### This electronic thesis or dissertation has been downloaded from the King's Research Portal at https://kclpure.kcl.ac.uk/portal/



### Understanding biological pathways involved in the onset of depression in adolescence

Zonca, Valentina

Awarding institution: King's College London

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.

END USER LICENCE AGREEMENT



Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

- Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work).
- Non Commercial: You may not use this work for commercial purposes.
- No Derivative Works You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above.

### Take down policy

If you believe that this document breaches copyright please contact <u>librarypure@kcl.ac.uk</u> providing details, and we will remove access to the work immediately and investigate your claim.

# UNDERSTANDING BIOLOGICAL PATHWAYS INVOLVED IN THE ONSET OF DEPRESSION IN ADOLESCENCE

by

# Valentina Zonca

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy at King's College London

Department of Psychological Medicine

Institute of Psychiatry, Psychology and Neuroscience

King's College London

### Acknowledgments

There are many people I would like to thank for being by my side during this long and amazing journey.

Firstly, I would like to thank my supervisors Dr Valeria Mondelli and Dr Annamaria Cattaneo. Thanks, Valeria, for giving me the amazing opportunity to join the PIXIE Lab, for being so supportive during this entire journey, and for always reminding me to believe in myself. Thanks, Anna, for these years working together, for teaching me to never give up and how to deal with problems, because I learned that there is always a solution even in the worst scenario. Thank both for being a truly inspiring scientists and women, I learned a lot from both of you.

Thanks to the IDEA team for being such an amazing international family. I felt welcome from the first time I joined the team, and I could not be luckier to do my PhD in this amazing team. It was truly inspiring to see how research is done in different countries worldwide and you all help me to develop a truly open-minded approach to research. Thanks to all the IDEA project participants for joining the project.

Thanks to my two labs, the Biopsy and PIXIE lab. Thanks to all my colleagues of the Biopsy Lab in Brescia, for being such an amazing group and for all the time spent together inside and outside the lab. A special thanks to Monica, thanks for being my lab partner in crime and a sincere friend.

Thanks also to my colleagues of the PIXIE lab in London, you welcomed me as part of the group the very first day and you let me feel at "home" far from my home. Thanks

to Zuzanna for her precious support in the IDEA project and for our pink hair. And a special thanks to Luca, a friend more than a colleague, thanks for our time in the lab and see you on the lab's rooftop soon.

Thanks to my lifetime friends Danika, Mara, Valeria, and Roberta. Thanks for celebrating every achievement and for always let me feel loved. A special mention to Danika, thanks for being "my person" no matter what.

Thanks to my family.

Thanks Mum and Dad for being so supportive, for allowing me to follow my dreams and for always telling me how much you were proud of me even when I felt like I did not deserve it. Your support was precious, I own you a lot.

Thanks to my little sister Alessandra for always believing in me, and for helping me see things clearly when everything was a mess. Thanks for being the shoulder to cry on. Once you said to me that I was your role model, but I can truly say that you are mine.

The biggest thanks to my future husband, Dr Andrea Ghisleni (you deserve this). Thanks for teaching me how to pipette for the very first time in my life, thanks for being such an inspiration and for being the most brilliant and passionate scientist that I know. Thanks for your support during these years, for never letting me down, for believing in me when I struggled to do it myself. I would have never been at this end if it wasn't for you.

Finally, thanks to myself: it was hard, I struggled, but I did it. Per aspera ad astra.

### Abstract

Major Depressive Disorder (MDD) represents the second leading cause of disability worldwide with an onset that typically occurs in adolescence. The burden of depression is particularly heavy during adolescence, since 10-20% of teen-agers experience at least one depressive episode by the end of adolescence and teens suffering from MDD are more likely to develop drugs abuse and suicide ideations.

Noteworthy, the burden of depression is even heavier in low- and middle-income countries (LMICs), that comprise 90% of the global adolescent population. Given the fact that the burden of depression in LMICs is worsened by cultural and social barriers, and scarcer healthcare resources are available, there is an urgent need for improving prevention strategies in LMICs. This need was the focus of the Identifying Depression Early in Adolescence (IDEA) project, a multi-disciplinary global mental health consortium with the main aim to help the identification of adolescents at high or low risk of developing depression, particularly in LMICs. This doctoral study was part of the IDEA project, and thus the main aim was to identify the biological pathways mapping both the presence of depression and the risk of developing depression in high-school adolescents from Brazil. Moreover, given that the incidence of depression is higher in females compared with males, the role of biological sex in differently modulating such biological mechanisms was also investigated.

In order to estimate individual-level probability of developing MDD among Brazilian adolescents, the IDEA consortium developed a composite risk score (IDEA-RS), which is based on sociodemographic variables easily assessed directly from the adolescents.

By using this IDEA-RS, a risk-stratified cohort of 150 adolescents aged 14-16 years old were recruited in the city of Porto Alegre (Brazil). This cohort comprised 50 adolescents classified at high risk (HR) of developing depression and with a current diagnosis of MDD, 50 adolescents at HR but without MDD and 50 adolescents at low risk (LR) and without MDD. Two genome-wide gene expression approaches were used for investigating the biological mechanisms differently modulated according to the presence or risk of MDD, specifically microarrays Affymetrix and RNA Sequencing techniques were performed on blood samples.

Biological pathways linked to inflammation and immune system activation resulted to be up-regulated in adolescents with depression compared with adolescents without depression; a greater up-regulation of such inflammatory pathways was particularly observed in the MDD group when compared with the HR group. Moreover, the upregulation of inflammation and immune system activation in adolescents with depression was more pronounced in females compared with males. On the other hand, a homogeneous panel of biological pathways able to distinguish between HR and LR adolescents without depression was not identified.

In conclusion, the up-regulation of biological pathways associated with inflammation and immune system was identified as main signature mapping the presence of depression in an adolescent cohort of 14-16 years-old in Brazil. These findings might represent an important step towards untangling the complex pathways involved in the pathophysiology of adolescent depression.

### **Publications**

#### **Publications related to this thesis**

Zajkowska Z, Walsh A, **Zonca** V, Gullett N, Pedersen GA, Kieling C, Swartz JR, Karmacharya R, Fisher HL, Kohrt BA, Mondelli V. A systematic review of the association between biological markers and environmental stress risk factors for adolescent depression. J Psychiatr Res. 2021 Jun;138:163-175. doi: 10.1016/j.jpsychires.2021.04.003. Epub 2021 Apr 7. PMID: 33857787.

Kieling C, Buchweitz C, Caye A, Manfro P, Pereira R, Viduani A, Anés M, Battel L, Benetti S, Fisher HL, Karmacharya R, Kohrt BA, Martini T, Petresco S, Piccin J, Rocha T, Rohde LA, Rohrsetzer F, Souza L, Velazquez B, Walsh A, Yoon L, Zajkowska Z, **Zonca** V, Swartz JR, Mondelli V. The Identifying Depression Early in Adolescence Risk Stratified Cohort (IDEA-RiSCo): Rationale, Methods, and Baseline Characteristics. Front Psychiatry. 2021 Jun 21;12:697144. doi: 10.3389/fpsyt.2021.697144. PMID: 34234702; PMCID: PMC8255472.

Zajkowska Z, Gullett N, Walsh A, **Zonca** V, Pedersen G. A, Souza L, Kieling C, Fisher H, Kohrt B. A, & Mondelli V. Cortisol and development of depression in adolescence and young adulthood – a systematic review and meta-analysis, Psychoneuroendocrinology, Volume 136, 2022, 105625, ISSN 0306-4530, https://doi.org/10.1016/j.psyneuen.2021.105625.

Mondelli V, Cattaneo A, Nikkheslat N, Souza L, Walsh A, Zajkowska Z, **Zonca** V, Marizzoni M, Fisher H, Kohrt B. A, Kieling C, & Di Meglio P. Exploring the role of immune pathways in the risk and development of depression in adolescence: Research protocol of the IDEA-FLAME study, Brain, Behavior, & Immunity - Health, Volume 18, 2021, 100396, ISSN 2666-3546, https://doi.org/10.1016/j.bbih.2021.100396.

### **Publications while this PhD thesis**

**Zonca** V. Preventive strategies for adolescent depression: What are we missing? A focus on biomarkers. Brain Behav Immun Health. 2021 Nov 3;18:100385. doi: 10.1016/j.bbih.2021.100385. PMID: 34825234; PMCID: PMC8604665.

Lanfredi M, Macis A, Ferrari C, Meloni S, Pedrini L, Ridolfi ME, **Zonca** V, Cattane N, Cattaneo A, Rossi R. Maladaptive behaviours in adolescence and their associations with personality traits, emotion dysregulation and other clinical features in a sample of Italian students: a cross-sectional study. Borderline Personal Disord Emot Dysregul. 2021 May 4;8(1):14. doi: 10.1186/s40479-021-00154-w. PMID: 33941285; PMCID: PMC8094601.

Lopizzo N, Mazzelli M, **Zonca** V, Begni V, D'Aprile I, Cattane N, Pariante CM, Riva MA, Cattaneo A. Alterations in 'inflammatory' pathways in the rat prefrontal cortex as early biological predictors of the long-term negative consequences of exposure to stress early in life. Psychoneuroendocrinology. 2021 Feb;124:104794. doi: 10.1016/j.psyneuen.2020.104794. Epub 2020 Jul 6. PMID: 33429258. Lopizzo N, **Zonca** V, Cattane N, Pariante CM, Cattaneo A. miRNAs in depression vulnerability and resilience: novel targets for preventive strategies. J Neural Transm (Vienna). 2019 Sep;126(9):1241-1258. doi: 10.1007/s00702-019-02048-2. Epub 2019 Jul 26. PMID: 31350592; PMCID: PMC6746676.

Mora C, **Zonca** V, Riva MA, Cattaneo A. Blood biomarkers and treatment response in major depression. Expert Rev Mol Diagn. 2018 Jun;18(6):513-529. doi: 10.1080/14737159.2018.1470927. Epub 2018 Jun 6. PMID: 29701114.

**Zonca** V. Neural Basis of Gender, Editor(s): Sergio Della Sala, Encyclopedia of Behavioral Neuroscience, 2nd edition (Second Edition), Elsevier, 2022, Pages 454-458, ISBN 9780128216361, https://doi.org/10.1016/B978-0-12-819641-< 0.00099-2.

**Zonca** V. The Biological Mechanisms Underlying Major Depressive Disorder, Editor(s): Sergio Della Sala, Encyclopedia of Behavioral Neuroscience, 2nd edition (Second Edition), Elsevier, 2022, Pages 575-582, ISBN 9780128216361, https://doi.org/10.1016/B978-0-12-819641-0.00114-6.

Pedrini L, Rossi R, Magni LR, Lanfredi M, Meloni S, Ferrari C, Macis A, Lopizzo N, **Zonca** V, Cattaneo A. Emotional Regulation in Teens and Improvement of Constructive Skills (EmoTIConS): study protocol for a randomized controlled trial. Trials. 2021 Dec 14;22(1):920. doi: 10.1186/s13063-021-05886-2. PMID: 34906222; PMCID: PMC8670183.

#### Selected Abstract related to this thesis

Valentina **Zonca**, Zuzanna Zajkowska, Pedro H. Manfro, Laila Souza, Anna Viduani, Annabel Walsh, Sforzini Luca, Johnna Swartz, Rakesh Karmacharya, Helen L. Fisher, Brandon A. Kohrt, Christian Kieling, Annamaria Cattaneo, Valeria Mondelli. Transcriptomic pathways associated with increased risk and presence of adolescent depression. BAP Summer Meeting 2022. 24<sup>th</sup>-27<sup>th</sup> July, London. Poster Presentation.

Valentina **Zonca**, Zuzanna Zajkowska, Pedro H. Manfro, Laila Souza, Anna Viduani, Annabel Walsh, Johnna Swartz, Rakesh Karmacharya, Helen L. Fisher, Brandon A. Kohrt, Christian Kieling, Annamaria Cattaneo, Valeria Mondelli. Understanding the biological pathways underpinning adolescent depression in LMIC: the IDEA Project. MQ Mental Health Science Summit. 12th-13th May 2021. Virtual. Poster Presentation

Valentina **Zonca**, Zuzanna Zajkowska, Pedro H. Manfro, Laila Souza, Anna Viduani, Annabel Walsh, Johnna Swartz, Rakesh Karmacharya, Helen L. Fisher, Brandon A. Kohrt, Christian Kieling, Annamaria Cattaneo, Valeria Mondelli. Investigating the biological mechanisms underlying the risk of developing adolescent depression in Brazil: the IDEA Project. BAP Summer Meeting. 19th-21st July 2021. Poster and Oral Presentation. Virtual.

Valentina **Zonca**, Zuzanna Zajkowska, Pedro H. Manfro, Laila Souza, Anna Viduani, Annabel Walsh, Johnna Swartz, Rakesh Karmacharya, Helen L. Fisher, Brandon A. Kohrt, Christian Kieling, Annamaria Cattaneo, Valeria Mondelli.. Investigating the biological mechanisms underlying the risk of developing adolescent depression in Brazil: the IDEA Project. ISPNE. 7th – 9th September 2021. Poster presentation. Virtual.

Valentina **Zonca**. Stress during adolescence, inflammatory system, and enhanced vulnerability for depression: sex-specific association in clinical and preclinical evidence. ISPNE. 7th – 9th September 2021. Oral Symposium. Virtual

Valentina **Zonca**, Zuzanna Zajkowska, Pedro H. Manfro, Laila Souza, Anna Viduani, Annabel Walsh, Johnna Swartz, Rakesh Karmacharya, Helen L. Fisher, Brandon A. Kohrt, Christian Kieling, Annamaria Cattaneo, Valeria Mondelli. Investigating the biological mechanisms underlying the risk of developing adolescent depression in Brazil: the IDEA Project. ECNP, Lisbon. 2nd – 5th October 2021. Poster presentation.

# Table of Contents

| Acknowledgments                                                     |
|---------------------------------------------------------------------|
| Abstract4                                                           |
| Publications                                                        |
| Table of Contents11                                                 |
| Table of Figures    18                                              |
| Table of Tables20                                                   |
| Abbreviations                                                       |
| 1. Introduction27                                                   |
| 1.1 Major Depressive Disorder 27                                    |
| 1.1.1 Pathophysiology of Depression29                               |
| 1.1.1.1 The monoamine-deficiency hypothesis29                       |
| 1.1.1.2 Stress                                                      |
| 1.1.1.3 Immune system                                               |
| 1.1.1.4 Neuroplasticity and neurotrophins                           |
| 1.2 Gene expression studies and Depression 38                       |
| 1.2.1. The interplay between genes and environment                  |
| 1.2.2 Epigenetic changes and depression43                           |
| 1.2.3 Omics approaches in depression44                              |
| 1.3 Adolescent depression 47                                        |
| 1.3.1. Genome-wide gene expression studies in adolescent depression |
| 1.4 Identifying Depression Early in Adolescence (IDEA Project)      |
| 1.4.1 The IDEA Risk Score                                           |

| 1.4.2 The IDEA-RS and the IDEA-RiSCo55                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.5 Sex differences in depression 57                                                                                                                                               |
| 1.5.1 Sex differences – General considerations                                                                                                                                     |
| 1.5.2 Sex differences in incidence of depression                                                                                                                                   |
| 1.5.3 Sex differences in symptomatology of depression61                                                                                                                            |
| 1.6 Risk factors and biomarkers for adolescent depression                                                                                                                          |
| 1.6.1 Risk factors for depression in the context of the IDEA project                                                                                                               |
| 1.6.2 Environmental risk factors                                                                                                                                                   |
| 1.6.3 Biological risk factors                                                                                                                                                      |
| 1.6.3.1 Inflammation70                                                                                                                                                             |
| 1.6.3.2 HPA axis                                                                                                                                                                   |
| 1.6.3.3 Interaction between environmental and biological risk factors73                                                                                                            |
| 2. Aims and Hypotheses of the study75                                                                                                                                              |
| 2.1 First Aim: Identify biological pathways associated with presence of depression and/or                                                                                          |
| increased risk of adolescent depression by using Microarray technique (Affymetrix) 76                                                                                              |
| 2.2 Second Aim: Identify differences between males and females in the biological                                                                                                   |
| pathways associated with presence of depression and/or increased risk of adolescent                                                                                                |
| depression by using Microarray technique (Affymetrix)77                                                                                                                            |
| 2.3 Third Aim: Identify biological pathways associated with presence of depression and/or                                                                                          |
|                                                                                                                                                                                    |
| increased risk of adolescent depression by using RNA Sequencing                                                                                                                    |
| increased risk of adolescent depression by using RNA Sequencing                                                                                                                    |
|                                                                                                                                                                                    |
| 2.4 Fourth Aim: Identify differences between males and females in the biological pathways                                                                                          |
| 2.4 Fourth Aim: Identify differences between males and females in the biological pathways associated with presence of depression and/or increased risk of adolescent depression by |

| 2.5.2 RNA extraction from blood samples and RNA quality control                      | 80  |
|--------------------------------------------------------------------------------------|-----|
| 2.5.3 Genome-wide gene expression analysis on blood – Affymetrix Gene Atlas platform | 80  |
| 2.5.4 Biostatistical analysis of Affymetrix raw data                                 | 80  |
| 2.5.5 Genome-wide gene expression analysis on blood – RNA Sequencing on NextSeq 550  | 81  |
| 2.5.6 Biostatistical analysis of RNA Sequencing raw data                             | 81  |
| 3. Methods                                                                           | 83  |
| 3.1 IDEA (Identify Depression Early in Adolescence) Project sample recruitment       | 83  |
| 3.1.1 Ethical approval                                                               | 83  |
| 3.1.2 School screening                                                               | 85  |
| 3.1.2.1 Risk Score                                                                   | 85  |
| 3.1.3 Telephone interview                                                            | 92  |
| 3.1.4 Clinical assessment                                                            | 93  |
| 3.1.5 IDEA RiSCo recruitment – Flowchart and details                                 | 97  |
| 3.1.6 Power Analysis                                                                 | 99  |
| 3.2 Blood collection                                                                 | 101 |
| 3.3 RNA extraction from blood samples                                                | 102 |
| 3.4 Quality control analysis                                                         | 104 |
| 3.4.1 Nanodrop                                                                       | 104 |
| 3.4.2 Agilent 2100 Bioanalyzer                                                       | 105 |
| 3.5 Genome-wide gene expression analysis on blood – Gene Atlas Affymetrix            | 107 |
| 3.5.1 Affymetrix pre-processing                                                      | 107 |
| 3.5.2 Array Strip hybridization on the Gene Atlas System                             | 117 |
| 3.5.3 Quality control                                                                | 118 |
| 3.6 Bioinformatic analysis – Gene Atlas Affymetrix                                   | 119 |
| 3.6.1 Partek software                                                                | 119 |
| 3.6.2 Pathways analysis                                                              | 124 |

| 3.7 RNA Sequencing on blood – NextSeq 55012                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 3.7.1 Dual-indexed libraries preparation12                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26                                     |
| 3.7.2 Dual-indexed libraries quality control check13                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32                                     |
| 3.7.3 Library dilution to the starting concentration13                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34                                     |
| 3.7.4 Library denaturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34                                     |
| 3.7.5 Sequencing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34                                     |
| 3.8 FASTQ QA/QC13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ;7                                     |
| 3.9 RNA-Seq biostatistical analysis14                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17                                     |
| 3.10 Correlation between microarrays and RNA-Seq14                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                      |
| 4. Results14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                      |
| 4.1 IDEA-RiSCo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60                                     |
| 4.1.1 Sociodemographic and clinical characteristics of adolescents included in the RiSCo cohort 15                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                     |
| 4.2 Quality Control of RNA samples15                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                      |
| 4.3 Affymetrix microarrays – Gene Atlas Platform15                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                      |
| 4.3.1 Gene Atlas Affymetrix QA/QC15                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56                                     |
| 4.3.2 Partek Genomic Suite QA/QC15                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59                                     |
| 4.3.3 Genes differently modulated in MDD, HR and LR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 4.5.5 Genes unrerently modulated in MDD, in and EX adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80                                     |
| 4.3.3.1 Genes differently modulated in MDD vs HR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58                                     |
| 4.3.3.1 Genes differently modulated in MDD vs HR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58<br>58                               |
| 4.3.3.1 Genes differently modulated in MDD vs HR adolescents       16         4.3.3.2 Genes differently modulated in MDD vs LR adolescents       16                                                                                                                                                                                                                                                                                                                                                          | 58<br>58<br>59                         |
| 4.3.3.1 Genes differently modulated in MDD vs HR adolescents       16         4.3.3.2 Genes differently modulated in MDD vs LR adolescents       16         4.3.3.3 Genes differently modulated in HR vs LR adolescents       16                                                                                                                                                                                                                                                                             | 58<br>58<br>59<br>70                   |
| 4.3.3.1 Genes differently modulated in MDD vs HR adolescents       16         4.3.3.2 Genes differently modulated in MDD vs LR adolescents       16         4.3.3.3 Genes differently modulated in HR vs LR adolescents       16         4.3.4 Genes differently modulated accordingly to biological sex: males       17                                                                                                                                                                                     | 58<br>58<br>59<br>70<br>70             |
| 4.3.3.1 Genes differently modulated in MDD vs HR adolescents       16         4.3.3.2 Genes differently modulated in MDD vs LR adolescents       16         4.3.3.3 Genes differently modulated in HR vs LR adolescents       16         4.3.4 Genes differently modulated accordingly to biological sex: males       17         4.3.4.1 Genes differently modulated in males MDD vs males HR adolescents       17                                                                                           | 58<br>58<br>59<br>70<br>70             |
| 4.3.3.1 Genes differently modulated in MDD vs HR adolescents       16         4.3.3.2 Genes differently modulated in MDD vs LR adolescents       16         4.3.3.3 Genes differently modulated in HR vs LR adolescents       16         4.3.4 Genes differently modulated accordingly to biological sex: males       17         4.3.4.1 Genes differently modulated in males MDD vs males HR adolescents       17         4.3.4.2 Genes differently modulated in males MDD vs males LR adolescents       17 | 58<br>58<br>59<br>70<br>70<br>70<br>71 |

| 4.3.5.2 Genes differently modulated in females MDD vs females LR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 4.3.5.3 Genes differently modulated in females HR vs females LR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 4.3.6 Biological Pathways differently modulated in MDD, HR and LR174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 4.3.6.1 Biological Pathways differently modulated in MDD vs HR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 4.3.6.2 Biological Pathways differently modulated in MDD vs LR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 4.3.6.3 Biological Pathways differently modulated in HR vs LR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 4.3.7 Biological Pathways differently modulated accordingly to biological sex: males                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 4.3.7.1 Biological Pathways differently modulated in males MDD vs males HR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 4.3.7.2 Biological Pathways differently modulated in males MDD vs males LR adolescents178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 4.3.7.3 Biological Pathways differently modulated in males HR vs males LR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 4.3.8 Biological pathways differently modulated accordingly to biological sex: females                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 4.3.8.1 Biological Pathways differently modulated in females MDD vs females HR adolescents187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 4.3.8.2 Biological Pathways differently modulated in females MDD vs females LR adolescents 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 4.3.8.3 Biological Pathways differently modulated in females HR vs females LR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 4.4 RNA Sequencing192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 4.4 RNA Sequencing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 4.4.1 FASTQ QA/QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 4.4.1 FASTQ QA/QC       192         4.4.2 Genes differently modulated in MDD, HR and LR adolescents       215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 4.4.1 FASTQ QA/QC       192         4.4.2 Genes differently modulated in MDD, HR and LR adolescents       215         4.4.2.1 Genes differently modulated in MDD vs HR adolescents       215                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 4.4.1 FASTQ QA/QC       192         4.4.2 Genes differently modulated in MDD, HR and LR adolescents       215         4.4.2.1 Genes differently modulated in MDD vs HR adolescents       215         4.4.2.2 Genes differently modulated in MDD vs LR adolescents       215                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 4.4.1 FASTQ QA/QC1924.4.2 Genes differently modulated in MDD, HR and LR adolescents2154.4.2.1 Genes differently modulated in MDD vs HR adolescents2154.4.2.2 Genes differently modulated in MDD vs LR adolescents2154.4.2.3 Genes differently modulated in HR vs LR adolescents216                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 4.4.1 FASTQ QA/QC1924.4.2 Genes differently modulated in MDD, HR and LR adolescents2154.4.2.1 Genes differently modulated in MDD vs HR adolescents2154.4.2.2 Genes differently modulated in MDD vs LR adolescents2154.4.2.3 Genes differently modulated in HR vs LR adolescents2164.4.3 Genes differently modulated accordingly to biological sex: males217                                                                                                                                                                                                                                                                                                            |  |  |
| 4.4.1 FASTQ QA/QC.1924.4.2 Genes differently modulated in MDD, HR and LR adolescents2154.4.2.1 Genes differently modulated in MDD vs HR adolescents2154.4.2.2 Genes differently modulated in MDD vs LR adolescents2154.4.2.3 Genes differently modulated in HR vs LR adolescents2164.4.3 Genes differently modulated accordingly to biological sex: males2174.4.3.1 Genes differently modulated in males MDD vs males HR adolescents217                                                                                                                                                                                                                                |  |  |
| 4.4.1 FASTQ QA/QC1924.4.2 Genes differently modulated in MDD, HR and LR adolescents2154.4.2.1 Genes differently modulated in MDD vs HR adolescents2154.4.2.2 Genes differently modulated in MDD vs LR adolescents2154.4.2.3 Genes differently modulated in HR vs LR adolescents2164.4.3 Genes differently modulated accordingly to biological sex: males2174.4.3.1 Genes differently modulated in males MDD vs males HR adolescents2174.4.3.2 Genes differently modulated in males MDD vs males LR adolescents217                                                                                                                                                      |  |  |
| 4.4.1 FASTQ QA/QC.1924.4.2 Genes differently modulated in MDD, HR and LR adolescents2154.4.2.1 Genes differently modulated in MDD vs HR adolescents2154.4.2.2 Genes differently modulated in MDD vs LR adolescents2154.4.2.3 Genes differently modulated in HR vs LR adolescents2164.4.3 Genes differently modulated accordingly to biological sex: males2174.4.3.1 Genes differently modulated in males MDD vs males HR adolescents2184.4.3.3 Genes differently modulated in males MDD vs males LR adolescents218                                                                                                                                                     |  |  |
| 4.4.1 FASTQ QA/QC1924.4.2 Genes differently modulated in MDD, HR and LR adolescents2154.4.2.1 Genes differently modulated in MDD vs HR adolescents2154.4.2.2 Genes differently modulated in MDD vs LR adolescents2154.4.2.3 Genes differently modulated in HR vs LR adolescents2164.4.3 Genes differently modulated accordingly to biological sex: males2174.4.3.1 Genes differently modulated in males MDD vs males HR adolescents2184.4.3.3 Genes differently modulated in males HR vs males LR adolescents2184.4.4 Genes differently modulated accordingly to biological sex: females2184.4.4 Genes differently modulated accordingly to biological sex: females218 |  |  |

| 4.4.5 Biological Pathways differently modulated in MDD, HR and LR221                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.4.5.1 Biological Pathways differently modulated in MDD vs HR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.4.5.2 Biological Pathways differently modulated in MDD vs LR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.4.5.3 Biological Pathways differently modulated in HR vs LR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.4.6 Biological Pathways differently modulated accordingly to biological sex: males                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.4.6.1 Biological Pathways differently modulated in males MDD vs males HR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.4.6.2 Biological Pathways differently modulated in males MDD vs males LR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.4.6.3 Biological Pathways differently modulated in males HR vs males LR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4.4.7 Biological Pathways differently modulated accordingly to biological sex: females                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.4.7.1 Biological Pathways differently modulated in females MDD vs females HR adolescents234                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.4.7.2 Biological Pathways differently modulated in females MDD vs females LR adolescents235                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.4.7.3 Biological Pathways differently modulated in females HR vs females LR adolescents                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.5 Comparison between microarrays and RNA-Seq245                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5. Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5. Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5.1 Summary of findings248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.1 Summary of findings248<br>5.2 Feasibility of conducting rigorous biological research for adolescent depression in                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5.1 Summary of findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5.1 Summary of findings       248         5.2 Feasibility of conducting rigorous biological research for adolescent depression in       252         under-represented and low-resource settings       252         5.3 Transcriptional differences in MDD, HR and LR adolescents       254                                                                                                                                                                                                                             |
| 5.1 Summary of findings2485.2 Feasibility of conducting rigorous biological research for adolescent depression in<br>under-represented and low-resource settings2525.3 Transcriptional differences in MDD, HR and LR adolescents2545.4 Differences in DEGs identified by microarray and RNA-SEQ258                                                                                                                                                                                                                    |
| 5.1 Summary of findings2485.2 Feasibility of conducting rigorous biological research for adolescent depression in<br>under-represented and low-resource settings2525.3 Transcriptional differences in MDD, HR and LR adolescents2545.4 Differences in DEGs identified by microarray and RNA-SEQ2585.5 Transcriptional differences and focus on the top genes differently modulated in MDD,                                                                                                                            |
| 5.1 Summary of findings       .248         5.2 Feasibility of conducting rigorous biological research for adolescent depression in       .252         under-represented and low-resource settings       .252         5.3 Transcriptional differences in MDD, HR and LR adolescents       .254         5.4 Differences in DEGs identified by microarray and RNA-SEQ       .258         5.5 Transcriptional differences and focus on the top genes differently modulated in MDD,       HR and LR adolescents       .262 |
| 5.1 Summary of findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 5.7 Biological differences between MDD and LR adolescents                                      |
|------------------------------------------------------------------------------------------------|
| 5.7.1 The role of biological sex on the pathways differently modulated in MDD compared with LR |
| adolescents                                                                                    |
| 5.8 Biological signatures associated with the risk of developing depression in adolescents     |
| without depression (HR vs LR)284                                                               |
| 5.9 Strength and Limitations of this doctoral thesis288                                        |
| 5.10 Identifying biological signatures underlying the presence of depression or the risk of    |
| developing the disorder – Clinical implications and future directions292                       |
| 5.11 Conclusions                                                                               |
| 6. References                                                                                  |
| APPENDIX A                                                                                     |
| APPENDIX B                                                                                     |
| APPENDIX C                                                                                     |
| APPENDIX D                                                                                     |
| APPENDIX E                                                                                     |
| APPENDIX F                                                                                     |
| APPENDIX G                                                                                     |

# Table of Figures

| Figure 1.1. Schematic representation of the kynurenine pathway in human periphery    |
|--------------------------------------------------------------------------------------|
| and brain                                                                            |
| Figure 1.2. Biological, psychological, and environmental risk factors from the IDEA  |
| Delphi study67                                                                       |
| Figure 3.1. Flowchart of school and student inclusion                                |
| Figure 3.2. RNA extraction procedure from PAXgene tube                               |
| Figure 3.3. RNA integrity number tested on samples of varying levels of intactness.  |
|                                                                                      |
| Figure 3.4. GeneChip WT Pico Reagent Kit amplification and labeling process 108      |
| Figure 3.5. Partek Genomic Suite PCA for Scan Date                                   |
| Figure 3.6. Partek Genomic Suite Histogram for Intensity (divided for Scan Date)122  |
| Figure 3.7. Partek Genomic Suite Box and Whiskers Chart (divided for Scan Date). 123 |
| Figure 3.8. Dual-indexed libraries preparation protocol                              |
| Figure 3.9. Example Bioanalyzer Trace133                                             |
| Figure 3.10. Per Base Sequence Quality Box Whisker                                   |
| Figure 3.11. Per Sequence Quality Scores Graph141                                    |
| Figure 3.12. Per Base Sequence Content142                                            |
| Figure 3.13. Per Sequence GC Content Graph143                                        |
| Figure 3.14. Per Base N Content Graph144                                             |
| Figure 3.15. Sequence Length Distribution Graph145                                   |
| Figure 3.16. Duplicate Sequences Graph146                                            |

| Figure 4.1. PHQ-A score and Probability of Depression in 3 years of adolescents |
|---------------------------------------------------------------------------------|
| screened at schools and included in the IDEA-RiSCo, boys and girls153           |
| Figure 4.2. Example of a QC Report Summary158                                   |
| Figure 4.3. Partek Genomic Suite PCA by Scan Date161                            |
| Figure 4.4. Partek Genomic Suite PCA by Risk Group162                           |
| Figure 4.5. Partek Genomic Suite PCA by Biological Sex163                       |
| Figure 4.6. Partek Genomic Suite Histogram by Scan Date164                      |
| Figure 4.7. Partek Genomic Suite Histogram by Risk Group165                     |
| Figure 4.8. Partek Genomic Suite Sample Box & Whiskers Chart by Scan Date 166   |
| Figure 4.9. Partek Genomic Suite Sample Box & Whiskers Chart by Risk Group167   |
| Figure 4.10. FastQC Basic Statistics BR0028194                                  |
| Figure 4.11. FastQC Per base Sequence Quality BR0028196                         |
| Figure 4.12. FastQC Per Tile Sequence Quality BR0028198                         |
| Figure 4.13. FastQC Per Sequence Quality Score BR0028                           |
| Figure 4.14. FastQC Per Base Sequence Content BR0028202                         |
| Figure 4.15. FastQC Per Sequence GC Content BR0028                              |
| Figure 4.16. FastQC Per Base N Content BR0028206                                |
| Figure 4.17. FastQC Sequence Lenght Distribution BR0028                         |
| Figure 4.18. FastQC Sequence Duplication Levels BR0028210                       |
| Figure 4.19. FastQC Overrepresented Sequences BR0028212                         |
| Figure 4.20. FastQC Adapter Content BR0028214                                   |

# Table of Tables

| Table 3.1. Criteria for the IDEA Risk Stratified Cohort sample composition            |
|---------------------------------------------------------------------------------------|
| Table 3.2. The Identifying Depression Early in Adolescence Risk Score (IDEA-RS) From  |
| (Kieling et al., 2021)                                                                |
| Table 3.3 Self- and clinician-base instruments for phenotypic assessments for         |
| adolescents and primary caregivers96                                                  |
| Table 3.4. Poly-A Controls stock dilutions    109                                     |
| Table 3.5. Randomization of the 150 samples accordingly to risk groups A, B and C for |
| the pre-processing (Part 1)111                                                        |
| Table 3.6. Randomization of the 150 samples accordingly to risk groups A, B and C for |
| the pre-processing (Part 2)114                                                        |
| Table 3.7. Randomization of the 150 samples accordingly to risk groups A, B and C for |
| the array-strips (Part 3)116                                                          |
| Table 3.8. Randomization of the 150 samples accordingly to risk groups A, B and C for |
| the pre-processing part 1 and 2131                                                    |
| Table 3.9. Randomization of the 150 samples accordingly to risk groups A, B and C for |
| the sequencing step on the array136                                                   |
| Table 4.1. Phenotypic characteristics of the IDEA-RiSCo sample                        |
| Table 4.2. IDEA-RS sociodemographic variables in the IDEA-RiSCo154                    |
| Table 4.3. Pathways differently modulated in MDD vs HR (p-value < 0.05)176            |
| Table 4.4. Pathways males MDD vs males HR (p-value < 0.05)                            |

| Table 4.5. Pathways males MDD vs males LR (p-value < 0.05)         |
|--------------------------------------------------------------------|
| Table 4.6. Pathways females MDD vs females HR (p-value < 0.05)189  |
| Table 4.7. Pathways females MDD vs females LR (p-value < 0.05)     |
| Table 4.8. Pathways females HR vs females LR (p-value < 0.05)      |
| Table 4.9. Pathways MDD vs HR (p-value < 0.05)224                  |
| Table 4.10. Pathways MDD vs LR (p-value < 0.05)225                 |
| Table 4.11. Pathways HR vs LR (p-value < 0.05)227                  |
| Table 4.12. Pathways males MDD vs males HR (p-value < 0.05)        |
| Table 4.13. Pathways males MDD vs males LR (p-value < 0.05)        |
| Table 4.14. Pathways males HR vs males LR (p-value < 0.05)233      |
| Table 4.15. Pathways females MDD vs females HR (p-value < 0.05)237 |
| Table 4.16. Pathways females MDD vs females LR (p-value < 0.05)    |
| Table 4.17. Pathways females HR vs females LR (p-value < 0.05)     |

## Abbreviations

| Abbreviation | Meaning                                         |
|--------------|-------------------------------------------------|
| μL           | Microliter                                      |
| 5-HT         | Serotonin                                       |
| 5-HTTLPR     | Serotonin-Linked Polymorphic Region             |
| A260         | Absorbance At 260 Nm                            |
| A280         | Absorbance At 280 Nm                            |
| ARED         | Associação Brasileira de Empresa de Pesquisa -  |
| ABEP         | Brazilian Economic Classification Criteria      |
| ANOVA        | Analysis Of Variance                            |
| APA          | American Psychiatric Association                |
| ARI          | Affective Reactivity Index                      |
| ARS          | Adolescent Resilience Scale                     |
| ATM          | ATM Serine/Threonine Kinase                     |
| AUC          | Area Under the Curve                            |
| B. subtilis  | Bacillus Subtilis                               |
| BCL          | Base Call                                       |
| BDNF         | Brain Derived Neurotrophic Factor               |
| BH4          | Tetrahydrobiopterin                             |
| bp           | Base Pair                                       |
| C3           | Complement Component 3                          |
| C4BPA        | Complement Component 4 Binding Protein Alpha    |
| CAMs         | Cell Adhesion Molecules                         |
| CAR          | Cortisol-Awakening Response                     |
| CBT          | Cognitive-Behavioural Therapy                   |
| CDK5         | Cyclin Dependent Kinase 5                       |
| cDNA         | Complementary DNA                               |
| CDRS-R       | Children Depression Rating Scale                |
| CFH          | Complement Factor H                             |
| CGAS         | Children's Global Assessment Scale              |
| CGI          | Clinical Global Impression                      |
|              | Cohorts for Heart and Aging Research in Genomic |
| CHARGE       | Epidemiology                                    |
| СОСН         | Cochlin                                         |
| CREB         | C-AMP Response Element-binding                  |
| CRH          | Corticotropin-Releasing Hormone                 |
| CRP          | C-Reactive Protein                              |
| CSF          | Cerebrospinal Fluid                             |
| CSH2         | Chorionic Somatomammotropin Hormone 2           |
| СТQ          | Childhood Trauma Questionnaire                  |
| CYP26B1      | Cytochrome P450 Family 26 Subfamily B Member 1  |

| DA         | Dopamine                                    |
|------------|---------------------------------------------|
| DEFA1      | Defensin Alpha 1                            |
| DEFA1b     | Defensin Alpha 1 Beta                       |
| DEGs       | Differently Expressed Genes                 |
| DET1       | Det1 Partner Of Cop1 E3 Ubiquitin Ligase    |
| DNA        | Desoxyribonucleic Acid                      |
| DSM        | Diagnostic And Statistical Manual Of Mental |
|            | Disorders                                   |
| dTTP       | Deoxythymidine Triphosphate                 |
| dUTP       | 2'-Deoxyuridine, 5'-Triphosphate            |
| E-RISK     | Environmental Risk                          |
| E. coli    | Escherichia Coli                            |
| FC         | Fold-Change                                 |
| FDA        | Food And Drug Administration                |
| FDR        | False Discovery Rate                        |
| FKBP4      | FK506 Binding Protein 4                     |
| FKBP5      | FK506 Binding Protein 5                     |
| GABA       | Gamma-Aminobutyric Acid                     |
| GAPDH      | Glyceraldehyde-3-Phosphate Dehydrogenase    |
| GC         | Guanine-Cytosine                            |
| GR         | Glucocorticoid Receptor                     |
| 00140      | Glutamate Ionotropic Receptor AMPA Type     |
| GRIA2      | Subunit 2                                   |
| CDIK4      | Glutamate Ionotropic Receptor Kainate Type  |
| GRIK1      | Subunit 1                                   |
| GRIK4      | Glutamate Ionotropic Receptor Kainate Type  |
| GRIK4      | Subunit 4                                   |
| GPIN2A     | Glutamate Ionotropic Receptor NMDA Type     |
| GRIN2A     | Subunit 2A                                  |
| GTPase     | Guanosine Triphosphate Binding Protein      |
| GWAS       | Genome-Wide Association Study               |
| НСРА       | Hospital De Clínicas De Porto Alegre        |
| HICs       | High-Income Countries                       |
| HIV        | Human immunodeficiency virus                |
| НРА        | Hypothalamic-Pituitary-Adrenal              |
| HR         | High-Risk                                   |
| Hsp90      | Heat-Shock Protein 90                       |
| HTR2A      | 5-Hydroxytryptamine Receptor 2A             |
| IDEA       | Identifying Depression Early In Adolescence |
| IDEA-RiSCo | IDEA-Risk Stratified Cohort                 |
| IDEA-RS    | IDEA Risk Score                             |
| IDO        | Indoleamine 2,3-Dioxygenase                 |
| IFN        | Interferon                                  |
| IL         | Interleukin                                 |
| IPA        | Ingenuity Pathways Analysis Software        |

| IQ        | Intelligence Quotient                           |
|-----------|-------------------------------------------------|
| IRF       | Interferon Regulatory Factor                    |
| K-SADS-PL | Kiddie – Schedule For Affective Disorders And   |
|           | Schizophrenia For School-Age Children – Present |
|           | And Lifetime Version                            |
| KYN       | Kynurenine                                      |
| KYNA      | Kyn-Kynurenic Acid                              |
| LILRA5    | Leukocyte Immunoglobulin Like Receptor A5       |
| LMICs     | Low And Middle-Income Countries                 |
| LPS       | Lipopolysaccharide                              |
| LR        | Low-Risk                                        |
| MAOIs     | Mono-Amine Oxidase Inhibitors                   |
| МАРК      | Mitogen-Activated Protein Kinase                |
| MBCT      | Mindfulness-Based Cognitive Therapy             |
| MBSR      | Mindfulness-Based Stress Reduction              |
| MDD       | Major Depressive Disorder                       |
| MDQ       | Mood Disorder Questionnaire                     |
| MFQ       | Mood And Feelings Questionnaire                 |
| mhGAP     | Mental Health Gap Action Programme              |
| miRNA     | microRNA                                        |
| mL        | Milliliter                                      |
| MRI       | Magnetic Resonance Imaging                      |
| mRNA      | Messenger RNA                                   |
| MRS       | Magnetic Resonance Spectroscopy                 |
| Ν         | Normality                                       |
| NA        | Noradrenaline                                   |
| NET       | Norepinephrine Transporter                      |
|           | Nuclear Factor Kappa-Light-Chain-Enhancer Of    |
| NF-KB     | Activated B Cells                               |
| ng        | Nanogram                                        |
| ng/μl     | Nanogram / Microliter                           |
| NIHC      | National Institute Of Mental Health             |
| nm        | Nanometer                                       |
| nM        | Nanomolar                                       |
| NMDA      | N-Methyl-D-Aspartate                            |
| NRCAM     | Neuronal Cell Adhesion Molecule                 |
| NPY       | Neuropeptide Y                                  |
| NPY2R     | Neuropeptide Y Receptor Y2                      |
| P53       | P53 Tumor Protein                               |
| РАК       | P21-Activated Kinases                           |
| PBI       | Parental Bonding Instrument                     |
| PBMCs     | Peripheral Blood Mononuclear Cells              |
| PCA       | Principal Components Analysis                   |
| PCR       | Polymerase Chain Reaction                       |
| PGC       | Psychiatric Genomics Consortium                 |

| PHQ-A   | Patient Health Questionnaire For Adolescents       |
|---------|----------------------------------------------------|
| PIF     | Parent Information Form                            |
| PLS3    | Plastin 3                                          |
| рМ      | picoMolar                                          |
| PTEN    | Phosphatase and tensin homolog                     |
| PUFAs   | Polyunsaturated Fatty Acids                        |
| Q1      | First Questionnaire Round                          |
| Q2      | Second Questionnaire Round                         |
| QA/QC   | Quality Assurance / Quality Control                |
| QUIN    | Quinolinic Acid                                    |
| RAB5    | Ras-Related Protein                                |
| RFQY    | Reflective Functioning Questionnaire For Youths    |
| RIN     | RNA Integrity Number                               |
| RMA     | Robust Multi-Strip Average                         |
| RNA     | Ribonucleic Acid                                   |
| RNA-Seq | RNA Sequencing                                     |
| SCAS    | Spence Children's Anxiety Scale                    |
| SHAPS   | Snaith-Hamilton Pleasure Scale                     |
| SLC6A2  | Solute Carrier Family 6 Member 2                   |
| SLC6A3  | Solute Carrier Family 6 Member 3                   |
| SLC6A4  | Solute Carrier Family 6 Member 4                   |
| SNPs    | Single Nucleotide Polymorphisms                    |
| SNRIs   | Serotonin Noradrenaline Reuptake Inhibitors        |
| SMOX    | Spermine Oxidase                                   |
| SOP     | Standard Operating Procedure                       |
| SOX     | Sry-Type HMG Box                                   |
| SOX5    | Sry-Box Transcription Factor 5                     |
| SRGAP1  | Slit-Robo Rho Gtpase Activating Protein 1          |
| ss-cDNA | Singe Strand Complementary DNA                     |
| SSRIs   | Selective Serotonin Reuptake Inhibitors            |
|         | Sequenced Treatment Alternatives to Relieve        |
| STAR*D  | Depression                                         |
| STAT3   | Signal Transducer And Activator Of Transcription 3 |
| STRBP   | Spermatid Perinuclear Rna Binding Protein          |
| TACSTD2 | Tumor Associated Calcium Signal Transducer 2       |
| TADS    | Treatment For Adolescents Depression Study         |
| TBC1D3  | Tbc1 Domain Family Member 3                        |
| TBC1D3H | Tbc1 Domain Family Member 3h                       |
| TCA     | Tricyclic Antidepressant                           |
| TdT     | Terminal Deoxynycleotidyl Transferase              |
| TNF     | Tumor-Necrosis Factor                              |
| TRD     | Treatment-Resistant Depression                     |
| TREM1   | Triggering Receptor Expressed On Myeloid Cells 1   |
| TRP     | Tryptophan                                         |
| UDG     | Uracil-DNA Glycosylase                             |

| VEGF  | Vascular Endothelial Growth Factor                         |
|-------|------------------------------------------------------------|
| WASI  | Wechsler Abbreviated Scale Of Intelligence                 |
| WEIRD | Westernized, Educated, Industrialized, Rich And Democratic |
| WHO   | World Health Organization                                  |
| YSI-A | The Youth Strength Inventory – Adolescent Version          |

### 1. Introduction

### **1.1 Major Depressive Disorder**

Major depressive disorder (MDD) is a psychiatric condition characterized by discrete episodes of at least 2 weeks duration involving alterations in affect, cognition, neurovegetative functions and inter-episode remissions (American Psychiatric Association, 2013). According to the DSM-5 criteria for Major Depressive Disorder, the diagnosis of MDD require at least 5 of the following symptoms:

- sad mood
- loss of interest or pleasure in all activities
- weight loss or gain
- insomnia or hypersomnia
- psychomotor agitation or retardation
- fatigue or loss of energy
- feelings of worthlessness or excessive and inappropriate guilt
- decreased ability to think or concentrate
- recurrent thoughts of death or suicide (American Psychiatric Association, 2013).

These symptoms must be present during the same two-weeks period and specifically,

depressed mood and/or loss of interest and pleasure must be present (DSM-5).

MDD is a global burden and represents the second leading cause of disability worldwide. According to World Health Organization (WHO), 264 millions of people suffer from depression, which represents the first cause of suicide among all the age groups. The burden of depression is particularly heavy in adolescence: the WHO has estimated that about 10-20% of teen-agers experience at least one depressive episode by the end of adolescence and generally, mental health conditions in adolescence account for 16% of the global burden of disease and injury in people aged 10-19 years old. Adolescents suffering from depression are more likely to develop drugs abuse and suicide attempts (National survey on drug use and health, 2016) and depression has been considered the first cause of suicide among youth (Adolescent Mental Health, WHO, 2018). As it happens in adulthood, depression is more prevalent in girls (around 20%) than in boys (around 6%).

Importantly, the incidence of depression rapidly grew due to the very recent COVID-19 pandemic in all age groups. For example, children and adolescents faced a significant increase in the risk of depression due to school closures, social isolation and quarantine following COVID-19 pandemic (Loades et al., 2020; Nearchou, Flinn, Niland, Subramaniam, & Hennessy, 2020). For example, Pierce and colleagues observed a general increase in mental distress in individuals aged 16 years and older in the UK in 2020 compared with 2019 (Pierce et al., 2020). In an Italian setting of students aged 18-30 years old, Meda and colleagues reported on average worse depressive symptoms during lockdown compared with six months before (Meda et al., 2021). COVID-19 lockdown also negatively impacted children mental health: anxiety, depression and stress were observed to be increased in children after the school closure due to the pandemic (Tang, Xiang, Cheung, & Xiang, 2021) and an increase in children's depression symptoms was observed compared with prelockdown period in the UK (Bignardi et al., 2020).

#### 1.1.1 Pathophysiology of Depression

Depression is a complex and heterogenous disorder, as demonstrated by the large variety of symptoms and subtypes of the disorder. Moreover, the complexity of MDD is also suggested by the fact that about one third of patients does not respond to first line antidepressant drugs. The reasons underpinning this complexity might be due to the lack of a unique mechanism underlying the disorder, as several hypotheses were proposed and investigated during the past decades, from the dysregulation of the monoaminergic system and glutamatergic systems to the increased inflammation and immune activation. HPA axis dysregulation, reduced neurogenesis and neuroplasticity, and lastly the involvement of gut-brain axis (Zonca, 2022a). All these mechanisms, that will be briefly discussed in the following sections, were shown to be involved and deregulated in the pathophysiology of depression, and hence it is plausible to believe that they might play a common and additive role in the etiopathogenesis of depression (Zonca, 2022a).

