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A B S T R A C T

A significant increase in the incidence of liver cancer is projec-
ted over the next few decades with limited therapeutic options
for patients. Like many other cancer types, liver cancer can be
promoted by “Western-style” diets (WD) that are high in fat
and processed sugars, such as fructose. Studies indicate that
chronic WD consumption can lead to systemic dysregulation of
insulin signalling and lipid metabolism that increase the risk for
development of liver diseases such as non-alcoholic fatty liver
disease. Liver tissue damage and the ensuing inflammation has
been shown to promote mutations that can lead to oncogenic
transformation in hepatocytes that lead to the formation of ma-
lignancies. A particular challenge in understanding the dietary
impact on liver and tumour metabolism is how dietary nutrients
fuel metabolic pathways and how this synergises with gene
expression changes caused by cell-autonomous and systemic
signals because of diet. In order to address this it is necessary
survey metabolic fluxes on a global scale and genome scale
metabolic models (GSMMs) used in systems biology provide
rigorous mathematical frameworks for this purpose.

To study how diet impacts liver and liver tumour metabol-
ism, a new mouse GSMM, Mouse Metabolic Reaction Network
(MMRN), was reconstructed using orthology between mouse
and human. MMRN was constrained with gene expression data
from the tissues of a carcinogen-induced mouse model of liver
cancer. By using in silico constraint-based modelling approaches,
the effect of gene expression and dietary composition, alone
and in combination, on liver and tumour metabolism were in-
vestigated. The WD was shown to lead to distinct metabolic
phenotypes irrespective of gene expression, but also, that gene
expression in the tumour drive flux through specific metabolic
pathways compared to liver tissue. These observations were val-
idated experimentally. A novel computational approach, termed
Systematic Diet Composition Swap (SyDiCoS), was developed
to investigate the impact of WD by swapping out individual nu-
trients to its corresponding composition in a CD and investigate
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its impact on metabolic flux. This approach made it possible to
deconvolute the effect of specific dietary nutrients on metabolic
flux in a given genetic background. SyDiCoS showed that car-
bohydrates and lipids in WD increases glycerol and succinate
production, respectively, and that both these nutrient classes are
required to increase biomass production in the tumour.

Using dietary content as input for tissue GSMMs is the state
of the art in metabolic modelling and has been shown to result
in accurate model predictions. However, dietary nutrients are
first metabolised by microorganisms in the gut, and the diet
itself has a significant impact in the composition of the gut mi-
crobiome that, in turn, effects its functional metabolic capability.
To this end, metagenomics data were used to reconstruct gut mi-
crobiome community GSMMs to study how the gut microbiome
composition impacts gut metabolism under different dietary
regiments. Using this approach together with SyDiCoS and sys-
tematic removal of specific microorganisms from the community,
the interplay between diet and gut microbiome composition on
metabolism was investigated. Finally, community GSMMs and
tissue GSMMs were integrated into a single multi-tissue GSMM
to establish a diet-microbiome-liver metabolic axis. Several novel
and previously identified metabolic interactions between the
microbiome and the liver as well as tumour-host metabolic inter-
actions were identified. The diet was shown to influence similar
pathways as in single-tissue GSMMs, but its integration into a
multi-tissue GSMM effected exchanges of metabolites involved
in these pathways. This indicated that the integration of tis-
sues into a multi-tissue framework impacts predictions made in
single-tissue GSMM predictions.
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1
I N T R O D U C T I O N

“The whole is greater than the sum of its parts” - Aristotle

1.1 metabolism of liver disease and liver cancer

Metabolism is the ensemble of chemical reactions that allow
cells to sustain their survival and perform key functions [1].
Two of the primary objectives of metabolism are to convert di-
etary nutrients into energy for essential cellular processes and
to use these nutrients as building blocks for proteins, lipids,
carbohydrates and nucleic acids. Metabolic reactions are organ-
ised into series of successive steps, or metabolic pathways, that
converts a chemical substrate into a product catalysed by a spe-
cific enzyme. Enzymes are essential regulators of the rate of
metabolism, or metabolic flux, through metabolic pathways and
their expression is regulated by mechanisms that operate at a
cellular, tissue and organismal level.

The liver is one of the most important metabolic organs in
human physiology. It performs several key metabolic functions
such as maintenance of glucose homeostasis, lipid metabolism,
energy biosynthesis and detoxification [2–4]. Several of these
key functions are impaired in liver disease. Over recent years,
we have seen an increase in the incidence of non-alcoholic fatty
liver disease (NAFLD), a spectrum of progressive liver diseases
that are primarily characterised by excessive retention of lip-
ids in liver tissue [5–7] (Figure 1.1). The global prevalence of
NAFLD is estimated to be 25.24% with a consistent rise in the
past decade from 15% in 2005 to 25% in 2010 [5, 8]. More severe
cases of increased hepatic lipid accumulation results in ensuing
inflammation and hepatocyte injury, known as nonalcoholic ste-
atohepatitis (NASH), which has seen similar trends in prevalence
almost doubling from 33% to 59.1% in the same timeframe. Ulti-
mately, severe tissue damage can lead to fibrosis and cirrhosis,
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2 introduction

Healthy liver NAFL NASH Cirrhosis Liver cancer

Steatosis
(Fat in >5% of 
hepatocytes)

Inflammation
Ballooning

Fibrosis

Late stages of
fibrosis

15-30% 12-40% 15-25% 7%

HVB/C Toxins Alcohol

NAFLD

Figure 1.1: Progression of liver disease to liver cancer. The dysregu-
lation of several metabolic pathways lead to the increase of
fat in hepatocytes to cause steatosis. Increased tissue dam-
age can cause persistent inflammation leading to fibrosis
and cirrhosis. A large percentage of patients with cirrhosis
develop liver cancer. Figure adapted from [11].

which increase the risk to develop liver cancer [7, 9]. Although
there are also other environmental factors that can cause cir-
rhosis, NAFLD is increasingly becoming the primary cause of
liver dysfunction worldwide. Liver cancer is currently one of
the few cancer types that show increased incidence rates which
is, in part, because of limited therapeutic options [10]. There is
therefore a great need for the development of novel avenues to
diagnose and treat NAFLD and liver cancer.

The exact molecular mechanisms of NAFLD pathology remain
largely unknown. The establishment of steatosis as well as the
progression to more advanced stages of liver disease are im-
pacted by several intrinsic and extrinsic factors effecting liver
metabolism, including diet, local and systemic metabolic repro-
gramming and the microbiome. Moreover, once liver tumours
are established, metabolic reprogramming is also promoted by
cell-autonomous factors and metabolic interactions of tumour
cells with the host liver and other remote tissues.

1.1.1 Key metabolic pathways contributing to liver disease pathogen-
esis

Increased consumption of "Western-style" diet (WD) has led to a
global epidemic of obesity [12]. Although different descriptions
of a WD exist, it is generally characterised by a high fat and
processed sugar, in particular fructose, content [13, 14]. In 2016,
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the World Health Organisation (WHO) estimated that more than
1.9 billion people are overweight or obese and current predic-
tions show that this number will rise significantly in coming
years. Although obesity is a risk factor for the development of
several diseases, the alarming increase of NAFLD is of particular
concern [15–17]. NAFLD has a strong metabolic phenotype and
is often referred to as the hepatic manifestation of metabolic
disease [15]. As much as 70% of patients with type 2 diabetes
mellitus (T2DM) have been shown to also have NAFLD and it
is now generally accepted that the initiating events of NAFLD
depend on the development of insulin resistance (IR) and obesity
[18, 19]. In obese patients with T2DM, NAFLD causes increased
hyperinsulinaemia, dyslipideamia and IR in hepatic and adipose
tissues [20]. Ultimately, this results in an imbalance in processes
that synthesise and break down lipids that increase lipid build-
up and result in steatosis. Although it is difficult to holistically
investigate the coordinated activity of the repertoire of meta-
bolic pathways that synergise to promote NAFLD, there has been
a significant advancement in our understanding of metabolic
pathways contributing to NAFLD pathogenesis.

Steatosis is the primary clinical feature of NAFLD. Therefore,
the principal metabolic features involve pathways in lipid meta-
bolism. Carbohydrate metabolism provides several substrates
for lipid metabolism and is dysregulated in IR and NAFLD. The
metabolic pathways for lipid and carbohydrate metabolism as
well as its regulation are discussed below.

Lipid metabolism

A complex interplay between hormones, signalling pathways
and transcription factors regulates lipid handling in the liver.
Triacylglyceride (TAG)s are the major class of lipids account-
ing for lipid accumulation in steatosis. The major pathway for
TAG synthesis is through the sequential acylation of glycerol-3-
phosphate (G3P) with three fatty acid (FA)s. In the liver, FAs have
three main sources; De novo lipogenesis (DNL), nonesterified
FA (NEFA)s derived from local and peripheral lipolysis in tissues
such as the white adipose tissue (WAT), and from dietary fats
[7]. The former two sources are directly impacted by IR and
obesity. An influx of lipids in hepatic tissue is balanced by the



4 introduction
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β-oxidation
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Figure 1.2: Imbalance between lipid anabolic and catabolic path-
ways that can lead to steatosis. The diet and lipolysis
in adipose tissue contribute to increased circulating FAs
that can be taken up by liver tissue. Together with local
de novo lipogenesis, this contributes to an increase in fat
in hepatocytes. Concomitantly, dysfunction in metabolic
pathways responsible for the breakdown of lipids, lipolysis
and b-oxidation, as well as secretion of lipids through lipo-
proteins can also increase hepatocyte lipid accumulation.
Figure adapted from [21].

catabolism of lipids through b-oxidation and the secretion of
lipoproteins, in particular very low density lipoproteins (VLDL),
to the blood. An imbalance between these pathways results in
increased lipid accumulation and the impairment of most of
these pathways have been implicated in NAFLD pathogenesis
(Figure 1.2) [21].

In normal physiological conditions, DNL contributes ~5% to
overall hepatic lipid synthesis, but has been shown to be signi-
ficantly increased in NAFLD and can be as high as 25% [22, 23].
This has been attributed to sterol regulatory element- binding
protein 1 (SREBP1) and carbohydrate-responsive element-binding
protein (ChREBP), the two main transcription factors that regu-
late DNL, that are both controlled by insulin and glucose [24–26].
These transcription factors enable the expression of key lipogenic
genes such as acetyl-coenzyme A carboxylase (ACC) and fatty
acid synthase (FAS). Hyperinsulinaemia and hyperglycaemia can
thus synergistically stimulate DNL and promote hepatic lipid
accumulation. Increased levels of several FA-binding proteins
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such as FABP4, FABP5 and CD36 have been associated with
the increased uptake of FAs into hepatocytes in NAFLD [27–29].
This increased flux of FAs to the liver place hepatocytes under
metabolic stress that promotes lipotoxicity and endoplasmic
reticulum (ER) stress.

At the same time, several mechanisms for dysfunctional clear-
ance or breakdown of FAs in liver tissue have been proposed to
contribute to NAFLD. FAs are primarily oxidised in the mitochon-
dria in liver tissue. The carnitine shuttle is responsible for the
transport of FAs from the cytosol to the mitochondria where they
can be further metabolised through b-oxidation. One of the key
enzymes in the shuttle, carnitine palmitoyltransferase (CPT)1,
is inhibited by malonoyl-CoA, an intermediate in DNL [30]. Re-
cently, the downregulation of CPT2, that has previously been
implicated in NAFLD-related hepatocellular carcinoma (HCC)
[31], was shown to be due to cell cycle regulators E2F1 and E2F2
that repress its expression [32]. Finally, the hepatic overexpres-
sion of hormone-sensitive lipase (HSL) and adipose triglyceride
lipase (ATGL), two enzymes involved in lipolysis, have been
shown to promotes FA oxidation and relieved steatosis in an
obesogenic mouse model suggesting that impaired local lipoly-
sis potentially also contributes to NAFLD [33].

Carbohydrate metabolism

The metabolic and signalling pathways involved in glucose meta-
bolism have been extensively studied in normal physiology as
well as in diseases such as diabetes and cancer that has character-
istic dysregulated glucose metabolic profiles. The liver is a vital
organ for glucose metabolism both after feeding and during fast-
ing. In fed conditions, insulin stimulates hepatic glucose uptake
through increased expression of glucose transporter (GLUT)s
of which GLUT2 is the primary glucose transporter in the liver
[34] (Figure 1.3). Glucose can then be used for the synthesis of
glycogen or can be catabolised through glycolysis to provide
carbons for storage molecules such as TAGs. The most important
of these for lipid synthesis is the production of G3P through a
process termed glyceroneogenesis. Transcription factors import-
ant in lipid metabolism, such as SREBP1, also control glycolysis
through, for example, regulation of glucokinase (GK) expression,
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the enzyme responsible for catalysing the first step in glyco-
lysis converting glucose to glucose 6-phosphate [35, 36]. The
liver is also the primary producer of glucose during fasting
conditions through the metabolic processes glycogenolysis and
gluconeogenesis. A primary metabolic characteristic of IR in
the liver is the impairment of insulin-mediated suppression of
gluconeogenesis resulting in increased glucose production and
hyperglyceamia [37].

Apart from the important role of glucose in liver metabolism,
several studies have implicated fructose to be a major contrib-
utor to the development of obesity and NAFLD [38, 39] (Figure
1.3). Early studies in animal models using labeled fructose and
glucose showed a two to three-fold increased labelling of plasma
and liver TAGs from fructose compared to glucose [40]. Inter-
estingly, however, the overall amount of fructose that directly
contribute to TAG synthesis is small, suggesting that fructose con-
tribute to hepatic fat accumulation through different direct and
indirect mechanisms [41]. In NAFLD patients with high fructose
consumption, the expression levels of ketohexokinase (KHK),
the first enzyme to metabolise fructose in the liver, has been
shown to be increased [38]. The increased rate of fructose meta-
bolism has also been shown to stimulate DNL [42, 43] and block
b-oxidation [44] consequently increasing lipid accumulation. It
has also been shown that the rapid phosphorylation of fructose
to fructose 1-phosphate causes a drop in intracellular ATP activ-
ating the enzyme adenosine monophosphate (AMP) deaminase
converting AMP to inosine monophosphate (IMP) that ultimately
increase production of uric acid that promotes oxidative stress
and inflammation [45, 46].

1.1.2 Liver disease and gut microbiota

There is a growing body of evidence that suggests that the
gut microbiome, a term used to describe the community of
microorganisms residing in the gut lumen, contributes to the
development of diseases such as obesity, metabolic syndrome,
and liver disease [47, 48]. The advancement in next generation
sequencing has allowed quantification of the species composi-
tion of the gut. As such, dysbiosis, a term used to describe the
imbalance of microflora compared to a healthy state, has been



1.1 metabolism of liver disease and liver cancer 7

glucose

glucose

G6P

FBP

GAP DHAP

Pyruvate

fructose

fructose

F1P

GA

G3P

Acetyl-CoA

Citrate

AKG

Succ

OAA

Citrate

Fatty acids

TAGs

GK

GLUT

KHK

ALDO

De novo lipogenesis

TCA 
cycle

AcetateAcetateAcetyl-CoA
ACSS2

G
ut

 m
ic

ro
bi

om
e

Hepatocyte

FructolysisGlycolysis

Figure 1.3: Carbohydrate pathways supporting lipid accumulation
in the liver. The two primary carbohydrates metabolised
in the liver are glucose and fructose, metabolised through
glycolysis and fructolysis, respectively. This creates the
necessary metabolic precursors for lipid synthesis. Fructose
can also be metabolized by gut microbiota to acetate that
increases hepatic acetyl-CoA production. Key enzymes
involved in these pathways are depicted in blue circles.
G6P: glucose 6-phosphate, FBP: fructose 1,6-bisphosphate, GAP: glyceraldehyde

3-phosphate, DHAP: dihydroxyacetone phosphate, G3P: glycerol 3-phosphate,

GA: glyceraldehyde, TAGs: triacylglycerides, OAA: oxaloacetate, AKG: a-keto

glutarate, Succ: succinate.



8 introduction

shown to contribute to functional changes of the gut in disease.
There is a particular interest in studying the gut microbiome in
obesity-related diseases because it metabolises dietary nutrients
and produces numerous metabolites that impact host metabol-
ism [49]. Moreover, the diet itself also impacts the composition
of the gut microbiome.

The liver and the intestine are tightly linked through blood
circulation via the portal vein, termed the gut-liver axis. The liver
is consequently the primary recipient of gut-derived products,
including several metabolites produced by the gut microbiome
[48]. The most well-defined metabolic system of the gut-liver
axis is that of bile acid (BA) metabolism. This involves, in short,
the synthesis of primary BAs in the liver which are then further
metabolised by microbes in the gut to secondary BAs that can be
circulated back to the liver or secreted in faeces [50]. Several of
these BAs act as ligands for important signalling molecules, such
as nuclear bile acid farnesoid X receptor (FXR) and membrane G
protein-coupled bile acid receptor-1 (Gpbar-1, aka TGR5), which
control many carbohydrate and lipid metabolic processes in the
liver. As a result, several studies have associated dysregulation
of BA metabolism with liver disease [51–53].

