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Abstract

We prove that analogues of the Hardy-Littlewood generalised twin prime
conjecture for almost primes hold on average. Our main theorem establishes
an asymptotic formula for the number of integers n = p1py; < X such that
n + h is a product of exactly two primes which holds for almost all |h| < H
with (log X)197¢ < H < X'7¢, under a restriction on the size of one of the
prime factors of n and n + h. Additionally, we consider correlations n,n + h
where n is a prime and n + h has exactly two prime factors, establishing an
asymptotic formula which holds for almost all |h| < H with X/6*¢ < H <

Xt-e,
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Chapter 1

Introduction

We have known since Euclid that there are infinitely many primes. Naturally,
we then ask how the primes are distributed and whether there exist patterns
among them. The prime number theorem was proved independently by de la
Vallée Poussin [40] and Hadamard [13] in 1896 and describes the distribution

of the primes, establishing the asymptotic formula

X
7(X) :=#{p < X : p prime} ~ g X' (1.0.1)

When looking for patterns among the primes, we see that pairs with
difference two often appear, and the twin prime conjecture famously states
that there are infinitely many primes p such that p + 2 is also prime. More
generally, it is conjectured that there are infinitely many primes p such that

p + h is prime, where h is an even integer. These questions remain open
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today.
Hardy and Littlewood [14] conjectured the following asymptotic formula

for the number of primes p < X such that p + A is also prime

X
#{p < X : p,p+ h both prime} ~ &(h) —5— (1.0.2)
log® X
as X — oo, where &(h) is the singular series defined by
— p—1

S(h) == 2H2Hp_ : (1.0.3)

plh

p>2

if i is an even integer and zero if h is odd. Here II, := Hp>2 (1 — ﬁ) is the
twin prime constant. The Hardy-Littlewood conjecture (1.0.2) is equivalent

to showing for any fixed non-zero integer h that

)1_< > Le(n)lp(n+h) ~ &(h) (% > h»(n)>, (1.0.4)

X<n<2X X<n<2X

where 1p is the indicator function of the primes, as X — oo.

The Hardy-Littlewood conjecture remains wide open, and is not known
for any fixed even h. However, there are several results showing it holds on
average, that is, the asymptotic formula (1.0.4) holds for almost all shifts
|h| < H = H(X), where H grows with X. We would like to take H as small
as possible, with the aim to establish that we can take an average of bounded

length.
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Van der Corput [41] and Lavrik [22] proved that the Hardy-Littlewood
conjecture (1.0.4) holds for almost all || < X. In 1989, Wolke [43] im-
proved on this, proving that if X?/8t¢ < H < X'~¢, then for all but at most
O..A(Hlog™* X) values of |h| < H we have that (1.0.4) holds for any fixed
A > 0. Under the assumption of the density hypothesis, Wolke was able
to obtain the range X'/?2*¢ < H < X. Mikawa [32] was able to go beyond
this unconditionally in 1991, improving the range to X/3t¢ < H < X. The
shortest known average is due to Matomiki, Radziwilt and Tao [27], who
showed that if 0 < hg < X'7¢ and X®/33+¢ < H < X'~ then (1.0.4) holds
for all but O, 4(H log™* X) values of h such that |h — hy| < H.

Our first result establishes an analogue of the Hardy-Littlewood conjec-
ture for integers which have exactly two prime factors (called E5 numbers)
which holds on average, provided we restrict the size of one of the prime

factors.

Definition 1.0.1. Given P > 0 and fixed 6 > 0 we define E} := F}(P)
to be the set of integers n = p;py with exactly two prime factors such that

p1 € (P, PH_(S].

The presence of the two prime factors gives the problem a bilinear struc-

ture which enables us to go further and we show an asymptotic formula for

!Matomiki, Radziwilt and Tao note that their result can also be proved in the range
X'7¢ < H < X by their methods. Theirs and the preceding results are proved with a
better error term.



CHAPTER 1. INTRODUCTION 11

the correlation

<n<2X

where 1, is the indicator function of the set Ej, which holds for almost all

|h| < H with (log X)'¥** < H < X1log™* X and A > 3.

Theorem 1.0.2. Let ¢ > 0, A > 3 be fizred and let (log X))t < H <

Xlog™ X. Then, there exists some n =n(c) > 0 such that

% Y. Lg()lgn+h) ~&S(h) (% ) ﬂEé(”)>

X<n<2X X<n<2X

holds for all but at most O(H log™" X)) values of 0 < |h| < H. Here we define

E} as in Definition 1.0.1 with

5. ) oeX J if (log X)19** < H < exp((log X)),

exp ((loglog X)?), if exp((log X)*") < H < Xlog™ X.

Remark 1.0.3. Here, it is crucial that the integers n and n + h have exactly
two prime factors, not just at most two (such integers are called P, numbers).
As we will discuss later in this chapter, there are previous results considering
P, numbers which are proved using sieve theory.

Also, the range Xlog™® X < H < X can be dealt with by the same

methods, see for example [32], [27].

We can prove a similar asymptotic formula for correlations of general Fs
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numbers which holds on average using the same methods. Here, Fj is the set
of integers with exactly two prime factors, with no restriction on the sizes of
the prime factors as in Definition 1.0.1 of E}. Making some adjustments to
the proof of Theorem 1.0.2, we obtain an asymptotic formula for correlations
n,n+h € E, which holds for almost all |h| < H. The cost of considering the
set of Ey numbers is taking H larger than in the previous theorem, although

we still go beyond what is known for primes.

Theorem 1.0.4. Lete >0, B > 0, A > 3 be fived and let exp ((log X)!7¢) <
H< Xlog_AX. Then, we have that

v X e )innn) ~ &) <§ > ﬂEz<n>>

X<n<2X X<n<2X
for all but at most O(H log™® X) values of 0 < |h| < H.

We can also combine our argument with the work of Mikawa [32] on
correlations of primes to study correlations n,n + h where n is a prime and
n+ h is an Fy number on average. We are still able to take advantage of the
bilinear structure provided by the almost prime to go further than what is
known for primes and prove an asymptotic formula which holds for almost

all |h| < H with H as small as X'/6+¢,

Theorem 1.0.5. Let € > 0 be fized sufficiently small, B > 0, A > 5 be fized
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and let XV < H < Xlog= X. Then, we have that

% 3 Ilp(n)]lEQ(n—i—h)NG(h)(% > h»(n))(% > ﬂEz(m))

X<n<2X X<n<2X X<m<2X
for all but at most O(H log™® X) values of 0 < |h| < H.

There are a number of previous works which use sieve theory to obtain
results on gaps between primes and almost primes. In the last twenty years,
there have been several breakthroughs on bounded gaps between primes.
Goldston, Pintz and Yildirim [12] proved in 2005 that there exist consecutive
primes closer than any arbitrarily small multiple of the average spacing. In
particular, if p, is the n-th prime, then by the prime number theorem (1.0.1)
the average spacing is log p,,, and Goldston, Pintz and Yildirim’s result states

lim inf 22— P
n—oo  logpy
Assuming the Elliott-Halberstam conjecture, the authors prove that there
are infinitely many pairs of consecutive primes differing by at most 16, that
is

lim inf(p,.1 — pn) < 16. (1.0.5)
n—oo

The Elliott-Halberstam conjecture [6] (see also [4, 8]) concerns the distri-

bution of primes in arithmetic progressions.

Conjecture 1.0.6 (Elliott-Halberstam Conjecture). For every A > 0 and
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0 < 0 <1 we have that

x T

max E A(n < T

o’  (a,0)= e ©(q) log” x
n=a(q)

In 2013, Zhang [44] in breakthrough work established unconditionally that
there exist infinitely many bounded gaps between the primes. In particular,
Zhang showed that

lim inf(pn41 — pn) < 7 x 107

n—oo

Later in 2013, Maynard [30] introduced a new idea which substantially sim-
plified the proof of this result and established the improved bound 600 for
(1.0.5) unconditionally. Under the Elliott-Halberstam conjecture, Maynard
obtains the bound 12. The Polymath8b project [36] subsequently improved
the unconditional bound to 246, and under the assumption of the generalised
Elliott-Halberstam conjecture obtained (1.0.5) with 6. The twin prime con-
jecture would amount to proving (1.0.5) with the bound 2.

Goldston, Graham, Pintz and Yildirim [11] proved an almost prime ana-
logue of (1.0.5) which holds unconditionally; if ¢; < g < --- denotes the

sequence of products of exactly two distinct primes, then

lim inf(gu41 — gn) < 6.

n—

These results on bounded gaps between primes and almost primes are
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proved using sieve theory and the arguments do not establish an asymptotic
formula. However, sieve methods can be used to obtain an upper bound for

the correlation (1.0.4), namely

v 3 Lmnm+h) <

X<n<2X

S(h)

T X7 (1.0.6)

Chen’s theorem gives that p+ 2 = ¢ such that p is prime and ¢ is either a
prime or a product of two primes holds for infinitely many primes p. Debouzy
[5] proved under the Elliott-Halberstam conjecture that given any 0 < 5 < ~y

there exists X such that for all X > X, we have that

> A(n>A(n+2)+7_Lﬁ > An+2) > % — 21T, X (14+0(1)).
n<X n<X dido=n
a B nB<dy <n?

This result is proved using an improvement of the Bombieri asymptotic sieve.

More generally, Bombieri [2] had previously considered pairs P, and Py +
2 = p with p prime and P, an almost prime with at most k factors. More
precisely, defining Agz(n) := (1 *log”)(n) to be the generalised von Mangoldt
function where * denotes Dirichlet convolution, Bombieri proved that if k£ > 1

is an integer and x > z((k) we have

Z Ak(n)A(n + 2) = 2H2X(10g X)kil(k + O(/{4/32*k/3))

n<X

and, assuming the Elliott-Halberstam conjecture, for k& > 2 we have the
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asymptotic

> Ax(m)A(n + 2) ~ 2TEX (log X ). (1.0.7)

n<X
Unlike in these results on P, numbers with at most two prime factors, integers
with exactly two prime factors cannot be counted using sieve methods due
to the parity problem, even assuming the Elliott-Halberstam conjecture. In
general, sieve methods have difficulty distinguishing between integers with an
even and an odd number of prime factors (see, for example, [15, Chapter 2]).
So, while these methods can be used to obtain asymptotics such as (1.0.7) for
problems involving P, numbers which have either one or two prime factors,
we would need additional input to separate the contributions coming from
each of these sets of integers. In particular, we cannot currently expect
to obtain asymptotics for our questions on integers with exactly two prime
factors using sieve methods, and the best we can hope for is to establish
an upper bound, similar to the prime case (1.0.6). To prove our results we
will instead apply the circle method as in the previously discussed works on

correlations of primes [27], [32].



Chapter 2

Correlations of almost primes

In this chapter we prove our results on correlations of almost primes and
primes. First, in Section 2.3 we will prove that an analogue of the Hardy -
Littlewood conjecture for almost primes which have exactly two prime factors
holds on average under a restriction on the size of one of the prime factors.

We recall the definition of the set El:

Definition 1.0.1. Given P > 0 and fixed § > 0 we define E} := E}(P)
to be the set of integers n = p;py with exactly two prime factors such that

p1 € (P, P1+6].

Then, for correlations of integers n,n+h € EY, we will prove that the ex-

pected asymptotic formula holds for almost all |h| < H with H > (log X)!*<:

Theorem 1.0.2. Let ¢ > 0, A > 3 be fired and let (log X)T¢ < H <

17
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Xlog™ X. Then, there exists some = n(c) > 0 such that

v 3 gt h) ~ &) (% > ﬂEa<n>>

X<n<2X X<n<2X

holds for all but at most O(H log™" X') values of 0 < |h| < H. Here we define

E} as in Definition 1.0.1 with

. J(osX)IT if (log X)'** < H < exp((log X)),

exp ((loglog X)?), if exp((log X)) < H < X log™* X.

w by the prime

Remark 2.0.1. Here, the main term is of size ~ S(h) e X

number theorem and Mertens’ theorem (Lemma 2.2.2); where § > 0 is fixed
as in Definition 1.0.1. The choice A > 3 ensures that the second term of
(2.2.2), which arises in the application of Gallagher’s Lemma (Lemma 2.2.4),

gives sufficient cancellation.

In Section 2.4, we will adapt the proof of Theorem 1.0.2 to prove that
the expected asymptotic formula for correlations of n,n + h € E5 holds for

almost all |h| < H with a longer average H than the previous result.

Theorem 1.0.4. Lete >0, B> 0, A > 3 be fized and let exp ((log X)'7¢) <
H < Xlog™* X. Then, we have that

v 3 An st h) ~ &) (% > wm)

X<n<2X X<n<2X
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for all but at most O(H log™" X)) values of 0 < |h| < H.

(log log X)?

Remark 2.0.2. Here, the main term is of size ~ S(h) og? X

by the prime

number theorem and Mertens’ theorem (Lemma 2.2.2).

Lastly, in Section 2.5 we adapt the argument to establish that the con-
jectured asymptotic formula for the number of primes p such that p + h has

exactly two prime factors holds for almost all |h| < H with XY/6+< < H.

Theorem 1.0.5. Let € > 0 be fixed sufficiently small, B > 0, A > 5 be fized

and let XY/ < H < Xlog= X. Then, we have that

> ﬂp<n>nEz<n+h>~6<h><§ 2 ﬂﬂn))(% 2 1E2<m>)

X<n<2X X<n<2X X<m<2X
for all but at most O(H log™® X) values of 0 < |h| < H.

Remark 2.0.3. Here, the main term is of size ~ G(h)lﬁféggXX by the prime

number theorem and Mertens’ theorem (Lemma 2.2.2). The choice A > 5
ensures that the second term of (2.2.2), which arises in the application of

Gallagher’s Lemma (Lemma 2.2.4), gives sufficient cancellation.

2.1 Proof Sketch

We now discuss the main ideas of the proof of Theorem 1.0.2. We apply the

Hardy-Littlewood circle method (see, for example, [42]), first expressing the
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correlation

X<n<2X

in terms of the integral

/

We need to understand which points on the unit circle contribute the

2

> Lp(n)e(na)| e(—ha)da. (2.1.1)

X<n<2X

main term. Dirichlet’s approximation theorem states that for each () > 1
there exists a/q € Q with (a,q) =1,1 < ¢ < Q and |a —a/q| < 1/(¢Q). So,
we first aim to understand the behaviour of the exponential sum appearing
in (2.1.1) at a rational point a/q with (a,q) = 1 on the unit circle. We have

that

q
an ab
Z T (n)e (—) = e (—) Z lg(n)
q b=1 17 xin<ox
n=b mod q

g ab
bz;e (;) P< 21% X sz -
p1s E<p2<—

= p1
p2=bp1 mod q

Heuristically, applying results on primes in arithmetic progressions (e.g. the
Siegel-Walfisz Theorem) on the inner sum followed by Mertens’ Theorem

(Lemma 2.2.2) on the sum over p;, we would expect that this is

~ Ma)esX
©(q) log X’



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 21

where ¢s > 0 is some constant depending on ¢. This suggests that the larger
contributions arise when « € (0,1) is well approximated by a rational a/q
with a small denominator q.

We therefore split the integral (2.1.1) over the unit circle into integrals
over the major arcs, the set of points in (0,1) which are well approximated
by a rational with a small denominator, i.e. the set of @ € (0,1) such that
la — a/q| < 1/(¢Q) for some integers (a,q) = 1 with 1 < ¢ < log" X for
some bounded A" > 0, and the minor arcs consisting of the rest of the circle.
Here, @ is slightly larger than the size of the smaller prime factor P, and
depends on the size of H(X) (in particular, it is a power of log X, or larger
when H > exp((log X)?)). In order to achieve the smallest possible H, we
want to take A’, P and @ as small as possible.

In many problems of this type (see e.g. [27], [32]) where the Hardy-
Littlewood circle method is applied, it is usual that the major arcs are treated
in a standard way to provide the main term and an error term which is not
too difficult to control, while the contribution from the minor arcs is more

difficult to bound suitably. Since the correlation

Z L (n)lg(n+h) = Z Z 1

X<n<2X P<p1,p3<P1t3 X<p1p2,p3pa<2X
p3pa=pip2+h

has a bilinear structure, we are in fact able to bound the integral over the
minor arcs with relative ease using standard results on bilinear exponential

sums. For the major arcs, while we are still able to evaluate the main term
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in the usual way, the difficulty now lies in estimating the error term.
We will first treat the integral over the minor arcs in Proposition 2.3.6.

We find cancellation in the contribution on average over the shift h:

2

Z I (n)e(na)| e(—ha)da

X<n<2X

>

0<|h|<H

We next expand the square, apply Poisson summation (Lemma 2.2.1) and

Gallagher’s Lemma [10, Lemma 1]:

Lemma 2.2.4 (Gallagher’s Lemma). Let 2 <y < X/2. For arbitrary com-

plex numbers a,,, we have

2 1 2X
/ dp <« — /
181<5; y° Jx

This reduces the problem to bounding an integral of the form

2X
sup /
acm Jx

The bilinear structure of these sums means we get the required cancellation,

2 2
dx—i—y( max ]an]> :

X<n<2X

Z ane(pn)

X<n<2X

>

r<nlzr+y

(2.2.2)

Z 1y (n)e(na)

r<n<zx+H

2 2X
do = sup/ Z e(apip2)| du.

acm.JX z<p1p2<z+H
P<p1§P1+6

as seen in the work of Mikawa [32]. We apply the Cauchy-Schwarz inequality
before separating the contributions of the diagonal and off-diagonal terms.
The diagonal terms are bounded trivially and a standard argument for bound-

ing bilinear exponential sums is used to bound the off-diagonal terms.
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The major arcs, treated in Proposition 2.3.7, contribute the main term,
which is evaluated in a standard way, and an error term. On the major arcs,
we can write a = a/q + [ with ¢ < Qo, (a,q) = 1 and |f)| < .g- We then

need to evaluate

S5 [ ]S e (%) e

q<Qo 1<a<q BI<75 qQ
(a,9)=

We expand the additive character e(an/q) in terms of Dirichlet characters y
mod ¢, and after applying character orthogonality the problem is transformed

into understanding

L, (n)x(n)e(Bn)| dp.

ETPM

A suitable approximation to the principal character then provides the main

q<Qo qQ X <n<2X

term.
To the remaining terms, we again apply Gallagher’s Lemma (Lemma
2.2.4) to reduce the problem to understanding almost primes in almost all

short intervals. We add and subtract a sum over a longer interval, so that
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we aim to estimate an expression of the form

2

q

g — g dx
) (

q<log?’ X x(q)

XFX0

2X 2 2
/ (q—Q > -5 X )ﬂEém)x(n)

X z<n<z+qQ/2 z<n<z+qA/2

2

+/ 2 Z Lg(n)x(n) dx), (2.1.2)

A
X q z<n<z+qA/2

with A slightly smaller than X. To the second term, we first apply Cauchy-
Schwarz to separate the two prime factors. Since the length of the interval
is close to X and we need an estimate for almost all intervals, we only need
a result which is slightly stronger than the prime number theorem. For
the estimation of the first term, we adapt the work of Terdvéinen [38] on
almost primes in almost all short intervals (which in turn adapts the work of
Matomaéki and Radziwilt [25] on multiplicative functions in short intervals).
In particular, we first use a Parseval-type bound (Lemma 2.2.7) in order to
bound the integral in terms of the mean square of the associated Dirichlet

polynomial

1, (n)x(n) |

nltit

dt. (2.1.3)

zz/

q<Qo x(q T
X#Xo

X<n<2X

Finding cancellation in this mean value is the crux of the argument, and is
covered in detail in Sections 2.3.5 and 2.3.6.

For now, if we were only interested in achieving the range H > X¢ we
would first choose the smaller prime factor of the almost primes n,n+h € E}

to instead have size P = exp((log X)3/*). We choose the parameters of the
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circle method to be Qy = log”" X with A’ > 4 fixed and Q = exp((log X)*/?).
To ensure cancellation in the contribution of the minor arcs, we will need
H > @), so we take H > X*.

Heuristically, we first factorise the Dirichlet polynomial appearing in
(2.1.3) into two Dirichlet polynomials, each associated with one of the prime
factors of n = p1po. Ignoring remainder terms, we would need to find can-

cellation in

2

pl) X(p2)
3D [l > w s xa
a<Qo x T |p<p<ap P1 X/(2P)<p2<2X/P Ps

X# xo

As P = exp((log X)%4), we can find cancellation pointwise in the shorter
polynomial using the Vinogradov-Korobov zero-free region for Dirichlet L-
functions. We then apply the mean value theorem (Lemma 2.3.27) to the

mean value of the Dirichlet polynomial over ps, so that the above is bounded

by )
< exp(—c(log X)) Z Z/ L{Et) dt
9<Qo x(q T\ x/@2pP) <p2<2X/P P2
x#xo
q)TP
<Y ( @O(j)) exp(—c(log X)),

9<Qo

for some constant ¢ > 0. As T ~ X/(qQ), P = exp((log X)*%), Q =
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exp((log X)¥?) and Qo = log® X, this is

P
< (@ + 1) exp(—c(log X)° Z <p << exp(—c(log X)),

7<Qo

for some constant ¢’ > 0, which is sufficient.