#### 1.1.1.1 The monoamine-deficiency hypothesis

The monoamine-deficiency hypothesis – which was firstly hypothesized in 1950 implied the depletion of serotonin (5-HT), dopamine (DA) and noradrenaline (NA) levels in the brain. The role of the monoamine in depression was supported by several evidence over the decades, as for example 5-HT, NA and DA were shown to be reduced in *post-mortem* brain as well as in peripheral blood of patients with depression compared with healthy individuals (Kambeitz & Howes, 2015; Moret & Briley, 2011). Moreover, genetic polymorphisms associated with monoamine transporters genes were linked to increased risk of developing depression. For example, s/s genotype of

the serotonin-linked polymorphic region (5-HTTLPR) – which is responsible for the reuptake of 5-HT in the pre-synaptic region – was shown to reduce the re-uptake of 5-HT in the brain and it was studied as a possible genetic vulnerability factor for the onset of depression (Fratelli, Siqueira, Silva, Ferreira, & Silva, 2020). Among the neurotransmitters, also glutamate was studied in relation to depression, as the deregulation of the glutamatergic system was observed to be involved in the onset of depression via a reduction of neuroplasticity through the down-regulation of the brain derived neurotrophic factor (BDNF). Further supporting a role of glutamate in depression, the NMDA receptor's antagonist Ketamine showed a rapid antidepressant effect after low-dose infusion in treatment resistant patients with MDD (ladarola et al., 2015; Nikkheslat, 2021 ).

#### 1.1.1.2 Stress

Stress is defined as "the physiological or psychological response to internal or external stressors; it involves changes affecting nearly every system of the body, influencing how people feel and behave" (American Psychological Association Dictionary).

Stress response is regulated by the Hypothalamic-Pituitary-Adrenal (HPA) axis, which activates several molecular cascades to prevent the disruption of the physiological neural and body activity. Stressful events activate the HPA axis which in turn releases the stress hormone cortisol. The association of HPA axis and the related stress hormone cortisol with depression was widely discussed in literature, and the hyperactivity of the HPA axis in patients with depression was defined as one of the most robust findings in psychoneuroendocrinology (Menke, 2019). Several studies investigated peripheral cortisol levels in patients with MDD, showing various abnormalities in the HPA activity compared with controls. For example, cortisol's circadian rhythm was shown to be disrupted in patients with depression, as high morning cortisol and flat pattern of cortisol secretion during the day were observed in inpatients with MDD (Dienes, Hazel, & Hammen, 2013), as well as high morning and evening cortisol levels were shown in saliva samples from patients with depression (Vreeburg et al., 2009). Similarly, cortisol-awakening response (CAR) was shown to be blunted in depression as well as in healthy controls with high risk of developing depression (Duan et al., 2013; Huber, Issa, Schik, & Wolf, 2006).

As previously mentioned, HPA axis is activated in response to stress and cortisol production is part of the stress-response pathway; once cortisol is secreted, its production is suppressed by cortisol itself through a negative feedback mechanism. A reduced regulation of this negative feedback loops was proposed to be responsible for the chronic activation of the HPA system, and this chronic activation was suggested as one of the main mechanisms underlying stress-induced depression. Further supporting this hypothesis, it is noteworthy that the glucocorticoid receptor (GR) sensitivity was shown to be reduced in patients with depression compared with controls, leading to the hypersecretion of corticotropin-releasing hormone (CRH) and cortisol, due to the lack of negative feedback mechanism (Huber et al., 2006; Mikulska, Juszczyk, Gawronska-Grzywacz, & Herbet, 2021).

Moreover, the deregulation of HPA axis and stress was observed to be responsible for neuroplasticity disruption, which was in turn linked to development of depression. Specifically, sustained exposure to elevated levels of cortisol was shown to induce negative consequences on hippocampal neurons, such as reducing dendritic branching and inhibiting neurogenesis (Kim, Pellman, & Kim, 2015). Decreased

hippocampal volume was described in women who experience sexual trauma during childhood and in women with depression with a history of child abuse (Murphy et al., 2022; Quide et al., 2018; Teicher et al., 2018), suggesting a smaller hippocampus volume in patients with MDD.

#### 1.1.1.3 Immune system

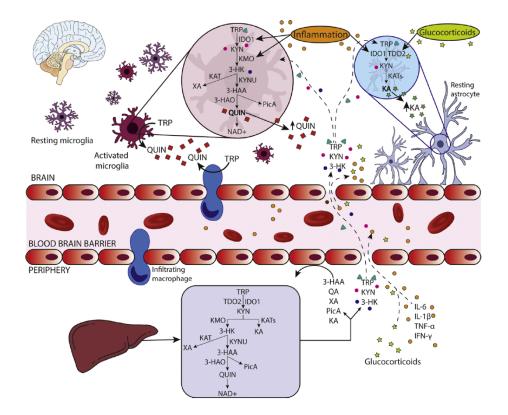
The inflammatory hypothesis of depression, also known as the monocyte-Tlymphocyte or cytokines hypothesis of depression, was proposed following the description of the so-called sickness behavior, which is a syndrome characterized by depressive-like symptoms such as social withdrawal, decreased appetite, anhedonia, lethargy, impaired concentration, depressed mood, irritability, and increase sensitivity to pain and fever (Dantzer & Kelley, 2007). A large body of studies demonstrated increased inflammatory cytokines and receptors, acute-phase proteins, chemokines, and adhesion molecules in peripheral tissue, such as blood and saliva, in patients with depression compared with healthy controls (Dowlati et al., 2010; Felger & Lotrich, 2013; Zonca, 2022a). Moreover, an hyperactivation of the inflammatory pathways in central nervous system was observed in *post-mortem* brain tissue of individuals with depression and victims of suicide (Pandey, Rizavi, Zhang, Bhaumik, & Ren, 2018). The connection between inflammation and depression paved the way for novel drug discovery approaches targeting the inflammatory system, specifically targeting cytokines as new pharmacological target for antidepressant drugs.

The inflammatory hypothesis of depression was shown to be interconnected also with the other hypothesis of the mechanisms underlying depression, and a clear crosstalk between inflammation and 5-HT and stress was deeply investigated and studied over

the years, demonstrating once again that all the hypothesized mechanisms underpinning depression are connected among each other.

The increased levels of cytokines and pro-inflammatory modulators involved in the sickness behavior was shown to modulate the production and the re-uptake of brain neurotransmitters, such as 5HT and glutamate. For example, IL-1 $\beta$  and TNF- $\alpha$  were shown to induce the activation of the p38 mitogen-activated kinase (MAPK) which in turn increases the expression of the re-uptake pumps of 5-HT in the brain, leading to the reduction of 5-HT bioavailability (Zhu et al., 2010). Secondly, cytokines were shown to generate reactive oxygen and nitrogen species which in turn reduce the bioavailability of tetrahydrobiopterin (BH4), a key co-factor in the synthesis of 5-HT (Neurauter et al., 2008).

One of the most studied mechanisms through which inflammation may lead to development of depression is the regulation of the enzyme indoleamine 2,3dioxygenase (IDO), which metabolizes tryptophan (TRP) into kynurenine (KYN) (Jeon & Kim, 2017) (Figure 1.1). The metabolization of tryptophan by IDO produces kynurenine (KYN) which is in turn metabolized via two different routes: the KYN-kynurenic acid (KYNA) pathway and the KYN-nicotinamide adenine dinucleotide (NAD) pathway, which produces quinolinic acid (QUIN); for details refer to (Jeon & Kim, 2017). QUIN is mainly produced in the microglia, whereas KYNA in astrocytes (Guillemin, Smythe, Takikawa, & Brew, 2005). These two metabolites act on the glutamatergic receptor NMDA but via opposite mechanisms: KYNA is an antagonist whereas QUIN is an agonist of NMDA receptors (Stone, 1993).


The enzyme IDO was shown to be activated by pro-inflammatory cytokines such as IFN- $\gamma$ , IFN- $\alpha$ , IL-1, and TNF- $\alpha$ , which metabolized TRP into KYN instead of 5-HT. Since

TRP is the essential amino-acid precursor of 5-HT, and given the fact that IDO reduces its availability by producing the metabolite KYN, the kynurenine pathway was shown to play a key role in the transition from sickness behavior to depression-like behavior in LPS-treated mice (O'Connor et al., 2009). Reduced circulating levels of TRP were observed in cancer patients treated with IL-2 and IFN- $\alpha$  (Capuron et al., 2002) and the severity of depressive-like symptoms in these patients were positively correlated with the magnitude of decrease in TRP concentration during the treatment, suggesting that depression onset and symptomatology might be influenced by TRP levels and, as a consequence, by the levels of the 5-HT. To better understand whether TRP might be useful for treating or preventing depression, the effect of diet supplementation of TRP was investigated, but despite initial positive premises this approach was not successful. On the other hand, acute TRP depletion was shown to produce a decrease in brain 5-HT levels and lower mood (Young, 2013). However, no evidence was found to prove a connection between decreased brain TRP and 5-HT levels in inflammation-associated depression.

Furthermore, TRP was also shown to interact with the glutamatergic system via the kynurenine pathway. It has been proposed that the equilibrium between these metabolites is disrupted by cytokines, such as IFN- $\gamma$ , TNF- $\alpha$  and IFN- $\alpha$  (Widner, Ledochowski, & Fuchs, 2000), inducing neurotoxicity by promoting microglia activation and down-regulating astrocyte activity (Muller, Myint, & Schwarz, 2009). Specifically, the accumulation of QUIN produces a hyper glutamatergic status which was associated with depression and it was also observed to promote hippocampal atrophy and to impair the physiological negative feedback regulation of the HPA axis, due to the reduction of corticosteroid receptors (Wichers & Maes, 2004). Lastly,

increased levels of glutamate in the brain were shown to be responsible of reduced levels of some neurotrophic factors, such as BDNF (Hardingham, Fukunaga, & Bading, 2002). This imbalance might explain the connection between inflammation and depression, as reduced levels of BDNF were described in patients with depression compared with control individuals (Myint et al., 2007).

Figure 1.1. Schematic representation of the kynurenine pathway in human periphery and brain. Figure from (Brown, Huang, & Newell, 2021).



## 1.1.1.4 Neuroplasticity and neurotrophins

Changes in neuroplasticity and brain size in patients affected by depression were observed (Caviedes, Lafourcade, Soto, & Wyneken, 2017), and *post-mortem* and *in vivo* studies described a reduction in hippocampal volume, glial cell loss, neuronal atrophy and synaptic loss in patients with depression (Cobb et al., 2013). Similarly, reduced hippocampal volume was observed in suicide attempters with MDD compared with non-suicidal patients with MDD (Colle et al., 2015). Similar findings were observed also in younger populations; for example, bilateral reduced grey matter density in the hippocampus and a reduction in the volume of the left hippocampus was found in girls at high risk of developing depression compared with low-risk girls (Chen, Hamilton, & Gotlib, 2010).

## **1.2** Gene expression studies and Depression

### **1.2.1.** The interplay between genes and environment

Together with the mechanisms underlying the pathophysiology of depression that were acknowledged in the previous chapter, also genetic variants must be discussed in relation to depression. Indeed, a milestone in the pathophysiology field is the interaction Gene X Environment (G X E), that investigates the interplay between genetic variants and environmental risk factors (such as childhood trauma) in the pathophysiology of MDD. Indeed, twin studies suggested that 35-45% of variance in risk for MDD depends on genetic factors, and several studies investigated the genetics of mood disorder by using genome-wide analysis (Sullivan, Neale, & Kendler, 2000). However, difficulties in identifying and replicating the studies on genetic variants associated with MDD were widely observed over the years, and these difficulties were explained by mainly pinpointing the role of the environment and by the G X E interaction. This interaction was observed in the early 2000s by Caspi and colleagues, who argued that previous inconsistencies of polymorphisms and candidate gene findings were due to effect of the environment exposure (Caspi et al., 2002). Specifically, they showed as an example that the impact of the 5-HTTLPR polymorphisms on depression was moderated by exposure to stress early in life, and specifically that the positive association between stressful life events and depression was stronger in individuals carrying the short allele (Caspi et al., 2003).

As previously mentioned, genome-wide association studies showed significant difficulties in identifying vulnerability genes for MDD, as for examples no significant findings were observed in the Psychiatric Genomics Consortium (PGC) study or in the CHARGE meta-analysis of depressive symptoms. The reasons underlying these

difficulties lied in the fact that MDD is influenced by many genetic loci and thus the effect appear smaller (Wray et al., 2018). Hall and colleagues conducted a genomewide meta-analysis of stratified depression in two large British cohorts, the Generation Scotland, and the UK Biobank, by conducting an unstratified analysis followed by a subsequent analysis stratified based on the recurrence of MDD or biological sex. In this study, the authors identified one genome-wide significant locus only in MDD males but not in relation to females or to the recurrence of MDD (Hall et al., 2018). Recently, a genome-wide association meta-analysis based on more than 135 thousands of cases and 344 thousands of control was able to identify 44 independent and significant loci as associated with clinical feature of MDD (Wray et al., 2018). Nevertheless, very recently Coleman and colleagues performed a metaanalysis on the PCG genome-wide association studies of MDD and bipolar disorder, by also adding data from an additional major depressive disorder cohort from the UK Biobank. This meta-analysis resulted in seventy-three loci reaching the genome-wide significance, including also novel genes that were never identified before. Among those loci, the majority were associated with MDD only, and those that were different between MDD and bipolar disorder were pinpointed by the authors as the results of the epidemiological heterogeneity rather than biological mechanisms (Coleman et al., 2020).

Together with GWAS studies, also transcriptomic and candidate genes approaches were used to identify possible biomarkers and mechanisms underlying depression. A wide plethora of studies were conducted on a candidate-gene basis to identify possible biomarkers. However, almost all large-scale genome wide association studies failed to detect genes at a genome-wide significance level. Similarly, also candidate

gene studies showed a small replicability in terms of genes associated to MDD. For example, in the replication study conducted by Bosker and colleagues in 2011, they were able to replicate only a very small percentage of the previous studies, specifically only 7% of genes and 3-4% of SNPs (Bosker et al., 2011). More recent literature tried to review and replicated the candidate gene studies on MDD, as the one published in 2016 by Luo and colleagues, in which the authors conducted a systematic review of genetic association studies on MDD published between 2007 and 2012. Their analysis resulted in the replication of only 9 SNPs and in the replication of 18 genes (Luo et al., 2016). Similarly, a very recent systematic review of candidate genes for MDD was published by Norkeviciene in 2022, which continued the work of Luo and colleagues, thus exploring data on candidate gene for MDD from 2012 to 2019 (Norkeviciene et al., 2022). However, only a few polymorphisms and genes were studied and identified after the 2012 systematic review of Luo, suggesting a diminished interest in investigating candidate gene as biomarkers for MDD. Moreover, in their study they confirmed 18 genetic polymorphisms, and 23 genes were identified to be related to MDD. Moreover, following a pathways analysis, their analysis showed that most genes were involved in signaling transmission, specifically glutamate neurotransmission, as among those genes they identified the glutamate receptors GRIA2, GRIN2A, GRIK1 and GRIK4. On the other hand, further genes were shown to encode for proteins involved in neurotransmission through the regulation of calcium channel activity, such as the neuropeptide Y (NPY) and neuropeptide Y receptor Y2 (NPY2R), whereas other genes were responsible for monoamine transporter activity (such as SLC6A2, SLC6A3, and SLC6A4). Lastly, further genes were involved in apoptotic mechanisms, indicating

that apoptosis might be considered an important metabolic pathways involved in MDD (Norkeviciene et al., 2022).

In the scenario of identifying the mechanisms underlying the onset of depression, several studies were focused on identifying a panel of biomarkers suitable for a clear identification of depression. Indeed, some studies identified a panel of genes able to distinguish between depressed and non-depressed individuals. A classifier tool for MDD was developed by using a panel of 7 genes, which was shown to discriminate MDD patients from control with a sensitivity of around 77% and specificity of around 72% (Spijker et al., 2010). Similarly, in a stimulated blood-based genome-wide approach, Menke and colleagues built a classifier for MDD by using a set of 19 genes including for example FKBP5. They observed a sensitivity of 80% and a specificity of 87.5% in discriminating MDD patients from control subjects (Menke et al., 2012). Similar approaches were also applied for predicting antidepressant response in MDD patients (Lin & Tsai, 2016). However, similarly to what previously mentioned, the replication of such biomarkers was not successful.

The very recent study of Mariani and colleagues provide a wide overview of both the candidate and genome-wide studies conducted so far, specifically focusing on the top mechanisms believed to play a major role in the onset of depression, such as inflammation, neuroinflammation, neurotransmission and stress-related mechanisms. Overall, this review showed: 1) a positive correlation between an up-regulated expression of pro-inflammatory genes with the presence of MDD; 2) a dysregulation of neurotrophic and growth factors, such as BDNF and VEGF, as linked with cognitive impairment frequently observed in MDD patients; 3) the involvement of several neurotransmitters and their receptors (specifically the glutamatergic

receptors) in the pathogenesis of MDD; 4) altered expression of stress-related genes in MDD patients, even though inconsistent results were observed. Interestingly, the genome-wide gene expression studies reviewed in the work of Mariani and colleagues, confirmed the association between disfunctions in the inflammatory and stress response as well as in neuroplasticity and neurotransmitters pathways with depression (Mariani et al., 2021).

However, discrepancies were clearly observed in the studies conducted so far, and such discrepancies in the G X E interaction were deeply highlighted by Border and colleagues in 2018. Specifically, the authors examined multiple types of association between 18 highly studied candidate genes for MDD, such as BDNF, SLC6A4, and HTR2A. Surprisingly, they showed that none of the most highly studied polymorphisms within these genes were associated with depression. Moreover, they did not find evidence to support the moderation of polymorphism effect by exposure to traumatic events or socioeconomic adversity, in contrast with the G X E theory (Border et al., 2019). Thus, this study clearly showed results in contrast with the published candidate gene literature.

Overall, although recent literature might have doubted the previous hypothesis associated with depression as well as the interaction of genetic factors and the environment, it is impossible not to acknowledge the many evidence showing a role of inflammation, stress, neurogenesis and monoamines in the onset of depression. Indeed, both aspects might be considered by using hypothesis free approaches for investigating possible new signatures or mechanisms associated with depression, such

as using RNA Sequencing or genome-wide gene expression analysis as it was used in this doctoral study.

### 1.2.2 Epigenetic changes and depression

Not only genetic but also environmental factors play an important role in the risk of developing MDD as well other psychiatric disorders. Indeed, a plethora of studies have shown that the genetic predisposition with the combination of environmental risk factors, such as exposure to early in life stress, can lead to the onset of depression via epigenetic mechanisms. When talking about epigenetic mechanisms, we can refer to the following definition of Waddingon: "An epigenetic trait is a stably heritable phenotype resulting from changes in a chromosome without alterations in the DNA sequence" (Waddington, 1940). These epigenetic changes can be mediated by several mechanisms, such as histone modifications, DNA methylation, non-coding RNAs (such as miRNAs), and chromatin remodelling. Although this is not the main focus of this doctoral thesis, as epigenetic modification were not investigated, it is still important to acknowledge that there are several evidences showing the contribution of epigenetic changes in the pathogenesis of MDD. For example, several DNA methylation studies in peripheral tissues showed evidences of differences in MDD patients compared with controls; for example, several studies showed an hypermethylation in the loci encoding for the BDNF and SLC6A4 genes, that were deeply shown to be associated with MDD (M. Li et al., 2019). Moreover, differences in MDD patients compared with controls were also observed with regards to histone modifications and non-coding RNAs. Regarding the latter, several studies also in our research lab focused their attention on the modulation of miRNAs as possible

mediators of the onset of MDD, but also as possible future biomarkers for identifying the presence or risk of depression as well as for predicting the response to antidepressant drugs (Lopizzo, Zonca, Cattane, Pariante, & Cattaneo, 2019). For example, a recent review of 23 studies investigating the levels of miRNAs in peripheral tissues of individual with depression identified 178 different miRNA showing a differential expression in MDD patients compared with controls (Yuan, Mischoulon, Fava, & Otto, 2018). Moreover, miRNAs were also shown to play an important role in the pathogenesis of depression by mediating the effect of early in life stress, which was deeply shown to be a well-known risk factors of MDD (Allen & Dwivedi, 2020). Overall, these findings showing an implication of epigenetic processes in MDD indicate that both genetic and epigenetic signatures play an additive role in the pathophysiology and MDD, also via their interaction with environmental factors, such as stress early in life (Torres-Berrio, Issler, Parise, & Nestler, 2019).

#### **1.2.3** Omics approaches in depression

In terms of experimental approaches for the identification of mechanisms and biomarkers able to identify and predict the risk and/or the presence of depression, genome-wide gene expression is one of the most used and validated approach, with several studies published investigating the mechanisms underlying the psychopathology in both clinical and pre-clinical models (Cattaneo et al., 2019; Cattaneo et al., 2018; Hepgul et al., 2016). A large number of studies used genomewide association as the investigating method for the identification of biological risk factors for the onset of depression, both early and later in life (Cattaneo et al., 2013; Pajer et al., 2012; Spindola et al., 2017).The use of -omics approaches, such as microarrays and RNA sequencing techniques, have surely important advantages. Differently from the candidate-gene approaches – which have a specific panel of target genes to be investigated – the genome-wide approaches are hypothesis-free methods that thus are not biased by previous hypothesis of targeted molecules or mechanisms to be researched, but they analyze the entire genome or transcriptome, allowing to identify novel mechanisms or biomarkers associated with the risk or presence of depression. Secondly, the -omics methods, by exploring the whole genome, allow the investigation of thousands of genes or transcripts at the same time, and they subsequently allow to perform further analysis requiring the information of several genes, such as pathways analysis (as I performed in this doctoral thesis).

Most of the studies conducted so far by using genome-wide approaches used *post-mortem* brain tissue and peripheral blood samples (Mariani *et al.*, 2021), and in this doctoral project peripheral blood samples were used. The use of peripheral blood samples have several advantages, such as the possibility to collect large sample sizes, to easily stabilize RNA directly during the blood withdrawal and it also allows to isolate specific cell subtypes such as peripheral blood mononuclear cells (PBMCs) or leukocytes (Mariani, Cattane, Pariante, & Cattaneo, 2021). The association between brain and the peripheral blood was demonstrated by Sullivan and colleagues (Sullivan, Fan, & Perou, 2006). In their study, they investigated the genes shared among whole blood and sixteen different brain tissues, showing that 60% of transcripts were expressed in whole blood and in at least one brain tissue. Moreover, they observed that both blood and brain tissues have a similar expression profile with regards to genes related to MDD, such as genes related neurotransmitter receptors ad transporters, growth factors, hormones and inflammation (Sullivan et al., 2006).

Since many studies in literature explored the genome-wide approaches to investigate mechanisms underlying mental health disorders and given the advantages of such approaches in identifying potential novel signatures of risk or presence of depression, in this doctoral thesis genome-wide approaches were used as these were shown to be suitable techniques to provide important hypothesis-free data in the context of adolescent depression.

# **1.3 Adolescent depression**

The onset of depression usually occurs during pubertal age and teen depression is one of the leading causes of disability among adolescents. The World Health Organization estimated that about 10-20% adolescents experience at least one depressive episode before the end of adolescence, and this could represent a threat for teen-agers as depressive episodes represent the first cause of suicide among youth (Adolescent Mental Health, WHO, 2018). A report from the National Institute of Mental Health (NIHC) estimated that in U.S. 3.1 million adolescents, aged between 12 and 17 years old, experienced at least one depression episode and this rate significantly increased in 2016 compared with the period between 2004 and 2014. The teen-agers suffering with depression represent 12.8% of their total peers. As previously mentioned, similarly to adulthood, depression is more prevalent in girls (19.4%) than in boys (6.4%) (National survey on drug use and health,2016). Furthermore, adolescents suffering with depression are more likely vulnerable to develop drug abuse and suicide attempts.

Suicide is the third leading cause of death in 15-19 years old (WHO, 2018) and it was estimated that about 62,000 adolescents died because of self-harm in 2016 (NIHC, 2016). The burden of teen depression is worsened by the difficulties in obtaining diagnosis and treatment for this disorder, especially in low and middle-income countries (LMICs), where adolescents account for 90% of the total adolescent population worldwide (NIHC, 2016). Among the main reasons for under-diagnosis of depression in LMICs are the poor knowledge or awareness about psychiatric disorders among health workers, and the stigma preventing adolescents from seeking help (Wainberg et al., 2017). The burden of depression in LMICs is worsened by the intrinsic

difficulties in large mental health screening and by the poorer equipment available, as well by the social and cultural gap which characterized these poorest nations (Rathod et al., 2017).

The complexity of MDD pathophysiology and its heterogeneity has represented an important challenge for its diagnosis and treatment. However, adolescent depression was proven more challenging for clinicians, and the reasons are multiple. Adolescent and children depression diagnostic criteria are the same used to define MDD in adults, with the exception that irritable rather than depressed mood is allowed by the DSM-IV and 5 as a core diagnostic mood symptom for children and adolescents (APA, 2000, 2013). However, differences in symptomatology were observed between adolescents and adults. For example, vegetative symptoms such as appetite and weight disturbance, fatigue and insomnia are more common in depressed children and adolescents, whereas hypersomnia seems to be less common. Regarding somatic symptoms, musculoskeletal pain and headaches are particularly frequent in teenagers (Rice et al., 2019). Differences in adolescents' symptomatology can also differ accordingly to the severity of depression, as observed in the study of Cole and colleagues; specifically, concentration problems, feelings of worthlessness and sleep problems are present at low levels of depression severity, whereas psychomotor agitation/retardation, weight and appetite problems and suicide ideation are more common only at high levels of depression severity (D. A. Cole et al., 2011). In the very recent work by Rice and colleagues (Rice et al., 2019), the manifestation of depressive symptoms in adolescents and adults was compared and it was shown that in adolescents loss of energy (97%), insomnia (87%) and appetite and weight changes

(87%) were more common than in depressed adults (71%, 63% and 59% respectively). Interestingly, Rice and colleagues also did not find any evidence that irritability was more common in adolescent than in adult depression, despite irritable mood was allowed to be one of the core symptoms for adolescent depression (Rice et al., 2019).

#### **1.3.1.** Genome-wide gene expression studies in adolescent depression

Following the chapter 1.2 on gene expression studies in depression, it is noteworthy to mention that the majority of the studies investigating gene expression in MDD were conducted so far on adult individuals, whereas only a paucity of them on adolescents (Chiang et al., 2019; Ota et al., 2020; Pajer et al., 2012; B. Zhao et al., 2022).

In terms of genome-wide gene expression studies, the very recent study of Zhao and colleagues performed RNA-Seq analysis on peripheral blood samples of ten depressed adolescents and ten controls aged between 14 and 19 years old, yielding almost nineteen thousands of genes differentially expressed (B. Zhao et al., 2022). After performing a functional enrichment analysis of those genes, they identified that those strongly linked to MDD were involved in apoptosis, TNF signalling pathways, and NF-kappa  $\beta$  signalling pathway. Furthermore, a pathways enrichment analysis showed that the pathways most significantly associated with the DEGS were principally involved in positive regulation of histone methylation, positive regulation of T cell mediated immunity, and postsynaptic density. Overall, most of the genes and pathways linked to MDD were associated with stress response and immunity. Therefore, this study supported the role of inflammation, immune response, and neurodegeneration in adolescent depression.

A further study using genome-wide gene expression analysis to investigate the mechanisms underlying adolescent depression was conducted by Chiang and colleagues in 2019, by performing RNA-Seq analysis on PBMCs from peripheral blood samples of 87 adolescents aged 18 years old (Chiang et al., 2019). An up-regulation of inflammation-related genes and a down-regulation of antiviral-related genes was observed in adolescents with depression compared with their non-depressed peers. Specifically, they observed that the pattern of differential gene expression was mediated by an increased activity of the pro-inflammatory NF-K $\beta$ , and by a reduced activity of glucocorticoid receptors and interferon response factors, suggesting again a link between depression and immunity also in adolescent depression.

# **1.4 Identifying Depression Early in Adolescence (IDEA Project)**

The aim of the IDEA consortium was to develop risk detection strategies incorporating biological, psychological, and social factors that can be assessed in different global settings and populations. The ultimate and ambitious goal of the IDEA project was to improve the early detection and prevention of adolescent depression, starting from Brazil and LMICs and extending the findings worldwide. The IDEA project focused its attention on three different cultural and economic settings: Brazil, Nepal, and Nigeria. Brazil is an upper-middle income country that is witnessing a rapid development regarding economics and urbanization. Nepal is one of the poorest countries in the world where many adolescents live in humanitarian settings due to recent emergencies such as civil war and environmental disasters. Nigeria is the most populous LMIC in Africa and it accounts for a large adolescent population that is experiencing the rapid development of African economies, chronic exposure to political and community violence and high rates of infectious disease such as HIV.

In the context of the IDEA project, it is important to acknowledge that about 30% of depressed patients do not respond to first line antidepressant drugs and 20% do not achieve an amelioration on symptomatology even after more than three different antidepressant approaches (Labermaier, Masana, & Muller, 2013). Moreover, the stigma of depression and generally mental health prevents individuals to seek for help, leading to a deterioration of the symptomatology. Frequently, antidepressant drugs carry heavy side effects which leads to abandon the therapy. Lastly, the access to a prompt and proper diagnosis of depression and to initiate the most suitable antidepressant therapy is much more difficult in LMICs, leading to the increase of the

burden of depression in these poorer settings. Thus, predicting and then preventing the onset of depression represents an important step towards reducing the burden associated with adolescent depression and improving the general condition of adolescents with depression. Since depressive symptomatology typically become manifest during adolescence, this was considered as an important temporal window in which act for preventing the onset of disorders by the IDEA team. The need for improving prevention strategies for adolescent depression led to the development of the Identifying Depression Early in Adolescence (IDEA) project, which is a multidisciplinary global mental health consortium with the main aim to help identification of adolescents at high or low risk of developing depression with a specific focus on LMICs. My doctoral thesis used the IDEA project as main platform for improving our understanding of biological pathways involved in increased risk and development of adolescent depression.

## 1.4.1 The IDEA Risk Score

Given these premises, as of the main goal of the IDEA Project was to early identify adolescent at risk of developing depression, the IDEA consortium thus developed a composite score (IDEA-Risk Score or IDEA-RS) to estimate individual-level probability of developing MDD among Brazilian adolescents. This composite risk score is a multivariable prediction model developed using data from the population-based 1993 Pelotas Birth Cohort, a prospective study conducted in south Brazil (Rocha et al., 2021). The study included every child born in the city in 1993, resulting in a total cohort of more than five thousand individuals. The data for the IDEA-RS were collected during the assessments at age 15 and 18 and, by using only sociodemographic variables easily obtainable directly from the adolescent at age 15, a risk calculator was developed to identify those adolescents at risk for developing MDD at age 18. The 11 selected and easily obtainable sociodemographic variables were:

- Biological sex
- Skin color
- Drug use
- School failure
- Social isolation
- Fight involvement
- Poor relationship with mother
- Poor relationship with father
- Poor relationship between parents
- Childhood maltreatment
- Run away from home (Rocha et al., 2021).

The IDEA-RS exhibited good discriminative performance to screen individuals at high and low risk for developing depression at age 18. Specifically, in the Pelotas Birth Cohort the discriminative capacity to distinguish between adolescents who later developed depression or not at age 18 ranged from 0.76 to 0.79 assessed by the Cstatistics (Rocha et al., 2021).

Moreover, differently from many other prediction models, which were not externally validated, the Brazilian risk score was validated in other countries such as UK and New Zealand. Firstly, the validation was performed in the Environmental Risk (E-Risk) Longitudinal Twin Study, tracking the development of a nationally representative birth

cohort of 2,232 twins born in England and Wales in 1994-1995. Secondly, the Dunedin cohort was also used for the external validation, which represents a longitudinal investigation of health and behavior in a complete birth cohort born between 1972 and 1973 in Dunedin (New Zealand). When applying the IDEA-RS to these two cohorts, an expected drop of the performance was observed, specifically a C-statistics of 0.59 for the E-Risk and 0.63 for the Dunedin Cohort (Rocha et al., 2021). The lower scores resulted in the external cohort is due to several reasons that indeed does not reduce the positive results obtained. Firstly, the variables from both the independent datasets did not perfectly pair with the eleven variables selected from the Pelotas study; specifically, in the E-Risk dataset 13.1% of the original model information was not available, whereas this loss accounts for 6.9% in the Dunedin cohort. Moreover, although all the three cohorts presented an assessment for depression at age 18, only the Pelotas and the Dunedin cohort presented assessments at age 15, whereas for the E-risk cohort data from the assessment at 12 years old were used. Indeed, the differences in the predictors' availability could have influenced the performance of the IDEA-RS in the other settings.

Noticeably, the ability of the IDEA-RS to predict the future onset of depression in adolescents was subsequently tested in two LMICs located in different continents and with different cultural, social, and economic backgrounds, such as Nepal and Nigeria. In Nepal, this prediction model was applied to data from a longitudinal study of former child soldiers matched with war-affected civilian adolescents. Out of the eleven sociodemographic variables employed by the original IDEA-RS, seven were included in the model (biological sex, ethnicity, drug use, school failure, social isolation, fight involvement and childhood maltreatment), resulting thus in 13,2% of the original

Pelotas model's information lost. The model showed an overall good performance, achieving good discrimination between depressed and non-depressed individual with an area under the curve (AUC) of 0.73 (confidence interval 0.62-0.83) (Brathwaite et al., 2021). Similarly, also in Nigeria the prediction model was reduced from eleven to seven predictors (biological sex, drug use, ran away from home, school failure, fights, childhood maltreatment, and social isolation), and it was able to predict future depression in an adolescent students' sample in Lagos. Specifically, it was estimated a chance of 62% (from 58.1% to 65.7%) that a randomly selected Nigerian adolescent who developed depression would have a higher risk than a randomly selected Nigerian adolescent who did not develop depression (Brathwaite et al., 2020).

Taking together, these results of the external validation might suggest that this prediction model can play a role in an early identification of vulnerable adolescents and that can be used in other LMICs to reduce the burden of depression and allow wider screening in the poorest settings worldwide. Indeed, adjustments of the IDEA-RS must be made accordingly to the different cultural, economic, and social background of the populations to which the risk score is applied. This might represent a limitation, however it is important to acknowledge that different cultural background requires specific attention, as a specific risk factor might not be considered in the same way worldwide.

### 1.4.2 The IDEA-RS and the IDEA-RiSCo

This IDEA-RS was adopted in the recruitment of a cohort of adolescents at high and low risk of developing depression in the context of the IDEA project in Brazil, named IDEA-Risk Stratified Cohort (IDEA-RiSCo). The IDEA-RiSCo is represented by a new

sample of adolescents screened for low or high risk of developing depression, as well as a group of adolescents with a currently untreated major depressive episode (Kieling et al., 2021). The IDEA-RiSCo is a milestone of my doctoral thesis, as it represents the cohort at the base of all the biological analysis that I conducted and that will be described and presented during this doctoral thesis. Briefly, 150 adolescents aged between 14 and 16 years old were recruited in the city of Porto Alegre, in the south of Brazil, and divided into three groups: i) 50 adolescents classified as having high risk of developing depression, ii) 50 adolescents classified as having low risk of developing depression, and iii) 50 adolescents with a current diagnosis of depression and high risk of developing it accordingly to the IDEA-RS. The detailed recruitment process and further details will be discussed in the Methods section (paragraph 3.1).

# 1.5 Sex differences in depression

### **1.5.1 Sex differences – General considerations**

Biological sex refers to the biological differences between males and females; the Institute of Medicine defines sex as *"being male or female according to reproductive organs and the functions assigned by chromosomal complement (XX for female and XY for male)"*. On the other hand, gender refers to social and cultural factors related to being a man or a woman, also depending on historical and cultural backgrounds (Wizemann & Pardue, 2001). This premises is necessary as sex and gender were misused in the last decades since they were used as synonyms also in several scientific fields. In this chapter, the term sex is referring to biological sex.

Biological sex plays a major role in the incidence of several disorders (Zonca, 2022b). To give some examples, the number of females suffering from Alzheimer's disease, Huntington's disease and multiple sclerosis were shown to be significantly higher compared with males, whereas males were shown to be more likely to suffer from Parkinson's disease (Ullah et al., 2019). Moreover, also the incidence of mental health related disorders is deeply affected by biological sex, as it was widely observed that females are more likely to suffer from depression, anxiety, panic disorder, phobias and agoraphobia compared with the male counterpart (Bandelow & Michaelis, 2015). Again, sex differences were observed also in developmental disorders, such as Tourette syndrome (90% males), autism spectrum disorder (80% males), attention deficit hyperactivity disorder (80% males), schizophrenia (73% males), anorexia nervosa (93% females) and anxiety disorder (67% females) (Bao & Swaab, 2010).

#### 1.5.2 Sex differences in incidence of depression

Although many psychiatric disorders present a sex-driven unbalance in their incidence as it was previously discussed, depression is indeed one of the mental disorders where this is most evident. The incidence ratio of depression is 2:1 in females compared with males, and this difference is almost the same through the entire lifespan (as previously described for adolescents). However, male children from 2 to 8 years old were shown to be slightly more likely to suffer from depressive episodes compared with girls (Cree et al., 2018), whereas the incidence of depression in females dramatically increases from early adolescence, as depression is more than twice as prevalent in young females aged 14-25 years old than males (Shorey, Ng, & Wong, 2021).

The possible reasons behind this variance in depression between females and males were deeply researched but a generally accepted conclusion has not been reached yet and remain under investigation (Zonca, 2022b). It is noteworthy to consider that the approach toward the symptomatology and how males and females react to depression seems to be opposite directed. Indeed, females are keener to ask for help and to engage in help-seeking behaviors, as they are more prone to seek treatment and psychological help in the earliest stages of the disorder. On the other hand, males are less disposed to ask for help but they engage in different more detrimental copying strategies, such as by increasing alcohol and drug abuse (Frackiewicz, Sramek, & Cutler, 2000). Although it is important to acknowledge differences in the help-seeking behaviors and copying strategies as part of the broader mechanisms in the explanation of sex differences in depression, it would be too simplistic to focus only

on these differences to explain the differences in the incidence of depression across sexes.

Indeed, sex hormones were hypothesized as one of the biological factors that can possibly explain such sex differences in depression. Indeed, changes in hormone levels during puberty, menstruation, pregnancy, and menopause were hypothesized to drive the sex differences in depression (Sramek, Murphy, & Cutler, 2016). For example, hormonal fluctuation during puberty were shown to be associated with an increased risk for developing depression in females (Studd, 2015), and this risk was shown to further increase after the menarche (DelRosario, Chang, & Lee, 2013; Parker & Brotchie, 2010; Studd, 2015). Moreover, both estrogens and progesterone were shown to be involved in mood modulation (Brinton et al., 2008) and higher levels of testosterone were associated with increased number of suicide attempt in females affected by bipolar disorder (Sher et al., 2014).

Together with sex hormones, also immunity was hypothesized to play a role in sex differences in depression, as differences across the two sexes in the immune response were observed. For example, higher inflammatory marker levels, and higher risk of developing autoimmune disorders were observed in females (Quintero, Amador-Patarroyo, Montoya-Ortiz, Rojas-Villarraga, & Anaya, 2012; Yang & Kozloski, 2012). Moreover, worsening of symptoms in various inflammation-related chronic diseases, were observed to be driven by menstrual cycle (Oertelt-Prigione, 2012). On the other hand, male sex hormones were shown to have mainly anti-inflammatory proprieties (Gilliver, 2010), whereas female sex hormones have both pro- and anti-inflammatory proprieties (Bereshchenko, Bruscoli, & Riccardi, 2018).

Taken together, these finding suggested the existence of a possible link between immunity and sex hormones that might explain sex differences in depression; this hypothesis was recently investigated in the meta-analysis of Lombardo and colleagues, that showed a possible protective roles of testosterone and exogenous female sex hormones via their modulation of the immune system (Lombardo, Mondelli, Dazzan, & Pariante, 2021).

There are also some disorders which are naturally related to one sex only, such as post-partum depression. Briefly, post-partum depression accounts for about 20% of the deaths by suicide after giving birth and it represents a serious condition for both the mother and the child. The incidence of post-partum depression ranges from 10% to 25%, and the depressive symptomatology usually lasts more than 6 months among 25% - 50% of females suffering from this condition (Beck, Records, & Rice, 2006). Moreover, another very common mood disturbance in the post-partum period is maternity blues, which is characterized by mild symptoms such as mood lability, irritability, generalized anxiety, sleep and appetite disturbance (Watanabe et al., 2008). As shown by a recent meta-analysis, the incidence of maternity blues is higher than post-partum depression as it affects from 14% to 75% of the new mums (Rezaie-Keikhaie et al., 2020). The mechanisms underlying both post-partum depression and maternity blues are probably attributable to the robust hormone changes that characterize pregnancy and the postpartum period, which persist also during the lactation period. Moreover, together with changes in estrogens and progesterone levels, some alterations were observed also in the HPA axis and in stress response (Brunton, Russell, & Douglas, 2008). Changes in hormone levels during pregnancy

were shown to influence the female brain: by parturition, the maternal brain shrinks by 8% and reverts to its original volume within 6 months postpartum (Oatridge et al., 2002). These changes might be responsible for the increased vulnerability to develop psychiatric symptoms in the postpartum period.

### 1.5.3 Sex differences in symptomatology of depression

The clinical manifestation of depression differs between males and females, as different depressive symptoms were observed accordingly to biological sex. Starting from adolescence, which is a period of life characterized by intrinsic behavioral and hormonal differences in males and females, adolescent females report to experience more guilt and bodily dissatisfaction, self-disappointment, feelings of failure and concentration problems than males. On the other hand, males experience more anhedonia, morning depressed mood and morning fatigue (Bennett, Ambrosini, Kudes, Metz, & Rabinovich, 2005). Differences across sexes in the symptomatology persists also in adulthood and they were widely investigated in the STAR\*D study; at baseline adult females reported greater rates of hyperphagia and weight gain, hypersomnia, gastrointestinal disturbances as well as were more likely to report anxiety-like behavior and suffer from bulimia (Marcus et al., 2008). On the other hand, adult males reported an increase in comorbid substance abuse and deadly suicide attempts.

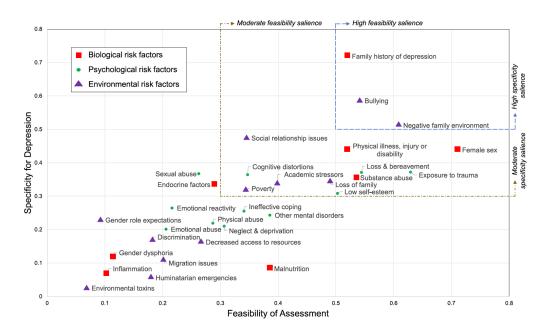
Hence, these differences in symptoms might represent the tip of the iceberg of further differences driven by biological sex; understanding and investigating the mechanisms – either biological or not – underpinnings those differences might be of paramount importance for better understanding the pathophysiology of depression.

Besides from depressive symptomatology, differences across sexes were investigated also in relation to the pathways towards MDD, specifically considering how specific risk factors can differently affect males and females. This aspect was investigated in a co-twin study that matched sisters and brothers on genetic and familialenvironmental background. This study showed that low parental warmth, parental loss, neuroticisms, lifetime trauma, divorce, social support, and marital satisfaction contributed more significantly to the onset of MDD in females rather than in males. On the other hand, low self-esteem, drug use disorder, history of MDD, and distal and dependent recent stressful life events were more strongly associated with males (Kendler & Gardner, 2014). In line with these evidence, two categories of depression were proposed: the anaclitic and the introjective depression. The first one refers to the vulnerability to interpersonal relationship and it is more common among females, whereas the second is characterized by a vulnerability to low self-esteem and it is more common in males (Reis & Grenyer, 2002). For instance, this was observed in a study investigating differences across sexes with regards to their self-perceived changes on the workplace. Male workers with MDD were observed to report more often reduced work efficiency, whereas depressed females were shown to be more likely worried about deterioration in relationship with colleagues and superior (Niki et al., 2020). Taking together, this evidence suggests that males are more sensitive to failure to achieve goals, whereas females are more sensitive to interpersonal relationship. Thus, depression seems to deeply impact self-esteem and worries regarding financial, work, and legal problems in males, whereas failure in social relationship as well as in marital status and family problems seems be more affected in depressed females.

# **1.6 Risk factors and biomarkers for adolescent depression**

Considering that treatment alone of depression is not sufficient to completely address the problem and to reduce its burden, the identification of those adolescents at risk of developing depression as well as the implementation of preventive strategies can surely represent a milestone in the battle against adolescent depression. To achieve this goal, possible risk factors for depression were widely investigated and identified over the last decades, including biological and environmental risk factors. However, given the well-known fact that depression is an extremely heterogenous condition, identifying just one risk factor responsible for the onset of MDD in an individual is unrealistic. The existence of risk factors is deeply connected with the concept of vulnerability and resilience to depression, which is particularly important for the development of prevention strategies. For example, stress was shown to be an important risk factor for the development of several psychiatric disorders, but its impact on each individual can be different: although experiencing stressful events represents a risk toward the development of mental health problems, not all the exposed individuals will end up developing psychiatric disorders. On the contrary, many acquire coping strategies and become resilient to stress, whereas other might become vulnerable and thus at higher risk of developing psychiatric disorders, such as depression (Pfau & Russo, 2015; Wu et al., 2013).

### **1.6.1** Risk factors for depression in the context of the IDEA project


In the recent literature, several studies focused on prevention and early detection of adolescent depression; however, these studies were all primary conducted in westernized, educated, industrialized, rich and democratic setting – the so-called

WEIRD societies- with a large gap for studies conducted in LMICs. Unfortunately, this gap represents a significant problem since all the strategies that were applied to prevent mental health disorders in LMICs were based on concepts and risk factors which were developed by assumptions from WEIRD populations. Accordingly to the critical analysis that were reported also by the IDEA consortium, using risk factors from HICs to be applied to LMICs is problematic mainly for three reasons: 1) risk factors may be interpret differently across different cultural context; 2) risk factors may have different impact across different populations; 3) the feasibility of assessing and measuring specific risk factors varies across different settings (Wahid et al., 2021). Sign and symptoms of depression as well as risk and protective factors can manifest differently across settings, specifically among HICs and LMICs which are extremely different in terms of culture, economy, environment, family structures, gender role, and societal norms. Hence, there is a need for a context-specific understanding of mental health, adolescent experience and risk and protective factors in LMICs, as cultural conceptions of depression were shown to significantly vary across context and populations. Moreover, the identification of screening tools in LMICs might be difficult due to the actual feasibility of applying such preventive strategies in different settings; hence, assessing the feasibility of such research is a necessary step to be considered. Lastly, LMICs usually lack of specific ethical and institution policies for research involving adolescents, specifically when considering psychiatry (Wahid et al., 2021). The aim of understanding the feasibility of assessing risk factors in adolescents from diverse cultural, social and economic settings (such as LMICs) and which might be those risk factors is one of the points which were addressed by the IDEA consortium by a Delphi study, which is a consensus building approach that consists in collecting

expert opinion through multiple survey panels, and which is able to fill the literature's gap by providing a "state of the field" expert recommendation as base for further action. In the IDEA Delphi study, the experts were requested to identify biological, psychological, and environmental risk factors for adolescent depression as well as providing feedback regarding early signs and detection strategies of adolescent depression (Wahid et al., 2021). When addressing biological risk factors, the most highly ranked were female sex, substance abuse, physical illness/injury or disability, and family history (Figure 1.2). Regarding psychological risk factors, they identified exposure to trauma, loss and bereavement, sexual abuse, cognitive distortion, and self-esteem. Lastly, the most highly ranked of the environmental risk factors were bullying, family environment, social relationship issue, loss of family, academic stressors, and poverty. Among those risk factors, three were ranked as highly specific and highly feasible to measure in LMICs: family history of depression, exposure to bullying and negative family environment; six were considered as modestly specific but highly feasibly to measure: physical illness or disability, female sex, bereavement, trauma exposure, substance abuse and low self-esteem. Five of them were ranked as modestly specific and modestly feasible: social difficulties, academic stress, poverty, loss of family and cognitive distortion. Lastly, five were ranked as less modestly specific and feasible to measure: mood changes, loss of interest, social isolation, suicidality, and sleep changes (Wahid et al., 2021). It is noteworthy to mention that inflammation was mentioned and included in the biological risk factors, suggesting the knowledge and the concern about it, but it was not ranked as one of the most significant risk factors, indicating a critical skepticism towards the feasibility of using inflammation as a risk factor for screening adolescent depression in LMICs, and

suggesting also the differences between HICs and LMICs settings in terms of choosing the most suitable and feasible panel of risk factors (Wahid et al., 2021).

Given these premises, the following chapter will provide a short overview of the environmental and biological risk factors for the onset of depression by considering the current literature, which considers mainly cohorts from HICs. Figure 1.2. Biological, psychological, and environmental risk factors from the IDEA Delphi study Y-axis: higher scores represent greater ranking of specificity for adolescent depression; X-axis: higher scores represent greater ranking for ease of feasibility to assess the risk factor in the respondents' context. Figure from (Wahid et al., 2021).



### 1.6.2 Environmental risk factors

Familial history of depression and/or mental health disorders were associated to increased risk of developing depression. Children born from parents with depression are three to four times more likely to face depression than children of parents without MDD (Weissman et al., 2006). Moreover, familial depression was shown to impact also the third generation affecting around 60% of grandchildren (Weissman et al., 2005). In addition, children of parents with depression are more likely to experience more severe and continuous courses of depression (Goodman et al., 2011). Although it was deeply shown that children of parents with depression are at heightened risk for developing MDD, yet little is known about the specific mechanisms underlying this risk. The model of the transgenerational transmission of depression was proposed by Goodman and Gotlib, and it hypothesized four possible mechanisms: 1) heritability, 2) innate dysfunctional neuro-regulatory factors, 3) negative maternal cognitions, behaviors, and affect, and 4) stressful context of the children's life, which are linked to cognitive, affective and behavioral deficits in children (Goodman & Gotlib, 1999). The study of Loechner and colleagues compared various potential mechanisms and it showed that children of parents with depression presented significantly more symptoms of depression and general psychopathology, less adaptive emotion regulation strategies, fewer positive life events and fewer positive parenting strategies compared with children of parents without MDD (Loechner et al., 2020). Familiar depression was shown to be associated with younger age of onset of MDD, specifically in patients with depression onset before age 20 (Kendler, Gatz, Gardner, & Pedersen, 2005; Tozzi et al., 2008).

