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Chapter 1 

Vision Sensors for Robotic Perception 

Shan Luo1 Daniel Fernandes Gomes2 Jiaqi Jiang2 and 
Guanqun Cao2 

In this chapter, we will introduce the vision sensors for robotics applications. It 

first briefly introduces the working principles of the widely used vision sensors, i.e., 

RGB cameras, stereo cameras and depth sensors, and also the off-the-shelf vision 

sensors that have been widely used in the robotics research, particularly robot 

perception. As one of the most widely used sensors to be equipped with robots and 

thanks to its low cost and high resolution, vision sensors have also been used in other 

sensing modalities. In recent years, there is a rapid development of embedding vision 

sensors in optical tactile sensors. In such sensors, visual cameras are placed under an 

elastomer layer and used to capture its deformation while being interacted with 

objects. The vision sensors enable robots to sense and estimate the properties of the 

objects, e.g., object shapes, appearances, textures and mechanical parameters. We 

will cover various aspects of vision sensors for robotic applications including the 

various technologies, hardware, integration, computation algorithms and applications 

in relation to robotics. 

1.1 Introduction 

Our eyes are crucial for seeing the world around us. With eyes, we can see the 

color of a cat, texture of a carpet, the face of a person and appearance of a building. 

Similarly, vision sensors have also been developed in the past decades and can be 

equipped to robots to enable them to have the sense of sight. Vision sensors 

provide robots vital information about the surroundings and vision has been the 

sensing modality robots rely on most. 

Compared to other sensing modalities like touch sensing, hearing, smell and 

taste, vision has a much larger Field of View (FoV) and is able to capture the view 

of a scene at a glance and multiple objects can be observed in a single view. The 

properties of objects in the scene, e.g., color, textures, appearances and shapes can 

be obtained from one single camera image and it is remarkably with ease to collect 

data with vision sensors.. 

 
1 Department of Engineering, King’s College London, London WC2R 2LS, U.K. Email: 

shan.luo@kcl.ac.uk 
2 smARTLab, Department of Computer Science, University of Liverpool, Liverpool L69 3BX, U.K. 

Emails: {daniel.fernandes-gomes, jiaqi.jiang, psgcao}@liverpool.ac.uk 

 



4 Running head book title 

 

On the other hand, processing visual data requires high computational 

resources. More than 50 percent of the human brain [1] is devoted directly or 

indirectly to processing visual information and therefore visual information has 

been a key for humans to understand the world. For robots, much of the processing 

power is also devoted to extracting information from the visual data. One reason is 

that the abundant data can be accessed via the vision sensors. The other reason is 

that there are fluctuation factors in visual data that affect extracting useful 

information from visual data. 

Such factors include scaling, rotation, translation and illumination. The scaling 

problem is caused by the projection of the observed objects to the 2D visual 

sensing panels, making vision as an ill-posed problem. The rotation and translation 

problem arises from that the different position and orientation of objects may result 

into different appearances of the objects in the view. The illumination problem is 

caused by different light conditions in the environment and visual observations of 

objects may suffer from occlusions and shadows posed by the robot itself, 

particularly robot hands in grasping, and other objects in the scene. 

In the past decades, vision sensors of different sensing principles have been 

proposed and commercialised, and many of them have been applied to the robotics 

research. The most widely used vision sensors are the RGB cameras. They are 

usually equipped with a standard CMOS sensor through which the color images of 

persons and objects are acquired. The acquisition of static photos is usually 

expressed in megapixels that means one million pixels, e.g., 2MP (1,920 x 1,080 = 

2,073,600 pixels, also known as full HD resolution or 1080p), 12MP and 16MP. 

Compared to static images, videos captured by the RGB cameras can reveal the 

temporal information of the objects in the view, e.g., recognising human actions, 

tracking moving vehicles and localising a robot in a map. 

To enable processing the visual events efficiently, event cameras, also known 

as neuromorphic cameras or or dynamic vision sensors, emerge in recent years. An 

event camera responds to local changes in brightness, instead of capturing images 

using a shutter as conventional cameras do. Pixels inside an event camera operates 

independently and asynchronously: each pixel reports changes in brightness as they 

occur and stays silent otherwise. Event cameras demonstrate better temporal 

resolution in order of millions fps (frames per second) compared to conventional 

cameras in order of hundreds fps. 

