

〉
= 2kBTCM

MΓ2
CM

[
ΓCMt − 1 + e−ΓCMt

]
. (3.12)

For a long time scale (t ≫ 1/ΩCM), the variance is the same as that predicted

by Einstein’s theory of diffusion:

σ2
s(t) = 2Dt, (3.13)

49



3 Direct Loading of Nanoparticles in Vacuum

where D = (kBTCM)/(MΓCM) is the diffusion constant. In this regime, the dy-

namics are completely random which indicates the trajectory of the nanoparticle

is fractal and, thus, is continuous but not differentiable. But at short time scales

(t ≪ 1/ΓCM), the trajectory of the particle becomes ballistic as a free particle,

which is dominated by its inertia.

We define the transverse spread ∆s as:

∆s(t) =
√

2Dt. (3.14)

with an average time τ between collisions given by:

τ = ls
vth

, (3.15)

where ls = (8D)/(πvth) is the mean free path of the particle with thermal velocity

of:

vth =
√

8kBTgas

πM
, (3.16)

and the transit time ttrans is compared to τ with each collision causing a displace-

ment ∆s(τ).

The spread ∆s is shown in Figure 3.1 (b). For a large range of pressures,

there are too few collisions during ttrans to cause significant diffusion. However,

once there are enough collisions, the forward velocity is also significantly slowed,

ttrans increases, shown in Figure 3.1(c), and there is a further chance for diffusion

to occur. Hence both the diffusion and the arrival time increase exponentially as

the nanoparticle is slowed.

We simulate the Brownian motion of the particles undergoing transverse dif-

fusion by numerically solving the stochastic differential equation (i.e., Equation

(2.43)) with a white noise term W (t). This term W (t) satisfies the Wiener process:

W (t) ∼
√

t · N(0, 1), (3.17)

where N(0, 1) is the normal distribution.
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Figure 3.4: Simulation on the dynamics of nanoparticles undergoes Brownian diffusion
during falling. Example of time traces showing the positions of 10 silica
nanospheres (150 nm radius) released from a position of 8 mm right above
the trap centre in three directions (the vertical axis is set to the position
in units of wavelength). The initial velocity along x-direction (gravity
direction) is set to velocity distribution based on the experimental result.
The left bottom inset shows the zoom-in of the initial 3 × 10−3 s. The
wavelength of the trapping light is λ = 1550 nm and the optical power
is 0.3 W. The optical trap beam waist is 3.0 µm. The gas pressure is 2
mbar at the temperature of 298 K. In this figure, one of ten nanoparticles
successfully get trapped during a 3 seconds transit process, indicated by a
circle after about 1.83 s. The threshold defined for judging the trap events
is the motion of the nanoparticle is within the range of two wavelengths
in all axes.

For a differential form of the Wiener process, it is proportional to
√

dt with

a discretization time dt in the time variable:

dW (t) ≃
√

dt · N(0, 1). (3.18)

The continuous-time solution s(t) of the stochastic differential equation is
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approximated by a discrete-time sequence si at time ti with a sufficiently small

time step ti = idt, and replacing s(t), ṡ(t) and s̈(t) by si, (si − si−1)/dt and

(si−2si−1+si−2)/(dt)2 based on the Euler method [114]. The solution of this Euler

approximation remains a Markov process. Other generalized numerical methods

for solving the stochastic differential equations such as Runge-Kutta methods can

be used for higher orders.

Figure 3.4 shows an example of the trajectories of 10 silica nanospheres with

a radius of 150 nm released from a position of 8 mm right above the trap centre in

three directions. The initial velocity along y-direction is set to velocity distribution

based on the experimental result in Figure 3.7. The wavelength of the trapping

light is λ = 1550 nm and the optical power is set to 0.3 W with a beam waist

of 3.0 µm. The gas pressure is 2 mbar at the temperature of 298 K. From this

figure, we can see the Brownian diffusion in y- and z-direction while the gravity

direction along x-axis is approximately ballistic in such a short time scale in a

dilute gas environment. In this simulation, one of ten nanoparticles successfully

get trapped during a 3 seconds transit process, indicated by a circle after about

1.83 s. The threshold defined for judging the trap events is that the motion of the

nanoparticle is within the range of two wavelengths in all axes.

3.3 Nanoparticle source and optical setup for

LIAD

3.3.1 Sample preparation
We use non-functionalize dry silica nanospheres (Bangs Laboratory) with 300 nm

diameter and nano-fabricated silicon nanorods (Kelvin Nanotechnology) with a

length of 880 nm and diameter of 210 nm etched with a separation of 8 µm and

an under etched breaking-point, following the work presented in [115], as shown

in Figure 3.5 (a) and (b). We first use silica nanospheres to test the performance

of the optical trap and obtain important experimental parameters.

About 1 mg of 300 nm diameter silica nanospheres are dispersed in 2 mL of

isopropanol solution and sonicated in an ultrasonic bath for an hour to prevent
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(a)

(d)

(c)

(b)

Figure 3.5: (a) Scanning Electron Micrograph (SEM) image of 300 nm diameter sil-
ica nanospheres spin-coated on an aluminium foil. (b) SEM image of
Nano-fabricated silicon nanorods etched on a silicon substrate with nar-
row break-points near the base; after serval rounds of LIAD launch, SEM
images of (c) nanospheres sample and (d) nanorods sample.

aggregation and uniformly disperse the particles in the liquid. A drop of diluted

solution containing evenly suspended nanoparticles is pipetted onto around 1 cm2

of an aluminium sheet of 400 µm thickness. A rigid aluminium sheet as a substrate

has been shown to produce a lower mean launch velocity than aluminium foil,

silicon wafer, or titanium foil [116]. The sample is allowed to dry for several hours

and placed inside the vacuum chamber 8 mm above the optical trap with the

nanoparticles facing towards the trap.

3.3.2 Optical setup

As discussed in the previous chapter, our optical trap is formed within the vacuum

system by two counter-propagating focused laser beams with a wavelength of 1550

nm, where each beam possesses an identical polarisation. The trapping light is

back coupled through the optical system and separated by an optical fibre circu-

lator onto a photodiode. This signal is maximized to ensure optimal alignment of

the trapping beams and provides a read-out of the trapped nanoparticle motion.
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Figure 3.6: Optical setup for LIAD and related trapping and detection systems.
Nanoparticles are trapped in a counter-propagating standing wave trap
formed by two beams of equal power and the same linear polarisation,
at the wavelength of 1550 nm. The optical trap is formed using aspheric
lenses with NA = 0.43. Unless otherwise stated, the total optical power
in the trap is 200 mW. The particles are launched downwards using LIAD
from a substrate located about 8 mm above the optical trap. The parti-
cle’s motion is encoded in the light, which travels back through the optical
system and is directed to a photodetector (PD) by an optical circulator.
Polarisation controlling paddles (PCPs) are used to modify the polarisa-
tion of the light. The right column presents photos of the optical setup.

As shown in Figure 3.6, the pulsed laser beam (Litron Lasers NANO-S 120-20)

is focused by a plano-convex lens with a focal length of about 100 cm (LA1608-

A, Thorlabs) onto the backside of the aluminium substrate to create an acoustic

shock, causing a release of the nanoparticles via LIAD. The pulsed laser has a

wavelength of 532 nm, and a pulse length of ∼ 4.6 ns, and we typically operate

it in single-shot mode with a peak intensity of ∼ 588 GW/cm2. The waist of the

pulsed laser spot focus on the backside of the substrate is estimated to ∼ 17 µm.

The front side of the sample substrate is placed to face the optical trap, such
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that nanoparticles are launched towards the optical trap, well directed along the

Poynting vector of the pulsed laser. It is worth noting that precise alignment of

the launch laser relative to the optical trap centre is vital. This is achieved by

strictly ensuring the launch laser propagates normally to the horizontal surface of

the optical bench. The optical trap is located at the centre of the vacuum chamber,

thus alignment of the optical spot of the launch laser through the centre of the

top viewport of the vacuum chamber is sufficient to ensure relatively good overlap.

In addition, the intensity profile of the focused launch laser beam is not uniform,

the launch area with enough energy to desorb nanoparticles from the substrate is

typically smaller than the area described by the beam waist. Figure 3.5 (c) and (d)

present scanning electron micrograph (SEM) images of an aluminium substrate

coated by silica nanospheres and silicon wafer grown with silicon nanorods before

and after several rounds of LIAD launch. This also implies the ability to even

launch single particles from a very localized region via LIAD.

3.4 Experimental results

3.4.1 Nanoparticle velocity distribution

As discussed in the previous Section 3.2, the launched nanospheres have a velocity

distribution. We measured their arrival time at the optical trap and estimated

their corresponding velocities. The result is shown in Figure 3.7. The particles

are launched using laser pulses with a peak intensity of 588 GW/cm2, and we

calculate the average velocity over the observed timescales of the particle passing

through the trap.

Due to the finite transit time of the particles from launch until observation,

the gas pressure plays a significant role in determining the velocity distribution

at the optical trap. By working at a low pressure of 2.5 × 10−7 mbar (where it is

impossible to directly load into the trap) the mean free path of the nanoparticle

between collisions with gas molecules is much longer than the transit path. Hence,

the velocity distribution at the optical trap, as presented in Figure 3.7 (a), can be

considered an accurate representation of the initial launch velocity distribution.
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Figure 3.7: Velocity distributions at the position of the optical trap for 300 nm di-
ameter silica nanospheres launched from a 400 µm thick aluminium sheet
under the pressure of (a) 2.5 × 10−7 mbar and (b) 1.2 × 10−1 mbar. His-
tograms are reconstructed from over 120 events for each pressure.

However, the nanoparticles experience thousands of collisions with gas

molecules before reaching the trap region at a higher pressure of 1.2 × 10−1 mbar.

This heavily lowers their mean velocity, as presented in Figure 3.7 (b), and also

removes the slowest particles because they have a large diffusion in the transverse

direction and never reach the trap region.

3.4.2 Identifying trapping events

In the experiments, it is normally required to only trap a single nanoparticle. In

this section, we describe the optimal conditions for achieving this. We divided

the trapping events into three categories: single particle trapping, single cluster

trapping, and multiple separated particle or cluster trapping. Trapping events

cause a sudden change in our detected signal amplitude due to the amount of

light scattering, and particle motion can be subsequently tracked.

Figure 3.8 (a) shows a histogram of the signal amplitude change in response

to a trapping event, reconstructed from over 800 events. We observe a peak

corresponding to trapping single particles and a long tail corresponding to clusters

or multiple particles. The width of the single-particle peak is due to the variability

in the exact trapping location within the optical standing wave; hence, we do not
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Figure 3.8: Identifying and characterizing trapping events. (a) Histogram of the signal
change due to the trapping events with a bin width of 0.3 mV. Trapping a
particle changes the signal amplitude for the minimum amount of 0.3 mV.
The majority of trapped particles cause a signal change between 0.3 and
0.6 mV, with a long tail due to clusters and multiple trapped particles.
The inset shows the extracted momentum damping rate Γ for a set of
experiments where the signal change is between 0.3 and 0.6 mV, which is
compatible with the theoretical predictions for a single particle. Solid red
lines define the upper and lower limits of the theoretical prediction for a
single particle, and dotted green lines define the upper and lower limits of
the theoretical prediction for a pair of particles. (b) The Power Spectral
Density (PSD) of the centre-of-mass motion of a single particle or cluster.
(c) The PSD corresponds to multiple trapped particles.

sharply and distinctly resolve integer numbers of trapped particles.

The signal can be analysed to reconstruct the power spectral density (PSD)

of trapped particle motion (Figure 3.8 (b)) yielding frequencies corresponding to

centre-of-mass motion. Trapping multiple particles yields a more complex PSD

with multiple oscillation peaks, as shown in Figure 3.8 (c). The PSD of the motion

of a single particle looks very similar to the one obtained by a cluster in Figure

3.8 (a). To identify trapping events corresponding to single trapped particles from

clusters, we extract the centre-of-mass momentum damping rates, ΓCM [117]. The

damping rate depends on both the gas pressure and the size of the particle.

