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Abstract 

 

The incidence and mortality rate of diabetes is increasing globally against the variety of 

currently available anti-diabetic drugs in clinical practice. Unfortunately, current pre-clinical 

approaches in drug discovery of novel anti-diabetic compounds have not met the increasing 

demand associated with a high cost and time-consuming research. Therefore, a cost-

effective, reliable, and high throughput method that provides critically essential mechanistic 

information on the drug-cell interaction is urgently needed in the pre-clinical selection of new 

anti-diabetes drug candidates. This thesis aims to develop a new screening approach based 

on live-cell FTIR spectroscopy. And the purpose is that this low-cost technique provides 

information regarding the biomarker alteration between cell and anti-diabetic drugs 

comparable to the conventional method. 

 

We developed the measurement approach in the first result chapter (chapter 3). We 

illustrated that multi-reflection ATR FTIR spectroscopy could acquire high-quality spectra of 

live cells in their aqueous culture medium containing different glucose concentrations for the 

first time. The results were compared with the reference chemical spectra and confirmed with 

results from the literature. Hepatoma cancer cell line, namely HepG2, was investigated with 

a medium of high and low glucose concentration. The difference spectra showed significant 

spectral changes in the IR absorbance bands between low and high glucose treatment. 

Glycogen and ADP: ATP spectra are the cellular changes from high glucose treated cells that 

can be evidence of metabolism alteration according to increasing high cellular glucose uptake. 
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In contrast, low glucose treated cells have shown the rising of phosphate, and nucleic acid, 

which refers to normal cell growth. 

 

In chapter 4, we applied this approach to study the cellular changes of insulin sensitivity and 

insulin-resistance HepG2 cells when exposed to a high glucose environment. The experiment 

was categorized into four sections: normal glucose with/without insulin and high glucose 

with/without insulin-containing culture medium. The spectral changes between insulin and 

normal glucose-treated cells have shown significant differences with a broad feature of 

carbohydrate and phosphate regions in the loadings plot. This refers to the sensitivity of 

HepG2 cells in normal glucose conditions after insulin addition. However, the high glucose 

treated insulin has shown different spectral changes compared to the normal glucose 

treatment indicating that the response from insulin resistance HepG2 to insulin can be 

distinguished by the live-cell FTIR method. The insulin resistance HepG2 model has been set 

up and tested against two insulin sensitizers, metformin, and resveratrol. The significantly 

increasing glycogen absorbance peaks after adding insulin sensitizers indicate an increasing 

hepatic glucose uptake compared to the control. Moreover, the FTIR results are also 

comparable with the conventional glycogen assay. 

 

In chapter 5, we applied the developed method to study a new anti-diabetic drug with a 

different mechanism of action. PF—04991532, a novel glucokinase activator compound, has 

been tested to study the mechanism of the glucose-lowering effect in diabetic HepG2 cells. 

However, the spectral change between high glucose and PF-04995132 with high glucose 

treated cell were insignificant for all treatment time. This is because the HepG2 cell line lacks 
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gene expression regarding this compound's mechanism of action. This insignificant result 

confirms that the live-vell approach is a specific method that can show negative results when 

the drug is ineffective because the mechanism of action is not activated. 

In conclusion, the work presented in this thesis has successfully shown that live-cell FTIR 

spectroscopy combined with PCA can discriminate biochemical alteration in cells under 

treatment of different glucose levels, insulin, and drugs. Therefore, this technique can be an 

alternative low-cost screening tool for studying the anti-diabetic drug in vitro. Furthermore, 

further study of this label-free technique can provide information regarding other diabetes 

cells, e.g., pancreas or kidney, combined with automated measurement and machine learning 

to establish the tool for diabetes drug screening. 
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Chapter 1 Introduction 

Diabetes remains one of the leading causes of death globally, with 4 million deaths 

reported in 2019, and it is predicted that it will be the 7th leading cause of death worldwide 

in 2030. It was estimated that more than 400 million are living with diabetes to date, which 

could rise to 700 million in 2045. Around 20% of the elderly (>65 years old) have diabetes, 

and 374 million people are at increased risk of developing type 2 diabetes. Moreover, it was 

estimated that half of the people with diabetes are underdiagnosed [1-3]. Diabetes is a major 

cause of micro and macrovascular complications such as retinopathy, nephropathy, 

atherosclerosis, and peripheral artery disease, which can worsen the patients’ quality of life. 

The global annual cost of treatment and the disease and the management of its complications 

was 825 billion dollars in 2014, with the highest cost to individual countries being in China 

($170 billion), the USA ($105 billion), and India ($73 billion), respectively [4].  

Diabetes occurs when blood glucose, also called blood sugar, reaches the upper limit 

without control. Blood glucose is the primary source of energy and comes from the 

diet. Insulin, a hormone made by β-cells from the pancreas, helps absorb the glucose from 

the diet into the cell. When carbohydrate food is digested into glucose, which enters the 

bloodstream, insulin moves glucose out of the blood and into cells, where glucose molecules 

are metabolized to generate energy or stored. However, having diabetes or long-term high 

blood sugar, the body cannot break down glucose into energy because there is either 

insufficient insulin to enable cells to absorb glucose, or the cells are not responding to the 

insulin produced. Besides, having an excessive amount of blood glucose can cause subsequent 

health problems.  

 

https://www.niddk.nih.gov/Dictionary/I/insulin
https://www.niddk.nih.gov/Dictionary/H/hormone
https://www.niddk.nih.gov/Dictionary/P/pancreas
https://www.niddk.nih.gov/health-information/diabetes/overview/preventing-problems
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1. Diabetes cell metabolism 

Studying cell metabolism is the basis for establishing good quality diabetes research 

and anti-diabetes drug development. This section includes the fundamental of normal glucose 

metabolism and diabetes pathophysiology. 

The review of cell glucose metabolism and its regulations [32] and the diabetes 

pathophysiology [33, 34] has been described below. 

1.1 Normal physiology 

Blood glucose is related to and changed by the glucose input and output rate in the 

circulations. The glucose input source is obtained in three ways:  glucose absorption from the 

gut during feeding, glycogen breaking down to glucose (glycogenolysis), glucose production, 

or gluconeogenesis in the liver.  

Glycogenolysis and gluconeogenesis are controlled by the pancreatic hormone 

glucagon produced by α-cells. This mechanism is the primary glucose production process 

during the fasting period's first 8-12 hours. If fasting is continued, the liver is the organ that 

regulates glucose homeostasis.     

Glucoregulatory hormones involve insulin, glucagon, amylin, GLP-1, glucose-

dependent insulinotropic peptide (GIP), epinephrine, cortisol, and growth hormone. Insulin 

and amylin arrive from the β-cells, glucagon from the α-cells of the pancreas, and GLP-1 and 

GIP from the L-cells of the intestine.  

  The glucoregulatory hormones are developed to balance blood glucose 

concentration in a limited range. During the fasting state, glucose remains in circulation at a 

stable rate. To keep consistence with glucose utilizing rate, endogenic glucose production is 
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essential. Practically, the source of endogenous glucose production comes from the liver. 

Renal glucose production considerably improves the systemic glucose reserve, but only during 

extreme starving conditions (figure 1). 

 

Figure 1. Glucose metabolism in 4 different stages: 1A fasting, 1B feeding stage in the non-
diabetic model. 1C fasting, 1B feeding stage in the diabetic model [32] 

1.1 β-cell Hormones 

1.1.1 Insulin  

Insulin, a small protein, consists of 2 peptides and 51 amino acids. It is the only  

known pancreatic β-cell hormone that lowers blood glucose concentration immediately after 

meals. Insulin is secreted and bound to the receptors in fat, liver, and muscle cells to stimulate 

glucose utilization.  
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 Insulin reduces blood glucose in three ways: first, insulin activates peripheral 

cells, e.g., primarily muscle, to uptake glucose. Second, it promotes hepatic glucose 

production (gluconeogenesis) during fasting. Lastly, insulin concomitantly glucagon secretion 

from the pancreas during the feeding stage. As a result, it stops hepatic glycogenolysis and 

gluconeogenesis to reduce blood glucose. Other insulin actions that can lower blood glucose 

include fat synthesis, protein synthesis in muscle, and cell growth proliferation stimulations.  

 Insulin is sensitively secreted in response to blood glucose concentration. It 

usually is not secreted if the blood glucose level is below 3.3 mmole/l. After a regular meal, 

insulin is secreted in two phases; first, a rapid release of pre-insulin, then increased insulin 

production and released in response to the rising blood glucose concentration. Glucose is the 

most potent stimulator of insulin. Other stimuli include amino acids, arginine, leucine, and 

lysine, GLP-1 and GIP (gut hormone during the feeding stage), and parasympathetic 

stimulation via the vagus nerve.  

1.1.2 Amylin 

Amylin is a neuroendocrine hormone-containing 37–amino acid peptide  

expressed and released with insulin via pancreatic β-cells in response to nutrient 

consumption. Clinical studies have determined that the plasma concentration of insulin and 

amylin excretion is similar [32]. They are at relatively low concentrations in blood during the 

fasting stage but increase in the feeding stage. Amylin deficiency is observed in type I and 

impaired in type 2 diabetes patients.  

Pre-clinical studies [33] demonstrated that amylin co-ordinately works with  

insulin in the rate of glucose appearance and disappearance in the circulation for controlling 

abnormal glucose concentration increases. 
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1.3 α-cell hormone: Glucagon 

Glucagon, consisting of 29 amino acids, is an essential pancreatic α- 

cells hormone in the catabolism pathway. Roger Unger discovered it in the 1950s[34]; 

glucagon was categorized as having opposing insulin effects. Glucagon plays a significant role 

in maintaining plasma glucose concentration during fasting by encouraging hepatic glucose 

production. 

Glucagon was the first to be described with the term “bi-hormonal” in the a  

a diabetic disease characterized by insulin insufficiency and glucagon surplus [34, 35]. Hepatic 

glucose production is predominantly regulated by glucagon to maintain blood glucose levels 

within a normal limit during fasting. When plasma glucose concentration drops below the 

normal level, glucagon secretion rises, producing hepatic glucose and restoring plasma 

glucose level to the normal range. Glucagon secretion is suppressed during the feeding stage.  

In diabetic status, there is insufficient repression of glucagon secretion after- 

meal (hyperglucagonemia). Glucose from hepatic glucose production is released into the 

bloodstream. Essentially, insulin produced from Beta cells cannot reinstate the normal insulin 

concentrations and suppress glucagon secretion. Thus, an abnormally high glucagon-to-

insulin ratio stimulates hepatic glucose production.  

1.4 Incretin hormone: GLP and GIP 

             Perley et al. [36]. Illustrated that food consumption increased insulin release 

more potently than intravenous glucose injection.  This effect is called the “incretin” that food 

signaling from the gut to the bloodstream is a vital hormone when food appears in the 

digestive system. Besides, these gut hormones help regulate gastric emptying and bowel 

movement.  
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 Many incretin hormones have been identified [37]; GIP and GLP-1 are some of 

the essential hormones for glucose metabolism. GIP activates insulin secretion and controls 

fat metabolism but does not suppress glucagon secretion or gastric emptying. GLP-1 is a more 

potent incretin hormone than GIP. It is secreted in a more significant amount and is more 

crucial to human's health.  

 GLP-1 also increases insulin secretion in a glucose-dependent manner but is 

rapidly reduced after a meal in type 2 diabetes or impaired glucose tolerance patients. GLP-1 

has a half-life of about 2 minutes in plasma, and its utilization is controlled predominantly by 

the enzyme dipeptidyl peptidase-IV (DPP-IV), which rapidly inactivates GLP-1. 

1.5 Diabetes pathophysiology 

Type 1 diabetes has been classified as autoimmune-mediated pancreatic β- 

cells disruption disease. The resulting insulin deficiency also affects the secretion of amylin. 

As a result, the post-meal glucose concentration is sustainably increased due to a lack of 

insulin-responding glucose control, inadequate hepatic glucose production control, and 

abnormal gastric emptying.  

In the early stage of type 2 diabetes, the post-meal β-cell function becomes  

abnormal, characterized by lacking a rapid response to insulin after a meal. Insulin resistance, 

concomitant with ongoing β-cell disruption, and decreased availability of insulin, amylin, and 

GLP-1 can cause hyperglycemia complications. 

Gastric emptying abnormality is frequent in both type 1 and types 2 diabetes.  

If gastric emptying is increased, meal-derived glucose presentation to the blood circulation is 

inadequately timed with insulin delivery. Furthermore, an absence or delayed insulin 
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response promotes postprandial hyperglycemia. Amylin and GLP-1 control gastric emptying 

by slowing the gut's nutrient delivery. 

1.6 Hepatic glucose metabolism 

The liver plays an essential role in glucose homeostasis. Understanding  

normal hepatic glucose metabolism can help better understand the pathophysiology of 

obesity and diabetes mellitus. Liver glucose metabolism includes glycosylation and is also 

related to fatty acid metabolism.  

The liver utilizes glucose from ingested carbohydrates from the gut via the  

hepatic portal vein. The phosphorylation of glucose follows this to glucose-6 phosphate (G6P) 

via the glucokinase enzyme.  G6P is then continued to be metabolized through several 

pathways. Most G6P is used to produce glycogen through glucose 1-phosphate and UDP–

glucose during the feeding stage. The remaining UDP–glucose is used to form UDP–

glucuronate and UDP–galactose, the intermediate substrates in the glycosylation process.  

The second pathway of glucose 6-phosphate metabolism is fructose 6  

phosphate generation allowed the initiation of the hexosamine pathway to process UDP-N-

acetylglucosamine or enter the glycolytic pathway to produce pyruvate and then acetyl-CoA. 

Acetyl-CoA can enter the tricarboxylic acid (TCA) cycle to be oxidized or delivered to the 

cytosol to integrate fatty acids when glucose overloads in the hepatocyte. 

Finally, G6P can be converted into NADPH and ribose 5-phosphate via the  

pentose phosphate pathway. Glucose metabolism produces intermediate metabolites for 

glycosylation. In addition, to metabolize carbohydrates, the liver breakdown glycogen to 

produce glucose in other tissues, primarily lactate and alanine (gluconeogenesis), as 

summarised in figure 2 [38]. 
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Figure 2.Summary of human hepatic glucose metabolism [9] 

2.1 Diabetes classification 

Generally, diabetes can be classified into the following general categories:  type 1, 

type 2, gestational, and miscellaneous [5, 6]. 

2.1.1 Type 1 diabetes can emerge at any age but most commonly occurs in children  

and young adults. Due to β-cell destruction, the body produces little or no insulin, so patients 

need daily insulin injections to keep blood glucose levels under control.  

2.1.2 Type 2 diabetes is the major type in adults accounting for around 90% of all  

diabetes cases. When type 2 diabetes develops, the body does not use the insulin it produces 

effectively, and it is referred to as “insulin resistance”. An active physical lifestyle and a 

healthy diet may positively help to improve the symptoms. However, most type 2 diabetes 

patients require oral medications and insulin injections to control their blood glucose levels.  

2.1.3 Gestational diabetes (GDM) is diabetes that comprises high blood glucose  

during the second or third trimester of pregnancy and is associated with subsequent health 

problems for both mother and child. GDM often disappears after pregnancy, but the mothers 

and their children would have an increased risk of type 2 diabetes later in life. 
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2.1.4 The individual types of diabetes due to other causes include, e.g., monogenic 

diabetes syndromes (such as neonatal diabetes and maturity-onset diabetes of the young 

[MODY]), pancreas-related diabetes (such as cystic fibrosis), and drug-induced diabetes (such 

as in the treatment of HIV/AIDS or after organ transplantation).  

 2.2   Diagnosis of diabetes  

2.2.1 Diagnostic Tests for Diabetes 

Diabetes can be diagnosed based on HbA1C percentage (average blood glucose, or blood 

sugar, level over the past three months) or plasma glucose criteria, using either the fasting 

plasma glucose (FPG)/ fasting blood sugar (FBS) or the 2-hour plasma glucose (2-h PG) value 

after a 75-g oral glucose tolerance test (OGTT). 

Table 1. The diagnosis criteria of diabetes  

A1C ≥6.5% 

OR 

FPG ≥7.0 mmol/L 

 Fasting is determined as no calories intake for at least 8 hours.* 

OR 

2-h PG ≥ 11.1 mmol/L 

during an OGTT. The test should be performed as described by the WHO, using a glucose 

load containing equal to 75 g of anhydrous glucose dissolved in water.* 

OR 

In a patient with typical symptoms of hyperglycemia or hyperglycaemic crisis, random 

plasma glucose ≥ 11.1 mmol/L 

↵* In the absence of unequivocal hyperglycemia, results should be confirmed by repeat testing. 

https://care.diabetesjournals.org/content/38/Supplement_1/S8#fn-1
https://care.diabetesjournals.org/content/38/Supplement_1/S8#fn-1
https://care.diabetesjournals.org/content/38/Supplement_1/S8#xref-fn-1-1
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2.3   Diabetes complications 

Diabetes increases the risk of many serious health problems. The complications consist of 

2 types: acute type, which can develop at any time, and chronic type, which builds up over 

time. Both complications can be delayed and preventable. However, once long-term 

complications have developed, they can cause severe damage if unchecked and untreated.  

2.3.1 Acute complications 

• Hypoglycemia or low blood sugar  

• Hyperglycemia or high blood sugar  

• Hyperosmolar Hyperglycaemic State (HHS) is a lethal 

emergency event found only in type 2 diabetes patients. It’s 

caused by severe dehydration and very high blood sugar level. 

2.3.2 Chronic complications 

• Skin complications, e.g., bacterial infection, fungal infection, 

and other diabetes-related skin conditions.  

• Eye complications, e.g., glaucoma, cataracts, retinopathy  

• Neuropathy involves peripheral neuropathy. This type can 

cause tingling, pain, numbness, or weakness in your feet and 

hands. Autonomic neuropathy affects the nerves in the body 

that control body systems. 

• Nephropathy (kidney disease)  

• High blood pressure, also called hypertension-increase the 

risks of heart attack, stroke, eyes and kidney problems    
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                       The American Diabetes Association (ADA) has recommended integrating specific 

targets for several physiological parameters in type-2 diabetes[7]. Targets include controlling 

HbA1c levels <7%, blood pressure <130/80, reducing the risk of hypoglycemia events, and 

neutralizing, or losing weight, if obese. To answer the multiple desired outcomes, composite 

endpoints (CEPs) increase the usage in clinical trials as primary or secondary outcomes. [8-

10]. These endpoints have been applied in various clinical, especially in cardiovascular disease 

(CVD). The following topic will describe the current anti-diabetic medication and some clinical 

studies that included the composite endpoint in diabetic and cardiovascular outcomes. 