Another important environmental risk factor acknowledged by the recent literature is the exposure to early life stress, which was shown to be a vulnerability factor for the onset of depression through the entire lifespan (LeMoult et al., 2020; Mandelli, Petrelli, & Serretti, 2015; Widom, Dutton, Czaja, & DuMont, 2005). A European Report from WHO indicates that at least 18 million children in Europe suffer from childhood trauma, harming mental and physical health. According to the Centers for Disease Control and Prevention in USA, childhood maltreatment is defined as "acts of commission or omission by parents or other caregivers (e.g., clergy, coach, teacher) resulting in potential harm to the child's health". Acts of commission are divided into physical, sexual, and psychological abuse, whereas acts of omission are classified as physical, emotional, medical, or educational neglect or failure to supervise (Hauser, Schmutzer, Brahler, & Glaesmer, 2011). Several studies in literature showed that the onset of mood disorders, such as depression, was deeply influenced by stressful life events experienced in childhood (Horesh, Klomek, & Apter, 2008; K. S. Kendler, J. Kuhn, & C. A. Prescott, 2004a; K. S. Kendler, J. W. Kuhn, & C. A. Prescott, 2004b). In one community-based study of approximately 2,000 women, those with a history of childhood physical or sexual abuse had an increased risk of depression and anxiety and were more likely to have attempted suicide than women without such a history (Kendler et al., 2004b).

### 1.6.3 Biological risk factors

Biological markers were deeply investigated with the aim to better guide and develop interventions and prevention strategies for depression (Lombardo et al., 2019; Raison & Miller, 2013). Although various biological mechanisms were explored and

examined, no biomarkers were clearly identified or validated for risk or presence of depression in adolescence and young adulthood (D'Acunto, Nageye, Zhang, Masi, & Cortese, 2019; Lopez-Duran, Kovacs, & George, 2009). Several theories explaining biological pathways underpinning depression in adults were proposed, including the monoamine theory, the increased activation of the immune system, and abnormalities of the HPA axis (Dowlati et al., 2010; Kennis et al., 2020; Pariante & Lightman, 2008). Other potential biomarkers were suggested based on neuroimaging studies (e.g., fronto-limbic dysregulation with hyperactivity in limbic brain structures and hypoactivity in the prefrontal cortex) (Jaworska, Yang, Knott, & MacQueen, 2015; Zhong et al., 2011). Other associated biomarkers included endocannabinoids (Hill, Miller, Ho, Gorzalka, & Hillard, 2008; Z. E. Zajkowska, Englund, & Zunszain, 2014), neurotrophic factors (Duman & Li, 2012), polyunsaturated fatty acids (PUFAs) (Grosso et al., 2014), hormones (Hacimusalar & Esel, 2018), telomere length (Simon et al., 2015), and vitamin D (Menon, Kar, Suthar, & Nebhinani, 2020), but these associations lack consistency across studies and populations.

### 1.6.3.1 Inflammation

Inflammatory mechanisms were suggested to play an important role in the pathogenesis of depression. As shown by a series of recent meta-analysis, higher levels of peripheral inflammatory cytokines were widely observed in adult patients with depression (Kohler et al., 2017; Leighton et al., 2018; Osimo, Baxter, Lewis, Jones, & Khandaker, 2019; Osimo, Pillinger, et al., 2020). Individuals with MDD showed higher serum or plasma levels of pro-inflammatory cytokines, such as IL-6, IL-10, IL-12, IL-13, IL-18, and TNF- $\alpha$ , compared with healthy controls (Himmerich, Patsalos,

Lichtblau, Ibrahim, & Dalton, 2019); moreover, the hyperactivation of the immune system were considered as a risk factor for the development of depression (Raison, Capuron, & Miller, 2006). Increased levels of inflammatory markers were also associated with reduced response to antidepressant medications. The recent metaanalysis of Liu and colleagues showed reduced baseline levels of IL-8 and CRP in patients with depression who subsequently respond to antidepressant drugs (J. J. Liu et al., 2020), and Cattaneo and colleagues showed evidence of inflammasome activation and glucocorticoid resistance in both drug-free and TRD patients with depression (Cattaneo et al., 2020).

Far less studies focused their attention on adolescent depression. The meta-analysis of D'Acunto and colleagues reported higher TNF- $\alpha$  levels in adolescents aged up to 18 years old with depressive disorders versus control subjects (D'Acunto et al., 2019). Similarly, the meta-analysis of Colasanto and colleagues showed higher levels of CRP and IL-6 in adolescents with depression compared with their control peers (Colasanto, Madigan, & Korczak, 2020). Adolescent girls at risk of developing depression due to family history or cognitive vulnerability, were shown to have elevated CRP at a 6-month follow-up, and that high levels of IL-6 were associated with increased depression risk at follow-up (G. E. Miller & Cole, 2012). Similar results were also reported by Khandaker and colleagues, showing high levels of IL-6 in association with greater depression risk (Khandaker, Pearson, Zammit, Lewis, & Jones, 2014). Lastly, Moriarity and colleagues observed that increases in TNF- $\alpha$  predicted increase in depressive symptoms, whereas CRP, IL-6, IL-8, and IL-10 did not have significant within-person effects on change in total depressive symptoms (Moriarity et al., 2020).

#### 1.6.3.2 HPA axis

Given the already discussed link between stress and depression, researchers focused their attention on HPA axis activity by measuring cortisol levels in saliva and blood samples of adolescents, as possible biological mechanisms involved in the presence or risk for adolescent depression. However, current literature reported heterogenous results. For example, elevated morning cortisol levels were linked to increased vulnerability in developing depression during adolescence (Adam et al., 2010; Owens et al., 2014; Vrshek-Schallhorn et al., 2013). Conversely, blunted cortisol response to a laboratory stressor was associated with subsequent increase in depressive symptoms (Keenan et al., 2013). A possible explanation of such inconsistencies might be the different developmental stages at which participants were assessed across the studies, as it is known that pubertal development is characterized by changes in cortisol production (Colich, Kircanski, Foland-Ross, & Gotlib, 2015).

Furthermore, the role of cortisol in the development of adolescent depression was investigated in the very recent meta-analysis published by our group in the context of the IDEA project. This study investigated the relationship between cortisol and MDD in adolescents and youth aged between 10 to 24 years old. The results showed that elevated morning cortisol levels were prospectively associated with later onset of MDD in adolescent. On the other hand, no differences in morning and afternoon cortisol levels as well as in cortisol stress response were observed between adolescents with depression and controls (Z. Zajkowska, Gullett, et al., 2021). Given these results, we suggested that elevated morning and nocturnal cortisol might represent risk factors for depression in adolescence, supporting the hypothesis of the

hyperactivity of the HPA axis in the development of adolescent depression (Z. Zajkowska, Gullett, et al., 2021).

It is also noteworthy to mention the "pubertal stress recalibration" theory proposed by Gunnar and colleagues (DePasquale, Donzella, & Gunnar, 2019; Gunnar, DePasquale, Reid, Donzella, & Miller, 2019). During infancy the HPA axis can calibrate different environmental conditions, and Gunnar and colleagues suggested that a similar pattern of calibration might occur also during puberty, that it is believed to be a second window of plasticity during which the HPA axis could recalibrate. This hypothesis might give further explanation of the heterogeneity of the results of the studies on HPA axis deregulation as a risk factor of adolescent depression.

#### 1.6.3.3 Interaction between environmental and biological risk factors

A growing body of literature investigated the interaction between environmental and biological risk factors in relation to the onset of depression, both in adolescence and adulthood. Among the environmental risk factors, exposure to early life stress was widely shown to represent a vulnerability factor for the onset of depression through the entire lifespan (Mandelli et al., 2015; Widom et al., 2005; LeMoult et al., 2020). As previously mentioned, the very recent systematic review published by our group in the context of the IDEA project, focusing on adolescents in both HICs and LMICs, showed the association of both environmental and biological risk factors for the onset of depression. Specifically, we found that increased inflammation, telomere length and brain abnormalities (such as blunted reward-related activity, white matter disruptions, and altered volume of limbic brain regions), were associated with increased risk for depression mainly in the context of early life adversity (Z. Zajkowska,

Walsh, et al., 2021). These results supported the importance of the interaction of several biological risk factors, including high inflammation, with the experience of childhood trauma in increasing the risk for future depression among adolescents (Z. Zajkowska, Walsh, et al., 2021).

Moreover, it was previously observed that different sub-types of childhood trauma could differently mediate the risk of developing depression, and the effects of different early in life trauma differed between adolescents and adults (Infurna et al., 2016; Shapero et al., 2014). The recent systematic review of Gill and colleagues, which investigated the association between inflammation in adults with MDD with or without an history of early in life stress, showed increase IL-6 levels in patients with MDD who experience childhood trauma compared with those who did not experiences early in life stress (Gill et al., 2020).

Hence, it is reasonable to believe that considering multiple risk factors, such as environmental risk factors (e.g., childhood trauma) and biological markers (e.g., inflammation) might provide a higher predictive power as well as might help in the development of prevention strategies to modify trajectories from the experience of early adversities to development of depression during adolescence and adulthood.

#### 2. Aims and Hypotheses of the study

Omic approaches such as the genome-wide gene expression analysis were widely used in research for investigating biological mechanisms associated with depression as well as to identify potential peripheral biomarkers (Mariani et al., 2021).

Although many studies used candidate-gene approaches and investigated the expression levels of specific genes, there are also studies which used hypothesis-free approaches.

In the current thesis project, I do not focus on specific genes or biological pathways, but I use omics approaches, specifically microarray and RNA sequencing (RNA-Seq), to discover genes or pathways that are associated with presence or increased risk of depression in adolescents.

The rationale behind the choice of performing a transcriptomic approach rather than investigating for example the epigenome or proteome is mainly because, together with the IDEA team, we firstly aimed to investigate the modulation of gene expression for the identification of pathways possibly associated with adolescent depression. Moreover, given the fact that one of the ultimate goals of the IDEA project was to identify such pathways and genes associated with risk and presence of depression and replicate the findings specifically in LMICs (such as Nepal and Nigeria), transcriptomic seemed more feasible and easier to be translated also in LMICs settings. However, we do acknowledge the importance of other omics techniques, such as the epigenetic and the proteomic.

Microarrays and RNA-Seq are two different omics approaches that focus their attention on the transcriptome. However, they do focus on the same goal in different

ways, as microarrays methods measure the intensity of fluorescence and it is based on a hybridization process, whereas RNA-Seq measures read counts as associated relative abundance measure for gene expression. Both techniques are hypothesisfree, meaning that they are not biased by previous hypothesis of targeted molecules or mechanisms to be researched, but it interrogates the entire transcriptome.

In this doctoral thesis and in the IDEA project, we decided to perform both -omics approaches because the microarray technique is a well-known and established genome-wide gene expression technique, which has been widely used in literature as well as in our research group. On the other hand, RNA-Seq is a novel and promising technique, that is starting to be widely used also in the field of mental disorders. Lastly, using two different techniques will allow us to identify the best one to be used in the future studies, specifically in LMICs in the context of the IDEA project, considering the feasibility as well as the pros and cons of each of them.

### 2.1 First Aim: Identify biological pathways associated with presence of depression and/or increased risk of adolescent depression by using Microarray technique (Affymetrix)

The Affymetrix Gene Atlas platform is based on the microarray technique, a wellestablished technique that was widely used in the field of biological psychiatry (Hennings et al., 2015; Woo, Lim, Myung, Kim, & Lee, 2018) as well as in my research group (Cattaneo et al., 2019; Cattaneo et al., 2018; Hepgul et al., 2016; Lopizzo et al., 2021). As a hypothesis-free method, microarray technique is not biased by previous hypothesis of targeted molecules or mechanisms to be researched, but it interrogates the entire transcriptome. By exploring the whole transcriptome, it allows the investigation of thousands of genes at the same time.

Hence, by using a hypothesis-free approach, I do not make any *a priori* hypothesis regarding specific genes or biological pathways that will be differently modulated in the three groups as a results of the microarray Affymetrix analysis.

However, I hypothesize that different biological signatures are associated with the presence of depression and/or with the risk of developing the disorder in adolescents, and thus different genes and biological pathways will be differently modulated in adolescents with depression or with high or low risk of developing MDD.

2.2 Second Aim: Identify differences between males and females in the biological pathways associated with presence of depression and/or increased risk of adolescent depression by using Microarray technique (Affymetrix)

It is well known that the incidence of depression differs in males versus females as adolescent females suffer from depression twice than their males' peers (Shorey et al., 2021). Given the differences in the incidence and symptomatology of adolescent depression, my hypothesis is that different biological signatures will be driven by biological sex. For this reason, I aim to compare the expression profile across groups by considering male and females separately, allowing the identification of different genes and biological pathways specifically in males and females.

# 2.3 Third Aim: Identify biological pathways associated with presence of depression and/or increased risk of adolescent depression by using RNA Sequencing

Another omics-based approach that I apply in my PhD project is the RNA Sequencing technique. The same considerations around omics-based approaches previously made for microarrays are still valid for the RNA Sequencing. However, RNA-Seq differs from microarrays as the former allows for full sequencing of the whole transcriptome while the latter only profiles predefined transcripts and genes through hybridization. Thus, RNA-Seq can help identifying more differently modulated transcripts than microarray.

Similarly to what previously described for the microarray technique, since RNA-Seq is an hypothesis-free approach, I do not make any *a priori* hypothesis regarding specific genes or biological pathways differently modulated in the three groups as a result of the RNA-Seq technique.

However, similarly to the first aim, I hypothesize that different biological signatures are associated with the presence of depression and/or with the risk of developing the disorder in adolescents, and thus different genes and biological pathways will be differently modulated in adolescents with depression or with high or low risk of developing MDD.

# 2.4 Fourth Aim: Identify differences between males and females in the biological pathways associated with presence of depression and/or increased risk of adolescent depression by using RNA Sequencing

As previously discussed for the second aim, I will perform the same comparison for the RNA-Seq analysis among groups by considering males and females separately, as I hypothesize that different biological signatures associated with presence and/or risk of depression will be influenced by biological sex.

#### 2.5 My Contribution

#### 2.5.1 IDEA RiSCo recruitment

The IDEA RiSCo school screening and recruitment in Brazil was performed by the Brazilian team led by one of the principal investigators of the IDEA project, Dr. Christian Kieling. The recruiting team was represented by Pedro Manfro, Rivka Pereira, Anna Viduani, Lucas Battel, Silvia Benetti, Thais Martini, Sandra Petresco, Jader Piccin, Thiago Rocha, Luis Augusto Rohde, Fernanda Rohrsetzer, Laila Souza, and Bruna Velazquez.

I contributed to this part of the project by redacting the standard operating procedure (SOP) for the biological sample collection, specifically PAXgene blood tubes and Oragene saliva samples (saliva samples were collected but are not part of this doctoral thesis). I was also in charge of redacting a troubleshooting guide for biological samples collection and I was the contact person for any doubts regarding the collection, handling, storage, and shipment of biological samples.

#### 2.5.2 RNA extraction from blood samples and RNA quality control

I performed the RNA extraction from all the 150 PAXgene blood tubes by using facilities available at the Laboratories of the IRCCS Centro San Giovanni di Dio Fatebenefratelli, in Brescia (Italy). Before the RNA extraction, I randomized the PAXgene tubes to avoid batch effects during the nucleic acid extraction process. After RNA isolation, I performed the quality control assessment by using both Nanodrop spectrophotometer and Agilent Bioanalyzer 2100. I also visualized and checked the outputs of the quality control analysis for all the samples, and I ran further quality checks for those samples whose RIN was undetectable. After performing the quality check, the samples were stored at -80C for subsequent analyses.

## 2.5.3 Genome-wide gene expression analysis on blood – Affymetrix Gene Atlas platform

I performed all the steps of the pre-processing, quality control, hybridization on array strips, imaging, and final quality checks for all the 150 samples for the microarray analysis on the Affymetrix Gene Atlas platform. The microarray experiment was performed at the IRCCS San Giovanni di Dio Fatebenefratelli in Brescia.

#### 2.5.4 Biostatistical analysis of Affymetrix raw data

I performed the quality check of the Affymetrix raw data (CEL file) as well as the biostatistical analysis to identify genes differently expressed among MDD, HR and LR groups by using the Partek Genomic Suite Software. I also performed the subsequent pathways analysis by using the Ingenuity Pathways Analysis Software and proceeded with the interpretation of the results from the microarray biostatistical analysis.

## 2.5.5 Genome-wide gene expression analysis on blood – RNA Sequencing on NextSeq

As it was the first time I was approaching myself to the RNA-Seq technique, before starting the processing of the IDEA RNA samples, I spent four months in optimizing the protocol of the RNA-Seq with the support of the Illumina scientific and technical support, of my colleagues Nicola Lopizzo, Luca Sforzini and Dr Veronica Begni, and with the supervision of my second supervisor Dr Annamaria Cattaneo. I then performed the RNA sequencing of all the 150 samples, as well as the quality control of the library before proceeding in the sequencing on the NextSeq 550. The entire RNA-Seq protocol, covering the different steps from the library preparation to the sequencing, was performed by using the NextSeq 550 instrument available at the Department of Pharmacological and Biomolecular Science at the University of Milan.

#### 2.5.6 Biostatistical analysis of RNA Sequencing raw data

In order to acquire skills and expertise in the RNA-seq data analyses, I spent six months in optimizing a suitable pipeline for analyzing RNA-Seq raw data (FASTQ). I was directly involved in this process – together with my colleagues Dr Moira Marizzoni and Nicola Lopizzo and supervised by my second supervisor Dr Annamaria Cattaneo - by conducting a literature search of the state-of-the-art knowledge for RNA-Seq biostatistical analysis. Moreover, I used different software as part of the identification of the most suitable pipeline. Dr Moira Marizzoni optimized the definitive pipeline that was used for analyzing the FASTQ raw data of this project and helped me in performing the biostatistical analyses that included the quality control of FASTQ by using the FASTQC Software, the quantification of the raw reads by using Salmon and the subsequent transcript-level differential expression analysis by using DeSeq2.

With the contribution of Dr Moira Marizzoni, I checked the quality of the FASTQ and discussed the biostatistical analysis to obtain lists of genes differently expressed among MDD, HR and LR groups. Then, I personally performed the pathways analysis by using the Ingenuity Pathways Analysis Software and proceeded with the interpretation of the results.

#### 3. Methods

## 3.1 IDEA (Identify Depression Early in Adolescence) Project sample recruitment

#### 3.1.1 Ethical approval

The study was approved by the Brazilian National Ethics Committee, project number 50473015.9.0000.5327, the Hospital de Clinicas de Porto Alegre's Ethics Committee, project number 16-0131 and the King's College's Institutional Research Board, project number LRS-17/18-8327.

Adolescents and their primary caregivers provided written consent prior to entering the study. Approval for the school screening phase was obtained from the 1st Regional Education Bureau, in charge of public state schools in the city of Porto Alegre. All participants received feedback with findings from the diagnostic assessment and were referred for care to the Brazilian public health system if clinically indicated. Situations of imminent risk of self-harm or maltreatment were referred to emergency care or protective services following what required by Brazilian legislation. Participants received no financial incentive for taking part in the study, however they were reimbursed for expenses related to their participation (e.g., travel).

The recruitment of participants was conducted in 4 stages (Table 3.1): school screening, telephone interview, clinical assessment, and biological sample collection (Kieling et al., 2021).

| Phase                 | Inclusion criteria                                                                                   | Exclusion criteria                                                                                                                                                                                      |
|-----------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| School screening      | Enrolment in 8 <sup>th</sup> to 11 <sup>th</sup><br>grades<br>Age 14 to 16 years<br>Right-handedness | Absent from school on the day of<br>both assessments<br>Inability to complete the screening<br>questionnaire                                                                                            |
| Phone invitation      | Completed school<br>questionnaire                                                                    | Metallic accessories<br>Clinical conditions*<br>Use of psychotropic medication<br>over last 30 days<br>Use of anti-inflammatory<br>medication over last 14 days                                         |
| Clinical<br>interview | IQ > 70<br>Post-pubertal status                                                                      | Current or lifetime:<br>Bipolar disorder<br>Schizophrenia or a primary<br>psychotic disorder<br>Autism spectrum disorder<br>Substance use disorder<br>Eating disorder<br>Post-traumatic stress disorder |

Table 3.1. Criteria for the IDEA Risk Stratified Cohort sample composition

\*Excluded clinical conditions: known brain malformations, epilepsy, recent traumatic brain injury, diabetes, cystic fibrosis, HIV, asthma, rheumatologic conditions such as rheumatoid arthritis, systemic lupus erythematosus, psoriasis, purpura, oncologic conditions such as cancer, lymphoma, leukemia, and severe neurodevelopmental disorders, any recent/active infection or active inflammatory process.

#### 3.1.2 School screening

For the school screening the only inclusion criterion was being aged 14 to 16 years old. The Brazilian recruiting team, led by Dr Christian Kieling, first contacted the Department of Education from Porto Alegre to get permission to contact school representatives. Then, they arranged with schools for eligible students to take part to the recruitment.

The recruiting team used a screening questionnaire, which was divided in two sequential parts: an open questionnaire with a brief identification form and questions on social media usage and physical activity; and a confidential questionnaire comprised of the Patient Health Questionnaire for Adolescents (PHQ-A), questions on drug use and fight involvement, parental relationship and seven dichotomous questions on lifetime sexual, emotional, or physical maltreatment experiences.

The PHQ-A is an adapted version from the PHQ-9 to be specifically used with adolescents as a screening tool in both clinical (Johnson, Harris, Spitzer, & Williams, 2002) and research settings (Allgaier et al., 2012). It consists of 9 questions with Likerttype response options ranging from "none", "several days" and "more than half the days". Each of the 9 items are designed to represent the nine DSM-5 criteria for a Major Depressive episode. The scale was translated from English to Brazilian Portuguese by the research team.

#### 3.1.2.1 Risk Score

The composite IDEA risk score (IDEA-RS) developed by the IDEA consortium was used for the risk-stratification of the adolescent sample (Rocha et al., 2021). This risk score does not consider previous depressive symptomatology as a risk factor for MDD, but information that could be easily obtained from the adolescents to increase its feasibility use in wider scenarios. The risk score was built up by using a short questionnaire that comprises the following variables:

- 1. Biological Sex
- 2. Skin colour
- 3. Drug use
- 4. School failure
- 5. Social Isolation
- 6. Fight Involvement
- 7. Poor relationship with the mother
- 8. Poor relationship with the father
- 9. Poor relationship between parents
- 10. Childhood Maltreatment
- 11. Ran away from home

The lifetime maltreatment experiences were divided into three categories, accordingly to the previous study of Rocha and colleagues (Rocha, Graeff-Martins, Kieling, & Rohde, 2015): no maltreatment (no positive answer), probable maltreatment (one positive answer), and severe maltreatment (two or more positive answers). The predictive risk score presented different percentile cut-offs for males and females, due to the discrepancy in prevalence across sexes.

Administration of the IDEA-RS questionnaire in the schools was performed using a coded, unidentified form distributed to students after information on name, date of

birth, self-reported sex, self-reported race/skin colour, handedness, and parental contact information were collected. Questions were selected to match the original phrasing used in the Pelotas 1993 Birth Cohort study. On average, less than 15 minutes were required for administration of the IDEA-RS questionnaire. Students were allowed to ask clarification questions, but researchers were not allowed to review the form to check for completion (forms were considered to be "complete" and therefore valid when only one answer was provided for each question and all questions were answered). The questionnaire is reported in table 3.2 (Kieling et al., 2021).

Table 3.2. The Identifying Depression Early in Adolescence Risk Score (IDEA-RS) From (Kieling et al., 2021).

\* Self-reported skin colour following Brazilian official census categories. For analyses, two categories (white vs. non-white) were formed.

\*\* Questions about any lifetime use of alcohol, tobacco, cannabis, cocaine, and inhalants were combined into one variable using the OR rule, generating a binary variable for analyses.

\*\*\* Responses to seven dichotomous questions regarding lifetime psychological, physical, and sexual abuse and/or neglect were combined into three categories: zero positive answers=none, 1 positive=probable, 2 or more answers=severe.

| Sex:                                            | Male/Female              |
|-------------------------------------------------|--------------------------|
| Your skin colour or race is:*                   | White/Yellow/Indigenous, |
|                                                 | Brown/Black              |
| Do you meet your friends often to talk, play or | No/yes                   |
| do anything else?                               |                          |
| Have you ever failed a school grade?            | No/yes                   |
| Have you ever run away from home?               | No/yes                   |
| Have you ever tried cigarettes?**               | No/yes                   |
| Have you ever tried alcohol?**                  | No/yes                   |
| Have you ever tried sniffing glue?**            | No/yes                   |
| Have you ever tried sniffing solvents or ethyl  | No/yes                   |
| chloride (EC)?**                                |                          |
| Have you ever tried marijuana?**                | No/yes                   |
| Have you ever tried cocaine or crack?**         | No/yes                   |
| Have you ever tried LSD or acid?**              | No/yes                   |
| Have you ever tried ecstasy or molly?**         | No/yes                   |
| Have you ever used weight loss pills?**         | No/yes                   |

| No/yes           |
|------------------|
|                  |
| No/yes           |
| No/yes           |
|                  |
| Great/Very good/ |
| Good/Regular/Bad |
| Great/Very good/ |
| Good/Regular/Bad |
| Great/Very good/ |
| Good/Regular/Bad |
| No/yes           |
|                  |
|                  |
| No/yes           |
|                  |
|                  |
| No/yes           |
|                  |
|                  |
| No/yes           |
|                  |
| No/yes           |
|                  |
| No/yes           |
|                  |
|                  |
| _                |

| Has anyone ever tried to touch you in a sexual | No/yes |
|------------------------------------------------|--------|
| way, or tried to make you touch them against   |        |
| your will, threatening you or hurting you?***  |        |

Using cut-offs for the IDEA-RS based on the Pelotas 1993 Birth Cohort Study (Rocha et al., 2021), eligible participants were *a priori* stratified into two different cohorts:

- A. Low-risk (LR) adolescents: those scoring equal to or below the 20<sup>th</sup> percentile of the IDEA-RS;
- B. High-risk (HR) adolescents: those scoring equal to or above the 90<sup>th</sup> percentile of the IDEA-RS.

A larger stratum in the LR group compared the HR group was allowed as the absolute risk difference between the 10<sup>th</sup> and the 20<sup>th</sup> percentiles was minimal. Moreover, a third group of adolescents with MDD was recruited. To allow for two-by-two comparisons between groups, the adolescents in the MDD group were also required to be classified as HR risk, so with a score equal to or above the 90<sup>th</sup> percentile of the IDEA-RS.

To optimize the recruitment process and increase the probability that diagnostic criteria for depression were met in the MDD group, but not in the LR and HR groups, during the school screening adolescents also completed the Patient Health Questionnaire—adolescent version (PHQ-A) (Johnson et al., 2002). Specifically, adolescents with a PHQ-A  $\leq$  6 were considered for further assessment for the LR/HR groups, whereas adolescents with a PHQ-A  $\geq$  10 for the MDD group.

Overall, by combining the risk prediction score and the total PHQ-A score, the participants were divided in three eligible groups for clinical assessment invitation:

A. High risk (HR): PHQ-A score lower than or equal to 6 AND risk score above the 90<sup>th</sup> percentile;

- B. Low risk (LR): PHQ-A score lower than or equal to 6 AND risk score below the 20<sup>th</sup> percentile;
- C. Depression group (MDD): PHQ-A score higher than or equal to 10, as suggested in the literature and risk score above the 90<sup>th</sup> percentile of risk.

#### 3.1.3 Telephone interview

After participants were divided in the three eligible groups, the recruiting team contacted them via a telephone interview to assess possible exclusion criteria and schedule the clinical assessment. These exclusion criteria applied were:

- current (i.e., in the last two weeks) use of psychotropics, antibiotics, beta-blockers
   or anti-inflammatory medication;
- presence of metallic implants (dental braces, piercings, pacemaker, etc.);
- current active infection;
- presence of clinical comorbidities requiring current treatment (HIV, asthma, epilepsy, brain malformations, diabetes, cystic fibrosis, etc.);
- history of cranioencephalic trauma or concussions; pregnancy; and recent (i.e., past 3 months) tattoos.

If adolescents were willing to participate, an appointment was scheduled and adolescents were instructed to be fasting, not smoking, or drinking alcohol, avoiding strenuous physical activity, and not interrupting any continuous non-excludent medication (e.g., oral contraceptives).

#### 3.1.4 Clinical assessment

After the school screening, adolescents meeting the criteria for further assessments were evaluated by trained psychologists for cognitive measurements and by skilled child psychiatrists for clinical diagnoses. Before proceeding with the clinical assessment, the child psychiatrist reassessed the telephone interview exclusion criteria, especially for recent use of medications. Absence of a lifetime history of depression for the HR and LR groups was assessed using the Brazilian Portuguese translation of the Schedule for Affective Disorders and Schizophrenia for School-age Children-Present and Lifetime Version (K-SADS-PL) by trained clinicians. Participants in all three groups were excluded if they met lifetime diagnostic criteria for autism spectrum disorder, bipolar disorder, eating disorders, post-traumatic stress disorder, schizophrenia, or substance use disorders.

Youth assigned to LR, HR and MDD group underwent phenotypic assessment; psychological and socio-environmental assessments including self- and clinician-based are detailed in table 3.3 and are listed below (only those relevant for the recruitment are described), for both adolescents and primary caregivers.

- DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure—Child Age 11–17 The DSM-5 Cross-Cutting symptom scale is a self-report instrument for the assessment of twelve psychiatric constructs over the last two weeks including depressive symptomatology, anger, irritability, mania, anxiety, somatic symptoms, inattention, suicidal ideation and attempts, psychosis, sleep troubles, repetitive thought and behaviours, and substance use (Bastiaens & Galus, 2018).

- Wechsler Abbreviated Scale of Intelligence (WASI)
- Parental Bonding Instrument (PBI)

- Self-Administered Physical Activity Checklist
- Mood and Feelings Questionnaire (MFQ)
- Childhood Trauma Questionnaire (CTQ)

The CTQ is a self-report measure of traumatic experiences consisting of 28 items that assess 5 dimensions: physical abuse and neglect, emotional abuse and neglect and sexual abuse.

- Snaith-Hamilton Pleasure Scale (SHAPS)
- Reflective Functioning Questionnaire for Youths (RFQY)
- Affective Reactivity Index (ARI)
- Mood Disorder Questionnaire (MDQ)
- Spence Children's Anxiety Scale (SCAS)
- The Youth Strength Inventory Adolescent version (YSI-A)
- Adolescent Resilience Scale (ARS)
- U–Change Home Questionnaire Pack
- Tanner Puberty Staging Scale
- Brazilian Economic Classification Criteria (ABEP)
- Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age
   Children Present and Lifetime Version (K-SADS-PL)

The K-SADS-PL is a semi-structured psychiatric diagnostic interview that assesses present and lifetime conditions. K-SADS interviews was used in this study as the clinician-rated diagnostic criteria for Major Depressive Disorder and other psychiatric conditions.

- Clinical Global Impression (CGI)
- Children Depression Rating Scale (CDRS-R)

- Children's Global Assessment Scale (CGAS)

| Domain                                                     | Instrument                                                                           |
|------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Adolescents                                                |                                                                                      |
| Overall psychopathology                                    | DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure, Child (CCSM-C) (24, 25)      |
| Depression                                                 | Mood and Feelings Questionnaire—Child (MFQ-C) (26, 27)                               |
| Anhedonia                                                  | Snaith-Hamilton Pleasure Scale (SHAPS) (17, 28)                                      |
| Irritability                                               | Affective Reactivity Index—Child (ARI-C) (29, 30)                                    |
| Suicidality                                                | Columbia-Suicide Severity Rating Scale (C-SSRS) (31)                                 |
| Anxiety                                                    | Spence Children's Anxiety Scale (SCAS-C) (32, 33)                                    |
| Insomnia                                                   | Insomnia Severity Index (ISI) (34, 35)                                               |
| Reflexive functioning                                      | Reflective Functioning Questionnaire for Youth (RFQY) (36, 37)                       |
| Resilience                                                 | Adapted Resilience Scale (ARS)* (38, 39)                                             |
| Positive attributes                                        | Youth Strengths Inventory-Adolescent (YSI-A) (40, 41)                                |
| Parental bonding (separate measures for mother and father) | Parental Bonding Instrument (PBI) (42)                                               |
| Maltreatment/trauma history                                | Child Trauma Questionnaire (CTQ) (43, 44)                                            |
| Recent life events                                         | Life Events Questionnaire (LEQ)* (45)                                                |
| Physical activity                                          | Patient-Centered Assessment and Counseling for Exercise Plus Nutrition* (PACE+) (46) |
| Primary caregivers                                         |                                                                                      |
| Overall psychopathology                                    | DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure, Parent (CCSM-P) (24)         |
| Depression                                                 | Mood and Feelings Questionnaire—Parent (MFQ-P) (26, 27)                              |
| Irritability                                               | Affective Reactivity Index—Parent (ARI-P) (29, 30)                                   |
| Anxiety                                                    | Spence Children's Anxiety Scale—Parent (SCAS-P) (32, 33)                             |
| Positive attributes                                        | Youth Strengths Inventory – Parent (YSI-P) (40, 41)                                  |
| Socioeconomic status                                       | Brazil socioeconomic classification index (ABEP) (47)                                |
| Caregiver's depression                                     | Mood and Feelings Questionnaire—Adult (MFQ-A) (26, 27)                               |
| Combined information (adolescent + caregiver)              |                                                                                      |
| Depression                                                 | Children's Depression Rating Scale Revised (CDRS-R) (48, 49)                         |
| Clinical global impression                                 | Clinical Global Impression (CGI) (50)                                                |
| Global functioning                                         | Children's Global Assessment Scale (CGAS) (51, 52)                                   |
|                                                            |                                                                                      |

Table 3.3 Self- and clinician-base instruments for phenotypic assessments for adolescents and

primary caregivers From (Kieling et al., 2021).

#### 3.1.5 IDEA RiSCo recruitment – Flowchart and details

The numbers of adolescents for each group to be recruited was defined *a priori* by the IDEA team, and the goal of the IDEA project was to recruit a final cohort of 150 adolescents represented by:

A. 50 High Risk Adolescents (25 females and 25 males);

B. 50 Low Risk Adolescents (25 females and 25 males);

C. 50 High Risk and MDD Adolescents (25 females and 25 males).

To reach this goal, the aforementioned recruitment process was done and in the following paragraphs the detailed flow chart and the numbers will be described to give a clear idea of the complexity of the recruitment.

In the city of Porto Alegre (Brazil) during the 2018, 104 public state schools agreed to participate to the IDEA project recruitment, for a total of 24,559 students in grades 8 to 11. Of this initial population of 24,559 students, 13,408 students were eligible for screening, whereas 11,151 were excluded because 9,191 were out of age (<14 years or  $\geq$ 17 years); 1,439 were transferred to another state school; 327 cancelled enrollment; and 194 were excluded for cognitive impairment, language barriers, previous participation in the protocol at another school, or death.

On the day of the parent information form (PIF) distribution, the PIF was distributed to 10,529 students who became eligible to complete the screening; however, only 6,863 students completed the first questionnaire round (Q1). On the other hand, Q2 was administered to 857 students. Considering Q1 and Q2 administration, a total of 7,720 students completed screening questionnaires in 101 schools. The detailed flowchart is reported in figure 3.1, showing the exclusion criteria for each step.

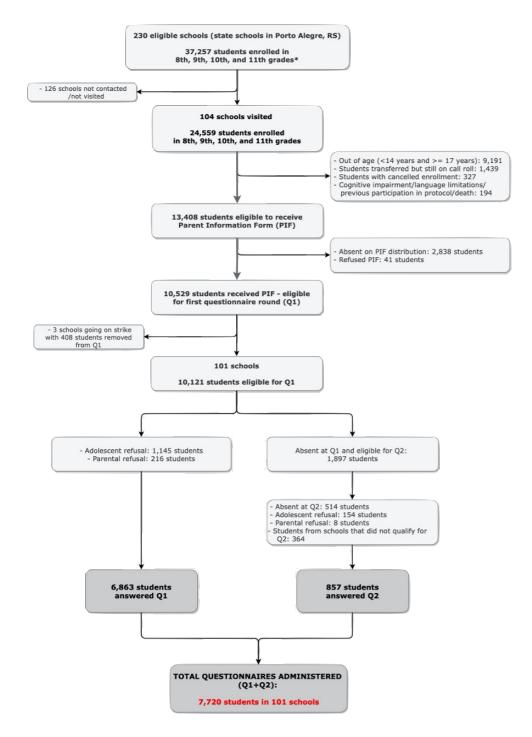



Figure 3.1. Flowchart of school and student inclusion. From (Kieling et al., 2021)

Out of the 7,720 adolescents, 5,954 of them did not meet the inclusion criteria of righthandedness, no missing answers in the PHQ-A and IDEA-RS questionnaires, or classification into the LR, HR, or MDD groups. Thus, 1,766 were eligible for further assessment: 369 were classified as LR, 389 as HR, and 1,008 as MDD.

Parents or guardians were contacted over the phone and invited to accompany the adolescent to the Hospital de Clínicas de Porto Alegre (HCPA). Contact with 21, 81, and 506 participants in the LR, HR, and MDD groups respectively was not attempted because the target sample was met before they were called.

In the LR group 348 were contacted, among them 78 adolescents were scheduled for clinical evaluation and 64 of them underwent clinical evaluation. In the HR group, 308 were contacted, 97 adolescents were scheduled for clinical evaluation and 63 of them underwent clinical evaluation. In the MDD group, 502 were contacted, 166 adolescents were scheduled for clinical assessment and 133 of them underwent clinical evaluation.

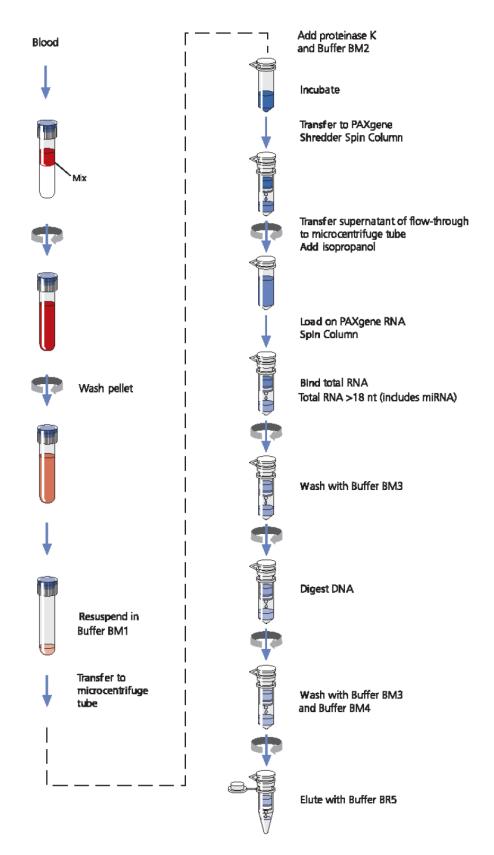
#### 3.1.6 Power Analysis

For the microarray technique, previous published data on transcriptomic experiments conducted in individuals characterized for stressful experiences (Lopizzo et al., 2017) or for depression development upon treatment with IFN- $\alpha$  (Hepgul et al., 2016) showed that a sample of 20 subjects per group is sufficient to identify changes in gene expression with a FDR corrected p-value <0.05 and a fold-change differences greater than 20%. For the RNA Sequencing analysis, by using the ssizeRNA package, we determined that a sample size of 40 per group has a power of 92% for detecting significantly different

expressed genes, with FC of 2, FDR=0.05 and considering 15000 as the number of detected genes and 0.1 as the dispersion parameter for each gene (Bi & Liu, 2016).

#### 3.2 Blood collection

Peripheral venous blood samples were collected in 2.5 mL PAXgene Blood RNA tubes (PreAnalitix, Qiagen / BD Company) in the morning, after an overnight fast. The PAXgene tubes contains an additive that stabilizes the *in vivo* gene transcription profile by reducing RNA degradation and minimizing gene induction. PAXgene tubes were collected as the last tubes of the phlebotomy procedure to prevent a possible backflow. The donor's arm was placed in a downward position after a butterfly needle was set for the withdrawal. The tube was hold in vertical position, below the donor's arm during blood collection and the tourniquet was released as soon as the blood started to flow into tube. After making sure that the blood stopped to flow into the PAXgene and the tube additive did not touch the stopper or the end of the needle during venepuncture, the tube was removed from the holder. Subsequently, the tube was gently inverted for 10 times and kept at room temperature for 2 hours, then frozen at -20°C for 24 hours and then moved to a -80°C freezer until their processing for nucleic acid extraction.


PAXgene tubes were shipped in dry ice and stored at – 80°C upon arrival.

#### 3.3 RNA extraction from blood samples

Nucleic acid purification from PAXgene tubes was performed by using PAXgene Blood miRNA kit (Qiagen, Hilden, Germany; Cat No./ID: 763134) following an optimised protocol based on manufacturer's instruction.

Total RNA >18 nucleotides, including miRNAs, were purified from the stabilized blood samples using the PAXgene silica-membrane technology. PAXgene Blood RNA Tube was first centrifuged for 15 minutes at 3000 g to pellet the sample, which was then washed with RNAse-free water, recentrifuged as previously described and then resuspended in Buffer BM1. From this point, the RNA extraction followed the manufacturer's instruction (see figure 3.2 for a visual representation), which included also a 15-minute incubation with DNase enzyme, to digest DNA residues. As the last step, the sample was centrifuged through PAXgene RNA spin columns, where total RNA >18 nucleotides (including miRNA) bound to the PAXgene silica-membrane and were then eluted with BR5 buffer. Differently from the manufacturer's instruction, the eluted RNA was placed again in the silica-membrane and re-centrifuged, to increase the final yields. The extracted RNA was then immediately chilled on ice for subsequent quality control assessment or stored at -80°C for subsequent analysis.

Figure 3.2. RNA extraction procedure from PAXgene tube (PAXgene Blood miRNA Kit Handbook).



#### 3.4 Quality control analysis

#### 3.4.1 Nanodrop

RNA quantity and quality were assessed by evaluation of the A260/280 and A260/230 ratios using a Nanodrop 2000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).

NanoDrop 2000 has a patented sample retention technology employing surface tension to hold the sample in place between two optical fibres. In this study, 1  $\mu$ L of sample was pipetted onto the measurement pedestal; the optic fibre cable is embedded within this pedestal and a second optic cable is brought into contact with the liquid sample causing the liquid to bridge the gap between the two fibres. A pulsed xenon flash lamp provides the light source, and a spectrometer analyses the light passing through the sample. The nucleic acid concentration is measured by using a modified Beer-Lambert equation, consisting in using a factor with units of ngcm/microliter. Here the equation:

#### **c** = (A \* ε)/b

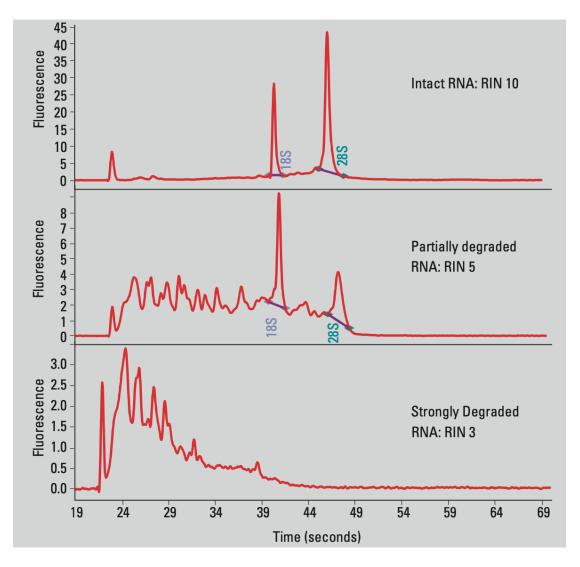
c = the nucleic acid concentration in ng/microliter
 A = the absorbance in AU
 ε = the wavelength-dependent extinction coefficient in ng-cm/microliter
 b = the pathlength in cm

The concentration is based on absorbance at 260 nm and the default or unit defined extinction coefficient.

Beside nucleic acid concentration, the following parameters are measured to provide a clear view of the sample quality:

- A260: absorbance at 260 nm normalized to a 10 mm pathlength;
- A280: absorbance at 280 nm normalized to a 10 mm pathlength;

- 260/280 ratio: used to assess the purity of RNA. A ratio of ~ 2.0 is accepted as pure.
   If this ratio is lower, it indicates the presence of protein, phenol or other contaminants that absorb near 280nm;
- 260/230 ratio: used to assess RNA purity as well. A ratio of 1.8 2.2 is considered as pure RNA; if it is appreciably lower, this may indicate the presence of copurified contaminants.


#### 3.4.2 Agilent 2100 Bioanalyzer

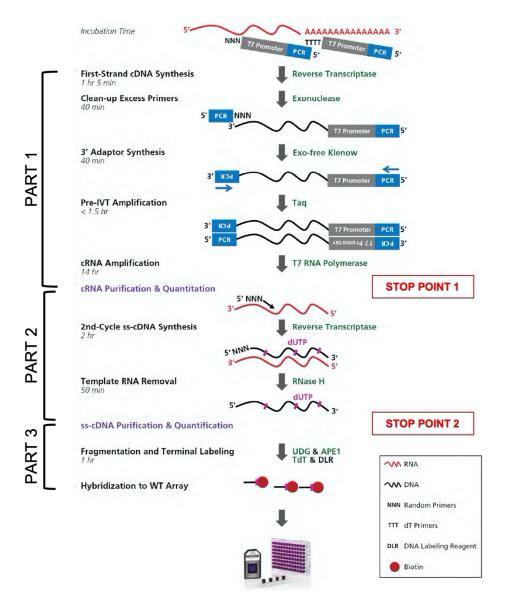
Further quality control assessments were performed by using Agilent 2100 Bioanalyzer (Agilent, Santa Clara, United States) with RNA 6000 Nano Kit.

Using electrophoretic separation on microfabricated chips, RNA samples are separated and subsequently detected via laser induced fluorescence detection. The Bioanalyzer software generates an electropherogram and gel-like image and displays results such as sample concentration, the ribosomal ratio, and the RNA integrity number (RIN). The electropherogram provides a detailed visual assessment of the quality of an RNA sample.

The RIN is a software algorithm that indicates the RNA intactness by evaluation of the ribosomal ratio (18S and 28S) and it is based on a numbering system from 1 to 10, with 1 indicating а degraded profile and 10 the most intact (https://µL.agilent.com/cs/library/applications/5989-1165EN.pdf). 3.3 Figure represents an example of an electropherogram with different RIN values.

Figure 3.3. RNA integrity number tested on samples of varying levels of intactness. The RIN software algorithm was able to accurately classify the samples. From https://www.agilent.com/cs/library/applications/5989-1165EN.pdf




### 3.5 Genome-wide gene expression analysis on blood – Gene Atlas Affymetrix

#### 3.5.1 Affymetrix pre-processing

Genome-wide gene expression analysis was performed starting from 10 ng of total RNA to prepare hybridized ready target for the subsequent labelling and fluorescent analysis.

The GeneChip WT Pico Reagent Kit (Cat. Number 902623, Thermo Fisher Scientific) allowed to obtain hybridized ready target from picogram amount of RNA, by following the manufacturer's instructions (schematized in figure 3.4).

Figure 3.4. GeneChip WT Pico Reagent Kit amplification and labeling process (GeneChip WT Pico Reagent Kit User Guide).



Firstly, Poly-A RNA controls were included in all the samples to be hybridized to GeneChip arrays. To include the premixed controls from the Poly-A RNA Control Strok, appropriate dilutions were prepared by following the scheme reported in table 3.4.

Table 3.4. Poly-A Controls stock dilutions

| Total RNA<br>Input<br>Amount | 1 <sup>st</sup> Dilution | 2 <sup>nd</sup> Dilution | 3 <sup>rd</sup> Dilution | 4 <sup>th</sup> Dilution | Volume 4 <sup>th</sup><br>Dilution to add to<br>Total RNA |
|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------------------------------|
| 10 ng                        | 1:50                     | 1:100                    | 1:100                    | 1:10                     | 2 μL                                                      |

To prepare Poly-A RNA dilution for 10 ng of RNA, the following dilutions were prepared:

- 1. 1<sup>st</sup> dilution: add 2 μL of Poly-A Control Stock to 98 μL of nuclease-free water (1:50)
- 2. 2<sup>nd</sup> dilution: added 2 µL of 1<sup>st</sup> dilution to 198 µL of nuclease-free water (1:100)
- 3.  $3^{rd}$  dilution: added 2  $\mu$ L of  $2^{nd}$  dilution to 198  $\mu$ L of nuclease-free water (1:100)
- 4.  $4^{th}$  dilution: added 20 µL of third dilution to 180 µL of nuclease free water (1:10)
- 5. Added 2  $\mu L$  of the 4th dilution to 10 ng of total RNA

Each dilution was mixed by vortexing and spinned down before being used for the subsequent dilution; fresh-dilution of Poly-A RNA Controls were prepared every day.

Total RNA extracted from PAXgene blood was diluted to obtain 10 ng of RNA in a total final volume of 3  $\mu$ L by using the serial dilution technique. 2  $\mu$ L of Poly-A Controls' 4<sup>th</sup> dilution were added to the RNA sample to obtain the final sample ready to be used for the following reactions.

As reported also in figure 3.4, the entire process before hybridization of the array strip was divided into three parts, each of them ending with a safe stop- point following the manufacturer's instruction. These safe stop -points were followed in these experiments.

Moreover, the 150 blood samples were differently randomized for each of the three phases, by using an online randomizing tool (https://www.random.org/lists). The randomized groups are reported in table 3.5.