Microbes in the gut ferment indigestible complex carbo-
hydrates to produce short chain fatty acid (SCFA)s such as acet-
ate, propionate, and butyrate. SCFAs produced in the gut have
different downstream signalling and metabolic functions [47, 48]
and current evidence for the effects of SCFAs are contradictory
with positive and negative effects on liver disease pathogenesis.
For example, SCFAs have the ability to alleviate some lipogenic
features induced by a high-fat diet through peroxisome pro-
liferator–activated receptor (PPAR) signalling mechanisms [54]
but tissues such as the liver can also use these as substrates for
synthesis of other lipid species [55]. Butyrate supplementation
in mice has been shown to prevent the development of insulin
resistance in obese mice suggesting a beneficial advantage of
butyrate production by gut microbes [56].

More recent studies have also linked high intake of fructose
in WD with changes in the gut microbiome. In a study using
isotopic tracers of fructose in vivo the authors showed that the
majority of fructose is metabolised in the small intestine rather
than the liver as previously thought [57]. Interestingly, in the
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same study they also showed that in high doses, fructose spills
over to the liver and gut microbiota where it can also be metabol-
ised. In a more recent study, increased consumption of fructose
has been shown to increase gut permeability, known as a ’leaky
gut’, that can lead to endotoxins entering the blood circulation
that is an important trigger in fatty liver formation [58, 59]. In
some instances, microbes from the gut can also translocate to
distant tissues due to gut permeability. Finally, it was also shown
that dietary fructose can be metabolised by gut microbiota to
acetate that, in turn, increase lipogenesis in the liver through
increased acetyl-CoA production via ACSS2 [60].

1.1.3 Liver cancer metabolism

In the early 1900’s Otto Warburg observed that cancer cells con-
sume copious amounts of glucose to produce lactate even in
the presence of oxygen, a phenomenon termed aerobic glyco-
lysis. It was, however, only recently that we began to realise the
true extent of metabolic reprogramming in cancer, and an array
of metabolic pathways have now been associated with differ-
ent types of cancer [61]. As with many other cancer types, the
primary metabolic pathways studied in liver cancer are those
involved in glucose, lipid and glutamine metabolism. There
has also been an increasing interest how other amino acids, in
particular serine, are metabolised in liver cancer [62].

Several tumour types show increased uptake of glucose relat-
ive to the surrounding tissue. This feature has been exploited
in cancer diagnostics by using 18F-2-deoxyglucose, a radioactive
glucose analogue that cannot be fully metabolised, for positron
emission tomography to detect cancers. The major route for
glucose catabolism is through glycolysis. A key enzyme in gly-
colysis, hexokinase (HK)2 is highly expressed in liver cancer and
its silencing has recently been shown to inhibit tumorigenesis
highlighting the reliance of liver tumorigenesis on glycolysis
[63]. Several other anabolic pathways use glycolytic intermedi-
ates for the synthesis of macromolecules for growth, such as
nucleotides, proteins and lipids. In this regard, a widely studied
enzyme in cancer cells is pyruvate kinase (PK) that catalyses the
final step of glycolysis converting phosphoenolpyruvate (PEP) to
pyruvate. Many cancer cells have been shown to express a spe-
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Figure 1.4: Simplified overview of metabolic pathways implicated in
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ways that are implicated in cancer contribute to biomass
production.

cific splice variant, PKM2, that can switch to a dimeric state with
lower activity that allow diversion of glycolytic intermediates to
other pathways. In liver cancer, PKM2 is highly expressed and
related to overall decreased survival of liver cancer patients [64,
65].

In addition to glucose, glutamine is a major metabolic sub-
strate for cancer cell proliferation through TCA cycle anapler-
osis [66]. Glutaminase (GLS), the first enzyme in glutaminolysis,
is upregulated in liver cancer but its inhibition does not pre-
vent tumour formation and it has recently been shown that
liver tumours adapt to GLS inhibition through upregulation of
amidotransferases and increased glycolysis [67]. This highlights
how rapid adaptation of tumours allows them to be metabolic-
ally flexible. Serine is another amino acid that supports several
metabolic processes crucial for growth and survival. De novo
serine biosynthesis genes such as phosphoglycerate dehydro-
genase (PHGDH) and phosphoserine aminotransferase (PSAT)1
have been shown to be increased in liver cancer [67].
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1.1.4 Conclusion

A WD contributes to the pathogenesis of liver disease in a com-
plex manner and increases the risk for the development of liver
cancer, for which there are currently limited therapeutic options.
Once tumours arise, several cell-autonomous factors, such as
oncogenic mutations, impose metabolic rewiring that is distinct
from the liver and support tumour growth and survival. It is still
unclear, however, how diet-induced chronic changes manifested
in gene expression patterns influence fuelling of liver cancer
by dietary nutrients. Consequently, it is also unclear whether
dietary changes can relieve the metabolic features associated
with liver tumours. In addition, a major focus of cancer meta-
bolism research is to study how different metabolic pathways
contribute to growth in order to find potential targets to inhibit
tumour cell proliferation. Metabolic pathways do not exist in
isolation but operate concurrently controlled by various molecu-
lar mechanisms. Metabolic modelling used in systems biology
can greatly aid in addressing such questions by providing the
tools necessary to survey the simultaneous activity of different
metabolic pathways in silico.
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1.2 systems biology, a holistic and integrative ap-
proach to study metabolism

The reductionist approach dominated biological research in the
later half of the 20th century. Using this method of dissect-
ing biological systems into their constituent parts generated a
wealth of information on individual cellular components and
their functions. However, with whole genome sequencing be-
coming available in the 1990s the need for the development of
integrative approaches to study the relationships and interac-
tions between different biological entities became eminent and
was highlighted by several researchers at the the start of the 21st
century [68–71]. This sparked the birth of systems biology as an
integrative approach for biological research that uses the tools
of bioinformatics, mathematical modeling and in silico simula-
tions to study biological systems [72, 73]. At the core of systems
biology philosophy lies the understanding that the whole is
greater than the sum of its individual parts. This drives the need
to understand the system by integrating the information of its
constituent parts into unified frameworks that can be used to
study their relationships.

This approach requires a de facto construction of a mechan-
istic genotype-phenotype relationship between all the chemical
components of a cell, their genetic basis and its physiological
functions [72, 74] The biochemistry of metabolism has been
studied for decades, but with the publication of full genome
sequences it became possible, in principle, to study metabolism
on a genome scale. Genome scale metabolic model (GSMM)s
that result from this reconstruction process is the principle tool
used in systems biology. These models provide a mathematical
framework to understand genotype-phenotype relationships for
metabolism by simulating metabolic flux without knowledge of
metabolite concentrations or kinetic parameters. Moreover, the
formulations used to reconstruct GSMMs (as described below),
provides a framework for integration of high-throughput data,
such as omics data, as well as other phenotypic data.
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1.2.1 Reconstruction of genome scale metabolic models

1.2.1.1 Bottom-up reconstruction

Reconstructing a metabolic network

The first whole genome sequence was completed in 1995 for Hae-
mophilus influenzae [75] which made it possible to reconstruct,
using bottom-up methodologies, the first metabolic network
on genome scale for this organism and was the genesis of the
bottom-up reconstruction process for GSMMs [76]. Bottom-up
reconstruction involves building a large network one reaction
at a time in a step-by-step fashion starting with the genome
sequence and annotation to identify candidate enzymes and
associate these with metabolic reactions using databases and
literature (Figure 1.5). This process is labour intensive and time-
consuming and involves extensive manual curation, quality
control and filling of network gaps through literature search.
The resulting reconstruction is a biochemical, genetic and ge-
nomic (BiGG) knowledge-base, or k-base, that describes all the
known metabolic reactions for a particular organism [77]. It
became evident early on that there is a continuous need for
improvement and update on existing metabolic reconstruction
as our knowledge of the BiGG k-base of an organism expands.
It is therefore not uncommon that multiple reconstructions are
available for the metabolic network of a single species that each
aim to improve and expand on previous models.

From a network to a model

The first steps in the reconstruction process aim to gather and
curate the BiGG k-base for the organism of interest. This inform-
ation is then converted to a computational readable mathem-
atical format. The most important step in this process is the
formulation of the stoichiometric matrix (S-matrix), a 2D matrix
that describes the relationship between reactions and metabol-
ites in the k-base (Figure 1.5) [74]. The S-matrix represents all
biochemical reactions in the reconstruction and contains physio-
chemical and connectivity attributes of the metabolic network.
The gene products that catalyse reactions are formulated as
gene-reaction rules (GR-rules) and provide the basis for integra-
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Figure 1.5: Construction of the BiGG k-base and its conversion to a
mathematical format. The genome annotation of the organ-
ism of interest is used to identify enzymes and associate
these with metabolic reactions. The result is a BiGG k-base
of all metabolic reactions of interest. This can be conver-
ted to a mathematical format in the form of a matrix, the
S-matrix, of metabolites versus reactions. In addition, gene
products in the k-base are represented as GR-rules using
Boolean rules. Figure from [78].
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tion of phenotypic data (discussed in Section 1.2.2). Having a
mathematical framework for a metabolic network reconstruction
allows computation of cellular functions that result from the
simultaneous activity of multiple gene products. The final step
in the reconstruction process aims to evaluate and validate the
computational model. This involves evaluations, such as test-
ing if all reactions are mass and charge balanced, identifying
metabolic dead-ends and blocked reactions to more involved
procedures such examining if all organism specific pathways are
represented, performing network gap-analysis and evaluating
whether the single gene deletion phenotypes are in congruence
with experimental knockouts. This evaluation is an iterative
process that requires going back to the draft reconstruction
for refinement. At this stage, the network can be used to start
testing basic metabolic functions, for example, generating all
precursor metabolites required to synthesise macromolecules
for growth, evaluate whether the reconstruction support growth
on substrates known that the organism can use for growth or
determine if known metabolite products are secreted [74, 79].

The conversion of a BiGG k-base into a computational frame-
work along with successive model testing as described above
gives rise to a metabolic model with predictive capability. In
addition, the mathematical formulations generated in this pro-
cess are required for integration of data that forms the basis for
the constraint-based modelling (CBM) approach [80, 81]. This
approach is fundamental in GSMMs and considers biological
constraints that exists on a cell, transforms this information into
mathematical formulations, and brings the model as close to a
specific biological contexts as possible.

1.2.1.2 Evolution of in silico metabolic reconstructions of human and
mouse

Since the dawn of systems biology, significant effort has been
made to build an exhaustive BiGG k-base of human metabolism
with the purpose to study how metabolism can be used to
treat disease. This led to the reconstruction of several human
GSMM (hGSMM)s that have been used in CBM to study metabolic
phenotypes in different contexts.
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hGSMMs

The first hGSMMs, Recon1 [82] and the Edinburgh Human Meta-
bolic Network (EHMN) [83], were reconstructed using a bottom-
up systems biology approach in 2007 (Figure 1.6). These two
models were used as the starting point for two model series
of human metabolism; the Recon series (Recon1, Recon2 [84]
and Recon3D [85]) and the Human Metabolic Reaction (HMR)
series (HMR [86] and HMR2 [87]), which with each new version
aimed to increase the number of metabolic reactions or improve
predictive capability of the models. After the reconstruction of
Recon1 and EHMN, HepatoNet1 [88] was published as the first
hepatic GSMM that has been used in updated versions of GSMMs
in the Recon and HMR series to augment network coverage.

In various iterations of the Recon series, BiGG information
has been incorporated with the aim to organise this informa-
tion in a formal, mathematical fashion. For example, in Recon2
M.2 a framework for gene-transcript-protein-reaction associ-
ations were integrated into the model that considered the effect
of alternative splicing on metabolism [89] In Recon3D, three-
dimensional (3D) metabolite and protein structure data were
included that enable integrated analyses of metabolic functions
in humans [85]. Compared to the Recon series, HMR has more
comprehensive information on fatty acid metabolism that has
been manually curated [87]. Models in the HMR series have also
been used in the generation of various cell-type specific GSMMs,
including iAdipocytes1809 [90], iHepatocytes2322 [87], and iMyo-
cyte2419 [91] that has been used to study different metabolic
diseases. Although Recon and HMR reconstructions share the
aim to capture all human metabolic reactions, their different for-
mulation of metabolite, gene and reaction identifiers made direct
comparison difficult. Therefore, in an attempt to unify these two
model series, Recon3D and HMR2 were recently integrated into
a single reconstruction, Human1 [92].

mGSMMs

In 2005, Lars Nielsen and colleagues reconstructed the first
mouse GSMM (mGSMM) that comprised 1220 metabolic reac-
tions using a bottom-up approach [93]. Thereafter, Selvarasu et
al expanded this model by adding reactions and GR-rules from
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literature as well as improving network connectivity of several
metabolic pathways [94, 95]. The resulting model comprised
1494 reactions and three cellular compartments; cytosol, mito-
chondria and extracellular space. The number of reactions in
these reconstructions were less compared to hGSMMs available
at the time. Because the bottom-up reconstruction process is
cumbersome and labor-intensive, iMM1415 was reconstructed
by replacing human genes in Recon1 with their corresponding
mouse ortholog [96]. This approach became widely known as the
orthology-based approach for metabolic network reconstruction
(Figure 1.7). The Mouse Metabolic Reaction (MMR) [97] database
and iMM1865 [98] were thereafter reconstructed from on HMR2
and Recon3D, respectively, using an orthology based approach.
Finally, Human1 was used as template to reconstruct GSMMs for
several model organisms including the mouse, termed Mouse1
[99].

1.2.2 Constraining GSMMs

Modelling biological systems, and in particular metabolism, re-
quires constraint-based thinking as opposed to theory-based
thinking (Figure 1.8) [80, 81, 100]. Theory-based thinking at-
tempts to seek a single exact solution based on the laws of
physics and chemistry. In biology, however, an organism or cell
can have many different behaviours based on a specific context.
Moreover, over the last century there has been an increasing
appreciation that the same biological function can be achieved
in different ways. This is a distinction in the philosophy of
mathematical modelling in biology compared to physics and
engineering and the basis of constraint-based thinking.

A cell is faced with a myriad of constraints that are dynamic-
ally changing under different contexts. If we consider a solution
space with infinite possible solutions, the formal imposition of
constraints reduces this space into candidate functional states
each defined by a set of mathematical equations that can be
solved using optimisation algorithms. Constraints are repres-
ented as either balances or bounds and lie at the heart of flux
balance analysis (FBA) [101], a widely used approach for study-
ing GSMMs. This approach is described in detail below. Firstly,
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Figure 1.7: Schematic of orthology-based approach for network re-
construction. An extract of three reactions from a larger
template hGSMM (left) is represented in blue. Genes are
associated with reactions using GR-rules. The orthology
mapping will have one of three different outcomes to de-
cide whether a reaction will be included in the orthology
mGSMM (right), depicted by reactions R1, R2 and R3, re-
spectively. R1: an ortholog exists and therefore this reaction
will be included. R2: a reaction catalysed by more than one
gene should have at least one ortholog to be included in the
mGSMM and genes without an ortholog will be omitted
(shown with X). R3: no ortholog exists for this reaction and
will not be included in the mGSMM.
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Figure 1.8: Theory-based thinking versus constraint-based thinking.
Theory-based analysis in physics and engineering seeks to
find a single exact solution that is most often based on laws
of physics and chemistry. In biology, different equivalent
solutions often exists for a single function and, therefore,
constraint-based analysis relies on confining all possible
solutions based on prior knowledge to a space that would
likely satisfy the function. Figure adapted from [73].
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the change in metabolite concentration over time can mathemat-
ically be described as

dx
dt

= S.v

where x represents a concentration vector of metabolites, S
the stoichiometric matrix and v a vector of fluxes. If steady-state
is assumed this equation can be transformed to

0 = S.v

that ensures that the total amount of any compound being
produced must be equal to the total amount being consumed.
This steady state assumption is generally valid because of the
fast equilibrium of concentrations of metabolites with respect
to the time scale of genetic regulation. This defines a system of
linear equations. Because the S-matrix is a sparse matrix that
contain more reactions than metabolites, there is more than
one solution to these equations. Therefore, bound constraints,
represented by inequalities are often used to limit the numerical
ranges of individual fluxes given by

ai < vi < bi

where a and b represent lower bound and upper bound values
for reaction i, respectively. These constraints therefore limit the
numerical ranges of individual fluxes to reduce the possible
solutions. Finally, an objective function is formulated with

Z = cTv

where c is a weight vector indicating how much each reac-
tion in v contributes to the objective. This set of equations can
then be optimised by using optimisation algorithms such as
linear programming (LP) that solves equalities and inequalit-
ies and a linear objective function. Various data types can be
used for constraining reactions bounds. There has, however,
been particular interest in the development of methods that use
high-throughput omics data (transcriptomics, proteomics, meta-
bolomics and fluxomics) to used in CBM to constrain different
parts of the metabolic network [81, 102]. In this regard, GSMMs
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also provide contextualisation of omics data by providing a
framework to simultaneously integrate different data types for a
more holistic understanding of potential underlying molecular
mechanisms underlying phenotypes.