 

2.4    Diabetes medication management[11]  

2.4.1 Oral medication therapy 

There are different types of medicines that work in various pathways to  

lower blood sugar level.  

2.4.1.1 Alpha-glucosidase inhibitors e.g., Acarbose (Precose) and  

Miglitol (Glyset).  These medications lower blood sugar levels by blocking the breakdown of 

starch-absorbing enzymes in the intestine. This mechanism also slows the rise in blood sugar 

levels after a meal. These drugs should take with the first bite of each main meal. These drugs 

may have side effects, including bloating and diarrhea. 

2.4.1.2 Biguanides, e.g., Metformin (Glucophage), is a potent  

antihyperglycemic agent and recommended as the first-line oral therapy for type 2 diabetes 

(T2D). Biguanides lower blood sugar levels by decreasing liver glucose production. They also 

lower blood sugar levels by making liver and muscle tissue more sensitive to insulin (insulin 

sensitizer) to absorb glucose. Generally, metformin is safe to use, the side effect 
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of metformin is relatively mild such as diarrhea, but this is improved when the drug is taken 

with food. 

  An updated meta-analysis in 2019[12] of metformin effect on all-cause and 

cardiovascular mortality in patients with coronary artery diseases revealed that metformin 

reduces all-cause mortality and cardiovascular events in coronary artery disease (CAD) 

patients. However, for myocardial infarction patients and CAD patients without T2DM, 

metformin has no significant effect on reducing the incidence of cardiovascular events. 

Moreover, metformin has a better outcome of reducing the incidence of cardiovascular 

events than sulfonylureas. Furthermore, an update in 2020[13], in the T2DM patients with 

underlying chronic Kidney Disease(CKD), Metformin has a good profile in reducing risks of all-

cause mortality and cardiovascular events in patients with T2DM and mild-to-moderate CKD. 

2.4.1.3 Sulfonylureas  

   Sulfonylureas stimulate insulin release from beta cells in the pancreas. 

Chlorpropamide (Diabinese) is the only first-generation sulfonylurea currently in use. Second-

generation sulfonylureas are more potent than first-generation drugs. The third-generation 

drugs, including glimepiride (Amaryl), glipizide (Glucotrol and Glucotrol XL), 

and glyburide (Micronase, Glynase, and Diabeta) are generally taken one to two times a day 

due to the short duration of action, to mimic physiological insulin. All sulfonylurea drugs have 

similar effects on blood sugar levels but can lead to hypoglycemia, weight gain side effects, 

and interaction with other medications.  

In 2007, a systematic review and meta-analysis studied about  

hypoglycemia and cardiovascular event of sulfonylurea (Glyburide)[14] compared with similar 

drug mechanisms, e.g., insulin secretagogues or insulin injection.  Glyburide caused more 

hypoglycemia than other insulin secretagogues and other sulfonylureas. There was no 
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evidence that Glyburide was associated with an increased risk of cardiovascular events, 

mortality, or weight gain. However, in 2014, a systematic review and meta-analysis showed 

that gliclazide and glimepiride were associated with a lower risk of all-cause and 

cardiovascular-related mortality than glibenclamide [15]. It is suggested that selecting 

sulfonylurea should be carefully considered regarding increasing mortality risk. 

2.4.1.4 Dipeptidyl peptidase-4 (DPP-4) inhibitors 

This drug class can improve the HbA1C level without the hypoglycemia side  

effect. The mechanism of action is to prevent the disintegration of GLP-1. GLP-1 can lower 

blood glucose levels in the body but is broken down quickly after it is released into the system, 

so it is inadequate when injected as a single drug. By interfering with the breakdown of GLP-

1, DPP-4 inhibitors extend the active half-life of GLP-1 in the body and lower blood glucose 

levels only when activated. DPP-4 inhibitors do not increase patients' weight and positively 

affect cholesterol levels. Sitagliptin (Januvia), Saxagliptin (Onglyza), Vildagliptin(Galvus), 

Linagliptin (Trajenta®), and Alogliptin (Vipidia) are currently the five gliptins available in 

the UK.  

DPP4-I significantly lowers the glycemic level (HbA1c, FPG), especially  

vildagliptin and linagliptin, compared to placebo. Additionally, linagliptin has the most 

significant probability of reducing BMI. Besides, DPP4-I was associated with not increasing the 

incidence of adverse events. Among the DPP4-I group, vildagliptin and sitagliptin have the 

lowest possibility of reducing hypoglycemia and urinary tract infection [16]. 

There is no significant difference in major adverse cardiovascular events risk  

between DPP-4 inhibitors and placebo groups. DPP-4 inhibitors show a significantly reduced 

risk of major adverse cardiovascular events compared to sulfonylureas. While SGLT2 

inhibitors might have a lower risk than DPP-4 inhibitors[17]. 
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2.4.1.5 SGLT2 Inhibitors 

SGLT2 inhibitors (SGLT2i)  are the latest class of oral anti-hyperglycemic  

agents that have been FDA approved for diabetes mellitus treatment[18]. The kidney is one 

of the major organs involved in glucose metabolism; blood glucose passes through it can 

either be excreted or reabsorbed.   Sodium-glucose transporter 2 (SGLT2) is located in the 

tubular kidney to reabsorb glucose. A current class of diabetes medication, SGLT2 inhibitors, 

was introduced into the market in 2013[18], blocking this mechanism, and causing excess 

glucose to be urinated. Canagliflozin (Invokana), dapagliflozin (Farxiga), and empagliflozin 

(Jardiance) are some of the FDA-approved SGLT2 inhibitors that are available to treat type 2 

diabetes.    

   Tentolouris et al.[19]  have reviewed the SGLT2i inhibitors class on 

antidiabetic and cardioprotective properties. SGLT2i reduce HB1Ac by 0.5%–1.0% and have 

shown beneficial effects on body weight, blood pressure, lipid profile, and improved 

endothelial function. Importantly, SGLT2i have shown a cardio and renoprotective effect 

related to improved cardiac cell metabolism and reduced cardiac fibrosis. The significant 

adverse effect of SGLT2i includes urinary tract and genital infections and diabetic 

ketoacidosis. Moreover, the association of SGLT2i with lower limb amputations, Fournier 

gangrene, risk of bone fractures, female breast cancer, male bladder cancer, orthostatic 

hypotension, and acute kidney injury also have been raised. 

   Although SGLT2i has shown a favorable profile in cardiovascular 

morbidity and mortality, other metabolic disorders that often coexist with DM, such as excess 

body weight and arterial hypertension, would substitute metformin as the first-line single 

treatment. However, it is suggested that head-to-head RCTs comparing SGLT2i with 
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metformin are needed to explain whether SGLT2i can safely substitute metformin as first-line 

therapy in DM management[19]. 

2.4.1.6 Thiazolidinediones (TZDs) 

Thiazolidinediones including Rosiglitazone (Avandia) and pioglitazone  

(ACTOS) improve insulin function in the muscle and fat cells and reduce liver glucose 

production. Due to the serious liver problem side effect, the first generation of a drug in this 

group, troglitazone (Rezulin), was removed from the market. Rosiglitazone 

and pioglitazone do not show this liver problem side effect, but users are still closely 

monitored for liver function as a precaution. Both drugs appear to elevate the risk of heart 

failure in some patients, and it is controversial whether rosiglitazone may contribute to an 

increased risk of heart attacks.  

   A meta-analysis study of Rosiglitazone in 2007[20, 21], years after its 

launch, was related to severe cardiovascular events in diabetic patients. As a result, the drug 

was taken off the market due to safety concerns from FDA and The European Medicines 

Agency (EMA) but reintroduced years later in the US after further studies and metanalysis did 

not confirm the increased risk.  

   The controversy regarding the effects of rosiglitazone on 

cardiovascular events and mortality persists 3 years after a meta-analysis initially raised 

concerns about the use. In 2010, Steven E et al. [22]. have revisited an updated meta-analysis 

of risk for myocardial infarction and cardiovascular mortality. The current findings suggest an 

unfavorable benefit-to-risk ratio for rosiglitazone. 

       2.4.1.7 Non-sulfonylurea secretagogues 

This class of drugs is relatively new compared to the sulfonylureas, with the  

https://www.diabetesselfmanagement.com/Blog/mark-marino/sulfonylureas/
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the first drug, Meglitinide, was approved by the US Food and Drug Administration in 1997. 

Meglitinides work similarly to the sulfonylureas but with a few significant differences. It binds 

to the sulfonylurea receptor in beta cells, but the sulfonylureas bind at a different part of the 

receptor. The interaction of the meglitinides with the receptor is not as strong as that of the 

sulfonylureas, translating to a much shorter duration of action, and a higher blood glucose 

level is needed before the drug induces insulin secretion in the pancreas. 

        Meglitinides stimulate the beta cells to release insulin.  

Nateglinide (Starlix) and repaglinide (Prandin) are two examples of meglitinides. They are 

taken before each meal to relate to the physiological insulin in the digestive system. Because 

Meglitinides stimulate insulin release, it is possible to cause hypoglycemia. Moreover, alcohol 

and some medicines are to be avoided while taking these drugs.  

 

2.4.1.8 Dopamine-2 Agonists 

Sympatholytic Dopamine2 or D2 receptor agonist group has been approved  

for type 2 diabetes treatment such as Bromocriptine. According to animal and clinical studies, 

taking Bromocriptine within 2 hours of awakening stimulates low hypothalamic dopamine 

levels and suppresses excessive sympathetic tone in the central nervous system (CNS). This 

results in a reduction in post-meal plasma glucose levels due to the enhanced hepatic glucose 

production suppression. Adding bromocriptine to poorly controlled type 2 diabetic patients 

treated with diet alone, metformin, sulfonylureas, or thiazolidinediones produces a 0.5–0.7% 

decrease in HbA1c. Bromocriptine also declines fasting and post-meal plasma-free fatty acid 

(FFA) and triglyceride levels. Bromocriptine reduced the major cardiovascular endpoint by 

40% from a 52 double-blind, placebo-controlled study in type 2 diabetic patients. The 

mechanism of the drug’s beneficial effect on cardiovascular disease is still underdetermined. 

https://www.diabetesselfmanagement.com/articles/definitions/beta_cells/
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2.4.4.9 Bile Acid Sequestrants (BASs) 

The cholesterol-lowering medication, BAS, reduces blood glucose  

levels in diabetic patients, but the mechanism is not yet well clarified. BASs help removes 

cholesterol from the body, especially LDL cholesterol, which is often raised in diabetic patients 

causing cardiovascular problems.  This medicine reduces LDL cholesterol by binding with bile 

acids in the digestive tract; in response, the liver generates more bile acids for replacement, 

thus consuming and reducing LDL cholesterol in blood circulation. Because BASs are not 

absorbed into the bloodstream, they are usually safe for use by patients who have liver 

problems. Due to its mechanism of action, the common side effects of BASs can include 

flatulence and constipation. 

2.4.2 Injection therapy 

2.4.2.1 Insulin 

2.4.2.1.1 Rapid-acting insulin begins to work immediately after  

injection reaches the highest blood concentration within 1 hour and continues to work for 2 

to 4 hours 

2.4.2.1.2 Regular or short-acting insulin reaches the bloodstream  

typically, within 30 minutes after injection; peaks are around 2 to 3 hours after injection and 

are adequate for roughly 3 to 6 hours 

2.4.2.1.3 Intermediate-acting insulin works within 2 to 4 hours after  

injection peaks at 4 to 12 hours and is sufficient for around 12 to 18 hours 

2.4.2.1.4 Long-acting insulin reaches the bloodstream several hours  

after injection and is likely to lower glucose levels moderately and evenly over 24 hours 

2.4.2.2 GLP-1 agonists or incretin mimetics 

This medication class works by elevating the “incretins” hormones. These  
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hormones help stimulate insulin only after meals and reduce hepatic glucose production by 

suppressing glucagon release.  They reduce the rate at which the stomach digests food and 

empties and can also reduce appetite. 

There are six Incretin mimetic/GLP-1 analogs currently available: 

Exenatide (twice-daily injection) or  Byetta 

Exenatide (once-weekly injection) or  Bydureon 

Liraglutide (once-daily injection) or  Victoza 

Lixisenatide (once-daily injection) or  Lixumia 

Dulaglutide (once-weekly injection) or  Trulicity 

Semaglutide (once weekly injection)  or  Ozempic 

  The study on the reduction of cardiovascular events in some of the GLP-1 

analogs has been exampled below:  

In the EXSCEL study[23], among type 2 diabetic patients with or without  

experience of a cardiovascular disease event, exenatide 2 mg once weekly did not significantly 

different between patients who received exenatide and placebo. 

In the LEADER trial[24], diabetic patients at high CV risk were randomized to  

receive liraglutide or placebo as an additive to other glucose-lowering drugs. Type 2 diabetes 

patients at high risk of CV events treated with liraglutide significantly reduced HbA1c, had a 

lower risk of hypoglycemia, and less encountered glycaemic worsening than similar patients 

who received the placebo. 

SUSTAIN-6 study[25] showed that in type 2 diabetic patients who have high  

cardiovascular risk, the rate of cardiovascular death, nonfatal myocardial infarction, or 

nonfatal stroke was significantly lower among patients receiving semaglutide than patients 

who received placebo. 



32 
 

2.4.3 Miscellaneous drugs with the potential to control blood glucose  

dysregulation 

2.4.3.1 Ranolazine 

Ranolazine is a medication used to treat heart-related chest pain or chronic angina 

and has evidence to lower HbA1c and FBG levels in clinical trials[26]. Cardiac infarction results 

from reduced both ATP fluxes and energy supply to the various critical components for the 

single cardiac myocyte's contraction–relaxation cycle. These include proteins that control 

myocyte ion balance. Therefore, intracellular sodium and calcium concentration are 

interrupted, related to myocardial damage following infarction. 

The proposed Ranolazine mechanism inhibits the cardiac late-phase sodium current 

during cardiac repolarization, improving sodium-calcium homeostasis and reducing 

myocardial infarction. In patients with coronary artery disease and diabetes, ranolazine has 

been clinical evidence for decreasing HbA1c levels in 2 trials—the Combination Assessment 

of Ranolazine in Stable Angina (CARISA) trial [27] and the Metabolic Efficiency with Ranolazine 

for Less Ischemia in Non-ST-Elevation Acute Coronary Syndromes-Thrombolysis in Myocardial 

Infarction 36 (MERLIN-TIMI 36) trial[28]. 

2.4.3.2 Sevelamer 

Many diabetic patients have coexisting kidney disease. In patients with chronic kidney 

disease, sevelamer is used to control hyperphosphatemia. In a single-center, randomized, 

crossover, open-label, intention-to-treat study, sevelamer was revealed a significantly reduce 

HbA1c, total cholesterol, and triglycerides than calcium carbonate compared to control[29]. 

However, the mechanism behind sevelamer's effect on the anti-diabetic effect is still unclear. 

Sevelamer is also a bile sequestrant, along with receiving a phosphate binder. Therefore, 

sevelamer's effect on HbA1c has probably been related to bile acid-binding ability. 
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Colesevelam is a bile sequestrant that is approved by the FDA for diabetes and has 

been shown to lower HbA1c and FBG.[30] Sevelamer magnifies the delivery of bile acids to 

the distal colon via its bile sequestration capability. Thus it promotes GLP-1 release and 

modulates HbA1c[31]. 

Although many pharmacotherapies are available to treat this disease, there is still a 

need to develop new medications with better efficacy and tolerability. Side effects such as 

hypoglycemia, gastrointestinal discomfort, weight gain, and cardiovascular or kidney 

complications are some of the major issues associated with current medications. These side 

effects can lower drug adherence in patients, contributing to their uncontrolled blood glucose 

levels.re 1.1 Summary ofuman hepatic glucose metabolism [32] 

3. Diabetes Drug Development Process 

The process of new drug development is a complicated,  

time-consuming and expensive process subjected to substantial regulatory requirements. 

Before the 1960s, there was no established drug authorizing and regulation process. Clinical 

trials were not closely regulated, or the license approval managed. Post-trial follow-up was 

not unexpected. The congenital disabilities associated with thalidomide caused changes in 

the regulation, involving the productive testing of a drug’s safety and efficacy. The Food and 

Drug Administration (FDA) launched the Drug Amendments Act of 1962 in the United States 

and the Medicines Act of 1968 in the United Kingdom. 

Several drug regulations have been changed due to unfavorable side  

effects from the notable drugs, which expeditates further evaluation of drug safety. The 

adverse events in rosiglitazone resulted in the required cardiovascular safety demonstration 

for drugs proposed for type 2 diabetes treatment. The remarkable difference between 
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ordinary and diabetes drug development is in the demonstration of cardiovascular safety in 

the clinical trial[33].  

 

 

Figure 3.Summary of diabetes drug development process [33] 

 In the early screening process, in vitro assays described below enable  

the finding of lead compounds to be continued to be developed in the drug development 

process. The lead compounds can be tested in vivo in animal models for their anti-diabetes 

properties. The efficacy and safety profiles were then carried out before entering clinical 

trials. 

 To summarize, a successful anti-diabetic drug depends extensively  
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on applying satisfactory pre-clinical models[34-36]. Consequently, it is essential to develop an 

adequate pre-clinical screening assay that promotes precision, high accuracy, and robustness 

to accelerate the new development of an anti-diabetes drug. 

 

3.1 Pre-clinical development 

3.2 Pre-clinical screening assays 

 3.2.1 Analytical technologies[37] 

    3.2.1.1 Colorimetry  

Colorimetry is close to spectrophotometry, which is one category of  

electromagnetic spectroscopy that provides the quantitative evaluation of the reflection or 

transmission properties of a material as a function of wavelength.   

Spectrophotometry is a quantitative measurement of light absorption 

substance by measuring light intensity as light radiation invades to sample solution. Basically, 

each substance individually absorbs or transmits light over a specific wavelength range.  

Photometers is a device of a spectrometer, also called spectrophotometers,  

that can measure light intensity at various wavelengths. The ultraviolet, visible, and infrared 

radiation are the most common radiation applied to spectrophotometry.  

