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Abstract

We prove that analogues of the Hardy-Littlewood generalised twin prime

conjecture for almost primes hold on average. Our main theorem establishes

an asymptotic formula for the number of integers n = p1p2 ≤ X such that

n + h is a product of exactly two primes which holds for almost all |h| ≤ H

with (logX)19+ε ≤ H ≤ X1−ε, under a restriction on the size of one of the

prime factors of n and n+ h. Additionally, we consider correlations n, n+ h

where n is a prime and n+ h has exactly two prime factors, establishing an

asymptotic formula which holds for almost all |h| ≤ H with X1/6+ε ≤ H ≤

X1−ε.
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Chapter 1

Introduction

We have known since Euclid that there are infinitely many primes. Naturally,

we then ask how the primes are distributed and whether there exist patterns

among them. The prime number theorem was proved independently by de la

Vallée Poussin [40] and Hadamard [13] in 1896 and describes the distribution

of the primes, establishing the asymptotic formula

π(X) := #{p ≤ X : p prime} ∼ X

logX
. (1.0.1)

When looking for patterns among the primes, we see that pairs with

difference two often appear, and the twin prime conjecture famously states

that there are infinitely many primes p such that p + 2 is also prime. More

generally, it is conjectured that there are infinitely many primes p such that

p + h is prime, where h is an even integer. These questions remain open

8



CHAPTER 1. INTRODUCTION 9

today.

Hardy and Littlewood [14] conjectured the following asymptotic formula

for the number of primes p ≤ X such that p+ h is also prime

#{p ≤ X : p, p+ h both prime} ∼ S(h)
X

log2X
(1.0.2)

as X → ∞, where S(h) is the singular series defined by

S(h) := 2Π2

∏
p|h
p>2

p− 1

p− 2
(1.0.3)

if h is an even integer and zero if h is odd. Here Π2 :=
∏

p>2

(
1 − 1

(p−1)2

)
is the

twin prime constant. The Hardy-Littlewood conjecture (1.0.2) is equivalent

to showing for any fixed non-zero integer h that

1

X

∑
X<n≤2X

1P(n)1P(n+ h) ∼ S(h)

(
1

X

∑
X<n≤2X

1P(n)

)2

, (1.0.4)

where 1P is the indicator function of the primes, as X → ∞.

The Hardy-Littlewood conjecture remains wide open, and is not known

for any fixed even h. However, there are several results showing it holds on

average, that is, the asymptotic formula (1.0.4) holds for almost all shifts

|h| ≤ H = H(X), where H grows with X. We would like to take H as small

as possible, with the aim to establish that we can take an average of bounded

length.
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Van der Corput [41] and Lavrik [22] proved that the Hardy-Littlewood

conjecture (1.0.4) holds for almost all |h| ≤ X. In 1989, Wolke [43] im-

proved on this, proving that if X5/8+ε ≤ H ≤ X1−ε, then for all but at most

Oε,A(H log−AX) values of |h| ≤ H we have that (1.0.4) holds for any fixed

A > 0. Under the assumption of the density hypothesis, Wolke was able

to obtain the range X1/2+ε ≤ H ≤ X. Mikawa [32] was able to go beyond

this unconditionally in 1991, improving the range to X1/3+ε ≤ H ≤ X. The

shortest known average is due to Matomäki, Radziwi l l and Tao [27]1, who

showed that if 0 ≤ h0 ≤ X1−ε and X8/33+ε ≤ H ≤ X1−ε, then (1.0.4) holds

for all but Oε,A(H log−AX) values of h such that |h− h0| ≤ H.

Our first result establishes an analogue of the Hardy-Littlewood conjec-

ture for integers which have exactly two prime factors (called E2 numbers)

which holds on average, provided we restrict the size of one of the prime

factors.

Definition 1.0.1. Given P > 0 and fixed δ > 0 we define E ′
2 := E ′

2(P )

to be the set of integers n = p1p2 with exactly two prime factors such that

p1 ∈ (P, P 1+δ].

The presence of the two prime factors gives the problem a bilinear struc-

ture which enables us to go further and we show an asymptotic formula for

1Matomäki, Radziwi l l and Tao note that their result can also be proved in the range
X1−ε ≤ H ≤ X by their methods. Theirs and the preceding results are proved with a
better error term.
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the correlation

1

X

∑
X<n≤2X

1E′
2
(n)1E′

2
(n+ h),

where 1E′
2

is the indicator function of the set E ′
2, which holds for almost all

|h| ≤ H with (logX)19+ε ≤ H ≤ X log−AX and A > 3.

Theorem 1.0.2. Let ε > 0, A > 3 be fixed and let (logX)19+ε ≤ H ≤

X log−AX. Then, there exists some η = η(ε) > 0 such that

1

X

∑
X<n≤2X

1E′
2
(n)1E′

2
(n+ h) ∼ S(h)

(
1

X

∑
X<n≤2X

1E′
2
(n)

)2

holds for all but at most O(H log−ηX) values of 0 < |h| ≤ H. Here we define

E ′
2 as in Definition 1.0.1 with

P :=


(logX)17+ε, if (logX)19+ε ≤ H ≤ exp((logX)ε

3
),

exp ((log logX)2) , if exp((logX)ε
3
) < H ≤ X log−AX.

Remark 1.0.3. Here, it is crucial that the integers n and n+h have exactly

two prime factors, not just at most two (such integers are called P2 numbers).

As we will discuss later in this chapter, there are previous results considering

P2 numbers which are proved using sieve theory.

Also, the range X log−AX ≤ H ≤ X can be dealt with by the same

methods, see for example [32], [27].

We can prove a similar asymptotic formula for correlations of general E2
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numbers which holds on average using the same methods. Here, E2 is the set

of integers with exactly two prime factors, with no restriction on the sizes of

the prime factors as in Definition 1.0.1 of E ′
2. Making some adjustments to

the proof of Theorem 1.0.2, we obtain an asymptotic formula for correlations

n, n+h ∈ E2 which holds for almost all |h| ≤ H. The cost of considering the

set of E2 numbers is taking H larger than in the previous theorem, although

we still go beyond what is known for primes.

Theorem 1.0.4. Let ε > 0, B > 0, A > 3 be fixed and let exp ((logX)1−ε) ≤

H ≤ X log−AX. Then, we have that

1

X

∑
X<n≤2X

1E2(n)1E2(n+ h) ∼ S(h)

(
1

X

∑
X<n≤2X

1E2(n)

)2

for all but at most O(H log−BX) values of 0 < |h| ≤ H.

We can also combine our argument with the work of Mikawa [32] on

correlations of primes to study correlations n, n + h where n is a prime and

n+h is an E2 number on average. We are still able to take advantage of the

bilinear structure provided by the almost prime to go further than what is

known for primes and prove an asymptotic formula which holds for almost

all |h| ≤ H with H as small as X1/6+ε.

Theorem 1.0.5. Let ε > 0 be fixed sufficiently small, B > 0, A > 5 be fixed
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and let X1/6+ε ≤ H ≤ X log−AX. Then, we have that

1

X

∑
X<n≤2X

1P(n)1E2(n+h) ∼ S(h)

(
1

X

∑
X<n≤2X

1P(n)

)(
1

X

∑
X<m≤2X

1E2(m)

)

for all but at most O(H log−BX) values of 0 < |h| ≤ H.

There are a number of previous works which use sieve theory to obtain

results on gaps between primes and almost primes. In the last twenty years,

there have been several breakthroughs on bounded gaps between primes.

Goldston, Pintz and Yıldırım [12] proved in 2005 that there exist consecutive

primes closer than any arbitrarily small multiple of the average spacing. In

particular, if pn is the n-th prime, then by the prime number theorem (1.0.1)

the average spacing is log pn, and Goldston, Pintz and Yıldırım’s result states

lim inf
n→∞

pn+1 − pn
log pn

= 0.

Assuming the Elliott-Halberstam conjecture, the authors prove that there

are infinitely many pairs of consecutive primes differing by at most 16, that

is

lim inf
n→∞

(pn+1 − pn) ≤ 16. (1.0.5)

The Elliott-Halberstam conjecture [6] (see also [4, 8]) concerns the distri-

bution of primes in arithmetic progressions.

Conjecture 1.0.6 (Elliott-Halberstam Conjecture). For every A > 0 and
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0 < θ < 1 we have that

∑
q≤xθ

max
(a,q)=1

∣∣∣∣∣∣∣∣
∑
n≤x

n≡a(q)

Λ(n) − x

φ(q)

∣∣∣∣∣∣∣∣≪
x

logA x
.

In 2013, Zhang [44] in breakthrough work established unconditionally that

there exist infinitely many bounded gaps between the primes. In particular,

Zhang showed that

lim inf
n→∞

(pn+1 − pn) < 7 × 107.

Later in 2013, Maynard [30] introduced a new idea which substantially sim-

plified the proof of this result and established the improved bound 600 for

(1.0.5) unconditionally. Under the Elliott-Halberstam conjecture, Maynard

obtains the bound 12. The Polymath8b project [36] subsequently improved

the unconditional bound to 246, and under the assumption of the generalised

Elliott-Halberstam conjecture obtained (1.0.5) with 6. The twin prime con-

jecture would amount to proving (1.0.5) with the bound 2.

Goldston, Graham, Pintz and Yıldırım [11] proved an almost prime ana-

logue of (1.0.5) which holds unconditionally; if q1 < q2 < · · · denotes the

sequence of products of exactly two distinct primes, then

lim inf
n→∞

(qn+1 − qn) ≤ 6.

These results on bounded gaps between primes and almost primes are
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proved using sieve theory and the arguments do not establish an asymptotic

formula. However, sieve methods can be used to obtain an upper bound for

the correlation (1.0.4), namely

1

X

∑
X<n≤2X

1P(n)1P(n+ h) ≪ S(h)

(logX)2
. (1.0.6)

Chen’s theorem gives that p+ 2 = q such that p is prime and q is either a

prime or a product of two primes holds for infinitely many primes p. Debouzy

[5] proved under the Elliott-Halberstam conjecture that given any 0 ≤ β < γ

there exists X0 such that for all X ≥ X0 we have that

∑
n≤X

Λ(n)Λ(n+2)+
1

γ − β

∑
n≤X

Λ(n+2)
∑

d1d2=n
nβ≤d1≤nγ

Λ(d1)Λ(d2)

log n
= 2Π2X(1+o(1)).

This result is proved using an improvement of the Bombieri asymptotic sieve.

More generally, Bombieri [2] had previously considered pairs Pk and Pk +

2 = p with p prime and Pk an almost prime with at most k factors. More

precisely, defining Λk(n) := (µ ∗ logk)(n) to be the generalised von Mangoldt

function where ∗ denotes Dirichlet convolution, Bombieri proved that if k ≥ 1

is an integer and x ≥ x0(k) we have

∑
n≤X

Λk(n)Λ(n+ 2) = 2Π2X(logX)k−1(k +O(k4/32−k/3))

and, assuming the Elliott-Halberstam conjecture, for k ≥ 2 we have the
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asymptotic ∑
n≤X

Λk(n)Λ(n+ 2) ∼ 2Π2kX(logX)k−1. (1.0.7)

Unlike in these results on P2 numbers with at most two prime factors, integers

with exactly two prime factors cannot be counted using sieve methods due

to the parity problem, even assuming the Elliott-Halberstam conjecture. In

general, sieve methods have difficulty distinguishing between integers with an

even and an odd number of prime factors (see, for example, [15, Chapter 2]).

So, while these methods can be used to obtain asymptotics such as (1.0.7) for

problems involving P2 numbers which have either one or two prime factors,

we would need additional input to separate the contributions coming from

each of these sets of integers. In particular, we cannot currently expect

to obtain asymptotics for our questions on integers with exactly two prime

factors using sieve methods, and the best we can hope for is to establish

an upper bound, similar to the prime case (1.0.6). To prove our results we

will instead apply the circle method as in the previously discussed works on

correlations of primes [27], [32].



Chapter 2

Correlations of almost primes

In this chapter we prove our results on correlations of almost primes and

primes. First, in Section 2.3 we will prove that an analogue of the Hardy -

Littlewood conjecture for almost primes which have exactly two prime factors

holds on average under a restriction on the size of one of the prime factors.

We recall the definition of the set E ′
2:

Definition 1.0.1. Given P > 0 and fixed δ > 0 we define E ′
2 := E ′

2(P )

to be the set of integers n = p1p2 with exactly two prime factors such that

p1 ∈ (P, P 1+δ].

Then, for correlations of integers n, n+h ∈ E ′
2, we will prove that the ex-

pected asymptotic formula holds for almost all |h| ≤ H withH ≥ (logX)19+ε:

Theorem 1.0.2. Let ε > 0, A > 3 be fixed and let (logX)19+ε ≤ H ≤

17
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X log−AX. Then, there exists some η = η(ε) > 0 such that

1

X

∑
X<n≤2X

1E′
2
(n)1E′

2
(n+ h) ∼ S(h)

(
1

X

∑
X<n≤2X

1E′
2
(n)

)2

holds for all but at most O(H log−ηX) values of 0 < |h| ≤ H. Here we define

E ′
2 as in Definition 1.0.1 with

P :=


(logX)17+ε, if (logX)19+ε ≤ H ≤ exp((logX)ε

3
),

exp ((log logX)2) , if exp((logX)ε
3
) < H ≤ X log−AX.

Remark 2.0.1. Here, the main term is of size ∼ S(h) log
2(1+δ)

log2 X
by the prime

number theorem and Mertens’ theorem (Lemma 2.2.2), where δ > 0 is fixed

as in Definition 1.0.1. The choice A > 3 ensures that the second term of

(2.2.2), which arises in the application of Gallagher’s Lemma (Lemma 2.2.4),

gives sufficient cancellation.

In Section 2.4, we will adapt the proof of Theorem 1.0.2 to prove that

the expected asymptotic formula for correlations of n, n + h ∈ E2 holds for

almost all |h| ≤ H with a longer average H than the previous result.

Theorem 1.0.4. Let ε > 0, B > 0, A > 3 be fixed and let exp ((logX)1−ε) ≤

H ≤ X log−AX. Then, we have that

1

X

∑
X<n≤2X

1E2(n)1E2(n+ h) ∼ S(h)

(
1

X

∑
X<n≤2X

1E2(n)

)2
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for all but at most O(H log−BX) values of 0 < |h| ≤ H.

Remark 2.0.2. Here, the main term is of size ∼ S(h) (log logX)2

log2 X
by the prime

number theorem and Mertens’ theorem (Lemma 2.2.2).

Lastly, in Section 2.5 we adapt the argument to establish that the con-

jectured asymptotic formula for the number of primes p such that p+ h has

exactly two prime factors holds for almost all |h| ≤ H with X1/6+ε ≤ H.

Theorem 1.0.5. Let ε > 0 be fixed sufficiently small, B > 0, A > 5 be fixed

and let X1/6+ε ≤ H ≤ X log−AX. Then, we have that

1

X

∑
X<n≤2X

1P(n)1E2(n+h) ∼ S(h)

(
1

X

∑
X<n≤2X

1P(n)

)(
1

X

∑
X<m≤2X

1E2(m)

)

for all but at most O(H log−BX) values of 0 < |h| ≤ H.

Remark 2.0.3. Here, the main term is of size ∼ S(h) log logX
log2 X

by the prime

number theorem and Mertens’ theorem (Lemma 2.2.2). The choice A > 5

ensures that the second term of (2.2.2), which arises in the application of

Gallagher’s Lemma (Lemma 2.2.4), gives sufficient cancellation.

2.1 Proof Sketch

We now discuss the main ideas of the proof of Theorem 1.0.2. We apply the

Hardy-Littlewood circle method (see, for example, [42]), first expressing the
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correlation ∑
X<n≤2X

1E′
2
(n)1E′

2
(n+ h)

in terms of the integral

∫ 1

0

∣∣∣∣∣ ∑
X<n≤2X

1E′
2
(n)e(nα)

∣∣∣∣∣
2

e(−hα)dα. (2.1.1)

We need to understand which points on the unit circle contribute the

main term. Dirichlet’s approximation theorem states that for each Q ≥ 1

there exists a/q ∈ Q with (a, q) = 1, 1 ≤ q ≤ Q and |α− a/q| ≤ 1/(qQ). So,

we first aim to understand the behaviour of the exponential sum appearing

in (2.1.1) at a rational point a/q with (a, q) = 1 on the unit circle. We have

that

∑
X<n≤2X

1E′
2
(n)e

(
an

q

)
=

q∑
b=1

e

(
ab

q

) ∑
X<n≤2X
n≡b mod q

1E′
2
(n)

=

q∑
b=1

e

(
ab

q

) ∑
P<p1≤P 1+δ

∑
X
p1

<p2≤ 2X
p1

p2≡bp1 mod q

1.

Heuristically, applying results on primes in arithmetic progressions (e.g. the

Siegel-Walfisz Theorem) on the inner sum followed by Mertens’ Theorem

(Lemma 2.2.2) on the sum over p1, we would expect that this is

≈ µ(q)cδX

φ(q) logX
,
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where cδ > 0 is some constant depending on δ. This suggests that the larger

contributions arise when α ∈ (0, 1) is well approximated by a rational a/q

with a small denominator q.

We therefore split the integral (2.1.1) over the unit circle into integrals

over the major arcs, the set of points in (0, 1) which are well approximated

by a rational with a small denominator, i.e. the set of α ∈ (0, 1) such that

|α − a/q| ≤ 1/(qQ) for some integers (a, q) = 1 with 1 ≤ q ≤ logA′
X for

some bounded A′ > 0, and the minor arcs consisting of the rest of the circle.

Here, Q is slightly larger than the size of the smaller prime factor P , and

depends on the size of H(X) (in particular, it is a power of logX, or larger

when H ≥ exp((logX)ε)). In order to achieve the smallest possible H, we

want to take A′, P and Q as small as possible.

In many problems of this type (see e.g. [27], [32]) where the Hardy-

Littlewood circle method is applied, it is usual that the major arcs are treated

in a standard way to provide the main term and an error term which is not

too difficult to control, while the contribution from the minor arcs is more

difficult to bound suitably. Since the correlation

∑
X<n≤2X

1E′
2
(n)1E′

2
(n+ h) =

∑
P<p1,p3≤P 1+δ

∑
X<p1p2,p3p4≤2X

p3p4=p1p2+h

1

has a bilinear structure, we are in fact able to bound the integral over the

minor arcs with relative ease using standard results on bilinear exponential

sums. For the major arcs, while we are still able to evaluate the main term
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in the usual way, the difficulty now lies in estimating the error term.

We will first treat the integral over the minor arcs in Proposition 2.3.6.

We find cancellation in the contribution on average over the shift h:

∑
0<|h|≤H

∣∣∣∣∣∣
∫
m

∣∣∣∣∣ ∑
X<n≤2X

1E′
2
(n)e(nα)

∣∣∣∣∣
2

e(−hα)dα

∣∣∣∣∣∣
2

.

We next expand the square, apply Poisson summation (Lemma 2.2.1) and

Gallagher’s Lemma [10, Lemma 1]:

Lemma 2.2.4 (Gallagher’s Lemma). Let 2 < y < X/2. For arbitrary com-

plex numbers an, we have

∫
|β|≤ 1

2y

∣∣∣∣∣ ∑
X<n≤2X

ane(βn)

∣∣∣∣∣
2

dβ ≪ 1

y2

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+y

an

∣∣∣∣∣
2

dx+y

(
max

X<n≤2X
|an|
)2

.

(2.2.2)

This reduces the problem to bounding an integral of the form

sup
α∈m

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+H

1E′
2
(n)e(nα)

∣∣∣∣∣
2

dx = sup
α∈m

∫ 2X

X

∣∣∣∣∣∣∣∣
∑

x<p1p2≤x+H
P<p1≤P 1+δ

e(αp1p2)

∣∣∣∣∣∣∣∣
2

dx.

The bilinear structure of these sums means we get the required cancellation,

as seen in the work of Mikawa [32]. We apply the Cauchy-Schwarz inequality

before separating the contributions of the diagonal and off-diagonal terms.

The diagonal terms are bounded trivially and a standard argument for bound-

ing bilinear exponential sums is used to bound the off-diagonal terms.



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 23

The major arcs, treated in Proposition 2.3.7, contribute the main term,

which is evaluated in a standard way, and an error term. On the major arcs,

we can write α = a/q + β with q ≤ Q0, (a, q) = 1 and |β| ≤ 1
qQ

. We then

need to evaluate

∑
q≤Q0

∑
1≤a≤q
(a,q)=1

∫
|β|≤ 1

qQ

∣∣∣∣∣ ∑
X<n≤2X

1E′
2
(n)e

(
an

q

)
e(nβ)

∣∣∣∣∣
2

e

(
−ah
q

)
e(−hβ)dβ.

We expand the additive character e(an/q) in terms of Dirichlet characters χ

mod q, and after applying character orthogonality the problem is transformed

into understanding

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
|β|≤ 1

qQ

∣∣∣∣∣ ∑
X<n≤2X

1E′
2
(n)χ(n)e(βn)

∣∣∣∣∣
2

dβ.

A suitable approximation to the principal character then provides the main

term.

To the remaining terms, we again apply Gallagher’s Lemma (Lemma

2.2.4) to reduce the problem to understanding almost primes in almost all

short intervals. We add and subtract a sum over a longer interval, so that



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 24

we aim to estimate an expression of the form

∑
q≤logA

′
X

q

φ(q)

∑
χ(q)
χ ̸=χ0

(∫ 2X

X

∣∣∣∣∣
(

2

qQ

∑
x<n≤x+qQ/2

− 2

q∆

∑
x<n≤x+q∆/2

)
1E′

2
(n)χ(n)

∣∣∣∣∣
2

dx

+

∫ 2X

X

∣∣∣∣∣∣ 2

q∆

∑
x<n≤x+q∆/2

1E′
2
(n)χ(n)

∣∣∣∣∣∣
2

dx

)
, (2.1.2)

with ∆ slightly smaller than X. To the second term, we first apply Cauchy-

Schwarz to separate the two prime factors. Since the length of the interval

is close to X and we need an estimate for almost all intervals, we only need

a result which is slightly stronger than the prime number theorem. For

the estimation of the first term, we adapt the work of Teräväinen [38] on

almost primes in almost all short intervals (which in turn adapts the work of

Matomäki and Radziwi l l [25] on multiplicative functions in short intervals).

In particular, we first use a Parseval-type bound (Lemma 2.2.7) in order to

bound the integral in terms of the mean square of the associated Dirichlet

polynomial ∑
q≤Q0

∑
χ(q)
χ ̸=χ0

∫ T

−T

∣∣∣∣∣ ∑
X<n≤2X

1E′
2
(n)χ(n)

n1+it

∣∣∣∣∣
2

dt. (2.1.3)

Finding cancellation in this mean value is the crux of the argument, and is

covered in detail in Sections 2.3.5 and 2.3.6.

For now, if we were only interested in achieving the range H ≥ Xε, we

would first choose the smaller prime factor of the almost primes n, n+h ∈ E ′
2

to instead have size P = exp((logX)3/4). We choose the parameters of the
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circle method to be Q0 = logA′
X with A′ > 4 fixed and Q = exp((logX)4/5).

To ensure cancellation in the contribution of the minor arcs, we will need

H > Q, so we take H ≥ Xε.

Heuristically, we first factorise the Dirichlet polynomial appearing in

(2.1.3) into two Dirichlet polynomials, each associated with one of the prime

factors of n = p1p2. Ignoring remainder terms, we would need to find can-

cellation in

∑
q≤Q0

∑
χ(q)
χ ̸=χ0

∫ T

−T

∣∣∣∣∣∣
∑

P<p1≤2P

χ(p1)

p1+it
1

∑
X/(2P )<p2≤2X/P

χ(p2)

p1+it
2

∣∣∣∣∣∣
2

dt.

As P = exp((logX)3/4), we can find cancellation pointwise in the shorter

polynomial using the Vinogradov-Korobov zero-free region for Dirichlet L-

functions. We then apply the mean value theorem (Lemma 2.3.27) to the

mean value of the Dirichlet polynomial over p2, so that the above is bounded

by

≪ exp(−c(logX)ε)
∑
q≤Q0

∑
χ(q)
χ ̸=χ0

∫ T

−T

∣∣∣∣∣∣
∑

X/(2P )<p2≤2X/P

χ(p2)

p1+it
2

∣∣∣∣∣∣
2

dt

≪
∑
q≤Q0

(
φ(q)TP

X
+
φ(q)

q

)
exp(−c(logX)ε),

for some constant c > 0. As T ≈ X/(qQ), P = exp((logX)3/4), Q =
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exp((logX)4/5) and Q0 = logA′
X, this is

≪
(
P

Q
+ 1

)
exp(−c(logX)ε)

∑
q≤Q0

φ(q)

q
≪ exp(−c′(logX)ε),

for some constant c′ > 0, which is sufficient.

To improve the range of H further and achieve a power of logX, we need

to take a smaller prime factor P . In particular, we want to choose P to

be a power of logX, which means we can no longer apply the Vinogradov-

Korobov zero-free region to obtain cancellation. Instead, we need to use a

more involved argument with additional tools and ideas. First, we factorise

this Dirichlet polynomial into a short Dirichlet polynomial corresponding

to the smaller prime factor p1 and a longer polynomial corresponding to

the larger prime factor p2. The domain of integration is split according to

whether the short polynomial is pointwise small. When the shorter poly-

nomial is small, we apply the pointwise bound followed by a mean value

theorem. When this shorter polynomial is large, to get sufficient cancellation

we further decompose the long Dirichlet polynomial into products of shorter

polynomials using Heath-Brown’s identity [17, Eq. (8)], reducing the prob-

lem to estimating type I and type II sums. The type I sums occur when

these polynomials are sufficiently long and are in fact partial sums related to

Dirichlet L-functions. In this case we are able to apply the Cauchy-Schwarz

inequality followed by a result on the twisted fourth moment of partial sums

of Dirichlet L-functions. Otherwise, for the type II sums, we then further



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 27

split the domain according to whether one of these polynomials is small, in

which case it is bounded pointwise before we use a mean value theorem.