Apart from 2D information extracted from images by the RGB cameras, 3D 

information can also be captured by vision sensors. One natural way to obtain the 

3D information is to simulate the binocular vision of humans that derives 

information about how far away objects are based on solely relative positions of the 

object in the two eyes. A stereo camera simulates the human binocular vision by 

having two image sensors and therefore gives it the ability to perceive depth. There 

are also other ways to obtain the depth information based on different techniques, 

e.g., Time-of-Flight (ToF), structured light, and light fields. These depth sensors 

are usually used with the RGB cameras to form the RGB-D cameras so that both 

2D appearances cues and depth can be obtained at the same time. 

In the recent years, vision sensors have also been used in other sensing 

modalities. There is a rapid development of embedding vision sensors in optical 

tactile sensors. Such sensors usually consist of a visual camera at the base of the 

sensor and an elastomer layer on the top to interact with objects, and the visual 
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camera can capture the deformation of the elastomer in the interaction. The optical 

tactile sensors bridge the gap between vision and tactile sensing to create cross-

modal perception. As visual cameras are used to capture the tactile interactions, the 

outputs of the optical tactile sensors are essentially camera images. This crossover 

has enabled techniques developed for computer vision, e.g., convolutional neural 

networks, to be applied to tactile sensing, connecting the look and feel of objects 

being interacted with. Recently there is also development that can transform 

between or match visual and tactile data from such sensors. 

In this chapter, we introduce different vision sensors, i.e., RGB cameras, stereo 

cameras and depth sensors, that have been used in the robotics research, with an 

overview shown in Figure 1.1. We will then introduce how vision sensors can be 

used in other sensing modalities. Various aspects of vision sensors for robotic 

applications will be covered, including the hardware, integration, computation 

algorithms and applications to robotics. 

1.2 RGB cameras for robotic perception 

The projections of real 3D scenes onto 2D planes, generated when light (rays) real 

objects and filtered through a small cavity has always amused and served as a 

practical tool to humans, as pointed out by speculative theories about how 

prehistoric man produced cave paintings and the usage of camera obscura 3  in 

ancient and more modern civilisations. More recently, this working principle has 

been at the core of modern, firstly analogue and then digital cameras. This basic 

 
3 https://en.wikipedia.org/wiki/Camera_obscura 

Figure 1.1 There are different types of vision sensors for robotics applications. 

RGB cameras have been one of the most widely used sensors in robotics, from 

robot grasping to visual SLAM. With the images or videos captured by the RGB 

cameras, rich information of the objects in the scene can be obtained, e.g., 

appearances, textures and shapes. Stereo cameras can be used to obtain the depth 

from the object to the camera from the obtained stereo pairs. Other depth sensors 

include ones based on ToF and structured light. Other types of vision sensors have 

also emerged and have been applied to robotics like event sensors that output event 

flows. 
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working principle enables cameras to capture a scene in an energy efficient manner 

and instantly.   

While the real light phenomenon generates inverted projections, we can 

conceptually solve this by considering a virtual plane between the observed scene 

and the camera plane. Given the similarity between the two triangles, the image 

projected on the virtual plane is proportionally equivalent to the one projected on 

the real plane. By making the usual thin lens assumptions, the optical sensor can be 

modeled as a pinhole camera. The projective transformation that maps a point in 

the world space 𝑃  into a point in a camera image 𝑃′  can be defined using the 

general camera model [2] as: 

𝑃′ = 𝐾[𝑹|𝒕]𝑃 

𝐾 = [
𝑓𝑘 0 𝑐𝑥
0 𝑓𝑙 𝑐𝑦
0 0 1

] 

where 𝑃′ = [𝑥′𝑧, 𝑦′𝑧, 𝑧]𝑇 is an image pixel and 𝑃 = [𝑥, 𝑦, 𝑧, 1]𝑇 is a point in space, 

both represented in homogeneous coordinates here, [𝑹|𝒕] is the camera's extrinsic 

matrix that encodes the rotation 𝑅 and translation 𝑡 of the camera, 𝐾 is the camera 

intrinsic matrix (𝑓 is the focal length; 𝑘 and 𝑙 are the pixel-to-meters ratios; 𝑐𝑥 and 

𝑐𝑦 are the offsets in the image frame). If the used camera produces square pixels, 

i.e., 𝑘 = 𝑙, 𝑓𝑘 and 𝑓𝑙 can be replaced by 𝛼, for mathematical convenience. From 

the above equations, a point in the world space 𝑃 can be mapped into a point in an 

image 𝑃′ which is a “well posed” problem, i.e., has a uniquely determined solution. 