   In addition, the colorimetric method can measure the active component in 

numerous essential drugs. Moreover, it supports a semi-quantitative technique to provide 

drug potency; a more intense color change or darker color indicates a more substantial 

component. The accuracy of the colorimetric method is derived from a spectroscopic device 

that measures light's absorbance through a substrate. However, colorimetry can provide 

restricted information and damage the sample under examination.  
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   3.2.1.2 Chromatography 

Chromatography distinguishes mixed compounds based on a variety of  

chemical and physical characteristics. It can take discrete drug additives for further analysis 

and, when coupled with a suitable detector, produces qualitative and quantitative data about 

the active compounds and contaminants. Thus, this is the most standard analytical method 

used in drug assessment. Chromatography varies from the traditional techniques, such as 

thin-layer chromatography (TLC) with a visual investigation, to more sophisticated laboratory 

protocol, such as high-performance liquid chromatography (HPLC) used with mass 

spectrometry in tandem. The limitation of this method is similar to the colorimetric tests; 

chromatography disrupts the drug sample. 

High-performance liquid chromatography or HPLC is an advanced  

When concomitant with the subtle detectors, highly sensitive chromatography technique is 

recognized as the standard drug content analytical technique. However, correlated detection 

technology can be expensive and require skilled operators. The systems also require steady 

electrical power, which can be a barrier in some developing countries. 

Gas chromatography is the most robust chromatographic approach, produces  

comparable data as other chromatography methods. However, it can only be used to analyze 

dissociated vaporous materials, such as the remaining solvents or any vapor impurities, and 

still requires highly trained people to operate. This technology can only be used when the 

interested compounds come to be analyzed in the gas from within the analytical temperature 

limit, and the analyte does not degrade within the operating temperature.  

3.2.1.3.1 Mass spectroscopy 

  Mass spectroscopy is an established analytical technique that is relatively 

technically demanding. This technique produces rich structural data and accurate molecular 
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weight of the compound under inspection. In addition, mass spectroscopy can recognize 

many active compounds and additives and some impurities[38-40].  Mass spectrometry-

based assays have been established to screen complex compounds, e.g., natural product 

extracts, to expand the molecular diversity of drug leads. Mass spectrometry usage in 

supporting combinative library synthesis and purification is addressed, and screening 

applications such as frontal affinity chromatography-mass spectrometry, gel permeation 

chromatography-LC-MS[41] 

However, mass spectrometers require a steady electrical power source that  

can sustain in developing countries. However, this technique is expensive in terms of capital 

and running costs. The instrument requires skilled personnel to set it up and requires plenty 

of sample preparation steps. They are also destructive techniques that need a sample to be 

in solution form and free from particulate matter [42] 

3.2.1.3.2 Nuclear magnetic resonance (NMR) spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy evaluates the interaction of  

nuclei with electromagnetic radiation. It is a technique suitable for nuclei with a non-zero 

spin, such as the hydrogen and carbon-13, that allows quantitative information with little 

sample preparation[43].  NMR spectroscopy plays a vital role in the drug discovery and 

development process. NMR screening procedures are very systematic and variable in 

discovering high-affinity ligands for biologically related macromolecules, interpreting ligand-

binding sites, and recognizing small molecules with various binding affinities. Thus this 

technique is proven to be a valuable and robust tool in the structure-based drug design.[44]. 

However, the NMR apparatus is costly and requires sturdy electrical power  

reserves, well-controlled temperatures, and full-skilled chemists for the operation. 

Resonance peak integration area can contribute detailed information about structural 
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composition; the area under each peak relates to the number of nuclei (in protons or carbon-

13 atoms) corresponding to that individual signal.[43]  

3.2.1.3.3 Near-infrared and Raman spectroscopy 

  Near-infrared spectroscopy (NIRS) is a spectroscopic method based on the 

absorption of electromagnetic (EM) radiation at wavelengths 780 to 2,500 nm to excite 

specific molecular vibrations. NIR spectroscopy is the interaction between light and sample 

that the NIR detector measures as transmittance and absorbance. The molecular bonds most 

sensitive to excitation in this spectrum region tend to be polar, with the vibrations changing 

the bond’s dipole moment. Transmittance relates to the light intensity that passes entirely 

through the sample and is interpreted at the detector. Absorbance is a measurement of light 

absorption from a sample.  

NIR can typically penetrate much further into a sample than mid-infrared  

radiation that gives two advantages; a more significant amount of material is exposed, 

declining sampling error and allowing for spectroscopic sampling without removing the 

material from the original container. Near-infrared spectroscopy can be beneficial in probing 

bulk material with a bit of sample preparation. The typical applications include medical and 

physiological diagnostics and research, including blood sugar, pulse oximetry, functional 

neuroimaging, etc. There are also applications in other areas such as pharmaceutical, quality 

control, atmospheric chemistry, combustion research, and astronomy. The application in 

pharmaceutical assays typically applies to qualitative analysis, quantitative analysis, 

determination of active compounds in pharmaceutical dosage form, and considerations for 

intact dosage form analysis rather than drug discovery [45]. 

  Raman spectroscopy is a non-destructive tool that provides information on 

qualitative and quantitative drug ingredients and additives. Raman spectroscopy relies strictly 
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on the non-elastic scattering of photons from a laser source. When photons from the laser 

interact with the material, the energy from these photons is partially absorbed, and the 

remaining energy is re-emitted as scattered light at a different frequency. The scattered light 

is shifted from the original laser frequency by an amount that depends on the energy 

absorbed by the molecular bonds. In contrast to NIR, the molecular bonds associated with 

Raman scattering are non-polar. The spectrum generated by a Raman instrument generally 

has sharper and better-resolved peaks than NIR, which can provide more chemical 

information about unknown samples. In contrast, Raman spectroscopy requires more 

technical expertise than NIR. The Raman excitation laser can penetrate optically clear 

materials such as glass or plastic, limiting the spectroscopic interference from the sample 

containers.  

This technique also provides information about chemical structure and identity, phase 

and polymorphism, intrinsic stress/strain, contamination, and impurity[46]. The application 

of Raman spectroscopy is involved in both drug discovery and development aspects [47, 48]. 

This can approximate the drug’s molecular activity and demonstrate a drug’s physicochemical 

properties, such as its partition coefficient. Raman spectroscopy’s immense potential should 

be further investigated in the future[49]. 

3.2.1.3.4 Infrared spectroscopy 

The infrared radius in the electromagnetic field that this thesis will be a focus  

on the mid-infrared (4000 – 400 cm-1) due to the most common analytical spectroscopy for 

bioanalysis because it provides the sharpest band and more information about disease-

biological relations. Mid-infrared spectroscopy's fundamental interaction between the 

sample and the IR beam is absorbed by the sample's functional groups that vibrate in 

stretching, bending, and distortion movements, causing an excitation to the molecular 
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vibration. This absorbance and wavelength are correlated specifically to the bonds present in 

the molecule.  

3.2.1.3.4.1 The principle of Infrared Spectroscopy  

Electromagnetic radiation (EM radiation or EMR) refers to the waves (of  

the electromagnetic field) described as synchronized oscillations of electric and magnetic 

fields that travel through the harmonic space. For a transverse wave, the wavelength λ is 

determined by the distance between two adjacent crests (or troughs), frequency ν (the 

number of waves passings at a particular point of a time unit), or energy E. The wavelength λ 

frequency v and energy E correlation are described in Equation 1 and Equation 2. It is often 

to use the wavenumber unit (v̅) in the vibrational spectroscopy analysis, which is defined as 

the number of waves in one centimeter (cm-1), as it is proportional directly to E and v. 

 

Equation 1: Energy of electromagnetic radiation 

E=hcv̅ 

Equation 2: Frequency of electromagnetic radiation 

v=c/λ 

Where; 

E is the energy of electromagnetic waves (J) 

h is the Plank’s constant (6.625 × 10-34 Joule-seconds or J s) 

λ is the wavelength (cm) 

v is the frequency (s-1) 

v̅ is the wavenumber in cm-1 

c is the speed of light (2.998 × 108 m/s) 
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There must be a change in dipole moment for IR radiation to be absorbed. These vibrational 

motions cause the dipole moment to change as the bond expands and contracts. Chemical 

bonds absorb IR radiation if the radiation energy matches the bond's vibrational energy 

during the molecular vibrations. The absorption level of IR radiation is proportional to the 

change of dipole moment and causes the vibrational energy to transit to the next higher level. 

In a simple diatomic molecule performing harmonic oscillation, Hooke’s law describes such 

motion's vibrational frequency in Equation 3. 

 

Equation 3: Hooke’s Law for vibrational frequency  

v=1/2π √(f/u) 

Where; 

v  is the frequency of harmonic oscillation 

f is the bond force constant 

u is the reduced mass of a diatomic molecule given by Equation 4. 

 

Equation 4: The reduced mass of a diatomic molecule 

u=m1m2/(m1+m2) 

 

A polyatomic molecule incorporates three types of movement; rotational,  

translational, and vibrational. The N atoms molecule will have 3N degrees of freedom along 

the Cartesian plane's x, y, and z-axes. The number of vibrations will be 3N, subtracting 3 

translational and 3 rotational movements. Generally, a non-linear molecule with N atoms has 

3N – 6 normal vibration modes, while a linear molecule has 3N – 5 modes because the 

molecular axis rotation cannot be observed. A small molecule can generate many distinctive 
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vibrational modes and produce a complex fingerprint-like absorbance pattern in the mid-

infrared region. These vibrations can be categorized merely as stretching or bending 

vibrations. 

 

Practically, the transmission is a conventional setup for an IR experiment. The  

IR absorbance spectrum obtained by measuring the intensity of an IR light passing through 

the sample of interest can be calculated by Equation 5.  

 

Equation 5: Absorbance IR light 

A=-log I/(I ̊) 

Where; 

A  is the absorbance of IR light 

I is the intensity of transmitted light 

I ̊ is the intensity of incident light 

The ratio (I/(I ̊)  ) is termed transmittance, T. 

The spectrum consists of various absorbance peaks, which appear at  

wavenumbers correlated to the molecular vibrational frequencies of the sample. Light 

absorbance is proportional to the path length and concentration of a sample described in 

Beer-Lambert law- hence it is a quantitative analysis.  Equation 6. 

 

Equation 6: Beer’s-Lambert Law 

A=ε c l 

Where: 

A  is the absorbance of the species 
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ε  is the molar absorptivity coefficient 

c  is the concentration in mole per litter 

l  is the pathlength in centimetres 

 

3.2.1.3.5 Fourier Transform Infrared Spectroscopy (FTIR) 

A.A. Michelson[50] has been developed the FTIR spectrometer, as shown in  

figure 4. The interferometer consists of an IR source, fixed and mobile mirrors, beam splitter, 

and detector. When the beam splitter is split, the light beam into two different pathways to 

the two mirrors, then the light is reflected and recombined at the beam splitter. The resulting 

beam intensity is analyzed as a function of the position of the mobile (sliding) mirror. The 

analyzed IR intensity enables an interferogram to be obtained. Then an IR spectrum can be 

established by Fourier transform to generate a single beam spectrum with the corresponding 

wavenumber on the x-axis.  

 

 

Figure 4 .  Schematic diagram of FTIR spectrometer [21] 

This developmental technology improves the measurement speed compared  

to the traditional dispersive instrument. This also enhanced the signal-to-noise ratio because 

of the higher throughput of light. The benefit of a non-destructive, sensitive, and minimal 

sample preparation requirement made this suitable for the cellular-based study. 
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3.2.1.3.6 FTIR live cells Spectroscopy 

Many studies have been measuring dried or fixed cells to avoid the  

the dominance of water absorbance (mainly OH stretching and bending bands at 3500 cm-1 

and 1640 cm-1). However, studies have shown that the IR spectra of dried cells are different 

from live cells[51]. In the fixation process, a dehydrated cell affects the DNA conformation 

and transforms it from B-form to A-form. This resulted in weaker and broader DNA peaks and 

difficulties differentiating other cellular components like protein, RNA, and carbohydrates. 

[52] Moreover, adherent cells are sometimes harvested with a proteolytic enzyme known as 

trypsin. This can cause plasma membrane protein remodeling and apoptotic induction. [53] 

However, this effect can be diminished when cells are stabilized in the medium for a few hours 

before FTIR scanning. The dehydration effect can be reduced when cells are rehydrated in an 

aqueous environment before measurements [53].  

 

FTIR spectroscopy with attenuated total reflection (ATR) sampling method  

allows a continuous study of live cells in the aqueous environment. [54] According to the 

water band's dominance in the mid-IR region, water band subtraction and optimizing the FTIR 

measurement's effective path length can minimize the influence of water. Furthermore, this 

method is preferable because it allows performing cellular studies in a similar way to the in 

vitro cell studies and minimizes the potential artifacts from the trypsinizing, fixing, and drying 

process.  

 

Besides, FTIR live cell measurement can be made continuously and frequently  
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to the same batch of cells with a temporal resolution potentially down to less than a few 

seconds. It can identify transient cellular events challenging to detect from dry cell samples 

or using standard biochemical assays[55].  

Table 2. IR vibrational bands of the cell components in the 1800-900 cm-1 region 

IR Absorption Peak (cm-1) Allocation Cellular Components 

 

     960-970 

 

Stretching of C–O, C–C 

Deoxyribose in cellular 

nucleic acids 

Phosphorylated Proteins 

Polysaccharide 

   1000-1150 Phosphodiester 

stretching 

Reasonably specific of 

Nuclei acid in the absence 

of Glycogen 

 

1020-1050 

Stretching of C–O, C–C 

Stretching of C–O 

deoxyribose 

Glycogen 

DNA 

1050-1070 Stretching of C–O–C Nucleic acids, 

Phospholipids 

1050-1100 PO2- stretching modes 

P-O-C antisymmetric 

stretching of phosphate 

Nucleic Acids 

Polysaccharide 
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ester C-OH stretching of 

polysaccharides 

1080-1120 Symmetric phosphate 

stretching PO2- 

P-O-C symmetric 

stretching of 

phosphodiester 

Phosphodiester linkage in 

DNA and RNA 

Phospholipids 

1100-1150 Symmetric stretching of 

C–C, C–O, C–O–C and C–

OH, and C=O stretching 

Carbohydrates 

Glycogen 

 

1220-1240 

Asymmetric PO2-

stretching 

Phosphodiester linkage in 

DNA and RNA 

Phospholipids 

1400 Symmetric stretching of 

COO- 

Fatty acids, Amino acids, 

Lipids 

1415 C–O–H in-plane bending Carbohydrates, DNA, RNA 

and proteins 

1470-1250 Symmetric and 

Asymmetric CH2 and CH3 

bending 

Lipids 

Proteins 
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The major structural components of a eukaryotic cell are proteins, carbohydrates,  

lipids, and nucleic acids. These are IR-active molecules and can be detected using FTIR 

spectroscopy. FTIR spectroscopy is increasingly employed in analyzing biological samples such 

as tissues and cells.[56] For example, FTIR is included to study membrane lipids[57], proteins' 

secondary structure[58], and the DNA structure.[52] Also, FTIR spectroscopy can detect and 

distinguish their major components in studies of biological samples[59]. A conclusion of the 

influential IR bands with cellular components spectral assignments in the 1800-900 cm-1 

region is represented in Table 2[60-62].  

Overall, in the cell’s spectral absorbance of the region, 1800-1300 cm-1 is  

correlated with proteins, especially the carbonyl stretching (C=O) of amide I at ~1640 cm-1 

and N–H bending and C–N stretching of amide II at ~1540 cm-1. The spectral absorbance of 

various amino acid side chains and lipids' C–H bending can be discovered at 1450-1400 cm-1. 

Infrared peaks in the 1300-900 cm-1 region indicate the absorption of the amide III (~1240 cm-

1), the symmetric (~1080 cm-1) and asymmetric (~1240 cm-1) stretching of the PO2
- in the DNA, 

C–O-P stretching of lipids/phospholipids and C–O stretching of carbohydrates. Moreover, 

FTIR spectroscopic studies have been utilised to discriminate cells in their cell cycle stage[63], 

1560-1500 C–N–H bending and C–N 

stretching 

Amide II 

1600 Asymmetric stretching of 

COO- 

Fatty acids, Amino acids, 

Lipids 

1655-1630 C=O stretching Amide I 

1700-1750 Ester C=O stretching Fatty acids, Nucleic acids 
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apoptosis[64, 65], distinguish the difference between cancer cell lines[66], and predict the 

invasiveness of cancer cells. [67]  

3.2.1.3.8 FTIR approach and diabetes research 

FTIR has been introduced in diabetes and metabolism research since 2007 as  

a diagnostic tool for analyzing chemical deposition in hair samples with different blood 

sugar levels. The spectral differences between normal and high blood sugar from human 

scalp hair samples suggested that the FTIR method may provide a rapid, non-invasive, and 

effective way for diabetes diagnosis and detecting chemical changes that have evolved from 

the diseases[68].  

In 2013, FTIR was shown to be able to discriminate between healthy and  

diabetic rats’ tissue samples from rat kidney plasma membrane apical sides (brush-border 

membranes), liver microsomal membranes, and Extensor digitorum longus (EDL) and Soleus 

(SOL) skeletal muscle tissues. The variety of changes in the spectral features, e.g., frequency 

and signal intensity/area, was observed in diabetic tissues and membranes compared to the 

control samples combined using cluster analysis that successfully distinguished between 

diabetic and control groups [69].   

Eikje N.[70]  has demonstrated a real-time assessment and continuous  

monitoring of glucose in skin tissue from blood glucose diffusion using horizontal attenuated 

total reflectance (HATR) Fourier transform infrared (FTIR) spectroscopy. The capillary glucose 

levels from the skin detected by HATR were related to the glucose that increased and 

circulated via blood flow. He also suggested that this technique can be used as the metabolic 

activity monitor of glucose uptake in the epidermal skin and might have a potential clinical 

interpretation of glucose metabolism activity. 
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  Attenuated total reflection (ATR) Fourier transform infrared 

spectroscopy (FTIR) combined with eXtreme Gradient Boosting (XGBoost) ensemble learning 

algorithm has been established as a rapid diagnosis model of pre-diabetes. The peripheral 

blood samples were collected and measured for the fasting blood sugar and 2 h blood sugar 

levels of the oral glucose tolerance test (OGTT). In addition, they determined the control and 

diabetes groups according to the WHO diagnostic criteria. ATR FTIR with XGBoost model had 

a specificity of 100.00%, a sensitivity of 85.00%, and an accuracy of 93.33% for the pre-

diabetes and healthy subject differentiation. This measurement mode is simple and time-

efficient, with no need for sample pre-processing. Moreover, the developed model provides 

a fast, precise method for pre-diabetes diagnosis[71]. 

  The FTIR technique has been reported to predict, non-invasively, blood 

hemoglobin A1c (HbA1c) and be able to screen for diabetes. Humans with and without 

diabetes have been examined, and FTIR spectra were extracted from their lip surfaces. The 

lip surface spectra correlate significantly to the HbA1c levels and blood glucose samples. 