Table 3.5. Randomization of the 150 samples accordingly to risk groups A, B and C for the pre-

# processing (Part 1)

| 1.1.BR0015PAXC       49.BR0015PAXB       97.BR0033PAXC       6.146.BR013PAXB       146.BR013PAXB       9         3.BR0076PAXB       51.BR0026PAXA       99.BR0142PAXB       7       146.BR015PAXB       147.BR015PAXB       9         4.BR003FPAXC       6.5.BR003FPAXC       6.5.BR003FPAXB       7       148.BR015FPAXB       9       148.BR015FPAXC       148.BR013FPAXB       148.BR013FPAXA       148.BR013FPAXA       150.BR013FPAXB       150.BR013FPAXA       150.BR013FPA                                                                                        |                 |   |                 |   |                  |   |                  |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---|-----------------|---|------------------|---|------------------|---|
| 2     50.     BROOZPAK B     30.     BROOZPAK B     7       3.     BROOZPAK B     52.     BROOZPAK B     0     143.     BROILERAK B     0       4.     BROOZPAK B     52.     BROOZPAK C     0     100.     BROOZPAK B     0     143.     BROILERAK B     0       5.     BROOZPAK C     0     55.     BROIZPAK B     0     103.     BROIZPAK B     0     143.     BROIZPAK C     0       7.     BROOZPAK C     0     55.     BROIZPAK B     0     103.     BROIZPAK B     150.     BROIZPAK B     100.     BROI                                                                                                                                                                                                                                                                                                                                                                          | 1. BR0015PAX C  |   | 49. BR0051PAX B |   | 97. BR0038PAX C  |   | 145. BR0123PAX C |   |
| 3       BR0076FAX B       51       BR020PAX C       S2       BR020PAX C       G       143       BR0145PAX C       U       143       BR017PAX C       U       150       BR007PAX C       U       150       BR007PAX C       U       150       BR007PAX C       U       150       BR007PAX C       0       150       BR007PAX C       150       BR007PAX C       150       BR007PAX C       150       BR007PAX C       150       BR007PAX A       100       BR014PAX B       0       100       BR014PAX B       100       BR014PAX B       100       BR007PAX A       110       BR014PAX A       110       BR014PAX A       110       BR014PAX A       110       BR014PAX B       100       BR014PAX B       100       BR014PAX B       100       BR014PAX B       100       BR014PAX A       110       BR014PAX A                                                                                                                                                                                                                                                                                             | 2. BR0045PAX C  | 1 | 50. BR0002PAX C |   | 98. BR0082PAX B  |   | 146. BR0153PAX B |   |
| 4. BR0137PAX B         52. BR0077PAX A         100. BR008PAX C         0         148. BR0156PAX C         149. BR0170PAX C           6. BR0034PAX C         6. S3. BR0034PAX C         6         100. BR0038PAX A         P         150. BR0134PAX C           9. BR0031PAX C         0         55. BR0120PAX B         0         103. BR014PAX B         P         150. BR0134PAX C           9. BR0031PAX C         0         55. BR003PAX A         0         103. BR003PAX B         7           10. BR0030PAX D         10. SR003PAX B         0         105. BR003PAX B         7           10. BR0030PAX D         55. BR003PAX B         105. BR003PAX B         105. BR003PAX A           11. BR0030PAX C         6. BR003PAX A         100. BR014PAX B         105. BR003PAX A           13. BR005PAX C         6. BR003PAX A         110. BR014PAX B         105. BR003PAX A           13. BR005PAX C         6. BR003PAX A         111. BR016PAX A         112. BR013PAX B           13. BR005PAX C         6. BR013PAX A         113. BR015PAX C         6           13. BR005PAX C         6. BR013PAX A         113. BR015PAX C         7           13. BR005PAX C         6. BR013PAX A         113. BR015PAX B         0           12. BR015PAX B         7         114. BR012PAX A         114. BR01                                                                                                                                                                                           |                 |   |                 |   |                  | R | 147. BR0164PAX B | 0 |
| S. BROQMPAXC         G         S3. BROSEPAXC         G         101. BROSEPAXC         P         149. BRO120PAXC           S. BRO134PAXC         N         S5. BRO120PAXB         Q         103. BRO114PAXB         P         150. BRO134PAXC           S. BRO144PAXB         U         S5. BRO120PAXB         Q         103. BRO114PAXB         7           J. BRO054PAXC         P         S5. BRO120PAXB         Q         105. BRO04PAXC         7           J. BRO054PAXC         P         S5. BRO132PAXA         Q         105. BRO04PAXC         7           J. BRO054PAXC         P         S5. BRO132PAXA         Q         105. BRO04PAXC         7           J. BRO054PAXC         F         S5. BRO13PAXA         Q         105. BRO04PAXC         7           J. BRO054PAXA         G         BRO034PAXA         100. BRO145PAXA         100. BRO145PAXA         100. BRO145PAXA           J. BRO054PAXA         G         S6. BRO074PAXA         111. BRO116PAXA         111. BRO145PAXA         112. BRO15PAXA         113. BRO145PAXA           J. BRO054PAXA         G         S6. BRO074PAXA         113. BRO145PAXA         Q         113. BRO15PAXA         Q           J. BRO054PAXC         G         J. BRO054PAXC         G         1110. BRO145PAXA                                                                                                                                                                                                                                     | 4. BR0137PAX B  | 1 | 52. BR0077PAX A |   | 100. BR0089PAX A | 0 | 148. BR0165PAX C | 9 |
| 6         6.80034PAX C         R         54.80032PAX B         P         150.80034PAX C           7.800038PAX C         0         55.800120PAX B         0         103.80014PAX B         7           9.800031PAX C         55.800120PAX B         0         103.80014PAX B         7           9.800031PAX C         57.800128PAX B         104.800030PAX B         7           10.800101PAX A         58.80038PAX B         105.80004PAX C         7           11.80005PAX C         60.80003PAX A         106.80003PAX A         109.80114PAX B           13.8005PAX C         61.80003PAX A         109.80114PAX B         109.80114PAX B           14.8003PAX C         62.8003PAX A         111.80115PAX A         111.80015PAX A           15.8003PAX B         63.80074PAX B         113.8015PAX A         114.8012PAX C           16.80014PAX B         65.8010PAX A         113.8015PAX A         0           17.80087PAX B         66.80104PAX A         113.8015PAX A         0           18.80121PAX A         68.80013PAX A         114.8012PAX C         0           12.80032PAX C         6         69.80014PAX C         7         114.8012PAX C         0           12.80032PAX C         7         73.80057PAX C         7         118.8012PAX C <t< td=""><td></td><td>G</td><td></td><td>G</td><td></td><td>U</td><td>149. BR0170PAX C</td><td></td></t<>                                                                                                                                   |                 | G |                 | G |                  | U | 149. BR0170PAX C |   |
| 7. BRO038PAX C       0       55. BR0120PAX B       0       103. BR014PAX B       7         10. BR0101PAX C       p       57. BR0128PAX B       105. BR003PAX A       105. BR003PAX A       7         10. BR0101PAX A       1       59. BR003PAX A       105. BR003PAX A       105. BR003PAX A       105. BR003PAX A         11. BR0056PAX A       1       59. BR003PAX A       105. BR003PAX A       105. BR003PAX A         13. BR003PAX A       61. BR003PAX A       109. BR014PAX B       109. BR014PAX B         14. BR003PAX A       61. BR004PAX A       110. BR014PAX B       109. BR014PAX A         15. BR003PAX B       63. BR001PAX A       111. BR015PAX A       111. BR015PAX A         16. BR0043PAX C       66. BR0104PAX A       111. BR015PAX C       G         19. BR005PAX B       65. BR001PAX A       115. BR005PAX C       G         19. BR005PAX A       108. BR013PAX C       114. BR012PAX C       R         20. BR017PAX B       6       68. BR013PAX C       111. BR014SPAX B       O         12. BR015PAX A       P       71. BR013PAX C       R       D       D         21. BR015PAX A       P       71. BR013PAX C       R       D       D         22. BR003PAX A       P       128. BR013PAX A       R </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>Р</td> <td>150. BR0134PAX C</td> <td></td>                                                                                                                                                                      |                 |   |                 |   |                  | Р | 150. BR0134PAX C |   |
| B. BRO144PAX B         U         10. BRO14PAX B         7           J. BRO14PAX C         P         57. BRO128PAX B         P         105. BRO03PAX C         105. BRO03PAX C           10. RR011PAX A         1         58. BRO04PAX C         106. BRO03PAX A         106. BRO03PAX A           11. BRO03PAX C         60. BRO03PAX A         100. BRO03PAX A         100. BRO13PAX A           12. BRO03PAX C         61. BRO03PAX A         109. BRO14PAX B         109. BRO14PAX A           13. BRO03PAX C         63. BRO07PAX A         111. BRO14PAX A         112. BRO11PAX A           15. BRO03PAX B         63. BRO07PAX A         111. BRO14PAX A         112. BRO15PAX A           16. BRO03PAX C         66. BRO10PAX A         112. BRO15PAX A         G           17. BRO03PAX B         65. BRO11PAX A         114. BRO12PAX A         R           10. BRO14PAX B         66. BRO19PAX A         115. BRO15PAX A         Q           12. BRO13PAX B         G         70. BRO04PAX C         R         110. BRO14PAX B         Q           12. BRO13PAX B         G         71. BRO14PAX A         Q         113. BRO15PAX A         Q           12. BRO13PAX B         Q         71. BRO14PAX A         Q         119. BRO12PAX A         Q           12. BRO15PAX C                                                                                                                                                                                                                         |                 |   |                 |   |                  |   |                  |   |
| 9. BR0091PAX C         p         57. BR0128PAX B         05. BR0036PAX C           10. BR001PAX A         1         59. BR004PAX A         105. BR0039PAX A           11. BR0056PAX A         1         59. BR004PAX A         107. BR0118PAX A           13. BR0056PAX A         1         60. BR0036PAX A         109. BR0130PAX A           14. BR003PAX C         61. BR0081PAX B         109. BR014PAX A           15. BR003PAX A         63. BR003PAX A         111. BR0146PAX A           16. BR003PAX C         64. BR0104PAX A         111. BR0156PAX C           17. BR008PAX B         65. BR007PAX A         113. BR0159PAX C           19. BR0060PAX A         68. BR0114PAX B         0           19. BR0060PAX A         69. BR0024PAX C         113. BR0159PAX C           10. BR0145PAX B         0         113. BR0152PAX B           12. BR0131PAX B         0         113. BR0152PAX A           12. BR0131PAX B         0         120. BR0155PAX C           12. BR0152PAX A         120. BR0155PAX C         0           12. BR0152PAX A         121. BR0152PAX A         0           12. BR0152PAX B         73. BR0055PAX C         122. BR0155PAX A           13. BR0152PAX B         74. BR0055PAX C         122. BR0155PAX A           14. BR0052PAX C                                                                                                                                                                                                                                |                 |   |                 |   |                  | 7 |                  |   |
| 10. BR0101PAX A       1       58. BR00SFAX B       106. BR003PAX A         11. BR0005PAX A       1       59. BR004PAX A       106. BR003PAX A         12. BR001SPAX C       60. BR003PAX A       107. BR011BPAX A         14. BR003PAX A       62. BR003PAX A       110. BR014PAX B         15. BR003PAX A       63. BR007PAX A       110. BR014PAX B         16. BR003PAX B       63. BR007PAX A       111. BR015PAX C         17. BR008PAX B       65. BR001PAX A       113. BR015PAX B         18. BR012PAX A       66. BR001PAX A       113. BR015PAX B         20. BR007PAX A       67. BR005PAX C       68. BR013PAX B         21. BR0131PAX B       69. BR002PAX A       115. BR003PAX A       R         21. BR013PAX B       0       110. BR014PAX A       0         22. BR0075PAX C       71. BR014PAX B       0       110. BR012FPAX A       P         23. BR005PAX B       0       71. BR014PAX B       0       110. BR012FPAX A       P         23. BR005PAX B       0       71. BR014PAX B       0       110. BR012FPAX C       8         23. BR005PAX C       0       72. BR005PAX C       P       121. BR012FPAX B       122. BR014FPAX B         24. BR002PAX C       0       73. BR005PAX C       121. BR012FPAX C                                                                                                                                                                                                                                                                              |                 |   |                 |   |                  |   |                  |   |
| 11. BR0005PAX A       1       59. BR0047PAX A       4       107. BR0113PAX A         12. BR001BPAX C       60. BR0036PAX A       109. BR0113PAX B       109. BR0141PAX B         14. BR0039PAX B       61. BR003PAX A       109. BR014PAX A       109. BR014PAX A         15. BR003PAX B       62. BR003PAX A       110. BR014PAX A       101. BR014PAX A         16. BR0043PAX C       64. BR0104PAX A       111. BR015PAX A       111. BR015PAX A         17. BR003PAX A       65. BR001PAX A       113. BR012PAX C       66. BR010PAX A         19. BR0060PAX A       65. BR001PAX A       115. BR003PAX A       0         21. BR0131PAX B       65. BR001PAX A       115. BR014PAX B       0         22. BR0075PAX A       71. BR0140PAX A       115. BR012PAX A       0         22. BR0075PAX B       0       71. BR0140PAX A       0       110. BR012PAX A         23. BR003PAX C       0       71. BR0140PAX A       0       120. BR012PAX A       0         24. BR0025PAX C       0       72. BR005PAX C       P       121. BR012PAX A       0       122. BR013PAX B       0         25. BR007PAX C       73. BR005PAX C       74. BR052PAX B       122. BR013PAX C       8       123. BR012PAX C       8         26. BR0027PAX C       75. BR003PAX C <td></td> <td></td> <td></td> <td>r</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                  |                 |   |                 | r |                  |   |                  |   |
| 12. BR0018PAX C       1       60. BR0030PAX A       108. BR0130PAX A         13. BR0056PAX C       61. BR0031PAX B       109. BR0141PAX B         14. BR0033PAX A       63. BR0074PAX A       110. BR0146PAX A         15. BR003PAX B       63. BR0074PAX A       111. BR016PAX A         16. BR0047PAX B       64. BR0104PAX A       111. BR015PAX C         17. BR005PAX B       65. BR007PAX A       113. BR015PAX C         18. BR0121PAX A       66. BR0109PAX A       114. BR012PAX C         19. BR0030PAX A       67. BR006PAX A       115. BR003BPAX B       0         21. BR0131PAX B       67. BR006PAX A       115. BR003PAX A       0         22. BR007PAX A       70. BR0079PAX C       R       118. BR012PAX A       0         23. BR005PAX C       0       71. BR0140PAX A       0       119. BR012PAX A       P         23. BR005PAX C       0       73. BR0057PAX C       P       121. BR0162PAX B       0       121. BR0162PAX B       0         24. BR022PAX C       0       73. BR0057PAX C       P       122. BR0162PAX B       8       123. BR013PAX B       0       124. BR012PAX A       P       125. BR014PAX B       124. BR012PAX C       8       124. BR012PAX C       8       133. BR013PAX B       133. BR013PAX B       133. BR01                                                                                                                                                                                                                                                |                 | 1 |                 |   | 107. BR0118PAX A |   |                  |   |
| 13. BR0056PAX C       61. BR0031PAX B       109. BR0141PAX B         14. BR0033PAX A       62. BR0037PAX B       62. BR0037PAX A       110. BR0146PAX A         15. BR009PAX B       63. BR0074PAX A       111. BR015PAX A       112. BR015PAX A         16. BR0043PAX C       64. BR0104PAX A       111. BR014PAX A       112. BR015PAX A         17. BR0037PAX B       65. BR0071PAX A       113. BR012PPAX C       G         19. BR0060PAX A       66. BR0109PAX A       114. BR017PPAX C       G         11. BR0131PAX B       67. BR0066PAX A       115. BR003PPAX B       0         12. BR0131PAX B       67. BR0066PAX A       115. BR012PPAX C       0         12. BR0131PAX B       70. BR0073PAX C       R       118. BR012PPAX A       0         12. BR003PAX C       U       73. BR0057PAX C       P       121. BR015PAX B       0         25. BR003PAX A       P       73. BR0057PAX C       124. BR012PAX C       8       8         26. BR003PAX A       75. BR003PAX C       124. BR012PAX C       8       124. BR012PAX C       8         26. BR003PAX A       75. BR003PAX C       124. BR012PAX C       124. BR012PAX C       8       8         27. BR015PAX B       75. BR003PAX C       124. BR012PAX C       124. BR012PAX C       8                                                                                                                                                                                                                                                        |                 | 1 |                 | 4 | 108. BR0130PAX A |   |                  |   |
| 14. BR0033PAX A       62. BR0037PAX A       110. BR0146PAX A         15. BR003PAX B       63. BR0074PAX A       111. RR0116PAX A         16. BR003PAX C       65. BR0074PAX A       111. RR0116PAX A         17. BR0087PAX B       65. BR003PAX C       113. BR0169PAX C         18. BR0121PAX A       65. BR003PAX C       113. BR0169PAX A         19. BR0060PAX A       65. BR003PAX C       66. BR0109PAX A         20. BR0107PAX A       66. BR013PAX B       116. BR0145PAX B         21. BR0131PAX B       6       69. BR0024PAX C       G         71. BR0140PAX A       70. BR003PAX C       R       115. BR013PAX B         22. BR0053PAX B       0       71. BR0140PAX A       0         23. BR003PAX C       12. BR015PAX B       0       120. BR015PAX B         24. BR022PAX C       0       72. BR005PAX B       0       120. BR015PAX B         25. BR003PAX C       74. BR005PAX B       122. BR016PAX B       8         26. BR002PAX C       74. BR013PAX C       120. BR015PAX B       8         27. BR013PAX C       76. BR0112PAX A       122. BR014PAX C       8         38. BR003PAX C       70. BR013PAX B       122. BR014PAX C       8         39. BR003PAX C       70. BR013PAX B       122. BR014PAX C       8<                                                                                                                                                                                                                                                                       |                 |   |                 |   | 109. BR0141PAX B |   |                  |   |
| 15. BR003PPAX B       63. BR0074PAX A       111. BR0116PAX A         16. BR004PAX A       112. BR015PAX B       65. BR0071PAX A       112. BR015PAX B         17. BR008PPAX B       65. BR0019PAX A       113. BR016PAX A       113. BR0172PAX C         18. BR0121PAX A       66. BR0105PAX A       113. BR0172PAX C       G         20. BR005PAX A       67. BR0066PAX A       115. BR003PAX A       R         21. BR0131PAX B       68. BR013PAX C       R       0         22. BR0075PAX A       70. BR0024PAX C       R       117. BR0125PAX A       0         23. BR005PAX C       0       71. BR014PAX A       0       112. BR015PAX B       0         24. BR002PAX C       71. BR014PAX A       0       112. BR015PAX B       P       120. BR015PAX C       P         25. BR007PAX C       P       73. BR005PAX C       P       121. BR016PAX B       8       8         26. BR002PAX C       2       75. BR005PAX C       P       122. BR016PAX B       8       8         30. BR005PAX A       79. BR005PAX B       122. BR014PAX A       125. BR014PAX B       133. BR015PAX B       133. BR015PAX C       8         33. BR005PAX A       79. BR0015PAX B       122. BR014PAX A       133. BR013PAX B       133. BR013PAX C       133. BR013PAX                                                                                                                                                                                                                                                          |                 |   |                 |   |                  |   |                  |   |
| 16. BR0043PAX C         64. BR0104PAX A         112. BR0158PAX B           17. BR0087PAX B         65. BR0071PAX A         113. BR0158PAX C           18. BR0121PAX A         66. BR0109PAX A         113. BR0158PAX C           19. BR0060PAX A         66. BR013PAX B         114. BR0172PAX C           21. BR0131PAX B         66. BR013PAX B         115. BR003PPAX A         R           22. BR0075PAX A         70. BR0027PAX C         G         117. BR0125PAX A         U           22. BR0075PAX A         R         70. BR005PAX A         G         119. BR0102PAX A         U           23. BR0052PAX C         U         72. BR005SPAX B         U         120. BR0156PAX C         P         121. BR0162PAX B         P           25. BR0072PAX C         U         73. BR0057PAX C         P         122. BR0158PAX B         8           26. BR0027PAX C         TA. BR0055PAX C         P         123. BR013PAX B         8           28. BR0048PAX A         78. BR013PAX A         122. BR014PAX A         122. BR014PAX A           29. BR0048PAX A         78. BR012PAX A         122. BR014PAX A         123. BR013PAX B           30. BR0086PAX A         78. BR013PAX A         124. BR012PAX A         133. BR013PAX B           31. BR0152PAX B         79. BR0052PAX C         13                                                                                                                                                                                                   |                 | 1 |                 |   |                  |   |                  |   |
| 17. BRO087PAX B       65. BRO07PAX A       113. BR0169PAX C         18. BR0121PAX A       66. BR0109PAX A       114. BR0172PAX C       G         19. BR0060PAX A       67. BR0066PAX A       115. BR003PAX C       G         20. BR0107PAX A       69. BR0024PAX C       115. BR013PAX B       0         11. BR0131PAX B       69. BR0024PAX C       70. BR0079AX A       0         22. BR005SPAX C       0       70. BR0079AX A       0         24. BR0028PAX C       0       71. BR0140PAX A       0       110. BR0129PAX A       P         24. BR0028PAX C       0       73. BR0057PAX C       P       121. BR0129PAX A       P       73. BR0057PAX C       8         27. BR0151PAX B       P       73. BR0057PAX C       P       122. BR0169PAX B       8       8         28. BR0032PAX C       2       75. BR005PAX C       122. BR018PAX B       8       123. BR013PAX B       8         30. BR008PAX A       77. BR0111PAX A       125. BR013PAX C       126. BR016PAX B       133. BR012PAX C       134. BR015PAX C       135. BR013PAX C       135. BR013PAX C       132. BR014PAX A       135. BR013PAX C       135. BR013PAX C       135. BR013PAX A       135. BR013PAX A       135. BR013PAX A       135. BR013PAX A       136. BR013PAX A       135. BR013PAX A       <                                                                                                                                                                                                                            |                 | 1 |                 |   |                  |   |                  |   |
| 18. BR0121PAX A       66. BR0109PAX A       114. BR0172PAX C       G         19. BR0060PAX A       67. BR0060PAX A       115. BR003PPAX B       R         20. BR0107PAX A       68. BR0113PAX B       116. BR0145PAX B       R         21. BR013PAX B       69. BR0024PAX C       G       118. BR0125PAX A       P         22. BR007SPAX A       R       70. BR003PAX C       R       118. BR0125PAX A       P         24. BR002SPAX C       U       71. BR0140PAX A       O       119. BR0102PAX A       P         25. BR007SPAX C       P       73. BR005PAX C       P       121. BR0152PAX B       S         26. BR0027PAX C       2       75. BR005PAX C       P       122. BR015PAX B       S       S         26. BR0027PAX C       2       75. BR005PAX C       P       123. BR013PAX B       S       S         28. BR0032PAX C       79. BR005PAX A       77. BR0112PAX A       124. BR012PAX C       S       S         31. BR0152PAX B       78. BR013PAX C       127. BR013PAX B       128. BR017PAX C       S       S         32. BR004PAX C       79. BR0052PAX B       127. BR013PAX B       130. BR013PAX B       S       S       S       S         33. BR003PAX A       88. BR010PAX A       S                                                                                                                                                                                                                                                                                                     |                 |   |                 |   |                  |   |                  |   |
| 19. BR0060PAXA       67. BR0066PAXA       68. BR013PAX B       67. BR0066PAXA       R       R         21. BR0131PAX B       69. BR0024PAX C       69. BR0024PAX C       G       115. BR0145PAX B       0         22. BR0075PAXA       R       70. BR0073PAX C       R       118. BR0125PAX A       U       0         23. BR0053PAX C       R       71. BR0140PAX A       0       120. BR015PAX A       P       0         24. BR0028PAX C       U       73. BR005PAX C       P       121. BR0162PAX B       P       22. BR015PAX B       P         25. BR0073PAX C       76. BR015PAX C       74. BR005SPAX C       P       122. BR0168PAX B       8         26. BR0048PAX A       77. BR013PAX C       72. BR0054PAX C       122. BR0168PAX B       8       123. BR0168PAX B       8         28. BR0032PAX C       75. BR013PAX C       122. BR0164PAX B       5       123. BR016PAX B       8         30. BR0056PAX A       78. BR013PAX C       120. BR0150PAX B       120. BR0150PAX B       130. BR013PAX C       131. BR015PAX B         32. BR0048PAX A       79. BR0052PAX B       120. BR0154PAX A       125. BR0160PAX B       131. BR015PAX A       132. BR014PAX A         33. BR0056PAX A       81. BR007PAX C       80. BR0115PAX B       133. BR015PAX A                                                                                                                                                                                                                                           |                 |   |                 |   |                  |   |                  |   |
| 20. BR0107PAX A         68. BR013PAX B         70. BR0075PAX C         70. BR0073PAX C         70. BR0073PAX C         70. BR0073PAX C         70. BR014PAX A         70 |                 | t |                 |   |                  |   |                  |   |
| 21. BR0131PAX B       G       69. BR0024PAX C       G       117. BR0125PAX A       U         22. BR0075PAX A       R       70. BR0073PAX C       R       118. BR0129PAX A       V         23. BR0053PAX B       O       71. BR0140PAX A       O       119. BR0102PAX A       P         24. BR0028PAX C       U       72. BR0059PAX B       U       120. BR0105PAX C       P         25. BR0078PAX B       P       73. BR0057PAX C       P       121. BR0162PAX B       8         26. BR0022PAX C       74. BR0055PAX C       P       122. BR0168PAX B       8         27. BR0151PAX B       2       75. BR0054PAX B       5       123. BR0139PAX C       8         28. BR0048PAX A       78. BR0119PAX A       125. BR0138PAX B       124. BR0124PAX C       8         30. BR0086PAX A       78. BR0103PAX C       126. BR0160PAX B       129. BR0154PAX A         31. BR0152PAX B       80. BR0115PAX B       129. BR0135PAX B       129. BR0135PAX A         33. BR0067PAX B       83. BR0019PAX C       131. BR0150PAX A       132. BR0138PAX A         35. BR0038PAX C       84. BR0100PAX B       133. BR0132PAX C       G         36. BR0069PAX A       R       86. BR0106PAX B       134. BR0167PAX C       G         39. BR0069                                                                                                                                                                                                                                                                          |                 | 1 |                 |   |                  |   |                  |   |
| 22. BR0075PAXA       R       70. BR0073PAX C       R       118. BR0129PAX A       P         23. BR0053PAX B       0       71. BR0140PAX A       0       119. BR0102PAX A       P         24. BR0023PAX C       U       72. BR0053PAX B       V       120. BR015PAX C       8         25. BR0078PAX C       V       73. BR0057PAX C       P       121. BR0162PAX B       8         26. BR0027PAX C       73. BR005PAX C       P       122. BR0168PAX B       8         27. BR015IPAX B       2       75. BR0054PAX B       5       123. BR0149PAX B       8         28. BR0032PAX C       76. BR0112PAX A       125. BR0148PAX B       124. BR0150PAX B       127. BR013PAX B         30. BR0086PAX A       78. BR0103PAX C       120. BR0135PAX B       127. BR0135PAX B       127. BR0135PAX B         31. BR015PAX B       79. BR0052PAX B       127. BR0135PAX B       128. BR0135PAX B       130. BR0135PAX B         32. BR004PAX C       80. BR0115PAX B       128. BR0135PAX B       131. BR0150PAX A       132. BR0135PAX B         33. BR0035PAX B       79. BR014PAX A       130. BR0135PAX B       131. BR0140PAX A       132. BR014PAX A         34. BR0035PAX C       83. BR0016PAX B       131. BR0150PAX A       131. BR0150PAX A       131. BR0150PAX A                                                                                                                                                                                                                                          |                 |   |                 |   |                  |   |                  |   |
| 23. BR0053PAX B       R       71. BR0140PAX A       O       119. BR0102PAX A       P         24. BR0028PAX C       U       72. BR0053PAX B       O       120. BR0156PAX C       8         25. BR0078PAX B       P       73. BR0057PAX C       P       121. BR0162PAX B       8         26. BR0027PAX C       74. BR0052PAX C       P       122. BR0168PAX B       8         27. BR0151PAX B       74. BR0052PAX C       122. BR0140PAX B       124. BR0139PAX C       8         29. BR0048PAX A       75. BR011PAX A       124. BR013PAX B       124. BR013PAX B       124. BR013PAX B         30. BR005PAX A       79. BR0052PAX B       126. BR013PAX B       127. BR013PAX B       128. BR013PAX B         31. BR0152PAX B       79. BR0052PAX A       128. BR015PAX B       128. BR0171PAX C       128. BR015PAX B         33. BR003PAX C       80. BR0115PAX B       128. BR014PAX A       130. BR013PAX B       131. BR0150PAX A         34. BR003PAX C       84. BR010PAX C       131. BR015PAX A       132. BR014PAX A       132. BR014PAX A         35. BR003PAX A       86. BR010PAX B       R       132. BR014PAX A       R       6         37. BR003PAX A       88. BR002PAX C       P       135. BR013PAX A       R       134. BR0167PAX C       G                                                                                                                                                                                                                                                  |                 |   |                 |   |                  |   |                  |   |
| 0       72. BR0030PAX B       0       120. BR0156PAX C       8         24. BR0028PAX B       P       73. BR0057PAX C       P       121. BR0162PAX B       8         25. BR0027PAX C       74. BR005SPAX C       P       122. BR0168PAX B       8         26. BR0027PAX C       74. BR005SPAX C       P       123. BR0139PAX B       8         27. BR0151PAX B       2       75. BR0054PAX B       5       123. BR0139PAX B       124. BR0124PAX C         29. BR0048PAX A       77. BR0111PAX A       125. BR0148PAX B       125. BR0148PAX B       126. BR0140PAX C         30. BR0085PAX A       77. BR0115PAX B       127. BR0135PAX B       128. BR013PAX B       129. BR0152PAX B         32. BR0044PAX C       80. BR0115PAX B       129. BR0133PAX A       130. BR0133PAX A       130. BR0133PAX A         34. BR0035PAX A       81. BR0070PAX A       130. BR0133PAX A       130. BR013PAX C       6         35. BR0035PAX B       85. BR0106PAX B       131. BR0157PAX C       133. BR0127PAX C       6         39. BR0069PAX A       88. BR0022PAX C       135. BR0138PAX A       R       6         39. BR0069PAX A       9       135. BR0138PAX A       R       136. BR0132PAX C       0         39. BR0069PAX C       9       89. BR0046PAX C       P                                                                                                                                                                                                                                                |                 |   |                 |   |                  | Р |                  |   |
| 25. BR0078PAX B         0         73. BR0057PAX C         p         121. BR0162PAX B         8           26. BR0027PAX C         74. BR0055PAX C         74. BR005SPAX C         122. BR014PAX B         122. BR014PAX B         122. BR014PAX B           27. BR0151PAX B         2         75. BR0012PAX A         123. BR013PAX B         124. BR0124PAX C         124. BR0124PAX C           29. BR0048PAX A         77. BR0111PAX A         125. BR014PAX B         125. BR014PAX C         126. BR0160PAX B           30. BR0085PAX A         78. BR0103PAX C         126. BR0160PAX B         127. BR0135PAX B         128. BR0171PAX C           31. BR0152PAX B         79. BR0052PAX B         127. BR0135PAX B         128. BR0171PAX C         130. BR013PAX B           32. BR004PAX C         80. BR0115PAX B         128. BR0171PAX C         130. BR013PAX A         130. BR013PAX A           33. BR0039PAX C         81. BR0070PAX A         130. BR013PAX A         130. BR013PAX A         130. BR013PAX A           35. BR0039PAX C         83. BR0019PAX C         131. BR0150PAX A         132. BR014PAX A         132. BR014PAX A           36. BR0039PAX C         84. BR010PAX B         0         133. BR0127PAX C         G           38. BR0095PAX C         9         85. BR0108PAX A         R         133. BR013PAX A         R                                                                                                                                                  |                 |   |                 |   |                  |   |                  |   |
| Discrete         p         74. BR0027PAX C         p         122. BR0168PAX B           26. BR0027PAX C         75. BR0054PAX B         5         123. BR0139PAX B           28. BR0032PAX C         76. BR0112PAX A         125. BR0148PAX B           29. BR0048PAX A         77. BR0111PAX A         125. BR0160PAX B           30. BR0086PAX A         78. BR003PAX C         126. BR0160PAX B           31. BR0152PAX B         79. BR0052PAX B         127. BR013FPAX C           33. BR0095PAX A         81. BR0070PAX A         129. BR0154PAX A           34. BR0067PAX B         82. BR0049PAX C         130. BR0133PAX B           35. BR0039PAX C         83. BR0109PAX C         131. BR0150PAX A           36. BR0035PAX B         85. BR0108PAX A         G         133. BR012PPAX C           37. BR0069PAX A         85. BR0108PAX A         G         133. BR012PPAX C           38. BR0069PAX A         85. BR0108PAX A         G         133. BR012PPAX C           39. BR0069PAX A         0         88. BR002PAX C         0         135. BR0138PAX A           39. BR0069PAX C         P         137. BR0147PAX B         U           40. BR0001PAX C         P         138. BR0173PAX C         P           43. BR0030PAX C         9         137. BR0147PAX B <td< td=""><td></td><td></td><td></td><td></td><td></td><td>8</td><td></td><td></td></td<>                                                                                                                                |                 |   |                 |   |                  | 8 |                  |   |
| 27. BR0151PAX B       2       75. BR0052PAX C       123. BR0139PAX B         28. BR0032PAX C       76. BR0112PAX A       124. BR0124PAX C         29. BR0048PAX A       77. BR0111PAX A       125. BR0148PAX B         30. BR0086PAX A       78. BR0103PAX C       126. BR016DPAX B         31. BR0152PAX B       79. BR0052PAX B       127. BR0135PAX B         32. BR0044PAX C       80. BR0115PAX B       128. BR017IPAX C         33. BR0095PAX A       81. BR007DPAX A       129. BR0154PAX A         35. BR0039PAX C       83. BR0019PAX C       130. BR013PAX B         35. BR0039PAX C       83. BR0100PAX B       132. BR0149PAX A         36. BR0035PAX B       83. BR0100PAX B       133. BR0127PAX C         37. BR0013PAX B       85. BR0108PAX A       G       133. BR0127PAX C         38. BR0096PAX A       R       86. BR0106PAX B       133. BR0149PAX A         39. BR0069PAX A       Q       87. BR0084PAX B       Q       136. BR0163PAX C       Q         40. BR0001PAX C       P       89. BR0046PAX C       P       137. BR0147PAX B       U         42. BR0065PAX C       P       90. BR0143PAX A       138. BR0132PAX C       P         43. BR0030PAX C       3       91. BR0092PAX A       G       139. BR0132PAX C       P                                                                                                                                                                                                                                                           |                 | Р |                 | Р | L                |   |                  |   |
| 21       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                              |                 |   |                 |   |                  |   |                  |   |
| 29. BR0048PAXA       77. BR0111PAXA       125. BR0148PAX B         30. BR0086PAXA       78. BR0103PAX C       126. BR0160PAX B         31. BR0152PAX B       79. BR0052PAX B       127. BR0135PAX B         32. BR0044PAX C       80. BR0115PAX B       128. BR0171PAX C         33. BR0095PAX A       80. BR0115PAX B       129. BR0154PAX A         34. BR0067PAX B       81. BR0070PAX A       129. BR0154PAX A         35. BR0039PAX C       83. BR0019PAX C       131. BR0150PAX A         36. BR0035PAX B       84. BR0100PAX B       132. BR0149PAX A         37. BR0013PAX B       84. BR0100PAX B       133. BR017PAX C         38. BR0096PAX A       84. BR0100PAX B       133. BR017PAX C         39. BR0060PAX A       86. BR0106PAX B       134. BR0167PAX C       G         39. BR0060PAX A       R       88. BR0022PAX C       136. BR0163PAX C       G         40. BR0001PAX C       U       136. BR0163PAX C       O       137. BR0143PAX A       R         43. BR0030PAX C       9       90. BR0143PAX A       138. BR0173PAX C       P       138. BR0173PAX C       P         43. BR0030PAX C       9       90. BR0143PAX A       138. BR0173PAX C       P       138. BR0173PAX C       P         43. BR0030PAX C       9       91. BR00                                                                                                                                                                                                                                                      |                 | 2 |                 | 5 |                  |   |                  |   |
| 30. BR0086PAX A         78. BR0103PAX C         126. BR0160PAX B           31. BR0152PAX B         79. BR0052PAX B         127. BR0135PAX B           32. BR0044PAX C         80. BR0115PAX B         128. BR0171PAX C           33. BR0095PAX A         81. BR0070PAX A         129. BR0154PAX A           34. BR0067PAX B         82. BR0049PAX A         130. BR0133PAX B           35. BR0039PAX C         83. BR0109PAX C         131. BR0150PAX A           36. BR0035PAX B         84. BR0100PAX B         132. BR0149PAX C           37. BR0013PAX B         G         85. BR0108PAX A         G           39. BR0069PAX A         R         86. BR0100PAX B         0         135. BR0138PAX C           39. BR0069PAX A         G         87. BR0084PAX B         0         136. BR0163PAX C         G           40. BR0001PAX C         U         88. BR0022PAX C         U         136. BR0163PAX C         O           41. BR0029PAX C         P         90. BR046PAX C         P         138. BR0132PAX C         P           42. BR0065PAX C         P         90. BR045PAX C         P         138. BR0132PAX C         P           43. BR0030PAX C         9         91. BR092PAX A         6         139. BR0132PAX C         P           44. BR0079PAX B                                                                                                                                                                                                                                      |                 |   |                 |   |                  |   |                  |   |
| 31. BR0152PAX B       79. BR0052PAX B       127. BR0135PAX B         32. BR0044PAX C       80. BR0115PAX B       128. BR0171PAX C         33. BR0095PAX A       81. BR0070PAX A       129. BR0154PAX A         34. BR0067PAX B       82. BR0049PAX A       130. BR0133PAX B         35. BR0039PAX C       83. BR0101PAX C       131. BR0150PAX A         36. BR0035PAX B       84. BR0100PAX B       132. BR0149PAX A         37. BR0013PAX B       85. BR0108PAX A       G       133. BR0127PAX C         38. BR0096PAX A       R       85. BR0106PAX B       R       134. BR0167PAX C         39. BR0069PAX A       Q       87. BR0084PAX B       O       135. BR0138PAX A       R         40. BR0001PAX C       U       88. BR0022PAX C       U       136. BR0163PAX C       O         40. BR0069PAX A       O       87. BR0084PAX B       O       135. BR0138PAX A       R         40. BR0061PAX C       P       137. BR0147PAX B       U       138. BR0173PAX C       O         41. BR0023PAX C       P       137. BR0147PAX B       U       138. BR0132PAX C       P         42. BR0065PAX C       P       90. BR0143PAX A       139. BR0132PAX C       P       138. BR013PAX C       P         44. BR0079PAX B       92. BR0021PA                                                                                                                                                                                                                                                                         |                 |   |                 |   |                  |   |                  |   |
| 32. BR0044PAX C         80. BR0115PAX B         128. BR0171PAX C           33. BR0095PAX A         81. BR0070PAX A         129. BR0154PAX A           34. BR0067PAX B         82. BR0049PAX A         130. BR0133PAX B           35. BR0039PAX C         83. BR0019PAX C         131. BR0150PAX A           36. BR0035PAX B         84. BR0100PAX B         132. BR0149PAX A           37. BR0013PAX B         85. BR0108PAX A         G         133. BR0127PAX C           38. BR0096PAX A         R         86. BR0106PAX B         R         134. BR0167PAX C           39. BR0069PAX A         O         87. BR0084PAX B         O         135. BR0138PAX A         R           40. BR0001PAX C         U         88. BR0022PAX C         U         136. BR0163PAX C         O           41. BR0029PAX C         P         B9. BR0046PAX C         U         137. BR0147PAX B         U           42. BR0065PAX C         P         B9. BR0046PAX C         P         138. BR0173PAX C         P           43. BR0030PAX C         P         B9. BR0046PAX C         P         138. BR0132PAX C         P           43. BR0030PAX C         90. BR0143PAX A         F         139. BR0132PAX C         P           44. BR0079PAX B         92. BR0021PAX C         140. BR0119PAX A                                                                                                                                                                                                                          |                 |   |                 |   |                  |   |                  |   |
| 33. BR0095PAX A       81. BR0070PAX B       129. BR0154PAX A         34. BR0067PAX B       82. BR0049PAX A       130. BR0133PAX B         35. BR0035PAX C       83. BR0019PAX C       131. BR0150PAX A         36. BR0035PAX B       84. BR0100PAX B       132. BR0149PAX A         37. BR0013PAX B       85. BR0108PAX A       G       133. BR0127PAX C         38. BR0096PAX A       R       86. BR0106PAX B       R       134. BR0167PAX C         39. BR0069PAX A       Q       87. BR0084PAX B       Q       135. BR0138PAX A       R         40. BR0001PAX C       U       88. BR002PAX C       U       136. BR0163PAX C       Q         41. BR0029PAX C       P       89. BR0046PAX C       U       136. BR0132PAX C       Q         42. BR0065PAX C       P       89. BR0046PAX C       P       137. BR0147PAX B       U         43. BR0030PAX C       P       90. BR0143PAX A       P       138. BR0132PAX C       P         43. BR0030PAX C       91. BR002PAX A       6       139. BR0132PAX C       P       P         43. BR0073PAX B       91. BR0061PAX C       93. BR0003PAX C       P       138. BR0132PAX C       P         44. BR0073PAX B       91. BR0061PAX C       93. BR0003PAX C       140. BR0119PAX A       9                                                                                                                                                                                                                                                                          |                 |   |                 |   |                  |   |                  |   |
| 34. BR0067PAX B       82. BR0049PAX A       130. BR0133PAX B         35. BR0039PAX C       83. BR0019PAX C       131. BR0150PAX A         36. BR0035PAX B       84. BR0100PAX B       132. BR0149PAX A         37. BR0013PAX B       G       85. BR0108PAX A       G         38. BR0096PAX A       R       86. BR0106PAX B       133. BR0127PAX C         39. BR0069PAX A       O       87. BR0084PAX B       O       135. BR0138PAX A         40. BR0001PAX C       U       88. BR0022PAX C       U       136. BR0163PAX C       O         41. BR0029PAX C       P       89. BR0046PAX C       P       137. BR0147PAX B       U         42. BR0065PAX C       90. BR0143PAX A       6       139. BR0132PAX C       P         43. BR0079PAX B       91. BR0092PAX A       6       139. BR0132PAX C       P         44. BR0079PAX B       92. BR0021PAX C       140. BR0119PAX A       9         45. BR0006PAX C       93. BR0006PAX C       141. BR0090PAX C       9         46. BR0072PAX A       95. BR0110PAX A       143. BR0155PAX A       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |   |                 |   |                  |   |                  |   |
| 35. BR0039PAX C       83. BR0019PAX C       131. BR0150PAX A         36. BR0035PAX B       84. BR0100PAX B       132. BR0149PAX A         37. BR0013PAX B       G       85. BR0108PAX A       G         38. BR0096PAX A       R       85. BR0106PAX B       133. BR0127PAX C         39. BR0069PAX A       R       87. BR0084PAX B       O       135. BR0138PAX A         40. BR0001PAX C       U       88. BR0022PAX C       U       136. BR0163PAX C       O         41. BR0029PAX C       P       89. BR0046PAX C       P       137. BR0147PAX B       U         42. BR0065PAX C       P       90. BR0143PAX A       138. BR0173PAX C       P         43. BR0030PAX C       9       91. BR0092PAX A       6       139. BR0132PAX C       P         44. BR0079PAX B       92. BR001PAX C       93. BR0009PAX C       141. BR0090PAX C       9         45. BR0006PAX C       93. BR0006PAX C       141. BR0090PAX C       142. BR0161PAX B       9         47. BR0122PAX C       95. BR0110PAX A       143. BR0155PAX A       143. BR0155PAX A                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |   |                 |   |                  |   |                  |   |
| 36. BR003SPAX B       84. BR0100PAX B       132. BR0149PAX A         37. BR0013PAX B       G       85. BR0108PAX A       G       133. BR0127PAX C         38. BR0096PAX A       R       86. BR0106PAX B       R       134. BR0167PAX C       G         39. BR0069PAX A       O       87. BR0084PAX B       O       135. BR0138PAX A       R         40. BR0001PAX C       U       88. BR0022PAX C       U       136. BR0163PAX C       O         41. BR0029PAX C       P       89. BR0046PAX C       P       137. BR0147PAX B       U         42. BR0065PAX C       P       90. BR0143PAX A       138. BR0173PAX C       P         43. BR0030PAX C       91. BR0092PAX A       6       139. BR0132PAX C       P         44. BR0079PAX B       92. BR0021PAX C       140. BR0119PAX A       9         45. BR0006PAX C       93. BR0006PAX C       141. BR0090PAX C       9         46. BR0072PAX A       94. BR0061PAX C       142. BR0161PAX B       9         47. BR0122PAX C       95. BR0110PAX A       143. BR0155PAX A       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |   |                 |   |                  |   |                  |   |
| 37. BR0013PAX B       G       85. BR0108PAX A       G       133. BR0127PAX C         38. BR0096PAX A       R       86. BR0106PAX B       R       134. BR0167PAX C       G         39. BR0069PAX A       O       87. BR0084PAX B       O       135. BR0138PAX A       R         40. BR0001PAX C       U       88. BR0022PAX C       U       136. BR0163PAX C       O         41. BR0029PAX C       P       89. BR0046PAX C       P       137. BR0147PAX B       U         42. BR0065PAX C       90. BR0143PAX A       138. BR0173PAX C       P       138. BR0173PAX C       P         43. BR0030PAX C       3       91. BR0092PAX A       6       139. BR0132PAX C       P       130. BR0132PAX C       P         44. BR0079PAX B       92. BR0021PAX C       93. BR0009PAX C       141. BR0090PAX C       9       9         45. BR0006PAX C       93. BR0006PAX C       94. BR0061PAX C       142. BR0161PAX B       9         47. BR0122PAX C       95. BR0110PAX A       143. BR0155PAX A       143. BR0155PAX A       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |   |                 |   |                  |   |                  |   |
| 38. BR0096PAX A       R       86. BR0106PAX B       R       134. BR0167PAX C       G         39. BR0069PAX A       O       87. BR0084PAX B       O       135. BR0138PAX A       R         40. BR0001PAX C       U       88. BR0022PAX C       U       136. BR0163PAX C       O         41. BR0059PAX C       P       89. BR0046PAX C       P       137. BR0147PAX B       U         42. BR0065PAX C       90. BR0143PAX A       138. BR0173PAX C       P         43. BR0073PAX B       91. BR0092PAX A       6       139. BR0132PAX C       P         44. BR0079PAX B       92. BR0021PAX C       140. BR0119PAX A       9         45. BR0066PAX C       93. BR0006PAX C       141. BR0090PAX C       141. BR0090PAX C         46. BR0072PAX A       94. BR0061PAX C       142. BR0161PAX B       143. BR0155PAX A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |   |                 |   |                  |   |                  |   |
| 39. BR0069PAX A       R       20. BR0100PAX A       R         39. BR0069PAX A       O       87. BR0084PAX B       O       135. BR0138PAX A       R         40. BR0001PAX C       U       88. BR0022PAX C       U       136. BR0163PAX C       O         41. BR0029PAX C       P       89. BR0046PAX C       P       137. BR0147PAX B       U         42. BR0065PAX C       90. BR0143PAX A       138. BR0173PAX C       P         43. BR0030PAX C       3       91. BR0092PAX A       6       139. BR0132PAX C       P         44. BR0079PAX B       92. BR0021PAX C       140. BR0119PAX A       9       9         45. BR0006PAX C       93. BR0061PAX C       141. BR0090PAX C       142. BR0161PAX B       143. BR0155PAX A         47. BR0122PAX C       95. BR0110PAX A       143. BR0155PAX A       143. BR0155PAX A       143. BR0155PAX A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | G |                 | G |                  | G |                  |   |
| 40. BR000JPAX C       0       88. BR0022PAX C       0       136. BR0163PAX C       0         41. BR0029PAX C       P       89. BR0046PAX C       P       137. BR0147PAX B       U         42. BR0065PAX C       90. BR0143PAX A       138. BR0132PAX C       P         43. BR0030PAX C       3       91. BR0092PAX A       6       139. BR0132PAX C       P         44. BR0079PAX B       92. BR0021PAX C       140. BR0119PAX A       9       9         45. BR0006PAX C       93. BR0009PAX C       141. BR0090PAX C       142. BR0161PAX B         47. BR0122PAX C       95. BR0110PAX A       143. BR0155PAX A       143. BR0155PAX A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | R |                 |   |                  |   |                  |   |
| 41. BR0029PAX C       P       89. BR0046PAX C       P       137. BR0147PAX B       U         42. BR0065PAX C       90. BR0143PAX A       138. BR0173PAX C       P         43. BR0030PAX C       3       91. BR0092PAX A       6       139. BR0132PAX C       P         44. BR0079PAX B       92. BR0021PAX C       139. BR0132PAX C       140. BR0119PAX A       9         45. BR0006PAX C       93. BR0009PAX C       141. BR0090PAX C       142. BR0161PAX B       9         47. BR0122PAX C       95. BR0110PAX A       143. BR0155PAX A       143. BR0155PAX A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 0 |                 | 0 |                  |   |                  |   |
| 42. BR00625PAX C       90. BR0143PAX A       9         43. BR0030PAX C       30. BR0032PAX A       6         44. BR0073PAX B       92. BR0021PAX C       138. BR0132PAX C         45. BR0006PAX C       93. BR003PAX C       141. BR0090PAX C         46. BR0072PAX A       94. BR0061PAX C       142. BR0161PAX B         47. BR0122PAX C       95. BR0110PAX A       143. BR0155PAX A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | U |                 | U |                  |   |                  |   |
| 42. BR0003PAX C       30. BR013PAX A       130. BR013PAX C         43. BR0030PAX C       3       91. BR0092PAX A       6         44. BR0079PAX B       92. BR0021PAX C       140. BR0119PAX A       9         45. BR0006PAX C       93. BR0009PAX C       141. BR0090PAX C       9         46. BR0072PAX A       94. BR0061PAX C       142. BR0161PAX B       9         47. BR0122PAX C       95. BR0110PAX A       143. BR0155PAX A       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Р |                 | Р |                  |   |                  |   |
| 44. BR0079PAX B       92. BR0021PAX C       140. BR0119PAX A       9         45. BR0006PAX C       93. BR0009PAX C       141. BR0090PAX C       46. BR0072PAX A         46. BR0072PAX A       94. BR0061PAX C       142. BR0161PAX B         47. BR0122PAX C       95. BR0110PAX A       143. BR0155PAX A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |   |                 |   |                  | ŕ |                  |   |
| 45. BR0006PAX C         93. BR0009PAX C         141. BR0090PAX C           46. BR0072PAX A         94. BR0061PAX C         142. BR0161PAX B           47. BR0122PAX C         95. BR0110PAX A         143. BR0155PAX A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | 3 |                 | 6 |                  | 0 |                  |   |
| 46. BR0072PAX A         94. BR0061PAX C         142. BR0161PAX B           47. BR0122PAX C         95. BR0110PAX A         143. BR0155PAX A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |   |                 |   |                  | Э |                  |   |
| 47. BR0122PAX C 95. BR0110PAX A 143. BR0155PAX A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |   |                 |   |                  |   |                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |   |                 |   |                  |   |                  |   |
| 48. BR0105PAX B 96. BR0117PAX B 144. BR0136PAX B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |   |                 |   |                  |   |                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48. BR0105PAX B |   | 96. BR0117PAX B |   | 144. BR0136PAX B |   | l                |   |

**PART 1**. The first-strand cDNA was synthesized by mixing 5  $\mu$ L of total RNA, 4  $\mu$ L of WT Pico First-Strand buffer and 1  $\mu$ L of WT Pico First-Strand enzyme. This reaction mix was incubated for 5 minutes at 25°C, 60 minutes at 42°C and then for at least 2 minutes at 4°C. After being centrifuged and chilled on ice for 2 minutes to cool the plastic, 2  $\mu$ L of WT Pico Cleanup Reagent were added to each 10  $\mu$ L of cDNA sample while on ice. After adding every reagent, the sample was always mixed thoroughly (no vortex) and centrifuged briefly to remove air bubbles and collect the reaction at the bottom of the tube. The reaction mix was incubated for 30 minutes at 37°C, 10 minutes at 80°C and for at least 2 minutes at 4°C. Then, it was centrifuged briefly to collect the first-strand cDNA at the bottom and placed on ice for 2 minutes to cool the plastic.