However, the mapping from 𝑃′ to 𝑃 usually does not have a uniquely determined 

solution, i.e., an “ill posed” problem. It results into the fact that a camera image 

may be resulted from different real-world settings. As a result, it is challenging for 

a robot to understand its ambient world from one single camera image. 

1.3 Stereo Cameras 

Given that cameras reduce 3D geometry into 2D this creates one problem: the loss 

of depth perception and/or size ambiguity. To mitigate this, two cameras and 

projections can be considered instead, to form a stereo camera. One of the 

commercially available stereo cameras is the ZED sensor4. 

By performing triangulation between the real point and the two corresponding 

projections, the depth of the object can be inferred. This construction is commonly 

referred as epipolar geometry. By comparing information about a scene from two 

corresponding points in left and right cameras that are projected from the same 

real-world point, 3D information can be extracted by examining the relative 

positions of objects in the two panels of the left and right cameras. The challenge in 

forming the epipolar geometry falls in matching the corresponding points in the 

two cameras, i.e., stereo matching. A large number of algorithms have been 

proposed for stereo correspondence using convolutional neural networks in recent 

years [3,4]. It has great potential to have stereo vision for robotics tasks as well, for 

example grasping. 

1.4 Event cameras 

 
4 https://www.stereolabs.com/zed/ 
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1.1.1 Event cameras - hardware 

Compared with conventional cameras, the event cameras offer a number of 

advantages, including lower latency, less power, microsecond temporal resolution 

and larger dynamic range. Different from conventional cameras, the event camera 

employs a Dynamic Vision Sensor (DVS), which is able to capture the changes of 

brightness for each pixel asynchronously [5]. As a result, the event camera 

provides an asynchronous stream of brightness changes including the location, time 

information and polarity (“On” and “Off”), i.e., events. In DVS, each pixel 

memorises the statement of brightness as a reference when an event is triggered, 

and compares it with the current statement. If there exits an obvious variation that 

surpasses the threshold, an event is triggered and the reference is updated by the 

pixel. 

On the other side, due to the use of “On” and “Off” polarity, it is difficult to 

construct a clear and detailed description of a scene. To address this problem, 

Asynchronous Time Based Image Sensor (ATIS) [6] and Dynamic and Active 

Pixel Vision Sensor (DAVIS) [7] have been proposed for event cameras. The ATIS 

includes the DVS pixels for the brightness change detection and another subpixel 

to measure the absolute values of brightness. As a result, ATIS can capture not 

only the motion but the background of static scene. The DAVIS consists of a DVS 

and a conventional Active Pixel Sensor (APS). This combination makes it be able 

to generate the colorful and detailed static background. However, the APS image 

usually suffers from motion blur and it is difficult to synchronise with DVS in 

high-speed motion scenes. 

1.1.2 Event cameras - applications in robotics 

In recent years, event cameras have been widely used in many robotic applications, 

such as object tracking [8,9], optical flow estimation [10,11], 3D reconstruction 

[12,13] and recognition tasks [14-16]. Compared to the conventional vision 

sensors, event cameras demonstrate nice features of low latency, less power and 

temporal resolution. These features make event sensors highly suitable for tasks 

that have strong requirements of efficiency in visual processing. 

There are also advancements in the algorithmic development of the event 

based visual processing in the recent years. The Spiking Neural Networks (SNNs) 

has become a popular method for processing event signals. In the neurons of SNNs, 

the input signals, i.e., events, are received by the neurons and accumulated in the 

internal state, named as “membrane potential”. When it exceeds a threshold, the 

neuron generates a spike for the neurons of the next layer and the internal state of 

the current neuron resets. Variants of SNNs have been developed such as Leaky 

Integrate and Fire models (LIF) and Spike Response Model (SRM) [17], inspired 

by the properties of human neurons. Thanks to this event-based property, the SNNs 

have been widely applied with the event camera in many applications, such as [18-

20]. 