Specifically, the peaks at around 1300–1400 cm−1 of the lip surface spectrum distinguished 

subjects with higher and lower HbA1c levels. Furthermore, the correlation between HbA1c 

levels from partial least squares (PLS) regression analysis and FTIR spectra of the lip was highly 

significant for predicting HbA1c levels. Thus, the FTIR technique has been proposed as an 

effective tool for diabetes screening of patients with higher HbA1c levels[72]. 

  Infrared spectroscopy was employed as a diagnostic tool for diabetic 

prediction by analyzing the molecular and sub-molecular spectral features in the saliva of non-

diabetes and healthy subjects. The different spectral analysis illustrates several major 

metabolic components - lipid, proteins, glucose, thiocyanate, and carboxylate - can be used 

to separate healthy and diabetic saliva. This technique's overall diabetes diagnosis accuracy 

https://www.sciencedirect.com/topics/engineering/reflectance
https://www.sciencedirect.com/topics/physics-and-astronomy/infrared-spectroscopy
https://www.sciencedirect.com/topics/physics-and-astronomy/infrared-spectroscopy
https://www.sciencedirect.com/topics/engineering/learning-algorithm
https://www.sciencedirect.com/topics/engineering/learning-algorithm


50 
 

was 100% on the training and 88.2% on the validation set. To conclude, infrared spectroscopy 

can be used to establish the complex biochemical profiles in saliva and identify several 

potential diabetes-associated spectral signatures[73]. 

  ATR-FTIR spectroscopy has been used to evaluate the saliva of non-diabetic 

(ND), diabetic (D), and insulin-treated diabetic (D+I) rats to identify biomarkers that can be 

used for glucose monitoring. The spectrum of the saliva of ND, D, and D+I rats revealed several 

distinct vibrational modes, between 1452 cm-1 and 836 cm-1.  The two unique vibrational 

modes were pre-validated by ROC curve analysis with a significant correlation with glycemia. 

In the comparison between the ND and D+I rat, the classification of D rats was accomplished 

with a sensitivity of 100%, and an average specificity of 93.33% and 100% using bands 1452 

cm-1 and 836 cm-1, respectively. Furthermore, the 1452 cm-1 and the 836 cm-1 spectral bands 

proved to be robust spectral biomarkers and highly correlated with glycemia (R2 of 0.801 and 

0.788, P < 0.01, respectively). Spectral salivary biomarkers derived from FTIR spectroscopy 

may provide a novel robust alternative for diabetes monitoring using non-invasive 

technology. [74] 

FTIR spectroscopy of hair samples is also able to follow up the diabetes  

medication; metformin from three months of treatment. Significant spectral differences were 

observed between pre-and post-treatment from the hair fiber samples. The ATR-FTIR hair 

spectra of diabetic patients (pre-and post-treatment) and healthy subjects have been studied. 

The absorbance values of some of the specific bands of biomolecules present in the hair 

samples, e.g., protein, lipids, and glucose, are observed for both pre-and post-treatment 

subjects. It was summarized that these biomarkers are remarkably different between pre-and 

post-treatment hair samples. The results are further statistically validated with the dependent 

t-test, which reported that the two groups' spectral variations are statistically significant. [75] 
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FTIR is clearly shown to have the discriminative power to distinguish the biochemical 

profiles of a diabetic and healthy person. However, metabolism in live cells, which can 

improve understanding of diabetes and is ideal for diabetes-related research, has not yet 

been demonstrated. Therefore, IR vibrational bands of the cell components which are 

detectable by FTIR spectroscopy, especially phosphate components, which are essential in 

the energy cycle and diabetes metabolism, e.g., carboxylate, are expected to see information 

that can answer the gap in these research areas by using the Live-cell FTIR approach.  

 

4.The principle of Multi-reflection (Multi Bounce) ATR 

An attenuated total reflection accessory works by measuring the attenuation  

of light from the internal reflection of the infrared beam at the interface of the ATR element 

and sample (Figure 5). An infrared beam is shone directly onto an optically dense crystal with 

a high refractive index to produce an internal reflection at a specific angle more significant 

than the critical angle, and the IR-absorbing sample with a low refractive index is attached on 

the measurement side. This internal reflectance resulted in an evanescent wave that 

extended beyond the crystal's surface into the sample. The penetration depth for ZnS ATR 

crystal with 2.25 refractive index and 45° incidence angle used is in the 1-3 µm calculated 

using Equation 7. There must be good contact between the sample and the crystal surface. 

The evanescent wave will be attenuated in infrared spectrum areas where the sample energy 

is absorbed. The attenuated evanescent wave is traveled back to the IR beam, exiting the 

opposite end of the crystal, and proceeded to the detector in the IR spectrometer. The system 

then generates an infrared spectrum[76, 77]. This is advantageous for live-cell measurement. 

The penetration depth is deep enough to detect the cellular component attached to the 
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crystal surface but not too deep, so the culturing medium beyond the cell does not contribute 

significantly to the spectrum. 

 

 

Figure 5. Schematic diagram of the multi-reflections ATR element [45]Schematic 
diagram of the mulreflections ATR elemen 

Equation 7: Depth of penetration in the multi-reflection ATR element 

 

Where; 

d𝑝 is the depth of penetration 

𝜆 is the wavelength of the incident light (cm) 

𝑛1 is the refractive index of the ATR element 

𝑛2 is the refractive index of the sample 

𝜃 is the angle of the incident light 

Multi-reflection ATR application can produce a sufficient path length for  

measuring live cells attached to the ATR crystal. The internal path length is proportional to 

the number of reflections; the multi-reflection procedure will allow the effective path length 

improvement to intensify the signal-to-noise ratio by probing the cellular components of live 

cells attached to the ATR element. [77] Besides, the small penetration depth in the ATR and 
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hence the small signal of the medium is resulting in an improvement of the signal-to-noise 

ratio of the acquired spectra. 

5. Multivariate analysis  

Multivariate analysis is the statistical and mathematical study of data where  

multiple measurements are made in each experimental setting. The relationships among 

multivariate measures and their data structure are significant. According to the FTIR-live cell 

approach, each obtained spectrum is informative and contains the cellular composition and 

changes related to the compound or drug exposure. Rather than relying on the study of a 

single peak, this analysis helps identify the multiple hidden factors that contribute to the 

spectral changes. Supervised and unsupervised are the two main categories used in the 

multivariate analysis of FTIR spectral data[78, 79]. 

6. Principal component analysis (PCA) 

PCA is a popular multivariate analysis method. This technique has a non-prior  

knowledge requirement (unsupervised) about the data to explain samples' relationships 

under examination. The main benefit of PCA is that it reduces the dimensionality of 

multivariate data [80]. During the analysis, the original variables from the data matrix (D) are 

converted to calculate the new variables combined linearly with the original variables and 

called principal components (PC). This conversion produces two new matrixes; a matrix (V) of 

PC, i.e., the eigenvectors, and a matrix (U) of scores, i.e., the eigenvalues. The first PC reveals 

the most notable variations in the data set, whereas the second PC orthogonal to the first PC 

reveals the second most variations of the data. Similarly, the other orthogonal components 

to the first PC generated by the same protocol consecutively categorize it from their PC's 

subscription. The relation between components and variables was acquired from the loading 

plot and displayed as a spectrum. The loading plot represents the significant variables that 

https://www.sciencedirect.com/topics/economics-econometrics-and-finance/multivariate-analysis


54 
 

are related to the spectra. It also shows the parallel and non-parallel between IR peaks. 

Essentially, it arranges the understanding of the significant changes that are difficult to detect 

from the raw spectra. The original matrix (D) data is regenerated by the multiplication of V 

and U plus the reminder (E) as shown in Equation 8 [81]. 

𝐷 = 𝑈𝑉𝑇 + 𝐸       Equation 8 

7. Aims 

 This thesis aims to illustrate that live-cell ATR-FTIR spectroscopy is essential for 

evaluating live cells, diabetes-related compounds, or anti-diabetes drug interaction. It also 

aims to develop the technique as a reproducible tool for diabetes studies in the pre-clinical 

screening process of anti-diabetes drug development. 

The aims are described with the following objectives: 

1. To develop and improve the live-cell measurement using ATR-FTIR spectroscopy 

and apply principal component analysis to enhance spectroscopic data's 

significance. 

2. To develop a complementary tool for diabetes-related study due to the effect of 

live cells and diabetes-related compounds. This is accomplished by studying the 

interaction among the hepatocyte carcinoma cell line (HepG2), glucose, and 

insulin. The results are confirmed by comparing the metabolic changes observed 

from the spectroscopic data and the diabetes metabolism literature. 

3. To illustrate, the cellular change measured in FTIR spectra is related to the drug's 

mechanism of action. Specifically, insulin sensitizer drug metformin, a novel drug 

PF-04995132, and a natural compound, Resveratrol, are evaluated. PCA is used to 

discriminate the control (without drug treatment) and drug treatment in a live-cell 

FTIR study. 
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Chapter 2 Method Development and Experimental Design 

 

2.1 Introduction 

The live-cell FTIR spectroscopy measurement method has been successfully developed before 

for testing anti-cancer agents[82]. However, the technique has not been applied to study anti-

diabetic drugs. To be comparable to the conventional biochemical in vitro assays for the study 

of anti-diabetic drugs and be an alternative tool for analyzing cell metabolism alteration, all 

cell culture processes, sample preparation, and ATR-FTIR measurements are designed to keep 

the conditions and cell viability during the FTIR experiment similar to the convention in vitro 

assays.  

2.2 Cancer Cell Lines 

This work has selected the HepG2 or Hepatocellular Carcinoma (HCC), hepatoma cell line, or 

hepatoblastoma cell line. Since most diabetic metabolism occurs in the human liver, many 

studies have commonly used the HepG2 model in diabetes-related cells-metabolism 

research[83-87]. These adherence cells are compatible with the ATR-FTIR approach, in which 

the IR beam from the interferometer can probe the attached cells on the ATR plate and 

produce the spectroscopic results from the cell alterations. The general information and 

characteristics of the HepG2 cell line are summarized in Table 3 [56]. 
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Table 3. Summary of general information and characteristic of HepG2 cell lines 

General information 

Organism Homo sapiens, human 

Tissue Liver 

Morphology epithelial-like 

Culture properties Adherent 

Disease hepatocellular carcinoma 

Age 15 years adolescent 

Gender Male 

Ethnicity Caucasian 

Characteristic 

Image  

 

Derivation HepG2 was derived from a hepatocellular liver carcinoma of 

a 15-year-old Caucasian male. 

Clinical data 15 years Caucasian male 

Receptor Expression insulin; insulin-like growth factor II (IGF II) 



57 
 

2.2.2 Cell culture 

For both in vitro and live cell ATR-FTIR experiments represented in this thesis, HepG2 

(ATCC® HB-8065™) (obtained from maintained stock at passage 18) was kindly provided by 

Professor Khuloud T. Al-Jamal, Insitute of Pharmaceutical Science, King's College London. Cells 

were cultured in Dulbecco's Modified Eagle Medium (DMEM) (Sigma-Aldrich, D6429) and 

supplemented with 10% v/v Foetal Bovine Serum(FBS) (Sigma-Aldrich, F7524), 2mM L-

glutamine (Sigma-Aldrich, G7513), 1% v/v penicillin-streptomycin (Sigma-Aldrich, P4333), 1% 

non-essential amino acids (Sigma-Aldrich, M7145). The cells were maintained in a T25 flask in 

a 5% CO2 incubator at 37°C. Microbiological decontamination and cleaning procedures have 

been routinely done every two weeks following the standard protocol. [88] 

2.2.2.1 cell counting and viability testing  

This step is routinely conducted before each of the live cell FTIR measurements. Cell counting 

was performed in the early stage of cell culture to comprehend the cell doubling time, 

calculate the splitting ratio for maintaining cells, and control the harvesting time for the live-

cell FTIR experiment. For cell counting, cells were cultured in a T25 flask and harvested at 80% 

confluence by washing with 1X phosphate Buffered Saline (PBS) three times, then 1mL of 

0.25% trypsin (1:250) in Hank's balanced salt solution (HBSS) with 0.1% EDTA-disodium and 

kept in the CO2 incubator at 37°C for 5 minutes. Then, around 3 mL of new medium solution 

was added to the flask and mixed by pipetting to make a cell suspension. After that, a 0.4% 

trypan blue stain was used to test the viability percentage of cells. The concept behind the 

trypan blue dye exclusion test is that a damaged cell membrane will be allowed the dye to 

enter inside and stain the cell, whereas viable cells will have no staining observed. This test 

protocol is an equal volume of cell suspension, and the trypan blue dye stain (20uL mixed 

solution) was loaded for 10 uL into the chamber of Countess® Automated Cell Counter (Figure 
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6). The red dots on the cell counter screen represent the dead cells that the device can detect 

from the dye exclusion test, while viable cells have shown in green. 

 

 

 

 

 

 

Figure 6. Typan blue exclusion test for HepG2 cell using Countess® Automated Cell 
Counter 

2.2.2.2 Live-cell FTIR measurement preparation 

When cultured HepG2 cells reached 80% confluence, they were trypsinized and centrifuged  

1,000 x g into a pellet. This is followed by rinsing and resuspending the pellet in DMEM CO2 

independent medium (Gibco,18045054) supplemented with 10% FBS, 2mM L-glutamine, 1% 

penicillin-streptomycin, and 1% Non-essential amino acids. 2 million of HepG2 suspension (1 

million cell/ mL) was seeded and formed a cell monolayer on the ATR plate. DMEM 

CO2 independent medium was used to avoid the requirement of 5% CO2 at the sampling 

chamber of the spectrometer. The cell suspension was incubated for 24 hours to allow cell 

attachment. Once cells were attached, which is indicated by slow but steady growth in the 

amide II band from the FTIR measurement (at around 24 hours after seeding), a DMEM CO2 

independent medium, with the designated treatments, supplemented with 2% FBS was used 

in the experiment (a lower percentage of FBS was used to avoid interference to spectral 

changes from cell growth). The first measurement immediately after the treatment was used 
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as the background. The spectral change was then monitored for 24, 48, or 72 hours with a 

measure taken every 10 minutes. Each experiment was repeated for 3 times based on 3 

independent cultures with cells from a similar passage number (within the 10) and measured 

on a different day. 

2.2.2.3 Growth rate of HepG2 cells in DMEM high glucose and DMEM CO2 independent 

medium 

This project is the first to use DMEM CO2-independent medium to avoid carbon dioxide in the 

FTIR setup. Previous studies used the L-15 medium during the ATR FTIR measurement to 

cultivate cells in a CO2-free environment with the same FBS percentage (10%). However, 

HepG2 was found to have a significant difference in growth rate with L-15 as shown with the 

lowest doubling time than other media presented in the table 4. Furthermore, the thesis 

project emphasizes cell diabetes metabolism, where glucose plays an important role. DMEM 

CO2 independent medium contains glucose; therefore, it is more suitable for this study than 

L-15, which includes D-galactose as the energy source. 

Table 4. Doubling time of HepG2 cells in DMEM high glucose, DMEM CO2 independent 

Cells Medium Initial seeding 

count (T25 

flask) 

Cell count 

after 72 hrs 

Viability (%) Doubling time 

(hr) 

HepG2 DMEM high 

glucose 

4 x 104/ cm2 3.53 x 106 87% 40 

DMEM CO2 

independent 

medium 

2.33 x 106 87% 59 

L-15 1.45 x 106 92% 70 
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2.2.2.4 Density and Attachment of HepG2 cells on the ATR plate 

A complete attachment of HepG2 cells on the ATR surface is a prerequisite for the ATR 

sampling method. Therefore, cell confluence used in the live-cell FTIR method was adjusted 

and tested to confirm that the cell monolayer remained viable during the experiment. The 

live-cell density required to obtain complete coverage of the 5 cm2 area of the ATR element 

is calculated based on cell counting at 80% confluence in a T25 flask. Cells that reached 80% 

confluence in the T25 flask were counted, harvested, and seeded on the ATR plate to form a 

monolayer. A reflective optical microscope with a 5x objective (L2003 microscope fitted with 

a digital camera) and transmission mode (Hund Willovert S 35550) were used to ensure the 

adherence and the formation of a monolayer of cells. The images captured 24 h after seeding 

were compared between cells cultured in the ATR plate and in a T25 flask in a 5% CO2 

environment. The cells have shown a similar healthy morphology with a monolayer of cells 

wholly adhered to the ZnS ATR plate. (Figure 7) 

 

 

Figure 7. Image of HepG2 cells at 24 hours of seeding on the ATR element (A) and T25 flask 
(B) 

A B 
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2.3 ATR FTIR Measurement 

2.3.1 Multi-Reflection ATR Accessory  

A temperature-controlled ZnS attenuated total reflectance (ATR) plate with 10 reflections on 

the sampling site and 45° ATR element (80 mm X 10 mm X 4 mm) was purchased from Crystran 

Ltd., UK. The sufficient path length obtained from this accessory is approximately 20-30 µm 

with a penetration depth of nearly 2-3 µm. The trough plate's measurement surface area is 5 

cm2, where attached live cells were measured. The capacity of the trough is around 2.5 mL of 

culturing medium. The container was sealed with a warmed lid to avoid evaporation, as 

shown in (figure 8) 

 

Figure 8. A schematic diagram showing the live-cell ATR-FTIR experiment set up 

2.3.2 Live Cell FTIR measurement 

An FTIR spectrometer (Tensor II, Bruker Optics) fitted with a room temperature deuterated L-

alanine doped triglycine sulfate (RT-DLaTGS) detector was used. It adapted to an ATR 

accessory described in 2.3.1 to acquire continuous live-cell FTIR spectra (Figure 9). 

Measurement was taken every 10 minutes with 9 minutes of scanning time (1024 scans so 

that six spectra were collected hourly). The IR spectrum of cells was measured in the spectral 

region 4000 to 800 cm-1 with a resolution of 8 cm-1 and 5 kHz scanning speed. Blackman-Harris 

3 Term function with power spectrum correction mode and phase resolution 32 was selected 
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in an interferogram. OPUS 7.8 software (Tensor II, Bruker) was used for the initial data 

processing, such as atmospheric vapor removal, baseline correction, 2nd derivative 

calculations, and vector normalization. The absorbance profile of the cell during cell 

attachment was monitored continuously and plotted in Figure 10A from seeding to the 

moment before adding the experimental culture medium.  