When the polynomial is large, we apply the Halász-Montgomery inequality

[34, Theorem 7.8] followed by large value theorems.

The proof of Theorem 1.0.4 also follows the argument given above, but we

need to make appropriate adjustments to the parameters when applying the

circle method and take more care when using the Cauchy-Schwarz inequality.

On both the major and minor arcs the application of Cauchy-Schwarz to sums

over the smaller prime factor is now too inefficient, but we can overcome

this by splitting these sums into dyadic intervals and then combining the

contributions. For the proof of Theorem 1.0.5, we combine these ideas for

the almost primes with the work of Mikawa [32] on the primes.

We lastly remark that recently, the methods of Matomäki and Radziwi l l

[25] have been combined with the Hardy-Littlewood circle method to make

progress on other problems in analytic number theory. Matomäki, Radziwi l l

and Tao [28] obtained short averages (of length logBX for some large B > 0)

for correlations of divisor functions and the von Mangoldt function, at the

cost of weaker error terms. Matomäki, Radziwi l l and Tao [26] use these

ideas to establish that Chowla’s conjecture [3] holds on average as soon as

the length of the average grows with X. Recent work of Lichtman and

Teräväinen [24] shows that a hybrid of Chowla’s conjecture and the Hardy-

Littlewood conjecture holds on average (see also [23]), with average of length

a power of logX.
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2.2 Preliminaries

2.2.1 Notation

Throughout p, pi, are used to denote prime numbers, while k, l,m, n, q, r, v

(with or without subscripts) are positive integers.

As usual, µ(·) is the Möbius function and φ(·) is the Euler totient function.

We let dr(n) denote the number of solutions to n = a1 · · · ar in positive

integers. We let cq(·) be the Ramanujan sum, defined by

cq(n) :=

q∑
a=1

(a,q)=1

e

(
an

q

)
.

We write τ(·) for the Gauss sum defined on Dirichlet characters χ modulo q

by

τ(χ) :=

q∑
n=1

e

(
n

q

)
χ(n), (2.2.1)

which satisfies τ(χ0) = µ(q).

We use e : T → R to denote e(x) := e2πix, where T is the unit circle. The

notation 1S(·) is the indicator function of the set S; in particular, we write

1S(n) = 1 if n ∈ S and 1S(n) = 0 otherwise. Let ∥x∥ := minn∈Z |x − n|

denote distance to the nearest integer. For a function f ∈ L1(R), we define

its Fourier transform to be f̂(ξ) =
∫
R f(x)e(xξ)dx for all ξ ∈ R.

We will use (a, b) to denote the greatest common divisor of natural num-

bers a and b, while we write a | b if a divides b. The shorthand a ≡ b(q) is
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used to denote that a and b are congruent modulo q.

We use the shorthand χ(q) to denote that the summation is taken over

all Dirichlet characters modulo q. For complex functions g1, g2 we use the

usual asymptotic notation g1(x) = O(g2(x)) or g1(x) ≪ g2(x) to denote that

there exist real x0 and C > 0 such that for every x ≥ x0 we have that

|g1(x)| ≤ C|g2(x)|. We write g1(x) = o(g2(x)) if for every ε > 0 there exists

x0 such that |g1(x)| ≤ ε|g2(x)| for all x ≥ x0. We use the convention that

ε > 0 may be different from line to line.

2.2.2 Preliminary Lemmas

We now state several results we will need throughout the argument. We will

need to apply a version of the Poisson summation formula.

Lemma 2.2.1. Suppose that f : R → R is a Schwartz function and suppose

that u ∈ R and v ∈ R+. Then

∑
m∈Z

f(vm+ u) =
1

v

∑
n∈Z

f̂
(n
v

)
e
(un
v

)
.

Proof. See [18, Eq. (4.24)] or [35, Theorem D.3].

We will frequently make use of Mertens’ Theorem:

Lemma 2.2.2 (Mertens’ Theorem). For x ≥ 2, we have that

∑
p≤x

1

p
= log log x+ b+O

(
1

log x

)
,
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where b = γ −
∑

p

∑∞
k=2

1
kpk

and γ is Euler’s constant.

Proof. See Mertens’ [31] or [35, Theorem 2.7].

We will need the following bound on primes p such that p+ h is a prime,

and also a bound for the singular series:

Lemma 2.2.3. Let h ≤ x be an even non-zero integer and suppose that

y ≥ 4. The number of primes p ∈ (x, x+ y] such that p+ h is also prime is

≪ S(h)y

(log y)2
.

Furthermore, we have that ∑
h≤x

S(h) ≪ x

and

S(h) ≪ log log h.

Proof. See [35, Corollary 3.14] and the subsequent exercises. The final bound

follows from Mertens’ theorem (Lemma 2.2.2).

We will also need Gallagher’s Lemma, which will reduce bounding in-

tegrals over the major and minor arcs to studying almost primes in short

intervals.

Lemma 2.2.4 (Gallagher’s Lemma). Let 2 < y < X/2. For arbitrary com-
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plex numbers an, we have

∫
|β|≤ 1

2y

∣∣∣∣∣ ∑
X<n≤2X

ane(βn)

∣∣∣∣∣
2

dβ ≪ 1

y2

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+y

an

∣∣∣∣∣
2

dx+y

(
max

X<n≤2X
|an|
)2

.

(2.2.2)

Proof. This lemma is a modification of [10, Lemma 1] (see also [32, Lemma

1]). We use a similar argument to [33, Lemma 1.10]. We suppose that the

sequence of complex numbers an is supported on (X, 2X]. We begin by

considering the integral

1

y2

∫ 2X−y

X

∣∣∣∣∣ ∑
x<n≤x+y

an

∣∣∣∣∣
2

dx

=
1

y2

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+y

an

∣∣∣∣∣
2

dx− 1

y2

∫ 2X

2X−y

∣∣∣∣∣ ∑
x<n≤x+y

an

∣∣∣∣∣
2

dx

≪ 1

y2

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+y

an

∣∣∣∣∣
2

dx+ y

(
max

X<n≤2X
|an|
)2

giving us the right hand side of (2.2.2). By substitution, we have that

1

y2

∫ 2X−y

X

∣∣∣∣∣ ∑
x<n≤x+y

an

∣∣∣∣∣
2

dx =
1

y2

∫ 2X−y/2

X+y/2

∣∣∣∣∣∣
∑

x−y/2<n≤x+y/2

an

∣∣∣∣∣∣
2

dx.
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We define

Fy(x) :=


1
y
, if |x| ≤ y

2
,

0, if |x| > y
2
,

Cy(x) :=
1

y

∑
|n−x|≤y/2

an,

S(β) :=
∑
n

ane(βn).

Then Cy(x) =
∑

n anFy(x− n) and, taking Fourier transforms,

Ĉy(ξ) =

∫ ∞

−∞

∑
n

anFy(x− n)e(xξ)dx

=
∑
n

ane(nξ)

∫ ∞

−∞
Fy(x− n)e((x− n)ξ)dx

= (S · F̂y)(ξ).

Note that since only finitely many terms in the sum over n do not vanish,

we can interchange the order of summation and integration. The series S is

absolutely convergent, so Cy is square-integrable. Therefore, by Plancherel’s

theorem, we have that

1

y2

∫ 2X−y

X

∣∣∣∣∣ ∑
x<n≤x+y

an

∣∣∣∣∣
2

dx =

∫ ∞

−∞
|Cy(x)|2 dx =

∫ ∞

−∞

∣∣∣Ĉy(β)
∣∣∣2 dβ

=

∫ ∞

−∞

∣∣∣S(β)F̂y(β)
∣∣∣2 dβ.
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Now, we have that

F̂y(β) =
sin(πβy)

πβy
≫ 1 for |β| ≤ 1

2y

and therefore

1

y2

∫ 2X−y

X

∣∣∣∣∣ ∑
x<n≤x+y

an

∣∣∣∣∣
2

dx≫
∫ 1

2y

− 1
2y

|S(β)|2 dβ,

as claimed.

We will need a result on primes in short intervals:

Lemma 2.2.5. Let ε > 0 and define ψ(x) :=
∑

n≤x Λ(n). For all y with

x7/12+ε ≤ y ≤ x we have

ψ(x+ y) − ψ(x) = y +O
(
y exp(−c(log x)1/3−ε)

)
for some constant c > 0.

Proof. This can be proved following the argument of [18, Theorem 10.5].

Once we have applied Gallagher’s Lemma in the treatment of the major

arcs, part of the error term is reduced to a Dirichlet character analogue of

a problem on primes in almost all short intervals. We will use the following

result adapted from the work of Koukoulopoulos [21] to bound the second

term arising in (2.1.2):
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Lemma 2.2.6. Let A ≥ 1 and ε ∈ (0, 1
3
] be fixed. Let X ≥ 1, 1 ≤ Q ≤ ∆

X1/6+ε

and ∆ = Xθ with 1
6

+ 2ε ≤ θ ≤ 1. Then we have that

∑
q≤Q

∑
χ(q)

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+q∆

(Λ(n)χ(n) − δχ)

∣∣∣∣∣
2

dx≪ Q3∆2X

logAX
,

where we define δχ = 1 if χ = χ0 and δχ = 0 otherwise.

Proof. The proof can be adapted from the proof given in [21, Section 4], as

described in the Appendix.

We use the following Parseval-type result to reduce the problem of finding

almost primes in short intervals (cf. the first term of (2.1.2)) to finding

cancellation in the mean square of the associated Dirichlet polynomial:

Lemma 2.2.7 (Parseval Bound). Let an be arbitrary complex numbers, and

let 2 ≤ h1 ≤ h2 ≤ X
(T ′)3

with T ′ ≥ 1. Define F (s) :=
∑

X<n≤2X
an
ns . Then

1

X

∫ 2X

X

∣∣∣∣∣ 1

h1

∑
x<n≤x+h1

an −
1

h2

∑
x<n≤x+h2

an

∣∣∣∣∣
2

dx

≪ 1

(T ′)2
max

X<n≤2X
|an|2 +

∫ X
h1

T ′
|F (1 + it)|2dt+ max

T≥ X
h1

X

Th1

∫ 2T

T

|F (1 + it)|2dt.

Proof. This is [38, Lemma 1], which is a variant of [25, Lemma 14].

We record an exponential sum bound and a related bound on the sum of

the reciprocal of the distance to the nearest integer function which provide

the necessary cancellation in the estimation of the minor arcs.



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 35

Lemma 2.2.8. Let β ∈ R, then

∑
n≤x

e(βn) ≪ min

(
x,

1

∥β∥

)
.

Proof. This is a standard result, see for example [18, Chapter 8, Eq. (8.6)].

Lemma 2.2.9. If 1 < X ≤ Y and α ∈ R satisfies α = a/q + O(q−2) with

(a, q) = 1, then we have

∑
n≤X

min

(
Y

n
,

1

∥αn∥

)
≪
(
Y

q
+X + q

)
log(qX).

Proof. This is a standard result, see for example [18, Chapter 13, Page 346].

We will also need to apply the Brun-Titchmarsh inequality:

Lemma 2.2.10. If (a, q) = 1, then for any ε > 0 and q < x1−ε we have the

bound

π(x; q, a) ≪ x

φ(q) log(x/q)
.

Proof. See [39, Theorem 2].



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 36

2.3 Proof of Theorem 1.0.2

2.3.1 Applying the Circle Method

To prove Theorem 1.0.2, we will apply the Hardy-Littlewood circle method.

First, we will set the size of the smaller prime factor:

Definition 2.3.1. Let ε > 0 be small and fixed. Define P > 0 according to

the size of H as follows:

P :=


(logX)17+ε, if (logX)19+ε ≤ H ≤ exp((logX)ε

3
),

exp ((log logX)2) , if exp((logX)ε
3
) < H ≤ X log−AX.

It will be more convenient throughout the argument to have a log weight

attached to the indicator function of E ′
2 as follows:

Definition 2.3.2. Let P be defined as in Definition 2.3.1. We define the

arithmetic function ϖ2 : N → R to be

ϖ2(n) =


log p2, if n = p1p2 with P < p1 ≤ P 1+δ,

0, otherwise.

From now on we fix δ > 0 sufficiently small. We will prove the following

asymptotic formula, from which Theorem 1.0.2 follows immediately after

applying dyadic decomposition:
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Theorem 2.3.3. Let ε > 0, A > 3 be fixed and let (logX)19+ε ≤ H ≤

X log−AX. Then, there exists some η = η(ε) > 0 such that for all but at

most O(H log−ηX) values of 0 < |h| ≤ H we have that

∑
X<n≤2X

ϖ2(n)ϖ2(n+ h) = S(h)X

 ∑
P<p≤P 1+δ

1

p

2

+O

(
X

logηX

)
,

where S(h) is the singular series defined in (1.0.3).

Remark 2.3.4. As H becomes an arbitrarily large power of logX, or is

larger than any power of logX, we are able to improve the bound on the

error terms to O(X log−AX) for A > 0 once we have suitably modified the

dependencies between H, P and the parameters of the circle method. We

also note that, after appropriately modifying the main term, using this result

we can in fact prove Theorem 1.0.2 with a better error term.

We consider the integral

∫ 1

0

|S(α)|2e(−hα)dα =
∑

X<m,n≤2X

ϖ2(m)ϖ2(n)

∫ 1

0

e(α(m− n− h))dα,

(2.3.1)

where for α ∈ (0, 1) we define the exponential sum

S(α) :=
∑

X<n≤2X

ϖ2(n)e(nα).
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Then, by the integral identity

∫ 1

0

e(nx)dx =


1, if n = 0,

0, otherwise,

(2.3.2)

we have that the integral in (2.3.1) vanishes unless m = n+ h. Thus (2.3.1)

becomes

∫ 1

0

|S(α)|2e(−hα)dα =
∑

X<n≤2X−h

ϖ2(n)ϖ2(n+ h)

=
∑

X<n≤2X

ϖ2(n)ϖ2(n+ h) +O(h log2X). (2.3.3)

This error term will be negligible by our choice of H. Thus, except for an

acceptable error, we can represent the correlation by an integral over the unit

circle.

We split the domain of integration into the major and minor arcs. We

define the major arcs M to be the set of real α ∈ (0, 1) such that

∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

qQ
for some 1 ≤ q ≤ Q0, a < q, (a, q) = 1 (2.3.4)

with Q0 := logA′
X and Q := P logX. Here we define A′ > 0 according to
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the size of H as follows

A′ :=


1 + ε2, if (logX)19+ε ≤ H ≤ exp((logX)ε

3
),

3 + ε2, if exp((logX)ε
3
) < H ≤ X log−AX.

(2.3.5)

We define the minor arcs m to be the rest of the circle, that is, the set of real

α ∈ (0, 1) such that

∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

qQ
for some Q0 < q ≤ Q, a < q, (a, q) = 1. (2.3.6)

Remark 2.3.5. The parameters satisfy Q0 < P < Q < H. Decreasing the

size we can take for P would directly reduce how small we are able to take

H.

In Section 2.3.2, we will prove the following estimate for the integral over

the minor arcs:

Proposition 2.3.6 (Minor Arc Estimate). Let A > 3 be fixed and let ε > 0

be fixed sufficiently small. Let Q(logX)1+ε ≤ H ≤ X log−AX. With m

defined as in (2.3.6), for α ∈ m there exists some η = η(ε) > 0 such that

∫
m∩[α− 1

2H
,α+ 1

2H
]

|S(θ)|2dθ ≪ X

(logX)1+η
. (2.3.7)

Sections 2.3.3 to 2.3.6 will be dedicated to proving the following expression

for the integral over the major arcs:
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Proposition 2.3.7 (Major Arc Integral). Let A > 3 be fixed and let ε > 0 be

fixed sufficiently small. Let (logX)19+ε ≤ H ≤ X log−AX. With M defined

as in (2.3.4) and δ > 0 sufficiently small, there exists some η = η(ε) > 0

such that for all but at most O(HQ
−1/3
0 ) values of 0 < |h| ≤ H we have that

∫
M

|S(α)|2e(−hα)dα = S(h)X

 ∑
P<p≤P 1+δ

1

p

2

+O

(
X

logηX

)
,

where S(h) is the singular series given in (1.0.3).

Assuming Proposition 2.3.6 and Proposition 2.3.7, we can now prove The-

orem 2.3.3.

Proof of Theorem 2.3.3. We follow the arguments in [27, Pages 32-34]. By

(2.3.3), we have that

∑
0<|h|≤H

∣∣∣∣∣ ∑
X<n≤2X−h

ϖ2(n)ϖ2(n+ h) −
∫
M

|S(α)|2e(−hα)dα

∣∣∣∣∣
2

≪
∑

0<|h|≤H

∣∣∣∣∫
m

|S(α)|2e(−hα)dα

∣∣∣∣2 .
We now apply a smoothing; we multiply the above by an even non-negative

Schwartz function Φ : R → R+ such that Φ(x) ≥ 1 for x ∈ [−1, 1] and its

Fourier transform Φ̂ is supported in [−1/2, 1/2]. Thus, the above is bounded

by ∑
h

Φ

(
h

H

)∫
m

∫
m

|S(α1)|2|S(α2)|2e(−h(α1 − α2))dα1dα2.
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By substitution we have that

∫
R

Φ
( x
H

)
e(x(α2 − α1 − ξ))dx = H

∫
R

Φ(t)e(Ht(α2 − α1 − ξ))dt

= HΦ̂(H(α2 − α1 − ξ)).

Therefore, applying the Poisson summation formula (Lemma 2.2.1), we have

that ∑
h

Φ

(
h

H

)
e(−h(α1 − α2)) = H

∑
n

Φ̂(H(α2 − α1 + n)).

Note that due to the support of Φ̂, this expression vanishes unless n =

0,−1, 1. Using a change of variables and periodicity, we can reduce this to

needing to treat α1 ∈ [α2 − 1
2H
, α2 + 1

2H
]. Therefore, we have that

∑
0<|h|≤H

∣∣∣∣∫
m

|S(α)|2e(−hα)dα

∣∣∣∣2
≪ H

∫
m

|S(α2)|2
∫
m∩[α2− 1

2H
,α2+

1
2H

]

|S(α1)|2dα1dα2

≪ H

∫ 1

0

|S(α2)|2
∫
m∩[α2− 1

2H
,α2+

1
2H

]

|S(α1)|2dα1dα2.

By Proposition 2.3.6, there exists some η = η(ε) > 0 such that

sup
α∈m

∫
m∩[α− 1

2H
,α+ 1

2H
]

|S(β)|2dβ ≪ X

(logX)1+η
.
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We have that

∫ 1

0

|S(α)|2dα =
∑

X<n≤2X

ϖ2
2(n) =

∑
P<p1≤P 1+δ

∑
X
p1

<p2≤ 2X
p1

log2 p2.

By partial summation and the prime number theorem, we have that

∑
X
p1

<p2≤ 2X
p1

log2 p2 =

(
log

X

p1

) ∑
X
p1

<p2≤ 2X
p1

log p2 +

∫ 2X/p1

X/p1

∑
p2≤t log p2

t
dt

=

(
log

X

p1

) ∑
X
p1

<p2≤ 2X
p1

log p2 +O

(
X

p1

)
.

By Mertens’ theorem (Lemma 2.2.2), we have the bound

∫ 1

0

|S(α)|2dα ≪
∑

P<p1≤P 1+δ

log
X

p1

∑
X
p1

<p2≤ 2X
p1

log p2

≪ X logX
∑

P<p≤P 1+δ

1

p

≪ X logX.

Therefore, we have that

∑
0<|h|≤H

∣∣∣∣∣ ∑
X<n≤2X−h

ϖ2(n)ϖ2(n+ h) −
∫
M

|S(α)|2e(−hα)dα

∣∣∣∣∣
2

≪ HX2

logηX
.

Thus, by Chebyshev’s inequality (see, for example, [37, Page 185]), we have
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that the size of the set of integers 0 < |h| ≤ H such that

∣∣∣∣∣ ∑
X<n≤2X−h

ϖ2(n)ϖ2(n+ h) −
∫
M

|S(α)|2e(−hα)dα

∣∣∣∣∣≫ X

(logX)η/3

is bounded by

≪ (logX)2η/3

X2
·
∑

0<|h|≤H

∣∣∣∣∣ ∑
X<n≤2X−h

ϖ2(n)ϖ2(n+ h) −
∫
M

|S(α)|2e(−hα)dα

∣∣∣∣∣
2

≪ (logX)2η/3

X2
· HX

2

logηX

≪ H

(logX)η/3
.

In particular, we have that

∑
X<n≤2X−h

ϖ2(n)ϖ2(n+ h) −
∫
M

|S(α)|2e(−hα)dα = O

(
X

(logX)η/3

)

for all but O(H(logX)−η/3) integers 0 < |h| ≤ H. Finally, applying Propo-

sition 2.3.7, we have that

∑
X<n≤2X

ϖ2(n)ϖ2(n+ h) = S(h)X

 ∑
P<p≤P 1+δ

1

p

2

+O

(
X

(logX)η/3

)
,

for all but O(H(logX)−η/3) integers 0 < |h| ≤ H, as claimed.
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2.3.2 The Minor Arcs

We first treat the integral over the minor arcs, proving Proposition 2.3.6 by

following the proof of [32, Lemma 8].

Proof of Proposition 2.3.6. Starting with the minor arc integral (2.3.7), we

make the substitution θ = α + β to see that

I :=

∫
m∩[α− 1

2H
,α+ 1

2H
]

|S(θ)|2dθ =

∫
α+β∈m
|β|≤ 1

2H

|S(α + β)|2dβ.

We apply Lemma 2.2.4 to the integral to get

I ≪ 1

H2

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+H

ϖ2(n)e(nα)

∣∣∣∣∣
2

dx+H log2X.

The second term is ≪ X/ log1+ηX by our choice of H, so it remains to bound

the first term.

Case 1. H ≤ exp((logX)ε
3
).
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We apply the Cauchy-Schwarz inequality to the integrand to get

∣∣∣∣∣ ∑
x<p1p2≤x+H
P<p1≤P 1+δ

(log p2)e(αp1p2)

∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑

P<m≤P 1+δ

1P(m)

( ∑
x<mp≤x+H

(log p)e(αmp)

)∣∣∣∣∣∣
2

≤

 ∑
P<m1≤P 1+δ

|1P(m1)|2
 ∑

P<m2≤P 1+δ

∣∣∣∣∣ ∑
x<m2p≤x+H

(log p)e(αm2p)

∣∣∣∣∣
2
 .

(2.3.8)

By the prime number theorem the first term is ≪ P 1+δ

logP
, while the second

term is equal to

∑
x<mp1,mp2≤x+H

P<m≤P 1+δ

(log p1)(log p2)e(αm(p1 − p2)).

Next, we perform the integration on this sum. Note that X < mpi ≤ x+H ≤

3X, so we include this condition on the summation. We now trivially extend

the domain of integration to x ∈ [0, 3X] as the integrand is positive and

define the set Ω := {x : 0 ≤ x ≤ 3X,mpi − H ≤ x < mpi, i = 1, 2}.

Exchanging the order of integration and summation, we have that

I ≪ P 1+δ

H2 logP

∑
P<m≤P 1+δ

∣∣∣∣∣ ∑
X<mp1,mp2≤3X

(log p1)(log p2)e(αm(p1 − p2)) · |Ω|

∣∣∣∣∣ .
If m|p1−p2| > H, then |Ω| = 0. Since we have that mpi−H > X−H > 0 and
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mpi ≤ 3X for i = 1, 2, the condition 0 ≤ x ≤ 3X is weaker than the condition

max(mp1,mp2) −H ≤ x < min(mp1,mp2). Therefore, if m|p1 − p2| ≤ H we

have that |Ω| = H −m|p1 − p2|.

We now split the sum into the diagonal terms, p1 = p2, and the off-

diagonal terms, p1 ̸= p2, denoted by S1 and S2 respectively. The diagonal

terms contribute

S1 ≪
P 1+δ

H logP

∑
P<m≤P 1+δ

∑
X
m
<p≤ 3X

m

log2 p≪ XP 1+δ log(X/P )

H
. (2.3.9)

Now we bound the off-diagonal terms S2. Let r = |p1 − p2|. Noting that

0 < mr ≤ H, we have that S2 is

≪ P 1+δ

H2 logP

∑
0<r≤H

∑
X

P1+δ <p1,p2≤ 3X
P

r=|p1−p2|

(log p1)(log p2)

∣∣∣∣∣ ∑
P<m≤P 1+δ

0<m≤H/r

e(αmr)(H −mr)

∣∣∣∣∣.

Noting that 0 < m ≤ H/r and P < m ≤ P 1+δ, we have that 0 < r ≤ H/P .

We apply partial summation and Lemma 2.2.8 to the sum over m to see that

S2 ≪
P 1+δ

H logP

∑
0<r≤H

P

min

(
H

r
,

1

∥αr∥

) ∑
X

P1+δ <p1,p2≤ 3X
P

r=|p1−p2|

(log p1)(log p2).

By partial summation followed by Lemma 2.2.3, we have that the sum over
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p1, p2 is bounded by

∑
X

P1+δ <p1,p2≤ 3X
P

r=|p1−p2|

(log p1)(log p2) ≪ (logX)2
∑

X

P1+δ <p1,p2≤ 3X
P

r=|p1−p2|

1 ≪ S(r)X

P
.

Therefore the contribution of the off-diagonal terms can be bounded by

S2 ≪
XP 1+δ

HP logP

∑
0<r≤H

P

min

(
H

r
,

1

∥αr∥

)
S(r).