1.5 Depth cameras 

Like its name suggests, RGB-D cameras are able to augment the RGB image with 

depth information, i.e., the distance from each point in the real scene to the 
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cameras. With the ability to measure object depth, RGB-D cameras have been 

widely used for object pose estimation, 3D reconstruction, and robotic grasping. In 

order to adapt to different application scenarios, many consumer-grade depth 

cameras have been developed in recent years. 

According to the sensor types used in the cameras, RGB-D cameras can be 

divided into two categories, i.e., optical depth cameras and non-optical depth 

cameras. Optical depth cameras occupy a major part of the market thanks to its 

mature technology, low price and compact size. The most common techniques 

currently being employed for optical RGB-D cameras are based on structured 

lights, Time of Flight (ToF), and active Infrared (IR) Stereo methods. 

Structured-lights based RGB-D cameras have a pair of a near-infrared laser 

transmitter and a receiver. It uses the transmitter and the receiver to project the 

light with certain structural features onto the object and collect the reflected light 

signals, respectively. Then it calculates the depth information based on the changes 

in the reflected light signals caused by different depth areas. In the early stages of 

RGB-D camera development, structured-lights RGB-D cameras attracted attention 

due to its mature technology, low cost, and low resource consumption. Some iconic 

examples of structured-lights based RGB-D cameras are Intel RealSense R2005 and 

Microsoft Kinect V16. However, structured-lights based RGB-D cameras are easily 

affected by the ambient light and long perception distance, which makes it not 

suitable for outdoor and large scenes. 

Thanks to the increasing processing power, Microsoft successively launched 

two ToF based RGB-D cameras, Kinect V2 in 2014 and Azure Kinect7 in 2018. 

Different from estimating depth with light signal changes in structure-lights based 

method, ToF based RGB-D cameras obtain the distance of the target by detecting 

the round-trip time of the light pulse. Through this way, it can work for long 

distance detection and reduce the interference of the ambient light. Nonetheless, the 

larger size of the ToF based RGB-D cameras limits their use on small mobile 

platforms like in many robotics applications. 

In addition to the cameras mentioned above, RGB-D cameras based on the 

active IR stereo principle have also played an important role in the development of 

reliable depth sensors. Different from the naive block‑matching methods that are 

widely used in stereo vision, the active IR stereo cameras use an infrared laser 

projector to generate texture for the stereo cameras, which significantly improves 

the accuracy. Moreover, the projector can be used as an artificial source of light for 

nighttime or dark situations. There are different series of RGB-D cameras based on 

active IR stereo technology such as Intel RealSense D4158, D4359, D435i10, and 

D45511. 

1.6 Vision sensors for other modalities 

 
5 https://software.intel.com/content/www/us/en/develop/articles/realsense-r200-camera.html 
6 https://en.wikipedia.org/wiki/Kinect 
7 https://azure.microsoft.com/en-gb/services/kinect-dk/ 
8 https://www.intelrealsense.com/depth-camera-d415/ 
9 https://www.intelrealsense.com/depth-camera-d435/ 
10 https://www.intelrealsense.com/depth-camera-d435i/ 
11 https://www.intelrealsense.com/depth-camera-d455/ 
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Cameras (and depth-cameras) can be used to assess large areas instantly, however, 

these suffer from occlusions and variances in the scene illumination, shadows and 

other sources of ambiguities. In contrast, tactile sensors offer a local assessment of 

the scene that is robust to such problems and, given the fact that precise sensing is 

more critical near contact, tactile sensors become a crucial sensing modality to 

consider, that is complementary to vision. Nonetheless, the fabrication of tactile 

skins is widely challenging, due to complicated electronics, cross-talk problems 

and consequently have traditionally produced low resolution of tactile signals [21-

24]. On the other hand, cameras are these days ubiquitous, and consequently have 

become extremely cheap while being able to capture high-resolution images. As a 

consequence, a wide range of works have focused on exploiting such high-

resolution cameras to produce optical tactile sensors.  

Optical tactile sensors can be grouped in two main groups: marker-based and 

image-based, with the former being pioneered by the TacTip sensors [25] and the 

latter by the GelSight sensors [26]. As the name suggests, marker-based sensors 

exploit the tracking of markers printed on a soft domed membrane to perceive the 

membrane displacement and the resulted contact forces. By contrast, image-based 

sensors directly perceive the raw membrane with a variety of image recognition 

methods to recognise textures, localise contacts and reconstruct the membrane 

deformations, etc. Because of the different working mechanisms, marker-based 

sensors measure the surface on a lower resolution grid of points, whereas image-

based sensors make use of the full resolution provided by the camera. Some 

GelSight sensors have also been produced with markers printed on the sensing 

membrane [27], enabling marker-based and image-based methods to be used with 

the same sensor. Both families of sensors have been produced with either flat 

sensing surfaces or domed/finger-shaped surfaces. 