To improve the range of H further and achieve a power of log X, we need
to take a smaller prime factor P. In particular, we want to choose P to
be a power of log X, which means we can no longer apply the Vinogradov-
Korobov zero-free region to obtain cancellation. Instead, we need to use a
more involved argument with additional tools and ideas. First, we factorise
this Dirichlet polynomial into a short Dirichlet polynomial corresponding
to the smaller prime factor p; and a longer polynomial corresponding to
the larger prime factor p,. The domain of integration is split according to
whether the short polynomial is pointwise small. When the shorter poly-
nomial is small, we apply the pointwise bound followed by a mean value
theorem. When this shorter polynomial is large, to get sufficient cancellation
we further decompose the long Dirichlet polynomial into products of shorter
polynomials using Heath-Brown’s identity [17, Eq. (8)], reducing the prob-
lem to estimating type I and type II sums. The type I sums occur when
these polynomials are sufficiently long and are in fact partial sums related to
Dirichlet L-functions. In this case we are able to apply the Cauchy-Schwarz
inequality followed by a result on the twisted fourth moment of partial sums

of Dirichlet L-functions. Otherwise, for the type II sums, we then further
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split the domain according to whether one of these polynomials is small, in
which case it is bounded pointwise before we use a mean value theorem.
When the polynomial is large, we apply the Halasz-Montgomery inequality
[34, Theorem 7.8] followed by large value theorems.

The proof of Theorem 1.0.4 also follows the argument given above, but we
need to make appropriate adjustments to the parameters when applying the
circle method and take more care when using the Cauchy-Schwarz inequality.
On both the major and minor arcs the application of Cauchy-Schwarz to sums
over the smaller prime factor is now too inefficient, but we can overcome
this by splitting these sums into dyadic intervals and then combining the
contributions. For the proof of Theorem 1.0.5, we combine these ideas for
the almost primes with the work of Mikawa [32] on the primes.

We lastly remark that recently, the methods of Matomaki and Radziwilt
[25] have been combined with the Hardy-Littlewood circle method to make
progress on other problems in analytic number theory. Matomaki, Radziwilt
and Tao [28] obtained short averages (of length log? X for some large B > 0)
for correlations of divisor functions and the von Mangoldt function, at the
cost of weaker error terms. Matomaéki, Radziwilt and Tao [26] use these
ideas to establish that Chowla’s conjecture [3] holds on average as soon as
the length of the average grows with X. Recent work of Lichtman and
Terdvéainen [24] shows that a hybrid of Chowla’s conjecture and the Hardy-
Littlewood conjecture holds on average (see also [23]), with average of length

a power of log X.
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2.2 Preliminaries

2.2.1 Notation

Throughout p, p;, are used to denote prime numbers, while k,1,m,n,q,r,v
(with or without subscripts) are positive integers.

As usual, p(+) is the Mobius function and ¢(-) is the Euler totient function.
We let d,.(n) denote the number of solutions to n = a;---a, in positive

integers. We let ¢,(-) be the Ramanujan sum, defined by

cg(n) = zq: e (%) .

a=1
(a,9)=1

We write 7(-) for the Gauss sum defined on Dirichlet characters y modulo ¢

by

0= Y e (4) o (22.1)

n=1
which satisfies 7(xo) = u(q).

We use e : T — R to denote e(x) := ¢*™® where T is the unit circle. The
notation 1g(+) is the indicator function of the set S; in particular, we write
lg(n) = 1if n € S and Lg(n) = 0 otherwise. Let x| := min,ez |z — n|
denote distance to the nearest integer. For a function f € L'(R), we define
its Fourier transform to be f(£) = Jg f(@)e(x)dx for all € € R.

We will use (a,b) to denote the greatest common divisor of natural num-

bers a and b, while we write a | b if a divides b. The shorthand a = b(q) is



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 29

used to denote that a and b are congruent modulo gq.

We use the shorthand x(gq) to denote that the summation is taken over
all Dirichlet characters modulo ¢q. For complex functions g;, go we use the
usual asymptotic notation g;(x) = O(g2(x)) or g1(z) < go(z) to denote that
there exist real xqg and C' > 0 such that for every z > z, we have that
lg1(z)| < Clga(x)|. We write g;(z) = o(ga2(x)) if for every € > 0 there exists
xo such that |g1(z)| < €|go(z)| for all x > xy. We use the convention that

¢ > 0 may be different from line to line.

2.2.2 Preliminary Lemmas

We now state several results we will need throughout the argument. We will

need to apply a version of the Poisson summation formula.

Lemma 2.2.1. Suppose that f: R — R is a Schwartz function and suppose

that u € R and v € R*. Then

5 om i =155 (2) ()

meZ
Proof. See [18, Eq. (4.24)] or [35, Theorem D.3]. O
We will frequently make use of Mertens’ Theorem:

Lemma 2.2.2 (Mertens’ Theorem). For x > 2, we have that

1 1
Z—zloglogx+b+0< ),
P log x

p<z
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where b=~ -3 > 72, k# and vy is Euler’s constant.
Proof. See Mertens’ [31] or [35, Theorem 2.7]. O

We will need the following bound on primes p such that p+ h is a prime,

and also a bound for the singular series:

Lemma 2.2.3. Let h < x be an even non-zero integer and suppose that

y > 4. The number of primes p € (x,x + y| such that p+ h is also prime is

S&(h)y
(logy)?

<

Furthermore, we have that

> 6h) <

h<z
and

S(h) < loglog h.

Proof. See [35, Corollary 3.14] and the subsequent exercises. The final bound

follows from Mertens’ theorem (Lemma 2.2.2). O

We will also need Gallagher’s Lemma, which will reduce bounding in-
tegrals over the major and minor arcs to studying almost primes in short

intervals.

Lemma 2.2.4 (Gallagher’s Lemma). Let 2 <y < X/2. For arbitrary com-
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plex numbers a,,, we have

2 12X
/ ey
\5|< y® Jx

Proof. This lemma is a modification of [10, Lemma 1] (see also [32, Lemma

ane(fn)

>

z<n<lzr+y

2 2
da:—l—y( max |an|)

X<n<2X

X<n<2X

(2.2.2)

1]). We use a similar argument to [33, Lemma 1.10]. We suppose that the
sequence of complex numbers a,, is supported on (X,2X]|. We begin by

considering the integral

2X—y 2

— / an| dx

m<n<m+y

12X 2

= — / a,| dr — — g a,| dzx

x<n<x+y Y= Jax—y z<n<z+y

2X 2 2
<< — an,| dx + max |a
" Y\ X2 <2X’ nl
x<n<x+y

giving us the right hand side of (2.2.2). By substitution, we have that

il

2

1 2X—y/2
dxr = —2/ Z an,| dzx.

Y= I Xty z—y/2<n<z+y/2

x<n<x+y
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We define

Fy(z) =
0, if|z| >
1
Cy(z) :g Z O,
In—z|<y/2

= Zane(ﬁn).

Then Cy(z) = ), anFy(x —n) and, taking Fourier transforms,

/ Zan x —n)e(xf)dx
= Z ane(né) /_ Fy(x —n)e((x — n)é)dx
= (5 Fy)(ﬁ)

Note that since only finitely many terms in the sum over n do not vanish,
we can interchange the order of summation and integration. The series S' is
absolutely convergent, so Cy is square-integrable. Therefore, by Plancherel’s

theorem, we have that

il

z<n<x+y
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Now, we have that

and therefore

2 1

> [ ds,

2y

>

r<n<lz+y

1 2X—y
y? /X

as claimed. O

We will need a result on primes in short intervals:

Lemma 2.2.5. Let ¢ > 0 and define (x) := > . A(n). For all y with

n<x

2712 <y < 2 we have

P(x +y) — () =y + O (yexp(—c(logx)/*7%))

for some constant ¢ > 0.
Proof. This can be proved following the argument of [18, Theorem 10.5]. [

Once we have applied Gallagher’s Lemma in the treatment of the major
arcs, part of the error term is reduced to a Dirichlet character analogue of
a problem on primes in almost all short intervals. We will use the following
result adapted from the work of Koukoulopoulos [21] to bound the second

term arising in (2.1.2):
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Lemma 2.2.6. Let A > 1 ande € (0, 3] be fived. Let X > 1, 1<Q<X1/6+E

and A = X7 with % +2¢ <0 <1. Then we have that

Q3A%X

2
(A(n)x(n) —dy)| dr < logTX

9

zz/

<@ x(q

a;<n<x+qA
where we define 6, = 1 if x = xo and d,, = 0 otherwise.

Proof. The proof can be adapted from the proof given in [21, Section 4], as

described in the Appendix. n

We use the following Parseval-type result to reduce the problem of finding
almost primes in short intervals (cf. the first term of (2.1.2)) to finding

cancellation in the mean square of the associated Dirichlet polynomial:

Lemma 2.2.7 (Parseval Bound). Let a,, be arbitrary complex numbers, and

let 2 < hy < hy < 3 with T" > 1. Define F(s) := ) x_,<ox = Then

2X
X/

x 27
max _|a,|? +/ |F(1+it)] dt—i—max—/ (1 +4t)|dt.
T/

(T )2 X<n<2X

2

dz

an_hi Z Qp,

2 x<n<z+ho

m<n<z+h1

<

Proof. This is [38, Lemma 1], which is a variant of [25, Lemma 14]. O

We record an exponential sum bound and a related bound on the sum of
the reciprocal of the distance to the nearest integer function which provide

the necessary cancellation in the estimation of the minor arcs.
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Lemma 2.2.8. Let § € R, then

> " e(Bn) < min <x ﬁ) .

n<x

Proof. This is a standard result, see for example [18, Chapter 8, Eq. (8.6)].
]

Lemma 2.2.9. If 1 < X <Y and a € R satisfies « = a/q + O(q?) with
(a,q) =1, then we have

Y 1 Y
Z min (—, —) < (— +X +q> log(¢X).
n [lan]| q

n<X

Proof. This is a standard result, see for example [18, Chapter 13, Page 346].
]

We will also need to apply the Brun-Titchmarsh inequality:

Lemma 2.2.10. If (a,q) = 1, then for any € > 0 and q < x'~° we have the

bound
x

mig,a) < o(q)log(z/q)

Proof. See [39, Theorem 2]. O
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2.3 Proof of Theorem 1.0.2

2.3.1 Applying the Circle Method

To prove Theorem 1.0.2, we will apply the Hardy-Littlewood circle method.

First, we will set the size of the smaller prime factor:

Definition 2.3.1. Let € > 0 be small and fixed. Define P > 0 according to

the size of H as follows:

(log X )17+, if (log X9 < H < exp((log X)="),
P .=

exp ((loglog X)?), if exp((log X)*") < H < Xlog " X.

It will be more convenient throughout the argument to have a log weight

attached to the indicator function of E as follows:

Definition 2.3.2. Let P be defined as in Definition 2.3.1. We define the

arithmetic function ws : N — R to be

logps, if n = pips with P < p; < P2,

0, otherwise.

From now on we fix § > 0 sufficiently small. We will prove the following
asymptotic formula, from which Theorem 1.0.2 follows immediately after

applying dyadic decomposition:
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Theorem 2.3.3. Let ¢ > 0, A > 3 be fizred and let (log X)) < H <
Xlog ™ X. Then, there exists some n = n(e) > 0 such that for all but at

most O(H log™" X)) wvalues of 0 < |h| < H we have that

2

> @mmmarn-emx| ¥ ) ro(5y)

X<n<2X P<p<pPl+s
where &(h) is the singular series defined in (1.0.3).

Remark 2.3.4. As H becomes an arbitrarily large power of log X, or is
larger than any power of log X, we are able to improve the bound on the
error terms to O(X log™ X) for A > 0 once we have suitably modified the
dependencies between H, P and the parameters of the circle method. We
also note that, after appropriately modifying the main term, using this result

we can in fact prove Theorem 1.0.2 with a better error term.

We consider the integral

/0 S(@)Pe(—ha)da = 3 w2(m)w2(n)/0 e(am — n — h))da,

X<mn<2X

(2.3.1)

where for a € (0,1) we define the exponential sum

S(@) =Y w@(n)e(na).

X<n<2X
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Then, by the integral identity

1 1, ifn=0,
/ e(nz)dx = (2.3.2)
0

0, otherwise,

we have that the integral in (2.3.1) vanishes unless m = n + h. Thus (2.3.1)

becomes

/o 1S(a)|?e(—ha)da = Z wy(n)we(n + h)

X<n<2X—h
= Y @(n)wa(n+h)+O0(hlog’ X). (2.3.3)
X<n<2X
This error term will be negligible by our choice of H. Thus, except for an
acceptable error, we can represent the correlation by an integral over the unit
circle.
We split the domain of integration into the major and minor arcs. We

define the major arcs 9 to be the set of real a € (0, 1) such that

a
a__
q

1
< 0 for some 1 < ¢ < Qo,a <q,(a,q) =1 (2.3.4)
q

with Qg = logA/ X and @ := Plog X. Here we define A’ > 0 according to
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the size of H as follows

, 14¢e2,  if (log X)¥* < H < exp((log X)),
A= (2.3.5)

3+¢%  if exp((log X)) < H < Xlog " X.

We define the minor arcs m to be the rest of the circle, that is, the set of real

« € (0,1) such that

a
a__
q

1
< 0 for some Qp < ¢ < Q,a < q,(a,q) = 1. (2.3.6)
q

Remark 2.3.5. The parameters satisfy Qg < P < Q < H. Decreasing the

size we can take for P would directly reduce how small we are able to take

H.

In Section 2.3.2, we will prove the following estimate for the integral over

the minor arcs:

Proposition 2.3.6 (Minor Arc Estimate). Let A > 3 be fized and let € > 0
be fired sufficiently small. Let Qlog X)'™* < H < Xlog™*X. With m

defined as in (2.3.6), for a € m there exists some n = n(e) > 0 such that
X
S(O)PdI < ———. 2.3.7)
/mﬂ[oz—le,a-&-QlH] 156)] (log X )47 (
Sections 2.3.3 to 2.3.6 will be dedicated to proving the following expression

for the integral over the major arcs:
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Proposition 2.3.7 (Major Arc Integral). Let A > 3 be fized and let e > 0 be
fized sufficiently small. Let (log X)'97 < H < Xlog™* X. With 9 defined
as in (2.3.4) and § > 0 sufficiently small, there exists some n = n(e) > 0

such that for all but at most O(HQ(;l/g) values of 0 < |h| < H we have that

/m|S(a)|2e(—ha)da:6(h)X 3

P<p<pl+s

=
+
@)
—
=,
SIS
>
~—

where &(h) is the singular series given in (1.0.3).

Assuming Proposition 2.3.6 and Proposition 2.3.7, we can now prove The-

orem 2.3.3.

Proof of Theorem 2.3.3. We follow the arguments in [27, Pages 32-34]. By
(2.3.3), we have that

2

2.

> w2(n)w2(n+h)—/m|5(a)|26(—hoz)da

0<|h|<H [ X<n<2X—h
2
< Y 15(a)|Pe(—ha)do
o<|h|l<H '™

We now apply a smoothing; we multiply the above by an even non-negative
Schwartz function ® : R — R* such that ®(z) > 1 for x € [—1,1] and its
Fourier transform & is supported in [—1/2,1/2]. Thus, the above is bounded
by

Z(P(%)/m/m|S(oz1)|2|S(oz2)|26(—h(a1—ozz))dozldag.
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By substitution we have that

X

/RCID (E) e(x(ag —ay — &))dx = H/ e(Ht(ag — oy — &))dt
= HO(H(op — oq —£)).

Therefore, applying the Poisson summation formula (Lemma 2.2.1), we have

that

Zcp( ) hog — as)) :H;@(H(ag—al—l—n)).

Note that due to the support of i), this expression vanishes unless n =
0,—1,1. Using a change of variables and periodicity, we can reduce this to

needing to treat ay € [ag — ﬁ, Qs + ﬁ] Therefore, we have that

2

2.

0<|h|<H

<<H/|S(OZQ>|2/ |S(Oél)|2d041d042
m mﬂ[agfﬁ,afrﬁ}

1
< H/ ys<a2)|2/ 1S(a) Pdandas.
0 mN[az— 5 L

2—ﬁ702+ﬁ]

/ |S(a)Pe(—ha)da

By Proposition 2.3.6, there exists some n = n(e) > 0 such that

X
su 2dB K .
o /mm[a— ot S()F b (log X))+

5]
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We have that

/O\S(a)\2da: Y own) = ) > log’pa.

X<n<2X Pep <P X oo

By partial summation and the prime number theorem, we have that

X 2X/p1 lo
Z log® py = <10g p_> Z log psy + / Mdt
X

t
Sr<msty sy o
X X
= (log —> Z logp; + O <—> .
b1 X ooox b1
r1 2_171

By Mertens’ theorem (Lemma 2.2.2), we have the bound

1
X
/ 1S()|?da < E log — E log ps
0

h
P <P1+6 X 2X
<P1= P1 <p2s P1

< Xlog X Z

1
P<p<Ppl+s p

< Xlog X.

Therefore, we have that

HX?

< log" X~

Sy wQ(n)m(nM)—/m|5(a)|2e<—ha)da

0<|h|<H | X<n<2X—h

Thus, by Chebyshev’s inequality (see, for example, [37, Page 185]), we have
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that the size of the set of integers 0 < |h| < H such that

> @m(n)wa(n+h) - /m 1S(a)*e(—ha)do

X<n<2X-h

>
(log X)n/3

is bounded by

2

log X )2"/3

< % ' Z Z @ (n)wa(n + h) —/ |S(a)e(—ha)da
0<|h|<H | X<n<2X—h m
& (log X)2n/3 HX?
X? log” X

- H

(log X)n/3°

In particular, we have that

> s h) - [ [8@Pe-haya =0 (5o

X<n<2X—-h

for all but O(H (log X)~"/3) integers 0 < |h| < H. Finally, applying Propo-

sition 2.3.7, we have that

1 X
Z wy(n)wa(n +h) = 6&(h)X Z - +0 (W) ;

X<n<2X P<pgpl+5 p

for all but O(H (log X)~"/3) integers 0 < |h| < H, as claimed. O
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2.3.2 The Minor Arcs

We first treat the integral over the minor arcs, proving Proposition 2.3.6 by

following the proof of [32, Lemma §].

Proof of Proposition 2.3.6. Starting with the minor arc integral (2.3.7), we

make the substitution 6§ = o + 3 to see that

= [ SOFd0 = [0y 5(a-+ AP,
mﬂ[a—ﬁ,a-‘rﬁ] I

1
1BI<5H

We apply Lemma 2.2.4 to the integral to get

1 2X
I R
)

The second term is < X/log't" X by our choice of H, so it remains to bound

2
dr + Hlog? X.

Z wa(n)e(na)

z<n<z+H

the first term.

Case 1. H < exp((log X)=*).
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We apply the Cauchy-Schwarz inequality to the integrand to get

> (logp)e(apips)

r<pip2lz+H
P<p<pits
2
= > le(ﬂ%)( > (logp)e(amp)>
P<m<Pl+é c<mp<z+H
2
< > |mm)p 3 Y. (logp)e(amap)
P<m<P1+d P<mo<PI+S |z<mop<a+H
(2.3.8)
By the prime number theorem the first term is < f)lg—tj, while the second

term is equal to

Z (log p1)(log p2)e(am(pr — p2)).

z<mpi,mp2<ax+H
P<m<pits

Next, we perform the integration on this sum. Note that X < mp; < z+H <
3X, so we include this condition on the summation. We now trivially extend
the domain of integration to x € [0,3X] as the integrand is positive and
define the set Q = {x : 0 < o < 3X;mp; — H < x < mp;,i = 1,2}

Exchanging the order of integration and summation, we have that

pl+d
T< foiogp 2 > (logpy)(ogp)e(am(p —p2)) - 121

P<m< P16 | X<mp1,mp2<3X

If m|p;—po| > H, then || = 0. Since we have that mp,—H > X—H > 0 and
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mp; < 3X fori = 1,2, the condition 0 < x < 3.X is weaker than the condition
max(mpy, mpe) — H < x < min(mpy, mps). Therefore, if m|p; — ps| < H we
have that |Q| = H — m|p; — po|.