We randomly analysed experiments with the signal amplitude change that

we attribute to a single particle at the pressure of 1 mbar and extracted the

damping rate, as shown in the inset of Figure 3.8 (a). These values are in good

agreement with the theoretical predictions. There is very large uncertainty on the
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theoretical predictions that arise from the uncertainty in the pressure measurement

(∼20%) and the particle size (∼10%). We do not aim to carefully distinguish single

particles in this study, though this could be verified using other methods [118].

3.4.3 Trapping efficiency with pressure

This LIAD technique is highly efficient across a wide range of pressures, as shown

in Figure 3.9 (a). Once particles are released from the substrate via LIAD, they

travel towards the trap region in a direction defined by the Poynting vector of

the launch laser, continuously losing energy through collisions with gas molecules.

Eventually, they slow to their terminal velocity, at which point they fall under

gravity and diffuse.
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Figure 3.9: Dependence of the loading efficiency upon pressure. (a) The probability of
trapping events as a function of residual gas pressure with a launch laser
intensity of 588 GW/cm2. Each data point represents 20 LIAD pulses.
(b) Theoretical simulation of optical trap loading. Each point represents
10,000 launching events. Experimentally, multiple particles are launched
per shot, explaining the higher efficiency compared with when theoretically
predicted. The experimental result shows the same optimal pressure at
about 2 mbar as the theory predicted.
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By constructing a stochastic simulation of a particle launched toward an

optical potential described in previous Section 3.2.2, we model the efficiency of

our trap loading process, as shown in Figure 3.9 (b). When the pressure is too low,

the particles pass through the trap region without slowing down and are unable

to get trapped, leading to a pressure threshold in terms of the minimum trapping

pressure. Above this threshold pressure, particles can reach the trapping region

by diffusion, and the trapping probability levels off. Under these conditions, the

particles may take many hundreds of seconds to be trapped.

The experimental data with different pressures is shown in Figure 3.9 (a).

We can see that the trapping efficiency decreases with increasing pressure, which

we believe is probably due to experimental runs being terminated too early before

the hundreds of seconds it can take for trapping to occur. The overall trapping

efficiency in the experiments is much higher than in the simulation. This is because

multiple particles are launched at the same time increasing the trapping efficiency.

Including the velocity distribution in the directions orthogonal to gravity, which we

have not measured, would further improve the accuracy of the simulation model.

However, we can see that the optimally efficient pressure is accurately predicted.

3.4.4 Launch laser intensity

The effect of the launch laser intensity on the LIAD process is very complex and,

surprisingly, does not significantly alter the launch velocity above a minimum

threshold, as discussed in [116]. However, the launch laser intensity strongly af-

fects the number of particles launched per shot and the effective area from which

the particles are launched, as shown in Figure 3.10. Each colour bar represents a

different launch laser intensity with about 980, 588, 196 GW/cm2. The solid bars

in the histogram represent single particle trapping events, and the empty bars

represent the trapping of clusters or multiple particles. When the intensity is low

(196 GW/cm2), the trapping efficiency drops due to fewer particles being desorbed

from the substrate. For higher launch intensities, the overall trapping probabil-

ity is not significantly increased, but the chance of trapping multiple particles

increases.
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Figure 3.10: Effects of the launch laser intensity and pressure on the efficiency of
trapping single particles. Solid bars represent single trapped particles,
and empty bars represent clusters or multiple particles, as identified using
the methods described above in Figure 3.8. Lower launch laser intensities
yield fewer particles, whereas higher intensities lead to multiple trapping
events per shot. Each bar represents 40 LIAD pulses.

3.4.5 Optimal optical trap depth

The optical trap is formed by two counter-propagating tightly focused laser beams,

as described above. We choose a counter-propagating trap over a single-beam

trap to create a larger trapping volume to maximize the probability of the particle

trapping. Figure 3.11 shows the effect of optical trap power over the trapping

efficiency. The optical trap must be at least deep enough to confine a particle in

thermal equilibrium with the environment, and realistically it must be significantly

deeper due to thermal fluctuations, yielding a threshold of minimum trap power

required to capture a particle. In our experiment, we were able to trap with optical

powers as low as ∼ 10 mW. Also, for higher pressures, the optical power can be

even lower with the assistance of the additional dissipation provided by gas.

From Figure 3.11, we also observe that the trapping efficiency dropped at

high optical trap power, which we attribute to particle heating as a result of

the absorption of trapping light by impurities in the material, which is further

supported by the increased stability at higher pressures where residual gas can cool

particles through faster collisions [103]. Another reason for the reduced trapping

efficiency is due to the heating from the laser phase noise at high powers [119].
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Figure 3.11: Effects of the optical trap power on trapping efficiency for two different
pressures. The optical trap power must be high enough to be able to
confine a particle that is in thermal equilibrium with the environment.
Each data point represents 40 LIAD pulses.

3.5 Summary and discussion

This chapter presents a clean, dry, and efficient method for directly loading

nanoparticles into optical traps using LIAD. There is an optimal pressure at which

the traps can be loaded, which depends on the size of the particle and the distance

between the sample and the trap. The optimal spacing between the sample and

the trap, in terms of loading efficiency for a given pressure, depends on the exact

initial velocity distribution and the size of launched particles.

Unless the exact loading pressure is critical, any separation below 10 mm is

adequate for efficient loading. By tuning the launch laser intensity, the probability

of trapping single particles could be enhanced. Around the optimal pressure, the

particle motion is near ballistic, and trapping occurred in a few milliseconds, and

at higher pressures, particles diffused into the trapping region. We are also able

to launch particles from localized regions of a sample, thus, enabling the launch

and trapping of sparse particles.

We note that Bykov et al. [111] developed a technique combining LIAD

and the temporal control of a Paul trap potential to launch and capture charged

nanoparticles directly under ultrahigh vacuum (UHV) conditions. This technique

does not require a dissipation mechanism, since the potential is turned on when

61



3 Direct Loading of Nanoparticles in Vacuum

the particle is at the centre of the trap, at which point, it does not have enough

energy to escape. However, since, in general, optical potentials are much less deep

than those in a Paul trap, direct UHV loading into an optical trap would only

work for nanoparticles with velocities << 0.1 ms−1, requiring the development of

new soft-launching techniques [120].
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Chapter 4

Rotational Control of a Levitated

Nanomechanical Rotor

4.1 Introduction

While optical trapping relies on the transfer of linear momentum from the light

field to nanoparticles, the rotational dynamics of trapped nanoparticles can be

introduced via the transfer of angular momentum carried by light in the way

of spin angular momentum associated with circularly polarised light or orbital

angular momentum within the structured light.

With circularly polarised light, electrically levitated graphene has been ro-

tated in excess of 50 MHz rotation rates [121], and optically levitated silica

nanospheres [60, 61] and nanodumbells can be rotated up to the order of magni-

tude of GHz in high vacuum [54, 55, 63]. Silicon nanorods also have been optically

driven to ∼ 1 MHz at about 1 mbar [53], and frequency locked to an external

clock at MHz rotation rate which demonstrated ultra-stable frequency stability of

1 part in 7.7×1011 [62]. Besides, the spin angular momentum of light can be trans-

ferred to birefringent particles due to its material-induced optical inhomogeneity

in all spatial directions of crystals [45], for example, sub-micron diameter Vaterite

spheres have been reported to rotate at ∼10 MHz and exhibit gyroscopic effects

[57, 58]. Spatially inhomogeneous optical fields with orbital angular momentum

(OAM) are an alternative way to transfer another kind of angular momentum to
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levitated nanoparticles. It has the advantage of transferring no limit of quanta ℏk0

of angular momentum, since each photon can carry more than one quanta, referred

to as the topological charge. With OAM trapping light, the motion of levitated

nanoparticles becomes more complex, including spinning, orbit, and spin-orbit

interactions [51]. The rotation rate can be increased by increasing the topolog-

ical charge carried by the light beam. This has only recently been explored for

levitated nanoparticles in vacuum [122, 123, 124].

These fast rotating nanomechanical rotors have been proposed to detect the

fluctuation-induced quantum friction by rotating a sphere above a surface [65, 63],

and vacuum friction using a neutral rotating particle which is predicted to dissipate

energy through the emission of radiation at the rotational frequency [125, 64].

Moreover, the largely unexplored rotational quantum phenomena provide great

opportunities for quantum superposition experiments by involving more degrees

of freedom and promising sensing applications [44].

The approaches to manipulating and controlling the rotational degrees of

freedom of levitated nanomechanical rotors are the crucial prerequisite for the

exploitation of the angular momentum states in the quantum regime. In this

chapter, we first discuss the full rotations with different controlling strategies,

before presenting techniques to cool their mechanical rotation into the quantum

regime in the next chapter.

4.2 Rotation driven by circularly polarised light

4.2.1 Optical torque and rotational damping rate
For anisotropic nanoparticles, the light-matter interactions are more complicated,

which manifests the orientational dependence of the object relative to the polarisa-

tion direction of the light field. The optical torque experienced by the nanoparticle

is:

Nopt = ⟨P × E∗⟩ , (4.1)

where P = α0E is the induced polarisation.

When the trapping light is circularly polarised, the radiation pressure of the
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laser exerts a torque on the polarisation plane (here is α direction) can be expressed

[71, 53]:

Nα = ∆χl2d4k3

48cw2
0

[∆χη1(kl) + χ⊥η2(kl)] Popt, (4.2)

where ∆χ is the susceptibility anisotropy, l and d are the length and diameter of

nanorods, and η1,2(kl) are two correction terms given by:

η1(kl) = 3
4

ˆ 1

−1
(1 − ξ2) sin2

(
klξ

2

)
dξ,

η2(kl) = 3
8

ˆ 1

−1
(1 − 3ξ2) sin2

(
klξ

2

)
dξ,

(4.3)

where η1 ≃ 1 and η2 ≃ 0 for short nanorods with kl ≪ 1 in the generalized

Rayleigh-Gans approximation [53].

Intuitively, in contrast to linearly polarised light, the polarisation direction

of circularly polarised light rotates at the optical frequency, which is too fast for

the nanoparticle to follow. The maximum rotational frequency ωrot is given by

the balance between the optical driven torque Nopt from the light field and the

damping from the collisions with residual gas molecules Γrot:

ωmax
rot = Nopt

IΓrot
, (4.4)

where the rotational damping rate Γrot for diffuse reflection of gas molecules in the

free molecular regime for a nanorod (i.e., the mean free path of the gas molecules

exceeds the diameter of the nanorod) is given by [53]:

Γrot,rod = dlPgas

2M

√
2πmgas

kBTgas

(3
2 + π

4

)
, (4.5)

and the moment of inertia for a nanorod along its longest axis with the length of

l is:

Irod = Ml2

12 . (4.6)
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4.2.2 Rotational dynamics of levitated nanorods

Compared to the translational motion or harmonically bound motion, the rota-

tional motion is fundamentally different, showing nonlinear dynamics. The corre-

sponding equation of motion for describing the dynamics of the levitated nanorotor

can be written as:

ω̇rot + Γrotωrot = 1
I

Nopt, (4.7)

where the total optical torque Nopt is the sum of three contributions from photon

absorption Nabs, birefringence Nbrf and shape-induced asymmetry Nshape [54]. The

torque contribution from photon absorption is:

Nabs = Iλ

2πc
σabs∆sabs, (4.8)

where σabs is the absorption cross-section of the nanoparticle, and ∆sabs ∈ [−1, +1]

denotes the degree of circular polarisation with −1 for completely left circularly

polarised light and +1 for completely right circularly polarised light. The torque

originating from birefringence Nbrf is according to the material properties of the

particle, which is very small for silica nanospheres and silicon nanorods in our ex-

periments. The shaped-induced torque Nshape resulted from the shape asymmetry,

leading to a susceptibility anisotropy. All the contributions are proportional to

the intensity of the trapping light Iopt. As discussed in the previous section, we

operate the experiments in the free molecular regime, where the levitated nanoro-

tor rotates continuously at a rotational frequency ωopt ∝ Nopt/Pgas, and reaching

the maximum rate shown in Equation (4.4).

Figure 4.1 shows the 0.1 ms duration time trace of a levitated silicon nanorod

(600 nm long and 120 nm diameter) in the linearly polarised (top panel) and

circularly polarised (bottom panel) polarised light under the pressure of 10 mbar.