We have that S(r) ≪ log log r by Lemma 2.2.3, so applying partial summa-

tion we have that

S2 ≪
XP δ

H logP
log logX

∑
0<r≤H

P

min

(
H

r
,

1

∥αr∥

)
.

Next, we apply Lemma 2.2.9 to the sum over r to get

S2 ≪
XP δ

H

(
H

Q0

+
H

P
+Q

)
log

QH

P
, (2.3.10)

recalling that since α ∈ m we have that Q0 ≤ q ≤ Q.

Since we are in the case H ≤ exp((logX)ε
3
), we have that log QH

P
≪

(logX)ε
3
. Therefore, combining the contributions of the diagonal terms

(2.3.9) and the off-diagonal terms (2.3.10), we find

I ≪ XP δ

(
(logX)ε

3

(
1

Q0

+
1

P
+
Q

H

)
+
P log(X/P )

H

)
.
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By our choices of Q0 = (logX)1+ε2 , Q(logX)1+ε = P (logX)2+ε ≪ H, we

have that

I ≪ X

(logX)1+η

for some η = η(ε) > 0.

Case 2: H > exp((logX)ε
3
).

We split the sum over P ≤ p1 ≤ P 1+δ in (2.3.8) into O(logP ) dyadic in-

tervals [P1, 2P1] before applying the triangle inequality and Cauchy-Schwarz

to obtain

∣∣∣∣∣ ∑
x<p1p2≤x+H
P1<p1≤2P1

(log p2)e(αp1p2)

∣∣∣∣∣
2

≤

( ∑
P1<m1≤2P1

|1P(m1)|2
) ∑

P1<m2≤2P1

∣∣∣∣∣ ∑
x<m2p≤x+H

(log p)e(αm2p)

∣∣∣∣∣
2


≤ P1

logP1

∑
x<mp1,mp2≤x+H

P1<m≤2P1

(log p1)(log p2)e(αm(p1 − p2)).

As in the previous case, we perform the integration and then split into con-

sidering the diagonal (p1 = p2) and off-diagonal (p1 ̸= p2) terms, which we

denote by S ′
1 and S ′

2 respectively. The diagonal terms contribute

S ′
1 ≪

P1

H logP1

∑
P1<m≤2P1

∑
X
m
<p≤ 3X

m

log2 p≪ XP1 log(X/P1)

H logP1

.
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The off-diagonal terms S ′
2 contribute

≪ P1

H2 logP1

∑
0<r≤H

∑
X

2P1
<p1,p2≤ 3X

P1
r=|p1−p2|

(log p1)(log p2)

∣∣∣∣∣∣∣∣
∑

P1<m≤2P1
0<m≤H/r

e(αmr)(H −mr)

∣∣∣∣∣∣∣∣ .

We once again apply partial summation and Lemma 2.2.8 to the sum over

m, followed by applying partial summation and Lemma 2.2.3 to the sum over

p1, p2, so that

S ′
2 ≪

P1

H logP1

∑
0<r≤ H

P1

min

(
H

r
,

1

∥αr∥

) ∑
X

2P1
<p1,p2≤ 3X

P1
r=|p1−p2|

(log p1)(log p2)

≪ XP1

HP1 logP1

∑
0<r≤ H

P1

min

(
H

r
,

1

∥αr∥

)
S(r)

≪ X log logX

H logP1

∑
0<r≤ H

P1

min

(
H

r
,

1

∥αr∥

)
.

Again, we apply Lemma 2.2.9 to the sum over r to see this off-diagonal

contribution is bounded by

S ′
2 ≪

X

H log logX

(
H

Q0

+
H

P1

+Q

)
log

QH

P1

.

We have that log QH
P1

≪ logX and Q0 = (logX)3+ε2 . Combining all of

the dyadic sums contributes O(log2 P ) = O((log logX)4), so that the total
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contribution is

I ≪ X(log logX)3
(

logX

(
1

Q0

+
1

P
+
Q

H

))
+
XP 1+δ log(X/P ) logP

H

≪ X

(logX)2+η
,

for some η = η(ε) > 0, which is acceptable.

2.3.3 The Major Arcs

We now shift our attention to evaluating the contribution of the integral over

the major arcs. We will first expand the exponential sum S(α) in terms of

Dirichlet characters and suitably approximate the contribution of the princi-

pal character, which will provide the main term. We will then evaluate this

main term and the sequel will be dedicated to bounding the error terms that

arise from this expansion.

2.3.3.1 Expanding the Exponential Sum

First, we rewrite the integral over the major arcs by expanding the exponen-

tial sum S(α) in terms of Dirichlet characters. We first define the following.

Definition 2.3.8. Let α = a/q + β satisfy (2.3.4), P be defined as in Defi-
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nition 2.3.1 and M as in (2.3.4). We define

a(α) :=
µ(q)

φ(q)

∑
P<p≤P 1+δ

1

p

∑
X<n≤2X

e(βn),

b(α) :=
1

φ(q)

∑
χ(q)

τ(χ)χ(a)
∑

X<n≤2X

ϖ2(n)χ(n) − δχ
∑

P<p≤P 1+δ

1

p

 e(βn),

A2(X) :=

∫
M

|a(α)|2dα,

B2(X) :=

∫
M

|b(α)|2dα,

where τ(χ) denotes the Gauss sum as defined in (2.2.1), and δχ = 1 when

χ = χ0 and is zero otherwise.

We will now find the following expression for the integral over the major

arcs, once we have expanded the exponential sum:

Lemma 2.3.9. Let M be defined as in (2.3.4) and a(α), A2(X), B2(X) be as

in Definition 2.3.8. We have that

∫
M

|S(α)|2e(−hα)dα =

∫
M

|a(α)|2e(−hα)dα +O
(
A(X)B(X) +B2(X)

)
.

Proof. Let α ∈ M, so that α = a
q

+ β with q ≤ Q0, (a, q) = 1 and |β| ≤ 1
qQ

.

Then

S(α) =
∑

X<n≤2X

ϖ2(n)e

(
an

q

)
e(βn).

By Definition 2.3.2, we have that n = p1p2 with P < p1 ≤ P 1+δ. As we have

P > Q0, we must have that (p1, q) = (p2, q) = 1 and therefore that (n, q) = 1.
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We can now rewrite our expression for S(α) by applying the identity

e

(
a

q

)
=

1

φ(q)

∑
χ(q)

χ(a)τ(χ)

which holds for (a, q) = 1. This gives

S(α) =
1

φ(q)

∑
χ(q)

τ(χ)χ(a)
∑

X<n≤2X

ϖ2(n)χ(n)e(βn)

=
1

φ(q)

∑
χ(q)

τ(χ)χ(a)
∑

X<p1p2≤2X
P<p1≤P 1+δ

χ(p1)χ(p2)(log p2)e(βp1p2),
(2.3.11)

where we have applied the definition of ϖ2 in the last line. Now we approxi-

mate the contribution of the principal character, which will become the main

term. First, note that since we have q ≤ Q0 < P < p1 we must have that

(p1p2, q) = 1 for X < p1p2 ≤ 2X, so we must have (log p2)χ0(p1)χ0(p2) =

log p2 in these ranges. By the prime number theorem, we have that

∑
X<n≤2X

ϖ2(n) =
∑

P<p1≤P 1+δ

∑
X
p1

<p2≤ 2X
p1

log p2 ∼ X
∑

P<p≤P 1+δ

1

p
.

Therefore we choose to approximate
∑

X<n≤2X ϖ2(n) by

∑
P<p≤P 1+δ

1

p

∑
X<n≤2X

1 = X
∑

P<p≤P 1+δ

1

p
+O(1).

Using this and the fact that τ(χ0) = µ(q), we approximate the contribution
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of the principal character to the exponential sum S(α) by

µ(q)

φ(q)

∑
P<p≤P 1+δ

1

p

∑
X<n≤2X

e(βn).

Adding and subtracting this approximation in our expression (2.3.11) for

S(α), we have that

S(α) =
µ(q)

φ(q)

∑
P<p≤P 1+δ

1

p

∑
X<n≤2X

e(βn)

+
µ(q)

φ(q)

∑
X<n≤2X

ϖ2(n)χ0(n) −
∑

P<p≤P 1+δ

1

p

 e(βn)

+
1

φ(q)

∑
χ(q)
χ ̸=χ0

τ(χ)χ(a)
∑

X<n≤2X

ϖ2(n)χ(n)e(βn)

=
µ(q)

φ(q)

∑
P<p≤P 1+δ

1

p

∑
X<n≤2X

e(βn)

+
1

φ(q)

∑
χ(q)

τ(χ)χ(a)
∑

X<n≤2X

ϖ2(n)χ(n) − δχ
∑

P<p≤P 1+δ

1

p

 e(βn)

=a(α) + b(α).

Finally, expanding the square and applying the Cauchy-Schwarz inequality,
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we have that

∫
M

|S(α)|2e(−hα)dα =

∫
M

|a(α) + b(α)|2e(−hα)dα

=

∫
M

|a(α)|2e(−hα)dα +

∫
M

|b(α)|2e(−hα)dα

+

∫
M

(a(α)b(α) + a(α)b(α))e(−hα)dα

=

∫
M

|a(α)|2e(−hα)dα +O
(
A(X)B(X) +B2(X)

)
,

as required.

Thus, in order to prove Proposition 2.3.7 we need to evaluate

∫
M

|a(α)|2e(−hα)dα

(which will also provide a bound for A2(X)), and suitably bound B2(X).

2.3.3.2 Evaluating the Main Term

In this section we evaluate the integral
∫
M
|a(α)|2e(−hα)dα, giving the main

term of the asymptotic (and a bound for A2(X)):

Proposition 2.3.10. Let ε > 0 be fixed sufficiently small, let A > 3 be fixed.

Let Q0 be defined as in (2.3.5) and let (logX)19+ε ≤ H ≤ X log−AX. Then

for all but at most O(HQ
−1/3
0 ) values of 0 < |h| ≤ H we have that

∫
M

|a(α)|2e(−hα)dα = S(h)X

 ∑
P<p≤P 1+δ

1

p

2

+O

(
X

logηX

)
,
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for some η = η(ε) > 0, where we define the singular series S(h) as in (1.0.3).

Remark 2.3.11. More generally, if the smaller prime factor lies in the range

p ∈ [P1, P2] for some P1 = P1(X) and P2 = P2(X), the error term here is in

fact

≪ XQ
−1/3
0 (logH)

( ∑
P1<p≤P2

1

p

)2

.

In the proofs of Theorems 1.0.4 and 1.0.5, we will make larger choices of Q0,

P1 and P2, which will lead to the improved error term. In particular, we will

choose Q0 = logA′
X for some suitable A′ > 0, P1 = exp((logX)o(1)) and

P2 = exp((logX)1−o(1)).

Before we can prove Proposition 2.3.10, we need an expression involving

the singular series S(h).

Lemma 2.3.12 (The Singular Series). Let h be a non-zero even integer and

Q0 be defined as in (2.3.5). Let A > 3 be fixed and let (logX)19+ε ≤ H ≤

X log−AX. Then, for all but at most O(HQ
−1/3
0 ) values of 0 < |h| ≤ H we

have that ∑
q≤Q0

µ2(q)cq(−h)

φ2(q)
= S(h) +O(Q

−1/3
0 logH).

Proof. For similar results, see [27, Page 39] and [42, Page 35]. Let h be a

non-zero even integer. Rewriting the sum over q, we have that

∑
q≤Q0

µ2(q)cq(−h)

φ2(q)
=

(
∞∑
q=1

−
∑
q>Q0

)
µ2(q)cq(−h)

φ2(q)
,
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noting that this is valid as the series is absolutely convergent. We first

evaluate the singular series. Since each of the functions in the summand is

multiplicative, we can calculate the Euler product expansion

∞∑
q=1

µ2(q)cq(−h)

φ2(q)
=
∏
p

∞∑
k=0

µ2(pk)cpk(−h)

φ2(pk)
=
∏
p

(
1 +

cp(−h)

φ2(p)

)
.

We know that for Ramanujan’s sum we have

cp(−h) =


φ(p), if p | h,

−1, if p ∤ h,

so we have

∞∑
q=1

µ2(q)cq(−h)

φ2(q)
=
∏
p∤h

(
1 − 1

φ2(p)

)∏
p|h

(
1 +

1

φ(p)

)

=
∏
p∤h

(
1 − 1

(p− 1)2

)∏
p|h

(
1 +

1

p− 1

)

= 2
∏
p>2

(
1 − 1

(p− 1)2

)∏
p|h
p>2

(
p

p− 1
· (p− 1)2

p(p− 2)

)

= 2
∏
p>2

(
1 − 1

(p− 1)2

)∏
p|h
p>2

(
p− 1

p− 2

)

= S(h).

It remains to bound the tail of the sum. Following [42, Page 35], we have
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that

cq(−h) =
µ(q/(q, h))φ(q)

φ(q/(q, h))
,

and therefore, letting (q, h) = d, that

∑
q>Q0

µ2(q)cq(−h)

φ2(q)
=

∑
q′>Q0/d

d|h
(q′,h)=1

µ2(q′d)

φ(q′d)

µ(q′)

φ(q′)
.

Note that µ2(q′d) is zero unless (q′, d) = 1, so we have

∑
q>Q0

µ2(q)cq(−h)

φ2(q)
=
∑
d|h

µ2(d)

φ(d)

∑
q′>Q0/d
(q′,h)=1

µ3(q′)

φ2(q′)
=
∑
d|h

µ2(d)

φ(d)

∑
q′>Q0/d
(q′,h)=1

µ(q′)

φ2(q′)
.

To bound
∑

q>Q0
1/φ2(q), we use the result

∑
n≤x

(
n

φ(n)

)2

≪ x

(see [35, Corollary 2.15 and Eq. (2.32)]) and apply partial summation. This

gives
∑

q>Q0
1/φ2(q) ≪ Q−1

0 , so we have that the above is bounded by

≪
∑
d|h

µ2(d)

φ(d)
min

(
d

Q0

, 1

)
.

Therefore the tail is bounded by ≪ log h. We will need more cancellation in
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this bound, therefore we consider the average

∑
h≤H

∣∣∣∣∣∑
q>Q0

µ2(q)cq(−h)

φ2(q)

∣∣∣∣∣
2

≪ (logH)
∑
h≤H

∑
d|h

µ2(d)

φ(d)
min

(
d

Q0

, 1

)

≪ (logH)
∑
d≤H

Hµ2(d)

dφ(d)
min

(
d

Q0

, 1

)
≪ H logH

Q0

∑
d≤H

µ2(d)

φ(d)

≪ H log2H

Q0

.

By Chebyshev’s inequality, we have for all but at most O(HQ
−1/3
0 ) values of

h the bound ∑
q>Q0

µ2(q)cq(−h)

φ2(q)
≪ Q

−1/3
0 logH.

Overall, we have that

∑
q≤Q0

µ2(q)cq(−h)

φ2(q)
= S(h) +O(Q

−1/3
0 logH),

for all but at most O(HQ
−1/3
0 ) values of h, as claimed.

We are now able to complete the proof of Proposition 2.3.10.

Proof of Proposition 2.3.10. Applying the definition of the major arcs (2.3.4)
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and expanding the square, we have that

∫
M

|a(α)|2e(−hα)dα

=
∑
q≤Q0

∑
1≤a≤q
(a,q)=1

∫
|β|≤ 1

qQ

∣∣∣∣∣µ(q)

φ(q)

∑
P<p≤P 1+δ

1

p

∑
X<n≤2X

e(βn)

∣∣∣∣∣
2

e

(
−ha
q

− hβ

)
dβ

=

 ∑
P<p≤P 1+δ

1

p

2 ∑
q≤Q0

µ2(q)cq(−h)

φ2(q)

∫
|β|≤ 1

qQ

∑
X<m,n≤2X

e(β(m− n− h))dβ

=

 ∑
P<p≤P 1+δ

1

p

2 ∑
q≤Q0

µ2(q)cq(−h)

φ2(q)
I1, (2.3.12)

say. We rewrite the integral I1 as

I1 =

{∫ 1

0

−
∫ 1− 1

qQ

1
qQ

} ∑
X<m,n≤2X

e(β(m− n− h))dβ

=: I2 − I3,

say. To the first term I2, we apply the identity (2.3.2) to get

I2 =
∑

X<m,n≤2X
m=n+h

1 = X +O(H). (2.3.13)

Returning to (2.3.12), the error term contributes ≪ X log−ηX, since H ≤

X log−AX, which is acceptable. Now we bound the integral I3. Note that β

is never an integer in the domain of integration, so applying Lemma 2.2.8 to
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the sums over m and n we have that

I3 =

∫ 1− 1
qQ

1
qQ

∑
X<m,n≤2X

e(β(m− n− h))dβ ≪
∫ 1− 1

qQ

1
qQ

1

∥β∥2
dβ

≪
∫ 1

2

1
qQ

1

β2
dβ +

∫ 1− 1
qQ

1
2

dβ

(1 − β)2

≪
∫ 1

2

1
qQ

1

β2
dβ

≪ qQ.

Therefore, combining this with (2.3.13), we have that

I1 = X +O (qQ+H) .

We now substitute this expression for I1 into (2.3.12) to get

∫
M

|a(α)|2e(−hα)dα

=
∑
q≤Q0

µ2(q)cq(−h)

φ2(q)

X
 ∑

P<p≤P 1+δ

1

p

2

+O (qQ+H)

 .

To complete the proof, it remains to treat the sum over q. By Lemma 2.3.12

and our definitions of H and Q0, we find immediately that for all but at most

O(HQ
−1/3
0 ) values of 0 < |h| ≤ H we have that

∫
M

|a(α)|2e(−hα)dα = S(h)X

 ∑
P<p≤P 1+δ

1

p

2

+O

(
X

logηX

)
,
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for some η = η(ε) > 0, as claimed.

2.3.4 The Error Term of the Major Arcs

In order to complete the proof of Proposition 2.3.7, and therefore the proof of

Theorem 1.0.2, we need to find sufficient cancellation in the error term B2(X)

arising on the major arcs. Recall that B2(X) is defined as in Definition 2.3.8

to be

B2(X) :=

∫
M

|b(α)|2dα,

b(α) :=
1

φ(q)

∑
χ(q)

τ(χ)χ(a)
∑

X<n≤2X

ϖ2(n)χ(n) − δχ
∑

P<p≤P 1+δ

1

p

 e(βn).

In this section we prove the following bound for B2(X), which immedi-

ately completes the proof of Proposition 2.3.7 when combined with Proposi-

tion 2.3.10:

Proposition 2.3.13. Let ε > 0 be fixed sufficiently small, then there exists

some η = η(ε) > 0 such that

B2(X) ≪ X

logηX
.

Remark 2.3.14. If the smaller prime factor lies in the range p ∈ [P1, P2]

for some P1 = P1(X) and P2 = P2(X) instead of p ∈ (P, P 1+δ], we have the
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bound

B2(X) ≪ X

logC X
+
XQ0

U
+XU2P−2α1

2 log2 P2 +Q3
0Q log2X

+
X

Q2
+X49/50Q2

0 log2X

for any C > 0. Here, U is a parameter chosen later in terms of Q0. For

the bound given in Proposition 2.3.13, we will choose P1 = P , P2 = P 1+δ,

U = Q1+ε2

0 , and α1 := 3
34

− ε′ with ε′ sufficiently small in terms of ε. For

the proofs of Theorems 1.0.4 and 1.0.5, we will make different choices for

the parameters, namely P1 = exp((logX)o(1)), P2 = exp((logX)1−o(1)), Q0 =

logA′
X, U = QE

0 for some suitable A′, E > 0, and α1 = ε′, which will give a

better error term in these results.

2.3.4.1 Reduction of the problem

First, using Gallagher’s Lemma (Lemma 2.2.4), we will reduce the problem

of estimating B2(X) to understanding almost primes in almost all short

intervals. We first define the following:

Definition 2.3.15. Define T0 := X1/100 and ∆ := 2X
qT 3

0
, where q ≤ Q0.

Let Q0 be as defined in Definition 2.3.5, P as in Definition 2.3.1 and
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Q := P logX. Let ϖ2 be as in Definition 2.3.2. Then we define B1(X) to be

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ 2X

X

∣∣∣∣∣ 2

qQ

∑
x<n≤x+qQ/2

(
χ(n)ϖ2(n) − δχ

∑
P<p≤P 1+δ

1

p

)

− 2

q∆

∑
x<n≤x+q∆/2

(
χ(n)ϖ2(n) − δχ

∑
P<p≤P 1+δ

1

p

)∣∣∣∣∣
2

dx

(2.3.14)

and B2(X) to be

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ 2X

X

∣∣∣∣∣∣ 2

q∆

∑
x<n≤x+q∆/2

χ(n)ϖ2(n) − δχ
∑

P<p≤P 1+δ

1

p

∣∣∣∣∣∣
2

dx.

(2.3.15)

Now we are able to state a bound for B2(X) in terms of B1(X) and

B2(X):

Proposition 2.3.16. We have that

B2(X) ≪ B1(X) +B2(X) + exp(2(log logX)2).

Remark 2.3.17. The final error term bounds Q3
0Q log2X. In the proofs of

Theorems 1.0.4 and 1.0.5, we will make larger choices of Q0 and Q. However,

this error term will still be at most ≪ X1/6+ε ≪ X log−AX, which will be

acceptable.

Then, if we can prove that Bi(X) ≪ X log−ηX for i = 1, 2, we will
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immediately be able to conclude Proposition 2.3.13.

Proof. By definition, we have that B2(X) is equal to

∑
q≤Q0

∑
1≤a≤q
(a,q)=1

∫
|β|≤ 1

qQ

∣∣∣∣∣ 1

φ(q)

∑
χ(q)

τ(χ)χ(a)

×
∑

X<n≤2X

(
χ(n)ϖ2(n) − δχ

∑
P<p≤P 1+δ

1

p

)
e(βn)

∣∣∣∣∣
2

dβ.

Expanding the square, we have that B2(X) is equal to

∑
q≤Q0

1

φ2(q)

∑
χ,χ′(q)

τ(χ)τ(χ′)
∑

1≤a≤q
(a,q)=1

χ(a)χ′(a)

×
∫
|β|≤ 1

qQ

∑
X<m≤2X

χ(m)ϖ2(m) − δχ
∑

P<p≤P 1+δ

1

p


×

∑
X<n≤2X

χ′(n)ϖ2(n) − δχ′

∑
P<p≤P 1+δ

1

p

 e(β(m− n))dβ.

Now, using the definition of Dirichlet characters to trivially extend the sum

over a to all 1 ≤ a ≤ q, we may apply the character orthogonality relation

q∑
a=1

χ(a)χ′(a) =


φ(q), if χ = χ′,

0, if χ ̸= χ′,
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to see that

B2(X)

=
∑
q≤Q0

1

φ(q)

∑
χ(q)

|τ(χ)|2
∫
|β|≤ 1

qQ

∣∣∣∣∣∣
∑

X<n≤2X

χ(n)ϖ2(n) − δχ
∑

P<p≤P 1+δ

1

p

e(βn)

∣∣∣∣∣∣
2

dβ

≪
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
|β|≤ 1

qQ

∣∣∣∣∣∣
∑

X<n≤2X

χ(n)ϖ2(n) − δχ
∑

P<p≤P 1+δ

1

p

 e(βn)

∣∣∣∣∣∣
2

dβ,

where we have used that τ(χ) ≪ q1/2 in the last line. Now we apply

Lemma 2.2.4 to the integral term to get that B2(X) is bounded by

∑
q≤Q0

q

φ(q)

∑
χ(q)

(∫ 2X

X

∣∣∣∣∣ 2

qQ

∑
x<n≤x+qQ/2

(
χ(n)ϖ2(n) − δχ

∑
P<p≤P 1+δ

1

p

)∣∣∣∣∣
2

dx

+ qQ log2X

)
.

The second term contributes

Q log2X
∑
q≤Q0

∑
χ(q)

q2

φ(q)
≪ QQ3

0 log2X ≪ exp(2(log logX)2),

to B2(X). As in Definition 2.3.15, let ∆ = 2X
qT 3

0
with T0 = X1/100. Then we
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have that B2(X) is bounded by

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ 2X

X

∣∣∣∣∣ 2

qQ

∑
x<n≤x+qQ/2

χ(n)ϖ2(n) − δχ
∑

P<p≤P 1+δ

1

p


− 2

q∆

∑
x<n≤x+q∆/2

χ(n)ϖ2(n) − δχ
∑

P<p≤P 1+δ

1

p

∣∣∣∣∣
2

dx

+
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ 2X

X

∣∣∣∣∣∣ 2

q∆

∑
x<n≤x+q∆/2

χ(n)ϖ2(n) − δχ
∑

P<p≤P 1+δ

1

p

∣∣∣∣∣∣
2

dx

=B1(X) +B2(X),

as claimed.

2.3.4.2 Bounding B2(X)

First, we prove the the following estimate for B2(X), which will be reduced

to a Dirichlet character analogue of a problem on primes in almost all short

intervals. We recall that B2(X) is defined as in Definition 2.3.15, (2.3.15) to

be

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ 2X

X

∣∣∣∣∣∣ 2

q∆

∑
x<n≤x+q∆/2

χ(n)ϖ2(n) − δχ
∑

P<p≤P 1+δ

1

p

∣∣∣∣∣∣
2

dx.

Proposition 2.3.18. Let C > 0 be fixed, then with B2(X) as defined in

(2.3.15) we have

B2(X) ≪ X

logC X
.