 

Figure 9. Photo of Bruker spectrometer modified to a temperature-controlled ATR plate 
for the live-cell FTIR measurement 
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2.3.2.1 Obtaining Reproducible of Live Cells ATR FTIR Spectra  

To study compound and cell interaction, acquiring reproducible FTIR live-cell spectra is the 

first step to its implementation. The average spectra of three independent measurements of 

live HepG2 cells in the IR region 1800-900 cm-1 measured at different time points after seeding 

has shown all the expected peaks of cellular components (Fig 10A). For the repeated 

measurements, the standard deviation from 3 measurements at the 24th hour is represented 

(Fig 10B). The relatively small error bars underlined the reproducibility of the live cell ATR 

FTIR measurements.  

 

 

 

 

 

 

Figure 10. HepG2 FTIR live-cell spectra every 2hr of seeding time (A) and the error bars of 
24th hour (B) 
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2.3.3 Cell Viability assay 

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium 

colorimetric reduction assay was carried out to assess cell viability. The colorimetric assay 

principle is that the viable cells with active mitochondrial activity (dinucleotide 

phosphate (NADPH)-dependent cellular oxidoreductase) will reduce the tetrazolium dye MTT 

to formazan, which produce a purple product that generates an absorbance maximum near 

570 nm. Dead cells cannot convert MTT into formazan; the color formation is a convenient 

marker of viable cells[89, 90]. The general protocol is as follows: HepG2 cells (2.0x104/200 μL) 

in DMEM high glucose CO2 independent medium were cultured in 96-well plates for 24 hours 

and treated with the different concentrations of the studied solutions or drugs. Cells were 

cultured in each concentration of the studied solution for 24, 48, or 72 hours (relevant to live-

cell FTIR experiment), then 100 μL of the MTT reagent (0.5mg/mL) (VWR International) in 

DMEM medium was added to each well. After 2 hours of incubation, the supernatant was 

removed, and 100 μL of DMSO was added to each well for the detection of the presence of 

formazan. The absorbance value at 570 nm was taken using a spectrophotometer 

(SpectraMAX™ software). The absorbance values measured from each well plate were 

plotted, and the percentage of cell viability was calculated over each concentration compared 

with the control by the Microsoft Excel program. The IC50 was represented as mean ± SD. 

2.3.4 Solutions/drugs treatment preparation 

The studied solutions or drugs' concentrations used in the live cell FTIR experiment were 

guided by the IC50 obtained from MTT assay results. The drugs were prepared in DMSO to 

make a stock solution and kept in a -20 °C freezer. For the live-cell FTIR study of drugs, the 

concentration was diluted to reach 0.1% v/v DMSO, which cells can tolerate well and remain 

viable during the FTIR experiment. For the solution treatment, the suspension of cells was 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/nicotinamide-adenine-dinucleotide-phosphate
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/nicotinamide-adenine-dinucleotide-phosphate
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/oxidoreductase
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/tetrazolium
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/formazan
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seeded on the ATR plate for 24 hours. The tested solution, e.g., 25 mM glucose in DMEM CO2 

independent medium, was prepared in 2% FBS before refreshing on the ATR plate. 

2.3.4.1 FTIR Spectra of Compounds/Drugs 

The live-cell FTIR approach explores the interaction between cells and compounds/drugs 

inside the cells. The spectra of all compounds/drugs have been measured, as shown in figure 

11. The compounds/drugs spectra will be further subtracted or compared to the cell and 

drug/compounds treatment in the FTIR data processing to avoid misinterpreting drug 

accumulation in cells as cellular changes. 

 

Figure 11. The FTIR spectra of PF-04991532 (blue), metformin (orange), and Resveratrol 
(grey) 

2.3.4.2 Considering using 2% FBS in HepG2 compound treatment 

To minimize spectral changes due to cell growth, after the cell was seeded for 24 hours in a 

10% FBS DMEM CO2 independent medium, the medium was changed to 2% FBS. Cells were 

viable at this level of FBS and can respond to the treatment without significant cell growth. 
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After 6 hours of a refreshing medium, the higher absorbance value of cell spectrum treatment 

with 10% FBS has shown in figure 12 compared to the lower value of 2% FBS treatment. 

 

Figure 12. The absorbance value of HepG2 cell in 10% FBS (Red color) and 2% FBS DMEM 
CO2 independent medium (blue color) after 6 hours of refreshing medium 

2.3.5 FTIR data analysis 

For the live-cell FTIR approach, the treated cell spectra were acquired by using the first 

spectrum measured after exchanging the medium to the medium containing the 

compounds/drugs as a background to underline the alteration occurring inside the cells 

resulting from that medium change. Five steps of data pre-processing were carried out before 

the PCA analysis. The five steps include water vapor correction, truncation, spectra 

subtraction, baseline correction, and vector normalization, as described in more detail in the 

following sections. 
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2.3.6.1 Water Vapour Correction 

Water vapor can decline the quality of FTIR spectra and affect the analysis outcome. This is 

the first significant step before data processing. The desiccant is routinely changed every two 

weeks before the experiment. The water compensation was also selected in the OPUS 

software to avoid the contribution of water vapor. Despite this, we found that there is still 

some water vapor absorbance in the spectra. For the unsmooth drug-treated cell spectra, the 

OPUS atmospheric compensation step was applied, and the improvement from this operation 

is shown in figure 13.  

 

 

\ 

 

 

 

 

 

 

Figure 13. An ATR FTIR different spectrum o HepG2 cells (blue) and after (green) water 
vapor compensation 

 

A 

 

B 
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2.3.6.2 Spectra truncation 

The spectra were obtained using the first measurement after the change of medium as the 

background to highlight the spectral changes resulting from the medium change. High 

spectral noise in the 3600-3000 and 900-800 cm-1 regions are due to the aqueous water 

absorbance peaks and excluded in the analysis. The three representative spectra (after drug 

treatment) have shown significant changes in the fingerprint region between 1700-900 cm-1, 

as highlighted in Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. An ATR FTIR different spectrum of HepG2 cells before (A) and after truncation 
(B) 
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2.3.6.3 Baseline correction 

The different spectra were baseline-corrected using concave rubber band baseline correction 

(1 iteration with 16 baseline points was sufficient) from the OPUS software. An example of 

the result of this step is shown in figure 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. The FTIR spectrum before baseline correction (A) and B represents the spectrum 
after baseline correction 

B 

A 
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2.3.6.5 Vector normalization 

FTIR spectra normalization is essential to account for confounding factors such as the varying 

thickness of the sample. Standard normalization methods are min-max amide I/II peak 

normalization and vector normalization. Amide I/II normalization is often used after baseline 

correction. In contrast, vector normalization is often used after spectra differentiation (after 

modification by spectrum subtraction, there is no longer a consistent amide I/II peak in the 

spectra to allow for amide I/II peak normalization[91].  Altharawi A[92] found that vector 

normalization can help discriminate the effect on cells from the different anti-cancer 

treatments.  

2.3.7 PCA analysis of Live-cell FTIR spectra 

The live-cell ATR-FTIR experiment can monitor cell/compound/drug over time. The 

combination of live cells FTIR experiment with PCA analysis can enhance relationships and 

agreements between main spectral change and compound/drug treatment. In the PCA of the 

data represented in Chapters 3 and 4, we compared cells treated in two compound conditions 

over time. Chapter 5 shows that PCA can distinguish between compounds and drug cell 

treatments. PCA was carried out using PyChem 3.5 beta version software 

(http://pychem.sourceforge.net/). This analysis was applied to reduce the dimension of the 

spectroscopic data. Correlation matrix and nonlinear iterative partial least squares (NIPALS) 

were selected for the PCA.  

 

 

 

http://pychem.sourceforge.net/
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Chapter 3 Live-cell ATR-FTIR spectroscopy as a novel bioanalytical tool for cell 

glucose metabolism research 

Published in Biochimica et Biophysica Acta (BBA) - Molecular Cell Research Poonprasartporn 

A, Chan KLA. Volume 1868, Issue 7, June 2021.  

3.1 Abstract 

Current novel drug developments for the treatment of diabetes require multiple bioanalytical 

assays to interrogate the cellular metabolism, which are costly, laborious and time-

consuming. Fourier-transform infrared (FTIR) spectroscopy is a non-destructive, label-free, 

sensitive, and low-cost technique that was recently found to study living cells. This study aims 

to demonstrate that live-cell FTIR can be applied to study the differences in glucose 

metabolism in cells in normal culturing medium and cells treated in high glucose (a diabetes 

model) to highlight the potential of the technique in diabetes research. Live HepG2 cells were 

treated in normal glucose (3.8 mM; control) or high glucose (25 mM) medium and were 

measured directly using the FTIR approach. Principal component analysis was used to 

highlight any possible correlated changes 24, 48 and 72 h after treatments. FTIR spectra of 

live cell treated in normal and high glucose medium have shown significant differences (p < 

0.05) for all treatment times. The control cells have seen an increased absorbance at 1088, 

1240, and 1400 cm-1, which are associated with phosphate stretching mode vibrations from 

phosphorylated proteins and DNA back bone, and symmetric stretching mode vibration of 

COO- from fatty acids, amino acids, lipids, and carbohydrate metabolites. However, the high 

glucose treated cells have shown a different change in the 1000-1200 cm-1 region, which is 

linked to the glycogen and ATP: ADP ratio. In conclusion, live-cell FTIR can be a low-cost 

method for studying metabolic changes in cells. 
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3.2 Introduction  

Powerful analytical methods for developing highly effective and safe medications for diabetic 

treatment is essential. Cell-based biochemistry with metabolite measurement is a key 

platform for diabetes and metabolism research. Metabolomics is currently a promising 

method that can identify and quantify metabolites from biological samples. Low molecular 

weight molecules such as lipids, amino acids, peptides, nucleic acids, and carbohydrates have 

important roles in disease/metabolism studies, and therefore rich metabolome data are 

highly valuable. However, dynamics in biological rhythm and interference from non-specific 

substances are some challenges that can affect the analysis outcome [93, 94]. Non-

destructive methods for metabolomics measurement of a live cell, which is often preferred 

over measuring dead, lysed cell, for drug/cell metabolism is still lacking. Techniques reported 

for studying metabolites in live cells include colorimetric assays, fluorometric assays, and 

immunoassays. However, due to the complex metabolic changes in cells, multiple assays are 

often needed to increase the specificity, making these approaches expensive, laborious and 

time-consuming. 

Fourier-Transform Infrared (FTIR) spectroscopy is a non-destructive, non-invasive, label-free, 

chemically specific, and high-throughput technique. FTIR analysis of cells has been shown to 

be able to distinguish the different stages of the cell cycle [95] , cell death [96], drug-cell 

sensitivity and resistance [97, 98], diseases [99], and biomedical changes from the clinical 

biomarkers in various type of cancers [100-103]. FTIR has been introduced in diabetes and 

metabolism research since 2007 as a diagnostic tool for analyzing chemical deposition in hair 

samples with different blood sugar levels [75]. In 2013, FTIR has been shown to be able to 

clearly differentiate healthy and type I diabetic rats [69] and diagnose diabetes in human from 

the measurement of blood, urine, lip and saliva [70-73]. FTIR also represents a promising 
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blood-glucose monitoring tool during insulin and metformin treatment [74, 75]. FTIR 

spectroscopy can be used to diagnose diabetes with and without retinopathy complications 

from patients’ blood samples with 90% sensitivity, 92.7% specificity, and 90.5% overall 

accuracy [104]. However, metabolism in live cells, which has the potential to improve the 

understanding of diabetes, has not yet been demonstrated. We hypothesize that live-cell FTIR 

can produce useful biomolecular information to aid diabetes research. The aim of this work 

is to demonstrate that live-cell FTIR can be used to study the chemical transformation of 

hepatocyte from the healthy state (cultivated in normal glucose level) to diabetic state (after 

exposed in hyperglycaemia condition for 24 hr) [105-107] to relate and confirm the 

metabolism change in cells. 

3.3 Materials and Methods: 

Human hepatocyte carcinoma cell (HepG2) were kindly provided by Professor Khuloud Al-

Jamal (School of Cancer and pharmaceutical science, King’s College London). Cells were 

maintained in Dulbecco’s Modified Eagle’s Medium (DMEM from Sigma Aldrich, UK) high 

glucose containing 10% fetal bovine serum (FBS from Sigma Aldrich, UK), 50 U/mL penicillin 

and 100 μg/mL streptomycin, 1% non-essential amino acid and 1% L-glutamine. Cells were 

maintained in T25 culture flask and incubated in a humid atmosphere containing 5% CO2 at 

37°C.  
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3.3.1 Cell viability assay 

Cells concentration of 2.0x104/200 μL were cultured in 96-well plates for 24 hours and treated 

with the different concentrations of glucose (5, 10, 25, 35, 50, 75, and 100 mM). Cells were 

cultured with each concentration for 24, 48, and 72 hours, and then 100 μL of the MTT 

reagent (0.5mg/mL) (VWR International) was added to each well. After 2 hours of incubation, 

100 μL of DMSO was added to each well to detect the presence of formazan. The absorbance 

value at 570 nm was taken using a spectrophotometer (SpectraMAX™ software). The 

importance of absorbance of each well plate were plotted, and the percentage cell viability 

was calculated over each individual concentration compared with the Microsoft Excel 

program. 

3.3.2 Live-cell FTIR measurement 

HepG2 cells in the T25 flask were trypsinised at ~80% confluence and suspended with 2x106/2 

mL in DMEM CO2-independent medium. The cells were seeded on the temperature-

controlled ZnS attenuated total reflectance (ATR) plate with 10 reflections on the sampling 

side (HATR, Pike Technologies, USA; ZnS ATR crystal was purchased from Crystran Ltd., UK). 

The plate was sealed with a warmed lid to avoid evaporation. This condition also let the 

attached cell to reach high confluence on the ATR element's measuring surface as shown in 

Figure 8. According to the small penetration depth of measurement, around 2-3 μm from the 

ATR element's surface (smaller than the thickness of the living cell (~5-10 μm), absorbances 

are contributed mainly from the attached live cells with negligible contribution from the 

medium [97, 108-110].  

 Visible images of cells on the ZnS ATR plate and in T25 flask were respectively captured in 

reflection and transmission mode after 24 hours of incubation using a 10x objective. The 
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seeded HepG2 cell spectra were monitored for 24, 48 and 72 hours using a FTIR spectrometer 

(Tensor II, Bruker Optics). Normal glucose (3.8 mM; control) or high glucose (25 mM) 

concentrations in DMEM CO2 independent medium was applied for the cell-glucose 

metabolism study. After seeding the cells in the live-cell ATR plate, a measurement was taken 

every 10 minutes at 8 cm-1 spectral resolution with 9 minutes scanning time (1024 scans) for 

a total duration of 24 hours. DMEM CO2 independent medium was used to avoid the 

requirement of 5% CO2 at the spectrometer. 

The cell suspension was incubated for 24 hours to allow cell attachment. Once cells were 

attached, which is indicated by a slow but steady growth in the amide II band (around 24 

hour), the medium was changed to fresh normal glucose (3.8 mM in 2% FBS DMEM CO2 

independent medium; control) or high glucose (25 mM in 2% FBS DMEM CO2 independent 

medium; diabetic) medium. A background was measured at this point. The change of 

spectrum was then monitored for a further 72 hours with a measurement taken at every 10 

minutes. Each experiment was repeated for 3 times based on 3 independent cultures with a 

similar passage number range 24-34 and on a different day. 

2.3 Data processing and analysis 

Spectra were water vapor compensated and cut to the wavenumber range of 1780-900 cm-1, 

followed by concave rubber band baseline correction (1 iteration with 16 baseline points was 

found to be sufficient) and vector normalisation. Principal component analysis (PCA) from 

PyChem® software (available from :http://pychem.sourceforge.net/) was used as the 

statistical tool for possibly correlated changes observation from the experiment setting [91]. 

T-test was applied to find the significant difference among the treatment groups compared 

http://pychem.sourceforge.net/
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to control. Significance difference was defined as P.value < 0.05 calculated using Microsoft 

Excel.  

3.4 Results 

3.4.1 Cell culturing  

To established that the HepG2 cell behaviour is similar between cells cultured under standard 

protocols and under experimental conditions, i.e. on the ZnS ATR plate, visible images of 

HepG2 cells captured 24 hours after seeding on the ATR plate in the DMEM CO2 independent 

medium have shown that cells were fully attached (Figure 16A). Comparing to cells cultured 

in T25 tissue culture flask incubated with standard DMEM medium in 5% CO2 environment, 

the cells have shown a similar morphology (Figure 16B). Selected spectra of a typical 

experiment of the living cells, with culture medium as the background, are shown in Figure 

17A. The cells have shown a small absorbance 2 hours after seeding, which rapidly increased 

at the 4th hour. The seeded cells had further grown on the ATR plate for another 20 hours 

until the increase in absorbance h ad  clearly plateaued,  indicating a full attachment of cell 

layer on the ATR plate [82, 111, 112]. The spectra of HepG2 cell have shown clear peaks of 

amide I at 1645 cm-1, amide II at 1550 cm-1, sym(COO-) at 1400 cm-1, amide III at 1235 cm-1, 

the asymmetric and symmetric stretching mode of phosphate bands between at ~1240 and 

1080 cm-1 and the carbohydrates bands between 1150-1000 cm-1 (Figure 17A.). Figure 17B 

shows the averaged spectra measured from the three separate repeated experiments of live 

HepG2 cells at the 24th hour after seeding, the very small standard deviations (grey colour) 

represented the high reproducibility of the ATR FTIR experiments. 
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When the cells reached the plateau phase, around 24  hours after seeding, the medium was 

replaced by the test medium for the attached cells to study the reaction between cells and 

the testing conditions.  

B 
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A 

Figure 16.Image of HepG2 cells at different time of seeding on the ATR element and T25 
flask, respectively; 24 hour A and B, 48 hour C and D, 72 hour E and F 
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 To further confirm that the ATR substrate and the CO2 independent medium produces 

a cell behaviour that is comparable to other diabetic studies in the literature using the HepG2 

cell model, we have compared the viability of cells according to the published IC50 of glucose 

for HepG2 cells, which was ~50 mM at 72 h in diabetes studies [113].  The results have shown 

that >80% of the HepG2 cell had survived in 5 and 10mM with insignificant differences 

compared to control. At 50 mM and 72-hour incubation, the cell viability has dropped to 50% 

(Figure 18), which is similar to the results from the literature (p<0.05 compared to normal 

glucose treatment) [114].  