Three principal groups of constraints, intracellular fluxes,
exchange reactions and objective functions are discussed below:

Constraining intracellular reaction fluxes

Kinetic parameters of enzymes are the most accurate data de-
scribing the capacity of individual enzymes [103, 104]. However,
for most eukaryotic species these parameters are only available
for a small number of enzymes and not readily obtainable by ex-
perimental measurements. In addition, the enzymes responsible
for catalysing some metabolic reactions have been predicted by
homology to lower organism enzymes that have been previously
described without confidence that it is indeed the true catalytic
enzyme. These are presented by ’or’ relationships in the GR-rules
and often contains families of homologous enzymes that are
from the same enzyme family. Methods have therefore been
developed that use omics data, in particular transcriptomics and
proteomics, for constraining individual reaction bounds based
on enzyme abundance [105].

Constraining uptake and release fluxes

The computational formulation of a metabolic network allows
the formulation of cellular metabolism as a system [100]. Defin-
ing a system boundary and exchange reactions allow the impos-
ition of constraints on metabolite uptake and release fluxes. For
cultured cells in defined media, metabolomics measurements
of media components, either at end-point or over time, can de-
termine metabolite uptake and release rates that can be used to
constrain exchange reactions [106]. For GSMMs of physiologic-
ally intact cells or tissues, this data is not readily available and
most often not experimentally measurable. The diet composi-
tion has been used for this purpose in several studies, and in
particular, for tissue-specific GSMMs [97, 106]. The limitation of
this approach is that not all dietary nutrients are metabolised by
tissues but first by the gut microbiota and intestine. In order to
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overcome this, integrative whole-body GSMMs integrate micro-
biome GSMMs with tissue GSMMs to more accurately represent
metabolic physiology [14].

Constraining GSMMs by defining objective functions

Formulation of the flux balance analysis (FBA) problem is rooted
in the hypothesis that a cell is “striving” to achieve a certain
metabolic objective [101, 107]. Therefore, even though the ob-
jective function is a mathematical formulation, there is also an
underlying biological consideration in choosing an objective.
The mathematical form of the objective is Z = hw, vi where w
is a weight vector for the reactions of interest to optimise and v
is the vector of network fluxes [101]. Biological objectives used
in most studies are to test physiological functions, explore spe-
cific network properties or in some instances have a pertinent
bioengineering application [107].

The most commonly used objective function is the production
of biomass [79]. The biomass reaction is a composite reaction
that is formulated to comprise of all the macromolecules ne-
cessary for growth. For many unicellular organisms, such as
bacteria and yeast, GSMMs have been used for biotechnology
purposes where growth often represents a desired objective.
However, other cellular objectives, such as, maximal ATP pro-
duction, minimisation of nutrient uptake required for growth or
maximisation of the production of specific metabolites have also
been used in instances with specific biological or engineering
questions. Defining an objective function for differentiated euka-
ryotic cells or tissues has proven to be more involved and are a
widely discussed topic in the metabolic modelling community.
Nevertheless, several studies still consider biomass production
as the objective for eukaryotic cell-specific and tissue-specific
GSMMs when predicting flux distributions. In the first instance,
this gives a reliable test of functionality of the model to ensure
that the metabolic pathways required for the synthesis of es-
sential macromolecules to maintain survival do indeed carry
flux [108]. Furthermore, although the actual predicted fluxes
under the assumption of biomass as the objective might not be
close to physiological fluxes, the relative metabolic activities can
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Figure 1.9: Compartmentalization of GSMMs allows microbial com-
munity and multi-tissue modelling. In bacterial com-
munities, individual species interact metabolically. GSMMs
can be used to model this by considering each microbe
as a distinct compartment. The community can have a
shared input as well as an objective function, most often
community biomass production.

be compared between different pathways and under different
constraining parameters.

1.2.3 Microbial community modelling

The metabolic interactions between microbes are essential for the
functionality of microbial ecosystems and metabolic modelling
has greatly advanced our understanding of these interactions.
Stolyar and colleagues were the first to study mutualistic meta-
bolic interactions between two bacterial species using GSMMs
[109]. In their study they proposed to consider each individual
microbe as a separate compartment and allow metabolic interac-
tion by defining a third compartment through which metabolites
could be exchanged between organisms. This allowed metabol-
ites produced by one microbe to be taken up and metabolised
by the other (Figure 1.9).

A wealth of metagenomics studies have recently suggested
that the microbial community in the human gut is incredibly
rich in diversity, associated with several different diseases and
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that it is a major metabolic organ [49, 110]. Significant effort
has therefore gone into reconstructing GSMMs for individual
microbial species of the gut, but also modelling the interactions
of this highly dynamic community [111]. Most recently, GSMMs
for 773 bacterial species in the human gut have been reconstruc-
ted using a semi-automated computational pipeline, known as
the Assembly of Gut micrOorganisms through Reconstruction
and Analysis (AGORA) models, and have been used in several
studies to investigate gut metabolism [112]. A current major
challenge is to functionally link gut community GSMMs with
host GSMMs to investigate how modulation of gut microbiota
and diet potentially impact host metabolism.

1.2.4 Multi-tissue mammalian modelling

The approach to representing individual microbes as distinct
compartments in a GSMM have also been used to study the meta-
bolic interactions between different tissues. The first multi-tissue
GSMM comprised of distinct hepatocyte, myocyte and adipocyte
GSMMs connected through a blood compartment and the model
was shown to be able to recapitulate known tissue metabolic
cross-talk [113]. More recently, a dynamic multi-tissue GSMMs
consisting of liver, muscle and adipose tissue-specific GSMMs
were used to investigate a novel more physiologically accurate
objective function [114]. In short, this objective was based on
the assumption that metabolism aims to maintain blood concen-
tration homeostasis and that energy might be stored in stores
such as glycogen and fat to be used in times of food scarcity
such as fasting. The most comprehensive integrative GSMMs
are represented by two organ resolved, sex-specific GSMMs that
consist of 26 organs, 13 distinct biofluid compartments and a
representative gut microbiome compartment [14]. This GSMM
serves as an important resource to study metabolism in silico in
a complete physiological context.

1.2.5 Conclusion

Over the past three decades, genome scale metabolic modelling
has seen major advances both in reconstruction and constrain-
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ing methodologies. However, there is still room for improving
aspects of especially mammalian GSMMs

limitations still remain and there is still room for improving
several aspects of GSMMs, especially for mammalian GSMMs.
Firstly, compared to constraining intracellular fluxes, studying
how nutritional input in GSMMs effect metabolism has seen
less attention in literature. Secondly, in the context of human
diseases, GSMMs are most often focusing on individual tissues
and do not explicitly model metabolic interactions between tis-
sues. Similarly, studies that model gut microbiome metabolism
lack functional integration of how these predictions impact host
metabolism and mostly rely on correlative analysis to confirm
predictions.
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1.3 primary objectives of the thesis

1. Reconstruct a new mouse genome scale metabolic model
for the integration of experimental data to model liver
metabolism

2. Use constraint-based modelling to investigate the contribu-
tion of dietary nutrients to the metabolic profiles of liver
and tumour tissues

3. Investigate how the gut microbiome metabolises dietary
nutrients with community metabolic models

4. Use integrative modelling to understand metabolic interac-
tions between the liver host and tumour as well as micro-
biome and host and tumour-host metabolic interactions





2
M E T H O D S

“What I cannot create, I do not understand” - Richard Feynman

2.1 experimental methods

Experiments were performed by the following colleagues at
The Francis Crick Institute: Patricia Nunes, Albert Thommen,
Antonia Kasampali and Jack Carruthers.

All the experimental procedures were conducted in conform-
ity with public health service policy on humane care and use of
laboratory animals, approved by The Francis Crick Institute’s
Animal Welfare and Ethical Review Body (AWERB) and comply
with a license ratified by the UK Home Office.

2.1.1 Liver cancer mouse model

C57BL/6J mice were housed under a light-dark cycle of 12:12h
with controlled temperature (22-24°C). Two-week old male mice
were injected intraperitoneally with 25mg/kg of the carcinogen
diethylnitrosamine (DEN). From the time of weaning, mice were
fed a ‘western-style’ diet (WD) (TestDiet, AIN-76A). The frac-
tional content of diet contributed by lipids and carbohydrates in
WD is similar to an average European diet [13] and the injection
of DEN in combination with WD-feeding has been shown to in-
duce liver tumour formation [115]. This mouse model was used
to generate data for different experimental conditions.

2.1.2 Tissue collection

At indicated experimental time points, mice were culled, livers
were rapidly excised, tumours, where existing, were separated
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from peritumoral tissue. In addition, cecum content were har-
vested from intestine together with fecal matter. All tissues were
snap-frozen in liquid nitrogen and stored at -80°C.

2.1.3 mRNA extraction, library preparation and RNA-sequencing

Total liver and tumour tissue were pulverised with mortar and
pestle under a liquid nitrogen atmosphere and RNA was ex-
tracted from the equivalent of 20-30mg frozen tissue in TRIzol
Reagent (Thermo Fisher Scientific, UK) followed by phenol
removal with chloroform. RNA was further purified with the
RNeasy Mini Kit (Qiagen, UK). DNase treatment was performed
to avoid genomic DNA contamination. After RNA quantification
and quality controls for integrity and purity (Nanodrop, Qubit
and Agilent 2100 Bioanalyzer), libraries were prepared using
KAPA mRNA HyperPrep Kit (Kapa 13 Biosystems). mRNA se-
quencing (single-end, 40 million reads total) was performed on
an Illumina HiSeq 2500 instrument.

2.1.4 DNA extraction, library preparation and metagenomics sequen-
cing

Genomic DNA was extracted from frozen samples of cecum
content and faeces using the NucleoSpin® Soil kit (Macherey-
Nagel, UK) and following manufacturer instructions. Briefly,
sample material was mechanically dissociated with beads and
lysed, followed by DNA precipitation and purification. Upon
elution, DNA content was determined by OD 260/280 with a
Nanodrop. Samples were loaded into an agarose gel and run
by electrophoresis to ascertain integrity of the DNA extracted.
Libraries were prepared using Illumina TruSeq PCR-free library
preparations (350bp average fragment size) from DNA samples.
DNA sequencing was performed on a Illumina NovoSeq S4
instrument.

2.1.5 Respiratory exchange ratio measurements in metabolic cages

Eight DEN and eight nonDEN mice were individually housed
in a laboratory animal monitoring system (TSE Phenomaster,
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TSE Systems GmBH). After an acclimatisation period, O2 con-
sumption and CO2 production, food, water intake and activity
were continuously monitored for each mouse for a period of 48h.
The mean O2 consumption and CO2 production rates measured
over 48h were used to constrain context-specific genome scale
metabolic models (GSMMs) – see Section 2.2 for details.

2.1.6 Isolation of mitochondria from liver and oxygen flux measure-
ments

Mice were culled and the tissues of interest (liver, peritumoral
liver and tumour) were quickly excised and rinsed in cold phos-
phate buffer before being transferred to mitochondrial isolation
buffer (250mM sucrose, 10mM Hepes, 0.1% BSA fatty-acid free,
pH 7.2). Tissue was homogenised on ice with a Potter-Elvehjem
homogeniser before centrifugation at 800xg for 10 min at 4°C.
After discarding the top lipid layer, the supernatant was centri-
fuged at 10000xg for 10 min at 4°C. The pellet was resuspended
in washing buffer (250mM sucrose, 10mM Hepes pH 7.2) and
centrifuged again at 10000xg for 10 min at 4°C, a process that
was repeated twice. The resulting mitochondrial pellet was re-
suspended in 0.5mL of washing buffer. Mitochondrial protein
quantification was performed with Pierce BCA Protein assay.
Mitochondrial respiration driven by fatty acid oxidation was
assessed with an oxygen electrode system (Oroboros Oxygraph-
2K, Oroboros Instruments, Austria) using 1mg of mitochondrial
protein in 2mL of working buffer (130mM sucrose, 50mM KCl,
5mM KH2PO4, 5mM MgCl2, 5mM Hepes, 50µM EDTA, pH7.2
at 37°C) supplemented with 4mM ADP and 0.5mM octanoyl-
carnitine.

2.1.7 DNL assessed with 2H2O

The contribution of de novo lipogenesis (DNL) to hepatic or
tumoural triacylglycerol (TAG) pool was determined in vivo
using 2H2O [116, 117]. In brief, mice were intraperitoneally
injected with 2H2O and supplied with 5% 2H2O drinking water
while feeding ad libitum. 16 h later, animals were culled, tissues
were collected and frozen in liquid N2. Tissues were powdered
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under liquid N2 atmosphere and lipids were extracted with the
Folch method [118]. TAGs were isolated using ISOLUTE® NH2
SPE (Biotage, UK). De novo synthesised fatty acids (FAs) and
glycerol incorporated in TAGs were determined as the fraction
of FA methyl or glyceryl moiety, respectively, in TAG that were
labelled with 2H, normalised for the enrichment of 2H in H2O
in the plasma of each mouse measured using 2H NMR [119].

2.2 computational methods

Sequencing data was processed on either the Crick computa-
tional cluster (CAMP) or the Swedish National Infrastructure
UPPMAX servers. All other analyses were performed on an
Intel Core i7 MacBook Pro. Transcriptomics data were processed
in R version 4.1.2 using the packages described. Metabolic mod-
elling was performed in MATLAB R2019b using functions in
the COBRA [120] and RAVEN2.0 [121] toolboxes and resulting
flux distributions were further analysed in python3.10 in Jupyter
Notebooks using the scipy stack. Plots were either generated
using plotly, seaborn or ggplot2.

Scripts and data available at https://zenodo.org/badge/
latestdoi/536721334.

2.2.1 Processing of RNA-sequencing data

Raw RNA-sequencing data were processed using an in-house
analysis pipeline. Quality of raw sequencing data was checked
with FastQC v0.11.7 (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc). Reference genome alignment was per-
formed against Genome Reference Consortium Mouse Build
38 (GRCm38) with RSEM [122] and STAR [123]. RSEM was used
to generate raw counts, fragments per kilobase million (FPKM)
and transcripts per kilobase million (TPM) which were used for
all downstream analyses. Quality control metrics were reported
with picard, RSeQC [124] and RNA-SeQC [125]. A final quality
control report was generated with MultiQC [126] .
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2.2.2 Differential gene expression and enrichment analysis

The RSEM gene count matrix was used for differential gene ex-
pression (DGE) analysis with DESeq2 [127] with the apeglm [128]
algorithm for log2-fold change shrinkage. Unless otherwise spe-
cified, gene expression differences with an absolute minimum
log2-fold change of 1 and FDR-adjusted p-value 0.05 were con-
sidered statistically significant. The clusterProfiler [129] package
was used for Gene Ontology (GO) over- representation tests us-
ing the enrichGO [130] function and the Benjamini-Hochberg
method was used to correct for multiple testing.

2.2.3 Processing of metagenomics data

Raw metagenomics sequence data was processed using the
quantitative metagenomic profiling software METEOR (avail-
able at https://forgemia.inra.fr/metagenopolis/meteor) for
quality control, trimming and mapping against a catalog of
mouse gut metagenome that consists of ~2.6 million nonredund-
ant genes [131] to create gene count tables. To reduce variability,
downsizing of 10 million reads was performed on the gene count
tables and the MetaOMineR [110] software package was used
for normalisation of gene counts for metagenomic species (MGS)
abundance calculation.

2.2.4 Reconstruction of a new mGSMM

2.2.4.1 Reconstruction of orthology-based mouse metabolic networks

An orthology-based approach was used to reconstruct a new
mouse genome scale metabolic model (mGSMM) (Figure 1.7).
Human-to-mouse orthologs were downloaded using the online
BioMart tool (www.biomart.org, date accessed – January 2019)
and genes in HMR2 [87] were directly replaced with their corres-
ponding mouse ortholog to generate intermediate model (IM)1.
The getBlast in the RAVEN2.0 toolbox [121] was then used to to
perform protein sequence similarity between the amino acid se-
quences of proteins in the GRCm38 and the amino acid sequences
of proteins encoded by genes in HMR2 and Recon3D [85], re-
spectively. The resulting BLAST structures, mouse-to-HMR2 and
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mouse-to-Recon3D, were then used as input for the getModel-
FromHomology function to generate IM2 and IM3, respectively,
using an e-value cutoff of 10-30, a metric used to describe the
number of hits one can expect to see by chance, with a lower
value indicating a more ‘significant’ match. This function aims
to replace human genes within the reference GSMM, either HMR2
or Recon3D in this case, with corresponding mouse orthologs
provided there is good sequence alignment between genes.

2.2.4.2 Integration of orthology-based networks to reconstruct a new
mouse GSMM

Two metabolic reconstructions can be merged by integration of
their respective S-matrices. For this purpose, either the metabol-
ites and/or reactions have to have the same identifiers in the
two models to allow removal of duplicate reactions after the two
models are merged. A metabolite map was therefore constructed
that uses Kyoto Encyclopedia of Genes and Genomes (KEGG)
identifiers for metabolite identifiers and metabolites in IM1-3
were renamed using this map. Finally, metabolite identifiers
in MMR were also renamed to have the same nomenclature to
generate IM4. This universal metabolite nomenclature allowed
a step-wise integration of IM1-4 by merging their respective S-
matrices with the mergeModels function in RAVEN2.0 to generate
a new mouse GSMM, mouse metabolic reaction network (MMRN).