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 67

Proof. We separate the cases χ = χ0 and χ ̸= χ0. If χ = χ0, we have that

2

q∆

∑
x<n≤x+q∆/2

ϖ2(n) −
∑

P<p≤P 1+δ

1

p


=

2

q∆

∑
P<p1≤P 1+δ

∑
x
p1

<p2≤x+q∆/2
p1

log p2 −
∑

P<p≤P 1+δ

1

p
+O

(
1

q∆

)
,

where ∆ is as defined in Definition 2.3.15. We now apply the prime number

theorem in short intervals (Lemma 2.2.5), finding that

2

q∆

∑
P<p1≤P 1+δ

∑
x
p1

<p2≤x+q∆/2
p1

log p2 =
∑

P<p≤P 1+δ

1

p
+O

(
exp(−c(log x)1/3−ε)

)
.

Substituting this back into the above, we have that

2

q∆

∑
x<n≤x+q∆/2

ϖ2(n) −
∑

P<p≤P 1+δ

1

p

 = O
(
exp(−c(log x)1/3−ε)

)
.

Returning to the integral and summing over q, we find that the contribution

of the principal character to B2(X) is

≪ X exp(−c′(logX)1/3−ε)
∑
q≤Q0

q

φ(q)
≪ XQ0 exp(−c′(logX)1/3−ε)

≪ X exp(−c′′(logX)1/3−ε),

which is ≪ X log−C X, so this contribution is acceptable.

We now consider the case χ ̸= χ0. By the definition of ϖ2, we have that
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B2(X) is

=
∑
q≤Q0

q

φ(q)

∑
χ(q)
χ ̸=χ0

∫ 2X

X

∣∣∣∣∣∣ 2

q∆

∑
x<n≤x+q∆/2

χ(n)ϖ2(n)

∣∣∣∣∣∣
2

dx

=
∑
q≤Q0

q

φ(q)

∑
χ(q)
χ ̸=χ0

∫ 2X

X

∣∣∣∣∣∣∣
2

q∆

∑
P<p1≤P 1+δ

χ(p1)
∑

x
p1

<p2≤x+q∆/2
p1

χ(p2) log p2

∣∣∣∣∣∣∣
2

dx.

(2.3.16)

Next, we apply the Cauchy-Schwarz inequality to the sum over p1 to obtain

∣∣∣∣∣∣∣
∑

P<p1≤P 1+δ

χ(p1)
∑

x
p1

<p2≤x+q∆/2
p1

χ(p2) log p2

∣∣∣∣∣∣∣
2

≤
∑

P<p′1≤P 1+δ

|χ(p′1)|2
∑

P<p1≤P 1+δ

∣∣∣∣∣∣∣
∑

x
p1

<p2≤x+q∆/2
p1

χ(p2) log p2

∣∣∣∣∣∣∣
2

.

By the prime number theorem, the sum over p′1 is ≪ P 1+δ/ logP . Therefore,

(2.3.16) is bounded by

≪ P 1+δ

logP

∑
q≤Q0

q

φ(q)

∑
P<p1≤P 1+δ

4

(q∆)2

∑
χ(q)
χ ̸=χ0

∫ 2X

X

∣∣∣∣∣∣∣
∑

x
p1

<p2≤x+q∆/2
p1

χ(p2) log p2

∣∣∣∣∣∣∣
2

dx.

(2.3.17)
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We make the change of variables u = x/p1 to the integral, so that

∫ 2X

X

∣∣∣∣∣∣∣
∑

x
p1

<p2≤x+q∆/2
p1

χ(p2) log p2

∣∣∣∣∣∣∣
2

dx = p1

∫ 2X/p1

X/p1

∣∣∣∣∣∣∣
∑

u<p2≤u+ q∆
2p1

χ(p2) log p2

∣∣∣∣∣∣∣
2

du.

First, in the case H ≤ exp((logX)ε
3
), we now apply Lemma 2.2.6 to get that

B2(X) ≪ P 1+δ

logP

log logQ0

Q2
0∆

2

∑
P<p≤P 1+δ

p

(
Q3

0∆
2X

p3 logBX

)

≪ P 1+δ

logP

XQ0 log logQ0

logDX

∑
P<p≤P 1+δ

1

p2

≪ X

logC X

for C > 0, as required. In the case H > exp((logX)ε
3
), we first split the sum

over P < p1 ≤ P 1+δ in (2.3.16) into O(logP ) dyadic intervals [P1, 2P1]. We

then need to bound

∑
q≤Q0

q

φ(q)

∑
χ(q)
χ ̸=χ0

∫ 2X

X

∣∣∣∣∣∣∣
2

q∆

∑
P1<p1≤2P1

χ(p1)
∑

x
p1

<p2≤x+q∆/2
p1

χ(p2) log p2

∣∣∣∣∣∣∣
2

dx.

Applying Cauchy-Schwarz to the sum over p1 and then the prime number

theorem as in the previous case, this is bounded by

≪ P1

logP1

∑
q≤Q0

q

φ(q)

∑
P1<p1≤2P1

4

(q∆)2

∑
χ(q)
χ ̸=χ0

∫ 2X

X

∣∣∣∣∣∣∣
∑

x
p1

<p2≤x+q∆/2
p1

χ(p2) log p2

∣∣∣∣∣∣∣
2

dx.
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We again make the substitution u = x/p1 in the integral and then apply

Lemma 2.2.6 to obtain

≪ P1

logP1

log logQ0

Q2
0∆

2

∑
P1<p≤2P1

p

(
Q3

0∆
2X

p3 logBX

)
≪ P1

logP1

XQ0 log logQ0

logDX

∑
P1<p≤2P1

1

p2

≪ X

logC′
X
,

for C ′ > 0. Combining all of the dyadic intervals introduces a factor of

log2 P = (log logX)4, which gives the bound ≪ X log−C X for some C > 0,

as required.

2.3.4.3 Bounding B1(X)

It now remains to prove the required bound for B1(X). Recall that B1(X)

is defined in Definition 2.3.15, (2.3.14) to be

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ 2X

X

∣∣∣∣∣ 2

qQ

∑
x<n≤x+qQ/2

(
χ(n)ϖ2(n) − δχ

∑
P<p≤P 1+δ

1

p

)

− 2

q∆

∑
x<n≤x+q∆/2

(
χ(n)ϖ2(n) − δχ

∑
P<p≤P 1+δ

1

p

)∣∣∣∣∣
2

dx.

This problem can be reduced to finding cancellation in the mean square of a

Dirichlet polynomial.

Proposition 2.3.19. Let ε > 0 be fixed sufficiently small. With B1(X) as

defined in Definition 2.3.15, (2.3.14), there exists some η = η(ε) > 0 such
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that

B1(X) ≪ X

logηX
.

Remark 2.3.20. If the smaller prime factor lies in the range p ∈ [P1, P2] for

some P1 = P1(X) and P2 = P2(X) instead of p1 ∈ (P, P 1+δ], we have the

bound

B1(X) ≪ XQ0

U
+XU2Q0P

−2α1
2 log2 P2 +

X

Q2
+X49/50Q2

0 log2X.

Here, U is a parameter chosen later in terms of Q0. For the bound given

in Proposition 2.3.19, we will choose P1 = P , P2 = P 1+δ and U = Q1+ε2

0 ,

and α1 := 3
34

− ε′ with ε′ sufficiently small in terms of ε. For the proofs of

Theorems 1.0.4 and 1.0.5, we will make different choices for the parameters,

namely P1 = exp((logX)o(1)), P2 = exp((logX)1−o(1)), Q0 = logA′
X, U =

QE
0 for some suitable A′, E > 0, and α1 = ε′, which will give a better error

term.

To prove this result, we will need the following variant of a result of

Teräväinen [38] on the mean square of the Dirichlet polynomial

F (s, χ) :=
∑

X<p1p2≤2X
P<p1≤P 1+δ

χ(p1)χ(p2)

(p1p2)s
, (2.3.18)

where s ∈ C and χ is a Dirichlet character modulo q, to be proved in Sec-

tion 2.3.6:
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Proposition 2.3.21. Let ε > 0 be fixed sufficiently small. Define T0 =

X1/100 as in Definition 2.3.15 and F (s, χ) to be the Dirichlet polynomial

defined in (2.3.18), with P and δ > 0 as in Definition 2.3.1. Then, for

T ≥ T0, there exists some η = η(ε) > 0 such that

B3(X) :=
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ T

T0

|F (1 + it, χ)|2dt

≪ 1

Q0(logX)2+η

∑
q≤Q0

(
qTP logX

X
+

q

φ(q)

)
.

Remark 2.3.22. More generally, if the smaller prime factor lies in the range

p1 ∈ [P1, P2] for some P1 = P1(X) and P2 = P2(X), we have the bound

B3(X) ≪
(

1

U log2X
+
U2P−2α1

2 log2 P2

log2X

) ∑
q≤Q0

(
qTP2 logX

X
+

q

φ(q)

)
.

Here, U is a parameter chosen later in terms of Q0. For the statement

given in Proposition 2.3.21, we choose P1 = P , P2 = P 1+δ, U = Q1+ε2

0 , and

α1 := 3
34

− ε′ with ε′ chosen sufficiently small in terms of ε.

For the proofs of Theorems 1.0.4 and 1.0.5, we will make different choices

of these parameters, which will lead to an improved error term. In particular,

we will choose P1 = exp((logX)o(1)), P2 = exp((logX)1−o(1)), Q0 = logA′
X,

U = QE
0 for some suitable A′, E > 0, and α1 = ε′.

Proof of Proposition 2.3.19 assuming Proposition 2.3.21. First we consider
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when χ = χ0 as we have a different summand in this case. We have

2

qQ

∑
x<n≤x+qQ/2

ϖ2(n) −
∑

P<p≤P 1+δ

1

p


− 2

q∆

∑
x<n≤x+q∆/2

ϖ2(n) −
∑

P<p≤P 1+δ

1

p

 ,

where ∆ = 2X
qT 3

0
as in Definition 2.3.15 and Q = P logX. We first consider

the contribution of the second and fourth terms, namely

∑
P<p≤P 1+δ

1

p

 2

q∆

∑
x<n≤x+q∆/2

1 − 2

qQ

∑
x<n≤x+qQ/2

1

≪ 1

qQ
+

1

q∆
. (2.3.19)

Returning to our expression for B1(X), by our choice of Q0, Q and ∆ we

have that (2.3.19) contributes

≪
∑
q≤Q0

q

φ(q)

∫ 2X

X

1

(qQ)2
dx≪ X

Q2

∑
q≤Q0

1

qφ(q)
≪ X

Q2
≪ X

(logX)36+2ε
,

which is ≪ X log−ηX, so is acceptable. Therefore, when considering the

principal character χ0, we need only to bound

∑
q≤Q0

q

φ(q)

∫ 2X

X

∣∣∣∣∣∣ 2

qQ

∑
x<n≤x+qQ/2

ϖ2(n) − 2

q∆

∑
x<n≤x+q∆/2

ϖ2(n)

∣∣∣∣∣∣
2

dx

=
∑
q≤Q0

q

φ(q)

∫ 2X

X

∣∣∣∣∣∣
(

2

qQ

∑
x<n≤x+qQ/2

− 2

q∆

∑
x<n≤x+q∆/2

)
ϖ2(n)χ0(n)

∣∣∣∣∣∣
2

dx,
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noting that in the range of summation we must have (n, q) = 1, in particular

ϖ2χ0(n) = ϖ2(n) for each X < n ≤ 2X. Thus, from now on we are able

to unify the treatment of the principal character χ0 with the rest of the

characters modulo q at the cost of a negligible error.

We now apply Lemma 2.2.7 with T ′ = T0, h1 = qQ/2 and h2 = q∆/2 to

the integral with respect to x to get

B1(X) ≪ X
∑
q≤Q0

q

φ(q)

∑
χ(q)

(
log2X

T 2
0

+

∫ 2X
qQ

T0

|F1(1 + it, χ)|2dt

+ max
T≥ 2X

qQ

X

TqQ

∫ 2T

T

|F1(1 + it, χ)|2dt

)
,

with T0 = X1/100 and

F1(s, χ) :=
∑

X<n≤2X

ϖ2(n)χ(n)

ns
=

∑
X<p1p2≤2X
P<p1≤P 1+δ

χ(p1)χ(p2) log p2
(p1p2)s

.

By the definition of T0 := X1/100, the first term is

X49/50 log2X
∑
q≤Q0

q

φ(q)

∑
χ(q)

1 ≪ X49/50Q2
0 log2X ≪ X

logηX
,
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so is acceptable. Applying partial summation, we have that

B1(X) ≪ X(logX)2
∑
q≤Q0

q

φ(q)

∑
χ(q)

(∫ 2X
qQ

T0

|F (1 + it, χ)|2dt

+ max
T≥ 2X

qQ

X

TqQ

∫ 2T

T

|F (1 + it, χ)|2dt

)
.

We now apply Proposition 2.3.21. Note that we have P logX = Q, so that

the first term in our bound for B1(X) is bounded by

≪ X

Q0 logηX

∑
q≤Q0

(
P logX

Q
+

q

φ(q)

)
≪ X

logηX
,

as needed. For the second term, we want to bound

X2 log2X

Q

∑
q≤Q0

1

φ(q)
max
T≥ 2X

qQ

1

T

∑
χ(q)

∫ 2T

T

|F (1 + it, χ)|2dt.

Applying Proposition 2.3.21, we have the bound

≪ X2

Q0Q logηX

∑
q≤Q0

max
T≥ 2X

qQ

(
P logX

X
+

1

Tφ(q)

)
≪ X

logηX
,

again using that P logX = Q. Overall we have that

B1(X) ≪ X

logηX
,

for some η = η(ε) > 0, as required.
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2.3.5 Preliminaries on Dirichlet Polynomials

Before we can prove Proposition 2.3.21, we first need the following prelimi-

nary lemmas on Dirichlet polynomials.

2.3.5.1 Definitions

We will in some instances take the mean square over a sparse set of points,

which can be split into “well-spaced” subsets:

Definition 2.3.23. [Well-Spaced Set] We say a set T is well-spaced if for

any t, u ∈ T with t ̸= u we have that |t− u| ≥ 1.

After decomposing our Dirichlet polynomial, we will have factors which

are “prime-factored”, that is, polynomials which satisfy certain pointwise

bounds:

Definition 2.3.24 (Prime-factored polynomial, [38]). Let s ∈ C, M ≥ 1

and

M(s, χ) =
∑

M<m≤2M

amχ(m)

ms

be a Dirichlet polynomial with |am| ≪ dr(m) for some fixed r. Let T ≥ 1,

q ≥ 2, T ⊂ [−T, T ] be a well-spaced set, and S = T × {χ mod q}. Suppose

that min{|t| : (t, χ) ∈ S} ≫ logAN for all A > 0 if χ = χ0. We say that

M(s, χ) is prime-factored if for each C > 0 we have

sup
(t,χ)∈S

|M(1 + it, χ)| ≪ 1

logC M
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when exp((logM)9/10) ≤ t ≤MC log logM .

The use of the term “prime-factored” is in reference to Dirichlet polyno-

mials which satisfy ∑
R<r≤2R

cr
r1/2+it

≪ R1/2

logAR

for any A > 0, where the coefficient cr is the characteristic function of a

set of numbers with a bounded number of prime factors restricted to certain

ranges, or the characteristic function of the primes. Such polynomials arise

for example when applying the fundamental lemma of the sieve to problems

on primes in short intervals (see [15, Chapter 7.2]).

2.3.5.2 Decomposing Dirichlet Polynomials

As in the work of Teräväinen [38] and Matomäki, Radziwi l l [25], we take

advantage of the bilinear structure to factorise our Dirichlet polynomial.

Lemma 2.3.25 (Factorisation of Dirichlet Polynomials). Let s ∈ C and

v ∈ Z. Define

F (s) :=
∑

X<mn≤2X
M≤m≤M ′

ambn
(mn)s

for some M ′ > M ≥ 2 and arbitrary complex numbers am, bn. Let U ≥ 1 and

define

Av(s) :=
∑

e
v
U ≤m<e

v+1
U

am
ms

, Bv(s) :=
∑

Xe−
v
U <n≤2Xe−

v
U

bn
ns
.
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Then

F (s) =
∑

v∈I∩Z

Av(s)Bv(s) +
∑

k∈[Xe−1/U ,Xe1/U ]

or k∈[2X,2Xe1/U ]

dk
ks

(2.3.20)

where I = [U logM,U logM ′] and

|dk| ≤
∑
k=mn

|ambn|.

Proof. This is [38, Lemma 2] (see also [25, Lemma 12]).

In some cases we will use the Heath-Brown identity to decompose a long

polynomial into products of shorter polynomials.

Lemma 2.3.26 (Heath-Brown decomposition). Let k ≥ 1 be a fixed inte-

ger, T ≥ 2 and fix ε > 0. For s ∈ C and χ a Dirichlet character mod-

ulo q, define the Dirichlet polynomial P (s, χ) :=
∑

P ′≤p<P1
χ(p)p−s with

P ′ ≫ T ε, P1 ∈
[
P ′ + P ′

log T
, 2P ′

]
. Then, there exist Dirichlet polynomials

Q1(s, χ), . . . , QL(s, χ) and a constant C > 0 such that L ≤ logC X and

|P (1 + it, χ)| ≪ (logC X)(|Q1(1 + it, χ)| + · · · + |QL(1 + it, χ)|)

for all t ∈ [−T, T ]. Here, each Qj(s, χ) is of the form

Qj(s, χ) =
∏
i≤Jj

Mi(s, χ), Jj ≤ 2k,

where each Mi(s, χ) is a prime-factored Dirichlet polynomial (depending on
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j) of the form

∑
Mi<n≤2Mi

χ(n) log n

ns
,

∑
Mi<n≤2Mi

χ(n)

ns
, or

∑
Mi<n≤2Mi

µ(n)χ(n)

ns
,

whose lengths satisfy M1 · · ·MJj = X1+o(1),Mi ≫ exp
(

logP
log logP

)
. Further-

more, if in fact Mi > X1/k, then Mi(s, χ) is of the form

∑
Mi<n≤2Mi

χ(n) log n

ns
or

∑
Mi<n≤2Mi

χ(n)

ns
.

Proof. This is [38, Lemma 10] with the coefficient twisted by a Dirichlet

character, and follows from the same argument.

2.3.5.3 Mean Value Theorems for Dirichlet Polynomials

Now we state two mean value theorems, the first being the classical result:

Lemma 2.3.27 (Mean Value Theorem). Let q,X ≥ 1 and let an be arbitrary

complex numbers. Let s ∈ C and χ be a Dirichlet character mod q, and define

F (s, χ) :=
∑

X<n≤2X
anχ(n)

ns . Then

∑
χ(q)

∫ T

−T

|F (it, χ)|2dt≪
(
φ(q)T +

φ(q)

q
X

) ∑
X<n≤2X
(n,q)=1

|an|2.

Proof. See, for example, [33, Chapter 6, Eq. (6.14)].

Next we state a variant of the mean value theorem which will allow us to

save a logX in certain parts of the proof.
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Lemma 2.3.28. With the same assumptions as Lemma 2.3.27, we have that

∑
χ(q)

∫ T

−T

|F (it, χ)|2dt≪ Tφ(q)

( ∑
X<n≤2X
(n,q)=1

|an|2 +
∑

1≤h≤X
T

q|h

∑
X<n≤2X

(n(n+h),q)=1

|an+h||an|

)
.

Proof. This is the Dirichlet character analogue of [38, Lemma 4], which fol-

lows from [18, Lemma 7.1]. The proof is contained in the proof of [28, Lemma

5.2].

After factorising the Dirichlet polynomial F and splitting the domain of

integration according to the size of the factors, there will be cases where the

mean value is taken over a well-spaced set. In this case, we will apply the

Halász-Montgomery inequality:

Lemma 2.3.29 (Halász-Montgomery Inequality). Let T ≥ 1, q ≥ 2. Let

T ⊂ [−T, T ] be a well-spaced set, and S = T × {χ mod q}. With the same

assumptions as Lemma 2.3.27, we have that

∑
(t,χ)∈S

|F (it, χ)|2 ≪
(
φ(q)

q
X + |S|(qT )1/2

)
(log(2qT ))

∑
X<n≤2X
(n,q)=1

|an|2.

Proof. This is [20, Lemma 7.4].

2.3.5.4 Large Value Theorems

There will be subsets of the domain of integration where a short Dirichlet

polynomial factor is large, in which case we apply the following large value
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theorem.

Lemma 2.3.30 (Large Value Theorem). Let P ′ ≥ 1, V > 0 and T ≥ 10.

For s ∈ C and χ mod q, define F (s, χ) =
∑

P ′<p≤2P ′
apχ(p)

ps
with |ap| ≤ 1.

Let T ⊂ [−T, T ] be a well-spaced set and S = T × {χ mod q} such that

|F (1 + it, χ)| ≥ V for all (t, χ) ∈ S. Then

|S| ≪ (qT )
2 log(1/V )

logP ′ V −2 exp

(
(1 + o(1))

log(qT ) log log(qT )

logP ′

)
.

Proof. See [20, Lemma 7.5]. This is the Dirichlet character analogue of [38,

Lemma 6] and [25, Lemma 8].

Remark 2.3.31. As remarked in [38, Remark 6], this Lemma can still be

applied to polynomials with coefficients |an| ≤ 1 not only supported on the

primes in the case we will have in our application, P ′ ≫ exp
(

logX
log logX

)
. The

coefficient of the exponent log(qT ) log log(qT )
logP ′ is replaced with log2(qT ) log log(P ′)

log2 P ′ .

Alternatively, in the case that we have a longer Dirichlet polynomial factor

which is large, we will apply a result of Jutila on large values.

Lemma 2.3.32 (Jutila’s Large Value Theorem). Let ε > 0 be fixed. For

s ∈ C and χ mod q define F (s, χ) =
∑

X<n≤2X
anχ(n)

ns with |an| ≤ dr(n) for

some fixed r. Let k be a fixed positive integer. Let T ⊂ [−T, T ] be a well-

spaced set and S = T × {χ mod q} such that |F (1 + it, χ)| ≥ V for all
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(t, χ) ∈ S. Then,

|S| ≪

(
V −2 +

(
qTV −4

X2

)k

+
qTV −8k

X2k

)
(qTX)ε. (2.3.21)

Proof. This is the first bound of the main theorem in [19].

2.3.5.5 Moments of Dirichlet Polynomials

After decomposing the Dirichlet polynomial using Heath-Brown’s decompo-

sition (Lemma 2.3.26), we can have a long polynomial which is the partial

sum of a Dirichlet L-function (or its derivative). In this case, we will apply

the Cauchy-Schwarz inequality to enable us to use the following bound on

the twisted fourth moment of such sums:

Lemma 2.3.33 (Twisted Fourth Moment Estimate). Let Q′ ≤ T ε, T ε ≤

T ′ ≤ T , 1 ≤M,N ≤ T 1+o(1) and for s ∈ C and χ mod q define the Dirichlet

polynomials

N(s, χ) =
∑

N<n≤2N

χ(n)

ns
or

∑
N<n≤2N

χ(n) log n

ns
,

M(s, χ) =
∑

M<m≤2M

amχ(m)

ms
,
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with am any complex numbers. Then we have that

∑
q≤Q′

1

φ(q)

∑
χ(q)

∫ T

T ′
|N(1 + it, χ)|4|M(1 + it, χ)|2dt

≪
(
Q′T

MN2
(1 +M2(Q′T )−1/2) +

1

T ′

)
(Q′T )ε max

M<m≤2M
|am|2.

(2.3.22)

Proof. This is the Dirichlet character analogue of [38, Lemma 9] and we follow

the same argument. We split the domain of integration t ∈ [T0, T ]. In the

case Q′t ≤ N , we use the hybrid result of Fujii, Gallagher and Montgomery

[9, Theorem 1]

∑
n≤N

χ(n)nit =
δχφ(q)N1+it

q(1 + it)
+O((qτ)1/2 log(qτ)),

with τ := |t| + 2 (noting we apply partial summation to deal with the 1/n

factor) in place of the zeta sum bound to get that

∑
q≤Q′

1

φ(q)

∑
χ(q)

∫ N/Q′

T ′
|N(1 + it, χ)|4|M(1 + it, χ)|2dt

≪ T ε max
M<m≤2M

|am|2
∑
q≤Q′

1

φ(q)

∑
χ(q)

∫ N/Q′

T ′

(
φ(q)

q(1 + |t|)

)4

+
log4(qτ)

τ 2
dt

≪ T ε

T ′ max
M<m≤2M

|am|2,

providing the third term of (2.3.22).

In the case N ≤ Q′t ≤ Q′T , we apply in place of Watt’s twisted moment
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result its Dirichlet character analogue [16, Theorem 2]. This analogue, due

to Harman, Watt and Wong, states that for ε > 0 given and Q′′ a positive

integer, we have for all M ≥ 1, T ≥ (Q′′)3/5 that

∑
q≤Q′′

1

φ(q)

∑
χ(q)

∫ T

−T

|L(1
2

+ it, χ)|4
∣∣∣ ∑
m≤M

amχ(m)m−it
∣∣∣2dt

≪ (TMQ′′)1+ε
(
1 +M2(TQ′′)−1/2

)
max
m≤M

|am|2.

(2.3.23)

Then, as in [38, Lemma 9], we obtain the first two terms of (2.3.22) using

the argument of [1, Lemma 2]. We first split the integral

∑
q≤Q′

1

φ(q)

∑
χ(q)

∫ T

N/Q′
|N(1 + it, χ)|4|M(1 + it, χ)|2dt

into dyadic ranges [T1, 2T1] with N/Q′ ≤ T1 ≤ T .

Case 1. N,M ≤ (Q′T1)
1/2.

The proof is included in the proof of this main result (2.3.23) of Harman,

Watt and Wong [16, Theorem 2].

Case 2. N ≤ (Q′T1)
1/2 and M > (Q′T1)

1/2.