In this experiment, 25 mM was selected for the high glucose concentration because it 

is commonly used to create diabetic cell models [105, 113-115]. Figure 4 shows an 

insignificant effect on the viability of cells at the 25 mM glucose treatment compared to 

control for all duration of treatments. Our previous studies [82, 111, 112] on anticancer agent 

has shown that cell-death can produce significant changes to the cellular molecular 

composition, the results in Figure 18 shows that cells remain largely viable at 25 mM and 

therefore confirming that cell death is not a signification contributor to the differences 
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Figure 17.HepG2 live-cell FTIR spectra every 2 hr. of seeding time (A) and the error bar 
of 24th hour (B) 
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between high glucose (25 mM) and control (normal glucose) treatments.  This ensures that 

the difference observed between high and normal glucose-treated cells are due to a change 

in the metabolism of cells rather than cell death.  

 

Figure 18. HepG2 cell viability compared to control (3.8mM) for 24, 48 and 72 hours with 
error bars representing the standard deviation between the three independent repeated 

experiments 

3.4.2 Live-cell FTIR experiment 

Figure 19A shows the representative spectra of HepG2 cells treated in a medium with 

25mM glucose (hyperglycemia model) measured at 3 different time points (24, 48, and 72 

hours) with the spectral range between 3800-800 cm-1. The spectra were obtained using the 

first measurement after the change of medium as the background to highlight the spectral 

changes resulting from the change of the medium. High spectral noise occurred in the 3600-

3000 and 900-800 cm-1 regions due to the strong aqueous water absorption and are excluded 

in the analysis. The three representative spectral have shown major changes in the fingerprint 

region between 1700-900 cm-1 as highlighted in Figure 19B. Cells appeared to have continued 

to grow slowly 24 hours after the medium change with an increase in the amide II band (a key 
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marker for protein) but slightly reduced towards the 72nd hour, which is in agreement with 

the MTT assay results. Clear changes in the phosphate and carbohydrate bands in the 1350-

950 cm-1 are apparent and consistent across the three repeated experiments. Figures 20 

shows all spectra from the repeated measurements after 24- 48- and 72-hour treatments with 

a marked difference can be observed between the normal and 25 mM glucose treatment 

groups. Pair-wised PCA of the normal glucose versus 25 mM glucose treatment in this range 

has reviewed a clear grouping with PC1 showing the statistical difference of <0.025, <0.01, 

and <0.03 for 24th, 48th and 72nd hour, respectively. The normal glucose-treated cells have 

seen an increase in absorbance at 1088, 1240, and 1400 cm-1 (Figure. 20B). These spectral 

peaks are associated with nucleic phosphate acid stretching mode PO2- and symmetric 

stretching of COO- which is from fatty acids, amino acids, and carboxylate metabolites 

vibration. Whereas the high glucose treated cells at 24th hour have shown an apparent 

reduction of the PO2- stretching mode band. At time 48th and 72nd, an increasing band at 

~1200 cm-1 is shown.  
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 Figure 19.Spectra of HepG2 treated with 25mM glucose in 3 different time points (24, 
48 and 72 hour) with spectra range between 3800-800 cm-1 (A) and spectra range 

between 1780-900 cm-1(B) 
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Figure 20. The spectral changes as a function of time (left panel) between HepG2 treated 
in high (Red) and normal (Blue) glucose solution and the corresponding PCA1 score and 
loading plots (right panel) at (A) 24th, (B) 48th  and (C) 72nd hour. 
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3.5 Discussion 

An adequate energy supply for the vital organs in the body is regulated by glucose 

homeostasis. Liver has an essential role in controlling several pathways of glucose metabolism 

including glycolysis, gluconeogenesis, glycogenesis, and glycogenolysis [116, 117].  

 During the feeding stage, glucose molecules from the carbohydrate digestion process 

enter the hepatocytes, phosphorylated to glucose 6-phosphate, followed by several 

metabolic pathways to generate adenosine triphosphate or ATP. The catabolism of glucose 

into pyruvate, in terms of glycolysis, is conserved as a crucial pathway to produce ATP.  

Pyruvate is carried into the mitochondrial matrix where it is transformed to acetyl-CoA by 

pyruvate dehydrogenase cascading enzyme and integrated into the tricarboxylic acid cycle 

(TCA) in concurrence with oxaloacetate. The TCA cycle generates the electron carriers for 

electron transport chain-oxidative phosphorylation to produce ATP in the final process. The 

extra amount of carbohydrates in the liver are converted into glycogen and stored as the 

energy reserve in the liver and muscle cells (glycogenesis). 

Moreover, in a high carbohydrate diet, the excess amount of dietary glucose is also converted 

into lipid (lipogenesis) and stored in the adipose tissue. Therefore, liver glucose homeostasis 

during fasting stage is also crucial. When blood sugar level drops, liver releases glucose to the 

bloodstream either from the stored glycogen(glycogenolysis) or by breaking down triglyceride 

to glycerol and combined with alanine and lactate to produce glucose(gluconeogenesis)[117, 

118].  

Glucose-cell metabolism imbalance can induce metabolic syndromes such as insulin 

resistance, type 2 diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), and 

cardiovascular conditions. Several in vivo studies have demonstrated that oxidative stress, 
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inflammation, and disease progression are due to glucotoxicity [119-123]. However, complex 

alterations such as endocrines, hormones, and environmental factors may influence the 

physiological metabolite change in the energy metabolism and organ responses [124, 125]. 

Thus, in vitro study may be an ideal platform to understand glucose metabolic change inside 

cells better.  

Immortal hepatocyte cell lines are widely used to explain the regulation of hepatic 

metabolism. The primary hepatocyte cells are better than the cancerous cell line because they 

mimic the in vivo situation more. But the primary hepatocyte availability and accessibility are 

limited. Moreover, the phenotype is unsteady, and this cell type can only be cultured for a 

short period [126, 127]. Sefried et al. [108] have demonstrated and compared the 

gluconeogenesis gene expression and protein regulated hepatic metabolism or hepatokine 

among primary hepatocyte and immortalized cell lines; AML12, THLE-2, and HepG2. The 

results showed that HepG2 cells appear to be closer to the in vivo situation than AML12, THLE-

2 despite its tumorigenic origin. Thus, we concluded that regarding the similarity of HepG2 

cell line hepatic gene expression, this cancerous cell line can be used in in vitro of the diabetes-

related research. 

 Live-cell FTIR measurements show cellular changes over time in normal glucose 

treatment mainly from the seeded cells' growth. The symmetric and asymmetric phosphate 

stretching mode at 1078 cm-1 and 1220 cm-1 regions, originating from DNA backbone and 

phospholipids products from cell expansion, have continued to rise as a function of incubation 

time.  Another two major regions that indicate cell expansion are Amide III (1220 cm-1), which 

is overlapped with the asymmetric phosphate band, and the amide II band at 1550 cm-1. These 

two bands have shown simultaneously increasing with the phosphate peaks. Increases in 
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these spectral regions have confirmed the cells were growing in the normal glucose treatment 

(Figure 21). 

 

 

 

 

 

 

 On the other hand, normalized FTIR cells spectra treated in high (25 mM) glucose have 

revealed a different pattern of cellular component changes compared to the normal 

treatment. Apparent different changes are found in the phosphate stretching and 

carbohydrate spectral band regions, which has shown an overall decrease in absorbance 

overtime (Figure.22) relative to the protein amide II peak, suggesting large changes in the 

phosphate and carbohydrates metabolites in the cells upon high glucose treatment.   
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Figure 21. Comparison of normal glucose treated HepG2 FTIR spectra for time 24th 48th and 
72nd hour 
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According to the literature of hepatic glucose utilization, hepatocytes consume glucose as a 

fuel to produce ATP from ADP through oxidative phosphorylation. Excess glucose would be 

converted into glycogen and stored in the liver. Comparison of the spectral changes of the 

HepG2 cells exposed in high glucose for 24 h to the difference spectra of ATP-ADP has shown 

a remarkable similarity as shown in Figure 23, suggesting the production of ATP from the 

phosphorylation of ADP can be observed using live cell FTIR measurement. Furthermore, a 

closer look at the spectral change at 48th and 72nd hour exposure, a rise in the characteristic 

glycogen peaks at ~1020, 1080, and 1150 cm-1. [128](Figure 22) can be observed, indicating 

that FTIR can detect the glucose metabolism changes in the treated cells.  

 Energy metabolism in the normal cell culture condition depends mainly on oxidative 

phosphorylation (OXPHOS) for ATP production because ATP, which is the key energy unit, is 

more efficiently produced from this process (36 ATP) than glycolysis (2 ATP)[126]. However, 

many cancer cells prefer using the glycolytic pathway due to a permanent impairment of 

mitochondrial OXPHOS, as founded by Otto Warburg [127]. However, this view is altered by 
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Figure 22. Comparison of high glucose treated HepG2 normalized FTIR spectra for time 

24th 48th and 72nd hour 
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recent publications, which found that the function of mitochondrial OXPHOS in most cancers 

is still intact. Cancerous cells have different metabolic phenotypes of energy metabolism even 

in the same type of origin. Due to the common trait of rapid growth, they adapt and 

reprogram to the environmental change to overcome disturbance of growth conditions. 

Therefore, the ratio between glycolysis and OXPHOS to yield total ATP is flexible for cancer 

cells, which results in a selective advantage over a non-cancerous cells in unfavorable 

environments [126].  

  ATP is the determinator of cellular mitochondrial respiration. The amount of 

intracellular ATP is subtly changed by metabolic inhibitor to test mitochondrial toxicity. The 

level of ATP is generally sustained in a normal living cell. When cells become injured, the 

intracellular ATP amount can be lowered rapidly. Thus, an advanced technique for ATP 

extraction, which is normally analyzed from lysed/fixed cell, that avoids cell degradation from 

both physical and nonphysical procedures is essential [129]. Rita et al. [130] have developed 

and verified a one-step extraction and bioluminescence assay for quantifying glucose and ATP 

levels in cultured HepG2 cells in high glucose conditions for testing drug-induced 

mitochondrial toxicity. The advantage of this method over traditional biochemical assay is 

that it requires only one extraction step that disintegrates cellular proteins with concomitants 

and steadily releases cellular glucose and ATP from HepG2 cells. The method allows the 

measurement of considerable changes in ATP levels with no detectable cell loss (no protein 

content disruption), suggesting that the proposed assays could be a precise multiparameter-

based measurement of cytoprotective/cytotoxic compounds. However, compared to the 

parallel cytometry assay, the limitation of this method is that it cannot distinguish between 



87 
 

live and dead cells, where the glucose contents and ATP are not comparable. Whilst the 

conversion of ADP to ATP and glycogen in cells can be measured using  

 

 

 

conventional biochemical essays or LC/MS metabolomics approach, we would like to highlight 

the outstanding benefits of the live-cell FTIR method, such as it can continuously 

automatically measure the cells throughout the experiment, the method does not require any 

labeling and there is no need to destroy or extract the metabolites from the cell samples. No 

expensive chemical reagents are needed, and the measurement is relatively quick. Although 

the measurement was set to scan for 9 min per spectrum in this experiment, as the timescale 

for the cellular changes was relatively slow, high-quality spectra can typically be obtained in 

less than a minute.   
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3.6 Conclusions 

In conclusion, live-cell FTIR helps to understand cell metabolism and can be an additional 

tool for providing some information that can assist in studying energy metabolism or 

diabetes. In the future, live-cell FTIR can be applied to study glucose-cell metabolism related 

to other organs, e.g., pancreas, muscle, and adipose cell, or potentially be an alternative tool 

for drug-cell metabolism study. 
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Chapter 4 Label-free study of intracellular glycogen level in Metformin and 

Resveratrol-treated insulin-resistant HepG2 by live-cell FTIR spectroscopy 

 

4.1 Introduction 

Insulin resistance is a complex pathological condition with impaired cellular response 

to insulin in insulin‐related cells such as hepatocytes, myocytes, adipocytes, and 

cardiomyocytes[131]. This condition is considered a significant risk factor of metabolic 

syndrome, one of the most dangerous factors for increasing heart attack risks[132, 133]. It is 

estimated that a quarter of the world’s adult population has metabolic syndrome, which can 

increase the risk of developing type 2 diabetes by 5-fold [134].This can lead to an increase of 

up to 460 million people with diabetes, exacerbating the most common worldwide chronic 

disease - one of the four leading causes of non-communicable disease mortality in 2021[135]. 

The accumulation of cardiovascular disease (CVD) risk factors that classify metabolic 

syndrome is now appraised to be the root of a new CVD epidemic. 

Regarding metabolic syndrome contributing to the global epidemic of type 2 diabetes 

and CVD, current drug treatments remain sub-optimum; therefore, early diagnosis and 

better-targeted therapies are urgently needed. This can be achieved through innovative 

research approaches at pre-clinical and clinical stages. In addition, advances in understanding 

the molecular dynamic inside cell systems are essential for novel or targeted drug 

development.  

Current in vitro diabetes assays typically focus on using metabolic profiling 

technologies, e.g., metabolomics (for example, by liquid chromatography-mass 

spectrometry), multi-target immunoassay and/or biochemical assay to obtain information 
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about treatment response, especially during the drug development stage. In addition, a 

particular biomarker produced from the drug-cell interaction can also monitor the drug 

efficacy. However, these techniques are costly, and laborious, and the biomarker needs to be 

identified first, which could also involve the time-consuming task of designing a suitable dye. 

Recently, non-invasive, label-free, high-throughput screening techniques that can provide 

molecular information and detect cell-produced metabolites in pre-clinical research have 

attracted much attention[136].   

Fourier-Transform Infrared (FTIR) spectroscopy is a non-destructive, non-invasive, 

label-free, high sensitivity, high accuracy, and rapid technique. However, it has yet to be 

applied in the study of diabetes treatments. Our preliminary work has shown that studying 

living cell culture in situ using FTIR (so called “live-cell FTIR”) can detect changes in glycogen 

and ATP: ADP levels in a label-free manner when living HepG2 cells were exposed in a medium 

containing high glucose concentration[137]. In that simple study, we demonstrated the 

potential of live-cell FTIR for studying cell metabolic changes at the molecular level. The 

advantages of live-cell FTIR over FTIR study of dead cells are the reduced artifacts associated 

with the fixative procedure and the opportunity to measure dynamic events[138]. Moreover, 

FTIR is a quantitative method whereby the absorbance of peaks is linearly related to sample 

concentration following the Beer-Lambert’s law [139]. We had recently shown that the live-

cell FTIR method could quantify drug within living respiratory cells at a micromolar level in 

situ when drug solution was added to the culture medium[140].   

The study of diabetes is, however, more complex. First, it requires the development 

of a diabetic model by pre-treating the HepG2 cells in high glucose and/or insulin environment 

to develop insulin resistance. Then glucose assay or fluorescence glucose dye are typically 
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used to measure glucose uptake inside cells to confirm insulin resistance. The diabetic model 

can then be used to study the drug's effect on metabolic changes. We hypothesize that live-

cell FTIR can directly monitor the changes in intracellular composition and glycogen level due 

to glucose uptake to reveal the effect of anti-diabetic drugs, which can reinstate the insulin 

sensitivity and metabolic profile of cells. We aim to illustrate that the live-cell FTIR approach 

can discriminate the biochemical alteration of HepG2 cells in four different culture conditions; 

normal glucose and high glucose conditions with/without insulin for 24 hours[118, 141-143]. 

We will be demonstrating the approach by studying the effect of metformin (a first line insulin 

sensitizer [144]) and Resveratrol (a plant-derived polyphenol compound that has been 

reported for insulin sensitizer in diabetic HepG2 model[145]). This is the first time that the 

efficacy of anti-diabetic drugs is directly studied by the label-free live-cell FTIR method.  

 

4.2 Materials and Methods 

4.2.1    FTIR measurement of treatment samples 

For the insulin response study, the attached HepG2 cells on the ATR element were first 

incubated in the high glucose (25mM, Gibco, UK) or normal glucose (4 mM) medium for 24 h, 

respectively, to generate the diabetic model and the normal model. To avoid the interference 

from cell proliferation and the risk of bacterial infection, a reduced FBS supplement (2% v/v 

instead of 10% v/v) and 50 U/mL penicillin, and 100 μg/mL streptomycin in the DMEM CO2 

independent medium was used in all treatments[91, 137]. After the incubation, 100 nM 

insulin (Sigma, UK) or 67µL PBS 1X (pH 7.4) (the control) were added in the cultured medium, 

and the cells were measured for another 24 hours. For the anti-diabetic drug study,  2 mM of 

metformin (Sigma, UK) or 50 µM of Resveratrol (Fluorochem, UK, 98% purity) in high glucose 
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with 100 nM insulin[146] were added, and the cells were measured for 24 hours where the 

results were compared to the same treatment but without the drug (control) using an FTIR 

spectrometer (Tensor II, Bruker Optics). In all cases, measurements were taken at every 10 

minutes at 8 cm-1 spectral resolution with 9 minutes of scanning time (1024 scans) and a 

spectral range of 4000 to 900 cm− 1. The OPUS software (Bruker vers.7.8, UK) was used for all 

data processing. All experiments were performed in triplicate based on 3 independent 

cultures with a passage number range between 33-43. Full spectra of the cells were acquired 

using the plain medium as the background. However, in the insulin response and anti-diabetic 

drug studies, difference spectra were analyzed with the attached cell spectrum (immediately 

after the treatment was applied, i.e., time 0 hour) being used as the background. The same 

strategies were successfully used in previous live-cell FTIR studies on drug-cell 

interactions[112, 137].  

 

4.2.4 Cell viability assay 

 Cells concentration of 2.0x104/200 μL were cultured in 96-well plates with 3 replicates 

for 24 hours and treated with high glucose concentration (25 mM) with/without insulin 

mentioned previously for 24 hours compared with 2% FBS normal glucose (control). Then, 

100 μL of the MTT reagent (0.5mg/mL) (VWR International) was added to each well. After 4 

hours of incubation, 100 μL of DMSO was added to detect the formazan.  

 

4.2.5 Glycogen assay 

Cellular glycogen content was determined using the glycogen assay kit (MAK-016, Sigma, UK). 

The experiment was repeated 3 times on 3 separate cell culture flasks. 1 million HepG2 cells 

were seeded in 6 well plates using 10% FBS supplemented DMEM high glucose medium. After 
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incubating overnight, all treatments; high glucose (25mM) and insulin 100 nM (diabetic 

model) with or without 2mM metformin/50µM Resveratrol in 2% DMEM CO2 independent 

medium were introduced for 18 hours. The medium was then removed and then washed by 

cold 1X PBS, followed by 5 min of 1X trypsin, counted to 1 million, and centrifuged at 1000 

rpm to a cell pellet. The packed cells were added with 100 µL of water for homogenization, 

where the intracellular glycogen can be extracted. A triplicate measurement was performed 

following the assay kit protocol, using the calorimetric method, with the absorbance value 

measured at 570 nm. The glycogen concentration in the treated cells was subtracted from the 

glycogen content of the blank to obtain the amount of glycogen production.  