The polarisation states in each arm are set as the same and the laser power in

total is about 1.36 W. We use the MMF detection and polarisation measurement

techniques to detect the full rotations of a rotating nanorod in the experimental

system (see details in Section 2.4).
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4.2 Rotation driven by circularly polarised light

Figure 4.1: The time trace of dynamics of levitated silicon nanorod with different po-
larisation states of trapping light: linearly polarised at the top panel (blue)
and circularly polarised at the bottom panel (red). These are detected by
the scattered light via MMF detection with a duration of 0.1 ms. The
pressure is 10 mbar and the total power of the trapping light is ∼ 1.36 W
with a pair of focusing lenses of NA=0.3.

By converting the time trace to the frequency domain of the angular velocity

based on the Fourier transform, the PSD spectrum of rotational dynamics of

levitated nanorotor becomes:

Srot(ω) =
ˆ ∞

−∞
⟨ωrot(t)ωrot(t − t′)e−iωtdt′

= 2ΓrotkBTb

I(ω2 + Γ2
rot)

.

(4.9)

As shown in Figure 4.2 of the PSD converted from the time trace in Figure

4.1, we can measure the translational frequencies in z-direction fz ≃ 85 kHz, and

librational frequency in α-direction fα ≃ 110 kHz, and their second harmonics

2fz and 2fα, with the linearly polarised light. The reason why the fundamental

frequency signals (i.e., fz and fα) appear is due to the misalignment of the de-

tection fibre and the optical trap. When the polarisation state of the trapping

light switches to completely circular with the opposite handedness in each arm,

the levitated nanorod starts to rotate, as shown in the bottom panel of Figure

4.1 and its PSD spectrum in Figure 4.2. The librational mode fα vanishes com-

pared to linearly polarised light, and the translational frequencies (e.g., fz) also
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decrease due to the decrease of the potential with a circularly polarised light field.

The width of the peak at 2frot is relatively broad, arising from the instability of

rotational frequency gas at a relatively long time scale. It can be locked to an

external clock for obtaining an extremely narrow linewidth [62]. The signals in

x, y-direction do not appear clearly in the PSD due to their relatively low fre-

quencies (about 1 kHz) and the signal-to-noise ratio (SNR) is necessarily further

improved especially in the low-frequency range.

Figure 4.2: The PSD spectrum of a levitated silicon nanorod (600 nm long and 100 nm
diameter) in linearly (blue) and circularly (red) polarised light at about 10
mbar. With linearly polarised trapping light, the PSD exhibits the libra-
tional mode fα; while it vanishes with circularly polarised light, replaced
by a broad rotational peak 2frot.

4.2.3 Power and pressure dependence
The rotation rate of levitated nanorotors is determined by the balance between the

optical-driven torque and the damping from the surrounding gas molecules. For

higher optical power, more photons carrying angular momenta can be transferred

to the nanorotor via light-matter interactions, yielding the optical driven torque

Nopt proportional to the laser power Popt described by Equation (4.2).

Figure 4.3 shows the linear dependence of the rotation rate of a levitated

nanorod on the optical power as theoretically predicted under the pressure of

about 10 mbar. Compared to the rotation speed of silica nanospheres or nan-

odumbells [54, 55, 61], the silicon nanorod can experience larger torque with the

68



4.2 Rotation driven by circularly polarised light

equivalent volume under the same optical power and pressure, which is caused by

the higher geometry-induced susceptibility.
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Figure 4.3: The rotation frequency of a levitated nanorod (600 nm long, 120 nm diam-
eter) linearly scales with the optical power ranging from 0.5 W to 1.5 W
as theoretically predicted. The pressure is about 10 mbar. The blue dots
denote the average value of measured data. The shade areas represent the
full range of the rotational frequency.
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Figure 4.4: The rotation frequency of a levitated nanorod (600 nm long, 120 nm diam-
eter) inversely linearly scales with the gas pressure increasing from 1 mbar
to 100 mbar. The optical power is approximately 1.2 W. The green dots
represent the average value of measured rotational frequency data and the
shade areas show its full frequency range.
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In terms of pressure dependence, rotational damping is also approximately

linearly dependent on gas pressure shown in Equation (4.5), which further imprints

a linear response on the rotation speed of a levitated nanorotor. Figure 4.4 shows

the rotational frequency of a levitated silicon nanorod linearly increases with the

linear decrease of pressure from 100 mbar to 1 mbar.

Driven by circularly polarised light, the levitated nanorotor has great po-

tential for developing torque sensing and pressure sensing applications, especially

benefiting from its linear response [63, 62].

4.3 Rotation with transverse orbit angular mo-

mentum
Optical angular momentum itself can also manifest in the form of OAM. Different

to spin angular angular momentum (SAM) originating from the rotation of the

electromagnetic field vector, OAM is the direct analogue of the classical angular

momentum defined by L = r × P, where r is the displacement from the coordi-

nate origin and P is the optical linear momentum density [126]. OAM seems, by

definition, to be dependent on the choice of the coordinate system, and so can

be called extrinsic. However, intrinsic (coordinate-independent) OAM can be ob-

tained when the integral of the OAM density over space yields a non-zero value

regardless of the coordinates chosen. This is the case in optical vortex beams,

which exhibit OAM through their wavefronts spiralling around a phase singular-

ity [127, 128, 129]. For paraxial light beams, the intrinsic OAM is longitudinal

since L is parallel to the beam’s propagation direction. It is also possible to

engineer transverse SAM, via evanescent waves [130, 131], focused beams [132]

and multiple wave interference patterns [133]. Transverse orbital angular momen-

tum (TOAM) is rarely observed, unless we are considering polychromatic fields

[134, 135, 136] or extrinsic momentum when a beam propagates away from the

coordinate origin [137, 138]. Intrinsic TOAM in monochromatic fields, appearing

as intricate transverse phase singularity vortex lines, has been proposed in su-

perimposed co-propagating beams with different beam-widths and/or amplitudes
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[139, 140, 141].

In this section, we create an optical angular momentum structure using two

monochromatic offset counter-propagating beams, which carries both transverse

SAM and intrinsic TOAM and demonstrate the measurement of intrinsic TOAM.

The light field contains a robust array of synthesised transverse optical vortices.

We verify and probe the optical angular momentum structure using a levitated

nanoparticle optomechanical sensor [7], and demonstrate the tuneable nature of

the induced torque.

The rotation of levitated nanoparticles via longitudinal SAM from circularly

polarised light has recently been the focus of several studies [63, 61, 62]. In

this work, we produce a torque five orders of magnitude larger than previously

demonstrated, driving MHz rotation at 10 mbar of background gas pressure. The

rotation of levitated particles has applications in torque sensing [63, 62], studies

of vacuum friction [65, 125] and the exploration of macroscopic quantum physics

[44, 88]. The orbit of nanospheres via longitudinal OAM has been studied [123],

and the presence of transverse SAM in focused circularly polarised light incident

upon a microparticle has been inferred [142].

This work presents a straightforward and robust method for generating in-

trinsic TOAM, the use of levitated nanoparticles as sensitive probes of structured

light fields, and the first manipulation of particle motion using TOAM. The ability

to fully control the alignment and rotation of nanoparticles levitated in vacuum

is of great importance for cavity optomechanics [73], alignment of targets in high-

energy beam experiments and quantum control at the nanoscale [44].

4.3.1 Origin of transverse orbit angular momentum

We consider an illumination geometry consisting of two counter-propagating

Gaussian beams with the same optical frequency ν and both linearly polarised

in the y-direction, as illustrated in Figure 4.5. The waist plane of each beam is

located at z = 0, and the positions of their axes are (0, ±δ, 0).

71



4 Rotational Control of a Levitated Nanomechanical Rotor
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Figure 4.5: Generation of structured transverse orbital angular momentum. When
two focused counter-propagating linearly polarised Gaussian beams are
separated along the polarisation axis, an array of optical vortices is gener-
ated, carrying angular momentum which is transverse to the propagation
direction. A silicon nanorod is suspended within the structure, generating
a torque, and driving rotation in the y-z plane.

Assuming the time-dependence factor e−iνt, one may analytically express the

transverse electric and magnetic fields as:

Ey = u(x, y + δ, z)eikz + u(x, y − δ, −z)e−ikz,

Bx = −1
c
u(x, y + δ, z)eikz + 1

c
u(x, y − δ, −z)e−ikz,

(4.10)

where

u(x, y, z) = E0
w0

w(z)e−iφ(z)eik(x2+y2)/[2q(z)], (4.11)

is the Gaussian beam solution to the scalar Helmholtz equation in the slow-varying

approximation [143]. Here, E0 is a constant field amplitude, w0 = w(z = 0) is the

beam waist radius, q(z) = z − iz0 and φ(z) = tan−1(z/z0) the Gouy phase, with

z0 = πw2
0/λ being the Rayleigh range.

It follows from Equation (4.10) that the phases of the electric and magnetic

field, ϕe and ϕm, satisfies:

tan ϕe = ℑ(Ey)
ℜ(Ey) = C(x, y − δ, z) − C(x, y + δ, z)

D(x, y − δ, z) + D(x, y + δ, z) ,

tan ϕm = ℑ(Bx)
ℜ(Bx) = C(x, y − δ, z) + C(x, y + δ, z)

D(x, y − δ, z) − D(x, y + δ, z) ,

(4.12)
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4.3 Rotation with transverse orbit angular momentum

where
C(x, y, z) = e−kr2z0/(z2+z2

0) sin
[

kr2z

z2 + z2
0

− φ(z) + kz

]
,

D(x, y, z) = e−kr2z0/(z2+z2
0) cos

[
kr2z

z2 + z2
0

− φ(z) + kz

]
,

(4.13)

with r2 = x2 + y2. For δ = 0, ϕe and ϕm are constant, and thus the phase profile

will be planar. This is the expected result for a standing wave.

The appearance of a phase singularity or dislocation, which is the physical

origin of phase vortices, requires δ ̸= 0, and

ℑ(Ey) = ℜ(Ey) = 0, (4.14)

(for electric field singularities) or

ℑ(Bx) = ℜ(Bx) = 0, (4.15)

(for magnetic field singularities) [144].

It can be proven that the intersection lines of y = 0 and

k(x2 + δ2)z
z2 + z2

0
− φ(z) + kz = nπ

2 , (4.16)

are the solutions to Equation (4.14) for odd n and to Equation (4.15) when n is

even.

Figure 4.6 illustrates the calculated field characteristics for a beam offset

2δ = 1.0 µm; the wavelength and waist radius are set to λ = 1550 nm and

w0 = 1.0 µm, corresponding to beams focused with numerical aperture NA = 0.6.

Both the electric and magnetic fields exhibit an intensity profile typical of standing

waves: the positions of the electric field nodes (Figure 4.6(a)) coincide with those

of the magnetic field antinodes (Figure 4.6(b)). The lines passing through the

planes represent the location of the phase dislocations, namely, the solutions to

Equation (4.16) for −6 ≤ n ≤ 6. They stretch transversely along the x-direction,

and pass through the nodes of the electric and magnetic fields for odd and even
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n, respectively. The red and blue solid circles mark the position of electric and

magnetic field vortices.
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Figure 4.6: Intensity profiles of the electric (a) and magnetic fields (b) in the axial
plane. Dashed and solid curves show the phase singularity lines calculated
based on Equation (4.16). The red and blue solid circles mark the position
of electric and magnetic field vortices, respectively.

From the phase profile shown in Figure 4.7, we can clearly identify the dis-

location points for the electric and magnetic fields. For each point, the strength

(a.k.a., topological charge) is −1, because the phase increases by 2π in a negative

circuit with respect to the +x direction. Therefore, the field carries a net OAM in

the −x direction. The black and white arrows show the electric Pe and magnetic
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4.3 Rotation with transverse orbit angular momentum

Pm parts of the orbital momentum density [126]:

P = Pe + Pm = 1
4ν

ℑ
[
ε0E∗ · ∇E + 1

µ0
B∗ · ∇B

]
, (4.17)

which, together with the position vector r, defines the density of OAM L = r × P.
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Figure 4.7: Phase singularities and vortices due to electric and magnetic fields. In-
plane phase distribution for the transverse electric (a) and magnetic (b)
fields. Arrows indicate the magnitude and direction of the electric and
magnetic orbital momentum densities, Pe and Pm, in the vicinity of sin-
gularity points.

