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Addendum to “On interpolation of reflexive variable
Lebesgue spaces on which the Hardy-Littlewood

maximal operator is bounded”

Lars Diening, Oleksiy Karlovych, and Eugene Shargorodsky

Abstract. We show that the necessity part of the main result of [1] can be
easily derived from its predecessor [2, Theorem 4.1] and its sufficiency part.

Let the notation be as in [1]. The main result of that paper is the following
theorem.

Theorem 1 ([1, Theorem 1.3]). Let p(·) : Rd → [1,∞] be a measurable function
satisfying 1 < p− ≤ p+ < ∞. Then p(·) ∈ BM (Rd) if and only if for every
q ∈ (1,∞), there exists a number Θp(·),q ∈ (0, 1) such that for every θ ∈ (0,Θp(·),q]
the variable exponent r(·) defined by

1

p(x)
=

θ

q
+

1− θ

r(x)
, x ∈ Rd, (1)

belongs to BM (Rd).

This is an improvement of an earlier result [2, Theorem 4.1] that claimed the
existence of q ∈ (1,∞) and θ ∈ (0, 1) such that r(·) defined by (1) belongs to
BM (Rd). The proof of [1, Theorem 1.3] did not depend on that result. The aim of
this addendum is to show that the (more difficult) necessity part of the above the-
orem can be easily derived from its predecessor [2, Theorem 4.1] and its sufficiency
part.

Proof. Take any q ∈ (1,∞). It follows from [2, Theorem 4.1] (see also [1,
Theorem 1.2]) that there exist numbers q1 ∈ (1,∞) and θ1 ∈ (0, 1) such that the
variable exponent r1(·) defined by

1

p(x)
=

θ1
q1

+
1− θ1
r1(x)

, x ∈ Rd, (2)

belongs to BM (Rd). Take any positive θ2 < min
{

q
q1
, 1− 1

q1

}
< 1 and define q2 by

1

q1
=

θ2
q

+
1− θ2
q2

. (3)

2020 Mathematics Subject Classification. 46E30, 42B25.
Key words and phrases. Variable Lebesgue space, Hardy-Littlewood maximal operator.

1



2 L. DIENING, O. KARLOVYCH, AND E. SHARGORODSKY

Then

1

q2
=

(
1

q1
− θ2

q

)
(1− θ2)

−1 > 0,

1

q2
=

(
1

q1
− θ2

q

)
(1− θ2)

−1 <
1

q1
(1− θ2)

−1 <
1

q1

(
1

q1

)−1

= 1.

Hence q2 ∈ (1,∞).
Substituting (3) into (2), we get

1

p(x)
=

θ1θ2
q

+
θ1(1− θ2)

q2
+

1− θ1
r1(x)

=
θ

q
+

1− θ

r(x)
, (4)

where θ := θ1θ2 and

1

r(x)
:=

θ1(1− θ2)(1− θ1θ2)
−1

q2
+

(1− θ1)(1− θ1θ2)
−1

r1(x)
. (5)

Clearly, θ1(1− θ2)(1− θ1θ2)
−1 > 0 and (1− θ1)(1− θ1θ2)

−1 > 0. Since

θ1(1− θ2)

1− θ1θ2
+

1− θ1
1− θ1θ2

=
θ1 − θ1θ2 + 1− θ1

1− θ1θ2
= 1,

(5) can be rewritten in the following form

1

r(x)
=

θ0
q2

+
1− θ0
r1(x)

, θ0 := θ1(1− θ2)(1− θ1θ2)
−1 ∈ (0, 1).

Since r1(·) belongs to BM (Rd), it follows from the sufficiency part of the theorem
that r(·) ∈ BM (Rd). In view of (4), this completes the proof for any positive

Θp(·),q < θ1 min
{

q
q1
, 1− 1

q1

}
. □
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