Subsequently, 3' Adaptor was added to the single-stranded cDNA, which acted as a template for a double-stranded cDNA synthesis in the pre-*in vitro* amplification reaction. WT pico 3' Adaptor buffer (7  $\mu$ L) and enzyme (1  $\mu$ L) were added to the First-Strand cDNA sample and incubated for 15 minutes at 15°C, 15 minutes at 35°C, 10 minutes at 70°C and then for at least 2 minutes at 2°C. This reaction was performed on a thermal cycler with the lid kept off. After the incubation, the samples were collected at the bottom of the tube and cool on ice.

Then, single-stranded cDNA was converted to double-stranded cDNA, which acted as a template for the *in vitro* transcription. This reaction used TaqDNA polymerase and Adaptor-specific primers to synthesize and pre-amplify double-stranded cDNA. WT pico PCR Buffer (29  $\mu$ L) and enzyme (1  $\mu$ L) were added to the previous mix and incubated at 2 minutes for 95°C, followed by 6 cycles at 30 second at 94°C and 5 minutes at 70°C, and then for at least 2 minutes at 4°C.

The following reaction was the *in vitro* Transcription (IVT), in which the doublestranded cDNA template was used for synthesizing and amplifying the anti-sense RNA (complimentary or cRNA) using T7 RNA polymerase. While at room temperature, 24  $\mu$ L of WT Pico IVT buffer and 1  $\mu$ L of enzyme were added and the mix incubated at 40°C for 15 hours (overnight reaction).

After the 15 hours of IVT, the cRNA product was cleared by enzymes, salts, inorganic phosphates, and unincorporated nucleotides. The purification was performed by using magnetic purification beads, able to bind cRNA. The process consisted in several washing steps with ethanol 80% and final dilution with nuclease-free water.

At this point, the purified cRNA was immediately chilled on ice for quality control assessment by using Nanodrop spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). To proceed to the next step ( $2^{nd}$ -cycle single-stranded cDNA) the lowest cRNA concentration required was 833 ng/µL. Purified cRNA samples with a concentration higher than 833 ng/µL were stored at -80°C (first STOP POINT); on the other hand, samples with lower concentration required to be pre-processed starting from fresh 10 ng total RNA.

All 150 samples were pre-processed for part 1 before proceeding with part 2. Before proceeding with pre-processing Part 2, samples were randomized again. The randomized groups are reported in table 3.6.

Table 3.6. Randomization of the 150 samples accordingly to risk groups A, B and C for the pre-

processing (Part 2)

|                                    |        | 57 0000150470                        |   |                  |        |
|------------------------------------|--------|--------------------------------------|---|------------------|--------|
| 1. BR0086PAX A                     | G      | 57. BR0015PAX C                      |   | 113.BR0145PAX B  |        |
| 2. BR0094PAX C                     | R      | 58. BR0113PAX B                      |   | 114. BR0172PAX C |        |
| 3. BR0105PAX B                     | 0      | 59. BR0051PAX B                      |   | 115. BR0153PAX B |        |
| 4. BR0052PAX B                     | U      | 60. BR0055PAX C                      |   | 116. BR0124PAX C |        |
| 5. BR0061PAX C                     | Р      | 61. BR0082PAX B                      |   | 117. BR0141PAX B |        |
| 6. BR0079PAX B                     |        | 62. BR0114PAX B                      |   | 118. BR0171PAX C |        |
| 7. BR0040PAX C                     | 1      | 63. BR0143PAX A                      |   | 119. BR0116PAX A |        |
| 8. BR0096PAX A                     |        | 64. BR0045PAX C                      |   | 120. BR0118PAX A | 6      |
| 9. BR0104PAX A                     |        | 65. BR0056PAX C                      | G | 121. BR0139PAX B |        |
| 10. BR0024PAX C                    |        | 66. BR0036PAX A                      | R | 122. BR0155PAX A |        |
| 11. BR0157PAX B                    |        | 67. BR0152PAX B                      | 0 | 123. BR0147PAX B |        |
| 12. BR0120PAX B                    |        | 68. BR0095PAX A                      | U | 124. BR0132PAX C |        |
| 13. BR0142PAX B                    |        | 69. BR0109PAX A                      | Р | 125. BR0165PAX C |        |
| 14. BR0110PAX A                    |        | 70. BR0047PAX A                      |   | 126. BR0090PAX C |        |
| 15. BR0001PAX C                    |        | 71. BR0030PAX C                      | 4 | 127. BR0164PAX B |        |
| 16. BR0108PAX A                    |        | 72. BR0081PAX B                      |   | 128. BR0149PAX A |        |
| 17. BR0046PAX C                    | C      | 73. BR0140PAX A                      |   | 129. BR0160PAX B |        |
| 18. BR0013PAX B                    | G<br>R | 74. BR0101PAX A                      |   | 130. BR0102PAX A |        |
| 19. BR0121PAX A                    | 0      | 75. BR0065PAX C                      |   | 131. BR0169PAX C |        |
| 20. BR0022PAX C                    | Ŭ      | 76. BR0131PAX B                      |   | 132. BR0134PAX C |        |
| 21. BR0002PAX C                    | Р      | 77. BR0028PAX C                      |   | 133. BR0130PAX A |        |
| 22. BR0144PAX B                    |        | 78. BR0074PAX A                      |   | 134. BR0168PAX B |        |
| 23. BR0075PAX A                    | 2      | 79. BR0137PAX B                      |   | 135. BR0119PAX A |        |
| 24. BR0053PAX B                    |        | 80. BR0070PAX A                      |   | 136. BR0133PAX B | C      |
| 25. BR0112PAX A                    |        | 81. BR0064PAX C                      |   | 137. BR0125PAX A | G<br>R |
| 26. BR0019PAX C                    |        | 82. BR0089PAX A                      |   | 138. BR0167PAX C | 0      |
| 27. BR0092PAX A                    |        | 83. BR0009PAX C                      |   | 139. BR0138PAX A | U      |
| 28. BR0100PAX B                    |        | 84. BR0049PAX A                      |   | 140. BR0154PAX A | Р      |
| 29. BR0033PAX A                    |        | 85. BR0073PAX C                      |   | 141. BR0156PAX C |        |
| 30. BR0072PAX A                    |        | 86. BR0020PAX A                      |   | 142. BR0098PAX A | 7      |
| 31. BR0103PAX C                    |        | 87. BR0067PAX B                      |   | 143. BR0123PAX C |        |
| 32. BR0085PAX B                    |        | 88. BR0122PAX C                      |   | 144. BR0158PAX B |        |
| 33. BR0088PAX A                    |        | 89. BR0080PAX B                      | G | 145. BR0127PAX C |        |
| 34. BR0021PAX C                    |        | 90. BR0006PAX C                      | R | 146. BR0150PAX A |        |
| 35. BR0106PAX B                    |        | 91. BR0066PAX A                      | 0 | 147. BR0161PAX B |        |
| 36. BR0037PAX A                    |        | 92. BR0115PAX B                      | U | 148. BR0136PAX B |        |
| 37. BR0087PAX B                    |        | 93. BR0039PAX C                      | Р | 149. BR0093PAX A |        |
| 38. BR0069PAX A                    |        | 94. BR0083PAX C                      |   | 150. BR0163PAX C |        |
| 39. BR0097PAX A                    |        | 95. BR0107PAX A                      | 5 |                  |        |
| 40. BR0076PAX B                    |        | 96. BR0005PAX A                      |   |                  |        |
| 41. BR0029PAX C                    | G      | 97. BR0054PAX B                      |   |                  |        |
| 42. BR0091PAX C                    | R      | 98. BR0032PAX C                      |   |                  |        |
| 43. BR0035PAX B                    | 0      | 99. BR0043PAX C                      |   |                  |        |
| 44. BR0018PAX C                    | U      | 100. BR0099PAX B                     |   |                  |        |
| 45. BR0044PAX C                    | Р      | 101. BR0050PAX B                     |   |                  |        |
| 46. BR0077PAX A                    |        | 102. BR0038PAX C                     |   |                  |        |
| 47. BR0151PAX B                    | 3      | 103. BR0128PAX B                     |   |                  |        |
| 48. BR0071PAX A                    |        | 104. BR0048PAX A                     |   |                  |        |
| 49. BR0117PAX B<br>50. BR0027PAX C |        | 105. BR0059PAX B                     | G |                  |        |
| 50. BR0027PAX C                    |        | 106. BR0162PAX B                     | R |                  |        |
| 51. BR0060PAX A<br>52. BR0058PAX C |        | 107. BR0129PAX A                     | 0 |                  |        |
| 53. BR0111PAX A                    |        | 108. BR0170PAX C<br>109. BR0148PAX B | U |                  |        |
| 54. BR0084PAX B                    |        |                                      | Р |                  |        |
| 55. BR0057PAX C                    |        | 110. BR0135PAX B<br>111. BR0146PAX A |   |                  |        |
| 56. BR0078PAX B                    |        | 111. BR0146PAX A<br>112. BR0173PAX C | 6 |                  |        |
|                                    |        |                                      |   | l                |        |

**PART 2.** Sense-strand cDNA was synthetized by the reverse transcription of 20  $\mu$ g of cRNA using 2<sup>nd</sup>-cycle primers. The sense-strand cDNA contained dUTP at a fixed ratio relative to dTTP. Firstly, while on ice, 20  $\mu$ g of cRNA were diluted into 24  $\mu$ L of nuclease-free water. Then, the 2<sup>nd</sup>-cycle ss-cDNA mix was prepared by adding 49  $\mu$ L of WT Pico 2<sup>nd</sup>-cycle ss-cDNA primers, 8  $\mu$ L of buffer and 1  $\mu$ L of enzyme; the reaction mix was incubated for 10 minutes at 25°C, 90 minutes at 42°C, 10 minutes at 70°C and then for at least 2 minutes at 4°C.

The next step was the RNase H hydrolyzation of the cRNA template, to leave only the single-stranded cDNA. 4µL of RNase H were added to the  $2^{nd}$ -cycle ss-cDNA samples and incubated for 45 minutes at  $37^{\circ}$ C, 5 minutes at  $95^{\circ}$ C and then for at least 2 minutes at 4°C. After a brief centrifugation to collect the sample on the bottom of the tube, 11 µL of nuclease-free water were added to each hydrolysed  $2^{nd}$ -cycle ss-cDNA sample. After that, the sample faced the second purification with the magnetic beads. Once purified, the eluted ss-cDNA quality was assessed by using the Nanodrop spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). To proceed to the next step, a minimum concentration of 120 ng/µL was required. After the Nanodrop assessment, samples were stored at -20°C (second STOP POINT).

All 150 samples were pre-processed for part 2 before proceeding for part 3. Before proceeding with pre-processing Part 3 and array strip hybridization, samples were randomized again. The randomized groups are reported in table 3.7.

Table 3.7. Randomization of the 150 samples accordingly to risk groups A, B and C for the

# array-strips (Part 3)

| BR0005PAX A |                  | BR0109PAX A                |                   | BR0169PAX C |                   | BR0054PAX B |                   |
|-------------|------------------|----------------------------|-------------------|-------------|-------------------|-------------|-------------------|
| BR0043PAX C |                  | BR0013PAX B                |                   | BR0037PAX A |                   | BR0158PAX B |                   |
| BR0093PAX A | ARRAY<br>STRIP 1 | BR0122PAX C                | ARRAY STRIP<br>11 | BR0118PAX A | ARRAY STRIP<br>21 | BR0094PAX C | ARRAY STRIP<br>31 |
| BR0100PAX B | 51111 1          | BR0122PAX C                |                   | BR0030PAX C | 21                | BR0034PAX C | 51                |
|             |                  | BR0040PAX C                |                   |             |                   |             |                   |
| BR0097PAX A |                  |                            |                   | BR0071PAX A |                   | BR0070PAX A |                   |
| BR0056PAX C | ARRAY<br>STRIP 2 | BR0128PAX B<br>BR0112PAX A | ARRAY STRIP<br>12 | BR0144PAX B | ARRAY STRIP<br>22 | BR0079PAX B | ARRAY STRIP<br>32 |
| BR0171PAX C | JINF 2           |                            | 12                | BR0154PAX A |                   | BR0096PAX A | 52                |
| BR0114PAX B |                  | BR0006PAX C                |                   | BR0036PAX A |                   | BR0082PAX B |                   |
| BR0172PAX C |                  | BR0157PAX B                | •                 | BR0098PAX A |                   | BR0099PAX B | •                 |
| BR0086PAX A | ARRAY            | BR0121PAX A                | ARRAY STRIP       | BR0045PAX C | ARRAY STRIP       | BR0165PAX C | ARRAY STRIP       |
| BR0113PAX B | STRIP 3          | BR0021PAX C                | 13                | BR0046PAX C | 23                | BR0138PAX A | 33                |
| BR0048PAX A |                  | BR0135PAX B                |                   | BR0081PAX B |                   | BR0134PAX C |                   |
| BR0047PAX A |                  | BR0137PAX B                | 4                 | BR0074PAX A | 4                 | BR0173PAX C | 4                 |
| BR0142PAX B | ARRAY            | BR0069PAX A                | ARRAY STRIP       | BR0130PAX A | ARRAY STRIP       | BR0163PAX C | ARRAY STRIP       |
| BR0089PAX A | STRIP 4          | BR0145PAX B                | 14                | BR0067PAX B | 24                | BR0155PAX A | 34                |
| BR0064PAX C |                  | BR0057PAX C                |                   | BR0103PAX C |                   | BR0127PAX C |                   |
| BR0083PAX C |                  | BR0116PAX A                |                   | BR0052PAX B | 4                 | BR0133PAX B | 4                 |
| BR0059PAX B | ARRAY            | BR0055PAX C                | ARRAY STRIP       | BR0001PAX C | ARRAY STRIP       | BR0090PAX C | ARRAY STRIP       |
| BR0073PAX C | STRIP 5          | BR0032PAX C                | 15                | BR0050PAX B | 25                | BR0150PAX A | 35                |
| BR0111PAX A |                  | BR0160PAX B                |                   | BR0038PAX C |                   | BR0147PAX B |                   |
| BR0058PAX C |                  | BR0140PAX A                |                   | BR0015PAX C |                   | BR0149PAX A |                   |
| BR0148PAX B | ARRAY            | BR0018PAX C                | ARRAY STRIP<br>16 | BR0124PAX C | ARRAY STRIP<br>26 | BR0132PAX C | ARRAY STRIP<br>36 |
| BR0044PAX C | STRIP 6          | BR0088PAX A                |                   | BR0125PAX A |                   | BR0164PAX B |                   |
| BR0110PAX A |                  | BR0061PAX C                |                   | BR0139PAX B |                   | BR0167PAX C |                   |
| BR0156PAX C |                  | BR0024PAX C                |                   | BR0066PAX A |                   | BR0119PAX A |                   |
| BR0108PAX A | ARRAY            | BR0143PAX A                | ARRAY STRIP       | BR0084PAX B | ARRAY STRIP       | BR0153PAX B | ARRAY STRIP       |
| BR0002PAX C | STRIP 7          | BR0151PAX B                | 17                | BR0078PAX B | 27                | BR0161PAX B | 37                |
| BR0072PAX A |                  | BR0095PAX A                |                   | BR0022PAX C |                   | BR0123PAX C |                   |
| BR0107PAX A |                  | BR0141PAX B                |                   | BR0077PAX A |                   | BR0170PAX C |                   |
| BR0080PAX B | ARRAY            | BR0033PAX A                | ARRAY STRIP       | BR0075PAX A | ARRAY STRIP       | BR0136PAX B | ARRAY STRIP       |
| BR0152PAX B | STRIP 8          | BR0146PAX A                | 18                | BR0053PAX B | 28                |             | 38                |
| BR0092PAX A |                  | BR0168PAX B                |                   | BR0019PAX C | ]                 |             |                   |
| BR0101PAX A |                  | BR0104PAX A                |                   | BR0105PAX B |                   |             |                   |
| BR0117PAX B | ARRAY            | BR0051PAX B                | ARRAY STRIP       | BR0106PAX B | ARRAY STRIP       |             |                   |
| BR0085PAX B | STRIP 9          | BR0035PAX B                | 19                | BR0129PAX A | 29                |             |                   |
| BR0029PAX C |                  | BR0020PAX A                | ]                 | BR0060PAX A | ]                 |             |                   |
| BR0049PAX A |                  | BR0162PAX B                |                   | BR0065PAX C |                   |             |                   |
| BR0087PAX B | ARRAY            | BR0009PAX C                | ARRAY STRIP       | BR0131PAX B | ARRAY STRIP       |             |                   |
| BR0028PAX C | STRIP 10         | BR0115PAX B                | 20                | BR0091PAX C | 30                |             |                   |
| BR0076PAX B |                  | BR0039PAX C                | 1                 | BR0120PAX B | 1                 |             |                   |

*PART 3.* The third and last part of the pre-processing consisted in the fragmentation and labelling of the single-stranded cDNA. The ss-cDNA was fragmented by uracil-DNA glycosylase (UDG) and apurinic/apyrimidinic endonuclease 1 (APE 1). The fragmented cDNA was then labelled by terminal deoxynycleotidyl transferase (TdT) using a DNA labelling reagent which was covalently linked to biotin. Firstly, 5.5  $\mu$ g of ss-cDNA were prepared in a volume of 46  $\mu$ L of nuclease-free water. Secondly, WT Pico Fragmentation and Label buffer (12  $\mu$ L) and enzyme (2  $\mu$ L) were added to the ss-cDNA and incubated for 1 hour at 37°C, 2 minutes at 93°C and for at least 2 minutes at 4°C. Once centrifuged briefly and placed on ice, the sample were ready for array hybridization.

#### 3.5.2 Array Strip hybridization on the Gene Atlas System

HuGene 2.1 Array Strips were used in this phase. Before starting the hybridization, the array strips and 5X WT Hyb Add 1, 15X WT Hyb Add 4 and 2.5X WT Hyb Add 6 were allowed to equilibrate at room temperature; Control Oligonucleotide B2 (2nM) and 20X Eukaryotic Hybridization Controls were thawed at room temperature while on ice. Firstly, 20X Hybridization Controls were incubated for 5 minutes at 65°C; after that, the hybridization master mix was prepared in a nuclease-free tube while at room temperature by adding 5X wt Hyb Add 1 (30  $\mu$ L for one array), control oligonucleotide B2 (1.5  $\mu$ L), 20X hybridization controls (7.6  $\mu$ L), 15X WT Add 4 (10  $\mu$ L), mixed gently, and centrifuged to collect the mix at the bottom of the tube. After that, the hybridization cocktail for a single array was prepared by adding 49  $\mu$ L of the hybridization master mix to 41  $\mu$ L of fragmented and labelled ss-cDNA and 60 $\mu$ L of 2.5X WT hyb Add 6. The hybridization cocktail was vortexed, centrifuged and then

incubated for 5 minutes at 99°C and then for 5 minutes at 45°C. Before proceeding with the hybridization, the array strip was registered on the Gene Atlas platform following manufacturer's instructions.

Then, 120 µL of Hybridization cocktail were applied to the middle of the appropriate wells of a new clean hybridization tray and the array strip placed into the hybridization tray being careful to not scratch or damage the array surface as well as not make any air bubbles. At this point, the array strip was scanned onto the platform and then the Gene Atlas Hybridization Station temperature was set at 48°C; the array strip was carefully inserted, the station clamp closed, and the 20 hours' countdown started (hybridization phase).

After the hybridization, the array strip was moved to the Gene Atlas Fluidic Station for the wash and staining process. Once finished, the array strip was moved to the Imager for the last step, when the image was acquired and the CEL file produced for the bioinformatic analysis.

## 3.5.3 Quality control

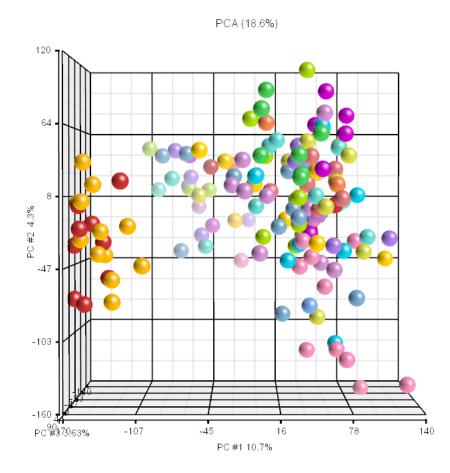
The internal quality controls for gene expression monitor the assay data quality and are represented by signal value, hybridization controls, labelling controls, and internal control genes. The results of these controls are displayed by the QC report. If one of the parameters does not reach the pre-defined thresholds, it is shown in the summary of the QC status.

### 3.6 Bioinformatic analysis – Gene Atlas Affymetrix

### 3.6.1 Partek software

The Affymetrix CEL file were imported into the Partek Genomic Suite software and the analysis followed a specific pipeline. After importing the samples and giving attributes, the quality assessment and control were performed (QA/QC analysis).

The data were firstly explored with the Principal Components Analysis (PCA) to find similarities and differences between the samples. In the PCA scatter plot each point represents a chip (sample) and corresponds to a row on the top-level spreadsheet; points that are close together in the plot have similar intensity values across the probe sets on the whole chip, while points that are far apart in the plot are dissimilar. It is possible to configurate the colour and dimension of points of the scatter plot based on different variables, such as tissue, type, gender, and scan date. The PCA scatter plot allows to identify outliers or the so-called batch effects, which depends on differences in the intensity due to the scan date (an example is represented in figure 3.5). Moreover, it is possible to identify outlier by looking at the sample histogram (or Box and Whiskers Chart), where the intensity of the probes is graphed on the X-axis and the frequency of the probe intensity on the y-axis (an example is represented in figure 3.6).


Background correction was conducted using Robust Multi-strip Average (RMA) (Irizarry et al., 2003) to remove noise from auto fluorescence. After background correction, normalization was conducted using Quantiles normalization (Bolstad, Irizarry, Astrand, & Speed, 2003) to normalize the distribution of probe intensities among different microarray chips. Subsequently, a summarization step was

conducted using a linear median polish algorithm to integrate probe intensities to compute the expression levels for each gene transcript.

After the QA/QC, the differences among the three groups were assessed by using an analysis of variance (ANOVA). To quantify the relative contribution of each factor in the model towards explaining the variability of the data, it was necessary to consider the Sources of Variation plot. Lastly, gene lists of differently expressed gene among the different groups were creating from the ANOVA.

Differential gene expression across treatment was assessed by applying a p-value filter of p < 0.05 to the ANOVA results, a fold-change cut-off of  $\pm |1.2|$  and a Benjamini-Hochberg adjusted false discovery rate (FDR) cut-off of 0.05 (q-value).

# Figure 3.5. Partek Genomic Suite PCA for Scan Date



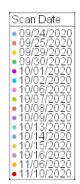



Figure 3.6. Partek Genomic Suite Histogram for Intensity (divided for Scan Date)

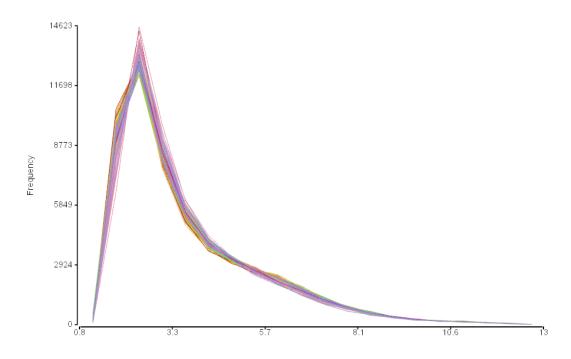
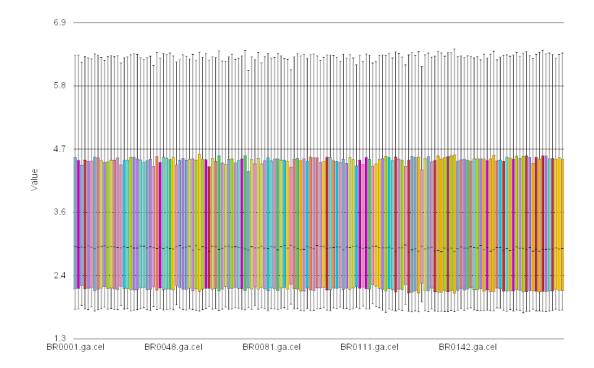




Figure 3.7. Partek Genomic Suite Box and Whiskers Chart (divided for Scan Date)

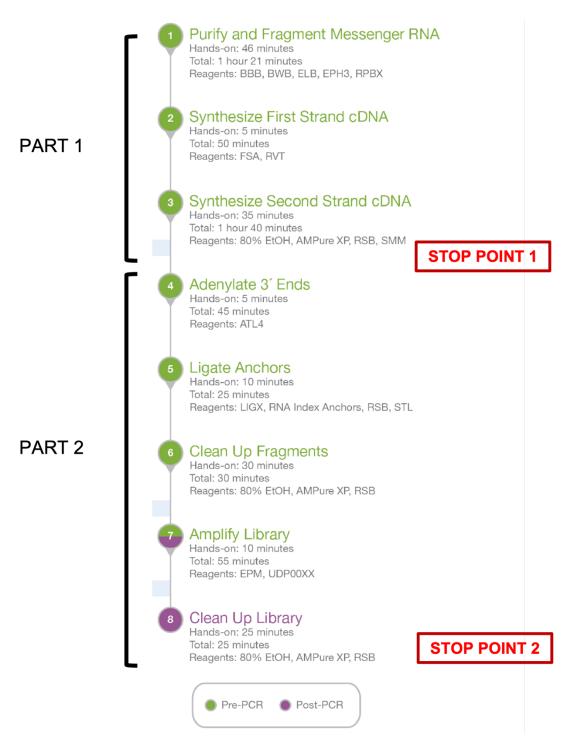


### 3.6.2 Pathways analysis

Genes differentially modulated across groups were then used to run a pathway analysis by using Ingenuity Pathway Analyses Software (Qiagen). Specifically, IPA software requires to upload lists of genes including columns of measurements about each gene, such as fold-changes and p-values. The software detects the pathway overlap of the significant dataset molecules, by using an algorithm that compares the up-regulated and the down-regulated genes in the uploaded data to the pattern expected for that specific pathway. Indeed, up-regulated genes might activate or inhibit the pathways, depending on the role of that genes which is thus accurately balanced and recognized by the software. The results of the pathways analysis are reported in the "Core Analysis" tab, which reported the lists of pathways significantly associated with the list of genes differently expressed, together with their fold-change and p-values. The statistical significance of the overlap of the uploaded datasets of DEGs is calculated by using the Fisher's Exact Test. The calculation of the p-value for the identification of the pathways differentially expressed depends on several factor, specifically : 1) the number of molecules associated with a given pathways; 2) the number of eligible analysis-ready molecules from the database that participate in the annotation and are also in the uploaded reference set of genes; 3) the total number of molecules known to be associated with that annotation and that are in the reference set of DEGs uploaded; 4) the total number of molecules in the reference set; 5) the total number of analysis-ready molecules that did not match that annotation. However, the IPA software does not apply a Bonferroni correction or any other correction because of a possible overcorrection of the results, leading thus to a high false negative rate accordingly to the IPA user manual. Moreover, as reported on the

user manual, it is recommended to do not use multiple testing correction in analysing canonical pathways, and this advice was followed in this doctoral thesis.

In the following paragraph, each pathway will be reported with its p-value and its zscore. Conceptually, the z-score is a statistical measure of how closely the actual expression pattern of the DEGs in the uploaded datasets compare to the pattern that is expected based on the literature for each specific pathway identified. Z-scores > 2 or < -2 are considered significant; specifically, z-score > 2 means a predicted activation of that pathway (an up-regulation), whereas a z-score < -2 means a predicted inactivation (a down-regulation) (Kramer, Green, Pollard, & Tugendreich, 2014).


## 3.7 RNA Sequencing on blood – NextSeq 550

### 3.7.1 Dual-indexed libraries preparation

The RNA sequencing on the 150 blood samples was performed starting from 150 ng of total RNA previously extracted from PAX-Gene tubes by using the Illumina Stranded mRNA Prep Ligation Kit, which converts the messenger (mRNA) in total RNA into dualindexes libraries. Briefly, Oligo(dT) magnetic beads purify and capture the mRNA molecules containing polyA tails. The purified mRNA is fragmented and copied into first strand complimentary DNA (cDNA) using reverse transcriptase and random primers. In a second strand cDNA synthesis step, dUTP replaces dTTP to achieve strand specificity. The final steps add adenine (A) and thymine (T) bases to fragment ends and ligate adapters. The resulting products are purified and selectively amplified for sequencing on NextSeq 550 Illumina system.

The library preparation protocol is shown in the figure 3.8, and 2 Stop Points were observed for the preparation of the library, allowing the division of the protocol into two parts corresponding to two consequently days.

Figure 3.8. Dual-indexed libraries preparation protocol



**PART 1.** First, messenger RNA with polyA tails was captured by using oligo(dT) magnetic beads. Specifically, 150 ng of total RNA were diluted in a total volume of 25  $\mu$ L of nuclease-free ultrapure water and then added with 25  $\mu$ L of RPBX (RNA Purification Beads) and mixed, followed incubation at 65°C for 5 minutes, 4°C for 30 seconds and 23°C for 5 minutes. The reaction product was then washed by using a magnetic stand and a Bead Washing Buffer (BWB), and then eluted by using the magnetic stand and the Elution Buffer (ELB). Once eluted, the mRNA was incubated for 2 minutes at 80°C. The Clean Up mRNA step followed, by binding the mRNA to the beads using the Bead Binding Buffer (BBB), the magnetic stand and subsequently the Bead Washing Buffer. Once the mRNA was cleaned, it followed the Fragmentation and Denaturation mRNA step. The fragmentation consisted of adding the mRNA with 10.5 μL of nuclease-free ultrapure water and 10.5 μL of EPH3 (Elute, Prime, Fragment High Mix) and incubating at 94°C for 8 minutes. Subsequently, the hexamer-primed RNA fragments previously obtained were reverse transcribed to produce first strand complementary DNA (cDNA), by using the First Strand Synthesis Act D Mix, which includes Actinomycin D (FSA), which allows RNA-dependent synthesis and improves strand specificity while preventing spurious DNA-dependent synthesis. The fragmented mRNA was added with 9 μL of FSA and 1 μL of Reverse Transcriptase (RVT) enzyme and incubated as follows: 25°C for 10 minutes, 42°C for 15 minutes, 70°C for 15 minutes.

Subsequently, it followed the Synthesize Second Strand cDNA, which removed the RNA template and synthesized a replacement strand to generate blunt-ended, double-stranded cDNA fragments. In place of deoxythymidine triphosphate (dTTP), deoxyuridine triphosphate (dUTP) was incorporated to quench the second strand

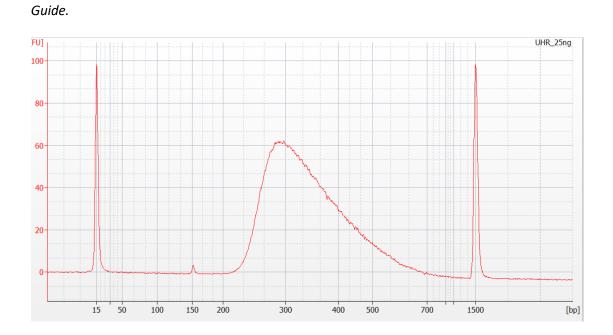
during amplification and achieve strand specificity. The sample was added with 25 μL of Second Strand Marking Master Mix (SMM) and then incubated at 16°C for 1 hour, followed by a clean-up process which consisted in different washes with AMPure XP and ethanol 80%, then resuspended in Resuspension Buffer (RSB). Once resuspended, the samples were stored at -20°C overnight as this presented a safe stopping point as suggested by the manufacturer's instruction.

PART2. Following the first stopping point, it followed the 3'Ends Adenylation step, which consisted in adding an adenine (A) nucleotide to the 3' ends of the blunt fragments to prevent them from ligating to each other during adapter ligation. A corresponding thymine (T) nucleotide on the 3' end of the adapter provides a complementary overhang for ligating the adapter to the fragment. The sample was added with 12.5 µL of A-Tailing mix (ATL4) and then incubated as follows: 37°C for 30 minutes and 70°C for 5 minutes. Subsequently, pre-index anchors were ligated to the ends of the double-stranded cDNA fragments to prepare them for dual indexing (Ligate Anchors step). Each sample was added with 5  $\mu$ L of unique RNA Index Anchors and 2.5 µL of Ligation Mix (LIGX), then incubated at 30°C for 10 minutes. To stop the ligation, 5  $\mu$ L of Stop Ligation Buffer (STL) were added to each sample. Once the anchors were added and the ligation stopped, it followed a clean-up procedure with AMPure XP beads and ethanol 80% as previously described. Then, it followed the Amplification of the Library step, which used PCR to selectively amplify the anchorligated DNA fragments and add indexes and prime sequences for cluster generation to obtain a dual-indexed library represented by DNA fragments with adapters at each end. In this step, each sample was added with 10  $\mu$ L of a unique index adapted (labelled ADPOXXX, where the X stands for the specific index from the Index adapter

plate) and 10  $\mu$ L of Enhanced PCR Mix (EPM); then, the sample was incubated as follows: 30 seconds at 98°C, 6 cycles of 98°C for 10 seconds – 60°C for 30 seconds – 72°C for 30 seconds, and then 72 °C for 5 minutes. Lastly, the dual-index libraries were cleaned up by using the same procedure with AMPure XP beads and ethanol 80% as previously described. Once resuspended in RSB, the dual-indexed libraries were stored at -20°C (for up to 30 days) before proceeding with the quality control as this represented the second safe stopping point suggested by the manufacturer's instructions. All 150 samples were pre-processed for part 1 and part 2 before proceeding with the next steps. The randomized groups are reported in table 3.8.

Table 3.8. Randomization of the 150 samples accordingly to risk groups A, B and C for the pre-

# processing part 1 and 2.


|   | BR0094PAX                           | С           |             | BR0120PAX              | В      |   | BR0092PAX  | A |
|---|-------------------------------------|-------------|-------------|------------------------|--------|---|------------|---|
|   | BR0109PAX                           | А           |             | BR0060PAX              | А      |   | BR0102PAX  | А |
|   |                                     |             |             |                        |        |   |            |   |
|   | BR0020PAX                           | A           |             | BR0067PAX              | В      |   | BR0105PAX  | В |
|   | BR0098PAX                           | A           |             | BR0150PAX              | A      |   | BR0101PAX  | A |
|   | BR0156PAX                           | С           | G           | BR0059PAX              | В      | G | BR0028PAX  | С |
|   | BR0043PAX                           | С           | R           | BR0046PAX              | С      | R | BR0131PAX  | В |
|   |                                     |             | 0           |                        |        | 0 |            |   |
| C | BR0002PAX                           | C           |             | BR0057PAX              | C      |   | BR0078PAX  | В |
| G | BR0160PAX                           | В           | U           | BR0115PAX              | В      | U | BR0164PAX  | В |
| R | BR0155PAX                           | А           | Р           | BR0070PAX              | A      | Р | BR0151PAX  | В |
| 0 | BR0073PAX                           | С           |             | BR0088PAX              | A      |   | BR0133PAX  | В |
|   |                                     |             |             |                        |        | _ |            |   |
| U | BR0053PAX                           | В           | 4           | BR0100PAX              | В      | 7 | BR0097PAX  | A |
| Р | BR0089PAX                           | Α           |             | BR0009PAX              | С      |   | BR0013PAX  | В |
|   | BR0140PAX                           | А           |             | BR0113PAX              | В      |   | BR0090PAX  | С |
| 1 | BR0110PAX                           |             |             |                        | A      |   | BR0148PAX  | B |
| 1 |                                     | A           |             | BR0146PAX              |        |   |            |   |
|   | BR0169PAX                           | C           |             | BR0138PAX              | A      |   | BR0168PAX  | В |
|   | BR0064PAX                           | С           |             | BR0071PAX              | A      |   | BR0036PAX  | A |
|   | BR0128PAX                           | В           |             | BR0055PAX              | С      | C | BR0022PAX  | С |
|   |                                     |             |             |                        |        | G |            |   |
|   | BR0086PAX                           | A           |             | BR0024PAX              | C      | R | BR0091PAX  | C |
| I | BR0111PAX                           | A           |             | BR0079PAX              | В      | 0 | BR0001PAX  | С |
| I | BR0154PAX                           | А           |             | BR0065PAX              | С      |   | BR0127PAX  | С |
| I | BR0137PAX                           | В           |             | BR0005PAX              | A      | U | BR0074PAX  | A |
| L |                                     |             |             |                        |        | Р |            |   |
| I | BR0173PAX                           | С           |             | BR0103PAX              | С      |   | BR0142PAX  | В |
| I | BR0143PAX                           | А           | G           | BR0085PAX              | В      | 8 | BR0050PAX  | В |
| I | BR0047PAX                           | A           | R           | BR0118PAX              | A      | ō | BR0158PAX  | В |
| I | BR0018PAX                           | С           | 0           | BR0038PAX              | С      |   | BR0173PAX  | С |
|   |                                     |             |             |                        |        |   | DR01751 AX | C |
|   | BR0019PAX                           | С           | U           | BR0076PAX              | В      |   |            |   |
|   | BR0049PAX                           | A           | Р           | BR0124PAX              | C      |   |            |   |
|   | BR0135PAX                           | В           |             | BR0122PAX              | С      |   |            |   |
| G | BR0080PAX                           | В           | 5           | BR0167PAX              | С      |   |            |   |
| R |                                     |             | 5           |                        |        |   |            |   |
|   | BR0144PAX                           | В           |             | BR0121PAX              | A      |   |            |   |
| 0 | BR0114PAX                           | В           |             | BR0084PAX              | В      |   |            |   |
| U | BR0145PAX                           | В           |             | BR0093PAX              | A      |   |            |   |
| Р | BR0083PAX                           | С           |             | BR0116PAX              | А      |   |            |   |
|   |                                     |             |             |                        |        |   |            |   |
|   | BR0119PAX                           | A           |             | BR0006PAX              | С      |   |            |   |
| 2 | BR0045PAX                           | С           |             | BR0039PAX              | C      |   |            |   |
|   | BR0072PAX                           | А           |             | BR0129PAX              | A      |   |            |   |
|   | BR0033PAX                           | А           |             | BR0153PAX              | В      |   |            |   |
|   |                                     |             |             |                        |        |   |            |   |
|   | BR0077PAX                           | A           |             | BR0161PAX              | В      |   |            |   |
|   | BR0163PAX                           | С           |             | BR0081PAX              | В      |   |            |   |
|   | BR0099PAX                           | В           |             | BR0108PAX              | A      |   |            |   |
|   | BR0165PAX                           | С           |             | BR0149PAX              | А      |   |            |   |
|   |                                     |             |             |                        |        |   |            |   |
|   | BR0162PAX                           | В           |             | BR0087PAX              | В      |   |            |   |
|   | BR0125PAX                           | A           |             | BR0021PAX              | С      |   |            |   |
| I | BR0032PAX                           | С           | G           | BR0061PAX              | С      |   |            |   |
| I | BR0095PAX                           | A           | R           | BR0130PAX              | A      |   |            |   |
| I |                                     |             | 0           |                        |        |   |            |   |
| I | BR0171PAX                           | С           |             | BR0075PAX              | A      |   |            |   |
| I | BR0066PAX                           | А           | U           | BR0134PAX              | С      |   |            |   |
| I | BR0051PAX                           | В           | Р           | BR0123PAX              | С      |   |            |   |
| I | BR0096PAX                           | A           |             | BR0056PAX              | C      |   |            |   |
| G |                                     |             | -           |                        |        |   |            |   |
|   | BR0152PAX                           | В           | 6           | BR0027PAX              | С      |   |            |   |
| R | BR0106PAX                           | В           |             | BR0035PAX              | В      |   |            |   |
| 0 | BR0040PAX                           | С           |             | BR0139PAX              | В      |   |            |   |
| U | BR0037PAX                           |             |             |                        | B      |   |            |   |
|   |                                     | A           |             | BR0117PAX              |        |   |            |   |
| Р | BR0054PAX                           | В           |             | BR0172PAX              | C      |   |            |   |
| I | BR0132PAX                           | С           |             | BR0058PAX              | С      |   |            |   |
| 3 | BR0044PAX                           | С           |             | BR0112PAX              | А      |   |            |   |
|   |                                     |             |             |                        |        |   |            |   |
| I | BR0104PAX                           | A           |             | BR0107PAX              | A      |   |            |   |
| I |                                     | С           | G           | BR0157PAX              | В      |   |            |   |
|   | BR0170PAX                           | <u> </u>    |             |                        | D      |   |            |   |
|   | BR0170PAX<br>BR0052PAX              | B           | R           | BR0147PAX              | В      |   |            |   |
|   | BR0052PAX                           | В           | R<br>O      |                        |        |   |            |   |
|   | BR0052PAX<br>BR0015PAX              | B<br>C      | O<br>U      | BR0048PAX              | А      |   |            |   |
|   | BR0052PAX                           | B<br>C<br>B | 0           | BR0048PAX<br>BR0030PAX | A<br>C |   |            |   |
|   | BR0052PAX<br>BR0015PAX              | B<br>C      | O<br>U<br>P | BR0048PAX              | А      |   |            |   |
|   | BR0052PAX<br>BR0015PAX<br>BR0082PAX | B<br>C<br>B | O<br>U      | BR0048PAX<br>BR0030PAX | A<br>C |   |            |   |

## 3.7.2 Dual-indexed libraries quality control check

This step checks the concentration and quality of the final libraries. The quality check of the libraries was performed by analysing 1  $\mu$ L library using the Agilent 2100 Bioanalyzer and DNA 1000 Kit, whereas the concentration was measured by analysing 2  $\mu$ L of the library using the Qubit dsDNA BR Assay kit.

A good quality library should show a peak around 300 bp and the absence of the dimers peak at around 150 bp in the Bioanalyzer Trace. If the latter is visible, it is recommended to perform an additional clean up step with AMPure XP beads 0.8X and ethanol 80% as previously described. An example of a good library is represented in figure 3.9.

Figure 3.9. Example Bioanalyzer Trace. From Illumina Stranded mRNA Prep Ligation Reference



#### 3.7.3 Library dilution to the starting concentration

Once the quality of the libraries was checked, it followed the dilution of the libraries to the starting concentration for the NextSeq 550 System, which was 1 nM. For calculating the molarity value of each library, the following formula was followed:

$$\frac{ng/\mu L}{660 \frac{6}{mol} x \text{ average library size}} x \ 10^6 = Molarity (nM)$$

Each library was diluted to the starting concentration of 1nM and then 10  $\mu$ L of each diluted library was combined in a tube to pool libraries.

#### 3.7.4 Library denaturation

To denature the library, 20  $\mu$ L of 1 nM pool library were combined with 20  $\mu$ L 0.2 N NaOH, vortexed and incubated for 5 minutes. Subsequently, the solution was added with 20  $\mu$ L of 200 mM Tris-HCl pH 7, vortexed and centrifuged. This denatured library was then dilute to a 20 pM concentration by adding 940  $\mu$ L of HT1 buffer. To obtain the final 1.4 pM library for High Outputs kits, the denatured 20 pM library solution was diluted as follows: 91  $\mu$ L denatured library solution and 1209  $\mu$ L HT1.

Each 1.4 pM library was added with 1.4 pM PhiX Control as follows: 13  $\mu$ L of denatured and diluted PhiX control 1.4 pM and 1287  $\mu$ L of denatured and diluted library 1.4 pM. Once combined, the final library was placed on ice until the loading on the High Output Cartridge.

## 3.7.5 Sequencing

The sequencing run was performed on the NextSeq 550 Illumina platform, by using High Output Kit v2.5 (150 Cycles) paired-ended, read length 74. Cluster generation and

sequencing were performed on the instrument. During cluster generation, single DNA molecules were bound to the surface of the flow cell, and then amplified to form clusters. Clusters were imaged using two-channel sequencing chemistry and filter combinations specific to each of the fluorescently labelled chain terminators. After the imaging of a tile on the flow cell was completed, the next tile was imaged. The process was repeated for each cycle of sequencing. Following image analysis, the software performed base calling, filtering, and quality scoring.

As the run progresses, the control software automatically transfered base call (BCL) files to BaseSpace Sequence Hub, Local Run Manager, or another specified output location for secondary analysis. After the run, an instrument wash began automatically using components already loaded on the instrument.

The sequencing was performed following the NextSeq 550 System Guide (document #15069765,

https://support.illumina.com/content/dam/illuminasupport/documents/documenta tion/system\_documentation/nextseq/nextseq-550-system-guide-15069765-06.pdf). Before library dilution and sequencing, samples were randomized to allow the runs of 14 samples per run. The randomized groups for the sequencing steps are reported in table 3.9.