We now split the sum into the diagonal terms, p; = po, and the off-
diagonal terms, p; # pa, denoted by S; and S5 respectively. The diagonal

terms contribute

pito X P log(X/P)
log? : 2.3.
Sl<<HlogP Z Z g p K f (2.3.9)

145 X 3X
P<m§P E<p§7

Now we bound the off-diagonal terms S;. Let r = |p; — pa|. Noting that

0 < mr < H, we have that S, is

pl+o
<5 D Y. (logpi)(logps)

0<r<H Pﬁa <p1,pa<3E

r=|p1—p2|

Z e(amr)(H —mr)|.

P<m<pltd
0<m<H/r

Noting that 0 < m < H/r and P < m < P' we have that 0 < r < H/P.

We apply partial summation and Lemma 2.2.8 to the sum over m to see that

pire H 1
in =~ — 1 1 )
Sy K Hlog P Z min ( o HarH) i Z (log p1)(log p2)

H 3X
0<r<& plto <p1,p2<“F
r=|p1—p2|

By partial summation followed by Lemma 2.2.3, we have that the sum over
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p1, p2 is bounded by

S(r)X
Z (log p1)(log p2) < (log X)? Z 1< %
ﬁ<p1,p2§% ﬁ<l’1,p2§%
r=lpip| r=|p1—p2|

Therefore the contribution of the off-diagonal terms can be bounded by

X pito C(H 1
%< gprogp 2 0 () SO
: o<r<f

We have that &(r) < loglogr by Lemma 2.2.3, so applying partial summa-

tion we have that

xXp° H 1
S loglog X m|{—,——-|.
7 K Hlog P og log ZH min ( o ”O””)
0<r<&

Next, we apply Lemma 2.2.9 to the sum over r to get

4= log = 92.3.1
S < + 5 +Q ) log =, (2.3.10)

XP(H H QH
(@79
recalling that since a € m we have that @y < ¢ < Q.

Since we are in the case H < exp((log X)), we have that log% <
(log X)=*. Therefore, combining the contributions of the diagonal terms
(2.3.9) and the off-diagonal terms (2.3.10), we find

I<XP° ((log X)%* (é n % n %) N Plog;[X/P)> |
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By our choices of Qy = (log X)'*¢*, Q(log X)'** = P(log X)*** <« H, we

have that
X

I -
< Qlog X1+

for some n = n(e) > 0.

Case 2: H > exp((log X)=").

We split the sum over P < p; < P in (2.3.8) into O(log P) dyadic in-
tervals [Py, 2P;] before applying the triangle inequality and Cauchy-Schwarz
to obtain

2

> (logpa)e(apips)

z<pip2<z+H
Pi<p1<2P;
2
< ( Z |1P(m1)\2> Z Z (log p)e(amap)
Pi<m1<2P, Pi<mo<2P; |z<mop<z+H
Py
= log P, Y. (logpy)(log pa)e(am(pr — p2)).

x<mp1,mpe<z+H
Pi<m<2P;

As in the previous case, we perform the integration and then split into con-
sidering the diagonal (p; = p2) and off-diagonal (p; # po) terms, which we
denote by 57 and S} respectively. The diagonal terms contribute

P1 X Pl log(X/Pl)
! I 1 2 )
Sl<<HlogP1 Z Z 08P < Hlog P,

PL<m<2P; X _,<3X
1<mMS20 2 <pL =
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The off-diagonal terms S contribute

< %1%131 Z Z (log p1)(log p2) Z e(amr)(H —mr)|.

0<r<H X_ <3X P1<m<2P;
7P <p1,p2< Py O<m<H /r
r=|p1—p2|

We once again apply partial summation and Lemma 2.2.8 to the sum over
m, followed by applying partial summation and Lemma 2.2.3 to the sum over
P1, P2, SO that
P . (H 1
8 < gy 2 min () X Gogp(ozp
X

Hlog P,
0Py 2 7 T

X
<p1,p2< %

- P 2P
r=|p1—p2|
XP H 1
el S T Nl S
< Hhlogh 2, mm(r’nmu) )
0<7"§P—1
X loglog X . (H 1
< THiog P, ZHmln(r’r\ar||)'
0<T§P71

Again, we apply Lemma 2.2.9 to the sum over r to see this off-diagonal

contribution is bounded by

X H H OH
S —= (22 log 2L
> Hloglog X (Qo h +Q> P,

We have that log% < log X and Qg = (log X)**<*. Combining all of

the dyadic sums contributes O(log® P) = O((loglog X)*), so that the total
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contribution is

1 1 X P log(X/P)log P
I < X(loglog X)? (logX (—+_+Q>) + og(X/P)log

0o P H H
< X
(log X217
for some 1 = n(e) > 0, which is acceptable. O

2.3.3 The Major Arcs

We now shift our attention to evaluating the contribution of the integral over
the major arcs. We will first expand the exponential sum S(«) in terms of
Dirichlet characters and suitably approximate the contribution of the princi-
pal character, which will provide the main term. We will then evaluate this
main term and the sequel will be dedicated to bounding the error terms that

arise from this expansion.

2.3.3.1 Expanding the Exponential Sum

First, we rewrite the integral over the major arcs by expanding the exponen-

tial sum S(a) in terms of Dirichlet characters. We first define the following.

Definition 2.3.8. Let a = a/q + ( satisfy (2.3.4), P be defined as in Defi-
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nition 2.3.1 and 91 as in (2.3.4). We define

o) =28 T DS o),

90<Q) P<p<PlH8 & X<n<2X

1 _ 1
b() me(q)T(X)X(G)XES:QX wQ(n)X(n)—5xP<§3M]; e(Bn),
A(X) = | la(a)[de,
m
BX) = | [be)fda.

where 7(x) denotes the Gauss sum as defined in (2.2.1), and ¢, = 1 when

X = Xo and is zero otherwise.

We will now find the following expression for the integral over the major

arcs, once we have expanded the exponential sum:

Lemma 2.3.9. Let MM be defined as in (2.3.4) and a(«), A*(X), B*(X) be as
in Definition 2.3.8. We have that

/m 1S(a) 2e(—ha)da = /Em la()Pe(~ha)da + O (A(X)B(X) + BX(X)).

Proof. Let v € M, so that o = ¢ + f with ¢ < Qo, (a,¢) =1 and 8] < é.

Then

S(@)= Y w(n)e (%) e(Bn).

X<n<2X
By Definition 2.3.2, we have that n = pip, with P < p; < P, As we have

P > @y, we must have that (p;,q) = (p2,q) = 1 and therefore that (n,q) = 1.
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We can now rewrite our expression for S(a) by applying the identity

¢ (5) - >t

which holds for (a,q) = 1. This gives

s<a>:¢i)zf<y>x<a> S ma(n)x(n)e(Bn)
X(@) X<n<2X

(
! (2.3.11)
= S 22 T0Ox@ D, xpa)x(po)(logpa)e(Bpip)

x(q) X<p1p2<2X
P<p <pi+s

where we have applied the definition of s in the last line. Now we approxi-
mate the contribution of the principal character, which will become the main
term. First, note that since we have ¢ < ()9 < P < p; we must have that

(p1p2,q) = 1 for X < p1ps < 2X, so we must have (logp2)xo(p1)xo(p2) =

log p2 in these ranges. By the prime number theorem, we have that

Z wa(n) = Z Z logps ~ X Z

X<n=2X P<pi<PH0 Xopy<2X P<p<p1+6

Therefore we choose to approximate )y _, .oy @2(n) by

> Z =X > —+O

P<p<P1+5 X<n<2X P<p<P1'Hs

Using this and the fact that 7(x0) = p(q), we approximate the contribution
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of the principal character to the exponential sum S(«a) by

a) Z }9 Z e(fn).

v(q) pep<pi+s I x<n<ox

Adding and subtracting this approximation in our expression (2.3.11) for

S(a), we have that

S(a) :ﬁ 1 Z e(Bn)

W
wla) P<p< Pl+3 Py incox

—l—M Z wa(n)xo(n) — Z ! e(fn)

v(q) X<n<2X P<p<P1+9
1
* o Xz(q:) T(Y)X(G)XE;X ws(n)x(n)e(Bn)
XFXO0
_nla) E e(Bn
_<p(q) P<}§>1+6px<§§:2X <ﬁ )
S Y () —5, X | eon)
SO(Q) x(q) X<n<2X P<p<pl+s
:a(a) -+ b(Oé)

Finally, expanding the square and applying the Cauchy-Schwarz inequality,
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we have that

/\S(a)\ze(—ha)d&:/ la(a) + b(a)]Pe(—ha)da
m
/\a )Pe(—ha) da+/ |b(a)Pe(—ha)d
/ (a(@)B(a) + a(a)b(a))e(—ha)da
m

_ /zm la(a)Pe(—ha)da + O (A(X)B(X) + BX(X)),

as required. O

Thus, in order to prove Proposition 2.3.7 we need to evaluate

/Em la(a)2e(—ha)da

(which will also provide a bound for A?(X)), and suitably bound B?(X).

2.3.3.2 Evaluating the Main Term

In this section we evaluate the integral [, |a(a)[*e(—ha)da, giving the main

term of the asymptotic (and a bound for A?(X)):
Proposition 2.3.10. Let € > 0 be fized sufficiently small, let A > 3 be fixed.

Let Qo be defined as in (2.3.5) and let (log X)"** < H < Xlog™* X. Then
for all but at most O(HQEI/:}’) values of 0 < |h| < H we have that

2

/m|a(a)|2@(—ha)da:6(h)X > ]13 +0 (loginX)

P<p<pl+s
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for some n =n(e) > 0, where we define the singular series S(h) as in (1.0.3).

Remark 2.3.11. More generally, if the smaller prime factor lies in the range
p € [Py, Py] for some P, = P;(X) and P, = P,(X), the error term here is in

fact

<<XQ01/3(logH)( > %) .

Pi<p<P;
In the proofs of Theorems 1.0.4 and 1.0.5, we will make larger choices of @)y,
P, and P,, which will lead to the improved error term. In particular, we will
choose Qo = log® X for some suitable A’ > 0, P; = exp((log X)°®") and
P, = exp((log X)'—°W).

Before we can prove Proposition 2.3.10, we need an expression involving

the singular series G(h).

Lemma 2.3.12 (The Singular Series). Let h be a non-zero even integer and
Qo be defined as in (2.3.5). Let A > 3 be fived and let (log X))t < H <
Xlog™ X. Then, for all but at most O(HQSUS) values of 0 < |h| < H we

have that

ZM = &(h) +0(Qy*log H).

q<Qo
Proof. For similar results, see [27, Page 39] and [42, Page 35]. Let h be a
non-zero even integer. Rewriting the sum over ¢, we have that

> O (55 3 ) el

7<Qo = ¢>Qo
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noting that this is valid as the series is absolutely convergent. We first
evaluate the singular series. Since each of the functions in the summand is

multiplicative, we can calculate the Euler product expansion

> R Ty T (1)

q=1 p k=0 p

We know that for Ramanujan’s sum we have

©(p), ifplh,
cp(—h) =

so we have

o 12(g)cg(—h)
; )

| =

) 10 )

(-
:g(l—ﬁ)g(”ﬁ)
() TG 3)
N
o

It remains to bound the tail of the sum. Following [42, Page 35|, we have
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that

~ulg/(q,h)e(q)
Cq(_h) = n) ;

©(q/(q,h))

and therefore, letting (¢, h) = d, that

> 12 (q)cy(—=h) 12 (q'd) 1(q)
/ N
et ) sl e(dd) o(q')
dlh
(¢',h)=1

Note that p?(q'd) is zero unless (¢',d) = 1, so we have

Z 1 M Z q) 12 (d) Z 1(q')

204"

7>Qo dlh q >Qo/d d|h d) q'>Qo/d Y (Q)
(Q’»h)*l (¢',h)=1

To bound Y~ 1/¢%(q), we use the result

2
> () <e
= \p(n)

(see [35, Corollary 2.15 and Eq. (2.32)]) and apply partial summation. This

gives 3 o, 1/9%(q) < Qy ', so we have that the above is bounded by

< (a)

dlh

Therefore the tail is bounded by < log h. We will need more cancellation in
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this bound, therefore we consider the average

ZM

q>Qo

D

h<H

< (log H) Z Z i((g) min (%, 1)

h<H dlh

< (log H) Z Hdg(;? min <%, 1)

d<H

Hlog H p(d)
< Mlostl 5
Qo = ¢ld)
< Hlog> H
Qo

By Chebyshev’s inequality, we have for all but at most O(HQ, Y 3) values of

h the bound
Z ,u << Qo 1/3 log H.
>Qo
Overall, we have that
pPaE at = &(h) + 0(Q; Y 1og H),
q<Qo
for all but at most O(HQ, Y %) values of h, as claimed. O

We are now able to complete the proof of Proposition 2.3.10.

Proof of Proposition 2.3.10. Applying the definition of the major arcs (2.3.4)
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and expanding the square, we have that

/m la(a)]Pe(—ha)da

2
1 —h

S X [ X X | e n)as

q<Qo 1<a<q W'—qQ 4 P<p§P1+5pX<n§2X

(a,q)=1
1

- >~ EZ“ /’1 S elBlm—n—m)is

P<p<Pl+d p q<Q ‘mg@ X<m,n<2X
= X ! > @e(=h) (2.3.12)

pep<prt P ) 4<qy

say. We rewrite the integral I; as

h:{/° / } e(B(m —n — h))dB

X<mn<2X

=: I, — I3,
say. To the first term 5, we apply the identity (2.3.2) to get

L= ) 1=X+O0(H). (2.3.13)

X<m,n<2X
m=n-+h

Returning to (2.3.12), the error term contributes < X log™" X, since H <
X log™ X, which is acceptable. Now we bound the integral I5. Note that 3

is never an integer in the domain of integration, so applying Lemma 2.2.8 to
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the sums over m and n we have that

1-L 1—-L
I3 :/1 ’ Z e(B(m —n—h))ds < /1 ’ HﬁlHQdB

aQ X<mn<2X aQ

< / et / - @ iﬁﬁ)?

< 625

< qQ.

Therefore, combining this with (2.3.13), we have that
L=X+0@Q+H).
We now substitute this expression for /; into (2.3.12) to get
/ la(a)2e(—ha)da
" 2

_Z’“‘ x( Y L) 20w+ m

a<Qo P<p<pPL+s

To complete the proof, it remains to treat the sum over ¢q. By Lemma 2.3.12
and our definitions of H and @)y, we find immediately that for all but at most

O(HQEUS) values of 0 < |h| < H we have that

2

/m|a(a)\2e(—ha)da:6(h)X 3 ]19 +0 (&)

P<p<Pl+d
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for some n = n(e) > 0, as claimed. O

2.3.4 The Error Term of the Major Arcs

In order to complete the proof of Proposition 2.3.7, and therefore the proof of
Theorem 1.0.2, we need to find sufficient cancellation in the error term B?(X)
arising on the major arcs. Recall that B?(X) is defined as in Definition 2.3.8

to be

BY(X) = /m b(a) o,

1 _ 1
ble) = =7 d r@x(@) > | men)x(n) =6, Y —|eBn)
A x(9) X<n<2X P<p< pLts
In this section we prove the following bound for B?(X), which immedi-
ately completes the proof of Proposition 2.3.7 when combined with Proposi-

tion 2.3.10:

Proposition 2.3.13. Let ¢ > 0 be fixed sufficiently small, then there exists

some n = n(e) > 0 such that

B*(X —.
(X) < log” X

Remark 2.3.14. If the smaller prime factor lies in the range p € [Py, P,
for some P, = P;(X) and P, = P»(X) instead of p € (P, P'*?], we have the
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bound

X X
B(X) <——+ o + XU?P;?* log® P, + Q3Qlog® X
log” X U

X
+ @ +X49/50Qg long

for any C' > 0. Here, U is a parameter chosen later in terms of (). For
the bound given in Proposition 2.3.13, we will choose P, = P, P, = P+,
U = Qé*EQ, and o = % — &’ with ¢’ sufficiently small in terms of . For
the proofs of Theorems 1.0.4 and 1.0.5, we will make different choices for
the parameters, namely P, = exp((log X)°"), P, = exp((log X)'=°W), Qo =
log X, U = Q¥ for some suitable A', E > 0, and a; = ¢, which will give a

better error term in these results.

2.3.4.1 Reduction of the problem

First, using Gallagher’s Lemma (Lemma 2.2.4), we will reduce the problem
of estimating B%(X) to understanding almost primes in almost all short

intervals. We first define the following:

Definition 2.3.15. Define Tj := X/ and A := %, where ¢ < Q.
0

Let Qo be as defined in Definition 2.3.5, P as in Definition 2.3.1 and
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@ := Plog X. Let wy be as in Definition 2.3.2. Then we define B;(X) to be

Al

<x<n>w2<n> S }9)

QQ m<n<z+qQ/2

q<Q P<p<pPi+s
2 1 ’
X 3 (X(n)WQ(n)—éx > 5) dx
z<n<lz+qA/2 P<p<pPl+s
(2.3.14)

and By(X) to be

Z/ 2 x(n)wa(n) — 94, Z ]% dx.

q<Q0 x<n<x+qA/2 P<p<pPl+s

(2.3.15)

Now we are able to state a bound for B*(X) in terms of B;(X) and

BQ(X)I

Proposition 2.3.16. We have that
B*(X) < Bi(X) + By(X) + exp(2(log log X)?).

Remark 2.3.17. The final error term bounds Q3Qlog® X. In the proofs of
Theorems 1.0.4 and 1.0.5, we will make larger choices of ()y and (). However,
this error term will still be at most < X6+ <« X log™ X, which will be

acceptable.

Then, if we can prove that B;(X) < Xlog "X for i = 1,2, we will
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immediately be able to conclude Proposition 2.3.13.

Proof. By definition, we have that B*(X) is equal to

1
— > 7(X)x(a)
a<Qo (laéagq go(q) x(q)

Z Z /BS;Q

2

dg.

< 3 <X(n)w2(n)—§x 3 1>e(5n)

X<n<2X P<p<Pl+s

Expanding the square, we have that B?*(X) is equal to

> i X0 X xavla

¥

9<Qo x:x'(9) 1<a<q
(aﬂ)zl
1
< (sowme s ¥ 2
IBl<3g x<m<2x pepepis P
— 1
x Y | Xm)man) =6y D | e(B(m —n))dB.
X<n<2X pepepits P

Now, using the definition of Dirichlet characters to trivially extend the sum

over a to all 1 < a < ¢, we may apply the character orthogonality relation

g o(q), ifx=x,

o=t 0, if x 7 X,
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to see that
B*(X)
2
1
Z Z| / ) Z x(n)wz(n) — oy Z — |e(Bn)|dp
q<Qo x(q 1b1<2a X<n<2X P<p<Pl+é
2
1

<X / xmyma(n) —d S | e(pn)| ds,

q<Qo |<qQ X<n<2X P<p<PL+s

where we have used that 7(Y) < ¢'/? in the last line. Now we apply

Lemma 2.2.4 to the integral term to get that B?(X) is bounded by

>y (f

7<Qo x(q)

2

dz

2 1
5 X (X(H)W2(n)—5x S 5)

r<n<z+qQ/2 P<p<plts

+qQ10g2X).

The second term contributes

Qlog* X Z Z —_ << QQ%log* X < exp(2(loglog X)?),

a<Qo x(q

to B*(X). As in Definition 2.3.15, let A = 27),% with Ty = X'/1%°. Then we
0
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have that B?(X) is bounded by

S T

) =, Y 2

Q<Q qQ m<n<x+qQ/2 P<p<Pl+s p
2
5 X |[mm-s X S|
qA X (ZP) X
rx<n<z+qA/2 P<p<Pl+s
q 2X | 9 1 2
+ Z ( )Z/ N Z x(n)@z(n) — oy Z — || dx
9<Qo P\ x(q) X q r<n<z+qA/2 p<p§p1+5p
=B1(X) + By(X),
as claimed. 0

2.3.4.2 Bounding B;(X)

First, we prove the the following estimate for By(X), which will be reduced
to a Dirichlet character analogue of a problem on primes in almost all short
intervals. We recall that By(X) is defined as in Definition 2.3.15, (2.3.15) to
be

2

Z/ x(n)wa(n) — oy Z 1 dzx.

q<Q0 :c<n<x+qA/2 P<p<Pl+s p

Proposition 2.3.18. Let C' > 0 be fized, then with By(X) as defined in

(2.3.15) we have
X

log® X'

By(X) <
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Proof. We separate the cases x = xo and x # xo.- If x = X0, we have that

2 Z ws(n) — Z 1

qA
z<n<z+qA/2 P<p<pl+s
DD Y > o+o(
= — O —_ — —_— ,
iA g P2 » A
P<p <p1+s pi<p2<7z+zA/2 P<p<pl+s
1 - 1

where A is as defined in Definition 2.3.15. We now apply the prime number

theorem in short intervals (Lemma 2.2.5), finding that

in Z Z log ps = Z E + O (exp(—c(log z)'/*~#)) .