We trivially bound |M(1 + it, χ)|2 and apply the mean value theorem
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(Lemma 2.3.27) to obtain

∑
q≤Q′

1

φ(q)

∑
χ(q)

∫ 2T1

T1

|N(1
2

+ it, χ)|4|M(1 + it, χ)|2dt

≪ T ε

(
max

M<m≤2M
|am|2

)∑
q≤Q′

1

φ(q)

∑
χ(q)

∫ 2T1

T1

|N(1
2

+ it, χ)|4dt

≪ T ε

(
max

M<m≤2M
|am|2

)∑
q≤Q′

(
T1 +

N2

q

)
≪ T ε

(
Q′T1 +N2 logQ′) max

M<m≤2M
|am|2

≪ T εM(Q′T )1/2 max
M<m≤2M

|am|2.

This contributes to the second term of (2.3.22) following an application of

partial summation.

Case 3. N > (Q′T1)
1/2.

We apply the approximate functional equation to replace N(1
2

+ it, χ)

with another sum which is the partial sum of a Dirichlet L-function or its

derivative and has length N ′ ≤ (Q′T1)
1/2. This is treated as in the previous

cases. The error terms can be treated as in [1, Lemma 2]. As in [16, Lemma

1], the error term is of size ≪ 1 +R(1
2

+ it, χ), where R(1
2

+ it, χ) ≥ 0 and

∑∗

χ(q)

R(1
2

+ it, χ) ≪ φ(q)qεT
ε−1/2
1 .
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This contributes

≪
∑
q≤Q′

1

φ(q)

∑
χ(q)

∫ 2T1

T1

|1 +R(1
2

+ it, χ)||M(1 + it, χ)|2dt. (2.3.24)

We treat the first term of (2.3.24) using the mean value theorem (Lemma

2.3.27) to give

≪ T ε
∑
q≤Q′

(
T1
M

+
1

q

)
max

M<m≤2M
|am|2 ≪ T ε

(
Q′T

M
+ logQ′

)
max

M<m≤2M
|am|2,

which contributes to the first term of (2.3.22). Applying the trivial bound

R(1
2

+ it, χ) ≪ φ(q)qεT
ε−1/2
1 (handling the imprimitive characters as in [16])

and the mean value theorem (Lemma 2.3.27) M(1 + it, χ), the second term

of (2.3.24) contributes

≪ T εT
−1/2
1

∑
q≤Q′

qε
(
φ(q)T1
M

+
φ(q)

q

)
max

M<m≤2M
|am|2

≪
(

(Q′)2+εT 1/2+ε

M
+

(Q′)1+εT ε

(T ′)1/2

)
max

M<m≤2M
|am|2.

Following an application of partial summation (which introduces a factor

of N−2), this contribution is acceptable in comparison with the terms of

(2.3.22).
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2.3.6 Bounding the Mean Value of a Dirichlet Polyno-

mial

We will now prove Proposition 2.3.21, establishing the bound

B3(X) :=
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ T

T0

|F (1 + it, χ)|2dt

≪ 1

Q0(logX)2+η

∑
q≤Q0

(
qTP logX

X
+

q

φ(q)

)
.

This will complete the proof of Proposition 2.3.13, which treats error terms

on the major arcs, and consequently the main result Theorem 1.0.2. We will

adapt the argument appearing in [38, Sections 2-4]. For s ∈ C and χ mod q,

We first recall the definition (2.3.18) of the Dirichlet polynomial

F (s, χ) :=
∑

X<p1p2≤2X
P<p1≤P 1+δ

χ(p1)χ(p2)

(p1p2)s
.

We will factorise this polynomial before bounding the contribution of the

remainder terms, that is, the second term of (2.3.20).

Lemma 2.3.34. Let ε > 0 be fixed sufficiently small and T0 = X1/100. Let

s ∈ C and v ∈ Z. Denote

Gv(s, χ) :=
∑

e
v
U <p≤e

v+1
U

χ(p)

ps
, Hv(s, χ) :=

∑
Xe−

v
U <p≤2Xe−

v
U

χ(p)

ps
,
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then we have the bound

B3(X) ≪
∑
q≤Q0

(
qU2 log2 P

φ(q)

∑
χ(q)

∫ T

T0

|Gv0(1 + it, χ)|2|Hv0(1 + it, χ)|2dt

+
1

Q0(logX)2+η

(
qT logX

X
+

q

φ(q)

))
,

for some η = η(ε) > 0, where v0 ∈ I a suitable integer with I = [U logP, (1+

δ)U logP ] and U := Q1+ε2

0 .

Remark 2.3.35. We note that the factor

1

Q0(logX)2+η

appearing in the second and third terms of the sum over q arises from

1

U log2X
.

In the proofs of Theorems 1.0.4 and 1.0.5 we will make larger choices of Q0

and U . In particular, we will choose Q0 = logA′
X and U = QE

0 for some

suitable A′, E > 0.

Proof. We factorise F (s, χ) using Lemma 2.3.25 with M = P , M ′ = P 1+δ,

am = 1P(m)χ(m), bn = 1P(n)χ(n). This gives

F (s, χ) =
∑

v∈I∩Z

Gv(s, χ)Hv(s, χ) +
∑

k∈[Xe−1/U ,Xe1/U ]

or k∈[2X,2Xe1/U ]

dkχ(k)

ks
,



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 89

where I = [U logP, (1 + δ)U logP ], U := Q1+ε2

0 and

|dk| ≤
∑

k=p1p2
P<p1≤P 1+δ

1,

which is bounded.

Therefore, taking the maximum in the sum over I, the mean square of

the Dirichlet polynomial is bounded by

∫ T

T0

|F (1 + it, χ)|2dt≪
∫ T

T0

∣∣∣∣∣ ∑
v∈I∩Z

Gv(1 + it, χ)Hv(1 + it, χ)

∣∣∣∣∣
2

dt

+

∫ T

T0

∣∣∣∣∣ ∑
k∈[Xe−1/U ,Xe1/U ]

or k∈[2X,2Xe1/U ]

dkχ(k)

k1+it

∣∣∣∣∣
2

dt

≪|I|2
∫ T

T0

|Gv0(1 + it, χ)|2|Hv0(1 + it, χ)|2dt

+

∫ T

T0

∣∣∣∣∣ ∑
k∈[Xe−1/U ,Xe1/U ]

or k∈[2X,2Xe1/U ]

dkχ(k)

k1+it

∣∣∣∣∣
2

dt,

where v0 ∈ I is the integer maximising the right hand side. Applying
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Lemma 2.3.28 to the second integral, we have that

∑
χ(q)

∫ T

T0

|F (1 + it, χ)|2dt (2.3.25)

≪U2(logP )2
∑
χ(q)

∫ T

T0

|Gv0(1 + it, χ)|2|Hv0(1 + it, χ)|2dt

+ Tφ(q)
∑

k∈[Xe−1/U ,Xe1/U ]

or k∈[2X,2Xe1/U ]
(k,q)=1

|dk|2

k2
(2.3.26)

+ Tφ(q)
∑

1≤h≤ 2Xe1/U

T
q|h

∑
m−n=h

m,n∈[Xe−1/U ,Xe1/U ]

or m,n∈[2X,2Xe1/U ]
(mn,q)=1

|dm||dn|
mn

. (2.3.27)

We now bound the last two terms. We consider only the sums where k ∈

[Xe−1/U , Xe1/U ], with the sums over k ∈ [2X, 2Xe1/U ] being treated analo-

gously. For the first sum (2.3.26), we have

∑
k=p1p2

Xe−1/U≤k≤Xe1/U

P<p1≤P 1+δ

1

k2
≪ e2/U

X2

∑
P<p1≤P 1+δ

∑
Xe−1/U

p1
≤p2≤Xe1/U

p1

1. (2.3.28)

By the Brun-Titchmarsh inequality (Lemma 2.2.10), we have the bound

∑
Xe−1/U

p1
≤p2≤Xe1/U

p1

1 ≪ X(e1/U − e−1/U)

p1 logX
.
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Returning to (2.3.28), by Mertens’ theorem (Lemma 2.2.2) we have that

∑
Xe−1/U≤p1p2≤Xe1/U

P<p1≤P 1+δ

1

(p1p2)2
≪ e3/U − e1/U

X logX

∑
P<p≤P 1+δ

1

p
≪ 1

XU logX
. (2.3.29)

We will use Brun’s sieve to bound the second of these sums (2.3.27). We

may trivially bound

|{n ≤ 2X : n = p1p2, p1 ∈ (P, P 1+δ]}|

≪ |{n ≤ 2X : n = p1m, p1 ∈ (P, P 1+δ], (m,P (z)) = 1}|

where we define P (z) =
∏

p<z p with z = X1/β and β > 1 suitably large. Let

Π be the product of all primes in Ĩ := (P, P 1+δ]∩[1, z) and P ′(z) =
∏

p<z,p∤h p.

Therefore, we have that

∑
1≤h≤ 2Xe1/U

T
q|h

∑
Xe−1/U≤m≤Xe1/U

|dm||dm+h|
m(m+ h)

≪ e2/U

X2

∑
1≤h≤ 2Xe1/U

T
q|h

∣∣∣∣{m ∈ [Xe−1/U , Xe1/U ] :

(
m(m+ h),

P ′(z)

Π

)
= 1

}∣∣∣∣ .



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 92

Brun’s sieve then gives the bound

∣∣∣∣{m ∈ [Xe−1/U , Xe1/U ] :

(
m(m+ h),

P ′(z)

Π

)
= 1

}∣∣∣∣
≪ X(e1/U − e−1/U)

h

φ(h)

∏
p<z

p/∈Ĩ

(
1 − 2

p

)

≪ X

U log2 z

h

φ(h)
.

Therefore we have that

∑
1≤h≤ 2Xe1/U

T
q|h

∑
Xe−1/U≤m≤Xe1/U

|dm||dm+h|
m(m+ h)

≪ e2/U

XU log2 z

∑
1≤h≤ 2Xe1/U

T
q|h

h

φ(h)

≪ 1

φ(q)TU log2X
.

(2.3.30)

Combining the diagonal (2.3.29) and off-diagonal (2.3.30) estimates and ap-

plying the definition U := Q1+ε2

0 , the two terms (2.3.26) and (2.3.27) con-

tribute

≪ q

φ(q)

(
Tφ(q)

XU logX
+

1

U log2X

)
≪
(
φ(q)T logX

X
+ 1

)
1

Q0(logX)2+η

to (2.3.25) for some η = η(ε) > 0, as needed.

It remains to estimate the integral appearing in Lemma 2.3.34. We split
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the domain of integration [T0, T ] according to the size of the polynomial

Gv0(1 + it, χ) :=
∑

e
v0
U <p≤e

v0+1
U

χ(p)

p1+it
.

We will first treat the set where Gv0 is pointwise small:

S1 := {(t, χ) ∈ [T0, T ] × {χ mod q} : |Gv0(1 + it, χ)| ≤ e−
α1v0
U },

where α1 := 3
34

− ε′ and ε′ > 0 is sufficiently small in terms of ε > 0. We

may write

S1 =
⋃

χ mod q

{χ} × T1,χ (2.3.31)

for some T1,χ ⊂ [T0, T ].

2.3.6.1 The contribution of S1

We first treat the contribution of the integral over T1,χ, where the polynomial

Gv0(1 + it, χ) is pointwise small. In this case, we apply the pointwise bound

for Gv0 to find the required cancellation, before applying the mean value

theorem to the longer Dirichlet polynomial

Hv0(1 + it, χ) :=
∑

Xe−
v0
U <p≤2Xe−

v0
U

χ(p)

p1+it
,

which corresponds to the larger prime factor.

Lemma 2.3.36. Let ε > 0 be fixed sufficiently small and T1,χ be defined as
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in (2.3.31). Let v0 ∈ I = [U logP, (1 + δ)U logP ] be a suitable integer as in

Lemma 2.3.34, with U := Q1+ε2

0 . Then, there exists some η = η(ε) > 0 such

that

U2(logP )2
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
T1,χ

|Gv0(1 + it)|2|Hv0(1 + it)|2dt

≪ 1

Q0(logX)2+η

∑
q≤Q0

(
qPT logX

X
+ 1

)
.

Remark 2.3.37. We note that if the smaller prime factor satisfies p1 ∈

[P1, P2] for some P1 = P1(X) and P2 = P2(X), we have the bound

U2P−2α1
2 log2 P2

log2X

∑
q≤Q0

(
qP2T logX

X
+

q

φ(q)

)
.

In the proofs of Theorems 1.0.4 and 1.0.5, we will make larger choices of

Q0, U , P1 and P2, which leads to the improved error term. In particular,

we will choose Q0 = logA′
X, U = QE

0 for some suitable A′, E > 0, P1 =

exp((logX)o(1)) and P2 = exp((logX)1−o(1)).

Proof. First we apply the definition of T1,χ, bounding pointwise

|Gv0(1 + it, χ)| ≤ e−
α1v0
U ≤ P−α1 ,

where α1 := 3
34

− ε′ and ε′ > 0 sufficiently small in terms of ε > 0. We can

then bound the integral over T1,χ by

∫
T1,χ

|Gv0(1 + it, χ)|2|Hv0(1 + it, χ)|2dt≪ P−2α1

∫
T1,χ

|Hv0(1 + it, χ)|2dt.
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Applying Lemma 2.3.28, we have that

∑
χ(q)

∫
T1,χ

|Gv0(1 + it, χ)|2|Hv0(1 + it, χ)|2dt

≪ P−2α1Tφ(q)

 ∑
X

ev0/U
<p≤ 2X

ev0/U

1

p2
+

∑
1≤h≤ X

Tev0/U

q|h

∑
X

ev0/U
<p,p′≤ 2X

ev0/U

p−p′=h

1

pp′


≪ P−2α1Tφ(q)e2v0/U

X2

( ∑
X

ev0/U
<p≤ 2X

ev0/U

1 +
∑

1≤h≤ X

Tev0/U

q|h

∑
X

ev0/U
<p1,p2≤ 2X

ev0/U

p1−p2=h

1

)
.

By Chebyshev’s inequality, we have that the diagonal terms are bounded by

∑
X

ev0/U
<p≤ 2X

ev0/U

1 ≪ X

ev0/U logX
. (2.3.32)

For the off-diagonal terms, we have by Lemma 2.2.3 that

∑
1≤h≤ X

Tev0/U

q|h

∑
X

ev0/U
<p1,p2≤ 2X

ev0/U

p1−p2=h

1 ≪ X

ev0/U log2X

∑
1≤h≤ X

Tev0/U

q|h

S(h)

≪ X2

e2v0/UqT log2X
.

(2.3.33)

Combining the diagonal (2.3.32) and off-diagonal (2.3.33) estimates, we have
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that

∑
χ(q)

∫
T1,χ

|Gv0(1 + it, χ)|2|Hv0(1 + it, χ)|2dt

≪ P−2α1Tφ(q)e2v0/U

X2

(
X

ev0/U logX
+

X2

e2v0/UqT log2X

)
≪ φ(q)P δ−2α1

q log2X

(
qPT logX

X
+ 1

)
.

Thus the overall contribution to the sum B3(X) is

U2(logP )2
∑
q≤Q0

q

φ(q)

φ(q)P δ−2α1

q log2X

(
qPT logX

X
+ 1

)

=
U2P δ−2α1 log2 P

log2X

∑
q≤Q0

(
qPT logX

X
+ 1

)
.

Now, to estimate the first term we split into cases depending on the size of

H, as this determines the size of Q0 and P .

In the case H ≤ exp((logX)ε
3
), we have that Q0 := (logX)1+ε2 and P :=

(logX)17+ε. By the choice of U := Q1+ε2

0 and the definition of α1 := 3
34

− ε′

with ε′ sufficiently small in terms of ε, we have that

U2P δ−2α1 log2 P

log2X
≪ (logX)(2+2ε2)(1+ε2)+(δ−3/17+2ε′)(17+ε)(log logX)2

log2X

≪ 1

Q0(logX)2+η
,

for some η = η(ε) > 0 as δ > 0 is sufficiently small.

In the case H > exp((logX)ε
3
), we have that Q0 := (logX)3+ε2 and
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P := exp((log logX)2), so that

U2P δ−2α1 log2 P

log2X

≪ (logX)(2+2ε2)(3+ε2) exp((δ − 2α1)(log logX)2)(log logX)4

log2X

≪ 1

Q0(logX)2+η
,

for some η = η(ε) > 0 as δ > 0 is sufficiently small.

2.3.6.2 The contribution of the complement of S1

It remains to consider the contribution of the complement of S1, where the

polynomial

Gv0(1 + it, χ) :=
∑

e
v0
U <p≤e

v0+1
U

χ(p)

p1+it

is pointwise large. The polynomial

Hv0(1 + it, χ) :=
∑

Xe−
v0
U <p≤2Xe−

v0
U

χ(p)

p1+it

is too long to find the cancellation we need, so we introduce further decompo-

sition into shorter polynomials using Heath-Brown’s identity (Lemma 2.3.26)

with k = 3. This decomposes the polynomial Hv0 into

|Hv0(1 + it, χ)| ≪ (logC X) (|Q1(1 + it, χ)| + · · · + |QL(1 + it, χ)|) ,
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where L ≤ logC X for some C > 0. Each Qj(s, χ) is of the form Qj(s, χ) =∏
i≤Jj

Ri(s, χ) with Jj ≤ 6 for each 1 ≤ j ≤ L, where Ri(s, χ) are prime-

factored Dirichlet polynomials of the form

∑
Ri<n≤2Ri

χ(n) log n

ns
,

∑
Ri<n≤2Ri

χ(n)

ns
, or

∑
Ri<n≤2Ri

µ(n)χ(n)

ns
,

whose lengths satisfy R1 · · ·RJj = X1+o(1), Ri ≫ exp
(

logX
log logX

)
for each

i. These polynomials Qj(s, χ) are either a product of many shorter prime-

factored polynomials, or a product of two longer polynomials which are par-

tial sums of a Dirichlet L-function (or its derivative).

We will treat each type of Qj(s, χ) with different methods, so we now

split into two cases according to the the lengths Ri of the factors as follows:

Case 1: Type II Sums. When Qj(s, χ) is a product of many prime-

factored polynomials, this has arisen from having many localised summation

variables, so we will describe this case as Type II.

Suppose we have Qj(s, χ) =
∏

i≤Jj
Ri(s, χ) for some 1 ≤ j ≤ L with Ri ≤

X1/3+ε′ for some i ≤ Jj ≤ 6. Then, we rewrite Qj(s, χ) = M1(s, χ)M2(s, χ)

with exp
(

logX
log logX

)
≪M1 ≤ X1/3+ε′ and M2 = X1+o(1)/M1. Where the coef-

ficient log n appears, we apply partial summation. The polynomial M2(s, χ)

is a product of polynomials, and the coefficients are given by convolving co-

efficients which are one of the sequences (µ(n)), (1). Thus the coefficients

of the polynomial M2(s, χ) are bounded in absolute value by ≪ dr(n) with
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r ≤ 5. We will therefore need to find sufficient cancellation in

∑
q≤Q0

q

φ(q)

∫
[T0,T ]\T1,χ

|Gv0(1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2dt.

In this case, we once again have a short polynomial M1(s, χ) to work

with. So, as before, we split the domain of integration according to whether

M1(1 + it, χ) is pointwise small. When M1(1 + it, χ) is pointwise small,

we will apply this pointwise bound. Previously, for the set S1 where the

shorter polynomial Gv0(1+it, χ) was pointwise small, we were able to find the

required cancellation by applying the mean value theorem to the remaining

longer polynomial Hv0(1+it, χ). However, M1(s, χ) can be much longer than

Gv0(s, χ), so following the same strategy as for the set S1 and applying the

mean value theorem to Gv0M2(1 + it, χ) will not be enough.

To overcome this issue and sufficiently increase the length of this poly-

nomial, we introduce a suitable 2(ℓ − 1)th moment of Gv0(1 + it, χ). In

this domain we have |Gv0(1 + it, χ)Pα1 |2(ℓ−1) ≥ 1, as this polynomial is large.

Now, the polynomial Gℓ−1
v0
M2(1+it, χ) has length which is comparable to the

length of integration, and the mean value theorem can be applied effectively.

Otherwise, where the polynomial M1(1 + it, χ) is pointwise large we will

apply the prime-factored bound. This set will be sparse, so we will apply the

Halász-Montgomery inequality followed by large value theorems.

Case 2: Type I Sums. Otherwise, Qj(s, χ) is a product of two longer

polynomials which are partial sums of Dirichlet L-functions (or derivatives).
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These polynomials arise from larger variables in the Heath-Brown identity,

so we will describe this case as Type I.

We may write Qj(s, χ) = N1(s, χ)N2(s, χ), where each Ni(s, χ) is of the

form ∑
Ni<n≤2Ni

χ(n) log n

ns
, or

∑
Ni<n≤2Ni

χ(n)

ns
,

with lengths satisfying N1N2 = X1+o(1). Note that if in fact only one of the

lengths Ni satisfies Ni > X1/3+ε′ , then one of N1(s, χ), N2(s, χ) can be the

constant polynomial 1−s. Since we have that N1N2 = X1+o(1), without loss of

generality we may take that N1 > X1/2−ε′ , so that X1/3+ε′ < N2 ≤ X1/2+ε′ .

In this case, we will therefore need to find sufficient cancellation in

∑
q≤Q0

q

φ(q)

∫
[T0,T ]\T1,χ

|Gv0(1 + it, χ)N1(1 + it, χ)N2(1 + it, χ)|2dt.

We will again introduce a suitable 2(l− 1)th moment of Gv0(1 + it, χ) using

|Gv0(1 + it, χ)Pα1|2(l−1) ≥ 1 to ensure that the polynomial Gl−1
v0
N1(1 + it, χ)

is sufficiently long. We will then introduce fourth moments and separate the

polynomials Gl−1
v0
N1(1 + it, χ) and N2(1 + it, χ) using the Cauchy-Schwarz

inequality. To find the required cancellation we apply the mean value theorem

to N2
2 (1 + it, χ) and the twisted fourth moment result for partial sums of

Dirichlet L-functions (Lemma 2.3.33).
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2.3.6.2.1 Type II Sums. We first handle the contribution of the Type

II sums, that is, the prime-factored polynomials

M1(1 + it, χ) =
∑

M1<m≤2M1

amχ(m)

m1+it
, M2(1 + it, χ) =

∑
M2<n≤2M2

bnχ(n)

n1+it
,

with am either the coefficient 1 or the Möbius function, |bn| ≤ d5(n), and

lengths satisfying exp
(

logX
log logX

)
≪M1 ≤ X1/3+ε′ , M1M2 = X1+o(1).

We need to find cancellation in

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
[T0,T ]\T1,χ

|Gv0(1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2dt.

To treat this contribution, we split the complement of S1 according to the

size of the shorter polynomial M1(1 + it, χ):

S2 := {(t, χ) ∈ [T0, T ] × {χ mod q} : |M1(1 + it, χ)| ≤M−α2
1 } \ S1,

S := ([T0, T ] × {χ mod q}) \ (S1 ∪ S2),

with α2 := 2
17

− ε′ > α1. As before, we may write

S2 =
⋃

χ mod q

{χ} × T2,χ,

S =
⋃

χ mod q

{χ} × Tχ,

(2.3.34)

for some T2,χ, Tχ ⊂ [T0, T ].

We first consider the contribution of the integral over T2,χ. In this set,
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the polynomial Gv0(1 + it, χ) is large while the polynomial M1(1 + it, χ) is

small. We will pointwise bound the polynomial M1(1 + it, χ) to find some

cancellation. We will then introduce a suitable 2(ℓ− 1)-th moment |Gv0(1 +

it, χ)Pα1|2(ℓ−1) ≥ 1, which will ensure the polynomial G
2(ℓ−1)
v0 M1(1 + it, χ) is

of a length similar to the length of integration and we can effectively apply

the mean value theorem.

Lemma 2.3.38. Let ε > 0 be fixed sufficiently small. Let T2,χ be defined

as in (2.3.34). For s ∈ C and χ mod q, define M1(s, χ),M2(s, χ) to be

prime-factored polynomials

M1(s, χ) =
∑

M1<m≤2M1

amχ(m)

ms
, M2(s, χ) =

∑
M2<n≤2M2

bnχ(n)

ns
,

with am either the coefficient 1 or the Möbius function, |bn| ≤ d5(n), and

lengths satisfying exp
(

logX
log logX

)
≪M1 ≤ X1/3+ε′, M1M2 = X1+o(1). Then

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
T2,χ

|Gv0(1 + it, χ)|2|M1(1 + it, χ)M2(1 + it, χ)|2dt≪ log−F X,

for some suitably large F > 0.

Proof. This proof is similar to [25, Lemma 13] and [38, Proposition 2]. By

definition of T2,χ, we have that

(|Gv0(1 + it, χ)|Pα1)2(ℓ−1) ≥ 1
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for integers ℓ > 0. We choose ℓ = ⌈logM1/ logP ⌉. Therefore, we have

∑
χ(q)

∫
T2,χ

|Gv0(1 + it, χ)|2|M1(1 + it, χ)M2(1 + it, χ)|2dt

≪M−2α2
1 P 2α1(ℓ−1)

∑
χ(q)

∫
T2,χ

|Gℓ
v0

(1 + it, χ)M2(1 + it, χ)|2dt. (2.3.35)

By the choice of ℓ, we have that

P 2α1ℓ ≪ exp

(
2α1 logP logM1

logP

)
= M2α1

1 .

Therefore (2.3.35) is bounded by

≪M2α1−2α2
1 P−2α1

∑
χ(q)

∫
T2,χ

|Gℓ
v0

(1 + it, χ)M2(1 + it, χ)|2dt

≪M2α1−2α2
1 P−2α1

∑
χ(q)

∫
T2,χ

|A(1 + it, χ)|2dt,

where we define

A(s, χ) :=
∑
n∈J

Anχ(n)

ns
,

with J := (M2e
ℓv0/U , 2M2e

ℓ(v0+1)/U ] and the coefficients An satisfying

|An| ≤
∑

n=p1···pℓm
ev0/U<pi≤e(v0+1)/U

i=1,...,ℓ
M2<m≤2M2

dr(m),

where r ≤ 5, as before. Note that the primes p1, . . . , pℓ are not necessarily
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distinct and m may also have prime factors in the range (ev0/U , e(v0+1)/U ].