Table 3.9. Randomization of the 150 samples accordingly to risk groups A, B and C for the

# sequencing step on the array

| BR0109PAX         A         BR003PAX         C         BR003PAX         A           BR003PAX         A         BR003PAX         A         BR013PAX         C         BR013PAX         A         BR013PAX         C         BR013PAX         C         BR013PAX         C         BR013PAX         C         BR013PAX         C         BR013PAX                                                                                                                                                                              | BR0094PAX | С | <b></b> | BR0125PAX | ٨ | i   | BR0085PAX | В |    | BR0030PAX | С |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|---------|-----------|---|-----|-----------|---|----|-----------|---|---|
| BR0020PAX         A         BR003PAX         A           BR003PAX         A         BR005PAX         A         BR005PAX         BR005PAX         BR005PAX         A           BR005PAX         C         BR005PAX         BR005PAX         BR005PAX         BR005PAX         BR005PAX         BR005PAX         C         U         BR005PAX         A         R         BR005PAX         A         R         BR005PAX         C         U         BR005PAX         A         R         BR005PAX         A         BR005PAX         BR005PAX         BR005PAX         BR005PAX         BR005PAX         BR005PAX         BR005PAX         B         BR005PAX         B         BR005PAX         B         BR005PAX         B         BR005PAX         B         BR005PAX         C         BR005PAX         B         BR005PAX         B         B                                                                                                                                                                                                                           |           | - | 4       |           | A | •   |           |   |    |           | - | • |
| BR0098PAX         A         BR0171PAX         C         BR0171PAX         A         BR0171PAX         A         BR0171PAX         C         BR0171PAX         A         BR0171PAX         B         BR0171PAX         B <th< td=""><td></td><td></td><td>4</td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td>4</td></th<>                                                      |           |   | 4       |           |   | 4   |           |   |    |           |   | 4 |
| BR0156PAX         C         R         BR0066PAX         A         B         R         BR012PAX         C         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B <td></td> <td></td> <td>4</td> <td></td> <td></td> <td>4</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>4</td>                                                                                                                                                                                                                |           |   | 4       |           |   | 4   |           | - |    |           |   | 4 |
| BROODSDAL         C         R         BROODSDAX         R         BROODSDAX         C         R         BROODSDAX         D         R         DUD         BROODSDAX         D         BROODSDAX         D         D         BROODSDAX         D         D         BROODSDAX         D         BROODSDAX         D         D         BROODSDAX         A         BROODSDAX         A         BROODSDAX         D         BR                                                                                                                                                                                        |           |   | 4       | -         |   | -   |           |   |    |           |   |   |
| BR0002PAX         C         U         BR003GPAX         A         U         BR0157PAX         C         N         BR010PAX         A         N           BR0150PAX         A         1         BR0040PAX         C         BR0131PAX         A         BR0023PAX         A         BR0023PAX         B         BR0131PAX         B         BR0131PAX         B         BR0131PAX         B         BR0131PAX         A         BR0032PAX         A         BR0032PAX         A         BR0032PAX         B         BR0131PAX         B         BR0131PAX         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B <td< td=""><td></td><td></td><td>R</td><td></td><td></td><td>R</td><td></td><td></td><td>R</td><td></td><td></td><td></td></td<>                                                                                                                                                                 |           |   | R       |           |   | R   |           |   | R  |           |   |   |
| BR0160PAX         B         N         BR004QPAX         C         N         BR0121PAX         A         BR0028PAX         C         BR0037PAX         C         BR0037PAX         A         BR0037PAX         A         BR0037PAX         A         BR0037PAX         B         B         BR0037PAX         B         B         BR0037PAX         C         N         B         BR0037PAX         C         N         B         B         B         B         U         N         BR0037PAX </td <td></td> <td>-</td> <td>U</td> <td></td> <td></td> <td>U</td> <td>-</td> <td>-</td> <td>U</td> <td></td> <td>-</td> <td></td>         |           | - | U       |           |   | U   | -         | - | U  |           | - |   |
| BR0155PAX         A         BR037PAX         A         BR037PAX         A         BR037PAX         A         BR037PAX         B         BR037PAX         C         BR037PAX         A         BR037PAX         A         BR037PAX         A         BR037PAX         A         BR037PAX         B         BR037PAX         B         BR037PAX         B         BR037PAX         B         BR037PAX         A         BR037PAX         B         <                                                                                                                                                                                             |           | - | N       |           |   | N   |           | - | N  |           |   | N |
| BR0073PAX         C         1         BR0054PAX         B         4         BR0033PAX         A         7         BR007BPAX         B         0           BR0033PAX         A         BR0132PAX         C         BR0132PAX         A         BR0132PAX         A         BR0132PAX         A         BR0132PAX         C         BR013PAX         A         BR013PAX         B         BR013PAX         C         BR013PAX         B         BR013PAX         B         BR013PAX         C         BR013PAX         B         BR013PAX         B         BR013PAX         A         BR013PAX         B         BR003PAX         A         B         BR013PAX         B         BR013PAX         B         BR013PAX         B         BR013PAX         A         B         BR013PAX         A         B         B         B         BR013PAX         A         B         BR013PAX         A         B         B         B         B         B         B         B         B         B         B         B         B         B                                                                                                                                                                                                                                    |           |   |         |           | - |     |           |   |    |           | - |   |
| BR0013PAX         C         BR0053PAX         A         BR0015PAX         A         BR015PAX         B         0           BR0033PAX         A         BR015PAX         C         BR015PAX         A         BR015PAX         B         BR015PAX         A         BR015PAX         B         BR015PAX         C         BR015PAX         B         B         BR015PAX         B         B         BR015PAX         B         B         BR015PAX         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B                                                                                                                                                                                                                                             |           |   | 1       |           |   | 4   |           |   | 7  |           |   |   |
| BR0089PAX         A         BR0170PAX         C         BR0052PAX         BR0052PAX         BR0013PAX         C           BR0110PAX         A         BR0015PAX         C         BR003PAX         C         BR013PAX         B           BR0110PAX         A         BR0015PAX         C         BR003PAX         C         BR013PAX         B           BR0141PAX         B         BR0141PAX         B         BR015PAX         A         B         BR013PAX         A           BR0141PAX         B         BR0060PAX         A         B         BR0161PAX         B         B         BR0161PAX         B         BR0161PAX         B         B         BR0161PAX         B         BR0161PAX         B         B         BR0161PAX         B         B         BR0161PAX         A         B         BR0161PAX         B         B         BR0161PAX         A         B         BR013PAX         A         B         BR0161PAX         A         B         BR0161PAX         B         B         BR0161PAX         A         B         BR0161PAX <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>                                                                                                                   |           | - | -       |           |   |     |           |   |    |           |   | 0 |
| BR0140PAX         A         BR0052PAX         B         BR0039PAX         C         BR013PAX         B           BR0110PAX         A         BR013PAX         C         BR012PAX         A         BR0054PAX         A           BR0160PAX         C         BR0052PAX         B         BR013PAX         B         BR0054PAX         A           BR0054PAX         C         BR0064PAX         B         BR0066PAX         A         BR0057PAX         B         BR0057PAX         B         BR0057PAX         B         BR0154PAX         B         BR0050PAX         C         BR0140PAX         A         BR0154PAX         B         BR0157PAX         B         BR0157PAX         B         BR0157PAX         B         BR0157PAX         B         BR0157PAX         A         BR0157PAX         B         BR0157PAX         A         BR0147PAX         A         BR0137PAX         B         BR0137PAX         B         BR0137PAX         B         BR0137PAX         B                                                                                                                                                                                                                 |           |   | ļ       |           |   |     |           |   |    |           |   |   |
| BR0110PAX         A         BR0015PAX         C         BR0129PAX         A         BR0097PAX         A           BR0169PAX         C         BR0082PAX         B         BR0082PAX         B         BR0111PAX         B         BR0111PAX         B         BR007PAX         A         BR0090PAX         B         BR0111PAX         B         BR0111PAX         B         BR0111PAX         B         BR0111PAX         B         BR007PAX         B         BR0111PAX         B         BR007PAX         B         BR0111PAX         A         B         BR0111PAX         A         B         BR0111PAX         A         B         BR0111PAX         B         BR0111PAX         B         BR0111PAX         B         BR0111PAX         A         B         BR0111PAX         A         B         BR0111PAX         A         B         BR0111PAX         B         BR0114PAX         B         BR0104PAX         A         BR0114PAX         B         BR0104P                                                                                                                                                                                                |           |   |         |           |   |     |           | - |    |           |   |   |
| BR0169PAX         C         BR0082PAX         B         BR013PAX         B         BR013PAX         B           BR0064PAX         C         BR0141PAX         B         BR016060PAX         A         BR0150PAX         A         BR0150PAX         A         BR0150PAX         A         BR0150PAX         A         BR0150PAX         A         BR0140PAX         A         BR0130PAX         A         BR0130PAX         A         BR0130PAX         A         BR0130PAX         A         BR0140PAX <td< td=""><td>BR0140PAX</td><td>A</td><td></td><td></td><td></td><td></td><td></td><td>C</td><td></td><td></td><td>В</td><td></td></td<>                                                     | BR0140PAX | A |         |           |   |     |           | C |    |           | В |   |
| BR0064PAX         C         BR0141PAX         B         BR0141PAX         B         BR0150PAX         B         BR0050PAX         A         B         BR0050PAX         A         B         BR005PAX         B         BR014PAX         B         BR014PAX         B         BR0150PAX         A         B         BR017PAX         B         B         BR017PAX         A         B         BR017PAX         A         B         BR0130PAX         A         B         BR0130PAX         A         B         BR0130PAX         A         B         BR0147PAX         B         BR0147PAX         B         BR0147PAX         B         BR0147PAX         B         BR0147PAX         A         B         BR0147PAX         A         BR0147PAX         A         B                                                                                                                                                                                                                   | BR0110PAX | А |         | BR0015PAX | С |     | BR0129PAX | Α |    | BR0097PAX | А |   |
| BR0128PAX         B         BR0060PAX         A           BR0086PAX         A         BR0060PAX         A         BR0087PAX         B         BR0111PAX         A         BR0111PAX         A         BR0150PAX         A         BR0111PAX         A         BR0150PAX         A         BR0115PAX         A         BR0115PAX         B         BR0115PAX         B         BR0115PAX         B         BR0115PAX         B         BR0115PAX         B         BR0115PAX         B         BR0037PAX         C         BR0031PAX         A         BR0031PAX         B         BR0014PAX         A         BR0127PAX         A         BR0127PAX         A         BR0127PAX         A         BR0127PAX         A         BR0127PAX         A         BR0127PAX         A         BR0142PAX         A         BR013PAX         B         BR013PAX         B         BR013PAX         A         BR013PAX         A         BR013PAX         B         BR013PAX         A         BR013PAX         A         BR013PAX         A         BR013PAX         C         BR013PAX         A                                                                                                                                                                                               | BR0169PAX | С |         | BR0082PAX | В |     | BR0153PAX | В |    | BR0013PAX | В |   |
| BR0086PAX         A         BR0067PAX         B           BR0111PAX         A         BR0150PAX         A         BR0143PAX         A         BR0150PAX         A         BR0150PAX         A         BR0150PAX         A         BR0143PAX         A         BR0150PAX         BR0150PAX         BR0150PAX         BR007PAX         BR0150PAX         A         BR0150PAX         BR007PAX         BR0150PAX         C         BR007PAX         A         BR014PAX         A         BR004PAX         C                                                                                                                                                                                             | BR0064PAX | С |         | BR0141PAX | В |     | BR0161PAX | В |    | BR0090PAX | С |   |
| BR0086PAX         A         BR0057PAX         B           BR0111PAX         A         BR0150PAX         A         BR0137PAX         B         BR0150PAX         A         BR014PAX         A         BR014PAX         A         BR014PAX         B         BR014PAX         A         BR014PAX         B         BR014PAX         A         BR014PAX         A         BR014PAX         A         BR014PAX         A         BR014PAX         B         BR014PAX         A         BR014PAX         B         BR014PAX         A         BR014PAX         A         BR014PAX         C         BR014PAX         C         BR014PAX         C         BR014PAX         C         BR014PAX         C         BR014PAX                                                                                                                                                                                                          | BR0128PAX | В |         | BR0060PAX | A |     | BR0081PAX | В |    | BR0148PAX | В | R |
| BR0111PAX         A         R         BR0150PAX         A         BR0130PAX         BR0110PAX         A         BR0110PAX         BR0110PAX         BR0110PAX         BR0110PAX         BR0110PAX         BR0110PAX         BR0110PAX         A         BR0110PAX         BR0110PAX         A         BR0110PAX         BR0110PAX         A         BR0110PAX         C         BR0110PAX         C         BR0110PAX         C         BR0110PAX <td>BR0086PAX</td> <td>А</td> <td></td> <td>BR0067PAX</td> <td>В</td> <td></td> <td>BR0108PAX</td> <td>Α</td> <td></td> <td>BR0168PAX</td> <td>В</td> <td></td> | BR0086PAX | А |         | BR0067PAX | В |     | BR0108PAX | Α |    | BR0168PAX | В |   |
| BR0154PAX         A         U         BR0055PAX         B         U         BR0057PAX         C         BR0057PAX         C         BR00142PAX         A         BR0142PAX         A         BR0142PAX         B         BR0142PAX         B         BR0142PAX         B         BR0142PAX         B         BR0142PAX         B         BR0137PAX         C         BR0137PAX         C         BR0137PAX         C         BR0137PAX         C         BR0137PAX         C         BR0172PAX         A         B         B         BR0137PAX         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         <                                                                                                                                                                                                                                                                              | BR0111PAX | А | P       | BR0150PAX | А | D D | BR0149PAX | А | D  | BR0127PAX | С | - |
| BR0137PAX         B         N         BR0057PAX         C         N         BR0021PAX         C         N         BR0142PAX         B         BR0142PAX         B         D         BR0050PAX         A         B         B         D         BR0050PAX         A         B         D         BR0050PAX         A         B         B         B         D         B         D         B         D         B         D         B         D         B         D         B         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <thd< th=""></thd<>                                                                                                                                                                                                                                                                                                 | BR0154PAX | А |         | BR0059PAX | В |     | BR0087PAX | В |    | BR0074PAX | А |   |
| BR0143PAX         A         BR0115PAX         B         BR0115PAX         B         BR0030PAX         C         BR0030PAX         A         B         BR0030PAX         A         BR013PAX         C         BR0030PAX         A         BR013PAX         A         BR0030PAX         C         BR0030PAX         A         BR0030PAX         A         BR013PAX         B         BR013PAX         B         BR013PAX         B         BR013PAX         B         BR013PAX         C         BR013PAX         C         BR013PAX         C         BR013PAX         C         BR013PAX         A         B         BR013PAX         A         B         BR013PAX         C         BR013PAX <td>BR0137PAX</td> <td>В</td> <td>-</td> <td>BR0057PAX</td> <td>С</td> <td>-</td> <td>BR0021PAX</td> <td>C</td> <td>-</td> <td>BR0142PAX</td> <td>В</td> <td>1</td>                       | BR0137PAX | В | -       | BR0057PAX | С | -   | BR0021PAX | C | -  | BR0142PAX | В | 1 |
| BRO047PAX         A         2         BRO070PAX         A         5         BR0130PAX         A         BR0130PAX         A         BR0130PAX         A         BR0013PAX         C         BR0013PAX         A         BR0030PAX         C         BR0130PAX         C         BR0130P                                                                                                                                                                               | BR0143PAX | А | N       | BR0115PAX | В |     | BR0061PAX | C | IN | BR0050PAX | В |   |
| BRO013PAX     C     BR0088PAX     A     BR0075PAX     A       BR0019PAX     C     BR0100PAX     B     BR0036PAX     A       BR0035PAX     A     BR0009PAX     C     BR0036PAX     C       BR0135PAX     B     BR0113PAX     B     BR0014PAX     C       BR0030PAX     B     BR0146PAX     A     BR001PAX     C       BR0144PAX     B     BR014PAX     C     BR014PAX     C       BR0144PAX     B     BR014PAX     A     BR012PAX     C       BR014PAX     B     BR0120PAX     A     BR0120PAX     C       BR013PAX     C     BR0120PAX     B     BR002PPAX     C       BR013PAX     A     BR0120PAX     B     BR0027PAX     C       BR0035PAX     C     U     BR0046PAX     C     BR0035PAX     B       BR0035PAX     C     U     BR0035PAX     C     B       BR0035PAX     C     U     BR0120PAX     B     B       BR0035PAX     C     U     BR0120PAX     B     B       BR0035PAX     C     U     BR013PAX     C     N       BR0035PAX     A     B     BR013PAX     C     N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BR0047PAX | А | 1       | BR0070PAX | Α | 1   | BR0130PAX | Α |    | BR0158PAX | В | 1 |
| BR0049PAXABR0009PAXCBR002PAXCBR0135PAXBBR0113PAXBBR001PAXCBR0080PAXBBR0146PAXABR0001PAXCBR0144PAXBBR004PAXCBR013PAXCBR0144PAXBBR0104PAXABR0123PAXCBR0145PAXBBR0102PAXCBR0123PAXCBR0135PAXCBR0120PAXBBR0120PAXBBR0119PAXARBR0046PAXCBR0035PAXCBR0035PAXCUBR0071PAXAUBR0139PAXBBR0035PAXCUBR0017PAXAUNBR0033PAXANBR0055PAXCNBR0172PAXCBR0033PAXASBR005PAXCBNNBR0163PAXCBR0055PAXCBNNBR0163PAXCBR0152PAXBBR0157PAXABBR0165PAXCBR0152PAXBBR0157PAXBPBR0162PAXBBR0166PAXBBR0147PAXBP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BR0018PAX | С | 2       | BR0088PAX | А | 5   | BR0075PAX | A | 8  | BR0173PAX | С |   |
| BR0135PAXBBR0113PAXBBR0091PAXCBR0080PAXBBR0146PAXABR0001PAXCBR0144PAXBBR0044PAXCBR014PAXCBR0114PAXBBR004PAXABR0123PAXCBR0145PAXBBR0104PAXABR0123PAXCBR0135PAXCBR0120PAXBBR0029PAXCBR019PAXARBR0029PAXCBR0056PAXCBR0119PAXARBR0017PAXABBR0139PAXBBR0045PAXCUBR0071PAXAUBR0139PAXBBR0032PAXANBR0055PAXCNBR0139PAXBBR0033PAXANBR0024PAXCBNNBR0057PAXABBR0123PAXCBNBR0163PAXCBBR0152PAXCBNBR0165PAXCBBR0152PAXABBBR0162PAXBBR0166PAXBBR0147PAXBBR0162PAXCBBR0166PAXABB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BR0019PAX | С | 1       | BR0100PAX | В | 1   | BR0036PAX | А |    | BR0138PAX | А | 1 |
| BR0080PAXBBR0146PAXABR001PAXCBR0144PAXBBR0044PAXCBR0134PAXCBR0114PAXBBR0104PAXABR0123PAXCBR0145PAXBBR0029PAXCBR0123PAXCBR013PAXCBR0120PAXBBR0056PAXCBR0119PAXARBR0046PAXCBR0035PAXBBR0045PAXCUBR071PAXAUBR0139PAXBBR0072PAXANBR0055PAXCNBR0139PAXBBR0033PAXANBR0024PAXCBR0117PAXBUBR0033PAXABBR005PAXCBNBR0163PAXCBR005PAXCBR0112PAXABBR0163PAXCBR0055PAXCBR0112PAXABBR0163PAXCBR0152PAXBBR0157PAXBBBR0162PAXBBR0166PAXBBR0147PAXB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BR0049PAX | А | 1       | BR0009PAX | С | 1   | BR0022PAX | С |    |           |   |   |
| BR0144PAXBBR0044PAXCBR0134PAXCBR0114PAXBBR0104PAXABR0104PAXABR0145PAXBBR0029PAXCBR0123PAXCBR0083PAXCBR0120PAXBBR0056PAXCBR0119PAXARBR0046PAXCBR0035PAXCBR0045PAXCUBR0071PAXAUBR0139PAXBBR0072PAXANBR0055PAXCNBR013PAXBBR0033PAXANBR0024PAXCNBR0172PAXCBR0077PAXA3BR0079PAXBBR0112PAXCNBR0163PAXCBR0055PAXCBR0112PAXAPBR0163PAXCBR0152PAXBBR0157PAXABBR0165PAXCBR0152PAXBBR0157PAXBPBR0162PAXBBR0166PAXBBR0147PAXBP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BR0135PAX | В | 1       | BR0113PAX | В | 1   | BR0091PAX | С |    |           |   |   |
| BR0114PAXBBR0104PAXABR0145PAXBBR0145PAXBBR0033PAXCBR0119PAXABR0045PAXCBR0045PAXCUBR0071PAXBR0071PAXAUBR0071PAXBR0033PAXCUBR0055PAXBR0033PAXABR0033PAXABR0072PAXANBR0055PAXBR0073PAXBBR0077PAXABR0077PAXABR0163PAXCBR0163PAXCBR0163PAXCBR0163PAXCBR0163PAXCBR0165PAXCBR0165PAXBBR0165PAXCBR0165PAXBBR0165PAXCBR0165PAXBBR0165PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BR0080PAX | В | 1       | BR0146PAX | Α | 1   | BR0001PAX | С |    |           |   |   |
| BR0145PAXBBR0023PAXCBR0033PAXCBR0119PAXARBR0046PAXCBR0045PAXCUBR0071PAXBR0072PAXANBR0055PAXBR0033PAXABR0077PAXABR0077PAXABR0077PAXABR0077PAXABR0077PAXABR0077PAXABR0163PAXCBR0163PAXCBR0163PAXCBR0163PAXCBR0165PAXCBR0165PAXCBR0152PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXBBR0162PAXB <td>BR0144PAX</td> <td>В</td> <td></td> <td>BR0044PAX</td> <td>С</td> <td></td> <td>BR0134PAX</td> <td>С</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BR0144PAX | В |         | BR0044PAX | С |     | BR0134PAX | С |    |           |   |   |
| BR0083PAXCBR0120PAXBBR0119PAXARBR0120PAXBBR0119PAXAUBR0046PAXCBR0045PAXCUBR0071PAXAUUBR0071PAXAUBR0072PAXANBR0055PAXCBR0033PAXABBR0024PAXCBR0077PAXABBR0024PAXCBR0163PAXCBR005PAXCBR0163PAXCBR005PAXCBR0163PAXCBR005PAXABR0165PAXCBR0152PAXBBR0165PAXCBR0152PAXBBR0162PAXBBR0106PAXB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BR0114PAX | В | 1       | BR0104PAX | A | 1   | BR0123PAX | С |    |           |   |   |
| BR0119PAXARBR0046PAXCRBR0045PAXCUBR0071PAXAUBR011PAXBBR0072PAXANBR0055PAXCBR0117PAXBUBR0033PAXABR0024PAXCBR0172PAXCNBR0077PAXA3BR0079PAXBBR0152PAXCNBR0163PAXCBR0055PAXCBR0112PAXABBR0165PAXCBR0055PAXABR0157PAXABR0165PAXCBR0152PAXBBR0157PAXBBR0162PAXBBR0166PAXBBR0147PAXB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BR0145PAX | В | 1       | BR0029PAX | С | 1   | BR0056PAX | С |    |           |   |   |
| BRO04SPAX     C     Dictor PAX     A     R     BRO13PAX     B       BR004SPAX     C     N     BR005SPAX     C     N     BR013PAX     B     U       BR0033PAX     A     BR0024PAX     C     N     BR013PPAX     B     U       BR0013PAX     A     BR0024PAX     C     N     BR013PPAX     B     N       BR013PAX     A     BR005PAX     C     B     BR013PPAX     C     N       BR013PPAX     A     BR005PAX     C     B     BR013PPAX     C     N       BR013PPAX     A     B     BR005PAX     C     B     BR013PPAX     A       BR013PPAX     A     B     BR005PAX     C     B     B     B       BR013PPAX     B     BR005PAX     C     B     B     B     B       BR013PPAX     B     BR013PPAX     A     B     B     B     B       BR013PPAX     B     BR005PAX     A     B     B     B     B       BR0152PAX     B     BR0152PAX     B     B     B     B       BR0152PAX     B     B     B     B     B     B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BR0083PAX | С | 1       | BR0120PAX | В | 1   | BR0027PAX | C |    |           |   |   |
| BR0045PAXCUBR0071PAXAVBR0139PAXBUBR0072PAXANBR0055PAXCNBR0117PAXBUBR0033PAXABR0024PAXCNBR0172PAXCNBR0077PAXA3BR0079PAXBBR0165PAXCBBR0163PAXCBR0065PAXCBBR0112PAXA9BR0165PAXCBR0152PAXBBBR0157PAXABR0165PAXCBR0152PAXBBBR0157PAXBBR0162PAXBBR0106PAXBBBR0147PAXB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BR0119PAX | А | R       | BR0046PAX | С | 1   | BR0035PAX | В |    |           |   |   |
| BR0072PAX         A         N         BR005SPAX         C         N         BR0117PAX         B         U         N         BR0117PAX         B         N         N         BR0024PAX         C         N         BR0172PAX         C         N         BR0172PAX         C         N         BR0172PAX         C         N         B         N         BR0172PAX         C         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         B         N         B         N         B         B         D         D         D         D         D                                                                                                                                                                                                                                                                                                                         |           |   | U       |           |   |     |           |   |    |           |   |   |
| BR0033PAXABR0024PAXCBR0172PAXCBR0077PAXA3BR0079PAXBBR0058PAXCBR0163PAXCBR0065PAXCBR0112PAXABR0099PAXBBR0005PAXABR0107PAXABR0165PAXCBR0152PAXBBR0157PAXBBR0162PAXBBR0106PAXBBR0147PAXB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | A | N       |           |   | -   |           | В | -  |           |   |   |
| BR0077PAX         A         3         BR0079PAX         B         BR0058PAX         C         BR0058PAX         C         BR0058PAX         C         BR0112PAX         A         BR0112PAX         B         BR0112PAX         B         BR0112PAX         B         BR0112PAX         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B                                                                                                                                                                                                                                                       | BR0033PAX | A | 1       | BR0024PAX | С | N   | BR0172PAX | С | N  |           |   |   |
| BR0163PAXCBR0065PAXC6BR0112PAXA9BR0099PAXBBR0005PAXABR0107PAXABR0107PAXABR0165PAXCBR0152PAXBBR0157PAXBBR0162PAXBBR0106PAXBBR0147PAXB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |   | 3       |           |   | 1   |           |   |    |           |   |   |
| BR0099PAXBBR0005PAXABR0107PAXABR0165PAXCBR0152PAXBBR0157PAXBBR0162PAXBBR0106PAXBBR0147PAXB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |   | 1       |           |   | 6   |           | - | 9  |           |   |   |
| BR0165PAXCBR0152PAXBBR0157PAXBBR0162PAXBBR0106PAXBBR0147PAXB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |   | 1       |           | - | 1   |           |   |    |           |   |   |
| BR0162PAX B BR0106PAX B BR0147PAX B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |   | 1       | -         |   | 1   |           |   |    |           |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | - | 1       |           |   | 1   |           |   |    |           |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | - |         | BR0103PAX | C | 1   | BR0048PAX | A |    |           |   |   |

## 3.8 FASTQ QA/QC

Raw data from RNA Sequencing are represented by FastQ, which is a text file containing the sequence data from the clusters that pass filter on a flow cell. Before proceeding with the biostatistical analysis, the quality of the data was checked by using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), which is a quality control tool for high throughput sequence data. Modern high throughput sequencers generate hundreds of millions of sequences in a single run and for this reason, performing quality controls checks before performing subsequent analysis is necessary to ensure good quality of raw data and to exclude problems or biases in the data. FastQC aims to provide a QC report that can spot problems which originate either in the sequencer or in the starting library material. The FastQC quality checks provided are:

- Basic Statistics: it generates some simple composition statistics for the file analysed (file name, file type, encoding, total sequences, filtered sequences, sequence length and %GC)
- Per Base Sequence Quality: it shows an overview of the range of quality values across all bases at each position in the FastQ file. Figure 3.10 represents an example of a Box Whisker plot.
- Per Sequence Quality Scores: it allows to see whether a subset of the sequences have universally low-quality values (Figure 3.11).
- Per Base Sequence Content: it plots the proportion of each base position in a file for which each of the four normal DNA bases has been called. In a random library, little or no differences are expected between the different bases of a sequence run, so the lines in this plot should run parallel with each other. The relative

amount of each base reflects the overall amount of these bases in our genome. Figure 3.12 represents an example of the Per Base Sequence plot.

- Per Sequence GC Content: it measures the GC content across the whole length of each sequence in a file and compares it to a modelled normal distribution of GC content. In a random library, a normal distribution of GC content is expected, with a central peak corresponding to the overall GC content of the underlying genome (Figure 3.13).
- Per Base N Content: If the sequencer is unable to make a base call with sufficient confidence, it will substitute an N rather than a base call. This module plots the percentage of base calls at each position for which an N was called (Figure 3.14).
- Sequence Length Distribution: it generates a graph showing the distribution of fragment sizes in the file which was analysed (Figure 3.15).
- Duplicate Sequences: it counts the degree of duplication for every sequence in a library and creates a plot showing the relative number of sequences with different degree of duplication (Figure 3.16).
- Overrepresented Sequences: it lists all the sequence which are overrepresented, which means that make up more than 0,1% of the total.
- Adapter content: this is a Kmer Content module that does a generic analysis of all the Kmers in the library to identify those which do not have coverage through the lengths of the reads.
- Kmer Content
- Per Tile Sequence Quality: it allows to look at the quality scores for each tile across all the bases to see if there is a loss in quality associated with only one part of the flow cell.

For each of these parameters, FastQC raise "warning" or "error" signs to immediately inform and understand whether an error occurred for one or more parameters.

Figure 3.10. Per Base Sequence Quality Box Whisker

The central red line is the median value; the yellow box represents the inter-quartile range (25-75%); the upper and lower whiskers represent the 10% and 90% points; the blue line represents the mean quality. The y-axis on the graph shows the quality scores. The higher the score the better the base call. The background of the graph separates the y-axis into very good quality (green) calls, reasonable quality (orange) calls, and poor quality (red) calls. The quality of the calls on most sequencing platforms will degrade as the run progresses, so it is common to see the yellow boxes falling into the orange area (lower quality) towards the right of the x-axis, representing the end of a read.

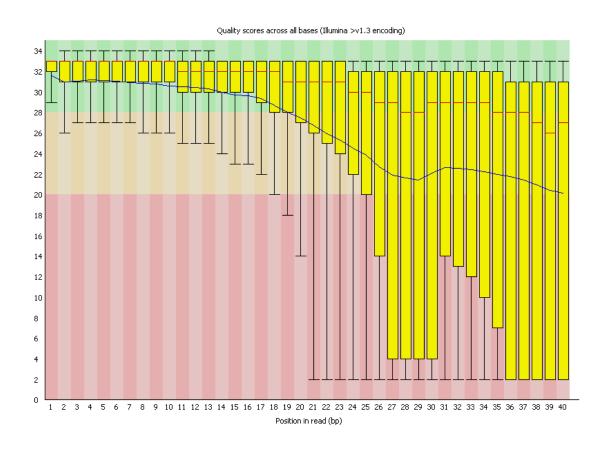
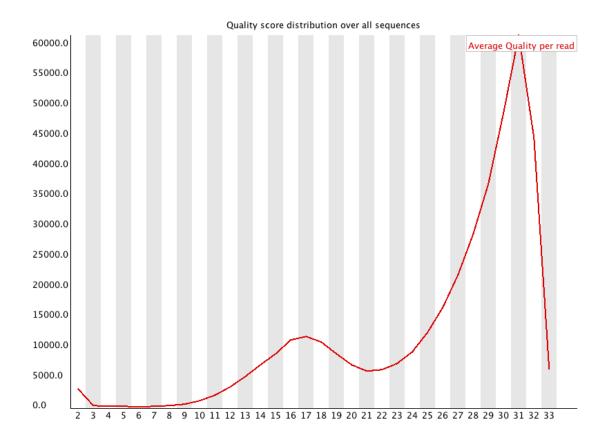




Figure 3.11. Per Sequence Quality Scores Graph



141

Figure 3.12. Per Base Sequence Content

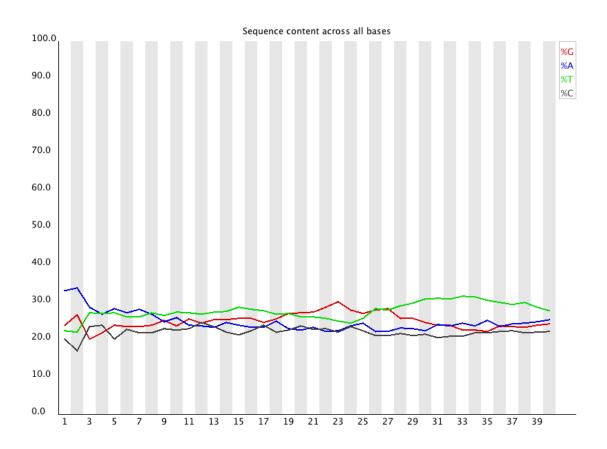



Figure 3.13. Per Sequence GC Content Graph

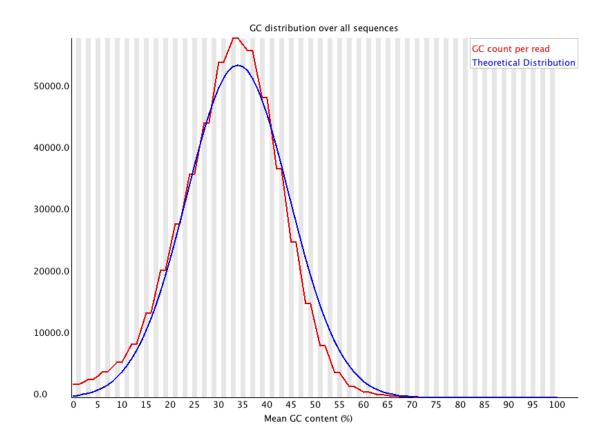



Figure 3.14. Per Base N Content Graph

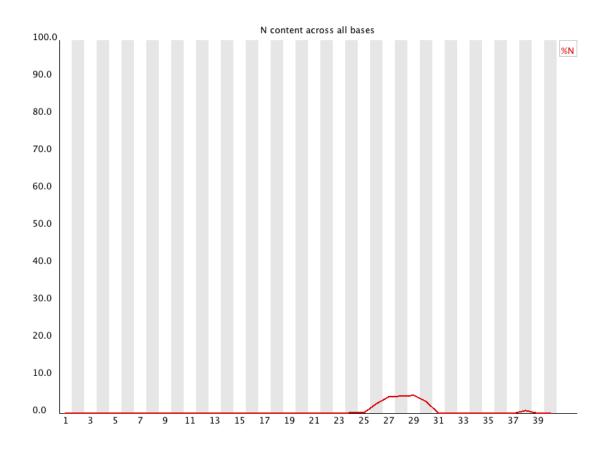
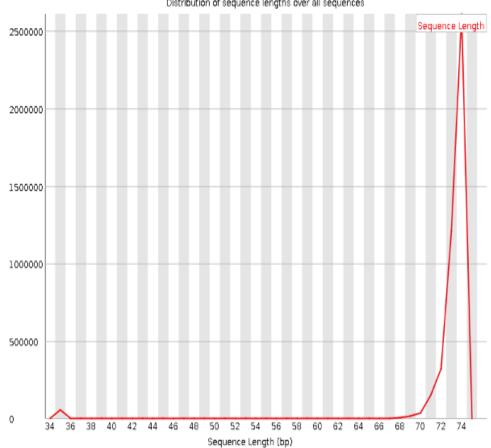
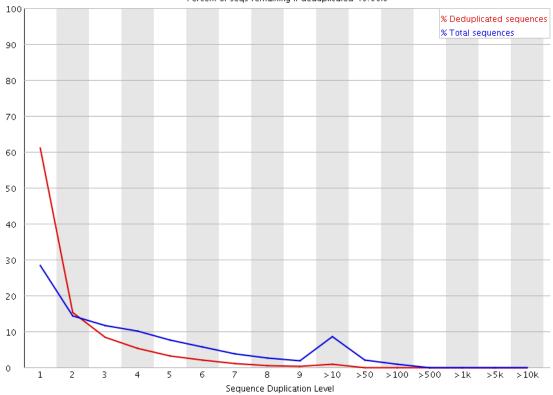





Figure 3.15. Sequence Length Distribution Graph



Distribution of sequence lengths over all sequences

Figure 3.16. Duplicate Sequences Graph



Percent of seqs remaining if deduplicated 46.66%

# 3.9 RNA-Seq biostatistical analysis

The raw read counts were quantified at the transcript level by using Salmon (v 1.4.0) which is a tool for fast transcript quantification from RNA-seq data that allows to accurately quantify transcripts without applying reads alignment. Salmon was used in quasi-mapping mode which consisted of two steps: i) indexing of the transcriptome and, ii) quantification of the set of raw sequencing reads (FASTQ format) (Patro, Duggal, Love, Irizarry, & Kingsford, 2017). The first step was done by building a decoy-aware transcriptome where the entire human genome was concatenated to the end of the human transcriptome and was subsequently indexed with the chromosome names following the instructions reported in <a href="https://combine-lab.github.io/alevin-tutorial/2019/selective-alignment/">https://combine-lab.github.io/alevin-tutorial/2019/selective-alignment/</a>. Both genome and transcriptome (Release 38 (GRCh38.p13)) were downloaded from <a href="https://www.gencodegenes.org/human/">https://www.gencodegenes.org/human/</a>. The second step consisted in the quantification of the paired-end reads directly against the index built during the previous step.

Transcript-level differential expression was assessed using DESeq2 (v1.30.1) in R to compare the three risk groups divided or not by sex (MDD vs HR; MDD vs LR; HR vs LR; for males: MDD vs HR; MDD vs LR; HR vs LR. For females: MDD vs HR; MDD vs LR; HR vs LR), accounting for RNA-Seq run as covariate. Before differential expression analysis, the transcript set was filtered for library size, and transcripts with less than 10 counts across all samples were excluded. Differentially expressed genes were identified by applying a FC cut-off of  $\pm$  [1.2], an unadjusted p-value < 0.05 and a Benjamini-Hochberg adjusted false discovery rate (FDR) cut-off of 0.05 (q-value). Genes differently modulated across groups were then imported in Ingenuity Pathway Analyses Software (IPA) to identify associated biological pathways.

# 3.10 Correlation between microarrays and RNA-Seq

To identify common results between microarray and RNA-Seq results, a Spearman's correlation was computed by using SPSS Software. Specifically, the correlation analysis was performed considering the following comparison: MDD *vs* HR, MDD *vs* LR, and HR *vs* LR considering only the entire cohort and not the results divided for biological sex. The Spearman's correlation was computed using as input values the relative raw expression profile of the common genes between both platforms, meaning the fold-changes value for each common gene. For each of the three comparisons previously mentioned, the correlation was performed on the genes in common obtained without applying any cut-offs filter (neither p-value or FC), and on the genes in common between the two platforms and surviving the p-value of 0.05. Genes in common between microarrays and RNA-Seq were obtained by overlapping in a Venn diagram the list of genes (accordingly to the presence or not of the cut-offs) from the two platforms.

# 4. Results

In this section, I will present the results following the order reported in the Methods' section. I will firstly describe the sociodemographic and clinical characteristics of the IDEA-RiSCo sample constituted by 150 adolescents. Then, I will present the data from the quality control of the RNA samples extracted. I will then show the results of the genome-wide gene expression analysis by using the microarrays of Gene-Atlas Affymetrix Platform. I will firstly show the quality control results of the Affymetrix technique, by reporting both the results of the internal controls of the Gene-Atlas platform and the quality controls of the raw data (CEL files) performed by using Partek Genomic Suite Software. I will then show the biostatistical analysis performed with Partek Genomic Suite in terms of genes differently expressed (DEGs) and the results of the pathways analysis performed by using Ingenuity Pathways Analysis Software. In the second main part of the results, I will describe the data from the second genome-wide approach using RNA Sequencing with NextSeq550 Platform. Similarly, to the structure previously described for Affymetrix microarrays, I will firstly report the quality controls analysis of the FASTQ raw data performed via FastQC. Then I will show the biostatistical analysis performed via Salmon and DESeq2, by showing the DEGs and the results of the pathways analysis performed by using Ingenuity Pathways

Lastly, I will report the results related to the correlation analysis of the DEGs in common between microarrays and RNA-Seq.

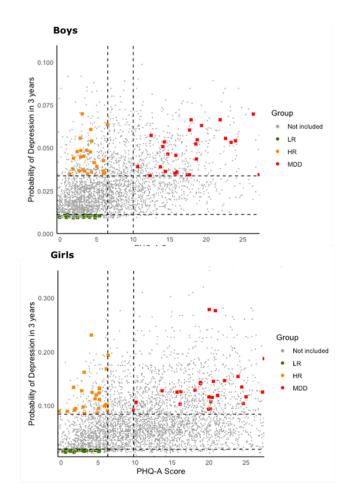
Analysis Software, as previously described in paragraph 3.6.2.

# 4.1 IDEA-RiSCo

# 4.1.1 Sociodemographic and clinical characteristics of adolescents included in the RiSCo cohort

Fifty adolescents were recruited for each group (MDD, HR or LR) with 25 girls and 25 boys in each group, for a total of 75 females and 75 males in the whole cohort. The basic sociodemographic and clinical characteristics of the adolescents are reported in table 4.1. Mean ( $\pm$  SD) of age was 15.4  $\pm$  0.8 years for the LR group, 15.8  $\pm$  0.8 for HR group, and 15.8  $\pm$  0.7 for MDD adolescents. Thus, there was a small but significative difference among groups, with the LR group being slightly younger than both HR and MDD. No significant differences among groups were reported for body mass index (mean  $\pm$  SD), showing LR group mean 22.1  $\pm$  5.5 kg/m<sup>2</sup>, HR 22.4  $\pm$  4.8 kg/m<sup>2</sup>, and MDD 22.7  $\pm$  3.9 kg/m<sup>2</sup>. Similarly, no differences between groups were observed also for body temperature.

The mean PHQ-A score was 9.52, with higher scores observed in girls (11.51 compared with 7.07 in boys). The PHQ-A and the IDEA-RS for both boys and girls are shown in figure 4.1. The IDEA-RS sociodemographic parameters scores for the IDEA-RiSCo are reported in table 4.2. No significant differences were identified in the proportion of the adolescents who self-identified as having white skin color among the three group. Involvement in fights, school failures and drug use were less common in LR adolescents than in both HR and MDD group. Adolescents with depression reported higher rates of history of running away from home compared with HR and LR groups. The relationship with fathers and both parents was reported as more positive by LR adolescents than their peers in HR and MDD groups. A stepwise decrease from LR to


HR to MDD was reported with regards to the relationship with the mother as well as in the meeting with friends. In terms of maltreatment, all adolescents in the LR were categorized in the "no maltreatment" group, whereas the majority from HR group and almost all from MDD group were classified as having experiences of "severe maltreatment". These results are in line with the CTQ score previously reported in table 4.2, as it was observed a stepwise increase of the CTQ mean scores from LR to HR to MDD, respectively 29.16  $\pm$  3.3, 38.08  $\pm$  8.2 and 51.56  $\pm$  13.2.

|                  | Low Risk    | High Risk   | MDD          |  |
|------------------|-------------|-------------|--------------|--|
|                  | Mean (SD)   | Mean (SD)   | Mean (SD)    |  |
| Age (years)      | 15.4 (0.8)  | 15.8 (0.8)  | 15.8 (0.7)   |  |
| Body Mass Index  | 22.1 (5.5)  | 22.4 (4.8)  | 22.7 (3.9)   |  |
| Body Temperature | 35.9 (5.5)  | 36.0 (0.5)  | 36.1 (0.6)   |  |
| IDEA-RS (%)      | 1.33 (0.3)  | 8.21 (1.6)  | 9.24 (5.6)   |  |
| PHQ-A            | 2.82 (1.5)  | 3.96 (1.6)  | 18.82 (4.5)  |  |
| СТQ              | 29.16 (3.3) | 38.08 (8.2) | 51.56 (13.2) |  |

Table 4.1. Phenotypic characteristics of the IDEA-RiSCo sample

Figure 4.1. PHQ-A score and Probability of Depression in 3 years of adolescents screened at schools and included in the IDEA-RiSCo, boys and girls.

Vertical dotted lines show the Patient Health Questionnaire—adolescent version (PHQ-A) cutoffs, and horizontal dotted lines show the Identifying Depression Early in Adolescence risk score (IDEA-RS) cut-offs. Low risk (LR) adolescents appear in the lower left quadrant (PHQ-A $\leq$ 6 and IDEA-RS $\leq$ 20<sup>th</sup> percentile); high risk (HR) adolescents in the upper left quadrant (PHQ-A $\leq$ 6 and IDEA-RS $\geq$ 90<sup>th</sup> percentile); and adolescents with current major depressive disorder (MDD), in the upper right quadrant (PHQ-A $\geq$ 10 and IDEA-RS $\geq$ 90<sup>th</sup> percentile). Gray dots representing the students who did not meet inclusion criteria are spread over all quadrants. From (Kieling et al., 2021).



# Table 4.2. IDEA-RS sociodemographic variables in the IDEA-RiSCo.

"Relationship" variables were analyzed as continuous (mean, SD), with answers ranging from 1 (bad) to 5 (great).

|                                         | Low Risk    | High Risk   | MDD         |
|-----------------------------------------|-------------|-------------|-------------|
|                                         | n (%)       | n (%)       | n (%)       |
| Sex, female                             | 25 (50.00)  | 25 (50.00)  | 25 (50.00)  |
| Skin color, non-white                   | 22 (44.00)  | 26 (52.00)  | 26 (52.00)  |
| Meets friends                           | 49 (98.00)  | 40 (80.00)  | 30 (60.00)  |
| School Failure                          | 0 (0.00)    | 29 (58.00)  | 25 (50.00)  |
| Ran away                                | 1 (2.00)    | 3 (6.00)    | 13 (26.00)  |
| Any drug use                            | 29 (58.00)  | 44 (88.00)  | 47 (94.00)  |
| Fights                                  | 0 (0.00)    | 20 (40.00)  | 27 (54.00)  |
| Relationship with father (mean, SD)     | 4.52 (0.79) | 2.48 (1.22) | 2.00 (1.18) |
| Relationship with mother (mean, SD)     | 4.78 (0.54) | 3.92 (1.01) | 3.14 (1.14) |
| Relationship between parents (mean, SD) | 4.18 (1.08) | 2.38 (1.23) | 1.94 (1.04) |
| Childhood Maltreatment - None           | 50 (100.00) | 1 (2.00)    | 0 (0.00)    |
| Childhood Maltreatment - Probable       | 0 (0.00)    | 12 (24.00)  | 4 (8.00)    |
| Childhood Maltreatment - Severe         | 0 (0.00)    | 37 (74.00)  | 46 (92.00)  |

# 4.2 Quality Control of RNA samples

Following the RNA extraction from Paxgene blood tubes, RNA quantity and quality were assessed evaluating the A260/280 and A260/230 ratios using a Nanodrop 2000 spectrophotometer. One  $\mu$ l of each sample was quantified by using the Nanodrop and the mean concentration (± SD) of all the 150 samples was 178.16 ng/ $\mu$ l ± 61.08 ng/ $\mu$ l, with a minimum concentration of 53.9 ng/ $\mu$ l and a maximum concentration of 380.5 ng/ $\mu$ l. By using Nanodrop, the absorbance at 260 nm and 280 nm was measured, as well as the 260/280 and 260/230 ratios for all the 150 samples and all the values are reported in Appendix A, Table A.

Further quality control analysis was performed by using the Agilent Bioanalyzer 2100, and the RNA Integrity Number (RIN) was obtained for all the samples. The RIN indicates the RNA intactness by evaluation of the ribosomal ratio (18S and 28S) and it is based on a numbering system from 1 to 10, with 1 indicating a degraded profile and 10 the most intact (https://www.agilent.com/cs/library/applications/5989-1165EN.pdf); for genome-wide gene expression analysis, RIN values are considered acceptable within the range 7-10. In the assessed samples, I obtained and average (±SD) RIN value of 9.2 ± 0.5, with a maximum RIN of 10 and a minimum of 7.2. In particular, out of 150 samples, 96 samples reported a RIN value > 9; 43 samples had 8 < RIN < 9; 7 samples reported 7 < RIN < 8, and for 4 out of 150 samples' RIN was not detectable. The RIN of all the 150 samples is reported in Appendix B, Table B.

# 4.3 Affymetrix microarrays – Gene Atlas Platform

# 4.3.1 Gene Atlas Affymetrix QA/QC

The Gene Atlas Affymetrix instrument has quality control processes for gene expression analysis, to enable the user to check the data quality. These QA/QC evaluates hybridization controls, labelling controls and internal controls genes. For each sample, once the imaging phase is completed, a QC Report Summary is available. Specifically, the QC checks are the following:

- Summary
- Signal
- Hybridization Controls
- Labelling controls
- Sample quality

<u>Signal Value</u>: it is a measure of the average brightness of the probe sets on the array, minus the background noise. The Signal to Noise ratio must be above a certain value for the array to pass QC.

<u>Hybridization Controls</u>: Biotin labelled controls which are added to the hybridization cocktail. The 20X Eukaryotic Hybridization controls are high-quality controls for monitoring array hybridization, washing, and staining for reproducible results. The 20X Eukaryotic Hybridization Controls are composed of a mixture of biotinylated and fragmented aRNA of bioB, bioC, and bioD from *E. coli* in staggered concentrations. The 20X Eukaryotic Hybridization Controls are spiked into the hybridization cocktail, independent of RNA sample preparation, and are thus used to evaluate sample hybridization efficiency on eukaryotic gene expression arrays.

<u>Labelling Controls</u>: Poly A Controls are added to the RNA Sample prior to using IVT express kit. Four independent poly-A RNA controls, derived from the lys, phe, and dap genes of *B. subtilis*, are provided conveniently in a pre-mixed stock solution at staggered concentrations. After spiking directly into eukaryotic total RNA samples, labelled aRNA targets are prepared and hybridized onto GeneChip expression arrays. The resultant signal intensities for the poly-A RNA controls serve as sensitive indicators of the efficiency of the labelling reaction and are independent of input sample RNA quality.

<u>Sample Quality</u>: It refers to housekeeping genes, which are gene transcripts that are constitutively expressed on most samples. These transcripts serve as internal controls, are useful for monitoring the quality of the starting sample and are subject to any variability in the labelling of the sample and hybridization for the array. For human, GAPDH is used to assess RNA sample and assay quality. The signal values for the 3' probe sets are compared with the signal values for the corresponding 5' probe sets. If the ratio is greater than 3, the sample is failed.

The summary indicates if the sample meets the QC thresholds, and the results are the following:

- Include: Sample data meets QC thresholds
- Exclude: Sample data does not meet the QC thresholds.

The exclusion of a samples is due to an issue occurring in one of the other parameters, which can be labelled with a green tick (positive QC) or red cross (negative QC). See figure 4.2 for an example of the QC Report table.

The QC report summary was evaluated for each of the 150 samples after the imaging process and all samples passes the quality controls and were labelled as "included" and there was no need to re-process any of the 150 samples. The QC Report of all the 150 samples (divided in 4 samples per imaging process, accordingly to the randomization) is reported in Appendix C, Table C.

| ffymetrix        |                    |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |              |
|------------------|--------------------|---------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| HOME             | REGISTRAT          | ion 🚺   | HYBRID       | NZATION 🔥 FLUIDIC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s 🚺 imager        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | Utility Ac   |
| QC Report:       | Summary            |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Close | Save As Prin |
| Sample File Name | CEL File Name      | Summary | Signal       | Hybridization Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Labeling Controls | Sample Quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |              |
| Ctrl_Date_1      | Ctrl_Date_1.ga.cel | Include | $\bigcirc$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\bigcirc$        | $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |              |
| Ctrl_Date_2      | Ctrl_Date_2.ga.cel | Include | $\checkmark$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\checkmark$      | <b>(</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |              |
| Ctrl_Date_3      | Ctrl_Date_3.ga.cel | Include |              | <ul> <li>Image: A start of the start of</li></ul> | $\checkmark$      | <b>(</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |              |
| Ctrl_Date_4      | Ctrl_Date_4.ga.cel | Include |              | <ul> <li>Image: A start of the start of</li></ul> | $\checkmark$      | <ul> <li>Image: A start of the start of</li></ul> |       |              |

*Figure 4.2. Example of a QC Report Summary (from geneatlas\_setup\_verification\_manual)* 

## 4.3.2 Partek Genomic Suite QA/QC

The Software Partek Genomic Suite provides QA/QC report after importing the raw data (CEL file) and adding the samples attributes (for this analysis: risk group and sex). The QA/QC report provided by Partek Genomic Suite are:

- PCA Scatter Plot
- Sample Histogram
- Sample Box & Whiskers Chart

The PCA allows to visualize the general distribution of each sample; each point represents a sample, and they are colored accordingly to a selected variable. The PCA is an example of exploratory data analysis, and it allows to identifying outliers as well as possible major effect in the data.

Figure 4.3 reports the PCA accordingly to the scan date; it can be observed that there is not a clear separation of the samples accordingly to the scan date; therefore, a batch effect or an effect due to the scan date was excluded.

Figure 4.4 reports the PCA accordingly to the risk groups (MDD; HR; LR). This PCA did not show clear separation among the groups, suggesting no major separation according to risk groups.

Figure 4.5 reports the PCA according to biological sex (males and females).

The histogram plots one line for each of the samples with the intensity of the probes graphed on the x-axis and the frequency of the probe intensity on the y-axis. This allows to visualize the distribution of the intensities to identify any outliers. Similarly to the PCA, it is possible to visualize the results by colour each sample accordingly to each variable (Figure 4.6 and 4.7 coloured for scan date and risk group respectively).