P<p <P+ ﬁ<p2§x+zf/2 P<p<pits

Substituting this back into the above, we have that

T X (m- ¥ )= 0few(-cozn) ).

r<n<z+qA/2 P<p<Ppl+é

Returning to the integral and summing over ¢, we find that the contribution

of the principal character to By(X) is

< X exp(—c(log X)'/379) Z I« XQoexp(—c(log X)Y379)

o ¢

< X exp(~(log X)"9),

which is < X log™® X, so this contribution is acceptable.

We now consider the case xy # xo. By the definition of w,, we have that
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BQ(X) is
2
q 2X 2
o) a X x|
qSQoSOq x(q) X q z<n<z4qA/2
XF#X0
2
q 2X 2
Y LY 5 T a) X e dn
qSQogpq x(q) 7% q P<p  <pP1+s 2 < 2HIA/2
XF#X0 P1 - n

(2.3.16)

Next, we apply the Cauchy-Schwarz inequality to the sum over p; to obtain

2

> xp) > x(p2)logps

P<pi <P z 2+qA/2
P oy <2< T

< Y keGP Y ST x(p)logps

P<p, <P+ P<pr<PH0 |2 op < 2tolt/2

By the prime number theorem, the sum over p) is < P'*?/log P. Therefore,
(2.3.16) is bounded by

P1+5 q A 92X
1 dx.
< log P Z v(q) Z (qA)? Z /X Z X(p2) logpa| du
9<Qo P<py <P1+s x(q) z < 2+gA/2
X#X0 LN

(2.3.17)
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We make the change of variables u = x/p; to the integral, so that

2
2X/p1

2X
/ Z X(p2) log pa dx:pl/ Z X(p2) logpa| du.

X X/p1
L <y HR/2 /P u<pa<utf>

First, in the case H < exp((log X)ES), we now apply Lemma 2.2.6 to get that

146 3 A2
By(X) < P loglog Qo Z ( Qe A*X )

log P Q3A2 pilog? X

P+ X Qg loglog Qo Z 1

log P logD X 2
X

log® X

P<p<Ppl+s

<K
P<p<pi+s p

<

for C' > 0, as required. In the case H > exp((log X)), we first split the sum

over P < p; < P in (2.3.16) into O(log P) dyadic intervals [P;,2P;]. We

then need to bound

Z Z / = x(p1) Z X(p2) log pa| dx.

q<Q0 P1 <p1 <2P1 T < EHIA/2
x#xo n 7

Applying Cauchy-Schwarz to the sum over p; and then the prime number

theorem as in the previous case, this is bounded by
2

<D > Loy @Z/x > x(p2)logps| da.

log I 4<Qo vla) Pi<pi1<2P;
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We again make the substitution u = z/p; in the integral and then apply

Lemma 2.2.6 to obtain

< P1 10g IOg QO Z » ( 8A2X >
log Py QFA* |, &= " \pPlog” X

Py XQologlog Qg Z 1

log P, logDX p?
X

log” X’

<
P1<p<2Py

<

for ¢’ > 0. Combining all of the dyadic intervals introduces a factor of
log? P = (loglog X)*, which gives the bound < X log™® X for some C' > 0,
as required. O

2.3.4.3 Bounding B;(X)

It now remains to prove the required bound for B;(X). Recall that B;(X)

is defined in Definition 2.3.15, (2.3.14) to be

q 2X
Yz,

2 1
0 > (X(n)w2(n)—5x > —)

q9<Qo z<n<z+9Q/2 P<p< Pl+6
2
2 1
_q_A Z x(n)wa(n) — 9, Z — || dx.
z<n<z+qA/2 P<p<Pl+o

This problem can be reduced to finding cancellation in the mean square of a

Dirichlet polynomial.

Proposition 2.3.19. Let ¢ > 0 be fized sufficiently small. With By(X) as

defined in Definition 2.3.15, (2.3.14), there exists some n = n(e) > 0 such
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that

B (X —_
1(X) < log" X

Remark 2.3.20. If the smaller prime factor lies in the range p € [Py, P,] for
some P, = Pi(X) and P, = P»(X) instead of p; € (P, P'*°], we have the
bound

XQo
U

X
+ XU?Qo Py log? Py + — + X*/50Q2log® X.

B (X) < 0

Here, U is a parameter chosen later in terms of (). For the bound given

in Proposition 2.3.19, we will choose P, = P, P, = P and U = Q(1)+82,

3

and aq := e

— ¢’ with ¢’ sufficiently small in terms of €. For the proofs of
Theorems 1.0.4 and 1.0.5, we will make different choices for the parameters,
namely P, = exp((log X)°M), P, = exp((log X)'°M), Qy = log" X, U =
Q¥ for some suitable A’, E > 0, and «; = €', which will give a better error

term.

To prove this result, we will need the following variant of a result of

Terdvéainen [38] on the mean square of the Dirichlet polynomial

F(s,x):= Y M, (2.3.18)

S
Xemmeax  (P1P2)
P<p<piFe

where s € C and x is a Dirichlet character modulo ¢, to be proved in Sec-

tion 2.3.6:
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Proposition 2.3.21. Let ¢ > 0 be fized sufficiently small. Define Ty =
X1/100 g5 in Definition 2.3.15 and F(s,x) to be the Dirichlet polynomial
defined in (2.3.18), with P and § > 0 as in Definition 2.5.1. Then, for

T > Ty, there exists some n =mn(e) > 0 such that

7<Qo

1 qT Plog X q
< Qollog X)2F 2 ( X w(q))

q<Qo

Ny e [ N
BiX) = Y %/T F(1+ it ) [2dt

Remark 2.3.22. More generally, if the smaller prime factor lies in the range

p1 € [Py, Py for some P, = Pi(X) and P, = Py(X), we have the bound

1 U? Py > log? PQ) 3 (qTP2 log X 4 )

B3(X) <« +
3(X) (Ulong log* X X ©(q)

q<Qo
Here, U is a parameter chosen later in terms of ()y. For the statement
given in Proposition 2.3.21, we choose P, = P, P, = P1*° U = Q(%*EQ, and
= 3% — ¢’ with €’ chosen sufficiently small in terms of ¢.

For the proofs of Theorems 1.0.4 and 1.0.5, we will make different choices
of these parameters, which will lead to an improved error term. In particular,

we will choose Py = exp((log X)°™M), Py = exp((log X)'°M), Qo = log"’ X,

U = QF for some suitable A’, E > 0, and oy = €.

Proof of Proposition 2.3.19 assuming Proposition 2.3.21. First we consider
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when y = x¢ as we have a different summand in this case. We have

2 1
2% (- x

r<n<z+qQ/2 P<p<Pl+s

_% Z ws(n) — Z 1 :

q z<n<z+qA/2 P<p<pl+s

where A = 2% as in Definition 2.3.15 and @ = Plog X. We first consider

3
q TO

the contribution of the second and fourth terms, namely

2.

P<p<pl+s

2 2 1 1
=  —— 1] <« —+—. (2.3.19
A Z qQ Z q@Q  qA ( )

1
P \1 z<nlz+qA /2 z<n<z+qQ/2

Returning to our expression for B;(X), by our choice of @y, @ and A we

have that (2.3.19) contributes

2X

<25 —ndr << = ) — - K 5 K e
g@:o #la) /x (qQ)? Q* qé;o gp(q) Q%  (log X)%0+2

which is < Xlog™" X, so is acceptable. Therefore, when considering the

principal character o, we need only to bound

2

q 2X | 9 9
Z _/ q_Q Z wa(n) — "~y Z wy(n)| dx

9<Qo (,O(Q) X z<n<z+qQ/2 q r<n<z+qA/2
2
2X
2 2
= (Tz 2. ;& 2 >w2<”>X0<"> dz,
QSQOSO 1 Jx q z<n<z+qQ/2 q z<n<z+qA/2
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noting that in the range of summation we must have (n,¢) = 1, in particular
waXo(n) = wa(n) for each X < n < 2X. Thus, from now on we are able
to unify the treatment of the principal character y, with the rest of the
characters modulo ¢ at the cost of a negligible error.

We now apply Lemma 2.2.7 with 7" = Ty, hy = qQ/2 and hy = gA/2 to

the integral with respect to x to get

log? X el
Bi(X)< X Y q > OgQ +/ |Fy (1 + it x)|2dt
)X(q) TO TO

2T

X
+ max —— Fi(1+t,x)|%dt |,
s g ) IR0 )

with Ty = XY/100 and

Fi(s,x) == Z M — Z X(p1)x(p2) log ps
’ X<n<2X ns X<ppacax (ppo)s
B P<p1§1;1+‘s

By the definition of Ty := X'/190_ the first term is

X
X008 X 37 N1« X9Q210g7 X«

77 M
ot ©(q) e log” X
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so is acceptable. Applying partial summation, we have that

Bi(X) < X(logX)* Y =% (/TQ |F(1+ it, y)[2dt

4<Qo gp(q) x(q)

2T
+ max —— F(1+it, y)|2dt
s TqQ/ x)I? )

We now apply Proposition 2.3.21. Note that we have Plog X = @), so that

the first term in our bound for By(X) is bounded by

<P10gX q

T N > « X
Qo log” X Q ©(q) log” X’

a<Qo

as needed. For the second term, we want to bound

X?log? X Z /2T
max — Z F(1 +it, x)|*dt.
@ 9<Qo 90( T= ig

Applying Proposition 2.3.21, we have the bound

—_—— max —_—
QoQlog" X & p>2x \ X To(q) log"” X~
q<Qo = — 4@
again using that Plog X = ). Overall we have that

B (X —
i )<<1og"X7

for some n = n(e) > 0, as required. O
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2.3.5 Preliminaries on Dirichlet Polynomials

Before we can prove Proposition 2.3.21, we first need the following prelimi-

nary lemmas on Dirichlet polynomials.

2.3.5.1 Definitions

We will in some instances take the mean square over a sparse set of points,

«.

which can be split into “well-spaced” subsets:

Definition 2.3.23. [Well-Spaced Set] We say a set T is well-spaced if for

any t,u € T with t # u we have that |t —u| > 1.

After decomposing our Dirichlet polynomial, we will have factors which
are “prime-factored”, that is, polynomials which satisfy certain pointwise

bounds:

Definition 2.3.24 (Prime-factored polynomial, [38]). Let s € C, M > 1

and

M= Y )

M<m<2M ’
be a Dirichlet polynomial with |a,,| < d.(m) for some fixed r. Let T" > 1,
q>2,T C[-T,T] be a well-spaced set, and S =T x {x mod ¢}. Suppose
that min{|t| : (t,x) € S} > log? N for all A > 0 if x = yo. We say that

M(s, x) is prime-factored if for each C' > 0 we have

sup [M(1+1t,y)| <
(t,x)€S| ( )| logC A1
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when exp((log M)9/10) < t < MCloglog M

The use of the term “prime-factored” is in reference to Dirichlet polyno-

mials which satisfy

¢, R1/2
Z r1/2+it < IOgAR

R<r<2R
for any A > 0, where the coefficient ¢, is the characteristic function of a
set of numbers with a bounded number of prime factors restricted to certain
ranges, or the characteristic function of the primes. Such polynomials arise
for example when applying the fundamental lemma of the sieve to problems

on primes in short intervals (see [15, Chapter 7.2]).

2.3.5.2 Decomposing Dirichlet Polynomials

As in the work of Terdviinen [38] and Matoméki, Radziwilt [25], we take

advantage of the bilinear structure to factorise our Dirichlet polynomial.

Lemma 2.3.25 (Factorisation of Dirichlet Polynomials). Let s € C and

v € Z. Define

X<mn<2X
M<m<M’

for some M' > M > 2 and arbitrary complex numbers a,,,b,. Let U > 1 and

define

v v
e% <m<e U Xe U<n<2Xe U
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Then
F(s)= > Ay(s)By(s)+ > % (2.3.20)

velNZ ke[Xe—l/UJ(el/U]
or k€[2X,2X el /U]

where I = [Ulog M, U log M'] and
|di| < Z |G|
k=mn
Proof. This is [38, Lemma 2] (see also [25, Lemma 12]). O

In some cases we will use the Heath-Brown identity to decompose a long

polynomial into products of shorter polynomials.

Lemma 2.3.26 (Heath-Brown decomposition). Let k > 1 be a fived inte-
ger, T > 2 and fit ¢ > 0. For s € C and x a Dirichlet character mod-

ulo q, define the Dirichlet polynomial P(s,x) = Y pic,.p, X(0)p~° with

P> T P € |P+ 1OZT,QP’ . Then, there exist Dirichlet polynomials

Q1(5,X), ..., Qr(s,x) and a constant C > 0 such that L <log® X and
|P(1+it, x)| < (log X)(|Q1(1 +it, x)| + - -+ |Qr(1 + it, X))
for allt € [=T,T]. Here, each Q;(s,x) is of the form

QJ<S7X) - H Mi(87X)7 Jj < 2k7

i<J;

where each M;(s,x) is a prime-factored Dirichlet polynomial (depending on
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j) of the form

3 x(n)logn’ 3 x(n)’ o Y u(n)x(n)’

M; <n<2M; M; <n<2M; M; <n<2M;

whose lengths satisfy My --- Mj, = XM M; > exp <10§igp>. Further-

more, if in fact M; > XY* then M;(s,x) is of the form

Z x(n)logn o Z X(n)

M;<n<2M,; M;<n<2M;

Proof. This is [38, Lemma 10| with the coefficient twisted by a Dirichlet

character, and follows from the same argument. O

2.3.5.3 Mean Value Theorems for Dirichlet Polynomials

Now we state two mean value theorems, the first being the classical result:

Lemma 2.3.27 (Mean Value Theorem). Let ¢, X > 1 and let a,, be arbitrary

complex numbers. Let s € C and x be a Dirichlet character mod q, and define

F(5,X) = 3 xeneax 22X Then

o (q)
F(it, )2t < ( o(q)T + 2 x Jan?.
%/—T ( q ) Z

X<n<2X
(n,g)=1

Proof. See, for example, [33, Chapter 6, Eq. (6.14)]. O

Next we state a variant of the mean value theorem which will allow us to

save a log X in certain parts of the proof.
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Lemma 2.3.28. With the same assumptions as Lemma 2.53.27, we have that

Z/ ztx\dt<<T90()< doolalE Y Y \an+hrran!>-

x(q) X<n<2X 1<h<X X<n<2X
(ma)=1 i © (n(nth)a)=

Proof. This is the Dirichlet character analogue of [38, Lemma 4], which fol-
lows from [18, Lemma 7.1]. The proof is contained in the proof of [28, Lemma

5.2). O

After factorising the Dirichlet polynomial F' and splitting the domain of
integration according to the size of the factors, there will be cases where the
mean value is taken over a well-spaced set. In this case, we will apply the

Halasz-Montgomery inequality:

Lemma 2.3.29 (Haldsz-Montgomery Inequality). Let T > 1, ¢ > 2. Let
T C [-T,T] be a well-spaced set, and S =T x {x mod q}. With the same

assumptions as Lemma 2.3.27, we have that

3 |F<z't,x>|2<<(#xmuqﬂlﬂ) (log24T)) 3 lanl®

(t,x)es
Proof. This is [20, Lemma 7.4]. O

2.3.5.4 Large Value Theorems

There will be subsets of the domain of integration where a short Dirichlet

polynomial factor is large, in which case we apply the following large value
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theorem.

Lemma 2.3.30 (Large Value Theorem). Let P' > 1,V > 0 and T > 10.

For s € C and x mod q, define F(s,X) = Y pip<opr ap;;(p) with |a,| < 1.
Let T C [-T,T] be a well-spaced set and S = T x {x mod ¢} such that
|F(1+1it,x)| >V forall (t,x) € S. Then

2log(1/V)

18] < (aT) HF V2 exp ((1 To(1))

log(¢T") log log(¢T')
log P’ '

Proof. See 20, Lemma 7.5]. This is the Dirichlet character analogue of [38,

Lemma 6] and [25, Lemma 8§]. O

Remark 2.3.31. As remarked in [38, Remark 6], this Lemma can still be

applied to polynomials with coefficients |a,| < 1 not only supported on the

primes in the case we will have in our application, P’ > exp (lolg(‘)i ;(X). The

log(¢T") log log(qT)

log2(qT) log log(P’)
log P’ :

coefficient of the exponent o P

is replaced with

Alternatively, in the case that we have a longer Dirichlet polynomial factor

which is large, we will apply a result of Jutila on large values.

Lemma 2.3.32 (Jutila’s Large Value Theorem). Let ¢ > 0 be fized. For

s € C and x mod q define F(s,x) = Y x_n<ox X ith, |a,| < dy(n) for

ns

some fixed r. Let k be a fized positive integer. Let T C [=T,T] be a well-

spaced set and S = T x {x mod q} such that |F(1 + it,x)| > V for all
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(t,x) € S. Then,

L (qTVN\" L qTv .
S| < (V 2+( ;e ) + @ | @TX)" (2.3.21)
Proof. This is the first bound of the main theorem in [19]. O

2.3.5.5 Moments of Dirichlet Polynomials

After decomposing the Dirichlet polynomial using Heath-Brown’s decompo-
sition (Lemma 2.3.26), we can have a long polynomial which is the partial
sum of a Dirichlet L-function (or its derivative). In this case, we will apply
the Cauchy-Schwarz inequality to enable us to use the following bound on

the twisted fourth moment of such sums:

Lemma 2.3.33 (Twisted Fourth Moment Estimate). Let Q' < T¢, T¢ <
T <T,1<M N <T"W and for s € C and x mod q define the Dirichlet

polynomials

N = 3 X(TSL) o 3 x(n)logn

n s
N<n<2N N<n<2N

M(57X) = Z Ma

S
M<m<2M
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with a,, any complex numbers. Then we have that

Z/ N1+ it, ML+ it, )| 2dt
<Q’
< ( QT 14+ M*(Q'T)” 1/2) %) (Q'T)° max |an|*

MN? M<m<2M

(2.3.22)

Proof. This is the Dirichlet character analogue of [38, Lemma 9] and we follow
the same argument. We split the domain of integration ¢ € [Ty, 7). In the
case Q't < N, we use the hybrid result of Fujii, Gallagher and Montgomery
9, Theorem 1]

5= xnn' = 2EDEL 4 0((qr)* og(ar)),

with 7 := |t| + 2 (noting we apply partial summation to deal with the 1/n

factor) in place of the zeta sum bound to get that
N/Q’
Z/ 1+ it )| M (1 +it, x)|?dt

4 4
log"(q7)
T¢ m ———dt
< MglnaXMla i Z Z/T, ( 1+\t|)> + T2

<Q’

q<Q’

3

- 2
S Mina<x2M|am| ’

providing the third term of (2.3.22).

In the case N < Q't < Q'T, we apply in place of Watt’s twisted moment
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result its Dirichlet character analogue [16, Theorem 2|. This analogue, due
to Harman, Watt and Wong, states that for ¢ > 0 given and )" a positive

integer, we have for all M > 1, T > (Q")?/® that

1 T 1 —it]?
Z m%/TMQ +it, x| ‘ Z X (m)m™"| dt

a<Q" m<M (2.3.23)
ANE 2 m—1/2 2
<(TMQ")™ (14 MHTQ")™?) max |ay|”

Then, as in [38, Lemma 9], we obtain the first two terms of (2.3.22) using

the argument of [1, Lemma 2]. We first split the integral

1 /T PNT TNT
— N(1+t, x)|"|M (14 1t,x)|"dt
3 0 2 g WO I+t 0)

q<q’

into dyadic ranges [11,27}] with N/Q' <T; <T.

Case 1. N, M < (Q'Ty)/2.

The proof is included in the proof of this main result (2.3.23) of Harman,
Watt and Wong [16, Theorem 2].

Case 2. N < (Q'T1)Y? and M > (Q'Ty)"2.