1.1.3 Marker-based sensors 

The first marker-based sensor proposal can be found in [28], however more 

recently an important family of marker-based tactile sensors is the TacTip Family 

of sensors described in [29]. Since its initial domed shaped version [25], different 

morphologies have been proposed: including the TacTip-GR2 [30], a smaller 

fingertip design, TacTip-M2 [31], mimicking a large thumb for in-hand linear 

manipulation experiments, and TacCylinder to be used in capsule endoscopy 

applications. With its miniaturised and adapted design, [30,31] have been 

successfully used as fingers (or finger tips) in robotic grippers. Although each 

TacTip sensor introduces some manufacturing improvements or novel surface 

geometries, the same working principle is shared: white pins are imprinted onto a 

black membrane that can then be tracked using computer vision methods.  

There are also other optical tactile sensors that track the movements of 

markers. In [32], an optical tactile sensor named FingerVision is proposed to make 

use of a transparent membrane, with the advantage of gaining proximity sensing. 

However, the usage of the transparent membrane makes the sensor lack the 

robustness to external illumination variance associated with touch sensing. In [33], 

semi-opaque grids of magenta and yellow makers, painted on the top and bottom 

surfaces of a transparent membrane are proposed, in which the mixture of the two 

colours is used to detect horizontal displacements of the elastomer. In [34], green 

florescent particles are randomly distributed within the soft elastomer with black 
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opaque coating so that a higher number of markers can be tracked and used to 

predict the interaction with the object, according to the authors. In [35] a sensor 

with the same membrane construction method, 4 Raspberry PI cameras and fisheye 

lenses has been proposed for optical tactile skins. A summary of influential 

Marker-based optical tactile sensors is shown in Table 1.1. 

Table 1.1 A summary of influential Marker-based optical tactile sensors 

 Sensor Structures Illumination and Tactile 
Membrane  

TacTip [25] A domed (finger) shape, 40 × 40 × 

85 mm3, and tracks 127 pins; uses a 

Microsoft LifeCam HD webcam. 

 

The membrane is black on the 

outside, with white pins and filled 

with transparent elastomer inside. 

Initially the membrane was cast 

from VytaFlex 60 silicone rubber, 

the pins painted by hand and the tip 

filled with the optically clear 

silicone gel (Techsil, RTV27905); 

however, currently the entire sensor 

can be 3d-printed using a multi-

material printer (Stratasys Objet 260 

Connex), with the rigid parts printed 

in Vero White material and the 

compliant skin in the rubber-like 

TangoBlack+. 

TacTip-M2 [31] A thumb-like or semi-cylindrical 

shape, 32 × 102 × 95 mm3 and 

tracks 80 pins. 

TacTip-GR2 [30] A cone shape with a flat sensing 

membrane, 40 × 40 × 44 mm3, 

tracks 127 pins and uses an Adafruit 

SPY PI camera. 

TacCylinder [36] A catadioptric mirror is used to 

track the 180 markers around the 

sensor cylindrical body. 

FingerVision [32] It uses a ELP Co. USBFHD01M-

L180 camera with a 180 degree 

fisheye lens. It has approximately 

40 × 47 × 30 mm. 

The membrane is transparent, made 

with Silicones Inc. XP-565, with 4 

mm of thickness and markers spaced 

by 5 mm. No internal illumination is 

used, as its membrane is transparent 

Subtractive Color 

Mixing [33] 

N/A Two layers of semi-opaque colored 

markers is proposed. Sorta-Clear 12 

from Smooth-On, clear and with 

Ignite pigment, is used to make the 

inner and outer sides. 

Green Markers 

[34] 

The sensor has a flat sensing 

surface, measures 50 × 50 × 

37 mm and is equipped with a 

ELP USBFHD06H RGB camera 

with a fisheye lens. 