Applying Lemma 2.3.27 to the integral, we have that

∑
χ(q)

∫
T2,χ

|A(1 + it, χ)|2dt

≪
(
φ(q)T +

φ(q)

q
M2e

ℓv0/U(2eℓ/U − 1)

) ∑
n∈J

(n,q)=1

|An|2

n2
.

The number of ways we can write d = p1 · · · pℓ with pi not necessarily

distinct is at most ℓ!. Then we have the bound

|An| ≪ ℓ!
∑
n=md

p|d⇒ev0/U<p≤e(v0+1)/U

Ω(d)>0

dr(m) ≪ ℓ!dr+1(n).

trivially extending the range of summation for m. Therefore, we have that

∑
n∈J

(n,q)=1

|An|2

n2
≪ ℓ!

ekv0/UM2

∑
n∈J

(n,q)=1

|An|dr+1(n)

n

≪ ℓ!

eℓv0/UM2

∑
M2<m≤2M2

d5(m)d6(m)

m

∑
ev0/U<pi≤e(v0+1)/U

i=1,...,ℓ

d6(p1 · · · pℓ)
p1 · · · pℓ

≪ ℓ!

eℓv0/UM2

∑
M2<m≤2M2

d26(m)

m

 ∑
ev0/U<pi≤e(v0+1)/U

6

p

ℓ

≪ ℓ!

eℓv0/UM2

(logM2)
35

(
6 log

(
1 +

1

v0

))ℓ

≪ M
log 6
logP

1 (logX)35ℓ!

eℓv0/UM2

ℓ

v0
,
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noting that by the definition of ℓ we have 6ℓ ≪ exp( (log 6)(logM1)
logP

) ≪ M
log 6
logP

1 .

By the definition of ℓ and since v0 ∈ I, we have that

ℓ

v0
≪ logM1

U log2 P
≪ 1.

By the definition of ℓ, we also have that

ℓ! ≪ (logM1)
logM1
logP ≪ exp

(
log logM1 logM1

(17 + ε) log logX

)
≪M

1/(17+ε)
1 .

Therefore, we can bound the integral over T2,χ by

∑
χ(q)

∫
T2,χ

|A(1 + it, χ)|2dt

≪
(
φ(q)

T

eℓv0/UM2

+
φ(q)

q
(2eℓ/U − 1)

)
M

1
17+ε

+ log 6
logP

1 (logX)35.

Since v0 ∈ I, we have that eℓv0/U ≫ P ℓ ≫M1 by the definition of ℓ. We also

have that 2eℓ/U − 1 ≪ 1 and therefore we can bound the above integral by

∑
χ(q)

∫
T2,χ

|A(1 + it, χ)|2dt≪
(
φ(q)

T

M1M2

+
φ(q)

q

)
M

1
17+ε

+ log 6
logP

1 (logX)35

≪ φ(q)M
1

17+ε
+ log 6

logP

1 (logX)35,

as we have M1M2 = X1+o(1) and T ≤ X1+o(1). Returning to (2.3.35), we
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have the bound

∑
χ(q)

∫
T2,χ

|Gv0(1 + it, χ)|2|M1(1 + it, χ)M2(1 + it, χ)|2dt

≪ φ(q)M
1

17+ε
+ log 6

logP
+2α1−2α2

1 P−2α1(logX)35.

With our choices of α1, α2, we have that 2α1 − 2α2 = −1/17. Summing over

q introduces a factor of Q2
0. Recalling that exp

(
logX

log logX

)
≪M1, we find that

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
T2,χ

|Gv0(1 + it, χ)|2|M1(1 + it, χ)M2(1 + it, χ)|2dt

≪ Q2
0P

−2α1X−ε/(300 log logX)(logX)35,

and choosing ε′ > 0 sufficiently small in terms of ε > 0 ensures the above is

bounded by log−F X for some suitable F > 0, as needed.

For the Type II case, it remains to treat the contribution of the integral

over Tχ, where both polynomials

Gv0(1 + it, χ) :=
∑

e
v0
U <p≤e

v0+1
U

χ(p)

p1+it

M1(1 + it, χ) =
∑

M1<n≤2M1

χ(n)

n1+it
, or

∑
M1<n≤2M1

µ(n)χ(n)

n1+it
,

are large. To handle this contribution, we will first apply the Halász - Mont-

gomery inequality as we are in a sparse set, followed by large value theorems.

Lemma 2.3.39. Let Tχ be defined as in (2.3.34). Let E > 0 be fixed suf-
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ficiently large. For s ∈ C and χ mod q, define M1(s, χ),M2(s, χ) to be

prime-factored polynomials

M1(s, χ) =
∑

M1<m≤2M1

amχ(m)

ms
, M2(s, χ) =

∑
M2<n≤2M2

bnχ(n)

ns
,

with am either the coefficient 1 or the Möbius function, |bn| ≤ d5(n), and

lengths satisfying exp
(

logX
log logX

)
≪ M1 ≤ X1/3+ε′, M1M2 = X1+o(1). Then,

we have that

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
Tχ

|Gv0(1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2dt≪ 1

logE X
,

where v0 ∈ I is a suitable integer, with I = [U logP, (1 + δ)U logP ] and

U := Q1+ε2

0 .

Proof. This is similar to [38, Section 4.1]. We first replace the integral over

Tχ with a sum over a well-spaced set. For each character χ mod q, cover

Tχ with intervals of unit length and from each interval take the point which

maximises the integral over that interval. This set is not yet necessarily well-

spaced, but we can split it into O(1) well-spaced subsets. Therefore we may

write

∑
χ(q)

∫
Tχ

|Gv0(1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2dt

≪
∑

(t,χ)∈T ′

|Gv0(1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2,
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where T ′ is the well-spaced subset which maximises the right hand side.

We now apply the prime-factored property |M1(1 + it, χ)|2 ≪ log−F ′
X with

F ′ > 0 sufficiently large and then Lemma 2.3.29 to get that

∑
(t,χ)∈T ′

|Gv0(1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2

≪ (logX)−F ′ ∑
(t,χ)∈T ′

|Gv0(1 + it, χ)M2(1 + it, χ)|2

≪ (logX)−F ′
(
φ(q)

q
M2e

(v0+1)/U + |T ′|(qT )1/2
) ∑

n=pm
ev0/U<p≤e(v0+1)/U

M2<m≤2M2

d2r(m)

n2

≪ (logX)−F

(
φ(q)

q
e1/U +

|T ′|(qT )1/2

M2ev0/U

)
, (2.3.36)

where F > 0 is suitably large and r ≤ 5.

Case 1: exp
(

logX
log logX

)
≪M1 ≪ Xν for all ν > 0.

In this case we apply Lemma 2.3.30 with V = M−α2
1 to see that

|T ′| ≪ (qT )2α2M2α2
1 exp

(
(1 + o(1))(log logX)3

)
≪ X4/17−2ε′+ε,

since exp
(

logX
log logX

)
≪M1 ≪ Xν for all ν > 0 and α2 := 2

17
−ε′. Substituting
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this bound into (2.3.36) and summing over q, in this case we have that

∑
q≤Q0

q

φ(q)

∑
(t,χ)∈T ′

|Gv0(1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2

≪ (logX)−F
∑
q≤Q0

(
1 +

q1/2X4/17+1/2+ε

M2ev0/U

)

≪ (logX)−E′
(

1 +
X4/17+1/2+ε+ν

X1+o(1)P

)
,

noting that M2 = X1+o(1)/M1 ≫ X1−ν+o(1) for any ν > 0 in this case. The

above is then ≪ (logX)−E′
for some suitable E ′ > 0, as required.

Otherwise, we may write M1 = Xν+ε′ for some 0 < ν ≤ 1/3. If we can

show that |T ′| ≪ X1/2−ν−ε2 , then we will have that

∑
χ(q)

∫
Tχ

|Gv0(1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2dt≪ 1

logE′
X

for some suitable E ′ > 0. Summing over q, we have that

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
Tχ

|Gv0(1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2dt≪ 1

logE X
,

where E > 0 is sufficiently large.

Thus, it remains to prove that |T ′| ≪ X1/2−ν−ε2 . The large value theorem

we apply to obtain the required bound will depend on the size of M1.

Case 2: 17
58

≤ ν ≤ 1
3
.

We apply Lemma 2.3.32 with M1(1 + it, χ)2, V = M−2α2
1 and k = 2, we
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have that

|T ′| ≪ Xε3
(
M4α2

1 +X2M
8(2α2−1)
1 +XM

8(4α2−1)
1

)
≪ Xmax( 8

17
ν,2− 104

17
ν,1− 72

17
ν)−2ε2 .

We have that ν ≤ 1
3

+ ε′. The inequality 8
17
ν ≤ 1

2
− ν holds when ν ≤ 17

50

and we have that 2 − 104
17
ν ≥ 8

17
ν when ν ≤ 17

56
. Note that 2 − 104

17
ν ≤ 1

2
− ν

fails if ν < 17
58

. Therefore, in this case we have the bound |T ′| ≪ X1/2−ν−ε2 .

Case 3: 51
278

≤ ν ≤ 17
58
.

We again apply Lemma 2.3.32 with M1(1+ it, χ)3, V = M−3α2
1 and k = 2,

to obtain

|T ′| ≪ Xε3
(
M6α2

1 +X2M
12(2α2−1)
1 +XM

12(4α2−1)
1

)
≪ Xmax( 12

17
ν,2− 156

17
ν,1− 108

17
ν)−2ε2 .

Similar to the previous case, we have that 12
17
ν ≤ 1

2
− ν holds for ν ≤ 17

58

and 2− 156
17
ν ≥ 12

17
ν when ν ≤ 17

84
. We have that 2− 156

17
ν ≤ 1/2−ν fails when

ν < 51
278

, so we again have the required bound for |T ′| in this range.

Case 4: ν < 51
278

.

Further iterations of Lemma 2.3.32 with higher powers of M1(1+it, χ) are

not enough to cover the full range of ν. In this case, ν is now small enough
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for us to apply Lemma 2.3.30 effectively with V = M−α2
1 , which gives

|T ′| ≪ (qT )2α2X2να2+ε ≪ X
4
17

(1+ν)+100ε ≪ X1/2−ν−ε2 ,

as required.

2.3.6.2.2 Type I Sums. Now that we have handled the Type II contri-

bution, it remains to treat the contribution of polynomials which are partial

sums of a Dirichlet L-function or its derivative. These polynomials are of the

form

Ni(1 + it, χ) =
∑

Ni<n≤2Ni

χ(n) log n

n1+it
, or

∑
Ni<n≤2Ni

χ(n)

n1+it
,

for i = 1, 2, with lengths satisfying N1N2 = X1+o(1) with N1 > X1/2−ε′ and

X1/3+ε′ < N2 ≤ X1/2+ε′ .

We need to find cancellation in

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
[T0,T ]\T1,χ

|Gv0(1 + it, χ)N1(1 + it, χ)N2(1 + it, χ)|2dt.

To do this we will first introduce a suitable 2(l−1)th moment of Gv0(1+it, χ),

using that |Gv0(1+it, χ)Pα1|2(l−1) ≥ 1 as we are in the set where Gv0(1+it, χ)

is pointwise large. This will ensure that the polynomial Gl−1
v0
N1 is sufficiently

long when we apply the twisted fourth moment of partial sums of Dirichlet

L-functions (Lemma 2.3.33). We will apply the Cauchy-Schwarz inequality

to separate the polynomials and introduce a fourth moment, so that we can
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then use this twisted fourth moment result.

Lemma 2.3.40. Let ε > 0 be fixed sufficiently small. For s ∈ C, χ mod q

and i = 1, 2, define

Ni(s, χ) =
∑

Ni<n≤2Ni

χ(n) log n

ns
, or

∑
Ni<n≤2Ni

χ(n)

ns
,

with lengths satisfying N1N2 = X1+o(1) and N1 > X1/2−ε′ , X1/3+ε′ < N2 ≤

X1/2+ε′. Let T1,χ be defined as in (2.3.31). Then, we have that

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
[T0,T ]\T1,χ

|Gv0(1 + it, χ)N1(1 + it, χ)N2(1 + it, χ)|2dt≪ X−ε/2,

where v0 ∈ I is a suitable integer with I := [U logP, (1 + δ)U logP ] and

U := Q1+ε2

0 .

Proof. This is similar to [38, Proposition 3]. As we are in the complement of

S1, we have that

|Gv0(1 + it, χ)Pα1|2(l−1) ≥ 1,

where we choose l = ⌊ε logX/ logP ⌋. Therefore, we have that

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
[T0,T ]\T1,χ

|Gv0(1 + it, χ)N1(1 + it, χ)N2(1 + it, χ)|2dt

≪ P 2α1(l−1)
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ T

T0

|Gl
v0

(1 + it, χ)N1(1 + it, χ)N2(1 + it, χ)|2dt.

We will split the domain of integration according to whether t ≤ N1. Apply-
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ing the Cauchy-Schwarz inequality three times in total (to the integral and

the sums over χ and q), we have that

P 2α1(l−1)
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ N1

T0

|Gl
v0

(1 + it, χ)N1(1 + it, χ)N2(1 + it, χ)|2dt

≪P 2α1(l−1)
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ N1

T0

|Gv0(1 + it, χ)|4l|N1(1 + it, χ)|4dt

 1
2

×

∑
χ(q)

∫ N1

T0

|N2(1 + it, χ)|4dt

 1
2

≪P 2α1(l−1)

∑
q≤Q0

1

φ(q)

∑
χ(q)

∫ N1

T0

|Gv0(1 + it, χ)|4l|N1(1 + it, χ)|4dt

 1
2

×

∑
q≤Q0

q2

φ(q)

∑
χ(q)

∫ N1

T0

|N2(1 + it, χ)|4dt

 1
2

. (2.3.37)

We have the analogous inequality

P 2α1(l−1)
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ T

N1

|Gl
v0

(1 + it, χ)N1(1 + it, χ)N2(1 + it, χ)|2dt

≪P 2α1(l−1)

∑
q≤Q0

1

φ(q)

∑
χ(q)

∫ T

N1

|Gv0(1 + it, χ)|4l|N1(1 + it, χ)|4dt

 1
2

×

∑
q≤Q0

q2

φ(q)

∑
χ(q)

∫ T

N1

|N2(1 + it, χ)|4dt

 1
2

(2.3.38)

for the integral over [N1, T ].
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We will first treat the integral over [T0, N1]. In this case, to treat the first

integral appearing in (2.3.37), we will apply the same argument as in the

proof of Lemma 2.3.33, with N(1 + it, χ) = N1(1 + it, χ) and M(1 + it, χ) =

G2l
v0

(1 + it, χ). We will again use the hybrid result of Fujii, Gallagher and

Montgomery

∑
n≤N

χ(n)nit =
δχφ(q)N1+it

q(1 + it)
+O((qτ)1/2 log(qτ)),

where τ = |t| + 2, to bound N1(1 + it, χ). We have that

|Gv0(1 + it, χ)|4l =

∣∣∣∣∣∣
∑

ev0/U<p≤e(v0+1)/U

χ(p)

p1+it

∣∣∣∣∣∣
4l

=

∣∣∣∣∣∣
∑

e2lv0/U<n≤e2l(v0+1)/U

χ(n)a(n)

n1+it

∣∣∣∣∣∣
2

,

where a(n) = 0 unless n is a product of 2l primes, not necessarily distinct,

each lying in the interval (ev0/U , e(v0+1)/U ]. Writing n in terms of its prime

factorisation n = pa11 · · · pabb with b ≤ 2l, we have that a(n) =
(

2l
a1,...,ab

)
when

it is non-zero and therefore that a(n) ≪ (2l)!. Therefore, we have that

∑
q≤Q0

1

φ(q)

∑
χ(q)

∫ N1

T0

|N1(1 + it, χ)|4|Gl
v0

(1 + it, χ)|2dt

≪ Xε/10(2l)!2
∑
q≤Q0

1

φ(q)

∑
χ(q)

∫ N1

T0

(
φ(q)

q(1 + |t|)

)4

+
q2 log4(qτ)

τ 2
dt

≪ Xε/5

T0
(l!)4+ε.

(2.3.39)

We apply Lemma 2.3.27 to the second integral in (2.3.37). Noting that
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N2(1 + it, χ) either has coefficients 1 or log n, we find that

∑
q≤Q0

q2

φ(q)

∑
χ(q)

∫ N1

T0

|N2(1 + it, χ)|4dt

≪
∑
q≤Q0

q2
(
N1 +

N2
2

q

) ∑
N2

2≤n≤4N2
2

d2(n) log4 n

n2

≪ (logX)7
∑
q≤Q0

q2
(
N1 +N2

2/q

N2
2

)
≪ (logX)16+ε

(
N1 +N2

2

N2
2

)
. (2.3.40)

Since N1N2 = X1+o(1) with N1 > X1/2−ε′ and X1/3+ε′ < N2 ≤ X1/2+ε′ , we

have that

N1 +N2
2

N2
2

≪ 1.

Returning to (2.3.37) and combining the estimates (2.3.39) and (2.3.40), we

have that

P 2α1(l−1)
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ N1

T0

|Gl
v0

(1 + it, χ)N1(1 + it, χ)N2(1 + it, χ)|2dt

≪P 2α1(l−1)Xε/10(l!)2+ε

T
1/2
0

.

By the definition of l, we have that (l!)2+ε ≪ (log2X)l(1+ε), and therefore

(P 2α1−1 log2X)l(1+ε) ≪ exp

(
(1 + ε)ε

(
2α1 − 1 +

2

17 + ε

)
logX

)
≪ X−2ε/3.

(2.3.41)
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Therefore, the overall contribution of the integral over [T0, N1] is

P 2α1(l−1)
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ N1

T0

|Gl
v0

(1 + it, χ)N1(1 + it, χ)N2(1 + it, χ)|2dt

≪Xε/10−2ε/3−1/200

≪X−ε/2,

as required.

Since the contribution of the integral over [T0, N1] is acceptable, it remains

to bound (2.3.38), the contribution of the integral over [N1, T ]. To the first

integral, we again apply Lemma 2.3.27, obtaining

∑
q≤Q0

q2

φ(q)

∑
χ(q)

∫ T

N1

|N2(1 + it, χ)|4dt

≪
∑
q≤Q0

q2
(
T +

N2
2

q

) ∑
N2

2≤n≤4N2
2

d2(n) log4 n

n2

≪ (logX)16+ε

(
T +N2

2

N2
2

)
. (2.3.42)

For the second integral of (2.3.38), since we have N1 ≤ t for all t ∈ [N1, T ],

we can apply Lemma 2.3.33. We chooseM(1+it, χ) = G2l
v0

(1+it, χ), M = P 2l
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and N corresponding to N1 to find that

∑
q≤Q0

1

φ(q)

∑
χ(q)

∫ T

N1

|Gv0(1 + it, χ)|4l|N1(1 + it, χ)|4dt

≪ Xε/10(2l)!2
(
Q0T

N2
1P

2l

(
1 + P 4l(Q0T )−1/2

)
+

1

N1

)
≪ Xε/10(l!)4+ε

(
Q0T

N2
1P

2l
+

1

N1

)
, (2.3.43)

as the definition of l ensures that P 4l(Q0T1)
−1/2 ≪ 1. Returning to (2.3.38)

and substituting the estimates (2.3.42) and (2.3.43), we have that

P 2α1(l−1)
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ T

N1

|Gl
v0

(1 + it, χ)N1(1 + it, χ)N2(1 + it, χ)|2dt

≪ P 2α1(l−1)Xε/10(l!)2+ε

(
Q0T

N2
1P

2l
+

1

N1

)1/2(
T +N2

2

N2
2

)1/2

≪ P 2α1(l−1)Xε/10(l!)2+ε

(
Q0T

N2
1N

2
2P

2l
(T +N2

2 ) +
T

N1N2
2

+
1

N1

)1/2

.

We have that N1N2 = X1+o(1) with N1 ≥ X1/2−ε′ and X1/3+ε′ ≤ N2 ≤

X1/2+ε′ . As we also have that T ≤ X1+o(1), the above is bounded by

≪ P 2α1(l−1)Xε/10(l!)2+ε

(
1

P l
+

1

N2

+
1

N
1/2
1

)
.

Once again we apply (2.3.41) to see that P 2α1(l−1)(l!)2+ε ≪ X−2ε/3. Overall
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we have the bound

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
[T0,T ]\T1,χ

|Gv0(1+it, χ)|2|N1(1+it, χ)N2(1+it, χ)|2dt≪ X−ε/2,

as required. Since both the integrals over [T0, N1] and [N1, T ] contribute

≪ X−ε/2, this completes the proof.

2.3.6.3 Completing the proof of Proposition 2.3.21

Now that we have handled both the Type I and Type II contributions, we

have found the cancellation we need over the complement of S1 (where the

polynomial Gv0(1 + it, χ) is pointwise large). Having previously treated the

set S1 where Gv0(1 + it, χ) is pointwise small, we may now combine these

estimates to complete the proof of Proposition 2.3.21.
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Proof of Proposition 2.3.21. By Lemma 2.3.34, we have that

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ T

T0

|F (1 + it, χ)|2dt

≪
∑
q≤Q0

(
qU2 log2 P

φ(q)

∑
χ(q)

∫ T

T0

|Gv0(1 + it, χ)|2|Hv0(1 + it, χ)|2dt

+
1

Q0(logX)2+η

(
qT logX

X
+

q

φ(q)

))

≪
∑
q≤Q0

(
qU2 log2 P

φ(q)

∑
χ(q)

(∫
T1,χ

|Gv0(1 + it, χ)|2|Hv0(1 + it, χ)|2dt

+

∫
[T0,T ]\T1,χ

|Gv0(1 + it, χ)|2|Hv0(1 + it, χ)|2dt

)

+
1

Q0(logX)2+η

(
qT logX

X
+

q

φ(q)

))

for some η = η(ε) > 0 and some suitable integer v0 ∈ I. We apply

Lemma 2.3.36 to bound the contribution of the integral over T1,χ, where

the polynomial Gv0 is small, finding that the above is bounded by

≪
∑
q≤Q0

(
qU2 log2 P

φ(q)

∑
χ(q)

∫
[T0,T ]\T1,χ

|Gv0(1 + it, χ)|2|Hv0(1 + it, χ)|2dt

+
1

Q0(logX)2+η

(
qTP logX

X
+

q

φ(q)

))
.

We will combine Lemmas 2.3.38 to 2.3.40 to bound the contribution of the

complement of S1, where the polynomial Gv0 is large. We have decomposed

the polynomial Hv0 using Heath-Brown’s identity (Lemma 2.3.26), which
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introduces a factor of (logX)2C . We have

U2(logP )2
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
[T0,T ]\T1,χ

|Gv0(1 + it, χ)|2|Hv0(1 + it, χ)|2dt

≪U2(logP )2(logX)2C

×
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
[T0,T ]\T1,χ

|Gv0(1 + it, χ)|2
∑
j≤L

|Qj(1 + it, χ)|2,

(2.3.44)

where each Qj(s, χ) =
∏

i≤Jj
Ri(s, χ) with Jj ≤ 6 for each 1 ≤ j ≤ L and

L ≤ logC X and Ri(s, χ) are prime-factored Dirichlet polynomials of the form

∑
Ri<n≤2Ri

χ(n) log n

ns
,

∑
Ri<n≤2Ri

χ(n)

ns
, or

∑
Ri<n≤2Ri

µ(n)χ(n)

ns
,

whose lengths satisfy R1 · · ·RJj = X1+o(1), Ri ≫ exp
(

logX
log logX

)
for each i.

We treat these integrals according to whether Qj is a Type I or Type II sum.

For the Type II sums, we further split the domain of integration into the sets

T2,χ and Tχ according to the size of one of the factors of Qj, as in (2.3.34).

To the set T2,χ, where this factor is small, we apply Lemma 2.3.38. To the

set Tχ, where this factor is large, we apply Lemma 2.3.39. Overall, the Type
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II sums contribute

U2(logP )2(logX)2C
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
[T0,T ]\T1,χ

|Gv0(1 + it, χ)|2|Qj(1 + it, χ)|2

≪ U2(logX)2C(logP )2

logE X

≪ 1

logF X

to (2.3.44) for some sufficiently large F > 0. There are ≤ logC X Type II

sums to consider, so as F > 0 is sufficiently large this is negligible.

When Qj is a Type I sum, we apply Lemma 2.3.40 to obtain the bound

U2(logP )2(logX)2C
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫
[T0,T ]\T1,χ

|Gv0(1 + it, χ)|2|Qj(1 + it, χ)|2

≪ U2(logX)2C(logP )2X−ε/2

≪ X−ε/4.

There are ≤ logC X Type I sums to consider, so this contribution is negligible.

Thus, we have that

∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ T

T0

|F (1 + it, χ)|2dt

≪ 1

Q0(logX)2+η

∑
q≤Q0

(
qTP logX

X
+

q

φ(q)

)
,

as required.
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2.4 Proof of Theorem 1.0.4

We now briefly outline how to adjust the argument to prove Theorem 1.0.4.

The problem can be reduced to the set of E2 numbers which factorise in

the “typical” way. By Mertens’ theorem, almost all products of exactly two

primes p1p2 ≤ X with p1 ≤ p2 satisfy

p1 ∈
[
exp

(
(logX)ε(X)

)
, exp

(
(logX)1−ε(X)

)]
=: [P1, P2],

where ε(X) = o(1). We define E ′′
2 := E ′′

2 (X) to be the set of E2 numbers

n = p1p2 ∈ (X, 2X] which factorise in the typical way.