We trivially bound |M(1 + it, x)|* and apply the mean value theorem



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES

(Lemma 2.3.27) to obtain

>

q<q’

This contributes to the second term of (2.3.22) following an application of

2T
S [ ING il M i) P
4) ()77

1 2T1
€ 2 L 1 . 4
<! (MS,%M'%\ ) 2 (>Z/ NG +it, )l 'dt
v x(q) /T

q<Q’
N2
< Ta( max ]am\z) E (Tl + —)
M<m<2M <o q
q<

< T (QTy + N*log ') | max ek

<m<2M

e 1 1/2 2
L T°M(Q'T) Mg@aéM|am|.

partial summation.

Case 3. N > (Q'Ty)"2.

85

We apply the approximate functional equation to replace N (% + it, x)

with another sum which is the partial sum of a Dirichlet L-function or its

derivative and has length N’ < (Q'T})"/2. This is treated as in the previous

cases. The error terms can be treated as in [1, Lemma 2]. As in [16, Lemma

1], the error term is of size < 1+ R(% +it, x), where R(% +it,x) > 0 and

ST RG +itx) < @) T

x(q)
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This contributes

1 2T1
<) = Z/ |1+ R(3 +at, x) || M(1 +it, x)[*dt. (2.3.24)
q<Q’ #(a) x(q)

We treat the first term of (2.3.24) using the mean value theorem (Lemma

2.3.27) to give

€ T1 1 2 € Q/T / 2
<5 (31 ) ity ool < 1 (S 102 ) s, b
which contributes to the first term of (2.3.22). Applying the trivial bound
R +it,x) <« ©(q)¢T"* (handling the imprimitive characters as in [16])
and the mean value theorem (Lemma 2.3.27) M (1 + it, x), the second term

of (2.3.24) contributes

_ T
< T°T; 1/2 Z ¢ (@(Q) 1 X SO(Q)) max ‘am‘Z

o M q ) M<m<2M
q<

(Q/)2+5T1/2+a (Q/)H—sTe )
< ( M * (T")1/2 MEmeon [@m "

Following an application of partial summation (which introduces a factor
of N72), this contribution is acceptable in comparison with the terms of

(2.3.22). 0
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2.3.6 Bounding the Mean Value of a Dirichlet Polyno-
mial

We will now prove Proposition 2.3.21, establishing the bound

B3(X) : Z/ F(1 +it, x)|dt
To

q<Q

1 qT Plog X q )
L —F 55— + .
Qo(log X)>*7 g;o ( X v(a)

This will complete the proof of Proposition 2.3.13, which treats error terms
on the major arcs, and consequently the main result Theorem 1.0.2. We will
adapt the argument appearing in [38, Sections 2-4|. For s € C and x mod g,

We first recall the definition (2.3.18) of the Dirichlet polynomial

F(SaX) = Z M

S
Xemmeax  (P1P2)
P<p<pi+e

We will factorise this polynomial before bounding the contribution of the

remainder terms, that is, the second term of (2.3.20).

Lemma 2.3.34. Let ¢ > 0 be fived sufficiently small and Ty = X'/10. Let

s € C and v € Z. Denote

v v
Xe U<p<2Xe U
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then we have the bound

Bs(X) < Y

3<Qo

qU?1og? P
(q)

T
S [ (G (14 it Pl 1+ it 0Pt
x(a) 710

1 qT log X q
" Qullog X ( X" s@(Q)) )

for some n =n(e) > 0, where vy € I a suitable integer with I = [U log P, (1+

§)Ulog P] and U = QL+,
Remark 2.3.35. We note that the factor

1
Qo(log X )2+n

appearing in the second and third terms of the sum over ¢ arises from

1
Ulog? X~
In the proofs of Theorems 1.0.4 and 1.0.5 we will make larger choices of Q)

and U. In particular, we will choose Qo = log” "X and U = QY for some

suitable A, E' > 0.

Proof. We factorise F(s,x) using Lemma 2.3.25 with M = P, M’ = P'*9,

am = Lp(m)x(m), b, = 1p(n)x(n). This gives

Fex)= Y G+ Y 2

veEINZ ke[Xe—1/U’Xe1/U]
or k€[2X,2Xel/U]
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where I = [Ulog P, (14 6)Ulog P, U := Qi a

< Y

k=p1p2
P<p <pit?

which is bounded.

Therefore, taking the maximum in the sum over I, the mean square of

2

the Dirichlet polynomial is bounded by
ZG 14 at,x)H,(1+1t,x)| dt

T
/ IF(1+it, x)| dt<</
To To |yernz
T
dix (k)
AN -
To ke[Xe /U Xel/U]
or k€[2X,2Xe!/V]
T
<<|f|2/ |Gog (14 at, X) [P Hoo (1 + it x)|*dt

To
T

drx (k)

AN -

To ke[Xe /U Xel/U]

or k€[2X,2Xe!/V]
where vy € [ is the integer maximising the right hand side. Applying

2

dt

2

dt,
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Lemma 2.3.28 to the second integral, we have that

Z/ (14 it, x)|*dt (2.3.25)
To

<U?(log P) Z/ v (L it %) |2 Hy (1 4 it x) |2dt

x(q)

|di|?
+Tp(q) > - (2.3.26)
k€[Xe /U Xel/U]
or k€[2X,2X el /U]

(k,q)=1
|dim||dy]
+T(q) : (2.3.27)
%&/U m;h mn
1<h< T m,ne[Xe_l/U,Xel/U]

alh or mn€[2X,2Xe/U]

(mmn,q)=1

We now bound the last two terms. We consider only the sums where k €
[Xe 1V, Xel/V], with the sums over k € [2X,2Xe!/V] being treated analo-

gously. For the first sum (2.3.26), we have

1 62/U
E p < F E E 1. (2.3.28)
k=p1p2 P<pi<Pt+é x—1/U Xel/U
Xe—1/U<k<Xel/U ! b SP2ST

P<pi<P'*S

By the Brun-Titchmarsh inequality (Lemma 2.2.10), we have the bound

X (/U _ o—/U
D R
p1log X

Xe—1/U <pg <Xe /v
P1 - Pl
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Returning to (2.3.28), by Mertens’ theorem (Lemma 2.2.2) we have that

1 e3/U _ p1JU 1 1
2. < Y S« (23.29)
2
X0 anw (P1P2) XlogX | & p ~ XUlgX
P<p<pits

We will use Brun’s sieve to bound the second of these sums (2.3.27). We

may trivially bound

{n <2X :n=pips,p1 € (P, PH&]H

< |{n S 2X :n =pim,p € (Pa P1+6]7 (m,P(z)) = 1}‘

where we define P(z) = [[,_.p with z = X1/8 and B > 1 suitably large. Let
IT be the product of all primes in I := (P, P**°]N[1, z) and P'(z) = [Tp<.pn -
Therefore, we have that

|dm||dim ]
Z Z m(m + h)

2xel/U Xe—1/U<m< Xel/U
1§h§% >m=>~

alh

e/l 1 P'(2)

Z -1/U 1/uy . _
<55 > {me[Xe , Xe ].(m(m+h), o >_1H.

axel/U
1§h§€#

qlh
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Brun’s sieve then gives the bound

X h

Ulog® z p(h)’

<
Therefore we have that

|dm| ’dm+h|
Z Z m(m + h)

2xel/U Xe=1/U<m< Xel/U
1<h<2Xe /T <m<

qlh
e/l h
L ———5— — (2.3.30)
XUlog? 2 1<h§€1w o(h)
g !
< !
p(q)TU log* X

Combining the diagonal (2.3.29) and off-diagonal (2.3.30) estimates and ap-
plying the definition U := QL**, the two terms (2.3.26) and (2.3.27) con-

tribute

q Te(q) 1 ) (s@(q)TlogX ) 1
< <K|l— 41| ——
©(q) (XUlogX + Ulog* X X + Qo(log X)?*n

to (2.3.25) for some 1 = n(e) > 0, as needed. O

It remains to estimate the integral appearing in Lemma 2.3.34. We split
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the domain of integration [Ty, 7] according to the size of the polynomial

. x(p)
G (1 +it, x) := E P
vg vp+1
elU <p<le U

We will first treat the set where GG, is pointwise small:

a1 v

Spi=A{(t,x) € [To,T] x {x mod g} : |Gy (L +it, )| < e v},

where oy := % — ¢’ and € > 0 is sufficiently small in terms of ¢ > 0. We
may write
Si= J =Ty (2.3.31)
x mod g

for some Ty, C [To,T].

2.3.6.1 The contribution of &;

We first treat the contribution of the integral over 7 ,,, where the polynomial
G, (1 +it, x) is pointwise small. In this case, we apply the pointwise bound
for G,, to find the required cancellation, before applying the mean value

theorem to the longer Dirichlet polynomial

. x(p)
Hvo(l +Zt7X) = Z pl—l—it’

Y0 _20
Xe U <p2Xe U

which corresponds to the larger prime factor.

Lemma 2.3.36. Let ¢ > 0 be fized sufficiently small and Ty, be defined as
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in (2.3.31). Let vy € I = [Ulog P, (14 6)U log P] be a suitable integer as in
Lemma 2.3.34, with U := Qé+€2. Then, there exists some n = n(e) > 0 such

that
U*(log P)* > LZ/ |Gy (1 + it) || Hyy (1 + it)|dt
#la) OB

q<Qo

1 qPTlog X
—_—— —+1).
< g 2 ()

q<Qo

Remark 2.3.37. We note that if the smaller prime factor satisfies p; €
[Py, P,] for some Py = P;(X) and P, = P»(X), we have the bound

U? Py log® P, Z (ngTlogX L )
log? X X vlq))

q<Qo

In the proofs of Theorems 1.0.4 and 1.0.5, we will make larger choices of
Qo, U, P, and P,, which leads to the improved error term. In particular,
we will choose Qg = logA/X , U = QF for some suitable A, £ > 0, P, =

exp((log X)°M) and P, = exp((log X)'—°W),
Proof. First we apply the definition of 7; ,, bounding pointwise

@190

|Gy (1 +it, )| < €770

< P

where oy = ;’—4 — ¢ and ¢ > 0 sufficiently small in terms of ¢ > 0. We can

then bound the integral over 7, by

J,

G (14 it ) I oy (1 4+ it ) [2dt < P‘Q‘“/r H, (1 + it ).

’X
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Applying Lemma 2.3.28, we have that

Z/ G (L it )P oo (1 + it x) [t
Ti,x

1 1
-2
<PETelg) | Y, S+ D >,
p bp
X 2X X X 2X
ov0/U “P= o0 /T 1ShSTeUO/U ev0/U <pp'< ev0/U
qlh p—p'=h
P—QalT(p((Dero/U
< X2 E 1+ E E 1].
X 2X X X 2X
00 /T <PS 57T 15h§T6v0/U —00/T <PLP2S
qlh p1—p2=h

By Chebyshev’s inequality, we have that the diagonal terms are bounded by

Yook _~ (2.3.32)

evo/Ulog X

X 2X
00/U <p< 0/U

For the off-diagonal terms, we have by Lemma 2.2.3 that

X
2 > I<omrx 2 sh

X
1§hST6U0/U Uo/U <p1 p27 vo/U 1Sh§T6U0/U
alh p1—p2=h qlh (2.3.33)
X2

< .
e20/UgT log® X

Combining the diagonal (2.3.32) and off-diagonal (2.3.33) estimates, we have



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 96

that

Z/ Gy (1 + it )2 Hoy (1 + it )2t
T1

x(q) = X
P2 Tp(g)e/V X X2
< X2 (e”O/U log X * e2v/UqT log2X>
< Pl (qPT log X 1)
qlog? X X '

Thus the overall contribution to the sum B3(X) is

g P (TR
7<Qo (,O(Q) q 10g2 X X

UPpoi)og? P Z qPTlog X 1
o log’X X '

q<Qo

Now, to estimate the first term we split into cases depending on the size of
H, as this determines the size of )y and P.

In the case H < exp((log X)°), we have that Qo := (log X)'*** and P :=
(log X)!™*¢. By the choice of U := Q{*** and the definition of a; := 2 — ¢

with &’ sufficiently small in terms of e, we have that

U2P20110g P (log X )220+ (0-3/1742)(1742) (og |og X )2
<
log® X log” X
1
Qo(log X)*’

<

for some n =n(e) > 0 as § > 0 is sufficiently small.

In the case H > exp((logX)€3), we have that Qg := (10gX)3+a2 and
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P := exp((loglog X)?), so that

U?Po—211og? P
log? X
< (log X )22 6+%) exp((§ — 2a)(log log X)?)(log log X )
log® X

1

< Qo(log X)z+n’

for some n =n(e) > 0 as § > 0 is sufficiently small. O

2.3.6.2 The contribution of the complement of &;

It remains to consider the contribution of the complement of Sy, where the

polynomial

Gvo(l + it, X) = Z ;(fﬁi

is pointwise large. The polynomial

) x(p)
HUQ(]- + Zt? X) = Z p1+it

_Y _Y
Xe U <p<2Xe™ U

is too long to find the cancellation we need, so we introduce further decompo-
sition into shorter polynomials using Heath-Brown’s identity (Lemma 2.3.26)

with £ = 3. This decomposes the polynomial H,, into

|Hyo (1 +it, x)| < (log” X) (|Q1(1+it,x)| + -+ |Qr(1 +it, x)]),
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where L < log® X for some C' > 0. Each Q;(s,x) is of the form Q,(s,x) =
Hz‘g.]j R;(s,x) with J; < 6 for each 1 < j < L, where R;(s, x) are prime-

factored Dirichlet polynomials of the form

3 x(n)logn’ 3 x(n)’or 3 u(n)x(n)7

R;<n<2R; R;<n<2R; R;<n<2R;

whose lengths satisfy Ry---Rj;, = XM R, > exp (logji‘;()() for each
i. These polynomials Q);(s,x) are either a product of many shorter prime-
factored polynomials, or a product of two longer polynomials which are par-
tial sums of a Dirichlet L-function (or its derivative).

We will treat each type of Q);(s,x) with different methods, so we now
split into two cases according to the the lengths R; of the factors as follows:

Case 1: Type II Sums. When Q;(s, x) is a product of many prime-
factored polynomials, this has arisen from having many localised summation
variables, so we will describe this case as Type II.

Suppose we have Q;(s, x) = Hz‘ng R;(s,x) for some 1 < j < L with R; <

X3+ for some i < J; < 6. Then, we rewrite Q;(s,x) = Mi(s, x)Ma(s, X)

with exp (10?%0?)() < My < X3+ and M, = XM /M. Where the coef-
ficient log n appears, we apply partial summation. The polynomial Ms(s, x)
is a product of polynomials, and the coefficients are given by convolving co-

efficients which are one of the sequences (u(n)),(1). Thus the coefficients

of the polynomial Ms(s, x) are bounded in absolute value by < d,.(n) with



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 99

r < 5. We will therefore need to find sufficient cancellation in

> L/ |Gy (1 + it, )My (1 + it, X) Mo (1 + it, x)|2dt.
=00 ©(q) [To,TI\Ti.x

In this case, we once again have a short polynomial M (s, x) to work
with. So, as before, we split the domain of integration according to whether
M (1 + it, x) is pointwise small. When M;(1 + it, x) is pointwise small,
we will apply this pointwise bound. Previously, for the set §; where the
shorter polynomial G, (1+it, x) was pointwise small, we were able to find the
required cancellation by applying the mean value theorem to the remaining
longer polynomial H,,(1+it, x). However, M;(s, x) can be much longer than
G, (8, X), so following the same strategy as for the set S; and applying the
mean value theorem to G, Ms(1 + it, x) will not be enough.

To overcome this issue and sufficiently increase the length of this poly-
nomial, we introduce a suitable 2(¢ — 1)th moment of G, (1 + it,x). In
this domain we have |G, (1 +it, x)P*1|*“=Y > 1, as this polynomial is large.
Now, the polynomial G& ' M,(1+it, x) has length which is comparable to the
length of integration, and the mean value theorem can be applied effectively.

Otherwise, where the polynomial M; (1 + it, x) is pointwise large we will
apply the prime-factored bound. This set will be sparse, so we will apply the
Halasz-Montgomery inequality followed by large value theorems.

Case 2: Type I Sums. Otherwise, @Q;(s, x) is a product of two longer

polynomials which are partial sums of Dirichlet L-functions (or derivatives).
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These polynomials arise from larger variables in the Heath-Brown identity,
so we will describe this case as Type 1.
We may write Q;(s, x) = Ni(s, x)Na(s, x), where each N;(s, x) is of the

form

Z x(n)logn or Z x(n)

N;<n<2N; N;<n<2N;

with lengths satisfying N; N, = X'T°(0) . Note that if in fact only one of the
lengths N; satisfies N; > X/3+¢' then one of Ny(s,x), Na(s, x) can be the
constant polynomial 17°. Since we have that Ny Ny = X without loss of
generality we may take that Ny > X1/27¢' g0 that X3+ < N, < X2+,

In this case, we will therefore need to find sufficient cancellation in

> / (Gl (1 + it X)N1 (1 + it X)No(1 + it x) et
i<a0 P Sz,

We will again introduce a suitable 2(I — 1)th moment of G, (1 + it, ) using
|G (14 it, )P [*=1) > 1 to ensure that the polynomial GL Ny (1 + it, x)
is sufficiently long. We will then introduce fourth moments and separate the
polynomials G 'Ny(1 + it, x) and Ny(1 + it, x) using the Cauchy-Schwarz
inequality. To find the required cancellation we apply the mean value theorem
to N3(1 + it,x) and the twisted fourth moment result for partial sums of

Dirichlet L-functions (Lemma 2.3.33).
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2.3.6.2.1 Type II Sums. We first handle the contribution of the Type

IT sums, that is, the prime-factored polynomials

MmOty = Y X iy = Y )

1+t nltit ?
M1 <m<2M; Mo<n<2Msy

with a,, either the coefficient 1 or the M&bius function, |b,| < ds(n), and

lengths satisfying exp (bg’ig(X) < M, < X3+ N M, = X o),

We need to find cancellation in

> 4 / |Gl (14 it, X) My (1 4 it, x) My(1 4 it, x)|*dt.
1<00 (q) @ Y [T TI\Tix

To treat this contribution, we split the complement of &7 according to the

size of the shorter polynomial M (1 + it, x):

Sy = {(t,x) € [To, T] x {x mod g} : [Mi(1+t,x)| < M;**}\ Sy,

S:=([To, TT x {x mod ¢})\ (S1US,),

2

with ag := % — g’ > ay. As before, we may write

’52 — U {X} X 75,)(7

x mod g

s= U tax7

x mod g

(2.3.34)

for some Ty, Ty, C [T0, 1.

We first consider the contribution of the integral over 7 ,. In this set,
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the polynomial G, (1 + it, x) is large while the polynomial M;(1 + it, x) is
small. We will pointwise bound the polynomial M;(1 + it, x) to find some
cancellation. We will then introduce a suitable 2(¢ — 1)-th moment |G,, (1 +
it, x) P [2=1) > 1, which will ensure the polynomial Gg((f_l)Ml(l +it, x) is
of a length similar to the length of integration and we can effectively apply

the mean value theorem.

Lemma 2.3.38. Let ¢ > 0 be fized sufficiently small. Let Ty, be defined
as in (2.3.34). For s € C and x mod q, define Mi(s,x), Ma(s,x) to be

prime-factored polynomials

Mi(s,x) = > amx(m) My(s,x) = Y bux(n),

ms
M1 <m<2M; Ma<n<2Ms

with a,, either the coefficient 1 or the Mdbius function, |b,| < ds(n), and

lengths satisfying exp (loifigX) < My < XY3+ MMy = X Then

> LZ/ |Gy (14 it, X)) 2| My (1 +it, ) My (1 + it x)[2dt < log™F X,
7<Qo gp(q) x(g) 7 T2x

for some suitably large F > 0.