Around the dislocation points, Pe and Pm circulate in the same sense, such

that all the phase vortices are of the same handedness. The integral OAM carried

by the field, ⟨L⟩, is intrinsic since it is independent of the choice of origin; for a

translational transformation of the coordinates r → r + r0, there is no change since

⟨L⟩ → ⟨L⟩ + r0 × ⟨P⟩ = ⟨L⟩, where we invoke ⟨P⟩ = 0 for the counterpropagating

configuration. Each of the Gaussian beams, considered separately, would possess

a transverse extrinsic TOAM due to their propagation axis not crossing the origin.

However, when taken together, their common centroid lies exactly in the origin,

and no extrinsic TOAM exists - instead, an array of transverse vortex lines is

synthesized, carrying intrinsic TOAM.

When a single linearly polarised collimated beam is focused, the polarisation

at the focus becomes elliptically polarised in the transverse plane because of the
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4 Rotational Control of a Levitated Nanomechanical Rotor

generation of a longitudinal field with a phase difference with respect to the trans-

verse field [145]. This transverse elliptical polarisation corresponds to a transverse

spin and is associated with a transverse SAM.

According to Maxwell’s equations, the longitudinal fields can be expressed as:

Ez = −ic2

ν

∂Bx

∂y
,

Bz = − i

ν

∂Ey

∂x
.

(4.18)

These would be negligible in the case of weak focusing; however, in moderate or

strong focusing, the coexistence of both longitudinal and transverse fields can give

rise to a circular polarisation in a plane transverse to the propagation, namely

transverse SAM. The dual-symmetric SAM density of electromagnetic fields read

[133]:

S = Se + Sm = 1
4ν

ℑ
[
ε0E∗ × E + 1

µ0
B∗ × B

]
. (4.19)

In our setup, with the individual beam linear polarisation direction parallel

to the direction of beam offset (along y-direction), the spin on the x = 0 plane

is purely electric and has an x-component only, Sx = Se
x ∝ ℑ(E∗

yEz). The calcu-
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Figure 4.8: Transverse spin Sx and normalized polarisation ellipses indicate that the
points of close-to-circular polarisation are near electric field nodes.
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4.3 Rotation with transverse orbit angular momentum

lated spin is shown in Figure 4.8, where polarisation states are visualized by the

local electric field ellipse. The spin exhibits a magnitude distribution similar to

the electric field intensity (Figure 4.6 (a)), with a negative x-component of the

spin near the maximum intensity, aligned with the intrinsic TOAM. However, the

polarisation tends to be linear at the locations where the spin is significant, with

circular polarisation appearing at the field nodes.

4.3.2 Numerical calculation of optical torque

An intuitive description of the torque on the nanorod in this complex structured

wave field is not simple, and we resort to modelling the torque using numeri-

cal techniques. Newton’s second law of motion dictates that any change in lin-

ear/angular momentum invokes a force/torque. This principle leads to an induced

torque on any particle within an optical field carrying OAM and SAM which we

calculate using Maxwell’s Stress Tensor (MST) method.

A particle can experience optical forces by either absorbing or scattering light,

as accounted for by the Maxwell stress tensor
↔
T which represents the overall time-

averaged flow of momentum in an electromagnetic field [96, 146]:

↔
T = 1

2ℜ
{

ε0E ⊗ E∗ + 1
µ0

B ⊗ B∗ − 1
2(ε0|E|2 + 1

µ0
|B|2)

↔
I
}

, (4.20)

where ⊗ corresponds to an outer product, and
↔
I is the three-dimensional (3D)

identity matrix. This can be extended to electromagnetic angular momentum via

a cross product with the spatial coordinates r ×
↔
T, and the torque is calculated

from the surface integral of a closed surface enclosing the particle [147, 148, 149],

N =
‹

(r ×
↔
T) · n̂ dS, (4.21)

where N is the torque, r is the position vector, and n̂ is the unit vector normal to

the surface S.

A calculation of the torque using the MST is a time-consuming process that

requires knowing the total electric and magnetic fields incident on, and scattered
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by, the nanorod. These fields are calculated numerically as described below. The

nanorod was approximated as a cylinder, and the relative permittivity of silicon

was assumed to be 12.1.

Normally, the 3D electric and magnetic fields scattering off the nanorod are

required for each pixel in the colour plot (e.g., Figure 4.9), with the nanorod

placed at different positions within the structured illumination. In order to do

this efficiently, a procedure previously implemented in Ref. [150] was followed, in

which each beam is decomposed into a collection of plane waves using a spatial

Fourier transform. To incorporate the nanomechanical sensor, each plane wave

component is then replaced with a numerical simulation of the total fields from a

nanorod illuminated with the same plane wave. The nanorod’s cylindrical sym-

metry is exploited to reduce the number of unique simulations. The beam is then

reconstructed using an inverse Fourier transform and the beam is augmented with

the appropriate total scattering of the nanorod. In this way, the only required

numerical simulations are those of the nanorod under plane wave illumination in

vacuum at various angles of incidence, easily performed via frequency-domain 3D

finite-element-method simulations using the commercial software package CST

Microwave Studio (Dassault Systemes).

Considering the linearity of Maxwell’s equations, the fields for individual

plane waves can be combined, with appropriate weighted amplitudes and phases,

to synthesise the scattering from any desired structured far-field illumination - a

step done in post-processing using MATLAB, which is applied to synthesise the

counter-propagating Gaussian beams. The phases of the plane waves can be ad-

justed to shift the position of the beams and hence sweep the different nanorod

locations. For each location, the result of this post-processing is the full 3D scat-

tering field of the nanorod in a given position of the optical trap to no approxima-

tion beyond numerical accuracy. Once the 3D fields are obtained, calculating the

torque requires performing the integration of Equation (4.21) over an arbitrary

surface enclosing the nanorod. We chose a cube centred around the nanorod, and

varied the cube’s dimensions to ensure convergence of the result.
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Figure 4.9: Torque calculation and decomposition. Numerically calculated torque
component Nx acting on a y-oriented silicon nanorod placed at differ-
ent positions in the y-z plane, using Maxwell’s stress tensor. Each pixel
comes from a full electromagnetic scattering simulation. (a) The map of
the total torque on the nanorod as the position of the nanorod is changed.
(b) A map of the TOAM torque. (c) A map of Transverse SAM torque.

The torque experienced by the nanorod is numerically computed for different

positions of the nanorod on the y-z plane, with the rod oriented along y-direction,

and the result is shown in Figure 4.9 (a). The resulting torque is oriented in the

−x direction, as expected from the illuminating TOAM, and is strongest at the

electric field maxima where the rod is levitated by optical gradient forces.

The previous section shows the existence of a transverse SAM density in the

centre of the optical trap, so there is both OAM and SAM in this system for the

nanorod to experience a torque from. With respect to a possible role of transverse

SAM on the rotation, we numerically calculated the torque coming from the flux

of the spin and the orbital parts of the angular momentum separately [147, 149].
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Using the torque decomposition method described in [149], we split the total

torque in Figure 4.9 (a) into orbital and spin components. Figure 4.9 (b) and (c)

show this decomposition and at the origin where the total torque is strongest, the

orbital torque is roughly 15 times larger than the spin torque. The two torques

also have opposite signs and so act against each other. We can therefore conclude

that the OAM is the dominant source of torque in this optical trap, and the SAM

torque is negligible compared to the OAM torque.

Figure 4.10 shows the theoretical calculated total torque of the levitated sili-

con nanorod at the trap centre with different offsets δx and δy in x- and y-directions

respectively. As the sign of the y-direction offset δy changes, the normalized torque

Nx/Popt also alters its direction accordingly; however, the offset δx in the other

direction only changes the magnitude of applied torque without changing its sign.

We also notice that there is zero torque at the origin point when no offset is applied

in both directions (i.e., δx = δy = 0).
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Figure 4.10: The theoretical variation in applied torque with the 2D offset of the beam.
The colour map shows the sign (red: +x direction; blue: −x direction)
and the magnitude of the normalized torque.

4.3.3 Experimental implementation
We use a standing wave optical dipole trap formed by two counter-propagating

linearly polarised light beams focused inside a vacuum chamber. A pair of 1550 nm

Gaussian beams are focused by two NA=0.6 lenses, such that their foci coincide,

and a silicon nanorod is levitated in the anti-nodes of the resultant standing wave
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4.3 Rotation with transverse orbit angular momentum

field. The nanofabricated silicon nanorods (880 nm length and 210 nm diameter,

Kelvin Nanotechnology) are grown on a silicon wafer before directly launching to

the optical trap by LIAD described in Chapter 3 at the pressure of a few millibar

[151].

Although the optical field defines where the particles are trapped in the x-y

plane, they can be trapped in one of several antinodes of the optical standing wave.

The field intensity, and therefore the torque, varies at the different antinodes. Our

experimental measurement provides the absolute value of the torque, while our

calculations provide the torque at the central antinode normalised by the power

carried by the beams. The nanorods can be translated in the z-direction by

changing the relative phase of the two beams, which we achieve by translating one

of the fibre out-couplers in the z-direction.

Regarding the trapping location, the levitated nanorod is translationally

trapped at the local maximum intensity (i.e., antinodes for a standing wave) where

magnetic field vortices exist. However, in these locations, the levitated nanorod

experience the largest transverse orbit and total torques due to its finite size, as

shown in Figure 4.9, while the deeper physical mechanism is worthy of further

investigation.

To generate the offset between the two beams, we linearly translate one of the

fibre out-couplers by an amount ∆L. The two beams still overlap at the focus, but

away from the focus an offset δ is introduced. The translation ∆L and the offset δ

are linearly proportional to each other [152], with a proportionality constant that

depends on the position along the z-axis. Since the absolute position along the

z-axis is not known, we treat this proportionality constant as a free parameter

when compared to theory. This described technique for generating a separation

also induces a small angle between the beams (∼ 0.04 rad), which has a negligible

effect on the results of our numerical simulations.

We detect the motion of the levitated nanorod using a variety of methods,

all based on collecting the light which has passed through the focus of the optical

trap, as described in Section 2.4.5. The x, y-motion is measured by imaging the
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4 Rotational Control of a Levitated Nanomechanical Rotor

beam onto a quadrant photodiode. The z-motion is monitored using balanced

homodyne with light that hasn’t interacted with the particle. This method is

sensitive to rotation in the y-z plane, since the intensity of the collected scattered

light is strongly dependent on the alignment of the nanorod. The α, β-motion is

detected by passing the light through a polarising beam-splitter and performing

a balanced polarisation measurement on the two output ports.

When a separation |δy| > 0 is introduced, intrinsic TOAM is generated at the

optical antinode, where the nanorod is trapped. The optical OAM is transferred

to the nanorod, driving it to rotate. This is evident in the frequency spectrum

of the nanorod motion, where rotation at MHz rates frot is detected (Figure 4.11

(a)), while the translational degrees of freedom remain harmonically confined with

frequencies f{x,y,z}. When δx = δy = 0, there is no rotation, and the nanorod is

harmonically confined in all five degrees of freedom (Figure 4.11 (b)). When

rotating, there is no confinement in the β direction, since this is the plane of

rotation, and the motion in the α direction is gyroscopically stabilized [53].
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Figure 4.11: (a) PSD of the nanorod motion when driven to rotate at a frequency
frot by TOAM. The centre-of-mass is confined with harmonic frequencies
f{x,y,z}. (b) PSD of a nanorod with no TOAM present, showing that the
particle no longer rotates and is additionally confined in the librational
degrees of freedom {α, β}. Vertical-axis scales are not given as the data
comes from a combination of detectors.
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4.3 Rotation with transverse orbit angular momentum

4.3.4 Transverse torque measurement

We probe the structured transverse optical momentum using the levitated silicon

nanorod as an optomechanical sensor. The force and torque of small dipolar scatter

can be directly associated to the field gradients and the local densities of optical

linear and angular momenta in the illumination. In contrast, the size of a levitated

nanorod used in our experiment is comparable to the optical wavelength, and its

internal resonances can develop electric and magnetic high-order multipoles which

interact with the incident fields.