The absence of outliers or of a batch effect in this dataset, was identified by the fact that all the single histograms followed the same distribution, and no secondary peaks or other distributions were observed for any of the 150 samples.

In the Sample Box & Whiskers Chart, each box is a sample, and the boxes are coloured accordingly to the selected variable (Figure 4.8 and 4.9 coloured for scan date and risk group respectively). The intensity of the probes is graphed on the y-axis, the line inside the box represents the median of the intensities (2<sup>nd</sup> quartile), whereas the box represents the first and third quartiles.

# Figure 4.3. Partek Genomic Suite PCA by Scan Date

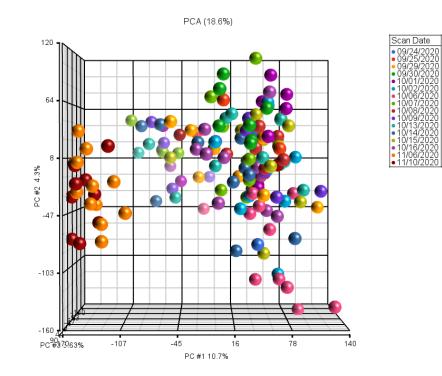



Figure 4.4. Partek Genomic Suite PCA by Risk Group

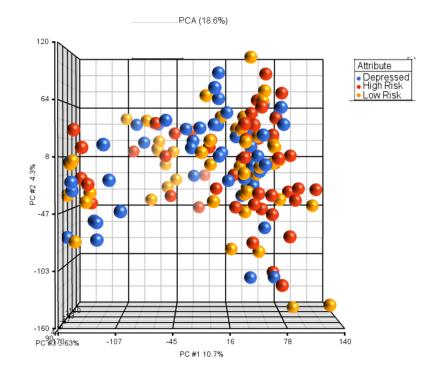



Figure 4.5. Partek Genomic Suite PCA by Biological Sex

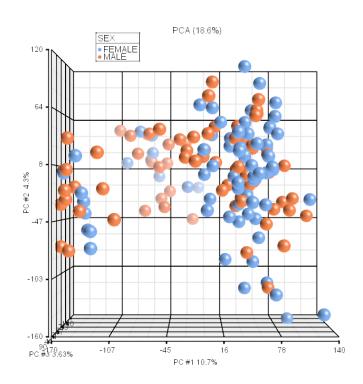



Figure 4.6. Partek Genomic Suite Histogram by Scan Date

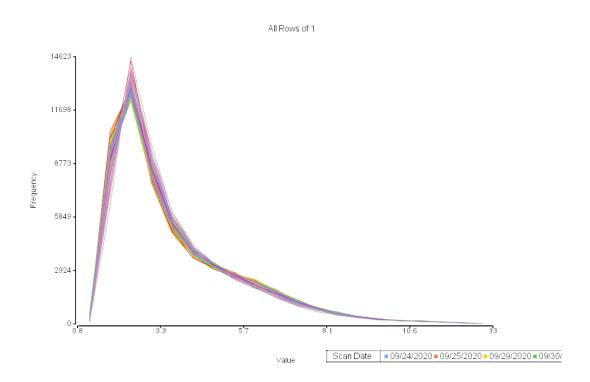



Figure 4.7. Partek Genomic Suite Histogram by Risk Group

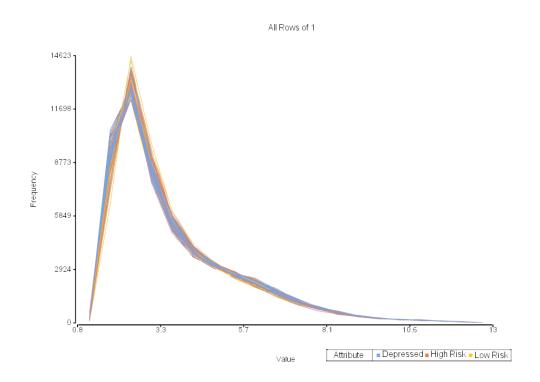



Figure 4.8. Partek Genomic Suite Sample Box & Whiskers Chart by Scan Date

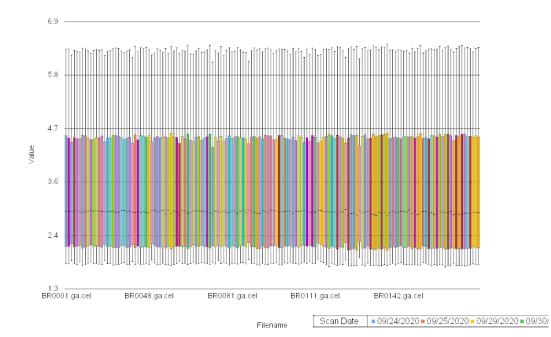
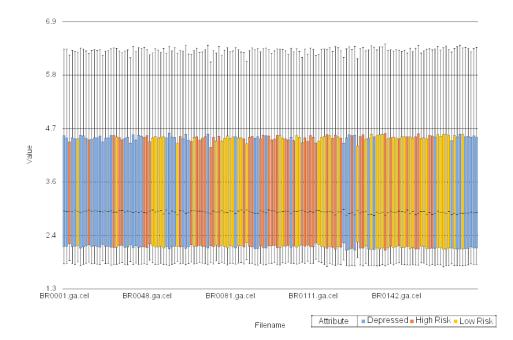




Figure 4.9. Partek Genomic Suite Sample Box & Whiskers Chart by Risk Group



#### 4.3.3 Genes differently modulated in MDD, HR and LR adolescents

By using the Software Partek Genomic Suite, I firstly identified genes differently modulated in the comparisons among the three groups (both males and females together) specifically:

- MDD (n=50) vs HR adolescents (n=50)
- MDD (n=50) vs LR adolescents (n=50)
- HR (n=50) vs LR adolescents (n=50)

For each comparison, the cut offs values applied were FC  $\pm$  |1.2|, p-value < 0.05 and a (FDR) cut-off of 0.05 (q-value), and the following results refer to the gene lists obtained once applied such cut-offs.

#### 4.3.3.1 Genes differently modulated in MDD vs HR adolescents

In the comparison MDD vs HR, 79 genes were found differently modulated in MDD adolescents compared with HR adolescents. Among the 79 genes, 71 genes (89.9%) were up-regulated, whereas 8 (10.1%) genes were down-regulated in MDD compared with HR. Among these DEGs identified, no genes survived the FDR correction. Table 1D in Appendix D represents the ID, Gene Assignment, p-value, and Fold-Change of the 79 genes.

# 4.3.3.2 Genes differently modulated in MDD vs LR adolescents

In the comparison MDD vs LR, 23 genes were found differently modulated in MDD adolescents compared with LR adolescents. Among the 23 genes, 14 genes (60.8%) were up-regulated, whereas 9 (39.2%) genes were down-regulated in MDD compared with LR. Among these DEGs identified, no genes survived the FDR correction. Table 2D

in Appendix D represents the ID, Gene Assignment, p-value, and Fold-Change of the 23 genes.

# 4.3.3.3 Genes differently modulated in HR vs LR adolescents

In the comparison HR vs LR, 11 genes were found differently modulated in HR adolescents compared with LR adolescents. Among the 11 genes, 2 genes (18.2%) were up-regulated, whereas 9 (81.8%) genes were down-regulated in HR compared with LR. Among these DEGs identified, no genes survived the FDR correction. Table 3D in Appendix D represents the ID, Gene Assignment, p-value, and Fold-Change of the 11 genes.

#### 4.3.4 Genes differently modulated accordingly to biological sex: males

Raw data were analysed separately for biological sex to identify genes differently expressed by using Partek Genomic Suite. I obtained gene lists for males and females separately, and I will now report the genes differently expressed in males for the same comparison of the previous paragraph. Specifically,

- Males MDD (n=25) vs males HR adolescents (n=25)
- Males MDD (n=25) vs males LR adolescents (n=25)
- Males HR (n=25) vs males LR adolescents (n=25)

For each comparison, the cut offs values applied were the same of the previous analysis FC  $\pm$  |1.2|, p-value < 0.05 and a (FDR) cut-off of 0.05 (q-value), and the following results refer to the gene lists obtained applied such cut-offs.

# 4.3.4.1 Genes differently modulated in males MDD vs males HR adolescents

In the comparison males MDD *vs* males HR, 592 genes were found differently modulated in MDD males compared with HR males. Among the 592 genes, 535 genes (90.4%) were up-regulated, whereas 57 (9.6%) genes were down-regulated in MDD compared with HR. Among these DEGs identified, no genes survived the FDR correction. Table 4D in Appendix D represents the ID, Gene Assignment, p-value, and Fold-Change of the 592 genes.

# 4.3.4.2 Genes differently modulated in males MDD vs males LR adolescents

In the comparison males MDD *vs* males LR, 130 genes were found differently modulated in MDD males compared with LR males. Among the 130 genes, 104 genes (80%) were up-regulated, whereas 26 (20%) genes were down-regulated in MDD

compared with LR. Among these DEGs identified, no genes survived the FDR correction. Table 5D in Appendix D represents the ID, Gene Assignment, p-value, and Fold-Change of the 130 genes.

# 4.3.4.3 Genes differently modulated in males HR vs males LR adolescents

In the comparison males HR vs males LR, 23 genes were found differently modulated in HR males compared with LR males. Among the 23 genes, 6 genes (26%) were upregulated, whereas 17 (74%) genes were down-regulated in HR compared with LR. Among these DEGs identified, no genes survived the FDR correction. Table 6D in Appendix D represents the ID, Gene Assignment, p-value, and Fold-Change of the 23 genes.

#### 4.3.5 Genes differently modulated accordingly to biological sex: females

Similarly to what have been explained in the paragraph 4.3.4 for males, the lists of genes differently modulated between the three groups were obtained also for females only. I will now report the genes differently expressed in females for the same comparison. Specifically,

- Females MDD (n=25) vs females HR adolescents (n=25)
- Females MDD (n=25) vs females LR adolescents (n=25)
- Females HR (n=25) vs females LR adolescents (n=25)

For each comparison, the cut offs values applied were the same of the previous analysis, FC  $\pm$  |1.2|, p-value < 0.05 and a (FDR) cut-off of 0.05 (q-value), and the following results refer to the gene lists obtained applied such cut-offs.

# 4.3.5.1 Genes differently modulated in females MDD vs females HR adolescents

In the comparison females MDD *vs* females HR 42 genes were found differently modulated in MDD females compared with HR females. Among the 42 genes, 30 genes (71.4%) were up-regulated, whereas 12 (28.6%) genes were down-regulated in MDD compared with HR. Among these DEGs identified, no genes survived the FDR correction. Table 7D in Appendix D represents the ID, Gene Assignment, p-value, and Fold-Change of the 42 genes.

#### 4.3.5.2 Genes differently modulated in females MDD vs females LR adolescents

In the comparison females MDD *vs* females LR, 67 genes were found differently modulated in MDD females compared with LR females. Among the 67 genes, 46 genes (68.6%) were up-regulated, whereas 21 (31.4%) genes were down-regulated in MDD

compared with LR. Among these DEGs identified, no genes survived the FDR correction. Table 8D in Appendix D represents the ID, Gene Assignment, p-value, and Fold-Change of the 67 genes.

# 4.3.5.3 Genes differently modulated in females HR vs females LR adolescents

In the comparison females HR *vs* females LR, 43 genes were found differently modulated in HR females compared with LR females. Among the 43 genes, 8 genes (18.6%) were up-regulated, whereas 35 (81.4%) genes were down-regulated in HR compared with LR. Among these DEGs identified, no genes survived the FDR correction. Table 9D in Appendix D represents the ID, Gene Assignment, p-value, and Fold-Change of the 43 genes.

#### 4.3.6 Biological Pathways differently modulated in MDD, HR and LR

The Pathways Analysis was performed by using Ingenuity Pathways Analysis Software, which allows to obtain a list of pathways associated to an input list of genes. In this study, I uploaded the list of genes described in the previous paragraphs and reported from table 1D to 9D in Appendix D. I will now describe the pathways associated with genes differently expressed in each comparison MDD, HR and LR.

#### 4.3.6.1 Biological Pathways differently modulated in MDD vs HR adolescents

The pathways analysis was performed on the 79 genes differently expressed in the comparison MDD vs HR group (for the list of genes, see table 1D in Appendix D). From the analysis, 33 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched for more than three genes are reported in table 4.3 (see table 1F in Appendix F for the complete list of pathways). Two pathways presented a positive z-score > 2, indicating that were up-regulated in the MDD group compared with HR: 1) Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of Influenza (z-score 2.236); 2) Production of Nitric Oxide and Reactive Oxygen Species in Macrophages (z-score 2).

Moreover, many of the 33 pathways were associated with inflammation and immune system activation, such as Interferon Signaling, Complement System, IL-15 Production, Natural Killer Cell Signaling and Crosstalk Between Dendritic Cells and Natural Killer Cells. However, for none of these pathways a z-score was identified, indicating no information about their activated or inactivated status.

#### 4.3.6.2 Biological Pathways differently modulated in MDD vs LR adolescents

The pathways analysis was performed on the 23 genes differently expressed in the comparison MDD vs LR group (for the list of genes, see Table 2D in Appendix D). From the analysis, 9 pathways were shown to be significantly modulated (p-value < 0.05), however no pathways were enriched for more than three genes (see table 2F in Appendix F for the complete list of pathways). The z-score was not detectable for any of the pathways. However, many of the 9 pathways were associated with inflammation and immune system activation, such as Acute Phase Response Signalling, Inflammasome Pathway, Interferon Signalling and Complement System.

# 4.3.6.3 Biological Pathways differently modulated in HR vs LR adolescents

The pathways analysis was performed on the 11 genes differently expressed in the comparison HR vs LR group (for the list of genes, see Table 3D in Appendix D). From the analysis, 11 pathways were shown to be significantly modulated (p-value < 0.05); however, no pathways were enriched for more than three genes (see table 3F in Appendix F for the complete list of pathways).

The z-score was not detectable for any of the pathways and the only gene associated with these pathways was SMOX, which was common among all the pathways.

| Ingenuity Canonical Pathways                                                | p-value | Ratio | z-score | Molecules                                   |
|-----------------------------------------------------------------------------|---------|-------|---------|---------------------------------------------|
| Caveolar-mediated Endocytosis<br>Signaling                                  | < 0.001 | 0.07  |         | COPE,FLNA,FLOT2,ITGA2B,ITGA<br>M            |
| Role of                                                                     |         |       |         | IFIT2,MX1,OAS2,OAS3,STAT2                   |
| Hypercytokinemia/hyperchemokin<br>emia in the Pathogenesis of<br>Influenza  | < 0.001 | 0.06  | 2.236   |                                             |
| LPS/IL-1 Mediated Inhibition of RXR Function                                | < 0.001 | 0.03  | 0       | ACSL1,CPT1A,IL18RAP,NR1H2,S<br>MOX,TNFRSF1B |
| Production of Nitric Oxide and<br>Reactive Oxygen Species in<br>Macrophages | 0.003   | 0.02  | 2       | CYBA,JAK3,MAP3K11,TNFRSF1<br>B              |
| PD-1, PD-L1 cancer immunotherapy pathway                                    | 0.004   | 0.03  |         | CSK,JAK3,TNFRSF1B                           |
| Paxillin Signaling                                                          | 0.005   | 0.03  |         | CSK,ITGA2B,ITGAM                            |
| LXR/RXR Activation                                                          | 0.007   | 0.03  |         | IL18RAP,NR1H2,TNFRSF1B                      |
| IL-15 Production                                                            | 0.007   | 0.03  |         | CSK,JAK3,MAP3K11                            |
| STAT3 Pathway                                                               | 0.011   | 0.02  |         | CSF2RB,IL18RAP,MAP3K11                      |
| Granulocyte Adhesion and<br>Diapedesis                                      | 0.015   | 0.02  |         | IL18RAP,ITGAM,TNFRSF1B                      |
| Acute Phase Response Signaling                                              | 0.022   | 0.02  |         | C4BPA,HP,TNFRSF1B                           |
| PI3K/AKT Signaling                                                          | 0.023   | 0.02  |         | CSF2RB,IL18RAP,JAK3                         |
| Natural Killer Cell Signaling                                               | 0.026   | 0.02  |         | IL18RAP,JAK3,MAP3K11                        |
| Integrin Signaling                                                          | 0.031   | 0.01  |         | ITGA2B,ITGAM,MAP3K11                        |
| Osteoarthritis Pathway                                                      | 0.034   | 0.01  |         | IL18RAP,NOTCH1,TNFRSF1B                     |
| Sperm Motility                                                              | 0.035   | 0.01  |         | CSK,JAK3,MAP3K11                            |

Table 4.3. Pathways differently modulated in MDD vs HR (p-value < 0.05)

**4.3.7** Biological Pathways differently modulated accordingly to biological sex: males The pathways analysis was performed also on the list of genes obtained by analysing the comparison in males and females separately. In the following section I will describe the pathways associated with genes differently expressed in males for each comparison MDD, HR and LR.

4.3.7.1 Biological Pathways differently modulated in males MDD vs males HR adolescents

The pathways analysis was performed on the 592 genes differently expressed in the comparison males MDD *vs* males HR group (for the list of genes, see table 4D in Appendix D). From the analysis, 112 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched for more than three genes are reported in table 4.4 (see table 4F in Appendix F for the complete list of pathways). 50 pathways presented a positive z-score > 2, indicating that were up-regulated in the MDD males, whereas 1 pathway presented a negative z-score < -2, indicating its down-regulation in MDD males compared with HR.

Many of the pathways with a z-score > 2 were associated with inflammation and immune system activation, for example: 1) Leukocyte Extravasation Signaling (z-score 2.357); 2) Th2 Pathway (z-score 2.714); 3) IL-8 Signaling (z-score 3.606); 4) Natural Killer Cell Signaling (z-score 3.742); 5) Th1 Pathway (z-score 3,); 6) IL-3 Signaling (z-score 2.121); 7) IL-9 Signaling (z-score 2); 8) IL-7 Signaling Pathway (z-score 2); 9) IL-15 Signaling (z-score 2.449). The only pathways with a negative z-score < -2 was the RhpGDI Signalling (z-score -3.162).

Moreover, many other pathways among the 112 were associated with inflammation and immune system activation, showing a general trend of pro-inflammatory status in depressed males compared with HR males.

# 4.3.7.2 Biological Pathways differently modulated in males MDD vs males LR adolescents

The pathways analysis was performed on the 130 genes differently expressed in the comparison males MDD vs males LR group (for the list of genes, see table 5D in Appendix D). From the analysis, 28 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched for more than three genes are reported in table 4.5 (see table 5F in Appendix F for the complete list of pathways). The z-score was detected for 6 pathways, and 5 of them reported a positive z-score > 2: 1) TREM1 Signaling (z-score 2); 2) Dendritic Cell Maturation (z-score 2); 3) Estrogen Receptor Signaling (z-score 2); 4) Insulin Secretion Signaling Pathway (z-score 2); 5) Systemic Lupus Erythematosus in B Cell Signaling Pathway (z-score 2). Moreover, although no z-score was detected, many other pathways were related to inflammation and stress response, such as IL-7 Signaling Pathway, B Cell Receptor Signaling, Interferon Signaling, and Glucocorticoid Receptor Signaling.

4.3.7.3 Biological Pathways differently modulated in males HR vs males LR adolescents The pathways analysis was performed on the 23 genes differently expressed in the comparison males HR vs males LR group (for the list of genes, see table 6D in Appendix D). From the analysis, 3 pathways were shown to be significantly modulated (p-value < 0.05), however no pathways were enriched with more than three genes (see table 6F in Appendix F for the complete list of pathways). The z-score was not detectable for any of the pathways.

| Ingenuity Canonical Pathways                                          | p-value | Ratio | z-score | Molecules                                                                                                                                  |
|-----------------------------------------------------------------------|---------|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Integrin Signaling                                                    | < 0.001 | 0.1   | 3.638   | ARPC1B,ARPC4,CAPN1,GIT1,IT<br>GA2B,ITGA5,ITGAL,ITGAM,ITG<br>AX,ITGB2,MAP3K11,NEDD9,PIK<br>3CD,PLCG2,PXN,RAPGEF1,RHO<br>T2,TLN1,TSPAN3,VASP |
| Leukocyte Extravasation Signaling                                     | < 0.001 | 0.1   | 2.357   | ARHGAP1,ARHGAP4,CYBA,ICA<br>M3,ITGAL,ITGAM,ITGB2,MMP2<br>5,MSN,NCF2,PIK3CD,PLCG2,PR<br>KCD,PTK2B,PXN,SIPA1,VASP,VA<br>V1                   |
| Caveolar-mediated Endocytosis<br>Signaling                            | < 0.001 | 0.15  |         | COPE,DNM2,FLNA,FLOT2,HLA-<br>E,ITGA2B,ITGA5,ITGAL,ITGAM,I<br>TGAX,ITGB2                                                                    |
| Tec Kinase Signaling                                                  | < 0.001 | 0.09  | 3.606   | GNB2,ITGA5,ITGAL,ITGB2,JAK3,<br>PIK3CD,PLCG2,PRKCD,PTK2B,R<br>HOT2,STAT2,STAT3,STAT5B,ST<br>AT6,TYK2,VAV1                                  |
| HGF Signaling                                                         | < 0.001 | 0.1   | 3       | ELF4,ITGA5,ITGAL,ITGB2,MAP3<br>K11,MAP3K3,PIK3CD,PLCG2,PR<br>KCD,PXN,RAPGEF1,STAT3                                                         |
| TREM1 Signaling                                                       | < 0.001 | 0.13  | 3       | CIITA,ITGA5,ITGAX,LAT2,NLRC3<br>,NLRC5,PLCG2,STAT3,STAT5B                                                                                  |
| Phagosome Formation                                                   | < 0.001 | 0.1   |         | FCAR,IGHG1,IGHG4,ITGA5,ITGA<br>L,ITGAM,ITGAX,ITGB2,PIK3CD,<br>PLCG2,PRKCD,RHOT2                                                            |
| Th1 and Th2 Activation Pathway                                        | < 0.001 | 0.08  |         | IL4R,IL6R,ITGB2,JAK3,NOTCH1,<br>NOTCH2,PIK3CD,PSENEN,STAT<br>3,STAT5B,STAT6,TGFB1,TYK2,V<br>AV1                                            |
| Fcγ Receptor-mediated<br>Phagocytosis in Macrophages and<br>Monocytes | < 0.001 | 0.11  | 3.162   | ARPC1B,ARPC4,INPP5D,PLD3,P<br>RKCD,PTK2B,PXN,TLN1,VASP,V<br>AV1                                                                            |
| Th2 Pathway                                                           | < 0.001 | 0.09  | 2.714   | IL4R,ITGB2,JAK3,NOTCH1,NOT<br>CH2,PIK3CD,PSENEN,STAT5B,S<br>TAT6,TGFB1,TYK2,VAV1                                                           |
| IL-8 Signaling                                                        | < 0.001 | 0.08  | 3.606   | CXCR1,GNB2,IKBKE,ITGAM,ITG<br>AX,ITGB2,LASP1,LIMK1,NCF2,PI<br>K3CD,PLD3,PRKCD,PTK2B,RHO<br>T2,VASP                                         |
| Systemic Lupus Erythematosus<br>Signaling                             | < 0.001 | 0.07  |         | CD22,EFTUD2,HLA-<br>E,IGHG1,IGHG4,IL6R,INPP5D,PI<br>K3CD,PIM2,PLCG2,PRPF6,PRPF<br>8,RNU4ATAC,SNRNP200,SNRP<br>A,ZMAT5                      |
| Systemic Lupus Erythematosus In B<br>Cell Signaling Pathway           | < 0.001 | 0.07  | 2.828   | CARD11,CD22,IGHA1,IGHG1,IL<br>6R,INPP5D,LILRA6,LTB,MAVS,PI<br>K3CD,PIM2,PLCG2,PRKCD,STAT<br>2,STAT3,TGFB1,TYK2,VAV1                        |
| Actin Cytoskeleton Signaling                                          | < 0.001 | 0.07  | 3.464   | ARPC1B,ARPC4,FGD3,FLNA,GIT<br>1,ITGA5,ITGAL,ITGB2,LIMK1,M<br>SN,MYH9,NCKAP1L,PIK3CD,PX<br>N,TLN1,VAV1                                      |

Table 4.4. Pathways males MDD vs males HR (p-value < 0.05)

| HIF1α Signaling                                                             | < 0.001 | 0.07 | 2.84   | BMP6,GPI,HIF1AN,HK3,HSPA1A<br>/HSPA1B,IL6R,MKNK2,MMP25,<br>NCF2,PIK3CD,PKM,PLCG2,PRKC<br>D,STAT3,TGFB1          |
|-----------------------------------------------------------------------------|---------|------|--------|-----------------------------------------------------------------------------------------------------------------|
| Notch Signaling                                                             | < 0.001 | 0.16 | 0.816  | FURIN,MFNG,NOTCH1,NOTCH2<br>,PSENEN,RFNG                                                                        |
| Role of JAK1 and JAK3 in γc<br>Cytokine Signaling                           | < 0.001 | 0.12 |        | FES,IL4R,JAK3,PIK3CD,PTK2B,ST<br>AT3,STAT5B,STAT6                                                               |
| Virus Entry via Endocytic Pathways                                          | < 0.001 | 0.1  |        | AP1M1,AP2A1,DNM2,FLNA,HL<br>A-<br>E,ITGA5,ITGB2,PIK3CD,PLCG2,P<br>RKCD                                          |
| Paxillin Signaling                                                          | 0.001   | 0.09 | 2.236  | ITGA2B,ITGA5,ITGAL,ITGAM,IT<br>GAX,ITGB2,PIK3CD,PTK2B,PXN,<br>TLN1                                              |
| Natural Killer Cell Signaling                                               | 0.001   | 0.07 | 3.742  | HLA-<br>E,HSPA1A/HSPA1B,ITGAL,JAK3,<br>LIMK1,MAP3K11,MAP3K3,NCR<br>1,PIK3CD,PLCG2,PTK2B,PXN,TY<br>K2,VAV1       |
| Iron homeostasis signaling pathway                                          | 0.001   | 0.08 |        | ATP6AP1,ATP6V0D1,BMP6,HB<br>D,HBZ,IL6R,JAK3,LRP1,STAT3,S<br>TAT5B,TYK2                                          |
| STAT3 Pathway                                                               | 0.001   | 0.08 | 2.828  | BMP6,CSF2RB,CXCR1,IGF2R,IL4<br>R,IL6R,MAP3K11,PIM1,STAT3,T<br>GFB1,TYK2                                         |
| Th1 Pathway                                                                 | 0.001   | 0.09 | 3      | IL6R,ITGB2,JAK3,NOTCH1,NOT<br>CH2,PIK3CD,PSENEN,STAT3,TY<br>K2,VAV1                                             |
| IL-3 Signaling                                                              | 0.001   | 0.1  | 2.121  | CSF2RB,INPP5D,PIK3CD,PRKCD,<br>RAPGEF1,STAT3,STAT5B,STAT6                                                       |
| Signaling by Rho Family GTPases                                             | 0.001   | 0.06 | 3.606  | ARHGEF18,ARHGEF2,ARPC1B,A<br>RPC4,GNB2,ITGA5,ITGAL,ITGB2<br>,LIMK1,MAP3K11,MSN,NCF2,PI<br>K3CD,PKN1,PTK2B,RHOT2 |
| B Cell Receptor Signaling                                                   | 0.001   | 0.07 | 2.53   | BCL6,CD22,IGHA1,IGHG1,IGHG<br>4,IKBKE,INPP5D,MAP3K11,MA<br>P3K3,PIK3CD,PLCG2,PTK2B,VA<br>V1                     |
| Rac Signaling                                                               | 0.002   | 0.08 | 2.828  | ARPC1B,ARPC4,ITGA5,ITGAL,IT<br>GB2,LIMK1,MAP3K11,NCF2,PIK<br>3CD,PTK2B                                          |
| Production of Nitric Oxide and<br>Reactive Oxygen Species in<br>Macrophages | 0.002   | 0.07 | 3.606  | CLU,CYBA,IKBKE,JAK3,MAP3K1<br>1,MAP3K3,NCF2,PIK3CD,PLCG2<br>,PRKCD,RHOT2,TNFRSF1B,TYK2                          |
| RhoGDI Signaling                                                            | 0.002   | 0.07 | -3.162 | ARHGAP1,ARHGAP4,ARHGEF18<br>,ARHGEF2,ARPC1B,ARPC4,GNB<br>2,ITGA5,ITGAL,ITGB2,LIMK1,M<br>SN,RHOT2                |
| Ephrin Receptor Signaling                                                   | 0.002   | 0.07 | 2.53   | ARPC1B,ARPC4,DOK1,EPHB1,G<br>NB2,ITGA5,ITGAL,ITGB2,LIMK1,<br>PXN,RAPGEF1,SH2D3C,STAT3                           |
| T Helper Cell Differentiation                                               | 0.003   | 0.1  |        | BCL6,IL4R,IL6R,STAT3,STAT6,T<br>GFB1,TNFRSF1B                                                                   |
| Acute Myeloid Leukemia Signaling                                            | 0.003   | 0.09 | 0      | CSF1R,CSF2RB,CSF3R,PIK3CD,PI<br>M1,PIM2,STAT3,STAT5B                                                            |

| ERK/MAPK Signaling                                             | 0.003 | 0.06 | 3.317  | ELF4,ITGA5,ITGAL,ITGB2,MKNK<br>2,PIK3CD,PLCG2,PRKCD,PTK2B,                                                                                                        |
|----------------------------------------------------------------|-------|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PI3K/AKT Signaling                                             | 0.004 | 0.07 | 1.633  | PXN,RAPGEF1,STAT3,TLN1<br>CSF2RB,CXCR1,IKBKE,IL4R,IL6R,<br>INPP5D,ITGA5,ITGAL,ITGB2,JAK                                                                           |
| Phospholipase C Signaling                                      | 0.004 | 0.06 | 3      | 3,PIK3CD,TYK2<br>ADCY7,ARHGEF18,ARHGEF2,G<br>NB2,HDAC1,IGHG1,IGHG4,ITGA<br>5,ITGAL,ITGB2,ITPR3,PLCG2,PL<br>D3,PRKCD,RHOT2                                         |
| Role of JAK family kinases in IL-6-<br>type Cytokine Signaling | 0.004 | 0.16 |        | IL6R,STAT3,STAT5B,TYK2                                                                                                                                            |
| Cdc42 Signaling                                                | 0.004 | 0.07 | 2.646  | ARPC1B,ARPC4,FGD3,HLA-<br>E,ITGA5,ITGAL,ITGB2,LIMK1,M<br>AP3K11,VAV1                                                                                              |
| Macropinocytosis Signaling                                     | 0.004 | 0.09 | 2.449  | ANKFY1,CSF1R,ITGA5,ITGB2,PI<br>K3CD,PLCG2,PRKCD                                                                                                                   |
| Phagosome Maturation                                           | 0.005 | 0.07 |        | ATP6AP1,ATP6V0D1,CTSD,DYN<br>C1H1,GPAA1,HLA-<br>E,NCF2,TUBB1,VPS18,VPS39                                                                                          |
| Actin Nucleation by ARP-WASP<br>Complex                        | 0.005 | 0.09 | 2.236  | ARPC1B,ARPC4,ITGA5,ITGAL,IT<br>GB2,RHOT2,VASP                                                                                                                     |
| Reelin Signaling in Neurons                                    | 0.005 | 0.07 |        | ARHGEF2,ARPC1B,ARPC4,ITGA<br>5,LIMK1,MAP3K11,MAPK8IP3,<br>PIK3CD,RAPGEF1                                                                                          |
| JAK/Stat Signaling                                             | 0.006 | 0.09 | 2.646  | JAK3,PIK3CD,STAT2,STAT3,STA<br>T5B,STAT6,TYK2                                                                                                                     |
| SPINK1 General Cancer Pathway                                  | 0.006 | 0.1  | 2.449  | IL6R,JAK3,MT1F,PIK3CD,STAT3,<br>TYK2                                                                                                                              |
| Primary Immunodeficiency<br>Signaling                          | 0.006 | 0.11 |        | CIITA,IGHA1,IGHG1,IGHG4,JAK<br>3                                                                                                                                  |
| FAK Signaling                                                  | 0.007 | 0.08 |        | CAPN1,ITGA5,ITGAL,ITGB2,PIK<br>3CD,PLCG2,PXN,TLN1                                                                                                                 |
| Cardiac Hypertrophy Signaling<br>(Enhanced)                    | 0.007 | 0.05 | 4.025  | ADCY7,ATP2A3,CSF2RB,CXCR1,<br>HDAC1,IKBKE,IL4R,IL6R,ITGA5,I<br>TGAL,ITGB2,ITPR3,LTB,MAP3K1<br>1,MAP3K3,MKNK2,PIK3CD,PKN<br>1,PLCG2,PRKCD,STAT3,TGFB1,T<br>NFRSF1B |
| PAK Signaling                                                  | 0.008 | 0.08 | 1.633  | GIT1,ITGA5,ITGAL,ITGB2,LIMK1<br>,PIK3CD,PTK2B,PXN                                                                                                                 |
| Gαq Signaling                                                  | 0.008 | 0.07 | 2.333  | GNB2,GRK2,IKBKE,ITPR3,PIK3C<br>D,PLCG2,PLD3,PRKCD,PTK2B,R<br>HOT2                                                                                                 |
| Mitochondrial L-carnitine Shuttle<br>Pathway                   | 0.01  | 0.18 |        | ACSL1,CPT1A,SLC27A3                                                                                                                                               |
| Semaphorin Neuronal Repulsive<br>Signaling Pathway             | 0.01  | 0.07 | -0.333 | FES,ITGA5,ITGAL,ITGB2,LIMK1,<br>PIK3CD,PLCG2,SEMA4D,STK11                                                                                                         |
| Crosstalk between Dendritic Cells<br>and Natural Killer Cells  | 0.01  | 0.08 | 1.633  | CSF2RB,HLA-<br>E,ICAM3,ITGAL,LTB,TLN1,TNFR<br>SF1B                                                                                                                |
| Molecular Mechanisms of Cancer                                 | 0.011 | 0.05 |        | ADCY7,ARHGEF18,ARHGEF2,BA<br>K1,BMP6,CDK9,ITGA5,ITGAL,IT<br>GB2,JAK3,LRP1,NOTCH1,PIK3C<br>D,PRKCD,PSENEN,RAPGEF1,RH<br>OT2,TGFB1,TYK2                             |

| IL-9 Signaling                                         | 0.011 | 0.12 | 2      | JAK3,PIK3CD,STAT3,STAT5B                                                                                    |
|--------------------------------------------------------|-------|------|--------|-------------------------------------------------------------------------------------------------------------|
| Huntington's Disease Signaling                         | 0.012 | 0.06 |        | CAPN1,CTSD,DCTN1,DNM2,GN<br>B2,GPAA1,HDAC1,HSPA1A/HSP<br>A1B,PIK3CD,POLR2E,POLR2J,P<br>OLR2J2/POLR2J3,PRKCD |
| Insulin Secretion Signaling Pathway                    | 0.013 | 0.05 | 3.606  | ADCY7,FURIN,GPAA1,ITPR3,JAK<br>3,PIK3CD,PLCG2,PRKCD,STAT2,<br>STAT3,STAT5B,STAT6,TYK2                       |
| Purine Nucleotides Degradation II<br>(Aerobic)         | 0.014 | 0.16 |        | ADA2,ADAT3,IMPDH1                                                                                           |
| Regulation of Cellular Mechanics by Calpain Protease   | 0.014 | 0.08 |        | CAPN1,ITGA5,ITGAL,ITGB2,PXN<br>,TLN1                                                                        |
| IL-7 Signaling Pathway                                 | 0.014 | 0.08 | 2      | BAK1,BCL6,IGHG1,JAK3,PIK3CD<br>,STAT5B                                                                      |
| Mitochondrial Dysfunction                              | 0.014 | 0.06 |        | ATP5PD,COX6A1,CPT1A,FURIN,<br>NDUFA2,NDUFB1,NDUFB6,OG<br>DH,PSENEN,RHOT2                                    |
| Clathrin-mediated Endocytosis<br>Signaling             | 0.015 | 0.06 |        | AP1M1,AP2A1,ARPC1B,ARPC4,<br>CLU,DNM2,GAK,HGS,ITGA5,ITG<br>B2,PIK3CD                                        |
| IL-15 Signaling                                        | 0.016 | 0.08 | 2.449  | JAK3,PIK3CD,STAT3,STAT5B,ST<br>AT6,TYK2                                                                     |
| Regulation of Actin-based Motility by Rho              | 0.016 | 0.07 | 2.236  | ARPC1B,ARPC4,ITGA5,ITGAL,IT<br>GB2,LIMK1,RHOT2                                                              |
| Unfolded protein response                              | 0.016 | 0.09 |        | CD82,ERN1,HSPA1A/HSPA1B,O<br>S9,VCP                                                                         |
| Colorectal Cancer Metastasis<br>Signaling              | 0.017 | 0.05 | 3      | ADCY7,GNB2,GRK2,IL6R,JAK3,L<br>RP1,MMP25,PIK3CD,PTGER4,R<br>HOT2,STAT3,TGFB1,TYK2                           |
| T Cell Exhaustion Signaling Pathway                    | 0.017 | 0.06 | 1      | BCL6,HLA-<br>E,IL6R,JAK3,PIK3CD,PLCG2,STA<br>T2,STAT3,TGFB1,TYK2                                            |
| RhoA Signaling                                         | 0.017 | 0.07 | 1.414  | ARHGAP1,ARHGAP4,ARPC1B,A<br>RPC4,LIMK1,MSN,PKN1,PTK2B                                                       |
| Semaphorin Signaling in Neurons                        | 0.019 | 0.09 |        | ARHGAP1,FES,LIMK1,RHOT2,SE<br>MA4D                                                                          |
| FLT3 Signaling in Hematopoietic<br>Progenitor Cells    | 0.02  | 0.08 | 1.633  | INPP5D,PIK3CD,STAT2,STAT3,S<br>TAT5B,STAT6                                                                  |
| Neuregulin Signaling                                   | 0.021 | 0.07 | 1      | ITGA5,ITGAL,ITGB2,PLCG2,PRK<br>CD,RNF41,STAT5B                                                              |
| PD-1, PD-L1 cancer immunotherapy pathway               | 0.021 | 0.07 | -0.816 | HLA-<br>E,JAK3,PIK3CD,STAT5B,TGFB1,T<br>NFRSF1B,TYK2                                                        |
| IL-4 Signaling                                         | 0.023 | 0.07 |        | IL4R,INPP5D,JAK3,PIK3CD,STAT<br>6,TYK2                                                                      |
| Triacylglycerol Degradation                            | 0.024 | 0.1  |        | ABHD2,CES2,PLB1,PNPLA2                                                                                      |
| IL-22 Signaling                                        | 0.026 | 0.13 |        | STAT3,STAT5B,TYK2                                                                                           |
| Role of JAK1, JAK2 and TYK2 in<br>Interferon Signaling | 0.026 | 0.13 |        | STAT2,STAT3,TYK2                                                                                            |
| Glycolysis I                                           | 0.026 | 0.13 |        | ENO1,GPI,PKM                                                                                                |
| Pancreatic Adenocarcinoma<br>Signaling                 | 0.027 | 0.06 | 2.449  | JAK3,NOTCH1,PIK3CD,PLD3,ST<br>AT3,TGFB1,TYK2                                                                |
| Thrombopoietin Signaling                               | 0.028 | 0.08 | 2.236  | PIK3CD,PLCG2,PRKCD,STAT3,ST<br>AT5B                                                                         |

| Oncostatin M Signaling                            | 0.028 | 0.09 | 2     | JAK3,STAT3,STAT5B,TYK2                                                                                                             |
|---------------------------------------------------|-------|------|-------|------------------------------------------------------------------------------------------------------------------------------------|
| PDGF Signaling                                    | 0.029 | 0.07 | 2.449 | INPP5D,JAK3,PIK3CD,PLCG2,ST                                                                                                        |
|                                                   |       |      |       | AT3,TYK2<br>ATF6B,IKBKE,IL4R,INPP5D,ITPR                                                                                           |
| PI3K Signaling in B Lymphocytes                   | 0.029 | 0.06 | 2.121 | 3,PIK3CD,PLCG2,VAV1                                                                                                                |
| ErbB2-ErbB3 Signaling                             | 0.029 | 0.08 | 2.236 | JAK3,PIK3CD,STAT3,STAT5B,TY<br>K2                                                                                                  |
| MSP-RON Signaling In                              | 0.03  | 0.06 | 1.134 | CIITA,IKBKE,ITGAM,ITGB2,PIK3                                                                                                       |
| Macrophages Pathway                               | 0.05  | 0.00 | 1.154 | CD,SBNO2,STAT3                                                                                                                     |
| Sperm Motility                                    | 0.03  | 0.05 | 2.449 | CSF1R,EPHB1,FES,ITPR3,JAK3,<br>MAP3K11,PLB1,PLCG2,PRKCD,<br>PTK2B,TYK2                                                             |
| IL-17A Signaling in Airway Cells                  | 0.031 | 0.08 | 2.236 | IKBKE,JAK3,PIK3CD,STAT3,TYK2                                                                                                       |
| Pyridoxal 5'-phosphate Salvage<br>Pathway         | 0.031 | 0.08 | 2     | GRK6,LIMK1,PIM1,PKN1,PRKCD                                                                                                         |
| Remodeling of Epithelial Adherens<br>Junctions    | 0.032 | 0.08 |       | ARPC1B,ARPC4,DNM2,HGS,TU<br>BB1                                                                                                    |
| Erythropoietin Signaling Pathway                  | 0.034 | 0.05 | 0.333 | CSF2RB,HBD,HBZ,ITPR3,LTB,PIK<br>3CD,PRKCD,STAT5B,TGFB1                                                                             |
| Axonal Guidance Signaling                         | 0.035 | 0.04 |       | ARPC1B,ARPC4,BMP6,EPHB1,F<br>ES,GIT1,GNB2,ITGA5,ITGAL,ITG<br>B2,LIMK1,MMP25,NTNG2,PIK3<br>CD,PLCG2,PRKCD,PXN,SEMA4D<br>,TUBB1,VASP |
| FAT10 Cancer Signaling Pathway                    | 0.035 | 0.09 | 2     | IKBKE,STAT3,TGFB1,TNFRSF1B                                                                                                         |
| PFKFB4 Signaling Pathway                          | 0.035 | 0.09 | 1     | GPI,HK3,TGFB1,TKT                                                                                                                  |
| fMLP Signaling in Neutrophils                     | 0.036 | 0.06 | 2.449 | ARPC1B,ARPC4,GNB2,ITPR3,NC<br>F2,PIK3CD,PRKCD                                                                                      |
| Tight Junction Signaling                          | 0.037 | 0.05 |       | ARHGEF2,CPSF1,F2RL2,GPAA1,<br>MYH9,SYMPK,TGFB1,TNFRSF1B<br>,VASP                                                                   |
| CD28 Signaling in T Helper Cells                  | 0.038 | 0.06 | 2.646 | ARPC1B,ARPC4,CARD11,IKBKE,I<br>TPR3,PIK3CD,VAV1                                                                                    |
| Renin-Angiotensin Signaling                       | 0.039 | 0.06 | 2.236 | ADCY7,ITPR3,PIK3CD,PLCG2,PR<br>KCD,PTK2B,STAT3                                                                                     |
| Synaptogenesis Signaling Pathway                  | 0.04  | 0.05 | 3.606 | ADCY7,AP2A1,ARPC1B,ARPC4,E<br>PHB1,GPAA1,LIMK1,LRP1,PIK3<br>CD,PLCG2,PRKCD,RAPGEF1,SGT<br>A,TLN1                                   |
| Spliceosomal Cycle                                | 0.04  | 0.08 | 2     | EFTUD2,SNRNP200,U2AF2,XAB<br>2                                                                                                     |
| Stearate Biosynthesis I (Animals)                 | 0.04  | 0.08 | 2     | ACOT8,ACSL1,ELOVL1,SLC27A3                                                                                                         |
| GM-CSF Signaling                                  | 0.041 | 0.07 | 2     | CSF2RB,PIK3CD,PIM1,STAT3,ST<br>AT5B                                                                                                |
| IL-15 Production                                  | 0.041 | 0.06 | 2.646 | CSF1R,EPHB1,FES,JAK3,MAP3K<br>11,PTK2B,TYK2                                                                                        |
| Growth Hormone Signaling                          | 0.043 | 0.07 | 2.236 | PIK3CD,PLCG2,PRKCD,STAT3,ST<br>AT5B                                                                                                |
| Ephrin B Signaling                                | 0.045 | 0.07 | 2     | EPHB1,GNB2,LIMK1,PXN,VAV1                                                                                                          |
| Assembly of RNA Polymerase II<br>Complex          | 0.046 | 0.08 | 1     | POLR2E,POLR2J,POLR2J2/POLR<br>2J3,TAF6                                                                                             |
| Salvage Pathways of Pyrimidine<br>Ribonucleotides | 0.046 | 0.06 | 2.236 | APOBEC3A,GRK6,LIMK1,PIM1,P<br>KN1,PRKCD                                                                                            |

| Dendritic Cell Maturation | 0.047 | 0.05 | 2.828 | HLA-<br>E,IGHG1,IGHG4,IKBKE,LTB,PIK3<br>CD,PLCG2,STAT2,TNFRSF1B |
|---------------------------|-------|------|-------|-----------------------------------------------------------------|
|---------------------------|-------|------|-------|-----------------------------------------------------------------|

| Ingenuity Canonical Pathways                                | p-value | Ratio | z-score | Molecules                               |
|-------------------------------------------------------------|---------|-------|---------|-----------------------------------------|
| Primary Immunodeficiency<br>Signaling                       | < 0.001 | 0.09  |         | IGHA1,IGHG1,IGHG4,JAK3                  |
| Phagosome Formation                                         | < 0.001 | 0.04  |         | FCAR,IGHG1,IGHG4,ITGAX,PLC<br>G2        |
| TREM1 Signaling                                             | < 0.001 | 0.06  | 2       | ITGAX,NLRC3,NLRC5,PLCG2                 |
| Hematopoiesis from Pluripotent<br>Stem Cells                | 0.001   | 0.07  |         | IGHA1,IGHG1,IGHG4                       |
| Systemic Lupus Erythematosus<br>Signaling                   | 0.005   | 0.02  |         | IGHG1,IGHG4,PLCG2,RNU4ATA<br>C,SNRPN    |
| Caveolar-mediated Endocytosis<br>Signaling                  | 0.006   | 0.04  |         | COPE,FLNA,ITGAX                         |
| IL-7 Signaling Pathway                                      | 0.006   | 0.04  |         | BAK1,IGHG1,JAK3                         |
| Communication between Innate and Adaptive Immune Cells      | 0.01    | 0.03  |         | IGHA1,IGHG1,IGHG4                       |
| Dendritic Cell Maturation                                   | 0.011   | 0.02  | 2       | IGHG1,IGHG4,PLCG2,STAT2                 |
| B Cell Receptor Signaling                                   | 0.013   | 0.02  |         | IGHA1,IGHG1,IGHG4,PLCG2                 |
| Natural Killer Cell Signaling                               | 0.015   | 0.02  | 1       | IL18RAP,JAK3,LILRB1,PLCG2               |
| Estrogen Receptor Signaling                                 | 0.023   | 0.02  | 2       | HSP90B1,JAK3,MMP8,NOTCH1,<br>PLCG2      |
| Glucocorticoid Receptor Signaling                           | 0.027   | 0.01  |         | HP,HSP90B1,IL18RAP,JAK3,MM<br>P8,POLR2J |
| Insulin Secretion Signaling Pathway                         | 0.032   | 0.02  | 2       | ITPR3,JAK3,PLCG2,STAT2                  |
| Phospholipase C Signaling                                   | 0.04    | 0.02  |         | IGHG1,IGHG4,ITPR3,PLCG2                 |
| eNOS Signaling                                              | 0.041   | 0.02  |         | HSP90B1,ITPR3,PLCG2                     |
| Gαq Signaling                                               | 0.041   | 0.02  |         | GRK2,ITPR3,PLCG2                        |
| Aldosterone Signaling in Epithelial<br>Cells                | 0.043   | 0.02  |         | HSP90B1,ITPR3,PLCG2                     |
| Systemic Lupus Erythematosus In B<br>Cell Signaling Pathway | 0.045   | 0.02  | 2       | IGHA1,IGHG1,PLCG2,STAT2                 |

| Table 4.5. | Pathwavs | males MDD v | s males LR | (p-value < 0.05) |
|------------|----------|-------------|------------|------------------|
|            |          |             |            |                  |

## 4.3.8 Biological pathways differently modulated accordingly to biological sex: females

In this section I will describe the pathways associated with genes differently expressed in females for each comparison MDD, HR and LR.

## 4.3.8.1 Biological Pathways differently modulated in females MDD vs females HR adolescents

The pathways analysis was performed on the 42 genes differently expressed in the comparison females MDD *vs* females HR group (for the list of genes, see table 7D in Appendix D). From the analysis, 14 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched for more than three genes are reported in table 4.6 (see table 7F in Appendix F for the complete list of pathways). Only one pathway presented a positive z-score > 2, indicating that it was up-regulated in MDD females, which is Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of Influenza (z-score 2).

However, although the z-score was not detected, many of the pathways significantly associated with the genes differently modulated, were associated with inflammation and immune system activation, such as Interferon signaling, IL-6 signaling, and Acute Phase Response signaling.

# 4.3.8.2 Biological Pathways differently modulated in females MDD vs females LR adolescents

The pathways analysis was performed on the 67 genes differently expressed in the comparison females MDD *vs* females LR group (for the list of genes, see table 8D in

Appendix D). From the analysis, 12 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched for more than three genes are reported in table 4.7 (see supplementary table 8F in Appendix F for the complete list of pathways). A positive z-score > 2 was detected for 2 pathways: 1) Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of Influenza (z-score 2.236); 2) Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses (z-score 2). Moreover, other pathways without a z-score were associated with inflammation, such as the Interferon Signaling and the Inflammasome Pathway.