It is composed of three layers: stiff 

elastomer, soft elastomer with 

randomly distributed green 

florescent particles in it and black 

opaque coating. The stiff layer is 
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Multi-camera 

Skin 

[35] 

It has a flat prismatic shape of 

49 × 51 × 17.45 mm. Four Pi 

cameras are assembled in a 2 × 

2 array and fish-eye lenses are 

used to enable its thin shape. 

made of ELASTOSIL® RT 601 

RTV-2 and is poured directly on top 

of the electronics, the soft layer is 

made of Ecoflex™ GEL (shore 

hardness 000-35) with the markers 

mixed in, and the final coat layer is 

made of ELAS- TOSIL® RT 601 

RTV-2 (shore hardness 10A) black 

silicone. A custom board with an 

array of SMD white LEDs is 

mounted on the sensor base, around 

the camera. 

 

1.1.4 Image based sensors 

On the other side of the spectrum, the GelSight sensors, initially proposed in 

[26], exploit the entire resolution of the tactile images captured by the sensor 

camera, instead of just tracking makers. Due to the soft opaque tactile membrane, 

the captured images are robust to external light variations, and capture information 

of the touched surface's geometry structure, unlike most conventional tactile 

sensors that measure the touching force.  Leveraging the high resolution of the 

captured tactile images, high accuracy geometry reconstructions are produced in 

[37-40]. In [37], this sensor was used as fingers of a robotic gripper to insert a USB 

cable into the correspondent port effectively. However, the sensor only measures a 

small flat area oriented towards the grasp closure.  

 

Markers were also added to the membrane of the GelSight sensors, enabling 

applying the same set of methods that were explored in the TacTip sensors. There 

are some other sensor designs and adaptations for robotic fingers in [41-43]. In 

[41], matte aluminium powder was used for improved surface reconstruction, 

together with the LEDs being placed next to the elastomer, and the elastomer being 

slightly curved on the top/external side. In [42], the GelSlim is proposed, a design 

wherein a mirror is placed at a shallow and oblique angle for a slimmer design. The 

camera was placed on the side of the tactile membrane, such that it captures the 

tactile image reflected onto the mirror. A stretchy textured fabric was also placed 

on top of the tactile membrane to prevent damages to the elastomer and to improve 

tactile signal strength. Recently, an even more slim design has been proposed 2 mm 

[44], wherein a hexagonal prismatic shaping lens is used to ensure radially 

simetrically illumination. In [43], DIGIT is also proposed, an ease to manufacture 

and use sensor, with a USB “plug-and-play” port and an easily replaceable 

elastomer secured with a single screw mount. 

 

In these previous works on camera based optical tactile sensors, multiple 

designs and two distinct working principles have been exploited. However, none of 

these sensors has the capability of sensing the entire surface of a robotic finger, i.e., 

both the sides and the tip of the finger. As a result, they are highly constrained in 

object manipulation tasks, due to the fact that the contacts can only be sensed when 
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the manipulated object is within the grasp closure [37,45]. To address this gap, we 

propose the fingertip-shaped sensor named GelTip that captures tactile images by a 

camera placed in the center of a finger-shaped tactile membrane. It has a large 

sensing area of approximately 75 cm2 (vs.) 4 cm2 of the GelSight sensor) and a high 

resolution of 2.1 megapixels over both the sides and the tip of the finger, with a 

small diameter of 3 cm (vs. 4 cm of the TacTip sensor). More details of the main 

differences between the GelSight sensors, TacTip sensors and our GelTip sensor 

are given in Table 1.2. 

With its compact design, the GelTip [46,47] and other GelSight [37, 42-44] 

sensors are candidate sensors to be mounted on robotic grippers, however custom 

grippers and sensors built using the GelSight working principle have also been 

proposed [48,49]. Simulation models of such sensors have also been proposed [50, 

51]. 

Two recent works [52,53] also address the issue of the flat surface of previous 

GelSight sensors. However, their designs have large differences to ours. In [52], 

the proposed design has a tactile membrane with a surface geometry close to a 

quarter of a sphere. Therefore, a great portion of contacts happening on the regions 

outside the grasp closure is undetectable. In [53], this issue is mitigated using five 

endoscope micro cameras looking at different regions of the finger. However, this 

results in a significant increase of cost for the sensor, according to the authors, 

approximately US$3200 vs. only around US$100 for ours). 