The rotation rate of the nanorod is set by the balance between the optically

induced torque Nopt and the damping due to the presence of gas Γrot, described

in Equation (4.4):

frot = Nopt

2πIΓrot
, (4.22)

Since Γrot is known (as discussed in Section 4.2) [104], the rotation rate is a

probe of the torque induced by TOAM. We compare to the theoretically calculated
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Figure 4.12: (a) The experimentally measured torque applied to the nanorod as a
function of the offset δx (red squares), compared to the theoretical pre-
diction (solid black line). The inset (adopted from Figure 4.10) shows the
theoretical variation in applied torque with the 2D offset of the beams,
and the dotted line indicated the separation explored in the figure. (b)
The effect of a transverse offset δy on the torque applied to the nanorod
by TOAM, with comparisons to theory as in (a).
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torque by measuring the variation in torque as δy is varied, and note a maximum

in Nopt for a finite separation |δy| > 0, in Figure 4.12 (b), where the predicted

torque is shown in the inset (adopted from Figure 4.10) and by the solid black line.

If the rotation were simply due to the transfer of momentum from a single beam

(e.g., in circularly polarised light) the maximum rotation rate would be when the

optical intensity was a maximum (δy = 0). For finite |δy|, a separation along the

x-direction yields a single maximum at |δx| = 0, as predicted in solid black line

and inset of Figure 4.12 (a).

For small |δy|, there is a transition from rotation (Figure 4.13 (a)) to harmonic

confinement (Figure 4.13 (b)) when the torque isn’t large enough to overcome

the optical potential which causes the nanorods to align along the polarisation

direction. At the boundary, we observe bistable dynamics as stochastic forces due

to collisions with gas molecules periodically driving the nanorod into rotation, as

shown in (Figure 4.13 (c)).
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Figure 4.13: Time-series of the signal (along the z-axis) for a nanorod undergoing
rotation driven by TOAM (a) for large |δy|, and harmonically confined
(b) for small |δy| when the torque isn’t large enough to drive rotation.
At the boundary of these regimes, bi-stable rotations are observed (c).
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4.3 Rotation with transverse orbit angular momentum

We observe that the rotation frequency of the nanorod due to the TOAM

linearly depends on the gas pressure (Figure 4.14, blue points), which would not

be the case for a motional frequency due to harmonic confinement [53]. Since the

TOAM has a topological charge of −1, it would be expected that the optical torque

is the same as for a particle exposed to circularly polarised light, which we confirm

in Figure 4.14 (red squares), where the separation is reduced to δ{x,y} = 0 and the

polarisation of each beam is switched to circular. By comparing to the literature

[54, 63, 61], we note that the maximal torque we induce on our silicon nanorods

(∼ 3 × 10−18 Nm) is five orders of magnitude larger than previously observed for

particles levitated in vacuum. This is due to the shape enhanced susceptibil-

ity of our nanorods [53] as compared to nanospheres, ellipsoids or nanodumbells

previously studied.
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Figure 4.14: The rotational frequency scales linearly with pressure. The blue circles
represent the mean value of frot when driven by TOAM and the shaded
areas represent the full range of frot. This can be compared with the
rotational frequency of a nanorod driven by circularly polarised light
(red squares).
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4.3.5 Summary and discussion
In this work, we have presented a straightforward method for synthesising a robust

and stationary array of optical vortices carrying intrinsic TOAM, and carried out

a unique study of this exotic optical orbital angular momentum using a levitated

optomechanical sensor as a probe. Being able to exert significant optical forces

transverse to the propagation direction of free-space beams, without the need to

have critical optical alignment, localised interference patterns or polychromatic

light, provides a powerful new tool for the optical manipulation of matter. Our

work represents the first use of levitated particles as probes of structured light

fields, exploiting the anisotropy of nanorods to measure optically induced torque.

Furthermore, we have introduced an exciting new method for the precise

optical control of nanoparticles levitated in vacuum [7], where the intrinsic nature

of the TOAM and still-present optical trap at the electric-field antinode enables

the control of alignment and rotation without driving orbits. This new way of

manipulating nanoparticles will be instrumental in cavity optomechanics [73] and

the quantum control and exploitation of rotation [44]. The large optical torque

we exert on the levitated silicon nanorods will enable sensitive torque sensing

[63], and the transverse direction of the particle’s angular momentum will allow

the rotating particle to be brought close to surfaces to measure quantum friction

[153], lateral Casimir [66], and other short-range forces [36].
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Chapter 5

Ro-translational Optomechanical

Cooling

5.1 Introduction

With the advantage of low dissipation by thermal contact with the environment

or mechanical stress and strain, the levitated nanoparticle in vacuum provides an

excellent approach to studying macroscopic quantum interference and microscopic

thermodynamics. Having demonstrated the ability to implement measurement

and control of all degrees of freedom motion (both translational and rotational) of

levitated nanoparticles. It is of great interest and importance to develop methods

to cool down the energy of a mechanical resonator towards the quantum regime.

In the 1970s, A. Ashkin et al. adopted an active feedback method to stabilize

the motion of levitated microparticles against gravity [92]. In 2011, T. Li et

al. first used three pairs of counter-propagating beams to actively cool a silica

microsphere (1.5 µm radius) to 1.5 mK by utilising radiation pressure force in

three spatial dimensions [23]. This active feedback with additional beams has

been recently used to cool the librational mode of a levitated nanodumbbell to an

effective temperature of around 10 K [77].

Applying electrostatic forces on charged nanoparticles also can introduce an

additional damping [27, 154, 28]. The electrodes placed near the optical trap apply

a Coulomb force FQ = QE, where Q is the total charge on the nanoparticle and E
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is the electric field at the location of the particle. Similar approaches successfully

achieved ground-state cooling in 2021 by adopting optimal control feedback [29]

or improving the measurement efficiency under a cryogenic environment [30].

Since the linear feedback force is velocity-dependent only, this feedback

scheme is called cold damping. The feedback term is proportional to the velocity

of the nanoparticle by:

Ffb = −kfbq̇, q ∈ {x, y, z}, (5.1)

where kfb is the derivative feedback gain.

Although this linear feedback scheme is very efficient and powerful, it requires

experimental implementations in each degree of freedom which increases the ex-

perimental complexity and challenge. The all-optical linear feedback using three

auxiliary laser beams adds recoil heating noise, and electrical feedback relies on a

finite net charge on the levitated nano-oscillator [49]. A novel parametric feedback

cooling scheme by modulating the gradient force of the trapping light was demon-

strated by J. Gieseler et al. in 2012, which achieved the centre-of-mass cooling

of a charge-neutral silica nanosphere from room temperature to ∼ 50 mK [25],

and reached the photon recoil limits with a minimum average phonon occupation

number of n̄ ≃ 63 [26]. This method also was applied to cool the librational mo-

tion of a nano-dumbbell from room temperature to 240 mK recently, where the

torque fluctuations arising from the zero-point fluctuations of the light field have

been observed [76].

This chapter focus on the implementation of parametric feedback for cooling

the ro-translational motions of levitated nanoparticles and proposed a new polar-

isation feedback method for cooling the librational motion of levitated nanorods

in our experimental system.

5.2 Parametric feedback cooling

5.2.1 Working principle
In the parametric feedback scheme, the centre-of-mass motion of the levitated

nanoparticle is monitored in real-time, and the intensity of the trapping light
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is modulated based on the detected signal to adjust the trapping potential

synchronously. The parametric feedback force becomes position-dependent and

velocity-dependent:

Fpara = −kparaq
2q̇, (5.2)

where kpara = ωqMηpara is the parametric feedback gain by applying a laser power

modulation:

δPopt(t) = Popt
ηpara

ωq

qq̇. (5.3)

The right phase relation between the feedback signal and the motion of

nanoparticles is the crucial point of this method to extract or deposit the parti-

cle’s motional energy. For parametric feedback cooling, the phase of the feedback

signal is shifted to ensure that the trap potential is stiffened when the particle is

away from the centre and loosened when the particle moves towards the centre,

as illustrated in Figure 5.1.

1

2

3

4

Figure 5.1: Working principle of parametric feedback cooling via modulating the opti-
cal potential. The trap stiffness is increased when the trapped nanoparticle
travels away from the centre, which hinders the motion of the trapped par-
ticle. When the particle moves towards the centre of the trap, the trap
potential decreases, thereby reducing the energy of the particle.

As a result of the feedback modulation, the centre-of-mass energy of the

nanoparticle decreases. On the contrary, we can amplify the motion by an addi-

tional phase shift.
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5 Ro-translational Optomechanical Cooling

By introducing the modulation signal, Equation (2.42) can be modified as:

q̈(t) + (ΓCM + δΓ)q̇(t) + (ωq + δωq)2q(t) = 1
M

[Ffluct(t) + Fpara(t)] , (5.4)

where Fpara(t) is a time-varying, non-conservative force introduced by parametric

feedback control. δΓ and δωq are the additional damping rate and the frequency

shift resulting from the parametric feedback loop. The frequency shift δωq is

proportional to the square root of the optical power Popt, since the oscillation

frequency is determined by the trap stiffness kq in Equation (2.31). From the

aspect of energy space, the dynamics of the levitation system with feedback can

be considered as equilibrium dynamics occurring in a system with an additional

force term [31]. It is worth noting that parametric feedback can be performed

on all degrees of freedom simultaneously since the optical gradient force points

towards the trap centre in all directions.

5.2.2 Experimental implementation

Figure 5.2 sketches the experimental implementation of parametric feedback cool-

ing. The motion of the levitated nanoparticle in different directions is detected by

various detection configurations as described in Chapter 2.

After we obtain the position information for each spatial direction, we send

the signal output from the photodetectors to a lock-in amplifier with phase-locked

loops (PLLs). The locked-in amplifier can track the oscillation frequency and

phase of the detected signal. Appropriate high-pass filters and band-pass filters

(the centre frequency set to the nanoparticle’s oscillation frequency) are applied

to effectively isolate the DC component noise and other electronic noise. In order

to apply parametric feedback, the signal in each axis is frequency doubled with

a phase shift and an amplitude gain. By summing the feedback signal together

for all three directions, it is connected to an AOM driver (Agile RF Synthesizer,

MOGLabs) to drive an in-fibre AOM for laser intensity modulation, therefore

generating a parametric modulation of the optical trap. Under the modulation of

the optical trap, the effective temperature of the levitated nanoparticle is cooled
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5.2 Parametric feedback cooling

down or heated up with different phase shifts.

Trap

Lock-in
Amplifier

Data 
Acquisition

Computer

Laser

PCP

AOM
Driver

PCP

Detectors

AOM

MMF
PD

Figure 5.2: Schematic of the parametric feedback cooling. A standing wave trap
formed by two counter-propagating beams is used to levitate a nanoparticle
inside a vacuum chamber. The scattered light of the levitated nanoparti-
cle and its interference field are detected by different detectors. A lock-in
amplifier with PLLs is used to track the phase of the oscillation signal
from levitated nanoparticles, double the frequency, and output a feedback
signal with an amplitude gain and a phase shift. The three-axis combined
feedback signal is sent to a digital AOM driver to drive the AOM with
intensity modulation.

5.2.3 Experimental results

By modulating the optical potential with a correct phase shift, the energy of the

levitated particle decreases, and its centre-of-mass effective temperature can be

cooled down. According to the equipartition theorem, the effective temperature

of its centre-of-mass motion:

kBT
(q)
CM = Mω2

q

〈
q2
〉

, (5.5)

can be modified as:

Teff = T
(q)
CM

ΓCM

ΓCM + δΓ , (5.6)

where δΓ is the additional feedback damping. TCM is the equilibrium temperature

in the absence of the parametric feedback when δΓ = 0. The effective temperature
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Teff of the particle can be increased by negative damping and decreased by positive

damping based on the sign of δΓ.

Correspondingly, the PSD spectrum can be written as:

Sqq(ω) = 1
2π

ˆ ∞

−∞
⟨q(t)q(t − t′)⟩ e−iωt′

dt′

= kBTeff

πM

ΓCM[
(ωq + δωq)2 − ω2

q

]2
+ ω2

q (ΓCM + δΓq)2
.