Lemma 2.4.1. Let h be a fixed non-zero integer, P1 := exp
(
(logX)ε(X)

)
and P2 := exp

(
(logX)1−ε(X)

)
. We have that

1

X

∑
X<n≤2X

1E2(n)1E2(n+ h) − o

(
S(h)(log logX)2

(logX)2

)
≤ 1

X

∑
X<n≤2X

1E′′
2
(n)1E′′

2
(n+ h)

≤ 1

X

∑
X<n≤2X

1E2(n)1E2(n+ h).

Proof. The second inequality is trivial as E ′′
2 is a subset of E2 and the

summand is positive, so it remains to prove the first inequality. Since
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1E2 = 1E′′
2

+ 1E2\E′′
2
, we have that

∑
X<n≤2X

1E2(n)1E2(n+ h) =
∑

X<n≤2X

1E′′
2
(n)1E′′

2
(n+ h)

+
∑

X<n≤2X

1E2\E′′
2
(n)1E2\E′′

2
(n+ h)

+
∑

X<n≤2X

1E2\E′′
2
(n)1E′′

2
(n+ h)

+
∑

X<n≤2X

1E′′
2
(n)1E2\E′′

2
(n+ h).

We will bound the last three terms using sieve theory. We treat the sec-

ond term, with the third and fourth being handled similarly. We have, by

definition

∑
X<n≤2X

1E2\E′′
2
(n)1E2\E′′

2
(n+ h) =

∑
p1,p3≤

√
X

p1,p3 /∈[P1,P2]

∑
X<p1p2≤2X

X−h<p3p4≤2X−h
p1p2−p3p4=h

1.

To find an upper bound, we will attach sieve weights λd to the inner sum

(for example, we can use Brun’s weights as in Lemma 2.3.34). Set z = X1/β

with β > 0 suitably large, and P (z) =
∏

p<z,p∤h p. We then need to bound

∑
p1,p3≤

√
X

p1,p3 /∈[P1,P2]

∑
X/p1<n≤2X/p1(
n
p3

(p1n+h),P (z)
)
=1

∑
d|n

λd

 .

Note that we can suppose (d, p3) = 1, as removing the terms (d, p3) > 1



CHAPTER 2. CORRELATIONS OF ALMOST PRIMES 124

makes a negligible difference. Switching the order of summation, the inner

sum is ∑
d|P (z)

λd
∑

X/p1<n≤2X/p1
d| n

p3
(p1n+h)

p3|p1n−h

1. (2.4.1)

In the inner sum we have congruence conditions mod d and p3, which can be

combined using the Chinese Remainder Theorem into a condition mod dp3

since we assume (d, p3) = 1. Therefore (2.4.1) is bounded by

≪ X

p1p3

h

φ(h)

∏
p≤z

(
1 − 2

p

)
≪ X

p1p3 log2 z

h

φ(h)
≪ X

p1p3 log2X

h

φ(h)
.

By Mertens’ Theorem (Lemma 2.2.2), we have that

∑
p≤

√
X

p/∈[P1,P2]

1

p
=
∑
p<P1

1

p
+

∑
P2<p≤

√
X

1

p

= log logP1 + log log
√
X − log logP2 +O(1)

= log logX − log logX + o(log logX)

= o(log logX).

Therefore, summing over p1 and p3, we have that

∑
X<n≤2X

1E2\E′′
2
(n)1E2\E′′

2
(n+ h) ≪ X

log2X

h

φ(h)

∑
p1,p3≤

√
X

p1,p3 /∈[P1,P2]

1

p1p3

= o

(
S(h)X(log logX)2

(logX)2

)
,
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as required.

Therefore, we can reduce the problem to considering the correlations of

n, n+ h ∈ E ′′
2 . We modify every definition featuring (P, P 1+δ], replacing this

interval with [P1, P2]. We will once again apply the Hardy-Littlewood circle

method and in (2.3.4) and (2.3.6) we take

Q0 := logA′
X,A′ > 4, Q := P2 logC X, H ≥ Q logDX, (2.4.2)

where C is chosen sufficiently large in terms of A′ and D is chosen suf-

ficiently large in terms of A′ and C. In Lemma 2.3.34 we instead define

I := [U logP1, U logP2] where U := QE
0 , E > 0 and we define α1 := ε′ > 0

sufficiently small in terms of ε > 0.

The error terms in Propositions 2.3.6, 2.3.10 and 2.3.18 need to be treated

with more care. The error term in Proposition 2.3.10 is acceptable with this

new choice of Q0 (see Remark 2.3.11). For Propositions 2.3.6 and 2.3.18, we

again need to split the sums over p1 ∈ [P1, P2] into dyadic intervals whenever

we apply the Cauchy-Schwarz inequality, as we did previously for the range

H > exp((logX)ε
3
). If we do not make this modification, the bounds will

not provide the necessary cancellation.
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For example, the minor arc integral would be bounded by

∫
m∩[α− 1

2H
,α+ 1

2H
]

|S(θ)|2dθ

≪ 1

H2

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+H

ϖ2(n)e(nα)

∣∣∣∣∣
2

dx+H log2X

≪ XP2

P1

(
(logX)

(
1

Q0

+
1

P1

+
Q

H

)
+
P2 log(X/P2)

H

)
.

The term P2/P1 prevents us from finding the necessary cancellation. In

particular, the first term is

≪ X exp((logX)1−ε(X) − (logX)ε(X)) log−A′
X,

which is too large. We now outline how to modify the proof of Proposi-

tion 2.3.6.

Proposition 2.4.2. Let A > 3, B > 1 be fixed and m be defined as in

(2.3.6) with Q0, Q as in (2.4.2). Let Q logDX ≤ H ≤ X log−AX with D > 0

sufficiently large. For α ∈ m we have that

∫
m∩[α− 1

2H
,α+ 1

2H
]

|S(θ)|2dθ ≪ X

logBX
.

Proof. As before, we apply Lemma 2.2.4 to the minor arc integral so that we
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need to bound

I :=

∫
m∩[α− 1

2H
,α+ 1

2H
]

|S(θ)|2dθ

≪ 1

H2

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+H

ϖ2(n)e(nα)

∣∣∣∣∣
2

dx+H log2X.

The second term is ≪ X(logX)−A+2 by our choice of H, so it remains to

bound the first term. Now before applying Cauchy-Schwarz to the integrand

we split the sum over p1 into dyadic intervals [P, 2P ] with P1 ≤ P ≤ P2

before applying the triangle inequality, so that we instead need to integrate

∣∣∣∣∣ ∑
x<p1p2≤x+H
P<p1≤2P

(log p2)e(αp1p2)

∣∣∣∣∣
2

≤

( ∑
P<m1≤2P

|1P(m1)|2
) ∑

P<m2≤2P

∣∣∣∣∣ ∑
x<m2p≤x+H

(log p)e(αm2p)

∣∣∣∣∣
2


≤ P

logP

∑
x<mp1,mp2≤x+H

P<m≤2P

(log p1)(log p2)e(αm(p1 − p2)).

Next, we perform the integration on this sum and split into the diagonal

(p1 = p2) and off-diagonal terms (p1 ̸= p2), which will be denoted by S1 and

S2 respectively. The diagonal terms now contribute

S1 ≪
P

H logP

∑
P<m≤2P

∑
X
m
<p≤ 3X

m

log2 p≪ XP logX

H logP
≪ X

(logX)C+D−1
.

(2.4.3)
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Once again applying Lemma 2.2.8 followed by Lemma 2.2.3, the off-diagonal

terms S2 contribute

≪ P

H2 logP

∑
0<r≤H

∑
X
2P

<p1,p2≤ 3X
P

r=|p1−p2|

(log p1)(log p2)

∣∣∣∣∣∣∣∣
∑

P<m≤2P
0<m≤H/r

e(αmr)(H −mr)

∣∣∣∣∣∣∣∣
≪ P

H logP

∑
0<r≤H

P

min

(
H

r
,

1

∥αr∥

) ∑
X
2P

<p1,p2≤ 3X
P

r=|p1−p2|

(log p1)(log p2)

≪ XP

HP logP

∑
0<r≤H

P

min

(
H

r
,

1

∥αr∥

)
S(r)

≪ X log logX

H logP

∑
0<r≤H

P

min

(
H

r
,

1

∥αr∥

)
.

Applying Lemma 2.2.9, the off-diagonal terms contribute

S2 ≪
X log logX logX

logP

(
1

Q0

+
1

P
+
Q

H

)
.

Since we have chosen Q0 := logA′
X with A′ > 4, P1 ≤ P ≤ P2 and Q :=

P2 logC X, we have that

S2 ≪
X

logB′
X

(2.4.4)

for B′ > 3. Combining the contributions of diagonal (2.4.3) and off-diagonal

terms (2.4.4), before combining the dyadic intervals [P, 2P ] introduces a fac-
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tor of O(log2 P2) = O(log2X), so that

I ≪ X

logBX

for B > 1, as claimed.

Proposition 2.4.3. Let A > 3, B > 0 be fixed. Let ε > 0 be fixed and

exp((logX)1−ε) ≤ H ≤ X log−AX. Let M be defined as in (2.3.4) with Q0, Q

as in (2.4.2). Then, for all but at most O(HQ
−1/3
0 ) values of 0 < |h| ≤ H

we have that

∫
M

|S(α)|2e(−hα)dα = S(h)X

( ∑
P1≤p≤P2

1

p

)2

+O

(
X

logBX

)
.

Proof. Recalling Lemma 2.3.9, we have the expansion

S(α) =
µ(q)

φ(q)

∑
P1<p≤P2

1

p

∑
X<n≤2X

e(βn)

+
1

φ(q)

∑
χ(q)

τ(χ)χ(a)
∑

X<n≤2X

(
ϖ2(n)χ(n) − δχ

∑
P1≤p≤P2

1

p

)
e(βn)

=a(α) + b(α)

(2.4.5)

and following the argument of Section 2.3.3 we have that

∫
M

|S(α)|2e(−hα)dα =S(h)X

( ∑
P1≤p≤P2

1

p

)2

+O

(
X

logBX
+ A(X)B(X) +B2(X)

)
.
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Note that A2(X) ≪ X(log logX)3, so it remains to bound B2(X). Following

Proposition 2.3.16 and Remark 2.3.17, we have that

B2(X) ≪ B1(X) +B2(X) + exp((logX)1−ε(X)),

where B1(X) and B2(X) is defined in Definition 2.3.15 with (P, P 1+δ] re-

placed with [P1, P2]. With our choices of (2.4.2), P1 and P2, by Remarks

2.3.20 and 2.3.22 we now have that

B1(X) ≪ X

logBX
.

The proof of Proposition 2.3.18 requires modifying in a similar way to

Proposition 2.3.6. As in the case H > exp((logX)ε
3
), we split the sum over

P1 ≤ p1 ≤ P2 into dyadic intervals P < p1 ≤ 2P before applying Cauchy-

Schwarz, Lemma 2.2.6 and then combining the contributions of the dyadic

sums.

We are now able to complete the proof of Theorem 1.0.4.

Proof of Theorem 1.0.4. By partial summation and Lemma 2.2.2 we have

the bound

∫ 1

0

|S(α)|2dα =
∑

X<n≤2X

ϖ2
2(n) ≪ logX

∑
X<n≤2X

ϖ2(n) ≪ X logX
∑

P1≤p≤P2

1

p

≪ X(logX) log logX.
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Therefore, following the proof of Theorem 2.3.3, the result may be deduced

from combining this bound with Proposition 2.4.2, an application of Cheby-

shev’s inequality and Proposition 2.4.3 followed by an application of partial

summation.

2.5 Proof of Theorem 1.0.5

We outline the modifications needed to prove Theorem 1.0.5. When applying

the Hardy-Littlewood circle method, in (2.3.4) and (2.3.6) we now choose

Q0 := logA′
X,A′ > 6, Q := X1/6+ε/2, H ≥ QXε/2. (2.5.1)

As in Section 2.4, in Lemma 2.3.34 we instead define I := [U logP1, U logP2]

where U := QE
0 , E > 0 and we define α1 := ε′ > 0 sufficiently small in terms

of ε > 0. Analogously to the almost prime case, we may write

∑
X<n≤2X

Λ(n)ϖ2(n+ h) =

∫ 1

0

S(α)S ′(α)e(−hα)dα +O(h log2X),

where for α ∈ (0, 1) we define the exponential sum

S ′(α) :=
∑

X<n≤2X

Λ(n)e(nα).

The error term is ≪ X(logX)−A+2 by our choice of H, which will be accept-

able. We have the following result for the major arcs.
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Proposition 2.5.1. Let A > 5, B > 0 be fixed and let ε > 0 be fixed suffi-

ciently small. Let X1/6+ε ≤ H ≤ X log−AX. Let M be defined as in (2.3.4)

with Q0, Q as in (2.5.1). Then, for all but at most O(HQ
−1/3
0 ) values of

0 < |h| ≤ H we have that

∫
M

S(α)S ′(α)e(−hα)dα = S(h)X

( ∑
P1≤p≤P2

1

p

)
+O

(
X

logBX

)
.

Proof. We can expand S ′ in terms of Dirichlet characters (see for example

[32]). We have that α = a/q+ β with q ≤ Q0, (a, q) = 1 and |β| ≤ 1
qQ

. Then

S ′(α) =
∑

X<n≤2X

Λ(n)e

(
an

q

)
e(nβ).

We again apply the identity

e

(
a

q

)
=

1

φ(q)

∑
χ(q)

χ(a)τ(χ),

which holds for (n, q) = 1, where τ(χ) is the Gauss sum (2.2.1). Then

S ′(α) =
1

φ(q)

∑
χ(q)

τ(χ)χ(a)
∑

X<n≤2X

Λ(n)χ(n)e(nβ)

+
∑

X<n≤2X
(n,q)>1

Λ(n)e

(
an

q

)
e(nβ).
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The second term is bounded by

≪
∑

X<pa≤2X
(p,q)>1

log p≪ log2X.

We now introduce the approximation to the principal character term, so that

S ′(α) =
µ(q)

φ(q)

∑
X<n≤2X

e(nβ)

+
1

φ(q)

∑
χ(q)

τ(χ̄)χ(a)
∑

X<n≤2X

(Λ(n)χ(n) − δχ)e(nβ)

+O(log2X)

=c(α) + d(α) +O(log2X),

say. Therefore, using the expansion (2.4.5) and Cauchy-Schwarz, we may

write the integral over the major arcs as

∫
M

S(α)S ′(α)e(−hα)dα

=

∫
M

a(α)c(α)e(−hα)dα

+O
(
A(X)D(X) +B(X)(C(X) +D(X)) + (A(X) +B(X)) log2X

)
,

(2.5.2)

where we define C2(X) =
∫
M
|c(α)|2dα with D(X) defined analogously.

Evaluating
∫
M
a(α)c(α)e(−hα)dα as in Section 2.3.3.2 gives the required

main term and an acceptable error. Mikawa [32, Section 3] proves that
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C2(X) ≪ X log logX and that

D2(X)

≪
∑
q≤Q0

q

φ(q)

∑
χ(q)

∫ 2X

X

∣∣∣∣∣∣ 1

qQ

∑
x<n≤x+qQ/2

(Λ(n)χ(n) − δχ)

∣∣∣∣∣∣
2

dx+ qQ log2X

 .

The second term is ≪ X1/6+ε ≪ X log−BX by the definition of Q, which is

acceptable. Noting that we have chosen Q = X1/6+ε/2, we apply Lemma 2.2.6

to the first term to get

D2(X) ≪ X

logBX

for B > 0, as required. Combining this with our estimates for A(X), B(X)

(from Proposition 2.4.3) and C(X) we have that the error term in (2.5.2) is

O(X log−BX), as required.

Proof of Theorem 1.0.5. Analogously to the proof of Theorem 2.3.3, by [27,

Proposition 3.1] we have that

∑
0<|h|≤H

∣∣∣∣∣ ∑
X<n≤2X−h

Λ(n)ϖ2(n+ h) −
∫
M

S(α)S ′(α)e(−hα)dα

∣∣∣∣∣
2

≪ H

∫
m

|S(α)||S ′(α)|
∫
m∩[α− 1

2H
,α+ 1

2H
]

|S(β)||S ′(β)|dβdα.

By Cauchy-Schwarz on the integral over β, we have that the above is bounded
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by

≪ H

∫
m

|S(α)||S ′(α)|

(∫
m∩[α− 1

2H
,α+ 1

2H
]

|S(β)|2dβ

)1/2

×

(∫
m∩[α− 1

2H
,α+ 1

2H
]

|S ′(β)|2dβ

)1/2

dα

≪ H

(∫
m

|S(α)||S ′(α)|dα
)(∫ 1

0

|S ′(β)|2dβ
)1/2

×

(
sup
α∈m

∫
m∩[α− 1

2H
,α+ 1

2H
]

|S(β)|2dβ

)1/2

.

In the last step we have trivially bounded one of the integrals over the minor

arcs by the integral over the unit circle and taken the supremum over α ∈ m.

Applying Cauchy-Schwarz again to the integral over α, we have the bound

≪ H

(∫
m

|S(α)|2dα
)1/2(∫

m

|S ′(α)|2dα
)1/2(∫ 1

0

|S ′(β)|2dβ
)1/2

×

(
sup
α∈m

∫
m∩[α− 1

2H
,α+ 1

2H
]

|S(β)|2dβ

)1/2

≪ H

(∫ 1

0

|S ′(α)|2dα
)(∫ 1

0

|S(α)|2dα
)1/2

×

(
sup
α∈m

∫
m∩[α− 1

2H
,α+ 1

2H
]

|S(β)|2dβ

)1/2

.

Again, in the last line we have trivially bounded the integral over the minor

arcs by the integral over the unit circle. Trivially, we have that

∫ 1

0

|S(α)|2dα ≪ X(logX) log logX,

∫ 1

0

|S ′(α)|2dα ≪ X logX,
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so, combining these estimates with Proposition 2.4.2 (suitably adjusting for

the choices of Q0, Q,H), we have that

∑
0<|h|≤H

∣∣∣∣∣ ∑
X<n≤2X−h

Λ(n)ϖ2(n+ h) −
∫
M

S(α)S ′(α)e(−hα)dα

∣∣∣∣∣
2

≪ HX2

logBX
.

Therefore, applying Chebyshev’s inequality and Proposition 2.5.1 followed

by partial summation gives the result.



Chapter 3

Future Outlook

For our main result Theorem 1.0.2 on correlations of almost primes, the

smallest possible choice of H is (logX)19+ε, however it may be possible

to lower this exponent. In the proof of Theorem 1.0.2 we apply the ar-

gument of Teräväinen [38, Sections 2-4] showing that almost all intervals

[x, x + (log x)5+ε] contain an integer which has exactly two prime factors.

The second half of Teräväinen’s paper is dedicated to lowering the exponent

5 + ε to 3.51 through an argument additionally using some sieve theory and

the theory of exponent pairs. This result has recently been further improved

by Matomäki and Teräväinen [29], who prove that for almost all x the inter-

val (x, x+ (log x)2.1] contains E2 numbers. We do not apply ideas from these

arguments here, but it is possible that adapting some aspects to our proof

could lower the exponent of H in Theorem 1.0.2.

A natural next question is whether we can establish an asymptotic for-

137
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mula for the number of integers n = p1p2p3 ≤ X such that n+ h has exactly

three (or, more generally, k ≥ 3) prime factors which holds for almost all

|h| ≤ H = H(X).

Question 3.0.1. Let k ≥ 3 and define Ek be the set of integers n = p1 · · · pk

with exactly k prime factors. Can we show an asymptotic formula of the

form

1

X

∑
X<n≤2X

1Ek
(n)1Ek

(n+ h) ∼ S(h)

(
1

X

∑
X<n≤2X

1Ek
(n)

)2

which holds for almost all |h| ≤ H = H(k,X)? How short an average H can

we take?

In his work on almost primes in almost all short intervals, Teräväinen

[38] proved results for Ek numbers with k ≥ 2. In particular, Teräväinen

showed that almost all intervals [x, x + (log x)3.51x] with x ≤ X contain an

E2 number, and almost all intervals [x, x+ (log log x)6+ε log x] contain an E3

number. For k ≥ 4, the author shows that there exists a constant Ck > 0

such that almost all intervals [x, x+(logk−1 x)Ck log x] contain an Ek number.

It is therefore reasonable to expect that we could adapt the arguments used

to prove these results along the lines of Sections 2.3.5 - 2.3.6 to decrease

the size we can take the prime factor P in Proposition 2.3.21. Provided

we can suitably adapt the argument treating the contribution of the minor

arcs, it would be expected that we would then obtain a shorter average H

over which the expected asymptotic formula for correlations of Ek numbers
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(k ≥ 3) holds than for correlations of E2 numbers.

If we could obtain such results, we could also ask about other correlations

of primes and almost primes, for example

1

X

∑
X<n≤2X

1P(n)1Ek
(n+ h),

with k ≥ 3. We would not expect to be able to go beyond the range H ≥

X1/6+ε established in Theorem 1.0.5 using our arguments, as the limitation

there is due to the presence of the prime in the correlation.

Similarly, if asymptotic formulas for correlations of Ek numbers and cor-

relations of Eℓ numbers can be established on average for some ℓ ≥ k ≥ 2,

then for correlations of almost primes of the form

1

X

∑
X<n≤2X

1Ek
(n)1Eℓ

(n+ h),

we would expect the range of H to match the range known for correlations

of Ek numbers.

Another future direction is to investigate whether we can extend these

methods of Matomäki and Radziwi l l [25] and Teräväinen [38] to another set-

ting, for example the Gaussian integers. In particular, we could ask whether

we can establish an analogue of the work of Teräväinen [38] and show that

almost all narrow sectors contain a Gaussian ‘almost prime’.

Question 3.0.2. Let 0 ≤ ϕ ≤ π
2

and 0 < δ = δ(X) ≤ π
2

shrink as X → ∞.
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How small can we take δ such that almost all sectors X < N(a) ≤ 2X,

θa ∈ (ϕ, ϕ + δ] contain a Gaussian almost prime a with exactly two prime

factors? Or exactly k ≥ 2 factors?

If such results can be proved, it would then be natural to ask whether we

can establish results on correlations of Gaussian ‘almost primes’ and primes.



Appendix A

Primes in short arithmetic

progressions

In this appendix we prove the following variant of a theorem on primes in

short arithmetic progressions, due to Koukoulopoulos [21].

Lemma 2.2.6. Let A ≥ 1 and ε ∈ (0, 1
3
] be fixed. Let X ≥ 1, 1 ≤ Q ≤ ∆

X1/6+ε

and ∆ = Xθ with 1
6

+ 2ε ≤ θ ≤ 1. Then we have that

∑
q≤Q

∑
χ(q)

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+q∆

(Λ(n)χ(n) − δχ)

∣∣∣∣∣
2

dx≪ Q3∆2X

logAX
,

where we define δχ = 1 if χ = χ0 and δχ = 0 otherwise.

141
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A.1 Preliminary Results

We will again reduce the problem to finding cancellation in Dirichlet poly-

nomials

F (s, χ) :=
∑

X<n≤2X

Λ(n)χ(n)

ns
,

which will be handled using mean and large value theorems. The large values

result of Jutila (Lemma 2.3.32) is not sharp enough for this argument, as we

would lose in the power of (qTX)ε which appears in (2.3.21), where ℑ(s) ∈

T ⊂ [−T, T ] and T is well-spaced. We will instead use a result derived from

Huxley. First, we recall the definition of a well-spaced set:

Definition 2.3.23. [Well-Spaced Set] We say a set T is well-spaced if for

any t, u ∈ T with t ̸= u we have that |t− u| ≥ 1.

Lemma A.1.1. Fix m ∈ N, r ≥ 0 and let {an}Nn=1 be a sequence of complex

numbers such that |an| ≤ dm(n)(log n)r for all n ≤ N . For each Dirichlet

character χ, we let A(s, χ) =
∑N

n=1
anχ(n)

ns and consider a well-spaced set

R ⊂
⋃
q≤Q

⋃
χ(q)

χ primitive

{(t, χ) : t ∈ R, |A(1
2

+ it, χ)| ≥ V },

where V,Q, T ≥ 1 are some parameters. Then

|R| ≪m,r min

{
N +Q2T

V 2
,
N

V 2
+
NQ2T

V 6

}
(log 2N)3m

2+6r+18.

Proof. See [21, Lemma 3.2]. This follows from Huxley’s result [18, Theorem
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9.18]

We will also need to be able to bound a Dirichlet polynomial with a

Dirichlet character by a shorter polynomial:

Lemma A.1.2. Let χ be a primitive Dirichlet character modulo q ∈ (1, Q]

and let g : [0,+∞) → [0,+∞) be a smooth function supported on [1, 4]. Let

t ∈ R, N ≥ 1 and r be a non-negative integer. If |t| ≤ T for some T ≥ 2

and M = max{1, (QT/N)1+δ} for some fixed δ > 0, then

∞∑
n=1

g(n/N)χ(n)(log n)r

n1/2+it
≪r,δ (log 2N)r

∫ ∞

−∞

∣∣∣∣∣∑
n≤M

χ(n)

n1/2+i(t+u)

∣∣∣∣∣ du

1 + u2
.

Proof. This is [21, Lemma 3.3].

A.2 Proof of the Lemma

We outline how to adapt the proof appearing in [21, Section 4]. First, we

will show that the contribution of the imprimitive characters is acceptable.