Table 1.2 A summary of influential flat and finger-shaped GelSight sensors 

 Sensor Structures Illumination  Tactile Membrane 

GelSight [37] It has a cubic design with 

a flat square surface. A 

Logitech C310 (1280 × 

720) camera is placed at 

its base pointing at the 

top membrane.  

Four LEDs (RGB and 

white) are placed at the 

base. The emitted light 

is guided by the 

transparent hard surfaces 

on the sides, so that it 

enters the membrane 

tangentially. 

A soft elastomer layer 

is placed on top of a 

rigid, flat and  

transparent acrylic 

sheet. It is painted 

using semi-specular 

aluminum flake 

powder. 

GelSight 

[41] 

It has a close-to 

hexagonal prism shape. 

The used webcam is also 

the Logitech C310. 

Three sets of RGB LEDs 

are positioned (close to) 

tangent to the elastomer, 

with a 120° angle from 

each other. 

A matte aluminium 

powder is proposed 

for improved surface 

reconstruction. Its 

elastomer has a flat 

bottom and a curved 

top. 

GelSlim 

[42] 

A mirror placed at a 

shallow oblique angle 

and a Raspberry Pi Spy 

(640 × 480) camera is 

used to capture the tactile 

image reflected by the 

mirror. 

A single set of white 

LEDs is used. These are 

pointed at the mirror, so 

that the light is reflected 

directly onto the tactile 

membrane. 

A stretchy and 

textured fabric on the 

tactile membrane 

prevents damages to 

the elastomer and 

results in improved 

tactile signal strength. 



 Running head chapter title 13 
 

 

GelSlim 

v3 [44] 

It is shaped similar to 

[37, 41] however slimmer 

20 mm of thickness, and a 

round sensing surface. 

A custom hexagonal 

prism is constructed to 

ensure radially symmetric 

illumination. 

An elastomer with 

Lambertian reflectance 

is used, as proposed in 

[41]. 

DIGIT 

[43] 

 

A prismatic design, 

with curved sides. An 

OmniVision OVM7692 

(640 × 480) camera 

is embedded in the 

custom circuit board. 

Three RGB LEDs are 

soldered directly into the 

circuit board, illuminating 

directly the tactile 

membrane. 

The elastomer can be 

quickly replaced using 

a single screw mount. 

 

Round 

Fingertip 

[50] 

 

It has a round membrane, 

close to a quarter of 

sphere. A single 160° 

FoV Raspberry Pi (640 × 

480) is installed on its 

base. 

Two rings of LEDs are 

placed on the base of the 

sensor, with the light being 

guided through the 

elastomer. 

 

Both rigid and soft 

parts of the membrane 

are cast, using SLA 

3D printed molds. 

 

OmniTact 

[51] 

 

It has a domed shape. 

Five endoscope cameras 

(400 × 400) are installed 

on a core mount, and 

placed orthogonally to 

each other: pointing at the 

tip and sides. 

 

RGB LEDs are soldered 

both onto the top and sides 

of the sensor. 

 

The elastomer gel is 

directly poured onto 

the core mount (and 

cameras) without any 

rigid surface or empty 

space in between. 

 

GelTip 

[46,47] 

 

It has a domed (finger) 

shape, similar to a human 

finger. A Microsoft 

Lifecam Studio webcam 

(1920× 1080) is used. 

 

Three sets of LEDs, with a 

120° angle from each 

other, are placed at the 

sensor base, and the light is 

guided through the 

elastomer 

An acrylic test tube is 

used as the rigid part 

of the membrane. The 

deformable elastomer 

is cast using a three-

part SLA/FFF 3D 

printed mold. 
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1.7 Conclusions 

In this chapter, we introduced different aspects of the vision sensors for robotics 

applications, from their working principles to their applications to robotics, 

particularly on robot perception and their use in sensors of other modalities. As one 

of the most widely used sensors for robots, they have advantages of low cost and 

high resolution. Vision sensors have also been used in other sensing modalities and 

we have introduced the state-of-the-art research in optical tactile sensors using 

visual sensors. By having the vision sensors, robots can sense and estimate the 

properties of the objects that they interact with, e.g., object shapes, appearances, 

textures and mechanical parameters. It can be forecast that vision sensors will be 

one of the most widely used sensors in the research of robotics, and new types of 

vision sensors, like event sensors and more robust RGB-D sensors, will emerge in 

the future research and development. 
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