(5.7)

Figure 5.3 shows the PSD spectra of the z-motion acquired in different pres-

sures and effective temperatures with parametric feedback. The colour area under

the curves is proportional to Teff. The shift of oscillation frequency probably

resulted from the laser power fluctuation which slightly alters the trap stiffness

and introduces a fluctuation in the mechanical oscillation frequency.
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1.5 × 10-2 mbar
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2.3 × 10-4 mbar

1.3 × 10-4 mbar
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1.7 × 10-5 mbar
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Figure 5.3: PSD spectra of z-motion of a 300nm diameter silica nanosphere for dif-
ferent pressures and effective temperatures Teff with parametric feedback
cooling. The trapping power is about 400mW in total with a pair of fo-
cusing lenses NA = 0.43.
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We extract the effective temperature of the levitated oscillator by fitting the

PSD spectrum based on Equation (5.7). Figure 5.4 presents the experimental

results of parametric feedback cooling. Under the same feedback gain, decreasing

the pressure reduces the heating from the residual gas molecules and a lower

effective temperature can be achieved. When the pressure is lower enough, the

feedback can bring the detected motion closer to the noise floor, and even “noise

squashing” (i.e., the measured signal curve is below the noise floor) can be observed

with larger feedback gain [27].
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Figure 5.4: The dependence of the effective temperature Teff of centre-of-motion of a
levitated nanosphere on pressure Pgas ranging from ∼ 10 mbar to ∼ 10−5

mbar. The lowest achieved Teff is ∼ 100 mK for x,y-motion, and ∼ 30 mK
z-motion.

The ultimate minimum achievable temperature Teff is limited by the feedback

control competing with reheating due to energy exchange with gas molecules for

each pressure value, which is ∼ 100 mK for x,y-motion, and ∼ 30 mK z-motion

at the pressure of ∼ 1 × 10−5 mbar in our experiments. The effective temperature

is proportional to
√

ΓCM, as theoretically predicted.
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We also investigate the effect of different feedback gains on the performance in

our feedback cooling scheme at a pressure of ∼ 1×10−5 mbar, as plotted in Figure

5.5. By changing the modulation amplitude of the feedback signal, the feedback

gain and the induced feedback damping rate on the levitated oscillator can be

adjusted. According to the theoretical relationship, the effective temperature is

inversely proportional to the square root of feedback gain in theory. Starting with

a lower gain, the effective temperature decreases with the increased gain; while

it also increases with the further increase of modulation amplitude, yielding a

minimum temperature with an optimal feedback gain.
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Figure 5.5: Dependence of the effective temperature of translational motion of a levi-
tated nanosphere on the parametric feedback modulation amplitude. The
dashed fitted line is consistent with the theoretical relationship.
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5.3 Polarisation feedback cooling
While the parametric feedback method provides an efficient approach to cool

centre-of-mass motion, the control and cooling of rotational degrees of freedom

remain to be the central readout of interest. In this section, a new polarisation

feedback method for simultaneously cooling the librational motion (α and β) of

a levitated nanorod is proposed and numerically simulated. This novel method

is based on the modulation of the linearly polarised trapping light to feedback

damping librational motion. Combined with the parametric feedback cooling on

the centre-of-mass motion, it is promising to achieve five degrees of freedom cool-

ing for levitated nanorods, which paves the way to explore macroscopic quantum

phenomenon by utilising the ro-translational degrees of freedom.

5.3.1 Hamiltonian of levitated nanorods

The general form of the ro-translational kinetic energy of a levitated asymmetrical

nanoparticle is given by:

H0 = p2

2M
+ 1

2Ia

(
cos γ

pα − pγ cos β

sin β
− pβ sin γ

)2

+ 1
2Ib

(
sin γ

pα − pγ cos β

sin β
+ pβ cos γ

)2

+
p2

γ

2Ic

,

(5.8)

where {Ia, Ib, Ic} is the moment of inertia for each axis in the body-fixed frame,

p is the momentum of translational degrees of freedom and {pα, pβ, pγ} is the

angular momentum in each angle.

For a levitated nanorod with symmetrical shape in α and β directions, this

leads to Iα = Iβ ≡ I, Ic ≡ Iγ and the Equation (5.8) can be rewritten as:

H0,rod = p2

2M
+ 1

2I

[
(pα − cos βpγ)2

sin2 β
+ p2

β

]
+

p2
γ

2Iγ

, (5.9)

where we can notice that the ro-translational kinetic energy and the optical poten-

tial in Equation (2.41) are independent of the Euler angle γ, therefore the angular
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momentum pγ is conserved which cannot be controlled by the linearly polarised

trapping field.

By summing up the kinetic energy and optical potential terms, we have the

total Hamiltonian of the optically levitated nanorod Htotal = H0,rod +Uopt,rod. The

equations of motion for the Euler angles and their momenta can be derived from

the total Hamiltonian:

α̇ = cos γ

I sin β

[
cos γ

(
pα − pβ cos β

sin β

)
− pβ sin γ

]

+ sin γ

I sin β

[
sin γ

(
pα − pγ cos β

sin β

)
+ pβ cos γ

]
,

β̇ = − sin γ

I

[
cos γ

(
pα − pγ cos β

sin β

)
− pβ cos γ

]

+ cos γ

I

[
sin γ

(
pα − pβ cos β

sin β

)
+ pβ cos γ

]
,

γ̇ =pγ

Iγ

− cos γ cos β

I sin β

[
cos γ

(
pα − pβ cos β

sin β

)
− pβ sin γ

]

− sin γ cos β

I sin β

[
sin γ

(
pα − pβ cos β

sin β

)
+ pβ cos γ

]
,

(5.10)

and the corresponding angular momenta:

ṗα =2ϵ0V E2
0

4

{
χ⊥[n̂a · e][ex(− sin α cos β cos γ − cos α sin γ)

+ ey(cos α cos β cos γ)]

+ χ⊥[n̂b · e][ex(sin α cos β sin γ − cos α cos γ)

+ ey(− cos α cos β sin γ − sin α cos β)]

+ χ∥[n̂c · e][ex(− sin α sin β) + ey(cos α sin β)]
}

,

(5.11)
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ṗβ = − 1
I

[
pγ cos γ − cos γ cos β

sin β

(
pα − pβ cos β

sin β

)]

·
[
sin γ

(
pα − pβ cos β

sin β

)
− pβ sin γ

]

− 1
I

[
pγ sin γ − sin γ cos β

sin β

(
pα − pβ cos β

sin β

)]

·
[
sin γ

(
pα − pβ cos β

sin β

)
+ pβ cos γ

]

+ 2ϵ0V E2
0

4

{
χ⊥[n̂a · e][ex(− cos α sin β cos γ)

+ ey(− sin α sin β cos γ)]

+ χ⊥[n̂b · e][ex(cos α sin β sin γ) + ey(sin α sin β sin γ)]

+ χ∥[n̂c · e][ex(cos α cos β) + ey(sin α cos β)]
}

,

(5.12)

ṗγ = − 1
I

[
−pβ sin γ + cos γ −

(
pα − pβ cos β

sin β

)]

·
[
− sin γ

(
pα − pβ cos β

sin β

)
− pβ cos γ

]

− 1
I

[
−pβ sin γ + cos γ

(
pα − pβ cos β

sin β

)]

·
[
sin γ

(
pα − pβ cos β

sin β

)
+ pγ

]

+ 2ϵ0V E2
0

4

{
χ⊥[n̂a · e][ex(− cos α cos β sin γ − sin α cos γ)

+ ey(− sin α cos β cos γ − cos γ sin γ)]

+ χ⊥[n̂b · e][ex(− cos α cos β cos γ)

+ ey(− sin α cos β cos γ − cos α sin γ)]
}

,

(5.13)

where {n̂a, n̂b, n̂c} are the orientation unit vectors in terms of Euler angles in

the body-fixed frame, and e is the polarisation vector of the light field with two

components {ex, ey} in the x-y space-fixed coordinates respectively.
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However, these equations mentioned above have not considered the damping

and the stochastic forces or torques from background gas molecules and other

noise sources. We modify the equations of motion by considering additional white

noise terms:
ż = pz

M
,

α̇ = pα − pγ cos β

I sin2 β
,

β̇ = pβ

I
,

γ̇ = − cos β
pα − pγ cos β

I sin2 β
+ pγ

Iγ

,

(5.14)

and their corresponding momenta are described by:

ṗz = −
ϵ0V χ∥E

2
0

4 k sin(2kz)
[

χ⊥

χ∥
+ ∆χ

χ∥
(m · e)2

]

− Γzpz +
√

2MΓzkBTbWz,

ṗα =2ϵ0V ∆χE2
0

4 cos2(kz)(m · e)(ey cos α − ex sin α)

− Γ⊥pα − (Γ∥ − Γ⊥) cos βpγ

+
√

2IΓ⊥kBTbWα +
√

2IγΓ∥kBTb cos βWγ,

ṗβ =1
I

[
(pα − pγ cos β)2

sin2 β
cosβ − pγ

pα − pγ cos β

sin β

]

+ 2ϵ0V ∆χE2
0

4 cos2(kz)(m · e) cos β(ex cos α + ey sin α)

− Γ⊥pβ +
√

2IΓ⊥kbTbWβ,

ṗγ =Γ∥pγ +
√

2Iγ⊥kBTbWγ,

(5.15)

where Γz, Γ⊥, Γ∥ are the damping rates discussed in Chapter 2, and Wz, Wα, Wβ, Wγ

are independent white noise terms.

5.3.2 Protocol of polarisation feedback cooling

In the previous section, the ro-translational dynamics of the levitated nano-

oscillator have been studied, and we can acquire information of the centre-of-mass

motion and librational motion of levitated nanorods in experiments. Based on

the measurement of its motion, we can control and cool the motion in each de-
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gree of freedom with different approaches. For centre-of-mass motion, parametric

feedback cooling is discussed in previous sections. Here we present a new path for

cooling the energy of librational modes via polarisation feedback scheme.

Figure 5.6 shows the schematic of the polarisation feedback cooling. We use

the phased-locked module of the lock-in amplifier to real-time track the frequencies

and phase-locked of the rotational degrees of freedom of the particle, then generate

a modulation signal. The modulation signal is processed by the computer with an

FPGA module. With the varying modulation signal from the lock-in amplifier, the

FPGA process and output signals correspond to the polarisation state based on

the calibrated voltages (see Appendix A). The analogue signals are amplified by a

voltage amplifier and applied on a high-speed EOM for polarisation modulation.

Trap

Lock-in
Amplifier

Data
Acquisition

Computer

Laser

PCP

FPGA

PCP

Detectors

EOM AOM

MMF
PD

Figure 5.6: The basic schematic of the polarisation feedback cooling. The information
of the librational motion can be acquired in real-time from the balanced
polarisation measurement, which is sent to a lock-in amplifier for frequency
tracking and phase locking and then generates feedback signals to the
computer with an FPGA module. The polarisation state of trapping light
is modulated by an EOM according to the feedback signal.

In the polarisation feedback, the nanorod is levitated by a pair of linearly

polarised beams which we define as:

e(φ(t)) = cos(φ(t))êx + sin(φ(t))êy, (5.16)

where φ(t) is the time variable, and êx, êy are the unit vector in x, y-direction.
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The linearly polarised field has the x, y components on the x-y plane, which is

the same plane as the rotational degree of freedom of α. This means the orienta-

tion of the levitated nanorod tends to align with the linear polarisation direction,

yielding a minimum optical potential. If we set φ ∝ α, it reduces the potential ini-

tially, but it does not slow the motion and pα remains constant without additional

damping. If we introduce an angular velocity of the librational motion α̇:

φ(t) = α(t) − τ α̇(t), (5.17)

where τ is a constant time parameter which satisfy 0 < τ < 1/(2fα) and fα is

the α-librational frequency of a deeply trapped nanorod. However, this parame-

terization does introduce damping in the α-motion, but leaves β-motion largely

untouched with an uncooled angular momentum pγ. Since both α and β mo-

tion are gyroscopically coupled to the angular momentum pγ which is a conserved

quantity for levitated nanorods, it has the potential to heat the α-motion via the

coupling between these modes. Therefore, we seek to simultaneously cool α and β

motion so that they can be effectively decoupled and achieve the lowest attainable

energy limited by pγ and measurement noise. This can be achieved by setting the

polarisation as:
φ(t) = α(t) − τ

[
α̇(t) − β̇(t)

]
for pγ > 0,

φ(t) = α(t) − τ
[
α̇(t) + β̇(t)

]
for pγ < 0.