2.2.4.3 Computational evaluation and benchmarking of MMRN

Duplicate reactions, metabolites and genes in MMRN were re-
moved. Three criteria were used to assess the resulting network;
connectivity, metabolic tasks and elemental balance of metabolic
reactions. The network was converted to a bipartite graph of
metabolites and reactions and all nodes not connected to the
single most connected component were removed as these could
lead to metabolic dead-ends. The biomass reaction from HMR2
was added and the model was assessed to be able to perform 56
common metabolic growth tasks using the checkTasks function
[132]. Finally, elemental imbalanced reactions were identified us-
ing the getElementalBalance function and removed in a step-wise
manner ensuring fulfilment of metabolic tasks. Reactions that
resulted in the failure of a metabolic task were manually curated
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for mass-balance. Three mGSMMs, Mouse1 [99], MMR [97] and
iMM1865 [133], and three hGSMMs, Human1 [92], HMR2 and
Recon3D, were used for benchmarking of MMRN using two cri-
teria; elemental balance and connectivity with the same method
described above.

2.2.5 Reconstruction of MMRNHep

The maximum FPKM expression values across all mouse exper-
imental conditions were calculated for genes in MMRN. This
was used with 56 common metabolic growth tasks as input for
the task-driven integrative network inference for tissues (tINIT)
algorithm [132] to generate a generic hepatic GSMM, MMRNHep.
The expression of genes was classified as high (FPKM > 50), me-
dium (10 � FPKM > 50), low (1 � FPKM < 10) or no expression
(FPKM < 1).

2.2.6 Reconstruction of csGSMMs from MMRNHep

An adapted version of the E-flux method [134] was used to
construct csGSMMs from MMRNHep. For this purpose, a vector b
was constructed for each experimental condition using expres-
sion data and GR-rules in MMRNHep. For a reaction, j, catalysed
by a single gene the mean expression value across biological
replicates was considered for bj. For reactions with multiple
enzymes associated with ‘or’ relationships the sum of the mean
expression values for individual genes was considered for bj. For
reversible reactions the negative value of bj was also imposed
as a lower bound allowing these reactions to be bi-directional.
In order to account for noise and in the transcriptomics data,
the logarithm of the calculated bound values were used as the
constraints to ensure that imposed boundaries are on the same
scale. Orphan reactions, reactions without a gene association,
were kept unconstrained. The respiratory exchange ratio (RER)
for DEN and nonDEN mice were considered separately to con-
strain O2 uptake and CO2 production for DEN and nonDEN
GSMMs, respectively. For this purpose, the mean volumes of O2
consumption and CO2 production for 5 mice were converted to
flux values (mmol/mouse/day):
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bRER =
pV
M

(Eq1)

where bRER is the flux value value, p the density, V the average
volume of either O2 or CO2 and M the molecular weight of either
O2 or CO2, respectively. The calculated flux values were used
to set the lower bound of corresponding O2-consuming and
CO2-producing reactions.

Finally, the content of the WD and the control diet (CD) were
used to constrain uptake rates (or exchange reactions) of the
GSMM:

bDIET =
pW
M

(Eq2)

where bDIET is the flux value value, p is the percentage weight
of a metabolite, W the average grams of food consumed per
mouse per day (3g) and M the molecular weight of the particular
metabolite. The calculated flux values (mmol/mouse/day) were
used to constrain the upper bounds exchange reactions and
thus reflect the maximum uptake rate of a particular metabolite
available to the model to perform FBA. The carbon flux (or
Cmoles) for each diet was calculated using:

Cmoles =
n

Â
j=1

Cbj (Eq3)

where Cmoles is the moles of carbons and b the upper bound
flux for j = 1 to n metabolites within each diet. The same equa-
tion was used to calculate the Cmoles for uptake and release by
using the predicted flux value, v, instead of b for each metabolite.

The model setup is illustrated in Figure 2.1.
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Figure 2.1: . Schematic illustrating relation between influx and efflux
Cmoles in the context of FBA experiments. Cmoles

DIET rep-
resents the carbon flux for each metabolite that is available
from the diet to MMRNHep and was calculated based on
the known diet composition and daily diet consumption
per mouse. The dashed line represents a computational
pseudo-boundary set to allow influx of metabolites from
the diet into the extracellular space of the model. For a
given metabolite, Cmoles

INFLUX and Cmoles
EFFLUX denote the

flux of carbons of this metabolite taken up or produced,
respectively, by MMRNHep.

A note on notation

The following notation is used throughout the thesis to describe
csGSMMs: [MMRNHep]XY where X indicates the gene expression
constrain (nil where no expression constrain is applied) and Y
is the diet given to the model.

2.2.7 Community modelling of microbiome

The top 20 most abundant MGSs in each condition were used
to reconstruct microbial community GSMM (comGSMM)s using
the publicly available AGORA models [112]. For each MGS, if a
model was not available it was checked whether a model for
the corresponding genus is available and if this genus is not
already represented by another MGS, the models for all mem-
bers of this genus were included in the final reconstruction. The
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EFFLUX are the same as described in Figure 2.1.

Individual microbial models are allowed to consume nu-
trients from the diet and produce metabolites into a com-
partment representing the gut lumen which can either be
further metabolised by other microbes or effluxed from the
model. As described in the text, the flux boundaries of the
biomass reactions of individual models were constrained
to their relative abundance, and, in addition to community
biomass production, set as the objective function of all sim-
ulations.

lower bound of the biomass reactions of each individual was
constrained to its relative abundance so that the total biomass
produced sum to 1. The objective function was set as biomass
production of each individual GSMM with the community bio-
mass as an additional objective. Each individual microbial GSMM
was represented as an individual compartment within one uni-
versal extracellular compartment representing the gut lumen
and the dietary content was used as uptake constraint for the
community. This setup allowed individual GSMMs to exchange
metabolites with each other and that the comGSMM can consume
dietary nutrients and produce metabolites (Figure 2.2).
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2.2.8 Reconstruction of an integrative multi-tissue GSMM

multi-tissue GSMM (mtGSMM)s were reconstructed for differ-
ent experimental conditions by combining csGSMMs for liver
and tumour tissues with the respective comGSMM of that con-
dition. More specifically, the multi-tissue model consisted of
three major compartments, a diet, gut and blood. The diet com-
partment represents a computational space where the uptake
into the compartment is constrained using Equation 2 and di-
etary metabolites that are taken up into this compartment can
then be consumed by either the gut or the blood. The gut com-
partment contained the microbiome community model and can
efflux metabolites out of the model or exchange metabolites
to the blood compartment. The blood compartment contained
the liver and tissue csGSMMs. An additional set of exchange
reactions were added between the liver and tumour to allow
direct cross-talk between these two tissues and exchange to the
blood compartment. The blood compartment can then efflux
metabolites out of the mtGSMM. The model setup is illustrated
in Figure 2.3.
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Figure 2.3: Schematic illustrating setup of integrative mtGSMM. The
relation between Cmoles

DIET, Cmoles
INFLUX and Cmoles

EFFLUX

are the same as described in Figure 2.1. Diet is taken up
into a dietary compartment and can then be exchanged
either to the gut or blood compartment and is described
by Cmoles

DIET-TO-GUTor Cmoles
DIET-TO-BLOOD, respectively. An

additional set of artificial reactions are added to allow ex-
change from the gut to the blood compartment described
by Cmoles

DIET-TO-BLOOD. The gut compartment is modelled
according to the community model described in Section
2.2.7. In the blood compartment each individual tissue
occupies a distinct compartment and can exchange meta-
bolites into a universal blood compartment.
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A N E W M O U S E G E N O M E S C A L E M E TA B O L I C
M O D E L

“Pathways are concepts, networks are reality” - Uwe Sauer

A significant effort has been made to build a comprehensive
k-base of human metabolism over the last three decades [77, 92].
In parallel to this endeavour, the development of computational
tools to reconstruct and constrain genome scale metabolic mod-
els (GSMMs) to study metabolism in specific biological contexts
have seen similar advances [120, 121]. Comparative genomic
studies have identified gene orthologs between different spe-
cies which has successfully been used in systems biology to
exploit the tremendous effort that has gone into reconstruction
of hGSMMs to reconstruct metabolic networks of other species,
including the mouse. Because the laboratory mouse is an im-
portant experimental model, mGSMMs are now widely used
computational tools to study metabolism.

The Recon and HMR series of human metabolism have previ-
ously been used as templates for the reconstruction of several
mGSMMs [96–98, 135]. However, at the time of conception of this
thesis all mGSMMs used a single model from either the HMR and
Recon series as reference and replaced the genes in the hGSMM
with mouse orthologs described in orthology databases. As de-
scribed in Chapter 1, any potential human-to-mouse orthologs
not described in the database used will potentially result in
incorrectly omitting reactions from the mGSMM.

In this chapter I describe my efforts to reconstruct a new
mGSMM by using an approach that addresses both the afore-
mentioned issues in previous mGSMMs. In the first instance,
HMR2 and Recon3D are used as template hGSMMs and, secondly,
known orthologs together with newly identified orthologs
through protein sequence similarity are used to reconstruct
intermediate orthology-based GSMMs. Orthology-based GSMMs

41



42 a new mouse genome scale metabolic model

are then integrated to yield a new mGSMM that is evaluated
using computational methods.

3.1 results

3.1.1 A new mGSMM

To generate a new mGSMM, the most comprehensive hGSMMs,
HMR2 and Recon3D, as well as an existing mGSMM, MMR, were
used as reference models to generate four intermediate models
(IMs) which were subsequently integrated into a single network.
IM1, reconstructed from directly replacing genes in HMR2 with
its known mouse orthologs, comprised 8160 metabolic reactions,
a similar number to the 8181 reactions in HMR2 . IM2 and IM3
reconstructed from HMR2 and Recon3D, respectively, using pro-
tein sequence similarity comprised of 5913 and 7235 reactions,
less than IM1. The metabolite identifiers of IM1-3 were renamed
to KEGG identifiers using a metabolite map constructed. Meta-
bolite identifiers in MMR was also renamed to yield IM4 (Figure
3.1). Only 60.5% of genes and 41.9% of metabolites overlapped
between IM1-4, indicating significant non-redundancy between
IMs (Figure 3.2). These four networks were sequentially integ-
rated in a step-wise manner to yield IM5 that comprised 10887
metabolic reactions. Duplicate reactions, metabolites and genes
resulting from the merging of IMs were removed. In a metabolic
network represented as reaction and metabolite nodes, all nodes
should be connected to a single component to represent the step-
by-step chemical conversion of metabolites. Therefore, recon-
structing a metabolic network as a bipartite graph of reactions
connected to metabolites allows the identification of subsets of
reactions not connected to the primary network. A total of 647
reactions that were either unconnected to a primary network or
that were elementally imbalanced were removed from IM5. The
resulting network, MMRN consisted of 10349 metabolic reactions
and 3461 genes, is elementally balanced and connected to a
single network component (Figure 3.1).
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mGSMMs and hGSMMs.

3.1.2 Evaluation and benchmarking of MMRN

Assessing the completeness and robustness of GSMMs has been
shown to be difficult [136, 137]. MMRN was therefore bench-
marked against published mGSMMs and hGSMMs. In the first
instance, the number of reactions, metabolites and genes in
MMRN were comparable to those in other mouse GSMMs (Table
3.1). MMRN comprised fewer orphan reactions, reactions with no
gene association, compared to Mouse1 and iMM1965, contained
no chemically imbalanced reactions and was connected to a
single component, while all other mGSMMs and hGSMMs failed
these assessments. In an effort to standardise GSMM reconstruc-
tions and allow cross-validation between models, MEMOTE
has recently been published as a software suit to systematically
evaluate GSMMs. MMRN scored 62% which was higher than
the three models used for its reconstruction, HMR2, Recon3D
and MMR. iMM1865, published in 2020 after we initiated our
study scored 46%. The only two models that scored higher
than MMRN was Human1 and Mouse1 that was reconstructed
from Human1, both recently published. MMRN was therefore
an improvement on previously available mGSMMs and hGSMMs.
Continued effort to improve MMRN will likely increase its com-
parison against more recently published mammalian models.
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Table 3.1: Key metabolic network attributes for MMRN compared to
other published mGSMMs and hGSMMs

total

reaction #

orphan

reaction #

imbalanced

reaction #

(missing

info #)

metabolite

#

gene # component

#

mGSMMs

MMRN 10349 2913 0 (515) 7169 3461 1

Mouse1 11413 5052 71 (8) 8382 3513 66

iMM1865 8796 4681 266 (1) 5839 1865 10

MMR 7661 2135 2 (7841) 5993 3579 7

hGSMMs

Human1 11423 5060 66 (9) 8400 3626 64

HMR2 7681 2107 175 (266) 6015 3820 6

Recon3D 11651 5867 803 (1) 8399 3697 24

The metabolic subsystem associated with each reaction in
each mGSMM and hGSMM was used to calculate the number of
reactions in different major metabolic pathways (Figure 3.4).
Overall, MMRN has a similar distribution of reactions across
different pathways compared to other GSMMs and most com-
parable to the most recently published Mouse1, Human1 and
Recon3D. MMRN has an increased number of reactions involved
in lipid, amino acid, carbohydrate and nucleotide metabolism
compared to iMM1865 and MMR.

3.2 conclusion

In this Chapter I reconstructed a new mGSMM using an
orthology-based approach. Genomic sequencing made it pos-
sible to computationally reconstruct metabolism for several or-
ganisms, including human, using bottom up reconstruction
approaches [108]. This process is, however, time-consuming and
arduous as it involves building a metabolic reaction network
step-by-step from the bibliome [74]. Orthology-based methods
have been used to circumvent several of the laborious tasks in
this process to reconstruct mGSMMs from hGSMMs (see examples
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Figure 3.4: Number of reactions for different metabolic pathways
in MMRN compared to other mGSMMs and hGSMMs.

[97, 133, 138]). This method is, however, limited by the coverage
of mouse-to-human orthologs described in orthology databases.
MMRN was reconstructed using a methodology that addressed
these two limitations when orthology was used in previous
mGSMMs, namely, using only a single hGSMM template and a
fewer number of mouse-to-human orthologs.

Firstly, HMR2 and Recon3D were used for the reconstruction
of MMRN. Using a template model from either one of these
hGSMMs series, as in previous orthology-based mGSMMs, limits
the reactions included in the mGSMM since there is not a perfect
overlap in reactions in these two model series [92]. The different
formulation of metabolite and reaction identifiers in Recon and
HMR prevents the integration of these two models by combining
their respective S-matrices. Renaming metabolites identifiers
in IMs reconstructed here allowed merging the S-matrices of
these networks and to include reactions from both HMR2 and
Recon3D in MMRN.

Newly identified mouse-to-human orthologs were used to-
gether with known orthologs. It is clear that the completeness
of the mGSMM depends on the set of orthologs when replacing
genes in a template hGSMM. IMs from different hGSMMs and
from protein homology show non-redundancy which indicate
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that using this approach increased the coverage of genes and
reactions included in MMRN.

Benchmarking of newly reconstructed GSMMs remains a chal-
lenge in systems biology. To date, MEMOTE remains the only
benchmarking tool for this purpose and is still limited in its
capability because of heterogenous nature of nomenclature and
formulations used in GSMMs. For example, tests such as blocked
reactions, dead-end metabolites and biomass production flux do
not contribute to the overall MEMOTE score, which are import-
ant features of robust models. It would be beneficial to further
test the validity of MMRN by performing, for example, gene de-
letions and comparing this against literature. However, because
MMRN was not reconstructed using a bottom-up approach but
rather from two published hGSMMs with the ultimate goal to
reconstruct context-specific liver models, its improvement on
other models at the time, and its ability to perform common
metabolic tasks were sufficient for this purpose.





4
C O N T E X T- S P E C I F I C L I V E R G S M M S R E V E A L
D E T E R M I N A N T S O F O B E S O G E N I C D I E T
M E TA B O L I S M I N L I V E R C A N C E R

“Every good scientific theory is a prohibition: it forbids certain things
to happen. The more a theory forbids, the better it is” - Karl Popper

Cellular metabolic activities are predominantly determined by
nutrient availability and enzyme expression [139]. The expres-
sion of metabolic enzymes is regulated by various mechanisms
that operate at a cellular, tissue and organism level. Diet has
been shown to have profound effects on body homeostasis and
disease progression [140–142]. It is therefore of clinical interest
to understand the interaction between dietary nutrient content
and gene expression to get insight into how diet modifications
might be used to alter the course of disease.

Liver cancer can be promoted by ‘western-style’ diets (WD)
that are rich in fat and processed sugars, such as fructose [115,
143]. The chronic consumption of WD can lead to systemic dys-
regulation of insulin signalling and lipid metabolism; the ensu-
ing inflammation and tissue damage are thought to promote
mutations that lead to oncogenic transformation in hepatocytes
[144]. This systemic dysregulation as well as the nutrients in WD
can influence metabolic gene expression in hepatocytes. Con-
comitantly, metabolic rewiring in hepatic tumours is distinct
from surrounding tissue and supports tumour growth and sur-
vival. It is, however, unclear how diet-induced chronic changes
in gene expression in hepatic tissues influence the fuelling of
liver cancer metabolism by dietary nutrients. It is also unclear
whether modulation of diet composition, alone, suffices to re-
lieve the metabolic features that promote tumour growth.