 

       4.2.6 Data processing and Statistical analysis 

The water vapor compensation algorithm (OPUS 7.8, Bruker Optics Ltd) was applied to all FTIR 

spectra, followed by normalization against the amide II peak to account for the difference in 

cell proliferation of the HepG2 between experiments. The normalized spectra were cut to the 

wavelength range between 1500-950 cm-1 followed by concave rubber band baseline 

correction (1 iteration with 16 baseline points), second-order derivative (13 smoothing points, 

selected from a 9 to 25 points range) (41, 42) and vector normalization (38). The spectral 

range between 1500-950 cm-1 was selected to focus the analysis on the carbohydrate and 

phosphate absorbance bands and to avoid noise from the residual water vapor absorbance, 

especially around the Amide I band at 1650 cm-1(43). Pairwise principal component analysis 

(PCA) was performed using the PyChem® software (available from 

http://pychem.sourceforge.net/) for correlating changes from the different treatment 

settings (38). T-test was applied to determine the statistical significance between the 



94 
 

treatment groups and the control. The difference was considered significant for p.value < 

0.05, calculated using Microsoft® Excel 2010.  

 

4.3 Results  

4.3.1 Viability assay  

The MTT assay was used to verify that HepG2 cells remain viable in the insulin-

resistant model in the live-cell FTIR experiment conducted without a 5% CO2 supplement. The 

results showed that both high glucose (25mM) + high insulin (100 nM) and normal glucose (4 

mM) + high insulin (100nM), were well tolerated by cells with up to 100% viability compared 

to the control (Figure 24). These results were also in agreement to the other studies that 

created the insulin-resistant model in HepG2 cells (25, 28, 37,38). Although diabetic HepG2 

cells containing either 2mM metformin or 50 μM Resveratrol have shown lower viability to 

80 and 78 %, respectively, the viability is still high, and cells showed healthy morphology 

(figures 25,26 and 27). The results demonstrated that the conditions used (based on anti-

diabetic study literature (32, 41, 42)) were suitable. 
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Figure 24.  HepG2 cell viability in high (25mM) and normal glucose (4 mM) medium with 
100nM insulin (brick plot) and without insulin (plain plot) of 24 h seeding with the error 

bar represents standard deviation 
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Figure 25. HepG2 morphology in diabetic model or control (high glucose 25 mM and 100 
nM insulin) in different time points 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. HepG2 morphology in diabetic hepG2 model and 2mM metformin treatment in 
different time points 
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Figure 27. HepG2 morphology in diabetic hepG2 model and 50 µM Resveratrol treatment 
in different time points 

 

4.3.3 Live-cell ATR FTIR experiment 

The HepG2 cell layer on the ATR trough plate was then pretreated in high glucose medium 

(25 mM) for 24 h to develop the insulin-resistant model[125, 141, 143, 147]. An insulin 

response study was carried out to demonstrate the lack of insulin response from these insulin-

resistant cells. The cells were treated with 100 nM of insulin and compared to the control 

group. (Figure 28, A and B) The results of the control insulin-resistant HepG2 cells (no insulin 

added, blue lines) and the 100 nM insulin-treated cells (red lines), including all three 

replicates, at 1st and 18th h after treatment. The analysis was focused in the spectral range of 

1500-950 cm-1,
 where the influence from the background water absorbance is minimal while 

many spectral features of metabolites are found.  
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The control and the insulin-treated group have shown similar spectral changes with a 

decrease in the absorbance at around 1000-1150 cm-1 and an increase in the 1150-1200 cm-1 

regions at all analysed time points (Figure 28, A and B). These peaks are assigned to the 

cellular nucleic acid, phosphodiester linkage DNA, and carbohydrate component[148], 

reflecting the dynamic fluctuation of biochemical composition inside the living cell. However, 

the score plots in the pairwise PCA have not shown a significant difference between the 

treated and the control group (p>0.05). These results have confirmed the lack of response of 

the insulin-resistant cells to insulin.   

 

To demonstrate that HepG2 cell, if not pretreated in 25 mM glucose for 24 h, will respond to 

insulin, a separate experiment with cells that have not been pretreated (labeled as “normal 

glucose”) was tested.  The spectra of the normal glucose cells with and without 100 nM insulin 

exposure (magenta and light green, respectively) have shown clear differences in the spectra. 

The loadings plot from the pairwise PCA have shown an increase in the absorbance between 

1000-1150 and 1150-1200 cm-1regions for the insulin-treated group for all time points after 

the treatment. Interestingly this resembles the spectral changes observed when cells were 

treated in high glucose (25 mM) condition. The score plot has also shown that PC1 has shown 

a significant difference between with and without insulin (p <0.001) for all time points (Figure 

28, C and D) .  

 

Next, we explored if the live-cell FTIR approach can be used to study the effect of anti-diabetic 

drugs. Metformin (2 mM), an insulin sensitizer, and 100 nM insulin were added to the insulin-

resistant cell. The spectral changes were compared to the same experiment but without 

adding metformin. The pairwise PCA results have shown a significant difference between with 



99 
 

and without metformin treatments for both time points (p <0.05) (figure 29, A and B) . 

Likewise, in the Resveratrol treatment study, the PCA of the FTIR spectra showed significant 

differences at both time points (p <0.05) (Figure 29, C and D) . Notably, the PCA loadings plot 

for the 1st h metformin treatment has shown three characteristic peaks of glycogen at 1150, 

1080, and 1020 cm-1[128] (Figures 29, 3A), suggesting an increase in glycogen level in the cells 

while no peaks associated with metformin were found. At the 18th h of the treatment, the 

loading plots (Figure 3B) show peaks at around 1080, 1235, 1400, and 1450, resembling the 

peaks observed when the cells were treated in normal glucose conditions (Figures 28C, 2D).  

 

The increase of intracellular glycogen indicates an increased glucose uptake when an insulin 

sensitizer was added. The mean integrated characteristic glycogen absorbance peak between 

1060 -1000 cm-1 of the treatment and control has been plotted and compared over 24 h. The 

results show that both metformin and Resveratrol treated cells have more glycogen than the 

control as presented in Figure 29A. This integrated glycogen absorbance supports the PCA 

results that glycogen is being generated after the insulin sensitizer treatment (Figures 29, 3A). 
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Figure 28. The comparison of three replicate HepG2 FTIR spectra between high glucose (blue) and 
high glucose + insulin (red) with PCA score at time 1 h(A) and 18 h (B) and the comparison of three 
replicate HepG2 FTIR spectra between normal glucose (light green) and normal glucose + insulin 
(magenta) with PCA score and loadings at time 1 h(C), and 18 h (D) with error bars representing 
the standard deviation 
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Figure 29. The comparison of three replicate HepG2 FTIR spectra between high glucose+ insulin: 
control (green) and high glucose+ insulin + 2mM metformin; treatment (purple) with PCA score at 
time 1 h(A) and 18 h (B) and the comparison of three replicate HepG2 FTIR spectra between high 
glucose+ insulin: control (green) and high glucose+ insulin + 50 µM Resveratrol; treatment 
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(orange) with PCA score and loadings at time 1 h(C), and 18 h (D) with error bars representing the 
standard deviation 

 

4.3.4 Glycogen assay 

To confirm the live-cell FTIR findings, the same experiment was repeated with the intracellular 

glycogen level measured using the glycogen enzymatic assay kit. The results (Figure 30B) have 

shown that after the introduction of metformin and Resveratrol, cells have produced 

significantly higher intracellular glycogen at time 1st and 18th h compared to diabetic cells 

without treatment (Control), which are in good agreement with the FTIR results that shown 

an accumulation of glycogen after adding insulin sensitizer overtime. It is important to 

highlight that live-cell FTIR measurement does not require expensive reagents. It provides an 

opportunity to obtain a time profile of glycogen level of the same batch of living cells, which 

is impossible with the glycogen biochemical assay. (Figure 30B) 

 

 

 

 

 

 

 

 

Figure 30. The comparison of the integrated absorbance of glycogen peak by FTIR 
approach among metformin (purple), Resveratrol(orange), and control(green) over 24 
hours treatment (A) and the comparison of glycogen amount in diabetic HepG2 model by 
glycogen assay among diabetic HepG2 (control) with metformin or resveratrol treatment 
at time 1, and 18 h (B) with error bars representing the standard deviation 
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4.4 Discussion 

In diabetes studies and the development of a new drug for diabetic treatments, in vitro 

models are often used to understand cellular metabolism. Current in vitro insulin-resistance 

analytical methods include glucose uptake assay, glycogen assay, Western blot, and qPCR 

analysis[149, 150]. These conventional biochemical assays provide precision and accuracy in 

both quantitative and qualitative studies. However, multiple biochemical assays are often 

required, which is time-consuming, expensive, and laborious[151]. The live-cell FTIR approach 

combined with PCA is a promising tool for studying the cellular response to drug treatments 

because it is label-free, low-cost, high throughput, highly reproducible, and non-destructive. 

This is the first time that live-cell FTIR is applied to test two anti-diabetic compounds' effect 

on a diabetic HepG2 model.  

The cells pre-treated with 25 mM of glucose for 24 h did not respond to the 100 nM insulin 

treatment is expected because the cells were diabetic. The insulin-treated and non-treated 

diabetic cells have shown similar spectral bands at 1100 and 1250 cm-1, which could be used 

as the marker for diabetic cells. When healthy cells (cultured in normal glucose) were treated 

in 100 nM of insulin, a similar spectral profile to the diabetic cells showing both the 1100 and 

the 1250 cm-1 bands emerged (Figure 28C and D). This is in contrast to the non-treated healthy 

cells, showing a different spectral profile with peaks at 1080, 1235, 1400, and 1450 cm-1. The 

high insulin treatment can induce diabetes in HepG2 cells [125, 143, 152, 153], and the results 

have demonstrated that FTIR can capture this change. 

Moreover, when cells were simultaneously treated in 25 mM glucose and 100 nM insulin, 

which is another method to generate diabetic models[142, 146, 154, 155] , the characteristic 

diabetic cells spectral profile was again observed as shown in Figure 28 A-D.   The results show 
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that live-cell FTIR can provide information regarding insulin sensitivity and resistance. The 

introduction of metformin to the diabetes HepG2 model has produced a significant 

biochemical response and is clearly shown by the spectral changes. Concurrent with an 

apparent increase in glycogen peaks at ~1020, 1080, and 1150 cm-1[128] 1 h after the 

introduction of metformin (Figures 29, 3A) provided a clear evidence of the increased 

glycogen level in the living HepG2 cell. At longer drug treatment time (18 h), the loading plot, 

which highlights the differences between the spectrum of cells with and without the presence 

of drug, has shown a return of a spectral profile closer to the cells treated in normal glucose 

condition. These findings suggested that metformin has improved insulin sensitivity and 

restored the cells' metabolic profile [143, 156].  

Resveratrol is a plant-derived polyphenol reported for insulin resistance improvement in 

diabetic animals and humans, and there is much evidence of being effective in treating 

diabetic Hepg2 cells[145, 157, 158]. Teng W. et al. [159]have demonstrated the mechanism 

of Resveratrol metabolite action in insulin resistance HepG2 cells; the results have shown that 

Resveratrol, similar to metformin, can enhance cellular glucose uptake and glycogen synthesis 

and restore the metabolic profile of the cells. Furthermore, the live-cell FTIR study have 

demonstrated that both drugs have produced similar results, which is expected as Resveratrol 

also regulates insulin signaling and ameliorates insulin resistance by modulating the IRS-

1/AMPK signaling pathway, similar to metformin[145].  

Traditional glycogen assays typically require extracting the intracellular glycogen from the 

sample and removing insoluble materials. Through this process, intracellular glycogen is 

significantly diluted and some glycogen could be lost, even when samples were protected in 

cold environment [160]. In contrast to the method presented in this study, glycogen level 
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inside cells was measured directly without requiring extraction. The plot of the glycogen 

absorbance peak shown in Figure 30A indicates the relative increase in glycogen level in cells 

as a function of treatment time. The increasing trend agrees with the results obtained from 

the standard glycogen assay kit. Although the exact amount of glycogen produced was not 

calculated from the FTIR result, a multivariate calibration method, such as partial least square, 

could be applied to determine this, should the glycogen level in cells be of interest. To 

illustrate that this is possible, the spectra of 2 and 4 mg/mL glycogen standard solution are 

shown in Figure 31 highlighting the absorbance of the 4 mg/mL glycogen solution is 

approximately double of the 2 mg/mL solution. When comparing the glycogen spectra to 

Resveratrol treated cell spectra at the 6th h time point, the glycogen peaks can be clearly 

observed, confirming that the method can detect and quantify the increase in glycogen level 

in cells.  
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Figure 31. A characteristic of glycogen peak from 4 mg/mL (pink), 2mg/mL(blue) glycogen 
solution and at 6th h of resveratrol treatment 

 

4.5 Conclusions 

Live-cell FTIR spectroscopy was demonstrated to be suitable for studying the effect of the 

drug on insulin-resistance HepG2 diabetes model. Metformin and Resveratrol were shown to 

produce an improvement in insulin sensitivity by the direct FTIR measurement of changes in 

intracellular glycogen level and the restoration of the spectral profile, which represent the 

molecular composition of the cell, with no extraction and dilution requirements, highlighting 

the advantages of the label-free method to detect the changes in intracellular metabolic 

profile and glycogen level. It can be a complementary tool for drug efficacy screening, 

especially for insulin sensitizers. Live-cell FTIR is a relatively low-cost, sensitive, reliable, and 

high throughput method that can be used as a promising tool to accelerate the anti-diabetes 

drug discovery process.  
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Chapter 5 Live-cell FTIR approach to investigate the mechanism of action 

from liver selective glucokinase activator 

 

5.1 Introduction 

Glucokinase activators (GKAs) are the new class of potential antidiabetic agents that 

have recently paid a greater interest to many researchers with various publications in vitro, 

in vivo, and clinical trials. Glucokinase (GK) or human hexokinase IV, hexokinase D, and ATP: 

D-hexose 6-phosphotransferase is an enzyme that facilitates the phosphorylation of glucose 

to glucose6-phosphate, where glucose molecules from cytosol enter into the cells. This 

enzyme plays an essential role in glucose homeostasis regulation[161]. GK is expressed in 

various organs, e.g., pancreatic alpha and beta cells, pituitary cells, central nervous system, 

and gastrointestinal system; these organs comprise 0.1% of the body’s total GK activates (Fig 

5.0). The rest of the 99.9% comes from the liver. Thus, the liver and pancreatic islet cells are 

the primary organ of controlling the GK- regulatory system maintaining glucose 

homeostasis[162]. 
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Figure 32. A glucokinase network containing tissue throughout the body[101]A gluc okinase 

network containing tissue throughouhe body[161] 

Glucokinase is the rate-limiting enzyme in the glucose-stimulated insulin secretion in 

pancreatic β-cells. In the liver, glucokinase regulates glucose utilization, glycogen synthesis, 

and hepatic glucose production. GKAs lower blood glucose level by increasing the ability of 

pancreatic β-cells in respond to increasing of blood glucose concentration and enhance insulin 

secretion in a glucose-dependent manner. Concurrently, GKAs increase hepatic glucose 

uptake while decreasing the amount of glucose production (gluconeogenesis). GKAs also have 

anti-apoptotic effect on β-cells. Therefore, GKAs can potentially treat insulin defection in Type 

2 diabetes [163](Figure 32). 
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Figure 33. The role of Glucokinase activators in pancreatic and hepatic cells[104]The role of 

Glucokinase activators in pancreatic and hepatic cells[164] 

GK is the rate-limiting enzyme in the glucose-stimulated insulin secretion in pancreatic β-cells 

or serves as a “glucose-sensor”. GK regulates glucose utilization, glycogen synthesis, and 

hepatic glucose production in the liver, or called a “gate-keeper”. GKAs lower blood glucose 

level by increasing the ability of pancreatic β-cells in respond to increasing blood glucose 

concentration and enhance insulin secretion in a glucose-dependent manner [163](Figure 33). 

Concurrently, GKAs increase hepatic glucose uptake and glycogen synthesis while decreasing 

the amount of glucose production (gluconeogenesis). GKAs also have anti- apoptotic effect 

on β-cells. Moreover, an increased hepatic glucose output, considered the major liver 

dysregulation related to T2DM, is not effective by the current medication except for 

metformin. Therefore, GKAs may have the potential to resolve this unmet need in Type 2 

diabetes treatment. 

The liver GK is a sustained inactive complex with the glucokinase regulatory protein (GKRP), 

an endogenous inhibitor when blood glucose is less than ~ 10 mM.  The GK will be activated 

only during postprandial or high glucose to increase hepatic glucose uptake (Figure. 34). Thus, 
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GKRP acts as a competitive inhibitor response to hepatic glucose concentration, preserving 

GK low concentration of glucose and releasing it in the presence of raised glucose 

concentrations. 

 

 

Figure 34. Glucokinase activity in hepatocyte[105] 

Glucokinase activity in hepatocyte[165] 

GKAs can be classified based on the chemical structure or site of action; full GKA agonist, 

partial agonist, hepato-selective GKAs. However, only a small number of GKAs have reached 

the clinical trial phase described below. 
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5.1.1 Present status of glucokinase activators in clinical development  

Since 2008, various clinical trials have reported the effect of GKAs in lowering blood glucose 

levels in diabetic patients. Some of the significant glucokinase activator studies are described 

below. 

 

A systematic study of Piragliatin  

Banadona et al.[166, 167] carried out a phase Ib, randomized, double-blinded, crossover trial 

to investigate the mechanism of blood glucose-lowering effect from Piragliatin in mild type 2 

diabetic patients (HbA1C 6.1 ± 0.2 %). The result demonstrated that this agent caused an 

immediate effect on glucose-lowering effect via increased β-cell function. However, 

Piragliatin was found to incur hypoglycemia incidence in the higher dose of 100 mg that 

patients needed to be rescued by glucose infusion. This non-desirable side effect was the 

main reason to terminate of Piragliatin study. 