(5.18)

Without considering the translational degrees of freedom, the rotational

Hamiltonian of a levitated nanorod is given by combining Equations (2.41) and

(5.9):

Hrot = (pα − pγ cos β)2

2I sin2 β
+

p2
β

2I
+

p2
γ

2Iγ

− 1
2Iω2

libr(m · e)2, (5.19)

where ωlibr is the angular librational frequency which is approximated to ωα and

ωβ with ωlibr = ωα = ωβ ≃
√

(ϵ0V ∆χE2
0)/(2I) in the deeply trapped regime

where the nanorod remains largely aligned with the filed and α̇, β̇ are small. By

100



5.3 Polarisation feedback cooling

introducing the time variable φ, the term (m · e) can be written as:

(m · e) = sin β(cos α cos φ + sin α sin β) = sin β cos(α − φ),

(m · e)2 = sin2 β cos2(α − φ),
(5.20)

for Equation (5.15), therefore the Hamiltonian for rotational degrees of freedom

becomes:

Hrot = (pα − pγ cos β)2

2I sin2 β
+

p2
β

2I
+

p2
γ

2Iγ

− 1
2Iω2

libr sin2 β cos2(α − φ). (5.21)

With the parameterization equation in Equation (5.18) and we make the

following mapping:
α ≃ φ ≃ ζ1,

β − π

2 ≃ ζ2 ≪ 1,
(5.22)

and
ζ̇1 = α̇,

ζ̇2 = β̇.
(5.23)

By substituting Equation (5.23) to Equations (5.14) and (5.15) and taking

the first order expansion of sin, cos, sin2 cos2, the equations of librational motion

becomes (here omit the white noise term in each equation):

ζ̇1 ≃ pα

I
+ ζ2

pγ

I
,

ζ̇2 ≃ pβ

I
,

(5.24)

and
ṗα ≃ −Iω2

libr(ζ1 − φ),

ṗβ ≃ −pαpγ

I
−

ζ2p
2
γ

I
− Iω2

librζ2.
(5.25)

Taking the time derivative of ζ̇1 and ζ̇2, we can obtain the angular accelera-
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tions which show the information on how the angular velocity changes:

ζ̈1 = pγ

I
ζ̇2 − ω2

libr(ζ1 − φ),

ζ̈2 = −pγ

I
ζ̇1 − ω2

librζ2.
(5.26)

From the first terms of the above Equation (5.26), we can clearly see that ζ1

and ζ2 (i.e., α and β) are coupled to each other via the bridge of non-zero angular

momentum pγ. By choosing φ(t) in Equation (5.18), the above equation becomes:

ζ̈1 = −ω2
librτ ζ̇1 +

(
ω2

librτ + pγ

I

)
ζ̇2, (5.27)

where the choice of parameterization introduces a damping term for ζ1 (i.e., α),

and it reach a quasi-steady state ζ1 = 0 when:

ζ̇1 =
(

1 + pγ

Iω2
librτ

)
ζ̇2, (5.28)

and at this moment for ζ2 (i.e., β) motion in Equation (5.26):

ζ̈2 = −pγ

I
ζ̇2 −

p2
γ

I2ω2
librτ

ζ̇2 − ω2
librζ2. (5.29)

By rearranging Equations (5.27) and (5.29), the equations of motion for α

and β are given by :

α̈ = −ω2
librτ α̇ +

(
ω2

librτ + pγ

I

)
β̇,

β̈ = −pγ

I
β̇ −

p2
γ

I2ω2
librτ

β̇ − ω2
libr

(
β − π

2

)
,

(5.30)

where the largest damping contribution is from the first term on the right-hand

side when pγ > 0. For pγ < 0, we can choose the opposite sign in Equations

(5.18) and (5.30). In principle, the introduced damping for α and β-motion yields

simultaneously cooling the energy of librational modes pα and pβ via an untouched

non-zero pγ. During the decrease of β̇, it breaks the quasi-steady state which allows

for further damping on α until reaching a quasi-steady again. This cycle continues
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and brings α̇ and β̇ simultaneously lower and lower, yielding the simultaneous

cooling of both rotational degrees of freedom via polarisation feedback.

5.3.3 Numerical simulation

As discussed in Chapter 3, the stochastic differential equations can be solved

by different numerical methods, such as the Euler method or the Runge-Kutta

method (e.g., algorithm ode45 based on higher-order Runge-Kutta in MATLAB).

Considering the measurement error of the particle’s motion needs to be added

in the implementation of feedback cooling with extra independent stochasticity,

we use the explicit Euler method to numerically solve the first order of ordinary

differential equations discussed in the previous section and simulate the dynamics

of the levitated nanorod under polarisation feedback.

We use dimensionless variables in our simulation, which is to avoid compu-

tational rounding errors that can occur when dealing with very small numerical

values. For example, the value of momentum pα is proportional to ϵ0V at the

order of magnitude of 10−32, which is easily rounded to zero during calculation.

The transformation of variables to dimensionless for the levitated nanorod is:

t̃ = ωt,

q̃ = kq, q ∈ {x, y, z},

p̃ = k

Mω
p,

Ω̃ = Ω, Ω ∈ {α, β, γ},

p̃Ω = 1
Iω

pΩ.

(5.31)

Based on the above definition, the equation of motion is of order unity, and the

time derivative is from ṫ to ω ˙̃t, and for a white noise term Wi becomes ηi = Wi/
√

ω

in dimensionless units. The parameter ω is a free timescale parameter which we

just choose ω = ωα for the timescale of librations.

The constant time parameter τ in Equation (5.18) follows 0 < τ < 1/(2fΩ) for

the librational modes with librational frequency f{α,β}. In order to implement the

simulation more efficiently for the particle to reach a steady state with less number
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of timesteps, we choose τ = 0.7 × (1/(2fΩ)) in our simulation. The dimensionless

timestep ∆t̃ is chosen as 1×10−3 for the total dimensionless time period T̃ > 250.

We also consider the measurement error of angular position and librational

motion detection in the real experimental condition. This is treated by adding a

measurement noise term to the Ω ∈ {α, β} and their time derivatives (e.g., angu-

lar speeds). In detail, a random sequence {δαi, δβi, δα̇i, δβ̇i} (here i denotes the

iteration number in the discretised form) is initiated following a Gaussian distri-

bution with zero mean and an adjustable standard deviation σα,β. The different

measurement errors will lead to different steady-state energies.

Accordingly, the parameterized Equation (5.18) for polarisation feedback be-

comes:
φi = (αi + δαi) − τ

[
(α̇i + δα̇i) − (β̇i + δβ̇i)

]
for pγ > 0,

φi = (αi + δαi) − τ
[
(α̇i + δα̇i) + (β̇i + δβ̇i)

]
for pγ < 0.

(5.32)

During the implementation of polarisation feedback cooling, the nanorod is

regarded as deeply trapped by the linearly polarised light field such that their

translational motion is uncoupled and ignored in the simulation.

For the initial states of α̃ & β̃, they are following Gaussian distributions with

a zero mean for α, π/2 mean for β and a standard deviation of ∆αinitial = ∆βinitial

for all possible angular positions. The initial angular momenta also follow in-

dependent Gaussian distributions with zero mean and a standard deviation of

∆p̃α = ∆p̃β =
√

kBTb/(Iω2). These settings are consistent with the deeply

trapped regime.

5.3.4 Simulation results

In the following results, we simulate a levitated silicon nanorod with 600 nm long

and 100 nm diameter trapped by two counter-propagating laser beams with the

wavelength of λ = 1550 nm and total optical power of Popt = 200 mW. Two beams

are focused by a pair of lenses with NA = 0.43. According to the parameters

acquired in our previous experiments, we use a beam waist of w0 = 6.8 µm.

The bath temperature Tb is set as room temperature 298 K, and the pressure is

Pgas = 0.1 mbar.
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5.3 Polarisation feedback cooling

Figure 5.7 shows an example of five random initial dimensionless angular

positions α̃ & β̃ and independent random dimensionless angular momenta p̃α &

p̃β. The initial dimensionless γ̃ is 0, and p̃γ is set to 0.1. After about 120 rounds

of librational oscillations (t̃ > 120), both α̃ & β̃ reaches a new steady-state with

minimum angular momenta p̃α & p̃β close to zero, demonstrating optically cooled

angular energy of the levitated librator. In terms of the degree of freedom γ̃, it

remains untouched with a constant p̃γ = 0.1 as predicted. It is also interesting to

notice that β always aligns to π/2 no matter what initial angles for the minimum

potential of β-direction with a linearly polarised light field.

Figure 5.7: Simulated dynamics of librational modes and the evolution of angular
momenta under the implementation of polarisation feedback cooling from
t̃ = 0. All the axes are in dimensionless units. Five different colours
represent five random initial dimensionless angular positions α̃ & β̃ and
independent random dimensionless angular momenta p̃α & p̃β. The initial
dimensionless γ̃ is 0, and p̃γ is set to 0.1. After about 120 rounds of
librational oscillations (t̃ > 120), all α̃ & β̃ reaches a new steady-state
with minimum angular momenta p̃α & p̃β, demonstrating optically cooled
angular energy of the levitated librator. For the degree of freedom γ̃, it
still keeps untouched with a constant p̃γ = 0.1.
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5 Ro-translational Optomechanical Cooling

From the dynamics of the levitated nanoparticle, we can analyse the change of

energy of the levitated mechanical librator after the implementation of polarisation

feedback. As discussed in the previous section, we calculate the new steady-state

energy Etot above the potential minimum Vmin and the minimum possible energy

Emin in every timestep. The former is potential energy in the scenario where the

nanorod is perfectly aligned with the polarisation direction of the trapping beam;

while the latter is the minimum potential energy adding the energy of γ-motion

which is the only motion that cannot be controlled in our scheme.

Figure 5.8 shows an example of the time evolution of the energy change of

the levitated librator with five different initial states shown in Figure 5.7. We can

see that the librational energy and total energy decrease with time to approach

zero, which implies both α and β degrees of freedom are cooled and only leave γ

untouched.
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Figure 5.8: The time evolution of the energy change of the levitated librator with five
initial states shown in the previous figure. Under the implementation of
polarisation feedback cooling, the total Hamiltonian Htot is decreased to
the possible minimum Hamiltonian of the system Hmin.

Since the initial states are set to be stochastic, we run the simulations for 150

tails to verify the cooling effect of this cooling method and calculate the averaged

energy and its standard deviations. Figure 5.9 and 5.10 show the averaged steady-

state energy above the minimum potential and the minimum total energy after a

period of T̃ = 1500. From the simulation results, ⟨Etot − Emin⟩ is independent on
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5.3 Polarisation feedback cooling

pγ shown in Figure 5.10, while ⟨Etot − Vmin⟩ is dependent on p2
γ in Figure 5.9 as

expected in Equation (5.9).

Figure 5.9: Averaged final total energy above the minimum potential ⟨Etot − Vmin⟩
with respect to different p̃γ after a period of T̃ = 1500. There different
measurement error σα,β = 0.5, 5.0, 10.0 mrad are added during the simu-
lation. Error bars represent the standard deviation of the averaged energy
obtained.

Figure 5.10: Averaged final total energy above the minimum energy ⟨Etot −Emin⟩ with
respect to different dimensionless angular momentum p̃γ after a period
of T̃ = 1500. There different measurement error σα,β = 0.1, 0.5, 1.0 mrad
are added during the simulation.
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5 Ro-translational Optomechanical Cooling

As plotted in Figure 5.11, the achieved lowest energy above the minimum

energy is in the order of magnitude of 10−4, 10−5 and 10−6 kBTb for the measure-

ment error σα,β = 0.1, 0.5, 1.0 mrad respectively, corresponding to the effective

temperature of 10−2, 10−3 and 10−4 K, demonstrating an effective cooling of the

librational motion.

Figure 5.11: The achievable lowest energy above the minimum energy with respect
to different measurement errors. Five different measurement errors with
the standard deviation σα,β = 0.1, 0.5, 1.0, 5.0, 10.0 mrad are simulated
with stochastic initial states. The dimensionless angular momentum p̃γ

is set to 0.05.