To investigate the interplay between diet composition and
gene expression requires a global survey of metabolic activities
because dietary nutrients simultaneously fuel multiple highly in-
terconnected metabolic pathways. Despite the advances in in vivo

49
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tracing of metabolism, the measurement of metabolic fluxes on
a global scale remains challenging [145, 146]. Constraint-based
modelling (CBM) offers a suitable computational framework
to constrain nutrient input and expression-based intracellular
fluxes to investigate the aforementioned questions. The effect
of diet on metabolism has previously been studied using CBM,
however, there has been no systematic analysis of how diet
composition itself influences metabolic fluxes of genome scale
metabolic models (GSMMs) under specific gene expression back-
grounds.

In this Chapter, I used Mouse Metabolic Reaction Network
(MMRN) to investigate how dietary nutrients and gene expres-
sion changes associated with chronic exposure to WD combine
to influence metabolism in the liver of mice with liver cancer
using a CBM framework. For this purpose, experimental data
from the DEN mouse model were used together with MMRN
to reconstruct a liver-specific GSMM, MMRNHep, that was then
constrained with gene expression data and the content of a WD
or a control diet (CD).

4.1 results

4.1.1 Changes in expression of genes that control metabolic processes
by a tumour-promoting western diet

To study the interplay between diet composition and diet-
induced changes in gene expression in the context of hepatic
tumour development, the DEN mouse model was used with a
non-injected (nonDEN) control as well as a cohort of mice that
were fed a CD (Figure 4.1). In both weight and energy, the CD con-
sisted of less lipids and carbohydrates but similar amino acids
compared to the WD. Sucrose was the primary carbohydrate
source in the WD and starch in the CD (Table 4.1). Consequently,
the WD had increased fructose content compared to the CD.

Mice consumed either diet at similar daily rates (Figure 4.2A),
however, more tumours were detectable by 25-29 weeks of age
in DENWD compared to DENCD mice (Figure 4.2B). Between 30
to 36 weeks of age, tumour burden increased significantly in
DENWD mice compared to DENCD mice (p = 0.02, paired t-test),
and by 39 weeks 55% of DENCD and 100% of DENWD mice
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Figure 4.1: Experimental design for the DEN mouse model with
a non-injected and dietary control. Details for the DEN
mouse model are described in the text. In short, mice were
injected at 2 weeks of age whereafter they were fed on
either a WD or CD. L: liver, PT: peritumoral tissue, T:
tumour tissue.

Table 4.1: Contributions of major dietary components (amino acids,
carbohydrates and lipids) to western (WD) and control (CD)
diet composition.

Weight Energy

WD CD WD CD
% % % kcal/g diet % kcal/g diet

Amino acids 17.4 15.5 15.5 0.697 15.9 0.618
Carbohydrates 49.9 70.1 44.4 1.995 72.2 2.806

Sucrose 34.05 10.95
Starch 5 43.51

Lipids 20 5.1 40.1 1.804 11.9 0.463
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Figure 4.2: A WD amplifies mouse liver cancer development. A)
Food consumption measurements for mice fed a CD or
WD. This was used to calculate Cmoles

DIET(see chapter 2
for details). B) The tumour incidence for DEN-injected
mice fed either a CD or WD at different age intervals. At
time of tissue harvesting, 36-39 weeks of age, all WD mice
had tumours compared to 55% of mice with tumours on a
CD. C) Cumulative tumour size of three DENCD mice and
four DENWDmice at 30 and 36 weeks of ages measured
by magnetic resonance imaging (MRI). Tumour burden
in DENWD mice increased significantly over time (paired
t-test, p-value < 0.05).

had tumours (Figure 4.2B, C). These data confirmed previously
observed tumour-promoting effects of WD relative to CD in the
DEN mouse model [115]. Tumours in DENCD mice were too
small to reliably separate from peritumoral tissue, and because
processes associated with ageing may convolute comparison of
heterochronous tumours, DENCD mice were not aged further in
order to obtain resectable tumours. To assess gene expression
changes caused by diet, carcinogen and tumour development,
transcriptional profiles of available tumours and liver tissues
using RNA sequencing were analysed.

Principal component analysis (PCA) of the gene expression
profiles for each tissue sample revealed two major PCs: PC1
(accounting for 41% of variance) was associated with effects
of DEN and PC2 (13%) with diet (Figure 4.3A). GO analysis of
differentially expressed genes across all pair-wise comparisons
revealed enrichment in processes related to (a) inflammation,
which were broadly linked to both diet and DEN; (b) cellular
proliferation and cell-cell interactions, primarily associated with
tumour or peritumoral tissues, and (c) metabolic processes, sev-
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Figure 4.3: A WD elicits distinct hepatic gene expression profile.
A) PCA of gene expression data derived from RNA-
sequencing analysis of tissue samples from cohort 1 (Figure
4.1). B) GO biological process overrepresentation test for
differentially expressed genes using the enrichGO function
and visualised with the dotplot function from the clusterPro-
filer package. For each comparison, the bottom condition is
used as baseline. Benjamini-Hochberg correction was used
with a q-value cut-off of 0.01 and is represented by dot
colour. Dot size represents the fractional number of genes
enriched within a particular biological process compared
to the total gene set size. L: liver tissue, PT: peritumoral
tissue, T: tumour tissue

eral of which were related to lipid metabolism and emerged, at
varying degrees, as a function of diet, DEN or the transforma-
tion state of the tissue (Figure 4.3B). These observations suggest
that chronic exposure to diet is associated with changes in ex-
pression of genes that mediate metabolic processes which, in
addition to dietary nutrient availability, could influence both the
rate and functions of tissue metabolism.

4.1.2 csGSMMs selectively take up nutrients for biomass production

To model the contribution of a WD in providing nutrients and
impacting gene expression liver and tumour metabolism, a gen-
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Figure 4.4: Reconstruction of MMRNHep and csGSMMs. MMRN
was used with gene expression from cohort 1 as input
for the tINIT algorithm to generate a hepatic GSMM,
MMRNHep. This model was then further constrained us-
ing the Eflux method that imposes flux boundaries on
individual reactions using context-specific gene expression.
O2 consumption and CO2 production were used to con-
strain uptake and production bounds, respectively, and
finally, the contents of the WD and CD were used to con-
strain the uptake of these models. L: liver tissue, PT: per-
itumoral tissue, T: tumour tissue

eric hepatic GSMM, MMRNHep was generated (Figure 4.4, see
Methods for details). MMRNHep consisted of 5669 metabolic re-
actions associated with 2240 genes. MMRNHep was constrained
using each experimental condition’s gene expression as well
as O2 consumption and CO2 production rates of mice meas-
ured in metabolic cages to generate five context-specific GSMMs
(csGSMMs). The exchange reactions of these csGSMMs were then
constrained using either the content of the WD or the CD to test
how diet alter the flux distribution under different conditions
(Figure 4.4).

The total flux of carbons (Cmoles
DIET, Figure 4.5A) that were

available from the WD was higher than that for CD. Accord-
ingly, the flux of carbons taken up (Cmoles

INFLUX) by WD-
fed csGSMMs was higher than that of CD-fed csGSMMs, and
higher than MMRNHep fed with either diet. However, no dif-
ference in Cmoles

INFLUXwas found between [MMRNHep]WD and
[MMRNHep]CD. Furthermore, Cmoles

INFLUX values were lower
than Cmoles

DIET for both diets in all models, and the relative
Cmoles

INFLUX of individual diet components did not reflect the
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corresponding Cmoles
DIET values for those nutrients (Figure 4.5B).

Together, these observations suggest that MMRNHep limits the
amounts and types of nutrients it takes from the diet for optimal
production of biomass, irrespective of condition-specific gene
expression; they further indicate that gene expression together
with dietary composition, rather than nutrient availability alone,
dictate nutrient uptake of models.

Consistent with a carbon-balanced model, increased
Cmoles

INFLUX in WD compared to CD was mirrored by higher
total Cmoles

EFFLUX values for all models (Figure 4.5A). An in-
creased Cmoles

EFFLUX by WD-fed models were accounted for by
an increased production of glycerol and succinate since all other
metabolites produced (Cmoles

EFFLUX-others) were consistent across
all csGSMMs. This prediction was confirmed by metabolomics
analyses of tissues, which revealed increased levels of glycerol
and succinate in both DENT and DENPT tissues (Figure 4.6A, B).

Development of Systematic Diet Composition Swap (SyDiCoS) as an
approach to determine the impact of a nutrient class on metabolic flux

To determine whether particular dietary nutrient classes in-
fluenced Cmoles

EFFLUX, the amount of each dietary component
class in WD was swapped with the respective amount of that
component in CD while keeping the remaining WD composition
unchanged. The notation WDX(CD) refers to diets where X=WD
diet component that was swapped to its respective CD value. The
quantitative increase in glycerol production by WD was abrog-
ated with WDcarbs(CD)(Figure 4.6C), while WDlipid(CD)revealed a
dependence of succinate production on the increased lipid con-
tent of the WD, which drove higher TCA cycle flux (Figure 4.6C).
Further investigation of the flux distributions with WDcarbs(CD)

showed that WD-derived fructose accounted for increased gly-
cerol production (Figure 4.6D). However, when used as the sole
dietary sugar, fructose was diverted to sustain glycolysis, and
glycerol production ceased. Investigating the flux distributions
by reconstructing a network revealed the metabolic pathways
responsible for increased glycerol and succinate production in
WD using SyDiCoS and are depicted in Figure 4.6E.
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Figure 4.5: Dietary nutrient uptake and metabolite production by
csGSMMs. A) Cmoles

DIET and Cmoles
INFLUXvalues of each

of the major dietary nutrient classes (carbohydrates, lip-
ids and amino acids) in CD and WD for MMRNHep

and csGSMMs. Cmoles
EFFLUX for MMRNHep and csGSMMs

show that increased efflux in WD models is a result
of increased glycerol and succinate production since
Cmoles

EFFLUX-othersare consistent across all csGSMMs. B)
Cmoles

DIET (top) and Cmoles
INFLUX for individual dietary

nutrients that belong to the three major dietary component
classes (carbohydrates, lipids and amino acids) for CD and
WD.
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Figure 4.6: Increased production of glycerol and succinate as a result
of carbohydrate and lipid content in WD. Amounts of
glycerol (A) and succinate (B) in DENPT and DENT tissues
from mice fed WD compared to respective tissues from
CD-fed mice measured by GC-MS. P-values were calcu-
lated with Mann-Whitney U test and depicted on bars. C)
SyDiCoS to assess the role of WD components upon gly-
cerol and succinate production flux in csGSMMs. Cmoles

DIET

values for all three major diet component classes (carbo-
hydrates, lipids and amino acids) in the WD were swapped
individually or in combination with the corresponding
Cmoles

DIET values in CD while leaving the remaining diet-
ary Cmoles

DIET values of the WD unaltered. The swapped
component(s) are indicated by black dots on the left. The
colour scale represents the ratio of glycerol production flux
or succinate production flux in models provided with the
swapped diet relative to the respective fluxes in models
provided with WD, calculated for each csGSMM shown
at the bottom of panel (D). D) Assessment of the role of
glucose or fructose from WD on glycerol and succinate
production. csGSMMs shown at the bottom were provided
WD containing only glucose or fructose (using their re-
spective Cmoles

DIET values found in WD) as indicated by
the black dots on the left, or both sugars (equivalent to
the original WD composition) while leaving the Cmoles

DIET

values for lipids and amino acids in WD unaltered. E)
Metabolic pathways that lead to increased production of
glycerol and succinate in WD from fructose and FAs, re-
spectively, derived from inspection of the flux distributions
of csGMMS under various SyDiCoS conditions (panels C,
D). FAs: fatty acids; 3PG: 3-phosphyglycerate; Pyr: pyruvate; F1P: fructose

1-phosphate; GA: glyceraldehyde; AKG: a-ketoglutarate; OAA: oxaloacetate.
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4.1.3 Gene expression and dietary nutrient availability dictate differ-
ential fate of FAs in tumours and peritumoral liver

WD led to a modest increase of biomass production in all
csGSMMs compared to the respective CD-fed GSMMs (Figure
4.5A) demonstrating that, while csGSMMs are robust and with-
stand a massive overhaul of diet composition, they are also sens-
itive enough to detect the resulting flux changes. However, the
flux distributions of all csGSMMs differed from each other, with
[MMRNHep]DEN�T�WD

CD being the most distinct (Figure 4.7A).
Furthermore, while WD shifted the flux distributions of all mod-
els, it amplified the differences between the distributions of the
tumour and that of non-tumour models more than for other
model comparisons (Figure 4.7A). These observations indicated
that similar increases in biomass production in tumour and
non-tumour tissues induced by WD are associated with distinct
metabolic pathway activities. Henceforth, to simplify further
exploration of such pathways, the focus was on the comparisons
between [MMRNHep]DEN-T-WD and [MMRNHep]DEN-PT-WD.

WD caused a greater shift, relative to CD, in the
flux distributions of [MMRNHep]DEN-T-WD than those of
[MMRNHep]DEN-PT-WD indicating that the tumour metabolic
network is primed for a greater response to WD than the per-
itumoral model (Figure 4.7A, B). Notably, the WD-induced in-
crease in tumour/non-tumour divergence was completely re-
versed only when both lipids and carbohydrates in WD were
replaced with their respective CD content (Figure 4.7A, C).

To explore specific pathways that underlie differential re-
sponse of tumour and peritumoral tissue models to WD
driven by carbohydrates and lipids, all metabolic sub-
systems that carried flux in [MMRNHep]DEN�T�WD

WD and
[MMRNHep]DEN�PT�WD

WD were identified. Further analysis re-
vealed those subsystems that were differentially engaged in the
tumour and peritumoral tissue models; among them were sev-
eral subsystems involved in lipid and carbohydrate metabolism
(Figure 4.8).

A network comprised of all the reactions in the subsystems
related to lipid and carbohydrate metabolism that showed dif-
ferential flux exclusively in the T or PT in WD but not in CD
was reconstructed. From this network, a single, fully connected
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Figure 4.7: Euclidean distances of flux distributions. A) Effects of
diet composition on flux distribution differences between
csGSMMs assessed by SyDiCoS. FBA was used to calculate
the flux distribution for each csGSMM provided with WD,
CD, WDlipids(CD), WDcarbs(CD) and WDlipids,carbs(CD). The col-
our scale represents the Euclidean distance values cal-
culated in a pairwise manner between each of the flux
distributions and plotted relative to the maximum dis-
tance value across all comparisons. B) Relative response
to changes in diet composition of the flux distributions of
tumoral or peritumoral models. Absolute Euclidean dis-
tances (from panel A) for either [MMRNHep]DEN-T-WD or
[MMRNHep]DEN-PT-WD under different SyDiCoS conditions
are plotted. C) Effect of changes in diet composition on
the flux distributions differences between tumoral and per-
itumoral models. Absolute Euclidean distances (from panel
A) between [MMRNHep]DEN-T-WD or [MMRNHep]DEN-PT-WD

under different SyDiCoS conditions are plotted.