Proof. This proof is similar to [25, Lemma 13] and [38, Proposition 2]. By

definition of 73, we have that

(IGu (L it x)[P)*EY > 1
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for integers ¢ > 0. We choose ¢ = [log M, /log P]. Therefore, we have

Z/ G (1 4+ it, ) 2| M (1 + it )M (1 + it, x) Pt
-

x(q)

< M 2042P2CM1(€ 1)2/ 1 +Zt X>M2(1 —|—Zt X)’th (2335)

x(q) Tox

By the choice of ¢, we have that

o 2aq log P log My a
P21€<<exp< = M7,

log P

Therefore (2.3.35) is bounded by

& M=% p=2m Z/ o (1 at, X) M (1 + it x)[*dt
T2,x

< Moz pmea §T / [A(L + it, x)[dt,
x(a) * T

where we define

A(57 X) = Z AnX(n)’

neJ

with J := (Mye®/V 2Myef0+1)/U] and the coefficients A,, satisfying

|A,| < Z d.(m),

n=pi-
”0/U<p <6(v0+1)/U

M2<m<2M2

where r < 5, as before. Note that the primes pq,...,p, are not necessarily
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distinct and m may also have prime factors in the range (e"/Y,e(ro+1/U],

Applying Lemma 2.3.27 to the integral, we have that

Z/ LA(L + it, )| 2dt
T2,x

x(q)

< ((p(q)T+ @Mzef%/U(ze’f/U - 1)) > 4"

n
neJ
(n,q)=1

The number of ways we can write d = p;y ---p, with p; not necessarily

distinct is at most ¢!. Then we have the bound

1A, < 0! > d(m) < 0d, 1 (n).

n=md
pld=e?0/U <p<elvotD)/U
Q(d)>0

trivially extending the range of summation for m. Therefore, we have that

|An|2 4 |An|dyy1(n)
$ A s Ml

neJ neJ
¢! ds(m)dg(m d
< Z 5(m)ds(m) Z 6(p1- - Dr)
ef’vo/U]\4'2 m P Do
Mo<m<2Ms CUO/U<pi§€(U0+1)/U

i=1,....0
¢

14 dZ(m) 6
<< eZ'UO/U‘Z\J2 Z m Z ]_)
Ma<m<2Ma ev0/U <p,;<e(vo+1)/U
<<—€! (log M)*® ( 61 1+1 é
(0] 0} —
QZUO/UMQ g 2 g o
log 6

o M g )0 0
ef’uo/UMQ Vo
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log 6

noting that by the definition of ¢ we have 6 < exp(%#w) < M*®".

By the definition of ¢ and since vy € I, we have that

l log M,
— <K ——=< 1L
Ulog* P

By the definition of ¢, we also have that

log M log log M; log M- 6
< log i) 7 < exp ((15 +gs) hl)glig)é) < M,

Therefore, we can bound the integral over 75, by

d
Z/T (1 +it, x)|2dt

T ©(q) TS
< (go(q)emo/UM2 + . (2e7V — 1) ) M T (log X )

Since vy € I, we have that e/0/V > Pt > M, by the definition of /. We also

have that 2¢//Y — 1 <« 1 and therefore we can bound the above integral by

+ log 6

T
S / AL +it, ) Pdt < (go<q> ¢l >)M”+E “7 (log X )0
(@)’ Tex MMz g

1 log 6

< ()O(q)M117+E+logP (10gX)35

as we have MM, = X'*°W) and T < X'+ Returning to (2.3.35), we



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 106

have the bound

Z/ |Gy (1 + it,x)\2|M1(1 +it, x) My(1 + it, X)’Qdf
x(g) ¥ T2x

1 + log 6 4201 20

<< QO(q)M117+E log P

P2 (log X)35.

With our choices of ay, ay, we have that 2a; — 2 = —1/17. Summing over

q introduces a factor of Q2. Recalling that exp (lo?i?)() < M, we find that

DD | 16w it PR+ it ) M1+ it 0P
7<Qo v\ x(a) * T2x

< Q%P—2Q1X—a/(30010glogX) (10g X)35,

and choosing & > 0 sufficiently small in terms of € > 0 ensures the above is

bounded by log™* X for some suitable F' > 0, as needed. [

For the Type II case, it remains to treat the contribution of the integral

over 7T, where both polynomials

) X\P
Gy (141t x) = Z p1<+i)t

. x(n) p(n)x(n)
Miltit)= D, igmor D T
M1 <n<2M; M1 <n<2M;

are large. To handle this contribution, we will first apply the Halasz - Mont-

gomery inequality as we are in a sparse set, followed by large value theorems.

Lemma 2.3.39. Let T, be defined as in (2.3.34). Let E > 0 be fized suf-
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ficiently large. For s € C and x mod q, define Mi(s,x), Ma(s,x) to be

prime-factored polynomials

My(s, )= > amx(m) My(s, )= > b"iﬁ’”,

S
My<m<2M; Ma<n<2Ms

with a,, either the coefficient 1 or the Mdbius function, |b,| < ds(n), and

lengths satisfying exp (10?1%:?)() < My < X3+ MM, = X' Then,

we have that

> 1 Z/ |Gy (14 it, ) My (1 + it, x) My (1 + it, x)|2dt <
x(@) 7 Tx

E b)
ot ©(q) log™ X

where vy € I is a suitable integer, with I = [Ulog P, (1 + 0)U log P] and
U=Qy.

Proof. This is similar to [38, Section 4.1]. We first replace the integral over
T, with a sum over a well-spaced set. For each character y mod ¢, cover
T, with intervals of unit length and from each interval take the point which
maximises the integral over that interval. This set is not yet necessarily well-
spaced, but we can split it into O(1) well-spaced subsets. Therefore we may

write

0| G (14 it x)My(1 + it, x)Ma(1 + it, x)[*dt

x(@) 7 Tx

< G (1 +it, ) Mi(1 +it, \)Ma(1 + it, x) [,
(t,x)ET’
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where 77 is the well-spaced subset which maximises the right hand side.
We now apply the prime-factored property |M;(1 + it, x)|* < log_F, X with

F'" > 0 sufficiently large and then Lemma 2.3.29 to get that

(t,x)eT’
< (log X)™" Y |Gy (1 +it, x) Mo (1 + it X))
tx)eT’
) dy(m)
loo X F M. (vo+1)/U 1 T1/2 r
< (log X) ( eI 4T (4T) PR
ev0/U <p<elvo+1)/U
Ma<m<2M>
—r (¢(g) 1/U |T/‘(QT)1/2
<<<lOgX) (Te +W s (2336)

where F' > 0 is suitably large and r < 5.

Case 1: exp (102)1%)‘;()() < My < X" for all v > 0.

In this case we apply Lemma 2.3.30 with V = M| ** to see that
17| < (¢T)*** M;7** exp ((1 + o(1))(loglog X)?) < X AT e

since exp <%) < M, < XV forallv > 0 and oy := % —¢’. Substituting
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this bound into (2.3.36) and summing over ¢, in this case we have that

Z o(q) ) Z wo (1t )M (1 4 it, x) Mo (1 + it x)|?
a<Qo 11 X)ET’

1/2 x4/17+1/2+4¢
_ q
< (log X) " Z (1 + M2€vo/U )

q<Qo

X417+ /2+5+u>

< (log X)™ (1 + P

noting that M, = X'+ /A1 > X1=¥+°() for any v > 0 in this case. The
above is then < (log X)~¥ for some suitable £’ > 0, as required.
Otherwise, we may write M; = XVt for some 0 < v < 1/3. If we can

show that |77 < X/277=<" then we will have that

Z |G (14 it, )My (1 +it, ) My(1 + it, ) [dt < ey

X

for some suitable £/ > 0. Summing over ¢, we have that

> LZ/ Gy (14 it, )My (1 + it, ) My (1 + it, x)|2dt <

1
E
=, el log™ X

where E > 0 is sufficiently large.

Thus, it remains to prove that |T'| < X'/27v=¢* The large value theorem
we apply to obtain the required bound will depend on the size of Mj.

Case 2: L <v < 1.

We apply Lemma 2.3.32 with M (1 + it, x)?,V = M;?** and k = 2, we
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have that

7| < X< (M{m + X2 +XM18(4a271)>

<<Xmax(17 Q—Myl—g v)— 262

We have that v < 3 1+ ¢, The inequality ﬁu < % — v holds when v < ¢ H

and we have that 2 — 22 > v when v < . Note that 2 — v < 1
fails if v < 1. Therefore, in this case we have the bound |7| < X/27v~<°

51 17
Case 3: g SV <

We again apply Lemma 2.3.32 with My (1+it,x)?,V = M;*** and k = 2,

to obtain
7| < X*° (Mlﬁaz + X210 +)(]\4112(4042_1))
<)(max(17'/2 11576 v,1— 108’/) 2e2
Similar to the previous case, we have that y < Ly holds for v < 17

and 2 — 1561/ > 1/ when v < ¢ 17 . We have that 2 — 1561/ < 1/2 —v fails when

51

v < 555, 50 we again have the required bound for |77| in this range.

Case 4: v < 278

Further iterations of Lemma 2.3.32 with higher powers of M;(1+it, x) are

not enough to cover the full range of v. In this case, v is now small enough
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for us to apply Lemma 2.3.30 effectively with V' = M *?, which gives
‘7-/’ < (qT>2a2X2ua2+£ < X%(1+u)+1005 < Xl/g,,/,g’

as required. O

2.3.6.2.2 Type I Sums. Now that we have handled the Type II contri-
bution, it remains to treat the contribution of polynomials which are partial
sums of a Dirichlet L-function or its derivative. These polynomials are of the

form

. x(n)logn x(n)
Ni(l+it,x) = ) o OF > it

N;<n<2N; N;<n<2N;
for i = 1,2, with lengths satisfying Ny N, = X'+ with N; > X/2=¢" and
X1/3+5’ < N, < X1/2+€/.

We need to find cancellation in

> Iy / |Gy (1 +it, x)N1 (1 + it, x)Na(1 + it, x)*dt.
[To,T\T1,x

q<Qo QO(Q) x(q)

To do this we will first introduce a suitable 2(I—1)th moment of G, (1+it, ),
using that |G, (14it, x) P*1|>=1) > 1 as we are in the set where G, (1+it, x)
is pointwise large. This will ensure that the polynomial GéglNl is sufficiently
long when we apply the twisted fourth moment of partial sums of Dirichlet
L-functions (Lemma 2.3.33). We will apply the Cauchy-Schwarz inequality

to separate the polynomials and introduce a fourth moment, so that we can
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then use this twisted fourth moment result.

Lemma 2.3.40. Let € > 0 be fixed sufficiently small. For s € C, x mod g

and i = 1,2, define

Ni(s,x) = ) w, or Y Xqi?),

N;<n<2N; N;<n<2N;

with lengths satisfying NyNy = X' gnd Ny > X2~ X3+ < N, <

XV Let T, be defined as in (2.3.31). Then, we have that

S L / |Glop (14 it, X) N1 (L + it, x)Na(1 + it x) Pdt < X752,
1<00 (q) @ 7 [T T\

where vy € I is a suitable integer with I := [Ulog P, (1 4+ 0)U log P] and
U= Qy.

Proof. This is similar to [38, Proposition 3|. As we are in the complement of
S, we have that

|G (1 +it, x) PP > 1,

where we choose [ = |elog X/log P|. Therefore, we have that

> L / (Gl (14 it ) N1 (1 4 it, ) No(1 + i, x)|dt
(To, T\ T1,x

q<Qo #la) x(q)
T
< preal=i Y- 4 Z/ |GL (1 +t, \)Ni (1 + it, x) No(1 + it, )| *dt.
=5, () S= Jn,

We will split the domain of integration according to whether ¢ < N;. Apply-



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 113

ing the Cauchy-Schwarz inequality three times in total (to the integral and

the sums over y and ¢), we have that

Ny
Pt S 5 Gt 1 g N 0
To

q<Qo

N

<Pt 37— 2 / Gy (L4t )| N1 (1 + it )|

7<Qo

NI

Z/ |No(1 4 it, x)[*dt

[NIES

1 M
<pru |y WZ /T |Glog (14 it, X)| M [Ny (1 + it )| *dt
a<Qo x(q) © 0

NI

yN2 +it, x)[*dt | . (2.3.37)

q<Q x(q

We have the analogous inequality

T
preal=h 3~ LZ/ GL (1 + it, x) N1 (1 + it, x)No (1 + it, x)|*dt
q<Qo

2

1 T
<prat=D N w_Z/N |Gloo (1 + ity X)| M N1 (1 + it ) [*dt
1<Qo !

2

Z/ |Ny(1 + it x)|dt

q<Q0 X( )

(2.3.38)
for the integral over [Ny, T].
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We will first treat the integral over [T, Ni]. In this case, to treat the first
integral appearing in (2.3.37), we will apply the same argument as in the
proof of Lemma 2.3.33, with N(1+it, x) = Ni(1+it, x) and M(1+it, x) =
G2 (1 4 it, x). We will again use the hybrid result of Fujii, Gallagher and

Montgomery

5= xnn' = DEDEL 4 0((q)* og(ar),

where 7 = |t| + 2, to bound Ny (1 + it, x). We have that

41 2

|Gy (1 +it, x) | = > ;fl(fi = > —X(foft”) :

evO/U<pSe(v0+1)/U e2lv0/U<n§62l(v0+1)/U

where a(n) = 0 unless n is a product of 2/ primes, not necessarily distinct,
each lying in the interval (e®/V e(*0+D/U] Writing n in terms of its prime
factorisation n = pi* - - - py* with b < 2l, we have that a(n) = ( 2 b) when

it is non-zero and therefore that a(n) < (20)!. Therefore, we have that

Ny
Z/ INV(L it )IIGY, (1 -+ it ) [Pt

q<Q0

21 4
< Xa/lO(Ql '2 Z/ ( ) + q 0g2(QT) dt
q<Q T 1+ t]) T
XE/5
- (] 4+5'
< )
(2.3.39)

We apply Lemma 2.3.27 to the second integral in (2.3.37). Noting that
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No(1 4+ it, x) either has coefficients 1 or logn, we find that

q2 N1
PP / No(1+ it, )| dt
©(q) L

7<Qo
N} d?(n)log* n
§ : 2 2 2 :
< q (Nl—i—?) T

9<Qo N2<n<4NZ
Ny + N3 /q
N3
N + N22
N3 '

< (log X)" > ¢

9<Qo
< (log X)'* ( (2.3.40)
Since N1 N, = X' with N; > XV/2-¢ and X'/3+ < N, < X124 we

have that
Ny + N3
— < 1.

NS

Returning to (2.3.37) and combining the estimates (2.3.39) and (2.3.40), we

have that

q<Qo

P2a1(l71)Xs/10 (l!)2+5
T,/ '

Ny
prat- 3 ﬁz/ (GL (14 it )N (L + i, x)Na(L + it, ) Pt
(q) 770

<

By the definition of I, we have that (I!)*** < (log® X)"**¢), and therefore

2
(P2 tlog? X)) < exp ((1 o (Ml R ) o X)
Te (2.3.41)

< X*ZE/S.
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Therefore, the overall contribution of the integral over [T, Ni] is

prat-n 37 Z/ |Gy (14 it )N (1 + it, x)Nao(1 + it, x) | *dt

q<Q0

< X©/10-2¢/3-1/200

<<X_6/2,

as required.
Since the contribution of the integral over [Ty, N;] is acceptable, it remains
to bound (2.3.38), the contribution of the integral over [Ny, T]. To the first

integral, we again apply Lemma 2.3.27, obtaining

Z/ [Ny (1 + it, x)|*dt
Ny

d?(n)log*n
< Z T+ 7 Z n2

9<Qo N2<n<4N?Z

. (T + N3
<K <IOgX)16+ <T22) .

q<Q0

(2.3.42)

For the second integral of (2.3.38), since we have N7 < t for all t € [Ny, T],

we can apply Lemma 2.3.33. We choose M (1+it, x) = G2 (1+it, x), M = P*
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and N corresponding to /Ny to find that

1 T . .
50 S [ G+ 0N i)
1 x(@) M

=, ¢!

T 1
Xs/lO 21)12 QO 1 P4l T -1/2
. - QT 1
< X /10([!)4+ (N120p21 + E , (2343)

as the definition of [ ensures that P*(QyT})~"/? < 1. Returning to (2.3.38)

and substituting the estimates (2.3.42) and (2.3.43), we have that

T
aq (I— q ) ) )
Pt 3, @Z/N Gy (1 it )N (L + it X)Na(L + it, ) Pt
(@) °

q<Qo

T 1 1/2 T 4+ N2 1/2
p2aa(l-1) xe/10 IN2+e Qo - 2
<K () lepzz + N, N22

T T 1\Y?
P20¢1(l—l)X€/10 ! 2+¢ QO T N2 - )
< () N12N22P2l( + )+ NiN? + N,

We have that NyN, = X' with Ny > X'/27¢ and X3+ < N, <

X124 As we also have that T < X', the above is bounded by

1 1 1
201 (I-1) yre/10 (1) 2+¢ Il
<P XEP(1) <P1+NQ+N11/2>'

Once again we apply (2.3.41) to see that P2(=D (1> <« X~2/3 Qverall
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we have the bound

S oY [ (Gt 0PN (it N1t 0P < X
=00 v(q) @ Y [T T\ T
as required. Since both the integrals over [T, Ni] and [Ny,7T] contribute

< X~%/2, this completes the proof. O

2.3.6.3 Completing the proof of Proposition 2.3.21

Now that we have handled both the Type I and Type II contributions, we
have found the cancellation we need over the complement of S; (where the
polynomial G, (1 + it, x) is pointwise large). Having previously treated the
set 81 where G, (1 + it, x) is pointwise small, we may now combine these

estimates to complete the proof of Proposition 2.3.21.
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Proof of Proposition 2.3.21. By Lemma 2.3.34, we have that

Z/ F(1+it, x)|dt
11<Q0

UZ?log? P r : :
<ZGL£—Z/@mmwmwﬂth
QSQO SO((.Z) X(q) TO

1 qT log X q
" Qollog X7 ( X 90(61)> >

qU?log? P / . :
< Gy (1 it, X)|?| Hyo (1 4 it, x)|*dt
> ( =) Z( m' ( X7 Ho ( X)|

q<Qo x(q)

+/ |G (1 +it, X) || Hyo (1 + it, x)|dt
[To, TI\Ti x

1 qT log X q
" Qollog X)2 ( x w(q)> >

for some n = n(e) > 0 and some suitable integer vy € I. We apply

Lemma 2.3.36 to bound the contribution of the integral over 7 ,, where

the polynomial G, is small, finding that the above is bounded by
U?log” P ) )
<ZXL£¥Z/ Gy (14 it ) Fy (14 i, )P
[To, T\ T1.x

q<Qo So(q> x(q)
1 TPlog X
N _ (q ogX . 4 ) |
Qo(log X)*n X ©(q)

We will combine Lemmas 2.3.38 to 2.3.40 to bound the contribution of the

complement of &;, where the polynomial G, is large. We have decomposed

the polynomial H,, using Heath-Brown’s identity (Lemma 2.3.26), which
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introduces a factor of (log X)2¢. We have

q . .
UP(log P)* Y ——= [ o Gl it X2 Ho (1 + it, x) [2dt
0 1,x

q<Qo (’O(q) x(q)

<U?(log P)*(log X)*“
DI /[ G0+t )P Q)1 + it )P
To

4<Qo #la) x(g) T TI\T1,x <L
(2.3.44)

where each Q;(s,x) = Hing R;(s,x) with J; < 6 for each 1 < j < L and

L <log® X and R;(s, x) are prime-factored Dirichlet polynomials of the form

Z X(n)logn, Z X<n),or Z ,u(n))((n)7

R;<n<2R; R;<n<2R; R;<n<2R;

whose lengths satisfy Ry --- Ry, = X" R, > exp (log’i‘gx) for each 1.

We treat these integrals according to whether @); is a Type I or Type II sum.
For the Type II sums, we further split the domain of integration into the sets
T2, and T, according to the size of one of the factors of @);, as in (2.3.34).
To the set 73,, where this factor is small, we apply Lemma 2.3.38. To the

set T, where this factor is large, we apply Lemma 2.3.39. Overall, the Type
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IT sums contribute

tﬂmmm%MWZ}iil/ o1+ it 1) PIQ5 (1 + it )2
[To

55, ela) S Mo TN Tix
U2(log X)2¢ (log P)?
< (log )E( g P)
log™ X
< 1
logh X

to (2.3.44) for some sufficiently large F > 0. There are < log” X Type II
sums to consider, so as F' > 0 is sufficiently large this is negligible.

When @), is a Type I sum, we apply Lemma 2.3.40 to obtain the bound
U*(log P)*(log X)*“ ) % > / (G (1 + it ) P1Qs (1 + it )
a<Qo PN g T1T0 TN\ Tix
< U*(log X)*(log P)*X ~¢/*

< X o4,

There are < log® X Type I sums to consider, so this contribution is negligible.

Thus, we have that

3 LZ/TO |F(1 4 it, y)|*dt

q<Qo so(q) x(q)

1 qT'Plog X q )
L —F 0o — + ,
a2 (U

as required. O
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2.4 Proof of Theorem 1.0.4

We now briefly outline how to adjust the argument to prove Theorem 1.0.4.
The problem can be reduced to the set of Fy numbers which factorise in
the “typical” way. By Mertens’ theorem, almost all products of exactly two

primes p1po < X with p; < py satisfy
p1 € [exp ((logX)‘g(X)) , €Xp ((logX)l_E(X))] =: [P, B,

where €(X) = o(1). We define E} := EJ(X) to be the set of Ey numbers

n = p1pe € (X, 2X] which factorise in the typical way.