5.4 Ro-translational optomechanical cooling

limits
In this section, we discuss the ro-translational cooling limits based on the previ-

ously introduced feedback cooling methods.

Towards to quantum regime, the motion of levitated mechanical oscillator is

required to be cooled near or within its ground state with the mean occupation

number n̄ < 1. Heisenberg’s uncertainty relation imposes a lower bound for the

product with δx δp ≥ ℏ/2. In feedback cooling, the position (or angular position)
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5.4 Ro-translational optomechanical cooling limits

information of particles must be measured for implementation of the feedback loop,

thus measurement accuracy of these quantities fundamentally limits the lowest

achievable temperatures following the uncertainty principle. This also means the

dissipation mechanism in the system needs to be considered and reduced.

In the levitated optomechanical system, the position fluctuations arising from

the thermal dissipation of surrounding gas molecules become negligible at low

pressures; however, the recoil heating starts to become the dominating decoherence

noise source. Here, we only consider the cooling limits set by the measurement

imprecision and measurement backaction in this scenario.

The imprecision of position (angular position) measurement is determined by

the shot noise (torque shot noise) [105]:

⟨x̂2⟩imprecision = ℏν

2k2ηdetλi

1
Pscat

1
∆t

, (5.33)

where ηdet denotes the detection efficiency with the limits of ηdet = 1 for an ideal

maximum detection efficiency, λi accounts for the geometric distribution of the

dipole radiation field, Pscat is the scattered light power and ∆t is the measurement

time.

From this equation, higher precision measurement of the particle’s motion

can be obtained by increasing the photon numbers; however, this leads to a larger

measurement backaction due to photon recoil heating [26]:

⟨x̂2⟩backaction = λiℏν

Mω2
m

1
Γ2

tot

Pscat

2Mc2
1

∆t
, (5.34)

where Γtot is the total damping rate including the feedback damping Γfb.

The standard quantum limit is achieved when the measurement impreci-

sion and backaction contribute equally, yielding a minimum energy given by the

imprecision-backaction product. In the configuration of our experiments, increas-

ing measurement efficiency with lower photon numbers is an important next step

to achieve better cooling performance and lower energy of levitated mechanical

oscillators.
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Chapter 6

Conclusion and Outlook

6.1 Conclusion

The fascinating research topic on the quantum control and measurement of me-

chanical systems has been generating wide interest in the research community.

Nanoparticles levitated in high vacuum are a promising platform for exploiting

the transition between the classical and quantum world, in an unexplored regime

with macroscopic mass and size, which has profound implications for our under-

standing of nature. Meanwhile, the exquisite control of all degrees of freedom

of levitated optomechanical oscillators enables the rapid and vast development of

technological applications.

Ro-translational dynamics of mechanical oscillators in the quantum regime

are promising to observe pronounced quantum phenomena and develop quantum-

enhanced technologies. In this thesis, we have discussed an experimental platform

established for studying the ro-translational optomechanics of levitated nanopar-

ticles. For the loading method, direct loading in vacuum is one of the challenges

for optical trapping, we demonstrated an efficient loading technique in vacuum

based on LIAD, which enriches the toolbox. We show the control of full rotations

of levitated nanoparticles via the transfer of spin angular momentum and a novel

way of transferring transverse orbit angular momentum. The exquisite control

of nanoscale rotations provides promising routes towards explorations of quantum

rotational effect and benchmarks the ultra-precise sensing technologies. In the last
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part of this thesis, we focus on the feedback cooling methods on ro-translational

motion, paving the way for the next macroscopic quantum experiments.

We hope the work presented in this thesis can contribute to overcoming some

existing challenges for the levitated optomechanical system to prepare, manipu-

late and measure quantum states with control of more degrees of freedom. This

optomechanical platform is also appealing for further studies on quantum mea-

surements and realizable sensing applications.

6.2 Outlook

6.2.1 Quantum rotations experiments
Quantum rotations of levitated nanoparticles offer another promising route to-

wards exploring macroscopic quantum physics in an unexplored regime. The free

rigid-body rotations can exhibit some pronounced non-linear and non-harmonic

quantum effects which do not have classical analogues [44]. With the advantage

of these unique properties, we can exploit such rotational quantum phenomena in

different schemes. Apart from the proposal of observing orientational quantum

revivals discussed in the Introduction, an alternative approach based on quantum-

persistent tennis-racket rotations of an asymmetric rotor has been proposed [155],

which is predicted to observe quantum tennis-racket flips considering quantum

tunnelling and above-barrier reflection in the quantum realm. Other proposals

based on spin-rotational coupling for spin-stabilization levitation with levitated

magnets also provide another way to study quantum rotations [156] and quantum

interference [157].

6.2.2 Further sensing applications
Quantum-enhanced sensing motivated by the advances in levitated optomechan-

ical systems has been used in many fields [158]. In terms of the rotational dy-

namics of nanorotors, quantum-enhanced torque sensing at and beyond the stan-

dard quantum limit can be achieved once nanorotors have been prepared in the

quantum regime. Current state-of-art ultrasensitive torque sensor achieved an un-

precedented torque sensitivity at the order of magnitude 10−27 NmHz−1/2, which is
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6.2 Outlook

proposed for detecting the Casimir effect by levitating a nanorotor close to a sur-

face [63]. The levitated ferromagnetic rotors can be used to implement quantum-

limited measurements of external magnetic fields [159, 160]. In addition, sensing

static electromagnetic fields become conceivable by using interactions with rota-

tional superposition states of polar or magnetized nanorotors. The theoretical

predicted spatial resolution of can be achieved on the order of mV m−1, and cor-

responding torque on the order of 10−30 Nm [44, 88].
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Appendix A

Calibration and control of

polarisation state of light

In terms of anisotropic particles, the polarisation state of light has a great influence

on the optical potential, thus it is crucial to calibrate and control the polarisation

within the trap. A low-loss, high-speed EOM is used for setting arbitrary polari-

sation states. To form a standing wave and ensure the polarisation in each arm is

identical, the EOM must be calibrated, and two fibre polarisation control paddles

are placed in front of the optical trap for setting the initial polarisation state and

phase compensation by applied stresses on the single mode fibre.

Trap

EOM

VA VC
Ground

Voltage 
Amplifier Computer

Laser

Polarimeter

PCP PCP

FPGA

Figure A.1: Optical setup for calibrating the polarisation of the trapping light.

The optical set-up for calibrating the polarisation state is illustrated as Figure

A.1. The EOM is controlled by three input voltages (i.e., VA, VB = Ground and

VC). With different control of voltages VA and VC, the EOM changes the polarisa-
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A Calibration and control of polarisation state of light

tion state. The calibration process is automatized in a LabVIEW programme, as

shown in Figure A.2. In every step, the control voltage VA and VC change a step

size (e.g., 0.01 V), then the polarimeter (Thorlabs PAX1000IR1) measures the

polarisation state which is recorded by the FPGA module (National Instruments,

PXIe-7847). The full range of VA and VC is from -10 V to +10 V.

Figure A.2: The LabVIEW programme interface for calibrating the polarisation state.
This programme integrates the readout from the polarimeter and the
voltage control of the FPGA analogue output. After a full round of voltage
scan and polarisation states data recording, the voltages (VA and VC)
calibrated for controlling the EOM working as a half-wave plate (blue
curve) and a quarter-wave plate (green curve) are filtered out.

Before the automatized calibration process, we can adjust the initial polari-

sation state in each arm with any applied voltages VA and VC. Normally, we set

the initial polarisation state in each arm as linearly polarised along x-axis with

VA = VC = 0 by manually adjusting the fibre polarisation control paddles. The set

of fibre polarisation control paddles changes the polarisation state of light trans-

mitted in the optical fibre by introducing birefringence induced by stresses and
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A Calibration and control of polarisation state of light

bending of the fibre. These can be appropriately adjusted to make the polarisation

state in each arm behave the same but with opposite handedness, under the same

pair of voltages VA and VC applied on EOM.

Figure A.3 shows an example of the EOM calibration result. Once the EOM

is calibrated, we can set the initial polarisation state in two arms in an arbi-

trary state by setting corresponding a pair of applied voltages VA and VC, which

also can be implemented based on the LabVIEW programme shown in Figure A.4.

Figure A.3: The calibration results for EOM working as a halfwave plate (left panel)
and a quarter-wave plate (right panel) in different pair of control voltages
VA and VC. The left panel shows the EOM rotates the azimuth degree
of an input linearly polarised light, while the right panel shows the EOM
changes the polarisation state of an input light from linearly to circularly
polarised with different ellipticity degrees.

Figure A.4 presents the LabVIEW interface for setting the polarisation states

of the trapping light via a pair of calibrated voltages VA and VC. The left upper

panel shows the switch between LP and CP with different VA and VC outputs from

the Analogue outputs (AO0 and AO1) of the NI PXIe FPGA module. The left

bottom panel shows the control of the azimuth degree of linear polarisation (i.e.,

linearly polarisation direction) by inputting the desired value of azimuth degree.

The LabVIEW programme can search for the corresponding voltages VA and VC

via the look-up table function. The right panel shows an example of a linearly

and circularly polarised state measured by the polarimeter.
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A Calibration and control of polarisation state of light

For full rotation experiments, the LabVIEW programme provides a way to

switch the polarisation states directly. It also can be connected to an arbitrary

function generator to generate arbitrary waveforms or locked to an external clock

with fast modulation of polarisation states. In the polarisation feedback experi-

ments, the control voltages VA and VC can be real-time modulated according to

the feedback signals.

Figure A.4: The LabVIEW interface for setting the polarisation states of the trapping
light via a pair of calibrated voltages VA and VC. The left upper panel
shows the switch between LP and CP with different VA and VC output
from the Analogue outputs of the FPGA module. The left bottom panel
shows the control of the azimuth degree of linear polarisation (i.e., linearly
polarisation direction) by inputting the desired value of azimuth degree.
The LabVIEW programme will find the corresponding voltages VA and
VC via Look-up Table (LUT) function. The right panel shows an example
of a linearly and circularly polarised state measured by the polarimeter.
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Appendix B

Circuit diagrams

Appendix B contains two electronic circuit diagrams designed and utilised for

EOM polarisation control and feedback (B.1) and detection of motions of levitated

nanoparticles (B.2). These are designed and tested with technical support from

Alastair Symon.

B.1 DC amplifier with offset

This circuit is a DC amplifier for doubling the input voltage within ±10 V

plus an adjustable offset ranging ±10 V.
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Figure B.1: DC amplifier with offset.
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B Circuit diagrams

B.2 Quadrant photodetector circuit

This circuit is designed for the low-noise, high bandwidth quadrant photodi-

ode (QPD) (G6849, Hamamatsu Photonics) of four quadrants (A,B,C&D) with

three outputs (X,Y&SUM): X=(A+B)-(C+D), Y=(A+D)-(B+C), SUM=A+B+C+D.

Figure B.2: Circuit diagram for QPD detector.
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of a levitated nanoparticle via coherent scattering. Physical Review Letters,
122(12):123601, 2019.

122



Bibliography

[21] Uroš Delić, Manuel Reisenbauer, David Grass, Nikolai Kiesel, Vladan
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pelmeyer. Dry launching of silica nanoparticles in vacuum. arXiv preprint
arXiv:2209.00482, 2022.

[121] Joyce E Coppock, Pavel Nagornykh, Jacob PJ Murphy, and Bruce E Kane.
Phase locking of the rotation of a graphene nanoplatelet to an rf electric field
in a quadrupole ion trap. In Optical Trapping and Optical Micromanipulation
XIII, volume 9922, pages 56–65. SPIE, 2016.

132



Bibliography

[122] Yoshihiko Arita, Mingzhou Chen, Ewan M Wright, and Kishan Dholakia.
Dynamics of a levitated microparticle in vacuum trapped by a perfect vor-
tex beam: three-dimensional motion around a complex optical potential.
Journal of the Optical Society of America B, 34(6):C14–C19, 2017.

[123] Michael Mazilu, Yoshihiko Arita, Tom Vettenburg, Juan M Auñón, Ewan M
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