60 csgsmms reveal determinants of wd metabolism in liver cancer

0

0.5

1

Te
tra

hy
dr

ob
io

pt
er

in
 m

et
ab

ol
ism

G
lyc

os
ph

in
go

lip
id

 m
et

ab
ol

ism
Ph

en
yla

la
ni

ne
, t

yr
os

in
e 

an
d 

try
pt

op
ha

n 
m

et
ab

ol
ism

Fa
tty

 a
cid

 e
lo

ng
at

io
n

Ar
gi

ni
ne

 a
nd

 p
ro

lin
e 

m
et

ab
ol

ism
Sp

hi
ng

ol
ip

id
 m

et
ab

ol
ism

Pa
nt

ot
he

na
te

 a
nd

 C
oA

 b
io

sy
nt

he
sis

Bi
op

te
rin

 m
et

ab
ol

ism
St

er
oi

d 
m

et
ab

ol
ism

Be
ta

-o
xid

at
io

n 
(m

ito
ch

on
dr

ia
l)

Ly
sin

e 
m

et
ab

ol
ism

Hi
st

id
in

e 
m

et
ab

ol
ism

Su
lfu

r m
et

ab
ol

ism
Tr

an
sp

or
t, 

lys
os

om
al

In
os

ito
l p

ho
sp

ha
te

 m
et

ab
ol

ism
Bu

ta
no

at
e 

m
et

ab
ol

ism
G

lu
ta

th
io

ne
 m

et
ab

ol
ism

Va
lin

e,
 le

uc
in

e,
 a

nd
 is

ol
eu

cin
e 

m
et

ab
ol

ism
Bi

le
 a

cid
 m

et
ab

ol
ism

Tr
yp

to
ph

an
 m

et
ab

ol
ism

Tr
an

sp
or

t, 
en

do
pl

as
m

ic 
re

tic
ul

ar
Cy

st
ei

ne
 a

nd
 m

et
hi

on
in

e 
m

et
ab

ol
ism

Am
in

o 
su

ga
r a

nd
 n

uc
le

ot
id

e 
su

ga
r m

et
ab

ol
ism

Fa
tty

 a
cid

 d
es

at
ur

at
io

n
Ca

rn
itin

e 
sh

ut
tle

 (m
ito

ch
on

dr
ia

l)
Ca

rn
itin

e 
sh

ut
tle

 (c
yt

os
ol

ic)
Ex

ch
an

ge
 re

ac
tio

ns
Fo

la
te

 m
et

ab
ol

ism
Ur

ea
 c

yc
le

M
isc

el
la

ne
ou

s
TC

A 
an

d 
gl

yo
xy

la
te

/d
ica

rb
ox

yla
te

 m
et

ab
ol

ism
Fa

tty
 a

cid
 b

io
sy

nt
he

sis
G

al
ac

to
se

 m
et

ab
ol

ism
NA

D 
m

et
ab

ol
ism

Tr
an

sp
or

t, 
m

ito
ch

on
dr

ia
l

Tr
an

sp
or

t, 
ex

tra
ce

llu
la

r
O

xid
at

ive
 p

ho
sp

ho
ry

la
tio

n
Vi

ta
m

in
 B

 m
et

ab
ol

ism
Nu

cle
ot

id
e 

m
et

ab
ol

ism
Py

ru
va

te
 m

et
ab

ol
ism

G
lyc

er
op

ho
sp

ho
lip

id
 m

et
ab

ol
ism

Pe
nt

os
e 

ph
os

ph
at

e 
pa

th
wa

y
Pr

op
an

oa
te

 m
et

ab
ol

ism
Al

an
in

e,
 a

sp
ar

ta
te

 a
nd

 g
lu

ta
m

at
e 

m
et

ab
ol

ism
Vi

ta
m

in
 A

 m
et

ab
ol

ism
G

lyc
in

e,
 s

er
in

e,
 a

la
ni

ne
, a

nd
 th

re
on

in
e 

m
et

ab
ol

ism
G

lyc
ol

ys
is 

/ G
lu

co
ne

og
en

es
is

Fa
tty

 a
cid

 o
xid

at
io

n
Py

rim
id

in
e 

ca
ta

bo
lis

m
Tr

an
sp

or
t, 

pe
ro

xis
om

al
Li

pi
d 

po
ol

 re
ac

tio
ns

Pu
rin

e 
m

et
ab

ol
ism

O
m

eg
a-

6 
fa

tty
 a

cid
 m

et
ab

ol
ism

Ty
ro

sin
e 

m
et

ab
ol

ism
Ac

ylg
lyc

er
id

es
 m

et
ab

ol
ism

St
ar

ch
 a

nd
 s

uc
ro

se
 m

et
ab

ol
ism

G
lyc

er
ol

ip
id

 m
et

ab
ol

ism
O

m
eg

a-
3 

fa
tty

 a
cid

 m
et

ab
ol

ism
Fr

uc
to

se
 a

nd
 M

an
no

se
 m

et
ab

ol
ism

RO
S 

de
to

xif
ica

tio
n

Ch
ol

es
te

ro
l m

et
ab

ol
ism

Re
ac

tio
n 

ra
tio

[MMRNHep]DEN-T-WD [MMRNHep]DEN-PT-WD

W
D

CD

0

0.5

1

Figure 4.8: Metabolic subsystems that include at least one re-
action that carries flux in [MMRNHep]DEN-T-WD or
[MMRNHep]DEN-PT-WD on either WD or CD. In each
of these subsystems, the proportion of reactions
with higher flux in [MMRNHep]DEN-T-WD compared to
[MMRNHep]DEN-PT-WD on either WD or CD is plotted. For
each diet, a reaction ratio=1 for [MMRNHep]DEN-T-WD in a
given subsystem indicates that all reactions in that subsys-
tem have higher flux compared to [MMRNHep]DEN-PT-WD

subnetwork connected to biomass production was extracted
and the flux differences between [MMRNHep]DEN�T�WD

WD and
[MMRNHep]DEN�PT�WD

WD , and between [MMRNHep]DEN�T�WD
CD

and [MMRNHep]DEN�PT�WD
CD were calculated (Figure 4.9).

Comparison of the reaction fluxes in this network revealed a
distinct diet-dependent fate of dietary fatty acids (FAs) in the
tumour and the peritumoral tissue models (Figure 4.9A,B). On
one hand, FA uptake and FA-derived acyl-CoA synthesis fluxes
were higher in WD than in CD for both the T and PT models,
and equal between T and PT models in each diet. However,
the models predicted increased use of FA-CoA for lipid macro-
molecule synthesis and decreased use for b-oxidation through
the mitochondrial carnitine shuttle in [MMRNHep]DEN�T�WD

WD
compared to [MMRNHep]DEN�PT�WD

WD (Figure 4.9A). These flux
differences correlated with higher expression of lipid synthesis
genes and lower expression of mitochondrial lipid transport and
b-oxidation genes in tumours (Figure 4.10). Consistent with this
observation, mitochondria purified from tumour tissue respired
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Figure 4.9: Differential fate of FAs in tumours and peritumoral
liver predicted by MMRNHep. Flux differences between
tumoral and peritumoral models fed either WD (A), CD
(B), WDlipid(CD)(C), WDcarbs(CD)(D). These networks are
schematic representations of the metabolic network re-
constructed from all the reactions of subsystems from
panel (D) that have a reaction ratio=1 (either all reac-
tions that carry higher flux in [MMRNHep]DEN-T-WD or
in [MMRNHep]DEN-PT-WD and partake in lipid and carbo-
hydrate metabolism. Differential fluxes for T and PT are
coloured according to the legend on the bottom of these
panels. FBP: fructose 1,6-bisphosphate; GAP: glyceraldehyde 3-phosphate;

3PG: 3-phosphoglycerate; Pyr: pyruvate; F1P: fructose 1-phosphate; DHAP: di-

hydroxyacetone phosphate; G3P: glycerol 3-phosphate; DAG: diacylglycerol;

TAG: triacylglycerol; PC: phosphatidylcholine; PS: phosphatidylserine; FAs: fatty

acids; FA-CoA: fatty acyl-CoA; AKG: a-ketoglutarate; Succ: succinate; OAA:

oxaloacetate; Phgdh: Phosphoglycerate dehydrogenase; Psat1: Phosphoserine

aminotransferase 1; Gpat: Glycerol-3-phosphate acyltransferase; Gpam: Glycerol-

3-phosphate acyltransferase 1, mitochondrial; Abdh5: 1-acylglycerol-3-phosphate

O-acyltransferase; Lpin: Phosphatidate phosphatase; Plpp: Pyridoxal phosphate

phosphatase; Mogat1: Monoacylglycerol O-acyltransferase 1; Cpt2: Carnitine

palmitoyltransferase 2; Acadsb: Acyl-CoA dehydrogenase short/branched chain;

Hsd17b10: Hydroxysteroid 17-beta dehydrogenase 10; Dhtkd1: Dehydrogenase

E1 and transketolase domain containing 1; Fh1: Fumarate hydratase 1.
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significantly less on FAs than mitochondria purified from per-
itumoral tissue (Figure 4.11A).

Notably, both [MMRNHep]DEN�T�WD
CD and

[MMRNHep]DEN�PT�WD
CD used FA-derived acyl-CoA equally for

either biomass or b-oxidation, whereas differential fate of acyl-
CoA between [MMRNHep]DEN-T-WD and [MMRNHep]DEN-PT-WD

persisted when these models were fed either WDlipids(CD) or
WDcarbs(CD)(Figure 4.9C, D). This observation suggested that
differential expression of b-oxidation and lipid synthesis genes
does not suffice to drive divergence of FA metabolic fates in
the absence of altered dietary composition of both FAs and
carbohydrates.

Flux predictions showed increased fluxes of glycolysis and
fructolysis, which contribute precursors for lipid synthesis, in
[MMRNHep]DEN�T�WD

WD compared to [MMRNHep]DEN�PT�WD
WD .

Increased serine synthesis from carbohydrates persisted in
[MMRNHep]DEN�T�WD

CD compared to [MMRNHep]DEN�PT�WD
CD ,

indicating no impediment in serine synthesis that would explain
attenuated lipid synthesis in CD. In contrast, incorporation of
glycerol-3-phosphate (G3P) through glycerol 3-phosphate acyl-
transferase (encoded by Gpat / Gpam) into lipids ceased for both
models in CD but was increased in [MMRNHep]DEN�T�WD

WD com-
pared to [MMRNHep]DEN�PT�WD

WD . In agreement with a role for
G3P-fuelled esterification in driving increased lipid synthesis in
T vs PT, it was found that, while both tumour and peritumoral
mouse tissues synthesised FAs at comparable rates in vivo (Fig-
ure 4.11B, C), tumours showed increased incorporation of newly
synthesised glycerol into lipids (Figure 4.11B, D).

4.1.4 Glycerol is produced through a novel metabolic pathway

Glycerol production as a result of WD feeding was increased
in [MMRNHep]DEN�T�WD

WD compared to other WD-fed models
(Figure 4.12). Although SyDiCoS revealed that this was primar-
ily a consequence of increased fructose in WD, the model also
predicted that glycerol metabolised from glucose was not from
known glyceroneogenesis pathways, but used serine as substrate
produced via the serine biosynthesis pathway (Figure 4.12). This
pathway has not previously been described, however, increased
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Figure 4.11: Experimental validation of model predictions. A) Com-
parison of FA-driven oxygen consumption rates in mito-
chondria isolated from liver tumours (T) or peritumoral
(PT) tissues. Statistical significance determined by two-
tailed paired t-test (n=4 different mice, each providing a
paired T and PT tissue sample from which mitochondria
were isolated; oxygen consumption was measured in par-
allel for each T/PT sample pair). B) Schematic showing
metabolic routes of 2H incorporation into the glycerol
backbone and fatty-acyl chains in a triglyceride (TAG)
molecule after administration of 2H2O to mice. C) Meas-
urement of de novo synthesised fatty-acids (as outlined
in B) in TAGs extracted from tumour and peritumoural
tissues. D) Measurement of de novo synthesised glycerol
(as outlined in B) in TAGs extracted from tumour and
peritumoural tissues. Statistical significance in (C) and (D)
determined by Wilcoxon matched-pairs signed rank test
(n=7 different mice, each providing a paired T and PT
tissue sample).
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predictive capability of MMRNHep. Increased serine pro-
duction in [MMRNHep]DEN�T�WD

WD was predicted to be
used for glycerol synthesis by a series of reactions that
was previously unknown to produce glycerol.

serine production has been shown in different cancer types,
including liver cancer [62, 67].

Serine biosynthesis in cancer is primarily driven by increased
expression of genes in this pathway. Genes in this pathway,
Phgdh, Psat1 and Psph are upregulated at mRNA level and Phgdh
is also expressed on protein level in tumour tissue (Figure 4.13).
Agxt is the first enzyme in the putative pathway responsible for
metabolising serine to hydroxypyruvate. At mRNA level, this
enzyme has a slight decreased expression in DENT-WD compared
to DENPT-WD, albeit non-significant. Interestingly, Agxt showed
increased protein expression in DENT-WD. Other reactions in
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Figure 4.13: mRNA and protein expression of genes involved in the
putative glycerol producing pathway. A) TPM expression
values of Phgdh, Psat1, Psph and Agxt in peritumoral and
tumor tissue. Differential gene expression statistics depic-
ted on top of each panel were calculated with DESeq2
as described in Chapter 2. B) Western blot of of protein
expression of Phgdh and Agxt in non-tumor bearing liver
tissue (control liver), peritumoral tissue and tumor tissue.

this pathway were annotated to be catalysed by more than one
enzyme.

4.2 conclusion

In this Chapter I used MMRN to reconstruct a liver-specific GSMM
and used this model to study how a WD impacts liver and liver
tumour metabolism. The mathematical formulation of meta-
bolism in GSMMs allows the integration of different data types
to constrain the model to biological feasible solutions [80, 81].
Generic organism-specific reconstructions, such as MMRN, are
indispensable tools in this process and serve as a starting point
for CBM.

An ensemble of tools have been developed to extract cell- and
tissue-specific GSMMs from generic reconstructions (reviewed in
[147]). Although these methods often differ in their approach,
their common goal is to extract a network all the reactions for
which there is evidence to take place in a the cell or tissue of
interest. Most of these methods therefore rely on gene or protein
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expression of enzymes catalysing these reactions and use omics
data, such as transcriptomics or proteomics, for this purpose.
The integrative network inference for tissues (INIT) algorithm
was developed to extract such networks using transcript or
protein expression as evidence to include reactions for which
there are sufficient expression using the GR-rules embedded in
the model [86]. This algorithm was later expanded to include a
metabolic task list as input [132]. The primary aim of this up-
dated algorithm, tINIT, is to ensure that the resulting model can
perform a predefined set of metabolic tasks that consequently
gives the resulting model metabolic functionality. Using tINIT a
generic hepatic mouse GSMM, MMRNHep was reconstructed by
using the maximum expression across all experimental condi-
tions used. Then constraining MMRNHep with condition-specific
expression [134] allowed pair-wise comparison of flux distribu-
tions across csGSMMs because the same reactions are included
in each simulation but with distinct flux distributions.

Using expression data to constrain the reaction bounds of
individual reactions constrains the solution space to allow fewer
possible solutions for linear optimisation. Methods such as
MADE [148] and RMetD [97] rely on differential gene expres-
sion between two conditions for this purpose and thus results
in a model that is constrained relative to another experimental
condition. The Eflux [134] method employed here, however, dir-
ectly imposes these constraints on individual reactions by using
absolute gene expression data. This allowed the reconstruction
of five distinct csGSMM each constrained with its corresponding
transcript expression.

There are a limited number of studies that have investig-
ated the impact of nutrient input on predicted flux distribu-
tions, particularly in mammalian GSMMs [106]. The roadmap
developed here using the SyDiCoS approach allows the system-
atic investigation of the impact of different nutrient classes, and
individual nutrients, on metabolic flux. This approach also ad-
dresses whether in the background of specific gene expression
patterns, imposed by constraints, flux patterns can be impacted
by changing nutrient availability. For example, SyDiCoS revealed
that gene expression in lipid synthesis pathways sufficed to
drive differential lipid metabolism between the tumour and
peritumoral tissue when either lipids or carbohydrates were nor-
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malised to CD levels, however, in a full swap to CD, differential
metabolism ceased. In contrast, increased serine synthesis in
tumour relative to the peritumoral tissue persisted in all diet
inputs tested but in the absence of lipids, serine did not con-
tribute to lipid biomass more than in peritumoral tissue. Even
though higher glucose uptake and flux to DHAP persisted in
the tumour with CD, it was not sufficient, alone, to sustain acyl-
glycerol synthesis, even with increased Gpat expression, likely
because fructose uptake ceased in CD.

There are limitations when using and interpreting FBA results
based on the optimisation of a single objective function using
LP. In the first instance, this gives only one possible solution
for the given constraints and no indication of the statistical ro-
bustness of this solution or where this solution falls within the
given boundaries based on the constraints. Other methods have
been developed to explore the solution space through different
sampling algorithms or by using flux variability analysis (FVA)
that calculates the lower and upper-bound of each reaction for a
given objective. To test this, key model predictions, such as suc-
cinate and glycerol production have been tested by sampling the
solution space using random sampling that confirmed higher
production in a WD. Furthermore, these predictions have also
been confirmed by using different solver settings, and by using
normal FBA, parsimonious FBA and sparse FBA. Because the
primary motivation was to test how the predicted distributions
of context-specific models differ under specific nutrients con-
ditions, calculating an Euclidean distance metric provided a
single metric to compare several different comparisons whereas
using sampling or FVA would require comparison of individual
reactions.
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G U T M I C R O B I O M E C O M P O S I T I O N
I N F L U E N C E S M E TA B O L I S M O F D I E TA RY
N U T R I E N T S

“If an alien visited earth, they would likely take some note of humans,
but probably spend most of their time trying to understand the dom-
inant form of life on our planet - microorganisms like bacteria and
viruses” - Nathan Wolfe

There is an increasing appreciation that the gut microbiome
plays an important role in the pathogenesis of human disease.
Changes in microbial species abundance, or dysbiosis, have
been linked to various human diseases, including those with
a strong metabolic phenotype, such as liver disease and liver
cancer [48, 110, 149]. Diet has been shown to be able to contrib-
ute to this dysbiosis which in turn affects disease progression.
Furthermore, since dietary nutrients are metabolised in the gut,
dysbiosis itself also changes which metabolites reach host tis-
sues. Therefore, diet can shape microbiome composition, but
also impact systemic metabolism by altered processing of dietary
nutrients through the microbiome [49, 110].

In Chapter 4 the composition of the diet was used to constrain
exchange reactions of tissue GSMMs. However, since the gut
microbiome plays a significant role in processing dietary nutri-
ents and changes in its composition can change its metabolic
capacity, community modelling can be used to investigate this.
In this chapter I use quantitative metagenomics data to calculate
species abundances that are used for the reconstruction of micro-
bial community genome scale metabolic models (comGSMMs).
These models are then used to test how compositional changes
of the microbiome brought about by the presence of liver tu-
mours and fasting affect metabolism of dietary nutrients in the
gut.

69
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Figure 5.1: Experimental design for the DEN mouse model with a
non-injected control as well as a fasted group.

5.1 results

5.1.1 Tumours and fasting change the gut microbiome species com-
position

The DEN mouse model was used to generate metagenomics
data from fecal matter and cecum content. A nonDEN control
was included in this cohort and before tissues were harvested
a subset of mice were fasted for 24 hours to assess the effect of
fasting on microbiome and host metabolism (Figure 5.1).