Lemma 2.4.1. Let h be a fized non-zero integer, P, := exp ((log X)) ))
and P; := exp ((log X)'=*N)). We have that

1 S(h)(loglog X)?

} Z ILEQ(n)ILEQ(n—i—h)—o( (10gX)2
X<n<2X

SY z; I]-E” ]]-E” n+h)

<1 Z n)lg,(n+ h)

< X - E2 n .

Proof. The second inequality is trivial as EJ is a subset of E, and the

summand is positive, so it remains to prove the first inequality. Since
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]1E2 = ]1Eé’ —+ 1E2\Eé’7 we have that

> lgMm)ign+h)= > Ig(n)lg(n+h)

X<n<2X X<n<2X

—+ Z :H‘EQ\EH ILEQ\E//(n + h)
X<n<2X

+ Z ILEQ\E" ILEH(TL + h)
X<n<2X

+ Z ILEN :H‘EZ\E”(TL + h)
X<n<2X

We will bound the last three terms using sieve theory. We treat the sec-
ond term, with the third and fourth being handled similarly. We have, by

definition

Z I]‘EQ\E// ILEQ\E//(n + h) Z Z 1.

X<n<2X - X<pim<aX
P1,p3<V X
p1,p3@[P1,P2] X —h<p3pa<2X—h
p1p2—p3pa=h

To find an upper bound, we will attach sieve weights \; to the inner sum
(for example, we can use Brun’s weights as in Lemma 2.3.34). Set z = X8

with 3 > 0 suitably large, and P(z) =[], , p- We then need to bound

2. 2. PR

p1ps<VvX  X/p1<n<2X/p d|n
PLpsEPLER] (e (pinth) P(z)) =1

Note that we can suppose (d,p3) = 1, as removing the terms (d,p3) > 1
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makes a negligible difference. Switching the order of summation, the inner

sum 1s

de Yoo (24.1)

d|P(z)  X/p1<n<2X/p1
n
d|g(p1n+h)
p3lpin—h
In the inner sum we have congruence conditions mod d and p3, which can be

combined using the Chinese Remainder Theorem into a condition mod dps

since we assume (d, p3) = 1. Therefore (2.4.1) is bounded by

o X hH(1_2><< X b X h
pips e(h) - p)  pipslog®ze(h)  pipslog® X ¢(h)

By Mertens’ Theorem (Lemma 2.2.2), we have that

DI EDIED I

p<\ﬁ < P Py <p<f
pE[P1,P]

— loglog P, + loglog VX — loglog P, + O(1)
= loglog X — loglog X + o(loglog X)

= o(loglog X).

Therefore, summing over p; and ps3, we have that

X h 1
Y dpamy()lpgy(n+h) < log® X o(h) > P13

X<n<2X p1.p3<VX
p1,p3E[P1,P2]

i (6(71)5 (ElgO)g( 1)c;gx>2) |
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as required. O

Therefore, we can reduce the problem to considering the correlations of
n,n+h € EY. We modify every definition featuring (P, P1*?], replacing this
interval with [Py, P»]. We will once again apply the Hardy-Littlewood circle
method and in (2.3.4) and (2.3.6) we take

Qo=log" X, A'>4,  Q:=Plog®X, H>Qlog”X, (242)

where C' is chosen sufficiently large in terms of A" and D is chosen suf-
ficiently large in terms of A’ and C. In Lemma 2.3.34 we instead define
I := [Ulog Py, Ulog P,] where U := QF, E > 0 and we define a; := ¢’ > 0
sufficiently small in terms of € > 0.

The error terms in Propositions 2.3.6, 2.3.10 and 2.3.18 need to be treated
with more care. The error term in Proposition 2.3.10 is acceptable with this
new choice of @y (see Remark 2.3.11). For Propositions 2.3.6 and 2.3.18, we
again need to split the sums over p; € [Py, P,] into dyadic intervals whenever
we apply the Cauchy-Schwarz inequality, as we did previously for the range
H > exp((log X)=*). If we do not make this modification, the bounds will

not provide the necessary cancellation.
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For example, the minor arc integral would be bounded by

/ 1S(0)>d6
mﬂ[a—ﬁ,a—i—ﬁ]

2

1 2X
<<—/ wy(n)e(na)| dx + Hlog® X
H? |
z<n<z+H
XP2 1 1 Q P210g<X/P2)
log X)) —+ — + — e
<h ((Og )<Q0+P1+H>+ 7

The term P,/P; prevents us from finding the necessary cancellation. In

particular, the first term is
< X exp((log X)) — (log X)*)) log™' X,
which is too large. We now outline how to modify the proof of Proposi-

tion 2.3.6.

Proposition 2.4.2. Let A > 3, B > 1 be fized and m be defined as in
(2.3.6) with Qo, Q as in (2.4.2). Let Qlog” X < H < Xlog™* X with D > 0

sufficiently large. For o € m we have that

/ 15(0)[2d6 <
mN[o—

Sbat L] log? X

Proof. As before, we apply Lemma 2.2.4 to the minor arc integral so that we
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need to bound

I / 15(0)[2d6
mN[a— 55 a—i—ﬁ]

2H>

1 2X
<
H? |y

The second term is < X (log X)~4*2 by our choice of H, so it remains to

2

wy(n)e(na)| drx + Hlog® X.

z<n<az+H

bound the first term. Now before applying Cauchy-Schwarz to the integrand
we split the sum over p; into dyadic intervals [P,2P] with P, < P < P,

before applying the triangle inequality, so that we instead need to integrate

2

> (logpa)e(apips)

z<pip2<az+H
P<p1<2P
2
< ( Z |ﬂp(m1)|2> Z Z (log p)e(amyp)
P<m<2P P<mo<2P |z<mop<z+H
P
= log P Z (log p1)(log p2)e(am(pr — p2)).

z<mp1,mp2<zc+H
P<m<2P

Next, we perform the integration on this sum and split into the diagonal
(p1 = p2) and off-diagonal terms (p; # p2), which will be denoted by S; and

S5 respectively. The diagonal terms now contribute

P XPlog X X
S log? .
'S Hlog P 2. 2. lg'r< HlogP < (log X)0 D1

P<m<2P X op<3X
m m

(2.4.3)
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Once again applying Lemma 2.2.8 followed by Lemma 2.2.3, the off-diagonal

terms Sy contribute

< le)gP Z Z (log p1)(log p2) Z e(amr)(H — mr)

O<r<H X 3X P<m<2P
A 0<mEH/r
P H 1
in(—, 1 ]
< Hlog P ZH i ( r ||m||> . > (logpi)(logpy)
O<r<% X <prpa<E
r=|p1—p2|
XP H 1
- : - - 6
© HPlogP ZHmIIl(r’uaru) "
0<r<%
X loglog X (H 1
< THlgP ZH e (7’ ||aT||)'
0<r<=

P

Applying Lemma 2.2.9, the off-diagonal terms contribute

Sy K

X loglog X log X (i 1 Q)

log P QU+F+E

Since we have chosen @)y := logA/X with A" >4, P, < P < P and Q :=
Pylog® X, we have that

Sy K

7 2.4.4
log? X ( )

for B’ > 3. Combining the contributions of diagonal (2.4.3) and off-diagonal

terms (2.4.4), before combining the dyadic intervals [P, 2P] introduces a fac-
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tor of O(log® P,) = O(log” X), so that

X

I <
log? X

for B > 1, as claimed. O]

Proposition 2.4.3. Let A > 3,B > 0 be fivred. Let ¢ > 0 be fized and
exp((log X)'=°) < H < Xlog™* X. Let M be defined as in (2.3.4) with Qo, Q
as in (2.4.2). Then, for all but at most O(HQEUB) values of 0 < |h| < H

we have that

| 15@)Pe(=ta)da = s(n)x ( > %) e (%) .

Pi<p<P,

Proof. Recalling Lemma 2.3.9, we have the expansion

S(a) :% > ]% > elpn)

q) Pi<p<Py ¥ X<n<2X

1 . 1
* o O 3 (wz(n)x(n) Y 1;) e(p)
—a(0) + b(a)

and following the argument of Section 2.3.3 we have that

/m|5(04)|2e(—h04)da :6(h)X< Z %)

P <p<P»

X 2
+0 (logBX + A(X)B(X) + B (X)) .
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Note that A%(X) < X (loglog X)3, so it remains to bound B?(X). Following

Proposition 2.3.16 and Remark 2.3.17, we have that

B%(X) < B1(X) 4 Ba(X) + exp((log X)),

where B;j(X) and By(X) is defined in Definition 2.3.15 with (P, P1*°] re-
placed with [P, P]. With our choices of (2.4.2), P, and P,, by Remarks

2.3.20 and 2.3.22 we now have that

X
log? X~

B (X) <

The proof of Proposition 2.3.18 requires modifying in a similar way to
Proposition 2.3.6. As in the case H > exp((log X)), we split the sum over
P, < p; < P, into dyadic intervals P < p; < 2P before applying Cauchy-
Schwarz, Lemma 2.2.6 and then combining the contributions of the dyadic

sums. O
We are now able to complete the proof of Theorem 1.0.4.

Proof of Theorem 1.0.4. By partial summation and Lemma 2.2.2 we have

the bound

/0|S(a)|2da: Z ws(n) < log X Z wa(n) < Xlog X Z

X<n<2X X<n<2X P <p<Py

=

< X(log X)loglog X.
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Therefore, following the proof of Theorem 2.3.3, the result may be deduced
from combining this bound with Proposition 2.4.2, an application of Cheby-
shev’s inequality and Proposition 2.4.3 followed by an application of partial

summation. 0

2.5 Proof of Theorem 1.0.5

We outline the modifications needed to prove Theorem 1.0.5. When applying

the Hardy-Littlewood circle method, in (2.3.4) and (2.3.6) we now choose
Qo :=log" X, A'>6, Q:=XY*2  H>QX (2.5.1)

As in Section 2.4, in Lemma 2.3.34 we instead define I := [Ulog Py, U log P;|
where U := QF, E > 0 and we define a; := &’ > 0 sufficiently small in terms

of € > 0. Analogously to the almost prime case, we may write

> Am)ma(n+h) = /0 S(a)S"(a)e(—ha)da + O(hlog? X),

X<n<2X

where for a € (0, 1) we define the exponential sum

(@)=Y Amn)e(na).

X<n<2X

The error term is < X (log X )~4*2 by our choice of H, which will be accept-

able. We have the following result for the major arcs.
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Proposition 2.5.1. Let A > 5, B > 0 be fixed and let ¢ > 0 be fixed suffi-
ciently small. Let X'/%t¢ < H < Xlog™* X. Let 9 be defined as in (2.3.4)
with Qo, Q as in (2.5.1). Then, for all but at most O(HQ61/3) values of

0 < |h| < H we have that

/m S(a)S'(a)e(—ha)da = &(h)X <P1<;P2 %) +0 (IO;; X) .

Proof. We can expand S’ in terms of Dirichlet characters (see for example

[32]). We have that o = a/q+ f with ¢ < Qq, (a,¢) =1 and [B| < 5. Then

W= 3 Ao () etns)

We again apply the identity

e (5) - o Y ).

x(q)

which holds for (n,q) = 1, where 7(x) is the Gauss sum (2.2.1). Then

S(0) =— Y r@x@) 3 Am)x(n)ens)

(a) x(q) X<n<2X
+ > A(n)e<ﬂ) e(nf).
X<n<2X q

(n,q)>1
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The second term is bounded by

< Z logp < log? X.

X<pi<2X
(p,g)>1

We now introduce the approximation to the principal character term, so that

(o) =9 e(n
S'(a) Tow 2 (n3)
1 _
=3 T(X)x(a) X@Z@((A(n)x(n) — dy)e(nf)
+ O(log® X)

=c(a) +d(a) + O(log® X),

say. Therefore, using the expansion (2.4.5) and Cauchy-Schwarz, we may

write the integral over the major arcs as

/mS(a)We(—ha)d&
—/ma(oz)c(oz)e(—hoz)doz

+ O (A(X)D(X) + B(X)(C(X) + D(X)) + (A(X) + B(X)) log” X)
(2.5.2)

where we define C*(X) = [}, |c(a)l?da with D(X) defined analogously.
Evaluating [, a(a)c(o)e(—ha)da as in Section 2.3.3.2 gives the required

main term and an acceptable error. Mikawa [32, Section 3] proves that
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C?*(X) < Xloglog X and that

D*(X)

2

q 2X | 4 ,
— — (A(n)x(n) — 6,)| dz + qQlog® X
() % / qQ 2

<
q X r<n<z+qQ/2

The second term is < X/*¢ « X log™® X by the definition of Q, which is
acceptable. Noting that we have chosen Q = X1/6+¢/2_ we apply Lemma 2.2.6

to the first term to get

D*(X) <«
() log? X

for B > 0, as required. Combining this with our estimates for A(X), B(X)
(from Proposition 2.4.3) and C'(X) we have that the error term in (2.5.2) is

O(X log™® X), as required. O

Proof of Theorem 1.0.5. Analogously to the proof of Theorem 2.3.3, by [27,

Proposition 3.1] we have that

2

> Am)wa(n+h) - / S(a) S (a)e(—ha)da

X<n<2X—h m

< / 15()]15"(0) CIS)1S(8)ldBdo

mN[a—55,0+ 557]

2.

0<|h|<H

By Cauchy-Schwarz on the integral over (3, we have that the above is bounded
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<t [ 15()lIS'ta |</m[a (5)2d5>1/2
(L

<t ( [ Is@listaa) / 5(9)Pds) "
X (iléﬁ /m o IS(ﬂ)\2dﬂ> 1/2-

In the last step we have trivially bounded one of the integrals over the minor

by

1/2
IS’(6)|2d6> dov

1 1
50T 5]

arcs by the integral over the unit circle and taken the supremum over o € m.

Applying Cauchy-Schwarz again to the integral over «, we have the bound

<t ( [ 1sta)iaa) " ([ 15@Pda) " ([ 1sras)
x (zgg [ \5(5)\2d5> N

<t ([ 1stpan) ([ sean)
x (iﬁﬁ Lo s (6)2d6>1/2-

2H> ZH]
Again, in the last line we have trivially bounded the integral over the minor

1/2

arcs by the integral over the unit circle. Trivially, we have that

1 1
/ |S(a)|*da < X (log X)loglog X, / 15" () Pda < X log X,
0 0
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so, combining these estimates with Proposition 2.4.2 (suitably adjusting for
the choices of Q, @, H), we have that

. ©HXY?
> > An)wa(n+h) - / S(a)S'(a)e(—ha)da| <

-
0<|h|<H | X<n<2X—h m log” X

Therefore, applying Chebyshev’s inequality and Proposition 2.5.1 followed

by partial summation gives the result. O



Chapter 3

Future Outlook

For our main result Theorem 1.0.2 on correlations of almost primes, the
smallest possible choice of H is (log X)), however it may be possible
to lower this exponent. In the proof of Theorem 1.0.2 we apply the ar-
gument of Terdvéinen [38, Sections 2-4] showing that almost all intervals

€] contain an integer which has exactly two prime factors.

[z, 2z + (log x)
The second half of Teravainen’s paper is dedicated to lowering the exponent
5+ € to 3.51 through an argument additionally using some sieve theory and
the theory of exponent pairs. This result has recently been further improved
by Matoméki and Terévéinen [29], who prove that for almost all z the inter-
val (z,z + (log £)*!] contains Ey numbers. We do not apply ideas from these
arguments here, but it is possible that adapting some aspects to our proof

could lower the exponent of H in Theorem 1.0.2.

A natural next question is whether we can establish an asymptotic for-

137
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mula for the number of integers n = ppaps < X such that n + h has exactly
three (or, more generally, k& > 3) prime factors which holds for almost all

Ih| < H = H(X).

Question 3.0.1. Let £ > 3 and define Ej be the set of integers n = py - - - px
with exactly k prime factors. Can we show an asymptotic formula of the

form

L, (1)L, (n + h) ~ &(h) (% > ﬂEkm))

X<n<2X

1
< >
X<n<2X

which holds for almost all |h| < H = H(k, X)? How short an average H can

we take?

In his work on almost primes in almost all short intervals, Teravainen
[38] proved results for Ej numbers with & > 2. In particular, Terdvéinen

351g] with 2 < X contain an

showed that almost all intervals [z, x + (log )
E number, and almost all intervals [z, x + (log log x)%*¢ log ] contain an Es
number. For k > 4, the author shows that there exists a constant C} > 0
such that almost all intervals [z, 7+ (log;,_, #)* log z] contain an Ej number.
It is therefore reasonable to expect that we could adapt the arguments used
to prove these results along the lines of Sections 2.3.5 - 2.3.6 to decrease
the size we can take the prime factor P in Proposition 2.3.21. Provided
we can suitably adapt the argument treating the contribution of the minor

arcs, it would be expected that we would then obtain a shorter average H

over which the expected asymptotic formula for correlations of Ey numbers
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(k > 3) holds than for correlations of E; numbers.
If we could obtain such results, we could also ask about other correlations

of primes and almost primes, for example

X<n<2X

with £ > 3. We would not expect to be able to go beyond the range H >
X1/6+¢ established in Theorem 1.0.5 using our arguments, as the limitation
there is due to the presence of the prime in the correlation.

Similarly, if asymptotic formulas for correlations of Ej numbers and cor-
relations of E, numbers can be established on average for some ¢ > k > 2,

then for correlations of almost primes of the form

1
Y Z :H‘Ek (n)lEz (n + h>’

X<n<2X

we would expect the range of H to match the range known for correlations
of E}, numbers.

Another future direction is to investigate whether we can extend these
methods of Matoméki and Radziwill [25] and Teréviinen [38] to another set-
ting, for example the Gaussian integers. In particular, we could ask whether
we can establish an analogue of the work of Teravéinen [38] and show that

almost all narrow sectors contain a Gaussian ‘almost prime’.

Question 3.0.2. Let 0 < ¢ < 7 and 0 < § = §(X) < T shrink as X — oo.
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How small can we take § such that almost all sectors X < N(a) < 2X,
0, € (¢, ¢ + 0] contain a Gaussian almost prime a with exactly two prime

factors? Or exactly k > 2 factors?

If such results can be proved, it would then be natural to ask whether we

can establish results on correlations of Gaussian ‘almost primes’ and primes.



Appendix A

Primes in short arithmetic

progressions

In this appendix we prove the following variant of a theorem on primes in

short arithmetic progressions, due to Koukoulopoulos [21].

Lemma 2.2.6. Let A > 1 and e € (0, ]beﬁxed Let X > 1, 1<Q<X1/6+5

and A = X with % +2e <0 <1. Then we have that

zz/

9<Q x(q

x<n<x+qA

where we define 6, =1 if x = xo and 6, = 0 otherwise.

141
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A.1 Preliminary Results

We will again reduce the problem to finding cancellation in Dirichlet poly-

nomials

F(S,X) — Z A(”)X(n)’

xinzax
which will be handled using mean and large value theorems. The large values
result of Jutila (Lemma 2.3.32) is not sharp enough for this argument, as we
would lose in the power of (¢7°X)® which appears in (2.3.21), where J(s) €
T C [-T,T] and T is well-spaced. We will instead use a result derived from

Huxley. First, we recall the definition of a well-spaced set:

Definition 2.3.23. [Well-Spaced Set] We say a set T is well-spaced if for

any t,u € T with t # u we have that |t —u| > 1.

Lemma A.1.1. Firm € N, 7 > 0 and let {a,})_, be a sequence of complex

numbers such that |a,| < dn(n)(logn)” for alln < N. For each Dirichlet

N  anx(n

character x, we let A(s,x) = >, ~s ) and consider a well-spaced set

Rcl) U {tx):teRJAG+it,x)| >V}

<@ x(q)
X primitive

where V,Q,T > 1 are some parameters. Then

N+QT N  NQT
vz oy? e

|R| <, min { } (log 2N ) *+6r+18

Proof. See [21, Lemma 3.2]. This follows from Huxley’s result [18, Theorem
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9.18] m

We will also need to be able to bound a Dirichlet polynomial with a

Dirichlet character by a shorter polynomial:

Lemma A.1.2. Let x be a primitive Dirichlet character modulo q € (1,Q)]
and let g : [0,+00) — [0, +00) be a smooth function supported on [1,4]. Let
t € R, N >1 and r be a non-negative integer. If [t| < T for some T > 2

and M = max{1, (QT/N)**} for some fived § > 0, then

- 9(n/N)x(n)(logn)" e [T x(n) du
Z nl/2+it <o (log2N) Z pl/24i(t+e) | 1 12
n=1 0 |n<M
Proof. This is [21, Lemma 3.3]. O

A.2 Proof of the Lemma

We outline how to adapt the proof appearing in [21, Section 4]. First, we

will show that the contribution of the imprimitive characters is acceptable.