 

Long term efficacy and tolerability of MK-0941  

Meininger et al.[168] assessed the efficacy and safety of MK-0941 in type 2 diabetes patients 

receiving insulin glargine (±metformin ≥1,500 mg/day). Patients were randomly receiving a 

ranging dose of MK-0941 versus placebo. Initially, blood glucose profiles in the receiving 

group were improved significantly compared to the placebo groups. However, in week 30 of 

treatment, the effects of blood glucose reduction were not sustained. Moreover, 

hypoglycemia and hypertriglyceridemia were observed, and the trial was terminated due to 

a lack of efficacy and increasing side effects.  
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It was suggested that the genetic of the β-cell glucokinase activation had caused an immediate 

and dramatic reduction of blood glucose levels. However, this reduction was not sustained 

over time, and the blood glucose returned to a high level because of the toxicity of GKAs on 

the beta cells. GKAs could be combined with beta-cell proliferators such as incretin drugs to 

eradicate this significant drawback, which may worsen drug adherence in patients. The 

authors suggested that the solution to minimize hypoglycemia’s risk is to use a partial GK 

activator or liver or hepatoselective GKAs[168]. 

 

PF- 04937319, A partial glucokinase activator  

N.B Amin et al.[169] evaluated the efficacy and safety of a once-daily dose ranging of PF-

04937319 as an add-on therapy to metformin in type 2 diabetic patient(T2DM) patients 

compared with both placebo and titrated glimepiride. Their results have shown that 50 and 

100 mg of PF- 04937319 are the most effective dose for HbA1C reduction compared with 

placebo (−4.94 or −5.11 mmol/L (−0.45 or −0.47%, sig), but the efficacy was lower than 

titrated glimepiride(−9.07 mmol/L (−0.83%). On the other hand, hypoglycaemia events were 

lower with the PF- 04937319 100 mg than the 10 mg glimepiride (5.1% and 34.4%, 

respectively). However, the clinical trial results yielded a superior glycaemic lowering effect 

with once-daily PF-04937319 (300 mg), split-dose PF-04937319 (150+100 mg; 

breakfast+lunch), compared with a once-daily dose of 100 mg sitagliptin (PF-04937319: split-

dose, −0.88%; once daily, −0.94%; sitagliptin, −0.63%). Unfortunately, hypoglycaemia 

occurred in patients received PF-04937319 in both regimen more often than patients received 

sitagliptin 100 mg[170]. 
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The hepatoselective glucokinase activator- PF-04991532  

Previous clinical trials have shown that hepatic glucokinase overexpression such as MK-0491 

could repair glucose disequilibrium in diabetic patients. However, this overstimulation has 

also illustrated unwarranted increases in hepatic glucokinase activity that may have caused 

hepatosteatosis. Thus, Erion et al.[171] assessed whether using a hepatoselective glucokinase 

activator effectively reduces hyperglycemia without causing hypertriglyceridemia. In that 

study, they tested the compound PF-04991532 in Goto-Kakizaki rats. The result has shown 

that PF-04991532 can improve glucose profiles of the rats independent of insulin 

concentrations in a dose-dependent pattern in both acute and sub-chronic treatment. 

However, PF-04991532 induced dose-dependent increases in plasma triglyceride 

concentrations. Furthermore, by investigating both the lipid and lipid gene expression 

changes in the liver, it was found that there was no relationship between hepatic triglyceride 

concentrations and serum triglyceride in Goto-Kakizaki rats. However, the researcher 

suggested that increasing the AMP: ATP ratio in hepatocytes could activate AMP-activated 

protein kinase (AMPK), preventing hepatic steatosis. 

 

TMG-123, a novel glucokinase activator  

Pharmaceutical Development Research Laboratories, Teijin Pharma Limited, Tokyo, Japan, 

have attempted to produce an effective hepatic glucokinase activator that minimizes side 

effects, especially hypertriglyceridemia. TMG-123 is a potential anti-diabetes substance that 

can successfully lower the glucose level in animal models with ongoing clinical trials. TMG-

123 improves the impaired glucose tolerance without hypertriglyceridemia in the insulin-

deficient and -resistant diabetic mice model. The beneficial effect on glucose tolerance was 
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better than current antidiabetic drugs such as metformin and glibenclamide. TMG-123 also 

improves glucose tolerance when used in combination with metformin. Moreover, TMG-123 

has a sustained effect on HbA1c levels even after 24 weeks. In summary, TMG-123 has the 

most significant efficacy on acute and chronic symptoms and no adverse event on 

triglyceridemia[172]. 

 

A novel Glucokinase Activator, HMS5552, on Glucose Metabolism in the T2DM human and 

Rat Model  

Ping Wang et al. [173] explored the possible effects of HMS5552 on T2DM male Sprague-

Dawley rats. The rats were divided into four groups: control, diabetic, low-dose (10 mg/kg), 

and high-dose (30 mg/kg) of HMS5552. The glucose and lipid profile change was determined 

by oral glucose tolerance test and total cholesterol triglyceride, respectively. There was no 

increase in insulin level during the administration of this drug. After administering both doses 

of HMS5552, glucose levels were reduced by ∼25% and 31% (P< 0.05), respectively, compared 

with the control. Moreover, on the 27th of the chronic study experiment, the glucose-

lowering effect was still sustained and significantly reduced plasma glucose levels by ∼18% 

(P< 0.05). The total cholesterol and triglyceride were not changed after taking the compound 

compared to the diabetic groups.  

 

Recently, a study of the pharmacokinetics of HMS5552, conducted with a dose-ranging of 5–

50 mg in healthy subjects, was also investigated. The results show that HMS5552 at doses of 

up to 50 mg in healthy volunteers was safe and tolerable [174]. 
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To summarize, GKAs are classified into 3 categories: non-specific GKAs, liver-specific GKA, and 

optimum GK receptor stimulation. Due to the accessibility and availability of glucokinase 

activators, we initially selected PF-04991532, a liver-specific test for cellular change using the 

live-cell FTIR approach. Based on the mechanism of action of liver-specific glucokinase 

activators that facilitate glucose from cytosol or medium into the cell. We hypothesized that 

the cellular change regarding the increase in glucose uptake might represent an increase in 

carbohydrates in FTIR spectra. 

 

Aims: to illustrate that the live-cell FTIR approach can discriminate the biochemical alteration 

of HepG2 cells high glucose with PF-04991532 culture conditions and confirm the change to 

the literature 

 

5.2 Material and methods  

5.2.1 MTT assay: HepG2 cells were tested with a range of PF-04991532 concentration (1 -100 

µM)  to ensure the cell remains viable at the concentration used in the live-cell FTIR 

experiment. Cells concentration of 2.0x104 /200 μL were cultured in 96-well plates for 24 

hours and treated with the different concentrations of glucokinase activator (PF04991532). 

Cells were cultured with each reagent for 24 hours, and then 100 μL of the MTT reagent 

(0.5mg/mL) (VWR International) was added to each well. After 2-hour of incubation, 100 μL 

of DMSO was added to each well to detect formazan. The absorbance value at 570 nm and 

630 was taken using a spectrophotometer (SpectraMAX). The values of absorbance of each 

well plate were plotted, and the percentage cell viability was calculated over each 

concentration 
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5.2.2 Live-cell FTIR experiment:  

2 million HepG2 cells were seeded on the attenuated total reflectance (ATR) plate. The 

attached living cells were treated in either high glucose concentration (25 mM) with or 

without 10 µM PF-04991532 in DMEM CO2 medium with spectra of the cells measured every 

10 min. Spectra were examined 24 hours after treatment by subtracting the spectrum at 

treatment time 0. Spectra were truncated to 1780-900 cm-1, followed by baseline correction 

and vector normalization. Principal component analysis was used as the statistical tool to 

highlight any possible correlated changes observed in the experiment.  

5.3 Results and Discussions 
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Figure 35. The viability of HepG2 cells after PF-04991532 for the 24-hour treatment with 
error bars representing the standard deviation between the three independent repeated 

experiments 
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5.1 Discussion and co 

The cell viability of PF-04991532 ranging from 1 -100 µM shows more than 80% viability for 

all concentrations up to 24 hours of treatment, which means that HepG2 can tolerate well in 

each FITR experiment (Figure.35). The concentration we used in our experiment was similar 

to in vitro efficacy study of PF-04995132[171]. 

 

Based on the liver glucokinase activator mechanism of action, we expected an increase of 

spectrum in carbohydrate region and/or glycogen after treatment. However, FTIR results of 
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Figure 36. The comparison of live-cell FTIR spectra between control (green color) and PF-
04991532 (pink color) and box plot for time 10 (A), 10 min(B), 1h (C), 2 h(D),3 h (E) 4h(F), 
6(G), 12(H), and 24 h (I) with error bars representing the standard deviation between the 

three independent repeated experiments 
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PF-04991532 treated HepG2 showed a rise of spectra around 1100, 1200, and 1400 cm-1 

associated with carbohydrate, phosphodiester linkage in DNA, and a group of fatty acid and 

amino acids acid, respectively. These changes indicated cell growth generally after treatment 

with a glucokinase activator. However, there were no significant differences between control 

and treatment for all time points (P>0.05) (Figure 36). 

 

Liver glucokinase action highly depends on the GKRP protein GK mRNA gene expression. 

Typically, GCK is dominant in hepatocyte nuclease. The GCK location depends on the cellular 

metabolic status.   Normal physiology forms a complex with GCKR, while with high glucose 

concentration (since 10mM), the complex of GK-GKRP will be broken down and let GK release 

to the cytosol[175]. Our study was conducted in high glucose (25mM) diabetic mode to mimic 

the physiologically disease pathogenesis and test for the effect of treatment. Moreover, the 

author suggested that liver GK gene expression depends on primary cells' fasting and 

refeeding stage. Insulin is a primary upregulation, while glucagon acts as the opposite 

effect[175].  

 

The studies of hepato-selective glucokinase activators have been demonstrated in 2 drugs, 

PF-04991532 and TTP-399[171]. These two studies were conducted in rat hepatocytes (in 

vitro) and mice (in vivo), which significantly increased glucose uptake in hepatocytes after 

treatment. In addition, PF-04991532 has shown increased hepatic glucose uptake and 

reduced hepatic glucose uptake in a dose-dependent manner. Similarly, TTP-399 stimulates 

glucose utilization in the liver during a small amount of insulin secretion and no dyslipidemia; 

these results lead to TTP-399 to achieve the Phase II clinical trials[176-178]. One thing in 

common, these two studies had used the primary cell in the studies, not the cancerous cell 
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line. And also lack data on a cancerous cell line that directly studies glucokinase activators, 

especially in HepG2 cells.  

 

Min Q. et al. [179]. have demonstrated the activity of natural compounds name mangiferin 

as a potential liver glucokinase activator in Hepg2 cells and diabetic mice. Before cell-based 

assay and in vivo, they have tested the binding conformation between mangiferin and 

glucokinase enzyme. The results showed that mangiferin has the best score binding, meaning 

it is a good fit for the GK enzyme. Furthermore, mangiferin-treated HepG2 significantly 

increased glucose consumption detected by glucose uptake assay; this result was also related 

to the significant lowering of blood glucose in diabetic mice. However, I believe there was no 

confirmation that the increase of glucose uptake in HepG2 and in vivo came from the 

glucokinase activation mechanism. Since diabetes is complex and the mechanism of anti-

diabetes is varied. For example, Wang C. et al. [180] found that mangiferin salt has potent 

activities in reducing intracellular lipid accumulation, enhancing glucose consumption in 

HepG2 cells by stimulating AMPK. Niu C. et al. also supported this mechanism of action that 

the AMPK pathway is associated with this therapeutic effect of mangiferin[181]. Thus, the 

mechanism of mangiferin on glucokinase activation in HepG2 cells cannot be confirmed by 

structure-based virtual ligand screening and enzyme assay outside the HepG2 cell system. 

 

The possibility of insignificant differences in glucokinase activator in HepG2 cells may be 

because the cancerous cell line lacks GK mRNA gene expression like a primary cell. This can 

be proved by the study of Zheng HT et al. [182] that carried the retroviral vector containing 

the glucokinase (GK) gene to infect HepG2 cells to study the dose-response effect of glucose 

on insulin secretion that mimics the Beta-cell action.  The results showed that the artificial 
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beta cell obtained a glucose-stimulated insulin secretion with maximal insulin secretion at 

1.75-2.00 mmol/L glucose concentrations. However, these results still show the sensitivity of 

Live-cell FTIR in detecting the negative control from non-transfected GK HepG2 treated with 

GKAs by providing non-significant results. The future work for this experiment will be use the 

transfected glucokinase HepG2 cell line or primary hepatocyte for testing with current 

glucokinase inhibitors candidates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



123 
 

Chapter 6 Conclusions and Future work 

 

6.1 Conclusions 

This thesis proposes to use live-cell FTIR spectroscopy as a screening tool in diabetes 

metabolism study and the preclinical stage of anti-diabetes drug development. 

FTIR spectroscopy is a non-destructive, sensitive, label-free, and low-cost technique that can 

integrate drug-cell interaction. This approach can detect the chemical bonds represented in 

the samples, which is a suitable tool for studying complex biological systems like drug-cell 

interactions. The introduction of anti-diabetic drugs into the cells induces various cellular 

changes or biomarkers directly reflected in the IR spectrum of cells. It provides the chance of 

acquiring the signature spectrum of the biochemical pathways objected by these drugs. The 

biomarker from drug-cell interaction usually is needed to extract from the cells or design a 

suitable dye to probe the biomarker of interest, which requires lots of chemical assays, is 

time-consuming, and expensive. Moreover, many studies were carried out on fixed cells with 

a specific time point that may have some artifact of the fixing process interfere with the 

results. The live cellular study using ATR FTIR spectroscopy in response to an anti-diabetes 

drug can monitor the real-time cellular change at many time points and diminish the artifacts 

that originated from the chemical fixation.   

We have established that FTIR spectroscopy can be used in the live-cell glucose metabolism 

measurement by exhibiting the suitability of its approach in obtaining the spectral variations 

of IR spectra in living cancer cells after exposure to a glucose-containing medium. For this 

purpose, the hepatocellular carcinoma cell line or HepG2 that has been widely used in in vitro 
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diabetes metabolism was examined. We demonstrated that FTIR could monitor glucose 

metabolism in living HepG2 cells in situ. This technique could detect the cellular chance 

regarding the medium's different glucose concentrations and establish the diabetes model 

using high glucose treatment. FTIR spectra of live cells treated in normal and high glucose 

medium have shown significant differences (p < 0.05) for all treatment times. The control cells 

have seen an increase in absorbance at 1088, 1240, and 1400 cm−1, which are associated with 

phosphate stretching mode vibrations from phosphorylated proteins and DNA backbone; and 

symmetric stretching mode vibration COO- from fatty acids, amino acids, lipids, and 

carbohydrate metabolites. Moreover, the high glucose treated cells have shown different 

changes in the 1000–1200 cm−1 region, which is linked to the glycogen and ATP: ADP ratio.  

Secondly, we investigated the potential use of this technique as an analytical tool in the 

diabetes treatment study. In this study, HepG2 cells were introduced to insulin in both normal 

and high glucose medium to detect insulin sensitivity and establish the insulin resistance 

diabetic model. And also to study the reinstatement of insulin resistance by insulin sensitizer 

drugs and natural compounds. The spectra of the normal glucose cells with insulin have 

shown an increase in the absorbance between 1060-1350 cm-1 for the insulin-treated group 

for both 1st and 2nd h after the treatment. PC1 has shown the difference is significant with 

p=0.005 and p=0.009 for 1st, and 2nd h, compared without insulin treatment. Whereas the 

spectra of high glucose with and without high insulin-treated HepG2 showed similar changes 

with a decrease in the absorbance around 1000-1150 cm-1 and an increase in the 1150-1200 

cm-1 regions at 1st h and 2nd h. These are allocated to the cellular nucleic acid, phosphodiester 

linkage DNA, and carbohydrate component. However, the pair-wise PCA comparison between 

the insulin-treated HepG2 cells spectra has not presented a clear difference from non-treated 
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insulin, with p=0.123 and p=0.144 for 1st and 2nd h after introducing insulin. Thus, we can 

summarise and establish an insulin resistance diabetic model using insulin and high glucose 

treated HepG2 due to the lack of insulin sensitivity. Furthermore, adding metformin and 

Resveratrol into the insulin-resistant cell has shown significant spectral changes compared to 

control both 1st and 2nd h after adding the drug, with P-value <0.01. Notably, the PCA 

loadings plot for 1st h after metformin addition has shown three characteristic peaks 

belonging to glycogen at 1150, 1080, and 1020 cm-1.  

Lastly, we attempted to apply this method to detect the spectral change induced by other 

anti-diabetes drugs. PF-04991532, a liver selective glucokinase activator, has been introduced 

to high glucose treated HepG2 cells; the experiment was observed for 24 hours. According to 

its mechanism of action that increases hepatic glucose uptake, we expected that glucose 

increase in the cell is related to increasing glycogen spectra in the FTIR approach. The results 

have shown that both control and PF-04991532 treated cells spectra around 1100, 1200, and 

1400 cm-1 are associated with carbohydrate, phosphodiester linkage in DNA, and a group of 

fatty acids and amino acids, respectively. These changes indicated cell growth generally after 

treatment with a glucokinase activator. However, there were no significant differences 

between control and treatment for all time points (P>0.05). We have discussed these 

insignificant results derived from the malfunction of a cancerous cell line that lacks the GKR 

gene expression.  
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6.2 Future Work 

The first prospect is to expand the applications of this technique to detect other anti-diabetic 

compounds that shown the in vitro anti-diabetic effect, e.g., glucose transporter inhibitor, 

enzyme blocker, enzyme activators, etc. The new target of pre-clinical drugs will be included 

to determine the action of live-cell FTIR to establish a platform for compound action 

prediction. The ability to detect the mechanism of drug action will be helpful in the 

pharmacological field that can accelerate the drug screening process. 

Secondly, This approach will be examined in other diabetic-related cells, e.g., pancreas, 

kidney, muscle, and intestine. Due to diabetes being involved in many organs, FTIR would help 

better understand the whole diabetic metabolism. In addition, this examination of the 

diabetic cell cluster combined with machine learning can be a tool to predict the responses 

of the FTIR-diabetic live-cell system.    

The final aim would like to enhance the ability of label-free glycogen detection that can be an 

alternative assay compared to the conventional glycogen assay in a quantitative way. This can 

be demonstrated by testing live cells with the anti-diabetic drug with a glycogen biochemical 

pathway, glycogen phosphorylase inhibitors, glucose transporter blockers, and detecting the 

drug's efficacy in a dose-dependent manner. Furthermore, the throughput of this method can 

be increased by the development of multi-well ATR plates for measuring live cells exposed to 

different conditions at the same time 
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