Raw reads were mapped against a gene catalog of gut meta-
genomes containing ~2.6 million genes. On average, 47.12% of
raw sequencing reads per sample mapped against the catalog
(Figure 5.2). Two samples with low percentage mapped read
count were identified as outliers and removed from subsequent
analysis. Outlier samples had similar total number of reads but
fewer total mapped read counts compared to other samples,
suggesting that low percentage read mapping was likely due to
sequencing error. The gene counts for each sample were then
used for calculating metagenomic species (MGS) abundances.

Consistent with previous reports, Bacteroidetes and Firmi-
cutes were the most abundant phyla across experimental con-
ditions (Figure 5.3). Actinobacteria, Verrucomicrobia and Pro-
teobacteria were depleted in DENFasted mice suggesting a de-
crease in community diversity. Proteobacteria have been shown
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Figure 5.2: Mapping of metagenomics data against a gene catalog
of the mouse gut. . A) Barplot showing the percentage of
mapped reads against the mouse gut catalog B) Boxplot
of the same data as in A) highlighting two outlier samples
C) Total number of reads mapped against the mouse gut
catalog. Asterisks (*) on two bars in A and B indicate outlier
samples.

to use host-derived substrates for metabolism and increased
in fasting. The increase in Proteobacteria, specifically Bilophila
wadsworthia, in nonDENFasted mice but its depletion in DENFasted

mice suggests that decrease in bacterial richness in DEN mice
likely cause these mice to respond different to fasting (Figure
5.4). This trend was further supported by an overall increase in
Odoribacter splanchnicus in fasting, but a decrease in DENFasted

mice compared to nonDENFasted mice. Lactobacillus johnsonni
was depleted in DEN animals compared to nonDEN animals
whereas Akkermansia muciniphila was increased. Interestingly,
A. muciniphila was specifically depleted in DENFasted animals.
Collectively these observations indicated that the composition
of the gut microbiota is impacted by both tumours and fasting.

5.1.2 Gut microbiome composition impacts production of biomass
and other metabolites in a diet specific-manner

In order to model how compositional changes in microbiome
potentially impact metabolism, comGSMMs were reconstructed
(see Chapter 2 and Figure 2.2 for details). On average across
conditions, the top 20 species accounted for more than 95%
of total species abundances and the remaining less abundant
species made up a very small proportion in each sample. There-
fore, the 20 most abundant metagenomics species (MGSs) were
selected as a representation of the total community composition.
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Figure 5.3: Phylum abundances change in tumorigenic animals and
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teria is statistically increased upon fasting in nonDEN
animals but depleted in all other conditions. Verrucomicro-
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Figure 5.4: Bacterial species significantly changing across four dif-
ferent experimental conditions. The injection of DEN as
well as fasting impacted the abundance of different species.
M.W.W: Mann-Whitney U test
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Figure 5.5: Overlap of the top 20 most abundant species of each
experimental condition selected for metabolic modeling.

A total of 14 species were common across the four experimental
conditions with only a few unique species per condition (Figure
5.5). However, individual species rank different according to
their relative abundance between these conditions (Figure 5.6).
Therefore, the lower bound of the biomass production reaction
flux of each species GSMMs was constrained relative to abund-
ance of that species in the community. The exchange reactions
of comGSMMs were then constrained using either the content of
the WD or the CD to test how diets alter the flux distribution un-
der different conditions. The diet constraint was done identical
to the tissue-specific models reconstructed in Chapter 4 to al-
low cross-comparison. Consistent with csGSMMs, the following
notation was used for microbial models: comGSMMX

Y where X
indicated the experimental condition and Y is the diet given to
the model.

The total uptake of carbons by each community, Cmoles
INFLUX,

was less with WD compared to CD (Figure 5.7A). This is des-
pite higher Cmoles

DIET in WD compared to CD and in contrast
with simulations in csGSMMs. comGSMMs did not take up all lip-
ids available from the diet. Lipids are primarily metabolised
by tissues and not gut microbes indicating that reconstructed
comGSMMs recapitulate known metabolic features of the gut.
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Figure 5.6: Ranking of the top 20 most abundant MGSs of each
experimental condition selected for metabolic modelling.
A total of 14 species overlap between four experimental
conditions, however, the relative ranking of the top species
differs between these conditions. In order to account for
this, CBM was used to constrain the biomass reaction of
individual species.
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The proportion of nutrient classes and total Cmoles
INFLUX were

similar across comGSMMs for each diet, but relative proportions
of Cmoles

EFFLUX for biomass, short-chain fatty acids (SCFAs) and
other metabolites changed across experimental conditions (Fig-
ure 5.7A). This suggested that the community composition does
not dictate nutrient uptake but influences how these nutrients
are metabolised.

The mean biomass production flux across conditions was
1.083 mmol/mouse/day (SD = 0.101), indicating the robust-
ness of the constraining process. Fasting and diet com-
position did, however, impact biomass production (Figure
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5.7A). Fasting increased biomass production in nonDEN
and DEN mice when constrained with CD. Interestingly,
comGSMMMDEN�Fed

WD had the overall highest biomass produc-
tion, 1.18 mmol/mouse/day, and decreased with fasting while
the opposite was observed in comGSMMMnonDEN�Fed

WD . Further-
more, biomass production in comGSMMMnonDEN�Fasted

WD was
similar to comGSMMMDEN�Fed

WD , while the biomass production
for these models under CD was less. It is therefore likely that
the gut microbial community of DEN animals is already in a
‘fasted-like’ state and that fasting in these animals disrupts the
community composition and cause a decrease in biomass pro-
duction. As such, biomass production in comGSMMMDEN�Fed

WD
is similar to comGSMMMnonDEN�Fasted

WD .
To test which microbes were responsible for increased bio-

mass production in comGSMMMDEN�Fed
WD , individual spe-

cies GSMMs were removed from the comGSMM. The removal
of Akkermansia muciniphila, Pseudoflavonifractor capillosus or
Lachnospiraceae bacterium stopped the community growing in
comGSMMMDEN�Fed

WD (Figure 5.8). Interestingly, the removal of
L. bacterium had the opposite effect in other comGSMMs compared
to comGSMMMDEN�Fed

WD resulting in an increase in biomass
production. Collectively, this further supported that biomass
production in DENFed is dependent on the composition of the
community and the composition of the WD.

Systematic diet composition swap (SyDiCoS) was then used
to test the dependence on diet composition for biomass pro-
duction under these conditions. Increased biomass produc-
tion in nonDENFasted and DENFed in WD compared to CD,
was due to a combination of all three nutrient classes and
component switch for carbohydrates, lipids and amino acids
reduced biomass production in these models (Figure 5.9).
comGSMMMDEN�Fasted

WD had increase in biomass production
flux compared to comGSMMMDEN�Fasted

CD (Figure 5.7A) and
SyDiCoS showed that comGSMMMDEN�Fasted

WD can be increased
by switching to the carbohydrate content of the CD, which is
primarily comprised by glucose as opposed to fructose in the
WD. This suggested that the increased glucose in CD are essential
to sustain growth in this community.
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Figure 5.8: The effect of individual species on community biomass
production. The GSMM for species on the y-axis was re-
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Figure 5.9: Diet composition effects on biomass and glycerol produc-
tion. Systematic Diet Component Swap (SyDiCoS) to assess
the role of WD components upon biomass and glycerol
production flux in comGSMMs. Cmoles

DIET values for all
three major diet component classes (carbohydrates, lipids
and amino acids) in the WD were swapped individually
or in combination with the corresponding Cmoles
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ues in CD while leaving the remaining dietary Cmoles

DIET

values of the WD unaltered. The swapped component(s)
are indicated by black dots on the left. The colour scale
represents the ratio of biomass production flux or glycerol
production flux in models provided with the swapped diet
relative to the respective fluxes in models provided with
WD, calculated for each comGSMM shown at the bottom
of the figure.
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SCFAs accounted for 52.64-72.51% of Cmoles
EFFLUXin all models.

Formate was produced by all comGSMMs while acetate, propi-
onate and butyrate were produced in a diet, fasting or tumour-
specific manner (Figure 5.7B). Butyrate was produced only in
fed-conditions and ,interestingly, acetate production was in-
creased in DENFasted animals irrespective of diet, suggesting that
in DEN animals gut microbiome compositional changes poten-
tially support host metabolism by providing additional FAs dur-
ing fasting. Cmoles

EFFLUX-Others increased in WD-fed comGSMMs.
This increase was mostly accounted for by an increase in gly-
cerol production (Figure 5.7C). Glycerol production in DENFed

animals was increased compared to nonDENFed animals and in
both conditions fasting decreased this but with increased mag-
nitude in reduction in DEN animals. Using the SyDiCoS approach
carbohydrates in the WD were shown to be responsible for this
increased glycerol production (Figure 5.9).

5.2 conclusion

The gut microbiome plays an important role in metabolising
dietary nutrients. The species composition of the gut micro-
biome has been shown to impact its function and how it can
contribute to disease. To study how gut microbiome composi-
tion and dietary nutrients impact the metabolic capability of the
gut, comGSMMs have been reconstructed in this Chapter based
on quantitative metagenomics data.

Different experimental conditions impact the species com-
position of the gut. Odoribacter splanchnicus that increased in
fasting has previously been correlated with a healthy fasting
serum lipid profile [150]. Its decrease in DENFasted animals
show that tumour-bearing animals respond different to fasting
likely because of the presence of the tumour. Other differen-
tially abundant species, such as Lactobacillus johnsonni, has been
shown to decrease the metabolic effects of obesity [151] and its
depletion in DEN animals emphasises that beneficial bacteria
likely decrease in tumour-bearing animals. Several studies has
previously associated Akkermansia muciniphila with liver disease
[152–154]. The results here indicate that fasting tumour-bearing
animals can potentially reduce the abundance of this species
and flux analysis also showed that A. muciniphila is responsible
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for the characteristic increased biomass production in DENFed

animals. This result suggests that fasting would have a beneficial
outcome in liver cancer by decreasing the abundance of bacterial
species such as A. muciniphila in the gut.

A WD cause an increased production of glycerol across all
conditions. Glycerol is an important metabolite in carbohydrate
and lipid metabolism and this prediction shows that glycerol
produced in the microbiome can potentially be used for meta-
bolism in host tissues such as the liver. Furthermore, previous
studies have shown that glycerol can be used as a substrate for
the synthesis of acrolein, a carcinogenic compound [155, 156].
This indicates that a WD could potentially increase production
of acrolein which will be tested in future work.

The intricate interplay between gut microbiome species com-
position and diet have previously been studied [111, 157]. At the
same time, the diversity and richness of the gut flora have been
shown to correlate with metabolic function [110]. Therefore,
the observation that community composition does not dictate
which nutrients from the diet are used, but rather how they are
metabolised is interesting. This shows that the community will
most likely be able to metabolise all the nutrients of the diet but
how these nutrients are metabolised are key to understanding
longitudinal metabolic changes. This furthermore emphasises
the importance of using mathematical models to investigate the
underlying mechanisms of diet metabolism in the gut.

There are limitations in using the modelling approach as
done here. In the first instance, using biomass production for
optimisation using LP has similar pitfalls as in tissue-models
reconstructed in Chapter 4, as this only gives one possible solu-
tion. Using this approach did, however, make comparison of
nutrient distribution and efflux against tissue models possible.
It was also assumed that the relative abundance of individual
species correlates with biomass flux and that the most abundant
species contribute to metabolism of the community.
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M U LT I - T I S S U E M E TA B O L I C M O D E L L I N G
U N C O V E R S N O V E L M E TA B O L I C
I N T E R A C T I O N S B E T W E E N T H E L I V E R ,
T U M O U R A N D M I C R O B I O M E

“A model that proves very inadequate will be quickly rejected, without
contributing much to the genesis and progression of knowledge, while a
succession of adjustments to a model that is useful, though not perfect,
will lead to an increasingly detailed representation of the phenomenon”
- Antoine Danchin

Studying metabolism at individual tissue level has given
valuable insights into metabolic alterations in diseases, such
as cancer. On an organismal level, however, metabolism involves
coordinated cross-talk between individual tissues regulated by
several different intrinsic and extrinsic factors. The tumour mi-
croenvironment (TME) is the ecosystem directly surrounding
tumour tissue and has been shown to metabolically interact
with tumour tissue in a highly dynamic manner [66]. Tumours
therefore evolve mechanisms to adjust to changes in nutrient
composition in the TME that allow tumour cells to grow and
survive. This quick adaptation highlights the importance of
studying tumour biology in appropriate physiological and nu-
tritional contexts [158].

Cellular compartmentalisation is an important feature of meta-
bolism. This information is included in the reconstruction of
genome scale metabolic models (GSMMs) and has been used to
reconstruct multi-tissue GSMMs (mtGSMMs) by representing
individual tissues as different compartments in a single model
[14, 113, 114, 159]. By using this approach it is possible to study
inter-organ metabolic interaction and to ultimately have a more
accurate representation of whole-body physiology.

In this chapter, I reconstruct a mtGSMM to study the meta-
bolic interactions between the tumour, the liver host and the
microbiome. For this purpose the tissue models reconstructed in

83
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Chapter 4 and the microbiome models reconstructed in Chapter
5 are integrated into a single unified framework to allow invest-
igation of metabolic interactions between these tissues. These
models are then used to test how the liver host and the micro-
biome metabolically interact with the tumour in a diet-specific
manner.

6.1 results

6.1.1 A WD influences liver and tumour metabolic cross-talk

To model how the liver host and microbiome potentially support
tumour metabolism, a mtGSMM was reconstructed (see Chapter
2 and Figure 2.3 for details). The mtGSMM consisted of a blood
and gut compartment that, within them, contained tissue GSMMs
and comGSMMs, respectively. Individual tissue models were con-
strained with gene expression data (as described in Chapter 4)
and the community model with metagenomic species abund-
ance data (as described in Chapter 5). The objective of the gut
was set to biomass production and biomass production in tu-
mour tissue was set as an additional objective. Input into the
mtGSMM was then constrained with the content of the western
diet (WD) or the control diet (CD) to test how diets alter the flux
distribution under different conditions. Using this modelling
setup, it was possible to study potential metabolic cross-talk
between the gut microbiome and host tissues, between liver
host and tumour, how the diet impacts such crosstalks and,
ultimately, how it potentially impacts biomass production of the
tumour.

Tumour biomass production was increased in the mtGSMM
compared to the tumour as a single-tissue model (Figure 6.2A).
Furthermore, the differences in flux distributions were greater
between single-tissue GSMMs and mtGSMMs compared to differ-
ences within these models and these differences were amplified
on a WD (Figure 6.2B). This suggested that the the liver and
the microbiome affect the flux distribution of the tumour. In
addition, because the amplification of these differences on a WD
qualitatively correlated with an increase in biomass, it shows
that the liver potentially supports tumour biomass production
dependent on the diet composition.
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Figure 6.1: Schematic illustrating setup of integrative mtGSMM.
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Figure 6.2: A mtGSMM impacts tumour biomass production and
flux distributions. A) Bar plot of predicted tumour bio-
mass production as a single-tissue GSMM and within the
mtGSMM. B) Euclidean distances between flux distribu-
tions for tumour tissue in a single-tissue GSMM and within
the mtGSMM under different conditions. The colour scale
represents the Euclidean distance values calculated in a
pairwise manner between each of the flux distributions
and plotted relative to the maximum distance value across
all comparisons.
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Figure 6.3: Metabolic interaction between the tumor and liver host.
Heatmap showing metabolites exchanged from tumor (T)
to liver (L) in red and from liver to tumor in blue. Each
metabolite row is scaled to the maximum flux value of that
metabolite with higher color intensity therefore indicating
higher flux compared to other conditions for that metabol-
ite.

The mtGSMM was reconstructed to allow exchange of metabol-
ites between the liver and the tumour which made it possible to
directly assess tumour-liver metabolic exchange. Known meta-
bolic substrates for tumour metabolism, such as glucose and
glutamine, were predicted to be exchanged from the liver to
the tumour (Figure 6.3) [66]. Interestingly, some metabolites,
such as creatine, propanoate and proline showed a WD-specific
exchange from the liver to the tumour.

Glycerol and succinate, predicted to be produced in a WD-
specific manner in single-tissue liver models, were exchanged
from the tumour to the liver on WD (Figure 6.4). Further in-
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Figure 6.4: Glycerol and succinate exchange between tumor and liver
tissues. Schematic illustration of exchange of key meta-
bolites, glucose, glycerol and succinate with flux values
depicted on reactions as bar plots.

vestigation into the flux distributions, showed that glycerol was
produced from serine via the putative pathway identified in
single-tissue GSMMs (Chapter 4) and that increased serine pro-
duction in the tumour was, in part, a result of increased glucose
exchange from the liver on WD. Similar to glycerol production,
succinate was only produced by the tumour in the mtGSMM,
however, in CD all succinate was transported from the tumour
to the blood while some succinate was exchanged to the liver
in WD. Interestingly, DENFed animals in WD show the highest
overall succinate production and fasting reduces this to similar
levels compared to CD suggesting that a diet-switch and fasting
have a similar effect on succinate production in the tumour.