Lemma A.2.1. Let A ≥ 1 and ε ∈ (0, 1
3
] be fixed. Let X ≥ 1, 1 ≤ Q ≤ ∆

X1/6+ε

and ∆ = Xθ with 1
6

+ 2ε ≤ θ ≤ 1. Then we have that

∑
q≤Q

∑
χ(q)

χ imprimitive

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+q∆

(Λ(n)χ(n) − δχ)

∣∣∣∣∣
2

dx≪ Q3∆2X

logAX
+XQ2 log4X.

Proof. First, we treat the contribution of the principal character. We have
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that ∣∣∣∣∣ ∑
x<n≤x+q∆

(Λ(n)χ0(n) − 1) −
∑

x<n≤x+q∆

(Λ(n) − 1)

∣∣∣∣∣ ≤ ∑
x<n≤x+q∆

(n,q)>1

Λ(n)

≤ ω(q) logX

≪ log2X.

This error contributes ≪ XQ2 log4X, which is acceptable. Then, since we

have ∆ ≥ X1/6+2ε, we apply what is known about primes in almost all short

intervals (Lemma 2.2.5) to get that

∑
q≤Q

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+q∆

(Λ(n) − 1)

∣∣∣∣∣
2

dx≪
∑
q≤Q

(q∆)2X

logAX
≪ Q3∆2X

logAX
,

which contributes the first term of the bound.

Now we deal with the contribution of the remaining imprimitive charac-

ters. Suppose χ mod q is non-principal and induced by χ1 mod q1, then we

have that

∣∣∣∣∣ ∑
x<n≤x+q∆

Λ(n)χ(n) −
∑

x<n≤x+q∆

Λ(n)χ1(n)

∣∣∣∣∣ ≤ ∑
x<n≤x+q∆

(n,q)>1

Λ(n) ≪ log2X.

Overall, this contributes ≪ XQ2 log4X, which contributes the second term.
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Therefore we have reduced the problem to showing that

∑
2≤q≤Q

∑
q1|q

∑∗

χ(q1)

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+q∆

Λ(n)χ(n)

∣∣∣∣∣
2

dx

=
∑

2≤q2≤Q

∑
2/q2≤q1≤Q0/q2

∑∗

χ(q1)

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+q1q2∆

Λ(n)χ(n)

∣∣∣∣∣
2

dx

≪Q3∆2X

logAX
,

(A.2.1)

where
∑∗

indicates that we restrict the sum to primitive characters. We

now split the sum over the modulus q into O(logX) dyadic intervals [Q1, 2Q1]

with 2/q2 ≤ Q1 ≤ Q/q2. Then (A.2.1) is reduced to showing that

∑
Q1≤q1≤2Q1

∑∗

χ(q1)

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+q1q2∆

Λ(n)χ(n)

∣∣∣∣∣
2

dx≪ q22Q
2
1∆

2X

logA+1X
.

Let Q1 = ∆X−β(logX)−A−1 = Xθ−β(logX)−A−1, so that β ∈ [1/6 + ε/2, θ].

We will next apply Perron’s formula to reduce the problem to finding

cancellation in Dirichlet polynomials, then use the Heath-Brown identity to

decompose the long polynomial which arises into shorter polynomials.

Lemma A.2.2. Let A ≥ 1 and ε ∈ (0, 1
3
] be fixed. Let X ≥ 1 and ∆ = Xθ

with 1
6

+ 2ε ≤ θ ≤ 1. Let Q1 = ∆X−β log−A−1X with β ∈ [1/6 + ε/2, θ].

Let k0 ≥ 3 be an integer and for s ∈ C and χ mod q1 define Gj(s, χ) =
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∏
i≤Jj

Fi(s, χ) with Jj ≤ 2k0, where each Fi(s, χ) is of the form

∑
Ni<n≤2Ni

χ(n) log n

ns
,
∑

Ni<n≤2Ni

χ(n)

ns
, or

∑
Ni<n≤2Ni

χ(n)µ(n)

ns

and the lengths satisfy N1 · · ·NJj = X1+o(1), Ni ≫ exp
(

logX
log logX

)
. Then, we

have that

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+q1q2∆

Λ(n)χ(n)

∣∣∣∣∣
2

dx

≪ X2(logX)2D+3 min

{
q2Q1∆

X
,

1

T

}2 L∑
j=1

∫
T≤|t|+1≤2T

|Gj(
1
2

+ it, χ)|2dt.

(A.2.2)

for some D > 0 and L ≤ (logX)D.

Proof. We apply Perron’s formula to the sum over n so that

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+q1q2∆

Λ(n)χ(n)

∣∣∣∣∣
2

dx

=
1

4π2

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫ 2X

X

∣∣∣∣∣∣
∫
ℜ(s)=1/2
|ℑ(s)|≤T0

F (s, χ)
(1 + q1q2∆/x)s − 1

s
xsds

∣∣∣∣∣∣
2

dx

+O(Q2
1X

1+ε/5),

where for s ∈ C and χ mod q we define

F (s, χ) :=
∞∑
n=1

Λ(n)χ(n)

ns
.
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We choose T0 to be the unique integer of the form 2m − 1 ∈ (X
2
, X] and split

the integral with respect to t into O(logX) dyadic intervals, so that

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+q1q2∆

Λ(n)χ(n)

∣∣∣∣∣
2

dx

≪(logX)2
∑

Q1<q1≤2Q1

∑∗

χ(q1)

∫ 2X

X

∣∣∣∣∣∣
∫

ℜ(s)=1/2
T≤|ℑ(s)|+1≤2T

F (s, χ)
(1 + q1q2∆/x)s − 1

s
xsds

∣∣∣∣∣∣
2

dx

+Q2
1X

1+ε/5.

(A.2.3)

Next, we expand the square, apply the bound

(1 + q1q2∆/x)1/2+it − 1

1/2 + it
≪ min

{
q2Q∆

X
,

1

1 + |t|

}

and integrate with respect to x to get that the integral in (A.2.3) is bounded

by

∫ 2X

X

∣∣∣∣∣∣
∫

ℜ(s)=1/2
T≤|ℑ(s)|+1≤2T

F (s, χ)
(1 + q1q2∆/x)s − 1

s
xsds

∣∣∣∣∣∣
2

dx

≪ X2 min

{
q2Q1∆

X
,

1

T

}2 ∫
T≤|t|+1≤2T

|F (1
2

+ it1, χ)|2
∫ 2T

−2T

1

1 + |t1 − t2|
dt2dt1

≪ X2(logX) min

{
q2Q1∆

X
,

1

T

}2 ∫
T≤|t|+1≤2T

|F (1
2

+ it, χ)|2dt. (A.2.4)

We now apply Heath-Brown’s decomposition (Lemma 2.3.26) with k0 ≥ 3
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followed by the triangle inequality to get that

∫
T≤|t|+1≤2T

|F (1
2

+ it, χ)|2dt≪ (logX)2D
L∑

j=1

∫
T≤|t|+1≤2T

|Gj(
1
2

+ it, χ)|2dt,

such that L ≤ logDX for some D > 0, and Gj(s, χ) =
∏

i≤Jj
Fi(s, χ) with

Jj ≤ 2k0 and each Fi(s, χ) is of the form

∑
Ni<n≤2Ni

χ(n) log n

ns
,
∑

Ni<n≤2Ni

χ(n)

ns
, or

∑
Ni<n≤2Ni

χ(n)µ(n)

ns
.

The lengths satisfy N1 · · ·NJj = X1+o(1), Ni ≫ exp
(

logX
log logX

)
.

We will again use mean and large value theorems to bound this mean

value of the Dirichlet polynomial Gj(
1
2

+ it, χ).

Lemma A.2.3. Let A ≥ 1 and ε ∈ (0, 1
3
] be fixed. Let X ≥ 1 and ∆ = Xθ

with 1
6

+ 2ε ≤ θ ≤ 1. Let Q1 = ∆X−β(logX)−A−1 with β ∈ [1/6 + ε/2, θ].

Let k0 ≥ 3 be an integer and for s ∈ C and χ mod q1 define Gj(s, χ) =∏
i≤Jj

Fi(s, χ) with Jj ≤ 2k0, where each Fi(s, χ) is of the form

∑
Ni<n≤2Ni

χ(n) log n

ns
,
∑

Ni<n≤2Ni

χ(n)

ns
, or

∑
Ni<n≤2Ni

χ(n)µ(n)

ns

and the lengths satisfy N1 · · ·NJj = X1+o(1), Ni ≫ exp
(

logX
log logX

)
. Let 1 ≤
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j ≤ L be a fixed integer. Then, we have that

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫
T≤|t|+1≤2T

|Gj(
1
2

+ it, χ)|2dt

≪ max

{
1,
q2Q1∆T

X

}2
X

(logX)A+3D+4
.

Assuming this Lemma, we are able to prove Lemma 2.2.6.

Proof of Lemma 2.2.6 assuming Lemma A.2.2. First, by Lemma A.2.1, we

are able to reduce the problem to handling the contribution of the primitive

characters since

∑
q≤Q

∑
χ(q)

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+q∆

(Λ(n)χ(n) − δχ)

∣∣∣∣∣
2

dx

≪
∑
q≤Q

∑∗

χ(q1)

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+q∆

Λ(n)χ(n)

∣∣∣∣∣
2

dx+
Q3∆2X

logAX
+XQ2 log4X.

We split the sum over q ≤ Q into O(logX) dyadic intervals [Q1, 2Q1] with

2/q2 ≤ Q1 ≤ Q/q2. Then, we apply Lemma A.2.2 to obtain

∑
q≤Q

∑∗

χ(q)

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+q∆

Λ(n)χ(n)

∣∣∣∣∣
2

dx

≪ X2(logX)2D+3 min

{
q2Q1∆

X
,

1

T

}2

×
L∑

j=1

∑
q≤Q

∑∗

χ(q1)

∫
T≤|t|+1≤2T

|Gj(
1
2

+ it, χ)|2dt.

For each 1 ≤ j ≤ L, we apply Lemma A.2.3. Since there are L ≤ logDX



APPENDIX A. PRIMES IN SHORT ARITHMETIC PROGRESSIONS150

terms, this is bounded by

≪ min

{
q2Q1∆

X
,

1

T

}2

× max

{
1,
q2Q1∆T

X

}2
X3

logA+1X

≪ q22Q
2
1∆

2X

(logX)A+1
.

Then, combining the contribution of the O(logX) dyadic intervals Q1 ≤ q ≤

2Q1, we have that

∑
q≤Q

∑
χ(q)

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+q∆

(Λ(n)χ(n) − δχ)

∣∣∣∣∣
2

dx≪ Q3∆2X

logAX
,

as required.

As in Chapter 2, to prove Lemma A.2.3 we split the domain of integration

according to the size of the Dirichlet polynomials Fi(s, χ). We fix a 1 ≤ j ≤

L. Fix some integers U1, . . . , UJj such that 1 ≤ U1 ≪
√
N1 logN1 (supposing

w.l.o.g. that the first polynomial has the log n coefficient) and 1 ≤ Uj ≪
√
Ni

for j = 2, . . . , Jj and set U := U1 · · ·UJj . Define P(χ, T,U) to be

{
t ∈ R : T ≤ |t| + 1 ≤ 2T, Uj ≤ |Fi(

1
2

+ it, χ)| ≤ 2Ui, 1 ≤ i ≤ Jj
}
, (A.2.5)

so there are up to O(log2k0 X) such subsets to consider. Therefore, in order
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to prove Lemma A.2.3, we need to show that

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫
P(χ,T,U)

|Gj(
1
2

+ it, χ)|2dt

≪ max

{
1,
q2Q∆T

X

}2
X

(logX)A+4k0+3D+4
.

There are assumptions we can make to simplify the problem about the

size of the Dirichlet polynomials U , the length of integration T , and the

lengths of the polynomials Ni.

Assumption 1. We have

U ≤ min

{√
X logBX√

Q1

,

√
X

logC X

}
.

We first show that we may restrict to U ≤ (logX)B
√
X/Q1; if instead

U > (logX)B
√
X/Q1, then by (A.2.4) and |Gj(

1
2

+ it, χ)|2/U2 ≥ 1, we have

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫
P(χ,T,U)

|Gj(
1
2

+ it, χ)|2dt

≪ 1

U2

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫ 2T

−2T

|Gj(
1
2

+ it, χ)|4dt

≪ Q1

X log2BX

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫ 2T

−2T

|Gj(
1
2

+ it, χ)|4dt

and, therefore, applying the mean value theorem (Lemma 2.3.27) we have
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that

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫
P(χ,T,U)

|Gj(
1
2

+ it, χ)|2dt≪ Q1(Q
2
1T +X2)

X(logX)2B−16k20−5
.

Overall, since Q1 ≤ Q/q2 the contribution to (A.2.2) of the above is

min

{
q2Q1∆

X
,

1

T

}2
Q1X(Q2

1T +X2)

(logX)2B−16k20−4k0−3D−9
≪ Q3∆2X

(logX)2B−16k20−4k0−3D−9
,

which is acceptable as we assume that B > 0 is sufficiently large in terms of

A and k0.

The second claim can be proved in the same way as in [21]. If we have

that Q1 > (logX)2(B+C), then we already have that U ≤ (logX)B
√
X/Q1 ≤

√
X/(logX)C , so we now assume that Q1 ≤ (logX)2(B+C). We define

I := {1 ≤ i ≤ Jj : Ni > Xδ2}

where δ > 0 is small and fixed. We may suppose that δ satisfies δ2 < 1
Jj

so

that |I| ≥ 1. If we let i ∈ I and χ be a primitive character modulo some

q1 ∈ (Q1, 2Q1], then we have for all t ∈ [−X,X] that

|Fi(
1
2

+ it, χ)| ≪
√
Ni

(logX)(C+1)/Jj
,

since Fi is prime-factored (by Lemma 2.3.26). Thus we may assume Ui ≪
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√
Ni/(logX)(C+1)/Jj for all i ∈ I and since |I| ≥ 1 we have that

U =

Jj∏
j=1

Ui ≪
1

(logX)C+1

Jj∏
j=1

√
Ni ≪

√
X

logC X
,

as required.

Assumption 2. We have

T ≤ X(logX)A/2+8k20+3D/2+3

q2Q1∆
. (A.2.6)

Suppose we have that T > X(logX)A/2+8k20+3D/2+3

q2Q1∆
, then an application of

the mean value theorem (Lemma 2.3.27) shows that

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫
P(χ,T,U)

|Gj(
1
2

+ it, χ)|2dt

≪ (Q2
1T +X)(logX)4k

2
0+2

≪ max

{
1,
q2Q1∆T

X

}2
X

(logX)A+4k0+3D+4
,

which is acceptable. Note that since Q1 = ∆X−β(logX)−A−1, we therefore

may assume that

Q2
1T ≤ X1−β

q2
(logX)−A/2+8k20+3D/2+2. (A.2.7)



APPENDIX A. PRIMES IN SHORT ARITHMETIC PROGRESSIONS154

Assumption 3. When Fi(s, χ) has the coefficient log n or 1, we have

Ni ≤ (Q1T )1/2+δ logBX. (A.2.8)

Suppose that Ni > (Q1T )1/2+δ logBX for some such Fi. For simplicity,

assume that the coefficient is 1, with the log n case being handled analogously.

Fix δ1 > 0 such that 1+δ1
2+δ1

= 1/2+δ and define M := max{1, (2Q1T/Ni)
1+δ1}.

By Lemma A.1.2 we have that

Fi(
1
2

+ it, χ) ≪
∫ ∞

−∞

∣∣∣∣∣∑
n≤M

χ(n)

n1/2+i(t+u)

∣∣∣∣∣ du

1 + u2
.

Note that if we were in the log coefficient case the only difference here

would be an additional factor of logX. Substituting the above and applying
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Cauchy-Schwarz to the integral with respect to u we have that

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫
P(χ,T,U)

|Gj(
1
2

+ it, χ)|2dt

≪
∑

Q1<q1≤2Q1

∑∗

χ(q1)

∫ 2T

−2T

(∫
R

∣∣∣∣∣∑
n≤M

χ(n)

n1/2+i(t+u)

∣∣∣∣∣ du

1 + u2

)2 ∏
1≤ℓ≤Jj
ℓ ̸=j

|Fℓ(
1
2

+ it, χ)|2dt

≪
∫
R

∫
R

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫ 2T

−2T

∣∣∣∣∣∑
n≤M

χ(n)

n1/2+i(t+u1)

∣∣∣∣∣
2

×
∏

1≤ℓ≤Jj
ℓ̸=j

|Fℓ(
1
2

+ it, χ)|2 dtdu1du2
(1 + u21)(1 + u22)

≪
∫ ∞

−∞

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫ 2T

−2T

∣∣∣∣∣∑
n≤M

χ(n)

n1/2+i(t+u)

∣∣∣∣∣
2 ∏
1≤ℓ≤Jj
ℓ̸=j

|Fℓ(
1
2

+ it, χ)|2 dtdu
1 + u2

.

Applying the mean value theorem (Lemma 2.3.27) gives that the above is

bounded by

≪
(
XM

Ni

+Q2
1T

)
(logX)4k

2
0+2

≪
(
X

Ni

(1 + (Q1T/Ni)
1+δ1) +Q2

1T

)
(logX)4k

2
0+2. (A.2.9)

By the definition of δ1 and our assumption Ni > (Q1T )1/2+δ logBX, we have

that

(Q1T )1+δ1

N2+δ1
i

<
(Q1T )1+δ1−(2+δ1)(1/2+δ)

(logX)B(2+δ1)
<

1

(logX)B(2+δ1)
.
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Applying (A.2.7), we have that (A.2.9) is bounded by

≪
(
X

Ni

+Q2
1T

)
(logX)4k

2
0+2

≪
(

X

logBX
+X1−β(logX)−A/2+8k20+3D/2+2

)
(logX)4k

2
0+2,

which is acceptable as B > 0 is taken sufficiently large in terms of A, k0 and

D, and thus we may assume (A.2.8) from now on.

Therefore combining Assumptions 2 (A.2.6) and 3 (A.2.8), if Fi has co-

efficient 1 or log n we have that

Ni ≤ (Q1T )1/2+δ logBX ≤ X(1/2+δ)(1−θ)+o(1) ≤ X1/2−δ

as long as δ > 0 is sufficiently small. Our application of the Heath-Brown

identity ensures that Ni ≪ X1/3 for the Fi with coefficient µ(n), so that

K ≥ 3.

We would like to apply results on large values of Dirichlet polynomials

(Lemma A.1.1), however the set P(χ, T,U) is not necessarily well-spaced.

We first construct

Z(χ, T,U) := {n ∈ Z : [n, n+ 1] ∩ P(χ, T,U) ̸= ∅} =: {n1, . . . , nr},

say, such that n1 < · · · < nr. For each 1 ≤ i ≤ r choose one point ti ∈

[ni, ni + 1] ∩ P(χ, T,U). This set of points {t1, . . . , tr} is not yet necessarily

well-spaced; if ni and ni+1 are consecutive integers it may be the case that
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|ti−ti+1| < 1. We now split this set of points {t1, . . . , tr} into two well-spaced

sets by separately considering the odd and even indexed points. In particular

we define

Rm(χ, T,U) := {ti : 1 ≤ i ≤ r, i ≡ m mod 2}

for m = 0, 1 and

Rm(T,U) :=
⋃

Q1<q1≤2Q1

⋃
χ(q1)

χ primitive

{(χ, t) : t ∈ Rm(χ, T,U)} (A.2.10)

again for m = 0, 1. We are now considering the polynomial Gj(s, χ) over well-

spaced sets of points, so we can now apply results on large values of Dirichlet

polynomials to prove a bound for the size of |Rm(T,U)| for m = 0, 1, which

will enable us to complete the proof.

Lemma A.2.4. Let A > 0 and k0 ≥ 3 be an integer. Let U := U1 · · ·U2k

satisfy Assumption 1. Then

|Rm(T,U)| ≪ X

U2(logX)A+4k0+3D+4
,

for m = 0, 1.

Proof. Let m = 0 or 1. We separate into three cases according to the sizes

of Ui with i ∈ I.

Case 1. We assume there is i ∈ I such that Ui >
√
Ni/(logBX).

In this case, we let r be a positive integer such that U2r
i ≥ Q2

1T . We now
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apply Lemma A.1.1 with A(s, χ) = Fi(s, χ)r which has length N r
i , and we

take V = U r
i . The coefficients of Fi(s, χ)r are bounded by ≪ (log n)rdr(n),

so we have that

|Rm(T,U)| ≪
(
N r

i

U2r
i

+
Q2

1T

U2r
i

)
(logX)3r

2+24

≪
(
(logX)2rB + 1

)
(logX)3r

2+6r+18.

Now, recalling that U ≤
√
X/(logC X), we have

|Rm(T,U)| ≪ X

U2(logX)2C−2rB−3r2−6r−18
.

Taking C > 0 sufficiently large in terms of B and r gives us the required

bound.

Case 2. We have that Ui ≤
√
Ni/(logBX) for all i ∈ I and there is some

j ∈ I such that Uj ≤ Xβ/2/(logBX).

We again apply Lemma A.1.1, but this time with A(s, χ) =
∏

ℓ ̸=j Fℓ(s, χ)

which has length X/Nj, and take V = U/Uj. The coefficients of
∏

ℓ ̸=j Fℓ(s, χ)

are bounded by ≪ (log n)d2k0−1(n) so that

|Rm(T,U)| ≪
(
XU2

j

U2Nj

+
Q2

1TU
2
j

U2

)
(logX)12k

2
0+24

≪ X

U2

(
1

log2BX
+

(logX)−A/2+8k20+3D/2+2

log2BX

)
(logX)12k

2
0+24,

where we have used (A.2.7). This is acceptable provided B is sufficiently
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large in terms of A, k0 and D.

Case 3. We have Ui ∈ [Xβ/2/(logBX),
√
Ni/(logBX)] for all i ∈ I.

For now, we assume instead that

|Rm(T,U)| ≥ X

U2(logX)A+4k0+3D+4
.

Once again we apply Lemma A.1.1 with A(s, χ) =
∏

ℓ̸=i Fℓ(s, χ) for each

i ∈ I, so that

|Rm(T,U)| ≪
(
XU2

i

NiU2
+
Q2

1TXU
6
i

NiU6

)
(logX)12k

2
0+24

≪ X

U2(logX)2B−12k20−24
+
X2−βU6

i (logX)−A/2+20k20+3D/2+26

NiU6
.

As B is sufficiently large in terms of A, k0 and D the first term does not

provide a contradiction. However, the second term gives that

U4

U6
i

≪ X1−β(logX)A/2+28k20+3D/2+30

Ni

.

Taking the product over all i ∈ I, we have that

∏
i∈I

1

Ni

≪ 1

N1 · · ·NJj

∏
i/∈I

Ni ≪ Xkδ2−1.

Therefore, with I := |I|, we have that

U4I−6 ≪ XI(1−β)+kδ2−1(logX)I(A/2+28k20+3D/2+30).
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We also have that U ≥
∏

i∈I Ui ≥ XIβ/2(logX)2BI , so that

XIβ(2I−3)(logX)4BI(2I−3) ≪ XI(1−β)+Jjδ
2−1(logX)I(A/2+28k20+3D/2+30)

≪ XI(1−β)+Jjδ
2−1+δ2 .

In particular, comparing the powers of X, we must have that 2βI(I − 1) ≤

I − 1 + (Jj + 1)δ2 and therefore

β ≤ 1

2I
+
δ2(Jj + 1)

2I(I − 1)
.

Recalling that I ≥ 3 and taking δ sufficiently small in terms of ε and Jj, this

contradicts that β ≥ 1/6 + ε/2. Therefore, we must have in this case that

|Rm(T,U)| ≤ X

U2(logX)A+4k0+3D+4
,

as required.

We are now able to complete the proof of Lemma A.2.3 and therefore the

proof of Lemma 2.2.6.

Proof of Lemma A.2.3. Fix an integer 1 ≤ j ≤ L. We first split the domain

of integration according to the size of the factors Fi(s, χ) of Gj(s, χ). As in

(A.2.5), we fix some integers U1, . . . , UJj such that 1 ≤ U1 ≪
√
N1 logN1 and

1 ≤ Uj ≪
√
Ni for j = 2, . . . , Jj, and set U := U1 · · ·UJj . Define P(χ, T,U)
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to be

{
t ∈ R : T ≤ |t| + 1 ≤ 2T, Uj ≤ |Fi(

1
2

+ it, χ)| ≤ 2Ui, 1 ≤ i ≤ Jj
}
.

Then we have that

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫
T≤|t|+1≤2T

|Gj(
1
2

+ it, χ)|2dt

≪ (logX)4k0
∑

Q1<q1≤2Q1

∑∗

χ(q1)

∫
P(χ,T,U)

|Gj(
1
2

+ it, χ)|2dt,

since there are up to O(log2k0 X) sets P(χ, T,U) to consider. We further split

P(χ, T,U) into the well-spaced sets Rm(T,U) for m = 0, 1 as in (A.2.10).

We have that

∑
Q1<q1≤2Q1

∑∗

χ(q1)

∫
P(χ,T,U)

|Gj(
1
2

+ it, χ)|2dt

≪
∑

Q1<q1≤2Q1

∑∗

χ(q1)

r∑
i=1

|Gj(
1
2

+ iti, χ)|2

=
∑

Q1<q1≤2Q1

∑∗

χ(q1)

∑
i≤r/2

|Gj(
1
2

+ it2i, χ)|2 +
∑
i≤r/2

|Gj(
1
2

+ it2i−1, χ)|2


≪ U2 (|R0(T,U)| + |R1(T,U)|) .

By Lemma A.2.4, this is

≪ X

(logX)A+4k0+3D+4
,



APPENDIX A. PRIMES IN SHORT ARITHMETIC PROGRESSIONS162

which immediately gives the required bound.
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[24] J. D. Lichtman and J. Teräväinen. On the Hardy–Littlewood–Chowla

conjecture on average. Forum Math. Sigma, 10:e57, 2022.
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