Lemma A.2.1. Let A> 1 ande € (0, 3] be fived. Let X > 1, 1<Q<X1/6+E

and A = X with % 4+ 2 <0 <1. Then we have that

(A(n)x(n) —d,)| doz < ?:’Ai)(( + XQ?log

zz/

q<Q x(q
X zmpmmztwe

x<n<a:+qA

Proof. First, we treat the contribution of the principal character. We have
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that

Y, Amxom) -1 - > Am-1[< Y Aln)

r<n<z+qA r<n<z+qA r<n<z+qA
(n,q)>1

< w(q)log X

< log® X.

This error contributes < X @Q?log* X, which is acceptable. Then, since we
have A > X1/6+2¢ we apply what is known about primes in almost all short

intervals (Lemma 2.2.5) to get that

W

q<Q

(gA) 2X SA2X
dr < Z (g Q

(A(n) — 1)
log? X log X’

:c<n<ac+qA

which contributes the first term of the bound.
Now we deal with the contribution of the remaining imprimitive charac-
ters. Suppose Y mod ¢ is non-principal and induced by x; mod ¢, then we

have that

Yo Amx() = Y Amxam)| < D A(n) < log’ X.

r<n<z+qA z<n<z+qgA r<n<z+qA
(n,g)>1

Overall, this contributes < X Q?log* X, which contributes the second term.
m
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Therefore we have reduced the problem to showing that

2

dx

zzz/

2<q<@Q qilq x(q1)

-y x Y/

2<¢25Q 2/¢2<q1<Qo/q2 x(q1)
QPA2X
log? X’

S A()x(n)

r<n<z+qA

r<n<z+q1q2A

<

where Z indicates that we restrict the sum to primitive characters. We
now split the sum over the modulus ¢ into O(log X') dyadic intervals [Q, 2Q1]

with 2/gs < Q1 < @/g2. Then (A.2.1) is reduced to showing that

2 2M2 A2
G5 QsA*X

z<n<lz+q1q2A

>

Q1<q1<2Q1 x(q1)

Let @1 = AXP(log X)~4~! = X% F(log X)=4~1 so that 5 € [1/6 +¢/2,0)].
We will next apply Perron’s formula to reduce the problem to finding
cancellation in Dirichlet polynomials, then use the Heath-Brown identity to

decompose the long polynomial which arises into shorter polynomials.

Lemma A.2.2. Let A>1 and € € (0,3] be fized. Let X > 1 and A = X°
with + +2 < 0 < 1. Let Q1 = AX Plog™ ' X with B € [1/6 + £/2,0].

Let kg > 3 be an integer and for s € C and x mod ¢, define G;(s,x) =



APPENDIX A. PRIMES IN SHORT ARITHMETIC PROGRESSIONS146

Hing Fi(s, x) with J; < 2k, where each F;(s,x) is of the form

S ambsn g xm)ss @

N;<n<2N; N;<n<2N; N; <n<2N;

and the lengths satisfy Ny --- Nj, = X0 N; > exp < log X > Then, we

loglog X | °
have that
2
DI N D SR NG R
Q1<q1<2Q1 x(q1) r<n<lz+q1g2A
A 12
<<X2(10gX)2D+3mm{(]2621 } Z/ |G (% +it, x)|?dt.
X o1 <<
(A.2.2)
for some D > 0 and L < (log X)”.
Proof. We apply Perron’s formula to the sum over n so that
2
DD [ S aonw|w
Q1<q1<2Q1 x(q1) z<n<z+q1q2A
2
1 (1+q@pA/z) =1 |
== 2 Z / A(S L Flsx0 : w°ds| dz
Q1<q1<2Q1 x(q1) s)|<To
O(QIXH9),

where for s € C and y mod ¢ we define

= Aln)x(n
5~ Ao

n=1
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We choose Tj to be the unique integer of the form 2™ —1 € (%, X] and split

the integral with respect to ¢ into O(log X) dyadic intervals, so that

2
DD [ 2 s
Q1<q1<2Q1 x(q1) r<n<r+q1g2A
2
(I+qgpA/z) =1 |
logX Z Z R(s)=1/2 F(s.x) s vids| dr
Q1<q1<2Q1 x(q1) T<|S(s)|+1<2T

+ Q%XI“/E’.
(A.2.3)

Next, we expand the square, apply the bound

(1 + qlqu/x)l/QHt -1
1/2 + it

< min { ©2QA ! }

X 1+t

and integrate with respect to = to get that the integral in (A.2.3) is bounded
by

/ / Ly FEX)

R(s
T< s |+1<2T

QA 17 . . [T 1
<<X2m1n{ ,—} F( it x —————dtodty
X T T<|t|+1<2T £ ) _op 1+ [t — 2o

2 . QZQlA 1 2 1 . 2
< X*(log X) min ~ 7 |F(5 +1it,x)|"dt. (A.2.4)
T<[t|+1<2T

2

z%ds| dx

(1+ q1geA/x)* — 1
s

We now apply Heath-Brown’s decomposition (Lemma 2.3.26) with kg > 3
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followed by the triangle inequality to get that

L
> / 1G5 (L +it, x)|dt,
T<|t|+1<2T

/ |F(5 +it, x)[’dt < (log X)?P
T<|t|+1<2T =1

such that L < log” X for some D > 0, and G;(s,x) = HZ.SJ], Fi(s,x) with

J;j < 2ko and each Fj(s,x) is of the form

3 x(n)logn logn x ’Or 3 x(n)u(n)

Ni<n<2N; Ni<n<2N; Ni<n<2N;
. o 1+0(1 log X
The lengths satisfy Ny---N; = X oM "N, > exp (lo;igX)' ]

We will again use mean and large value theorems to bound this mean

value of the Dirichlet polynomial G;(3 + it, x).

Lemma A.2.3. Let A > 1 and € € (0,3] be fized. Let X > 1 and A = X?
with & +2¢ < 0 < 1. Let Q; = AXP(log X))~ with 8 € [1/6 +¢/2,4].
Let kg > 3 be an integer and for s € C and x mod ¢, define G;(s,x) =
Hing Fi(s,x) with J; < 2ko, where each Fi(s,x) is of the form

Z X(n)logn7 Z m7 or Z x(n)u(n)

N;<n<2N; N;<n<2N; N;<n<2N;

and the lengths satisfy Ny --- Ny = XM N; > exp (m?fgo?x)' Let 1 <
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J < L be a fized integer. Then, we have that

DD Sl B R RVIL
T<|t|+1<2T

Q1<q1<2Q1 x(q1)

Q2Q1AT}2 X

< max {17 b% (log X )A+3D+4"

Assuming this Lemma, we are able to prove Lemma 2.2.6.

Proof of Lemma 2.2.6 assuming Lemma A.2.2. First, by Lemma A.2.1, we
are able to reduce the problem to handling the contribution of the primitive

characters since

2
ZZ/ (An)x(n) — 6,)| de
a<Q x(q ;t<n<m+qA
2
QALY

< A d XO*log™ X.

SY ]S aw) o L5 4 xqt

<@ X q1) r<n<z+qA

We split the sum over ¢ < @ into O(log X) dyadic intervals [@Q1,2Q;] with

2/q2 < Q1 < Q/qa. Then, we apply Lemma A.2.2 to obtain

2
>y A)x(n)| do
q<Q x(q) z<n<z+qA

A1
X21 X2D+3 q2Q1
< X*(log X) { ~ T

L
X Gi(L +it, x)|%dt.
Z Z /T<t|+1<2T | ( >|

7=1 ¢<Q x(q1)

For each 1 < j < L, we apply Lemma A.2.3. Since there are L < log? X
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terms, this is bounded by

[ e@A 17 EOLAT®  X°
— 1
<<m1n{ X ’T} X max < 1, % logAHX

BAIA’X
(log X)A+1"

<

Then, combining the contribution of the O(log X) dyadic intervals @1 < g <

2@)1, we have that

2
3A2X
Sy / (Am)x(n) — )| do < L5,
log” X
q<Q x(q x<n<x+qA )
as required. O

As in Chapter 2, to prove Lemma A.2.3 we split the domain of integration
according to the size of the Dirichlet polynomials Fj(s,x). We fixa 1 < j <
L. Fix some integers Uy, ..., Uy, such that 1 < U; < v/Ni log N, (supposing
w.l.o.g. that the first polynomial has the log n coefficient) and 1 < U; < /N;

for j =2,...,J; and set U := U, ---Uy,. Define P(x, T, U) to be
{te R:T < |t|+1<2T,U; < |F(3 +it,x)| <2U0;,1 <i < J;}, (A2.5)

so there are up to O(log?™® X) such subsets to consider. Therefore, in order
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to prove Lemma A.2.3, we need to show that

D / Gy + it )2t
P(x,T,U0)

Q1<q1<2Q1 x(q1)

QAT > X
X (log X )A+4ko+3D+4"

< max {1,

There are assumptions we can make to simplify the problem about the

size of the Dirichlet polynomials U, the length of integration 7', and the
lengths of the polynomials V;.

Assumption 1. We have

B
Ugmin{ﬁlog X VX }

V@i logt X

We first show that we may restrict to U < (log X)Z1/X/Q; if instead
U > (log X)?1/X/Q1, then by (A.2.4) and |G;(5 + it, x)|*/U? > 1, we have

D / Gy + it )2t
P(x,T,U0)

Q1<q1<2Q1 x(q1)

<<% > Z/ (L it, x)[1dt

Q1<q1<2Q1 x(q1)

@
<<)(l()gTX Z Z ‘|—Zt X)| dt

Q1<q1<2Q1 x(q1)

and, therefore, applying the mean value theorem (Lemma 2.3.27) we have



APPENDIX A. PRIMES IN SHORT ARITHMETIC PROGRESSIONS152

that

* (1 2 Q1 (Q%T + XZ)
Z Z [’(X,T,U) ’GJ(Q +1t, X)l dt < X(log X)QB—16k8—5'

Q1<q1<2Q1 x(q1)

Overall, since )1 < )/go the contribution to (A.2.2) of the above is

. {qulA 1 }2( QX(@AT+X?) Q*A’X

X T log X )2B—16kj—4ko—3D—9 (log X )2B~16k5—4ko—3D-9”

which is acceptable as we assume that B > 0 is sufficiently large in terms of
A and k.

The second claim can be proved in the same way as in [21]. If we have
that Q; > (log X)2P+C) | then we already have that U < (log X)?/X/Q; <
VX /(log X)€, so we now assume that Q; < (log X)*B+9), We define

T={1<i<J;:N;>X"}

where § > 0 is small and fixed. We may suppose that § satisfies 62 < Ji SO
J
that |Z| > 1. If we let i € Z and x be a primitive character modulo some

1 € (Q1,2Q4], then we have for all t € [—X, X] that

VN,

1 .
|E(§ + Zt?X)| < (lOgX)(C+1)/Jj’

since F; is prime-factored (by Lemma 2.3.26). Thus we may assume U; <
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V'N;i/(log X)(©+1/% for all i € T and since |Z| > 1 we have that
Jj

J.
1 ! vX
U=T[0: <« e [[ VN <« —Vir—,
jl_[l < (log X)c+1 ]1_[1 < log® X

as required.

Assumption 2. We have

< X(logX)A/2+8k3+3D/2+3
1A

(A.2.6)

X(lOgX)A/2+8k(2)+3D/2+3
2@Q1A

Suppose we have that T > , then an application of

the mean value theorem (Lemma 2.3.27) shows that

D / 1G4+ it, )|t
P(x,T,U0)

Q1<q1<2Q1 x(q1)
< (QIT + X)(log X)46+2

$Q1AT X
X (10g X)A+4ko+3D+4’

< max {1,

which is acceptable. Note that since @; = AX ?(log X)~4~!, we therefore

may assume that

1-p

Q%T < (log X)—A/2+8k3+3D/2+2. (A.2.7)

q2
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Assumption 3. When Fj(s, x) has the coefficient logn or 1, we have

N; <(Q,1)**10g” X. (A.2.8)

Suppose that N; > (Q,T)"/?>*°log” X for some such F;. For simplicity,
assume that the coefficient is 1, with the log n case being handled analogously.

Fix 0; > 0 such that 2% = 1/2+§ and define M := max{1, (2Q,T/N;)*%}.

2461

By Lemma A.1.2 we have that

o0

du
14 u?

Z x(n)
nl/2+i(t+u)

n<M

Fi(5 +it, x) <</

—00

Note that if we were in the log coefficient case the only difference here

would be an additional factor of log X. Substituting the above and applying
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Cauchy-Schwarz to the integral with respect to u we have that

DN DU BN CACRRN
P(x,T,U)

Q1<q1<2Q1 x(q1)

2
2T
* x(n) du L
< Z Z /_2T (/R Z nl/2+i(t+u) 1+u2> H |Fi(5 +it, x)| dt
Q1<q1<2Q1 x(q1) n<M 1355‘]].
J
< // Z / 1/2+z(t1—u1)
RQ1<Q1<2Q1 2T |p<Mm n
‘ dtduydus
X |Fo(5 +it, x)|?
1<1z—<[Jj ? (1 +ui)(1 + u3)
U£j
* T x(n) i dtdu
2
<</ / Z nl/2+i(t+u) H |F€( + 1, X)| 1+
oOQ1<£11<2Ql x(q1) 2T |p<M 1<e<J;

i

Applying the mean value theorem (Lemma 2.3.27) gives that the above is
bounded by

XM
< ( N 2T) (log X )**5+2

< (%(1 FQIT/N)) + @%T) (1og X)5+2. (A.29)

)

By the definition of 6, and our assumption N; > (Q,T)"/**log® X, we have
that
(Q1T)1+51 (QIT)1+61—(2+61)(1/2+6) 1
N¢2+61 (logX)B(2+61) < (log X)B(2+61)'
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Applying (A.2.7), we have that (A.2.9) is bounded by

X 2
< <ﬁ + Q%T) (log X)*o*?

< ( )]g + X1—5(10gX)—A/2+8kg+3D/2+2) (logX)‘““g”,
log” X

which is acceptable as B > 0 is taken sufficiently large in terms of A, ky and
D, and thus we may assume (A.2.8) from now on.
Therefore combining Assumptions 2 (A.2.6) and 3 (A.2.8), if F; has co-

efficient 1 or logn we have that
Ni < (QlT)l/Q—i-(S lOgBX < X(1/2+5)(1—9)+o(1) < X1/2—5

as long as 0 > 0 is sufficiently small. Our application of the Heath-Brown
identity ensures that N; < X'/3 for the F; with coefficient u(n), so that
K > 3.

We would like to apply results on large values of Dirichlet polynomials
(Lemma A.1.1), however the set P(x,T,U) is not necessarily well-spaced.

We first construct
Zx,T,U):={neZ:nn+1NnPx,T,U) #0} = {n,...,n.},

say, such that n; < --- < n,. For each 1 < ¢ < r choose one point t; €
[ni,n; + 1) NP (x, T, U). This set of points {¢y,...,¢.} is not yet necessarily

well-spaced; if n; and n;,; are consecutive integers it may be the case that
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|ti—tit1] < 1. We now split this set of points {t1, ..., .} into two well-spaced
sets by separately considering the odd and even indexed points. In particular
we define

R, T,U):={t; : 1 <i<r,i=m mod 2}

for m = 0,1 and

Ru(T,U) = | U {6t :teRux.T,U)} (A.2.10)

Qi1<a1<2Q1  x(q1)
X primitive

again for m = 0, 1. We are now considering the polynomial G;(s, x) over well-
spaced sets of points, so we can now apply results on large values of Dirichlet
polynomials to prove a bound for the size of |R,, (T, U)| for m = 0, 1, which

will enable us to complete the proof.

Lemma A.2.4. Let A > 0 and ko > 3 be an integer. Let U := Uy --- Uy

satisfy Assumption 1. Then

X
U2 (log X )A+4ko+3D+4?

R.(T,U)| <«

form =0,1.

Proof. Let m = 0 or 1. We separate into three cases according to the sizes

of U; with i € 7.
Case 1. We assume there is i € Z such that U; > v/N;/(log” X).

In this case, we let r be a positive integer such that U*" > Q¥T. We now
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apply Lemma A.1.1 with A(s,x) = Fi(s, x)" which has length N/, and we

take V' = U!. The coefficients of F;(s,x)" are bounded by < (logn)"d,(n),
so we have that

NT QT
TR

IR (T, U)| < ( ) (log X)3r+24

< ((log X)?TB + 1) (logX)3r2+6r+18'
Now, recalling that U < v/X/(log” X), we have

X
U2 (log X )2C—2rB-3r2—6r—18"

R,(T,U)| <

Taking C' > 0 sufficiently large in terms of B and r gives us the required

bound.

Case 2. We have that U; < v/N;/(log” X) for all i € Z and there is some
j € T such that U; < X%/2/(log” X).

We again apply Lemma A.1.1, but this time with A(s, x) = H#j Fy(s,x)
which has length X/N;, and take V' = U/U;. The coefficients of [[,.; Fi(s, x)

are bounded by < (logn)dag,—1(n) so that

2 2 2
XUF | QT
U2N; U?
X 1 (logX)—A/2+8k§+3D/2+2

< = + log X 12k(2)+247
U2 (10g23X log?® X ) (log X)

Ron(T,U)] < ( ) (log X) 124821

where we have used (A.2.7). This is acceptable provided B is sufficiently
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large in terms of A, kg and D.
Case 3. We have U; € [X?/2/(log? X), vV/N;/(log? X)) for all i € T.

For now, we assume instead that

X

|Rm(T7 U)‘ 2 Uz(logX)A+4ko+3D+4'

Once again we apply Lemma A.1.1 with A(s,x) = []. Fi(s,x) for each

1 € Z, so that
XUz‘Q Q%TXUE 12k2+24
Rn(T,U)| < N? N6 (log X')*"
X X2—5Ui6<10gX)—A/2+20k§+3D/2+26
< UQ(logX)QBfl%ng N,US )

As B is sufficiently large in terms of A, ky and D the first term does not

provide a contradiction. However, the second term gives that

4 Xl_ﬁ(log X)A/2+28kg+3D/2+30
7S '
U N;

Taking the product over all ¢« € Z, we have that

[ < oy V< xo
<FTW

ieZ i igT

Therefore, with I := |Z|, we have that

UAI—=6 X1(1—5)+k52—1(10g X)I(A/2+28kg+3D/2+30)‘
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We also have that U > [[..; U; > X18/2(log X)?B! | so that

XIﬂ(2I—3)(10gX)4BI(21—3) < XI(1—5)+Jj52—1(10g X)I(A/2+28k§+3p/2+30)

< XI(1—5)+Jj62—1+52_

In particular, comparing the powers of X, we must have that 281(I — 1) <

I —1+(J;+1)6? and therefore

1 6(J;+1)
PG Rty
TR

Recalling that I > 3 and taking 0 sufficiently small in terms of ¢ and J;, this

contradicts that § > 1/6 + /2. Therefore, we must have in this case that

X
U2 (log X) A+4ko+3D+4"

Rn(T,U)| <

as required. O

We are now able to complete the proof of Lemma A.2.3 and therefore the

proof of Lemma 2.2.6.

Proof of Lemma A.2.3. Fix an integer 1 < j < L. We first split the domain
of integration according to the size of the factors Fj(s, x) of G;(s,x). Asin
(A.2.5), we fix some integers Uy, ..., Uy, such that 1 < U; < v/Nilog N, and
1 <U; < /N for j=2,...,J; and set U := Up---Uy,. Define P(x,T,U)
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to be
{te R:T<|t|+1<2T,U; < |F(5 +it,x)| <2U0;,1 <i < J;}.

Then we have that

SOy / 1G4+ it, x)[dt
T<|t|+1<2T

Q1<q1<2Q1 x(q1)

< (log X))oy~ Z / Lpit, y)|dt,
Q1<a1<2Q1 x(qn) Y PTD)
since there are up to O(log®* X) sets P(x, T, U) to consider. We further split
P(x,T,U) into the well-spaced sets R,,(T,U) for m = 0,1 as in (A.2.10).
We have that

)OI D N R I
P(x,T,U)

Q1<q1<2Q1 x(q1)

< Y ZZ|G Lt )P

Q1<q1<2Q1 x(q1) =1

= Y S G it )P+ S 1G (R + it

Q1<q1<2Q1 x(q1) i<r/2 i<r/2

By Lemma A.2.4, this is

X
(log X )A+4ko+3D+47

<
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which immediately gives the required bound. O]
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