6.1.2 Acetate and propanoate produced by the microbiome are further
metabolised in tissues

Metabolite exchange from the gut to the blood increased sig-
nificantly in DEN animals compared to nonDEN animals which
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Figure 6.5: Diet-specific acetate production by the gut is preferen-
tially metabolized by the tumor by Acss2. A) An increased
exchange of metabolites from the gut to the blood in DEN
animals accentuated by a WD. B) The relative fluxes for
reactions related to acetate metabolism. Each row is scaled
to the maximum flux for that row with a darker red color
showing increased relative flux.

was mostly accounted for by the short chain fatty acids (SCFAs)
acetate and propanoate (Figure 6.5A). Previous studies have
shown that microbiome-derived acetate can increase hepatic
lipogenesis through ACSS2 by increasing acetyl-CoA produc-
tion. A closer investigation into the flux distribution showed
microbiota-derived acetate is further metabolised in tumour tis-
sue in CD, where less acetate is produced compared to WD, and
that in WD both the liver and tumour metabolises this acetate
via the Acss2 reaction (Figure 6.5B). Interestingly, propanoate
was only produced in tumorigenic animals and was exclusively
transported to the blood compartment (Figure 6.5C). Through a
successive series of metabolic reactions, propanoate was meta-
bolised in tumour tissue to succinyl-CoA. The final step in this
pathway was catalysed by methylmalonyl-Coenzyme A mutase
(Mmut2).

6.2 conclusion

In this chapter I reconstructed a mtGSMM to investigate how the
liver host and microbiome impact tumour biomass production.
Cancer cells secrete different soluble factors such as cytokines
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and small molecules that recruit other cells to the tumour site
[66, 160]. This creates a TME with dynamic interactions including
the exchange of metabolites between tumour and host cells. The
cross-talk between cancer cells and cells within the TME is a
widely studied research topic in cancer biology to understand
how host cells support tumorigenesis and whether this can be
used in therapy. Although several instances of metabolic cross-
talk between tumour and host cells have been documented, the
extent of this type of interactions are unknown.

The advancement of computational algorithms in metabolic
modelling has led to numerous reconstructions of tissue-specific
and cell-specific GSMMs. Although these GSMMs are helpful in
understanding metabolism at cellular and tissue level, physiolo-
gical metabolism involves coordinated metabolic exchange
between different cells and tissues on an organismal level. In
this regard, an effort has been made in the metabolic modelling
community to try and recapitulate whole-body metabolism by
reconstruction of mtGSMMs [113, 114]. The recent organ-resolved
GSMMs reconstructed by Ines Thiele and colleagues are the most
comprehensive reconstructions towards simulating whole-body
metabolism [14]. There are, however, a very limited number of
studies that modelled microbiome-host metabolic interactions
[97] and none that focused on the metabolic interactions between
tumour and host tissues.

WD-specific exchange of metabolites from the liver to the
tumour identified here have previously been associated with
cancer metabolism. For example, creatine derived from the diet
or synthesised de novo has been shown to promote cancer meta-
stasis in mice [161, 162]. Proline, primarily synthesised from
glutamine, has also been shown to promote tumorigenesis in
liver cancer [163]. Although many studies focused on the meta-
bolism of these metabolites by the tumour itself, the flux simu-
lations highlights that these metabolites can potentially also be
derived from the host tissue that can then be used for metabol-
ism in the tumour.

Similar to single-tissue models, there are several limitations in
the reconstruction of mtGSMMs and when using these models for
predicting fluxes. In the first instance, the distribution of dietary
nutrients to either the microbiome or tissues are not explicitly
constrained, as done in previous studies [97]. Therefore, in
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conditions where the tumour is present more dietary nutrients
directly be taken up to support its metabolic need rather than
being first metabolised by the microbiome. This can, however,
be tested with the current models in further work and will likely
yield interesting results about nutrient distribution across tissues.
Furthermore, although gut-to-blood exchange potentially gives
a good estimate of metabolites reaching tissues, metabolites
will first pass through the intestine, a major metabolic organ,
which will likely change which metabolites reach the tissues.
Finally, limited manual curation was done on exchange reactions
between liver and tumour tissue and metabolites from the gut
to systematically check whether these reactions can indeed take
place. This might lead to predictions of exchanges between these
tissues that is not possible.
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D I S C U S S I O N A N D F U T U R E W O R K

“Out of intense complexities, intense simplicities emerge” - Winston
Churchill

7.1 improving hgsmm-based mgsmms reconstruc-
tions

Reconstructing mGSMMs based on mouse-to-human orthology
has become the state-of-art in mouse genome scale metabolic
model (mGSMM) reconstruction over the last couple decades
(examples [97, 98, 135]). This approach takes advantage of the
significant effort put into reconstruction of human GSMMs
(hGSMMs) to alleviate the cumbersome and time-consuming
process of bottom-up reconstruction [108]. At the time of incep-
tion of this thesis, all available mGSMMs had been reconstructed
from a single hGSMM, belonging to either the Recon or HMR
series. Because different hGSMM series comprise non-redundant
metabolite and gene components [92], resulting mGSMMs may
be incomplete if a single template model is used as reference.
In addition, because the orthology based approach for GSMM
reconstruction is dependent on the the coverage of orthologs
described between human and mouse, it is desirable to capture
as many orthologs as possible.

These limitations were addressed when reconstructing Mouse
Metabolic Reaction Network (MMRN) by using both HMR2 and
Recon3D as template models as well as incorporating known
and newly identified orthologs through protein sequence sim-
ilarity. The fact that intermediate models (IMs) from different
hGSMMs and from protein homology-based methods show sig-
nificant non-redundancy demonstrates that integration of pre-
existing models and improvement of orthology information are
warranted to facilitate reconstruction of more complete model
organism GSMMs based on hGSMMs.

91
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7.2 investigating the interplay between nutrient
availability and gene expression on metabolic
flux

Metabolic flux is largely determined by nutrient availability and
gene expression of enzymes catalysing metabolic reactions [139].
Chronic consumption of ‘western-style’ diets (WD) lead to the
dysregulation of several homeostatic mechanisms controlling
gene expression that result in distinct gene expression that con-
tribute to altered metabolism in liver tissue. These changes
contribute to the development of liver tumours and, once estab-
lished, metabolic reprogramming in transformed cells is also
influenced by several tumour cell-autonomous factors [141].
There has been an increasing appreciation for the use of diet-
ary interventions [164] in cancer therapy but whether or not
dietary modulation alone suffices to change metabolism in the
context of concurrent gene expression changes remains largely
unknown.

The systematic diet composition swap (SyDiCoS) approach
developed here allows systematic investigation of how the mod-
ulation of different nutrient classes effect flux distributions. Iden-
tification of pathways that account for flux differences between
simulations are challenging as it requires either sophisticated
network analysis or laborious manual exploration of flux dis-
tributions [81, 100]. Therefore, models are often challenged by
simulating perturbations such as in silico gene or reaction knock-
outs and studying its effect on a particular phenotype [165, 166].
Similarly, SyDiCoS allows efficient interrogation of large flux dis-
tributions by systematically interrogating which nutrients are
responsible for driving predicted fluxes. In this manner it is
possible to directly associate specific nutrients in the diet with
predicted reaction fluxes.

Methods used to constrain intracellular fluxes through gene
expression data are robust and widely available [167], how-
ever, how nutrient availability effect flux are more limited. An
important distinction of SyDiCoS compared to previous investig-
ations of model input in GSMMs is that specific nutrient classes
were swapped out to physiologically relevant values in a CD.
The motivation for this was rooted in the observation that in
DENCDanimals, tumours do not develop in the same time-frame
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as in DENWD and therefore changing dietary nutrient compon-
ents to corresponding values in the CD could indicate which
metabolic pathways are responsible for this phenotype in WD.

There is a growing interest towards “precision nutrition” in
cancer therapy [157, 168]. A detailed mechanistic understanding
of the metabolic requirements of tumour cells and the modelling
framework proposed here will greatly aid to uncover potential
targets to attenuate cancer progression using dietary interven-
tion. An important consideration in dietary studies should also
be how feasible it is to design these diets for patients. Several
mechanistic insights into diet-tumour interactions in animal
studies rely on diets that, for example, have restriction in spe-
cific metabolites, such as individual amino acids, which might
not be easily transferable to human diets. The results here indic-
ated that, in some instances, changing the composition of the
diet is sufficient to overcome some metabolic features of liver
tumours.

7.3 mtgsmms change predictions made in single-
tissue gsmms

Extracting tissue-specific GSMMs from generic organism-specific
GSMMs has been done in several previous studies (examples
[87, 90, 91]). Although there are a limited number of examples,
mtGSMMs have also previously been reconstructed [113, 114,
169]. A pertinent question that has, however, not been addressed
previously is how predictions in single-tissue GSMMs change,
if at all, in mtGSMMs. GSMMs are sensitive to changes in con-
strains and with an ensemble of methods available in CBM,
the uncertainty associated with prediction has previously been
highlighted [136]. Therefore, although there are major efforts
in the metabolic modelling community towards reconstruction
of whole-body physiological metabolism [14], it has not been
shown whether the efforts to increase GSMM size, by inclusion
of additional tissues, change the predictions made in simpler
models.

The work done here shows that a mtGSMM quantitatively
and qualitatively change predictions made in single-tissue mod-
els. For example, tumour biomass production increased in the
context of the mtGSMM compared to a single-tissue tumour
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GSMM. Systematic investigation in future work will address
whether this is because of increased uptake of dietary nutrients
or whether the liver and microbiome provides additional sub-
strates for biomass production. On the other hand, the tumour
showed increased glycerol and succinate in WD compared to CD
in both the single-tissue GSMM and mtGSMM, however, the fate of
these metabolites were affected in the mtGSMM. This highlights
that the inclusion of additional tissues can qualitatively change
predictions made in single-tissue GSMMs. In previous mtGSMMs,
constraints were introduced to the model to more accurately
reflect physiology, although, in these instances, it was not shown
whether it change predictions made in single-tissue models [113,
114]. In the reconstruction of the mtGSMM here, the objective
functions and constraints on intracellular fluxes were kept the
same as in a single-tissue setting to allow comparison between
these models.

Glycerol and succinate were produced in MMRNHep at higher
rates in WD compared to CD. The importance of glycerol as a
metabolic substrate for carbohydrate and lipid metabolism in
metabolic disease has been highlighted in several studies [170–
172]. Glycerol is primarily produced through glyceroneogen-
esis from glucose or through the lipolytic breakdown of lipid
macromolecules such as triacylglycerides (TAGs). The putative
pathway identified that produces glycerol from serine is inter-
esting because it may provide a previously unknown source
for liver specific glycerol production. Moreover, although serine
production via the serine biosynthesis pathways is increased
in liver cancer, the fate of increased serine is still largely un-
der debate. Serine is used for several downstream metabolic
pathways such as one-carbon metabolism, protein synthesis and
the production of sphingolipids, but the production of glycerol
has not previously been proposed [173]. An interesting insight
from the mtGSMMs is that the glycerol produced in the tumour
is exchanged to the liver as opposed to the blood, which would
have otherwise have not been possible to predict without the
mtGSMM. Recent evidence suggests that succinate might have
immunomodulatory roles within the liver and is increased in the
blood of obese individuals, although its exact source is still un-
der debate [174, 175]. The modelling results here could therefore
potentially be useful in elucidating how diet can directly and
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indirectly contribute to these circulating metabolites associated
with obesity.

7.4 the integrative modelling framework could
aid in elucidating diet-microbiome-liver inter-
actions

There is an increasing realisation of the importance of the gut-
liver axis in healthy and diseases states. At the same time the
diet profoundly impacts the development and progression of
diseases, such as liver disease, through direct and indirect mech-
anisms, including changing the composition of the gut micro-
biome. Studying the interactions between these components;
diet, microbiome and liver, are important to elucidate how the
interplay between them contribute to liver disease. The lowering
costs in metagenomics sequencing permitted several studies to
correlate gut microbiome species composition with liver disease.
However, a current challenge in microbiome studies is to assign
mechanistic causation to changes in species composition in dis-
ease states. The tools developed in this thesis and the modelling
framework proposed will therefore greatly aid in this pursuit
by providing a platform to systematically deconvolute these
interactions.



96 discussion and future work

7.5 future directions

The work presented in this thesis lays an important foundation
for future computational and experimental work.

Integration of additional tissues to the mtGSMM

As highlighted in this thesis, and in several other studies, sys-
temic metabolic reprogramming is a feature of liver disease and
cancer. It is therefore important to study hepatic metabolism in
the context of other tissues to gain a more holistic understand-
ing of whole-body metabolism. The mtGSMM reconstructed here
lays important foundation for this purpose to expand the model
by including other tissues. For example, transcriptomics data
have been generated for white adipose tissue (WAT) that will be
included in the mtGSMM to investigate how, in particular, lipid
metabolism in the WAT impact metabolic pathways identified
here.

Glycerol metabolism

The contribution of different pathways to the production of gly-
cerol and, in turn, how glycerol is used in liver cancer is a central
focus in the Anastasiou laboratory. In short, genetic mouse mod-
els have been developed to functionally test the contribution of
different glycerol producing pathways to liver metabolism. The
metabolic models developed here will be used to integrate data
derived from these mouse models as well as informing future
experimental work. Finally, the putative pathway of glycerol
synthesis identified here is currently being validated along with
the contribution of dietary fructose metabolism to overall gly-
cerol production. The GSMMs reconstructed here were therefore
indispensable tools to inform experimental work.

Diet-switch experiments

The SyDiCoS analysis in MMRNHep suggested that the metabolic
profile of tumours, as a consequence of WD, that cause increased
tumour biomass production can be reversed by switching to a
diet with less lipids and fructose even in the background of gene
expression changes that resulted from chronic consumption of
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WD. In order to test this prediction, in a new cohort of tumour-
bearing DENWD animals, mice will be switched to a chow-diet to
investigate the metabolic changes associated with a diet-switch.
Analysing experimental data from this cohort of animals will
form an integral part in future modelling experiments to test
whether a diet switch is sufficient to overcome metabolic flux
predictions driven by a particular gene expression profile.
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Liver cancer is one of few cancer types that is increasing in
incidence because of limited therapeutic options. The rise in
liver cancer cases is, in part, due to the rise of liver disease
as a consequence of consumption of western-style diets (WD)
that contribute to obesity. The progression from early to later
stages of liver disease creates a damaged tissue environment
that promote the initiation of malignancies. Consequently, liver
and tumour tissues distinctly differ in their metabolic and gene
expression profiles. Diet modulation has increasingly been used
as a therapeutic strategy for cancer patients. However, it is still
unclear whether diet modulation alone is sufficient to overcome
the metabolic reprogramming that occurs in the background
of gene expression changes that is, in part, driven by chronic
WD consumption. A particular challenge in metabolic studies
is that current analytic techniques can only capture a subset of
metabolites. Furthermore, measuring actual metabolic fluxes in
vivo and in vitro requires sophisticated labelling experiments
with stable isotopes. Therefore, to study metabolism on a global
scale, genome scale metabolic models (GSMMs), the principal
tools used in systems biology, have been used as mathematical
frameworks for the integration of various data-types, especially
omics data, using constraint-based modelling (CBM) approaches.
The methods in CBM make it possible to parameterise different
parts of the metabolic network to study how biological factors
such as nutrient input and gene expression effect metabolic
fluxes.

In this thesis, I developed a suit of GSMMs and computational
tools to investigate how diet modulation affects metabolic fluxes
in liver cancer and the host using data derived from a liver can-
cer mouse model. The principal outcome in this endeavour was
a new mGSMM, Mouse Metabolic Reaction Network (MMRN).
This model compared well against mammalian GSMMs pub-
lished before its reconstruction and also more recently published
models and is a valuable resource to study mouse metabolism
in silico. MMRN was used to study the impact of a WD on liver
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and tumour tissues and in the process a new approach was
developed to systematically investigate the impact of dietary
nutrients on metabolic flux, termed systematic diet composition
swap (SyDiCoS). Using this approach increased glycerol and
succinate production in all context-specific models were shown
to be a consequence of dietary fructose and fatty acids (FAs),
respectively. A deeper investigation into liver and tumour fluxes
showed that there is a distinct fate of dietary FAs in these two
tissues and that in tumour tissue it is used for increased biomass
production. Several model predictions were experimentally val-
idated using metabolomics and in vivo flux measurements.

The gut microbiome plays an important role in metabolizing
dietary nutrients and, at the same time, diet has an impact on
gut microbiome composition. To evaluate this, species abun-
dances were quantified in tumorigenic and non-tumorigenic
mice and community GSMMs (comGSMMs) were reconstructed
using this data. Several species were identified that change in
abundance as a consequence of diet, tumors or fasting and its im-
pact on metabolism were then modeled using the reconstructed
comGSMMs. The effect of specific species on community growth
was also investigated by systematically removing species from
the community. Finally, tissue models and microbiome models
were then integrated into a single multi-tissue GSMM frame-
work. This model was in the first instance used to test how
predictions made in single-tissue models are impacted in a
multi-tissue context. Metabolic interactions between the gut and
tissues as well as between tumor and host tissues were then
investigated using this model.

The computational approaches and resources developed in
this work will be invaluable assets for the metabolic modeling
community and for future experimental work. Because the diet
impacts metabolism in such a complex manner, computational
tools to unravel this will greatly aid in the advancement to not
only understand basic metabolic research questions but also
how to apply this in clinical settings.
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