# 4.3.8.3 Biological Pathways differently modulated in females HR vs females LR adolescents

The pathways analysis was performed on the 43 genes differently expressed in the comparison females HR *vs* females LR group (for the list of genes see table 9D in Appendix D). From the analysis, 17 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched for more than three genes are reported in table 4.8 (see table 9F in Appendix F for the complete list of pathways). The z-score was not detectable for any of these pathways. However, no pathways associated with inflammation were detected, but many pathways were associated with monoamine metabolism, such as Melatonin degradation, Putrescine degradation, Dopamine degradation, Noradrenaline and Adrenaline degradation.

188

| Ingenuity Canonical Pathways                                                          | p-value | Ratio | z-score | Molecules             |
|---------------------------------------------------------------------------------------|---------|-------|---------|-----------------------|
| Role of<br>Hypercytokinemia/hyperchemokin<br>emia in the Pathogenesis of<br>Influenza | < 0.001 | 0.05  | 2       | CXCL8,IFIT2,MX1,STAT2 |
| Activation of IRF by Cytosolic<br>Pattern Recognition Receptors                       | < 0.001 | 0.05  |         | DHX58,IFIT2,STAT2     |
| Systemic Lupus Erythematosus In B<br>Cell Signaling Pathway                           | 0.007   | 0.01  |         | CXCL8,IFIT2,STAT2     |

Table 4.6. Pathways females MDD vs females HR (p-value < 0.05)

| Ingenuity Canonical Pathways                                                          | p-value | Ratio | z-score | Molecules                         |
|---------------------------------------------------------------------------------------|---------|-------|---------|-----------------------------------|
| Role of<br>Hypercytokinemia/hyperchemokin<br>emia in the Pathogenesis of<br>Influenza | < 0.001 | 0.06  | 2.236   | DDX58,EIF2AK2,IFIT2,MX1,RSA<br>D2 |
| Interferon Signaling                                                                  | < 0.001 | 0.08  |         | IFIT1,IFITM3,MX1                  |
| Role of PKR in Interferon Induction<br>and Antiviral Response                         | < 0.001 | 0.03  |         | CASP5,DDX58,EIF2AK2,IFIH1         |
| Role of Pattern Recognition<br>Receptors in Recognition of<br>Bacteria and Viruses    | < 0.001 | 0.03  | 2       | DDX58,EIF2AK2,IFIH1,TLR2          |
| Activation of IRF by Cytosolic<br>Pattern Recognition Receptors                       | < 0.001 | 0.05  |         | DDX58,IFIH1,IFIT2                 |

Table 4.7. Pathways females MDD vs females LR (p-value < 0.05)

| Ingenuity Canonical Pathways    | p-value | Ratio | z-score | Molecules        |
|---------------------------------|---------|-------|---------|------------------|
| Xenobiotic Metabolism Signaling | 0.008   | 0.01  |         | FMO4,MAP2K3,SMOX |

Table 4.8. Pathways females HR vs females LR (p-value < 0.05)</th>

### 4.4 RNA Sequencing

#### 4.4.1 FASTQ QA/QC

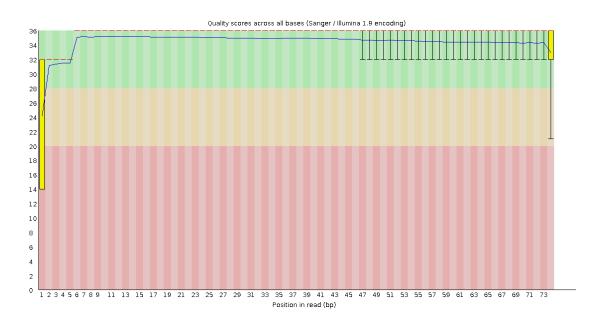
To have a general overview of the basic quality control metrics of RNA sequencing raw data, the FastQC tool was used, and the quality control analysis was performed on the entire cohort of 150 samples. For each sample, the FastQC tool provided the results and the metrics previously described in the Methods section. The profile and the metrics of all the samples were similar, showing no outliers and a general good quality of the raw data for each sample. Giving that the FastQC report accounts for several metrics and quality check, I will report the results of only one sample as an example, also given the fact that the metrics and the results of all the 150 samples were homogeneous, indicating again a good quality of the sequencing as well as a high reproducibility of the sequencing among the entire experiment.

The report provided a graphical and a list data for each model as well as a flag of "Pass" (green tick), "Warn" (yellow exclamation point) or "Fail" (red cross), which was assigned for each module. However, it is noteworthy to mention that the threshold used for flagging each module were optimized for the whole genome DNA sequencing and not for the mRNA sequencing which was performed in this doctoral thesis. Therefore, a module result that had a "Warm" or "Fail" flag did not necessarily mean that the sequence run failed, as in the following results. As an example, I will now show the FastQC results for the sample BR0028.

*Basic Statistics (Figure 4.10).* The sample information was reported, such as the file name and file type. A total of 6196223 sequences were reported for the sample with

192

0 sequences flagged as poor quality. Moreover, it was also shown the sequence length of 35-74 bp, and lastly the %GC content of 50.


Figure 4.10. FastQC Basic Statistics BR0028

### Basic Statistics

| Measure                           | Value                          |
|-----------------------------------|--------------------------------|
| Filename                          | BR0028_S8_L001_R1_001.fastq.gz |
| File type                         | Conventional base calls        |
| Encoding                          | Sanger / Illumina 1.9          |
| Total Sequences                   | 6196223                        |
| Sequences flagged as poor quality | 0                              |
| Sequence length                   | 35-74                          |
| *GC                               | 50                             |

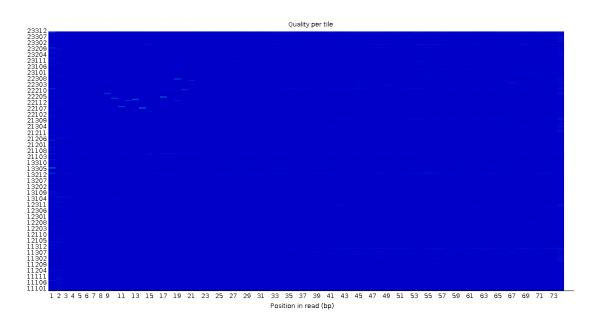

*Per base Sequence Quality (Figure 4.11).* This module was flag as Passed for BR0028 sample. This is a box-whisker plot showing the aggregated quality score statistics at each position along all the reads in the file. In this sample, the quality score was very high, as the quality score for each bp was within the green zone, and the higher the score the better the base call. The yellow box represents the inner-quartile range for the 25<sup>th</sup> to 75<sup>th</sup> percentile, whereas the upper and the lowers whiskers represent the 10<sup>th</sup> and the 90<sup>th</sup> percentile score. For the Illumina sequences (as the NextSeq 550) it is normal that the median quality score is lower for the first 5-7 bases and then rise; for this reason, the yellow box with a low-quality score which is shown in figure 4.11, did affect the overall quality of the run. Similarly, the average quality score is expected to steadily drop over the length of the read. The "Pass" flag indicated no degradation of quality over the duration of the run.

Figure 4.11. FastQC Per base Sequence Quality BR0028

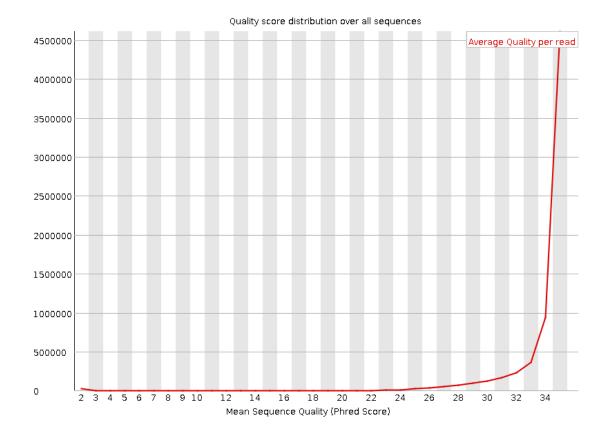
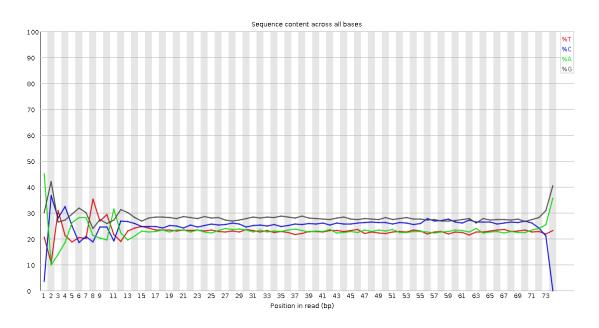


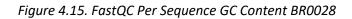
<u>Per Tile Sequence Quality (Figure 4.12).</u> This module was flag as Passed for BR0028 sample. This graph only appears when using an Illumina Sequencer, as for the NextSeq 550 Platform. The graph shows the quality scores from each tile across all the bases to check if there was a loss in quality associated with only one part of the flow cell. The graph's colors are on a cold to hot scale, with cold colors indicating a quality at or above the average for that base in the run, and hotter colors indicating that a tile had worse qualities than other tiles for that base. The blue color in all the plot indicated good quality of the run.

Figure 4.12. FastQC Per Tile Sequence Quality BR0028



<u>Per Sequence Quality Score (Figure 4.13).</u> This module was flag as Passed for BR0028 sample. The distribution of average read quality was tight in the upper range of the plot, indicating good quality and no loss of quality within the run. A warning sign would have been raised if the most frequently observed mean quality was below 27, whereas failure sign if the most frequently observed mean quality was below 20.



Figure 4.13. FastQC Per Sequence Quality Score BR0028

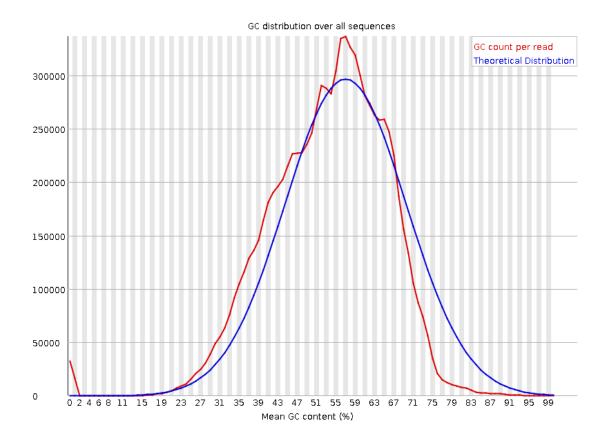
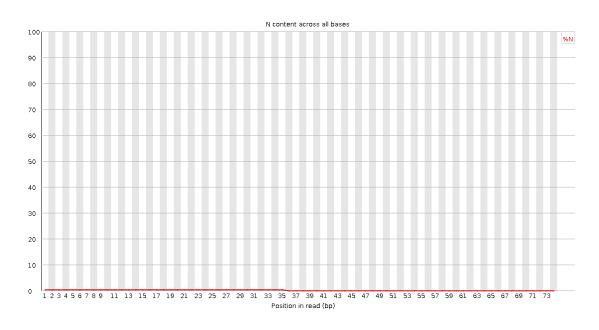

<u>Per Base Sequence Content (Figure 4.14).</u> This module was flag as Failed for BR0028 sample. This plot reports the percent of bases called for each of the four nucleotides at each position across all reads in the file. The failed flag did not represent a concern for this sample, as with most RNA-Seq library preparation protocols (as the one used for this analysis) there is clear non-uniform distribution of bases for the first 10-15 nucleotides, and therefore RNA-Seq data showing this non-uniform base composition are always classified as failed by FastQC for this module even though the quality of the sequencing is good.

Figure 4.14. FastQC Per Base Sequence Content BR0028




<u>Per Sequence GC Content (Figure 4.15).</u> This module was flag as Warn for BR0028 sample. This graph plots the number of reads versus the GC% per read. For the whole genome sequencing, the GC content of all reads is expected to form a normal distribution with the peak of the curve at the mean GC content for the organisms sequenced. However, the Warn flag shown for BR0028 graph did not affect the quality of the run, since in the RNA sequencing a greater or lesser distribution of mean GC content among transcripts can occur, and this can result in a wider or narrower plot than the theoretical distribution. Therefore, for RNA-Seq data, FastQC always assigns a Warn flag to this module.





<u>Per Base N Content (Figure 4.16).</u> This module was flag as Pass for BR0028 sample. The absence of any point where the curve rises noticeably above zero indicate a good quality of the run. The presence of a peak indicates that an error caused the instrument to be unable to call a base at a specific position.

Figure 4.16. FastQC Per Base N Content BR0028



<u>Sequence Length Distribution (Figure 4.17).</u> This module was flag as Warn for BR0028 sample. The Warn flag was assigned due to the small peak at around 35 bp, but this did not affect the overall quality of the run.

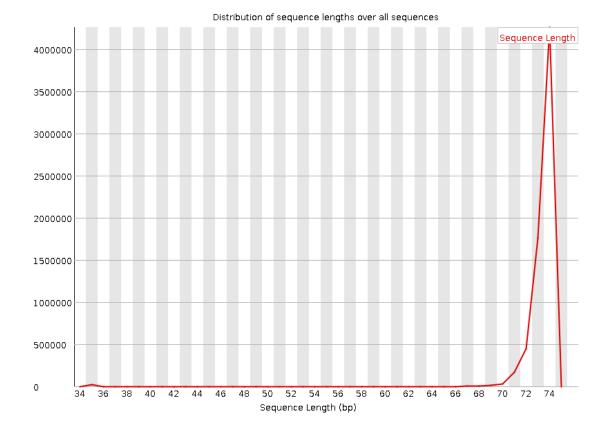
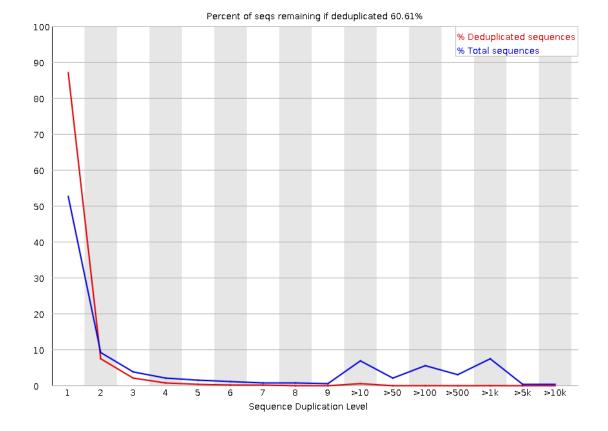
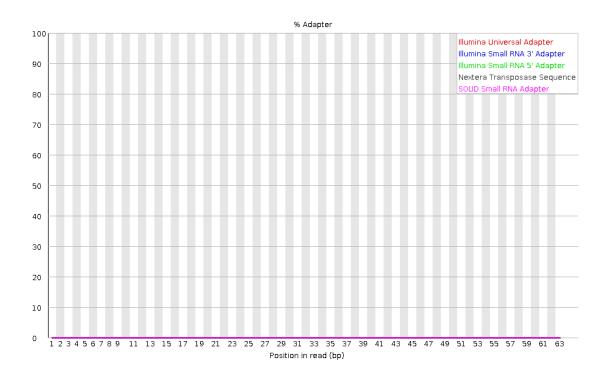



Figure 4.17. FastQC Sequence Lenght Distribution BR0028

<u>Sequence Duplication Levels (Figure 4.18).</u> This module was flagged as Pass for BR0028 sample. Although it was flagged as Pass, other samples were flagged as "Warn", but this did not affect the good quality of the run because with RNA Sequencing it is normal to have very highly abundant transcripts and some lowly abundant, therefore it is expected that duplicate reads can be observed for high abundant transcripts.





Figure 4.18. FastQC Sequence Duplication Levels BR0028

<u>Overrepresented Sequences (Figure 4.19).</u> This module was flagged as Warn for BR0028 sample. A sequence is considered overrepresented if it accounts more than 0.1% of the total reads. The Warn flag for this sample did not affect the quality of the run, since for RNA-Seq data it is possible that there may be some transcripts that are so abundant that they are labeled as overrepresented sequence. On the other hand, in DNA-Seq data no single sequence should be present at a high frequency to be listed as overrepresented. Figure 4.19. FastQC Overrepresented Sequences BR0028

| Overrepresented sequences |                                   |       |                    |                 |
|---------------------------|-----------------------------------|-------|--------------------|-----------------|
|                           | Sequence                          | Count | Percentage         | Possible Source |
|                           | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN | 37489 | 0.6050298706163416 | No Hit          |

<u>Adapter Content (Figure 4.20).</u> This module was flag as Pass for BR0028 sample. Illumina sequence data should not have any adapter sequence; however, it is possible to have a Warn sign with RNA-Seq libraries where the distribution of library insert sizes is more varied and likely to include short inserts.

Figure 4.20. FastQC Adapter Content BR0028



#### 4.4.2 Genes differently modulated in MDD, HR and LR adolescents

Gene differently expressed in the RNA-Seq analysis were detected by using DESeq2. I firstly identified genes differently modulated in the comparisons among the three groups (both males and females together) specifically:

- MDD (n=50) vs HR adolescents (n=50)
- MDD (n=50) vs LR adolescents (n=50)
- HR (n=50) vs LR adolescents (n=50)

For each comparison, to avoid a possible batch effect, the analysis was adjusted for run as covariate, considering that the 150 samples were sequenced in eleven different runs. The DEGs were expressed with their values of FC, p-value, and q-value. In the following paragraphs, I described the DEGs with applied cut offs values of FC  $\pm$  |1.2|, unadjusted p-value < 0.05, and q-value < 0.05.

#### 4.4.2.1 Genes differently modulated in MDD vs HR adolescents

In the comparison MDD vs HR, 313 genes were found differently modulated in MDD adolescents compared with HR adolescents. Among the 313 genes, 173 genes (55.3%) were up-regulated, whereas 140 (44.7%) genes were down-regulated in the MDD group compared with HR. Among the DEGs identified, no genes survived the FDR correction (q-value <0.05). Table 1E in Appendix E represents the ID, Gene Assignment, p-value, and FC of the 313 genes.

### 4.4.2.2 Genes differently modulated in MDD vs LR adolescents

In the comparison MDD vs LR, 461 genes were found differently modulated in MDD adolescents compared with LR adolescents. Among the 461 genes, 206 genes (44.7%)

were up-regulated, whereas 255 (55.3%) genes were down-regulated in the MDD group compared with LR. Among the DEGs identified, no genes survived the FDR correction (q-value <0.05). Table 2E in Appendix E represents the ID, Gene Assignment, p-value, and FC of the 461 genes.

### 4.4.2.3 Genes differently modulated in HR vs LR adolescents

In the comparison HR vs LR, 192 genes were found differently modulated in HR adolescents compared with LR adolescents. Among the 192 genes, 63 genes (32.8%) were up-regulated, whereas 129 (67.2%) genes were down-regulated in HR groups compared with LR. Among the DEGs identified, no genes survived the FDR correction (q-value< 0.05). Table 3E in Appendix E represents the ID, Gene Assignment, p-value, and FC of the 192 genes.

# 4.4.3 Genes differently modulated accordingly to biological sex: males

Similarly to the approach adopted for DEGs from microarray analysis, the DeSeq2 biostatistical analysis were performed in males and females separately. I obtained differently gene lists for males and females separately, and I will now report the genes differently expressed in males for the following comparisons:

- Males MDD (n=25) vs males HR adolescents (n=25)
- Males MDD (n=25) vs males LR adolescents (n=25)
- Males HR (n=25) vs males LR adolescents (n=25)

For each comparison, to avoid a possible batch effect, the analysis was adjusted for run as covariate. The DEGs were expressed with their values of FC, p-value, and qvalue. In the following sections, I described the DEGs with applied cut offs values of FC  $\pm$  [1.2], unadjusted p-value < 0.05, and q-value < 0.05.

#### 4.4.3.1 Genes differently modulated in males MDD vs males HR adolescents

In the comparison males MDD *vs* males HR, 310 genes were found differently modulated in MDD males compared with HR males. Among the 310 genes, 151 genes (48.7%) were up-regulated, whereas 159 (51.3%) genes were down-regulated in MDD males compared with HR. Among these DEGs identified, no genes survived the FDR correction (q-value < 0.05). Table 4E in Appendix E represents the ID, Gene Assignment, p-value, and FC of the 310 genes.

# 4.4.3.2 Genes differently modulated in males MDD vs males LR adolescents

In the comparison males MDD *vs* males LR, 377 genes were found differently modulated in MDD males compared with LR males. Among the 377 genes, 237 genes (62.9%) were up-regulated, whereas 140 (37.1%) genes were down-regulated in MDD males compared with LR. Among the identified DEGs, 1 gene survived the FDR correction (q-value < 0.05): Cochlin (COCH, q-value 0.004). Table 5E in Appendix E represents the ID, Gene Assignment, p-value, and FC of the 377 genes.

### 4.4.3.3 Genes differently modulated in males HR vs males LR adolescents

In the comparison males HR vs males LR, 359 genes were found differently modulated in HR males compared with LR males. Among the 359 genes, 215 genes (59.9%) were up-regulated, whereas 144 (40.1%) genes were down-regulated in HR males compared with LR. Among DEGs identified, no genes survived the FDR correction (qvalue < 0.05). Table 6E in Appendix E represents the ID, Gene Assignment, p-value, and FC of the 359 genes.

#### 4.4.4 Genes differently modulated accordingly to biological sex: females

The same analysis performed and described in the previous section for males, was performed for females. Thus, I will now report the genes differently expressed in females for the following comparisons:

- Females MDD (n=25) vs females HR adolescents (n=25)
- Females MDD (n=25) vs females LR adolescents (n=25)
- Females HR (n=25) vs females LR adolescents (n=25)

For each comparison, to avoid a possible batch effect, the analysis was adjusted for run as covariate. The DEGs were expressed with their values of FC, p-value, and qvalue. In the following sections, I described the DEGs with applied cut offs values of FC  $\pm$  |1.2|, unadjusted p-value < 0.05, and q-value < 0.05.

# 4.4.4.1 Genes differently modulated in females MDD vs females HR adolescents

In the comparison females MDD *vs* females HR, 399 genes were found differently modulated in MDD females compared with HR females. Among the 399 genes, 263 genes (65.9%) were up-regulated, whereas 136 (34.1%) genes were down-regulated in MDD females compared with HR. Among the DEGs identified, 1 gene survived the FDR correction (q-value<0.05): Chorionic Somatomammotrophin Hormone 2 (CSH2, q-value < 0.001). Table 7E in Appendix E represents the ID, Gene Assignment, p-value, and FC of the 399 genes.

# 4.4.4.2 Genes differently modulated in females MDD vs females LR adolescents

In the comparison females MDD vs females LR adolescents, 471 genes were found differently modulated in MDD females compared with LR females. Among the 471

genes, 209 genes (44.4%) were up-regulated, whereas 262 (55.6%) genes were downregulated in MDD females compared with LR. Among DEGs identified, no genes survived the FDR correction (q-value < 0.05). Table 8E in Appendix E represents the ID, Gene Assignment, p-value, and FC of the 471 genes.

# 4.4.4.3 Genes differently modulated in females HR vs females LR adolescents

In the comparison females HR *vs* females LR, 504 genes were found differently modulated in HR females compared with LR females. Among the 504 genes, 197 genes (39.1%) were up-regulated, whereas 307 (60.9%) genes were down-regulated in HR females compared with LR. Among the DEGs identified, 3 genes survived the FDR correction (q-value < 0.05): Tumor Associated Calcium Transducer 2 (TACSTD2, q-value < 0.001), TBC1 Domain Family Member 3 (TBC1D3, q-value 0.005), and Sry-box Transcription Factor 5 (SOX5, q-value 0.019). Table 9E in Appendix E represents the ID, Gene Assignment, p-value, and FC of the 504 genes.

#### 4.4.5 Biological Pathways differently modulated in MDD, HR and LR

As previously described for the microarrays section, the pathways analysis was performed by using Ingenuity Pathways Analysis Software. In this part of the study, I uploaded the list of genes described in the previous paragraphs and reported from table 1E to table 9E in the Appendix E. In this section I will describe the pathways associated with genes differently expressed in each comparison MDD, HR and LR.

#### 4.4.5.1 Biological Pathways differently modulated in MDD vs HR adolescents

The pathways analysis was performed on the 313 genes differently expressed in the group of MDD vs HR (for the list of genes, see table 1E in Appendix E). From the analysis, 19 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched with more than three genes are reported in table 4.9 (see table 1G in Appendix G for the complete list of pathways). Four pathways presented a positive z-score > 2, indicating that were up-regulated in the MDD group: 1) Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of Influenza (z-score 3.464); 2) Interferon Signaling (z-score 2.646); 3) Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses (z-score 2.449); 4) Complement System (z-score 2). On the other hand, one pathway presented a negative z-score, indicating its down-regulation in the MDD compared with HR group, which was the Coronavirus Pathogenesis Pathway (z-score -1.134). Among the 19 pathways significantly associated with the genes differently modulated in MDD vs HR, there were other pathways associated with inflammation and immune activation, such as the Agranulocyte Adhesion and Diapedesis, the Granulocyte Adhesion and Diapedesis, the Role of MAPK Signaling in Inhibiting the Pathogenesis of Influenza, the Role of PKR

in Interferon Induction an Antiviral Response, and the Acute Phase Response Signaling Pathway. However, for these pathways the z-score was not identified, or it was below 2, indicating no information about their activated or inactivated status in MDD group compared with HR group.

### 4.4.5.2 Biological Pathways differently modulated in MDD vs LR adolescents

The pathways analysis was performed on the 461 genes differently expressed in the comparison MDD vs LR group (for the list of genes, see table 2E in Appendix E). From the analysis, 44 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched with more than three genes are reported in table 4.10 (see table 2G in Appendix G for the complete list of pathways). Four pathways presented a positive z-score > 2, indicating that were up-regulated in the MDD group compared with LR: 1) Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of Influenza (z-score 3.464); 2) Interferon Signaling (z-score 2.236); 3) Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses (z-score 2.646); 4) PTEN Signaling (z-score 2). On the other hand, six pathways presented a negative z-score < -2, indicating their down-regulation in MDD adolescents: 1) Calcium Signaling (z-score -2.333); 2) Glutamate Receptor Signaling (z-score -2); 3) Synaptic Long-Term Depression (z-score -2.121); 4) Neuropathic Pain Signaling in Dorsal Horm Neurons (z-score -2.646); 5) Synaptic Long Term Potentiation (z-score -2.449); 6) Regulation of Actin-based Motility by Rho (z-score -2).

Moreover, further pathways were detected with a positive or negative z-score, specifically: Neurovascular Coupling Signaling Pathways; Synaptogenesis Signaling Pathway; Activation of IRF by Cytosolic Pattern Recognition Receptors; Agrin

Interactions at Neuromuscular Junction; CREB Signaling in Neurons; SNARE Signaling Pathway; Crosstalk between Dendritic Cells and Natural Killer Cells; Amyotrophic Lateral Sclerosis Signaling; Osteoarthritis Pathway; Dilated Cardiomyopathy Signaling Pathway.

### 4.4.5.3 Biological Pathways differently modulated in HR vs LR adolescents

The pathways analysis was performed on the 192 genes differently expressed in the comparison HR vs LR group (for the list of genes, see table 3E in Appendix E). From the analysis, 41 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched with more than three genes are reported in table 4.11 (see table 3G in Appendix G for the complete list of pathways). Seven pathways presented a negative z-score < -2, indicating that were down-regulated in the HR group compared with LR: 1) Paxillin Signaling (z-score -2); 2) Actin Cytoskeleton Signaling (z-score -2); 3) Integrin Signaling (z-score -2.449); 4) Sperm Motility (z-score -2); 5) White Adipose Tissue Browning Pathway (z-score -2); 6) Regulation Of The Epithelial Mesenchymal Transition By Growth Factors Pathway (z-score -2); 7) Adrenomedullin signaling pathway (z-score -2.236). On the other hand, there were no pathways with a positive z-score > 2.

Moreover, further pathways were detected with a negative z-score > -2, specifically: Nitric Oxide Signaling in the Cardiovascular System, Pulmonary Fibrosis Idiopathic Signaling Pathway, Gαs Signaling, Neurovascular Coupling Signaling Pathway, ID1 Signaling Pathway, Osteoarthritis Pathway, Synaptic Long-Term Depression, Cardiac Hypertrophy Signaling (Enhanced).

| Ingenuity Canonical Pathways                                                          | p-value | Ratio | z-score | Molecules                                                                   |
|---------------------------------------------------------------------------------------|---------|-------|---------|-----------------------------------------------------------------------------|
| Role of<br>Hypercytokinemia/hyperchemokin<br>emia in the Pathogenesis of<br>Influenza | < 0.000 | 0.18  | 3.464   | CCL2,CXCL10,EIF2AK2,IFIT2,IFIT<br>3,ISG15,MX1,OAS1,OAS2,OAS3<br>,RSAD2,TLR3 |
| Interferon Signaling                                                                  | < 0.000 | 0.20  | 2.646   | IFI6,IFIT1,IFIT3,IFITM3,ISG15,M<br>X1,OAS1                                  |
| Role of Pattern Recognition<br>Receptors in Recognition of<br>Bacteria and Viruses    | < 0.000 | 0.08  | 2.449   | C1QA,C1QB,C1QC,EDA,EIF2AK2<br>,IFIH1,OAS1,OAS2,OAS3,TLR3,T<br>NFSF10        |
| Complement System                                                                     | 0.001   | 0.13  | 2       | C1QA,C1QB,C1QC,C4BPA                                                        |
| Agranulocyte Adhesion and<br>Diapedesis                                               | 0.001   | 0.05  |         | CCL2,CCL25,CCL8,CLDN12,CXCL<br>10,GNAI1,MMP23B,MMP8,MY<br>H11               |
| Granulocyte Adhesion and<br>Diapedesis                                                | 0.004   | 0.05  |         | CCL2,CCL25,CCL8,CLDN12,CXCL<br>10,GNAI1,MMP23B,MMP8                         |
| Role of MAPK Signaling in Inhibiting the Pathogenesis of Influenza                    | 0.005   | 0.07  | 0.447   | CCL2,CXCL10,EIF2AK2,PLA2G2<br>D,PLA2G4C                                     |
| Estrogen-mediated S-phase Entry                                                       | 0.007   | 0.12  |         | CCNA1,CCNE2,CDC25A                                                          |
| Atherosclerosis Signaling                                                             | 0.010   | 0.05  |         | CCL2,COL1A2,LPL,MSR1,PLA2G<br>2D,PLA2G4C                                    |
| Activation of IRF by Cytosolic<br>Pattern Recognition Receptors                       | 0.011   | 0.07  | 0       | DHX58,IFIH1,IFIT2,ISG15                                                     |
| Role of PKR in Interferon Induction<br>and Antiviral Response                         | 0.013   | 0.05  |         | COLEC12,EIF2AK2,IFIH1,MARC<br>O,MSR1,TLR3                                   |
| Hepatic Fibrosis / Hepatic Stellate<br>Cell Activation                                | 0.018   | 0.04  |         | BAMBI,CCL2,COL15A1,COL1A2,<br>COL4A4,MYH11,SERPINE1                         |
| Coronavirus Pathogenesis Pathway                                                      | 0.024   | 0.04  | -1.134  | CCL2,CCNE2,OAS1,OAS2,OAS3,<br>SERPINE1,TLR3                                 |
| Role of MAPK Signaling in the<br>Pathogenesis of Influenza                            | 0.030   | 0.05  |         | CCL2,CXCL10,PLA2G2D,PLA2G4<br>C                                             |
| Oxytocin Signaling Pathway                                                            | 0.032   | 0.03  | 0.378   | ATP2B3,GNAI1,KCNJ8,LPL,MYH<br>11,PLA2G2D,PLA2G4C,PPARG                      |
| Acute Phase Response Signaling                                                        | 0.048   | 0.04  |         | C1QA,C1QB,C1QC,C4BPA,HP,SE<br>RPINE1                                        |

# Table 4.9. Pathways MDD vs HR (p-value < 0.05)

| Ingenuity Canonical Pathways                                                          | p-value | Ratio | z-score | Molecules                                                                                                                                            |
|---------------------------------------------------------------------------------------|---------|-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Role of<br>Hypercytokinemia/hyperchemokin<br>emia in the Pathogenesis of<br>Influenza | < 0.000 | 0.18  | 3.46    | CCL2,DDX58,EIF2AK2,IFIT2,IFIT<br>3,IL1RN,IRF7,ISG15,MX1,OAS2,<br>OAS3,RSAD2                                                                          |
| Calcium Signaling                                                                     | < 0.000 | 0.08  | -2.33   | ACTC1,ATP2B2,CAMK2A,CASQ<br>1,CHRNB2,GRIA1,GRIA2,GRIA3,<br>GRIN1,MYH10,MYH11,RYR1,TP<br>63                                                           |
| Glutamate Receptor Signaling                                                          | < 0.000 | 0.13  | -2.00   | GRIA1,GRIA2,GRIA3,GRIN1,GR<br>M6,HOMER1,SLC1A2                                                                                                       |
| Neurovascular Coupling Signaling<br>Pathway                                           | < 0.000 | 0.07  | -1.94   | GABRD,GABRR2,GAD1,GRIA1,G<br>RIA2,GRIA3,GRIN1,KCNJ10,KCN<br>J2,KCNMA1,NPR1,RYR1,SLC1A2                                                               |
| Role of Pattern Recognition<br>Receptors in Recognition of<br>Bacteria and Viruses    | < 0.000 | 0.08  | 2.65    | C1QB,C1QC,DDX58,EDA,EIF2AK<br>2,IFIH1,IRF7,OAS2,OAS3,TLR5,T<br>NFSF10                                                                                |
| Synaptogenesis Signaling Pathway                                                      | < 0.000 | 0.06  | -1.81   | ADCY2,AFDN,CAMK2A,EFNB2,E<br>PHA5,EPHA7,GRIA1,GRIA2,GRI<br>A3,GRIN1,GRM6,RASD2,STXBP<br>1,STXBP4,STXBP6,WASF1                                        |
| Gap Junction Signaling                                                                | 0.001   | 0.07  |         | ACTC1,ACTG2,ADCY2,GAD1,GR<br>IA1,GRIA2,GRIA3,HTR2B,NPR1,<br>RASD2,TJP1,TUBB3                                                                         |
| Interferon Signaling                                                                  | 0.001   | 0.14  | 2.24    | IFI6,IFIT1,IFIT3,ISG15,MX1                                                                                                                           |
| Activation of IRF by Cytosolic<br>Pattern Recognition Receptors                       | 0.002   | 0.11  | 1.63    | DDX58,IFIH1,IFIT2,IRF7,ISG15,Z<br>BP1                                                                                                                |
| Agrin Interactions at<br>Neuromuscular Junction                                       | 0.002   | 0.10  | -1.00   | ACTC1,ACTG2,AGRN,ERBB4,LA<br>MA2,RASD2                                                                                                               |
| Synaptic Long Term Depression                                                         | 0.003   | 0.06  | -2.12   | CRHR1,GAD1,GRIA1,GRIA2,GRI<br>A3,GRM6,NPR1,PPP2R2C,RASD<br>2,RYR1                                                                                    |
| Neuropathic Pain Signaling In<br>Dorsal Horn Neurons                                  | 0.005   | 0.08  | -2.65   | CAMK2A,GRIA1,GRIA2,GRIA3,G<br>RIN1,GRM6,KCNQ2                                                                                                        |
| CREB Signaling in Neurons                                                             | 0.006   | 0.04  | -1.96   | ADCY2,ADGRA3,ADGRG6,ADGR<br>L3,BMP6,CAMK2A,CRHR1,FFAR<br>3,FGFR4,GPR176,GRIA1,GRIA2,<br>GRIA3,GRIN1,GRM6,HCAR2,HC<br>AR3,HTR2B,NTRK3,RASD2,TAC<br>R3 |
| Tight Junction Signaling                                                              | 0.008   | 0.06  |         | ACTC1,ACTG2,AFDN,MAGI2,M<br>YH10,MYH11,NECTIN2,PPP2R2<br>C,TJP1                                                                                      |
| SNARE Signaling Pathway                                                               | 0.009   | 0.07  | -1.89   | ADCY2,CAMK2A,MYH10,MYH1<br>1,STXBP1,STXBP4,STXBP6                                                                                                    |
| Sertoli Cell-Sertoli Cell Junction<br>Signaling                                       | 0.010   | 0.05  |         | ACTC1,ACTG2,AFDN,ITGA8,ITG<br>A9,MAGI2,NECTIN2,RASD2,TJP<br>1,TUBB3                                                                                  |
| Ephrin Receptor Signaling                                                             | 0.011   | 0.05  |         | EFNB2,EPHA5,EPHA7,GRIN1,IT<br>GA8,ITGA9,PTPN13,RASD2,SDC<br>2,VEGFC                                                                                  |
| Glutathione-mediated<br>Detoxification                                                | 0.011   | 0.14  |         | GGH,GSTA1,GSTA4                                                                                                                                      |

# Table 4.10. Pathways MDD vs LR (p-value < 0.05)

| Crosstalk between Dendritic Cells                            |       |      |       | ACTC1,ACTG2,CAMK2A,CD80,N                                                                                                       |
|--------------------------------------------------------------|-------|------|-------|---------------------------------------------------------------------------------------------------------------------------------|
| and Natural Killer Cells                                     | 0.013 | 0.07 | 1     | ECTIN2,TNFSF10                                                                                                                  |
| Cellular Effects of Sildenafil (Viagra)                      | 0.014 | 0.06 |       | ACTC1,ACTG2,ADCY2,KCNQ2,<br>MYH10,MYH11,NPR1                                                                                    |
| Synaptic Long Term Potentiation                              | 0.017 | 0.06 | -2.45 | CAMK2A,GRIA1,GRIA2,GRIA3,G<br>RIN1,GRM6,RASD2                                                                                   |
| Epithelial Adherens Junction<br>Signaling                    | 0.018 | 0.06 | 0     | AFDN,MAGI1,MAGI2,MYH10,N<br>ECTIN2,PPP2R2C,RASD2,WASF<br>1                                                                      |
| Adrenomedullin signaling pathway                             | 0.021 | 0.05 | -0.38 | ADCY2,ADM,GAD1,IL1RN,KCN<br>Q2,NPR1,PPARG,RASD2,TFAP2<br>A                                                                      |
| Regulation of Actin-based Motility by Rho                    | 0.023 | 0.06 | -2    | ACTC1,ACTG2,ITGA8,ITGA9,PF<br>N2,WASF1                                                                                          |
| Airway Pathology in Chronic<br>Obstructive Pulmonary Disease | 0.024 | 0.06 |       | CCL2,EDA,ELANE,LCN2,MMP8,<br>TNFSF10                                                                                            |
| Amyotrophic Lateral Sclerosis<br>Signaling                   | 0.025 | 0.06 | -0.82 | GRIA1,GRIA2,GRIA3,GRIN1,SLC<br>1A2,VEGFC                                                                                        |
| Gustation Pathway                                            | 0.026 | 0.05 | 0     | ABCC8,ADCY2,ASIC2,GABRD,G<br>ABRR2,KCNQ2,LPL,SCN4B                                                                              |
| cAMP-mediated signaling                                      | 0.026 | 0.05 | 0     | ADCY2,CAMK2A,CRHR1,FFAR3,<br>GRM6,HCAR2,HCAR3,PDE8B,R<br>GS4,TULP2                                                              |
| Osteoarthritis Pathway                                       | 0.029 | 0.05 | 0.38  | CASP5,CASQ1,DCN,IL18RAP,IT<br>GA8,ITGA9,PPARG,PRG4,SMAD<br>1,VEGFC                                                              |
| Oxytocin In Spinal Neurons<br>Signaling Pathway              | 0.031 | 0.10 |       | ABCC8,GAD1,NPR1                                                                                                                 |
| Complement System                                            | 0.031 | 0.10 |       | C1QB,C1QC,C4BPA                                                                                                                 |
| Breast Cancer Regulation by<br>Stathmin1                     | 0.035 | 0.04 | 0     | ADGRA3,ADGRG6,ADGRL3,BM<br>P6,CAMK2A,CRHR1,E2F7,FFAR<br>3,GPR176,GRM6,HCAR2,HCAR<br>3,HTR2B,PPP2R2C,RASD2,TACR<br>3,TUBB3,VEGFC |
| Airway Inflammation in Asthma                                | 0.039 | 0.09 |       | CCL2,ELANE,RNASE2                                                                                                               |
| Circadian Rhythm Signaling                                   | 0.041 | 0.04 |       | ADCY2,CAMK2A,GAD1,GRIA1,G<br>RIA2,GRIA3,GRIN1,NPR1,RASD<br>2,RYR1                                                               |
| Axonal Guidance Signaling                                    | 0.043 | 0.04 |       | ADAMDEC1,BMP6,BMP8A,EFN<br>B2,EPHA5,EPHA7,ITGA8,ITGA9,<br>MMP8,NTNG2,NTRK3,PFN2,RA<br>SD2,SDC2,TUBB3,VEGFC                      |
| Agranulocyte Adhesion and<br>Diapedesis                      | 0.044 | 0.05 |       | ACTC1,ACTG2,CCL2,IL1RN,MM<br>P8,MYH10,MYH11,XCL1                                                                                |
| Dilated Cardiomyopathy Signaling<br>Pathway                  | 0.046 | 0.05 | -0.45 | ACTC1,ACTG2,ADCY2,CAMK2A,<br>MYH10,MYH11                                                                                        |
| PTEN Signaling                                               | 0.049 | 0.05 | 2     | FGFR4,ITGA8,ITGA9,MAGI1,MA<br>GI2,NTRK3,RASD2                                                                                   |

| Ingenuity Canonical Pathways                                                        | p-value | Ratio | z-score | Molecules                                                            |
|-------------------------------------------------------------------------------------|---------|-------|---------|----------------------------------------------------------------------|
| Pulmonary Fibrosis Idiopathic<br>Signaling Pathway                                  | < 0.000 | 0.04  | -1.265  | ACTG2,AREG,CAV1,COL16A1,F<br>GF9,FGFR4,ITGAV,MMP1,MRA<br>S,PDGFC,PLG |
| Nitric Oxide Signaling in the<br>Cardiovascular System                              | 0.001   | 0.06  | -1.342  | CAV1,GUCY1A1,PDE1A,PDGFC,<br>PRKG2,RYR2                              |
| Sertoli Cell-Sertoli Cell Junction<br>Signaling                                     | 0.002   | 0.04  |         | ACTG2,GUCY1A1,ITGAV,MRAS,<br>NECTIN2,PRKG2,TUBB3                     |
| Neurovascular Coupling Signaling<br>Pathway                                         | 0.002   | 0.04  | -1.134  | ENTPD3,GRIN3B,GRM5,GUCY1<br>A1,KCNJ10,PRKG2,RYR2                     |
| Paxillin Signaling                                                                  | 0.003   | 0.05  | -2      | ACTG2,DOCK1,ITGAV,MRAS,TL<br>N2                                      |
| Actin Cytoskeleton Signaling                                                        | 0.003   | 0.03  | -2      | ACTG2,DOCK1,FGF9,ITGAV,MR<br>AS,PDGFC,TLN2                           |
| Gas Signaling                                                                       | 0.005   | 0.04  | -1      | GLP1R,GUCY1A1,MRAS,PTH1R,<br>RYR2                                    |
| Cellular Effects of Sildenafil (Viagra)                                             | 0.005   | 0.04  |         | ACTG2,GUCY1A1,KCNQ2,PDE1<br>A,PRKG2                                  |
| Gap Junction Signaling                                                              | 0.006   | 0.03  |         | ACTG2,CAV1,GUCY1A1,MRAS,P<br>RKG2,TUBB3                              |
| Axonal Guidance Signaling                                                           | 0.008   | 0.02  |         | DOCK1,GLI3,ITGAV,MMP1,MR<br>AS,NFATC4,NTRK2,PDGFC,SRG<br>AP1,TUBB3   |
| Integrin Signaling                                                                  | 0.009   | 0.03  | -2.449  | ACTG2,CAV1,DOCK1,ITGAV,MR<br>AS,TLN2                                 |
| ID1 Signaling Pathway                                                               | 0.009   | 0.03  | -1.633  | CAV1,CHRFAM7A,FGFR4,MRAS<br>,PDGFC,TFAP2A                            |
| Neuropathic Pain Signaling In<br>Dorsal Horn Neurons                                | 0.012   | 0.04  | -1      | GRIN3B,GRM5,KCNQ2,NTRK2                                              |
| Cardiac β-adrenergic Signaling                                                      | 0.015   | 0.03  |         | GUCY1A1,MRAS,PDE1A,RYR2,S<br>LC8A2                                   |
| Osteoarthritis Pathway                                                              | 0.015   | 0.03  | -1      | GLI3,ITGAV,ITLN1,MMP1,PDGF<br>C,PTH1R                                |
| Bladder Cancer Signaling                                                            | 0.016   | 0.04  |         | FGF9,MMP1,MRAS,PDGFC                                                 |
| Sperm Motility                                                                      | 0.018   | 0.03  | -2      | FGFR4,GUCY1A1,MRAS,NTRK2,<br>PDE1A,PRKG2                             |
| Synaptic Long Term Depression                                                       | 0.020   | 0.03  | -1.342  | GRM5,GUCY1A1,MRAS,PRKG2,<br>RYR2                                     |
| Gustation Pathway                                                                   | 0.020   | 0.03  | 0       | GLP1R,GUCY1A1,KCNQ2,SCN2<br>A,SCN4B                                  |
| Regulation Of The Epithelial<br>Mesenchymal Transition By Growth<br>Factors Pathway | 0.023   | 0.03  | -2      | FGF9,FGFR4,MMP1,MRAS,PDG<br>FC                                       |
| Circadian Rhythm Signaling                                                          | 0.025   | 0.02  |         | GRIN3B,GUCY1A1,MRAS,NTRK<br>2,PRKG2,RYR2                             |
| Glioma Invasiveness Signaling                                                       | 0.026   | 0.04  |         | ITGAV,MRAS,PLG                                                       |
| Adrenomedullin signaling pathway                                                    | 0.026   | 0.03  | -2.236  | GUCY1A1,KCNQ2,MRAS,PRKG2<br>,TFAP2A                                  |
| Calcium Signaling                                                                   | 0.027   | 0.03  | 0.447   | CHRFAM7A,GRIN3B,NFATC4,RY<br>R2,SLC8A2                               |
| White Adipose Tissue Browning<br>Pathway                                            | 0.028   | 0.03  | -2      | FGFR4,GUCY1A1,PLIN1,PRKG2                                            |

# Table 4.11. Pathways HR vs LR (p-value < 0.05)

| Caveolar-mediated Endocytosis<br>Signaling                    | 0.028 | 0.04 |        | ACTG2,CAV1,ITGAV                                         |
|---------------------------------------------------------------|-------|------|--------|----------------------------------------------------------|
| Opioid Signaling Pathway                                      | 0.034 | 0.02 | -0.447 | GRIN3B,GUCY1A1,MRAS,PDE1<br>A,POMC,RYR2                  |
| STAT3 Pathway                                                 | 0.035 | 0.03 |        | FGFR4,IL9R,MRAS,NTRK2                                    |
| Semaphorin Neuronal Repulsive<br>Signaling Pathway            | 0.035 | 0.03 | 0      | DPYSL4,GUCY1A1,ITGAV,PRKG<br>2                           |
| Cardiac Hypertrophy Signaling<br>(Enhanced)                   | 0.040 | 0.02 | -0.378 | FGF9,FGFR4,GUCY1A1,IL9R,ITG<br>AV,MRAS,NFATC4,PDE1A,RYR2 |
| PDGF Signaling                                                | 0.040 | 0.04 |        | CAV1,MRAS,PDGFC                                          |
| Regulation of Cellular Mechanics by Calpain Protease          | 0.044 | 0.04 |        | ITGAV,MRAS,TLN2                                          |
| PTEN Signaling                                                | 0.045 | 0.03 |        | FGFR4,ITGAV,MRAS,NTRK2                                   |
| Crosstalk between Dendritic Cells<br>and Natural Killer Cells | 0.045 | 0.03 |        | ACTG2,NECTIN2,TLN2                                       |
| Synaptogenesis Signaling Pathway                              | 0.046 | 0.02 | -0.447 | GRIN3B,GRM5,GUCY1A1,MRAS<br>,NTRK2,STXBP4                |
| Human Embryonic Stem Cell<br>Pluripotency                     | 0.050 | 0.03 |        | FGFR4,MRAS,NTRK2,PDGFC                                   |

#### 4.4.6 Biological Pathways differently modulated accordingly to biological sex: males

The pathways analysis was performed also on the list of genes obtained by analysing only the comparison in males and females separately.

In this section, I will describe the pathways associated with genes differently expressed in males for each comparison MDD, HR and LR.

4.4.6.1 Biological Pathways differently modulated in males MDD vs males HR adolescents

The pathways analysis was performed on the 310 genes differently expressed in the comparison males MDD *vs* males HR group (for the list of genes, see table 4E in Appendix E). From the analysis, 10 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched with more than three genes are reported in table 4.12 (see table 4G in Appendix G for the complete list of pathways). Two pathways presented a positive z-score < 2, indicating a low up-regulation in MDD males compared with HR: 1) Mitotic Roles of Polo-Like Kinase (z-score 1.342); 2) Kinetochore Metaphase Signalling Pathway (z-score 0.378).

4.4.6.2 Biological Pathways differently modulated in males MDD vs males LR adolescents

The pathways analysis was performed on the 377 genes differently expressed in the comparison males MDD *vs* males LR group (for the list of genes, see table 5E in Appendix E). From the analysis, 27 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched with more than three genes are reported in table 4.13 (see table 5G in Appendix G for the complete list of

pathways). A positive z-score > 2 was detected for 3 pathways: 1) Estrogen-mediated S-phase Entry (z-score 2.449); 2) Cyclins and Cell Cycle Regulation (z-score 2.828); 3) p53 Signaling (z-score 2.236). On the other hand, one pathway had a negative z-score < -2, indicating that was down-regulated in MDD males compared with LR: Cell Cycle: G1/S Checkpoint Regulation (z-score -2.236).

Moreover, other pathways were identified with a non-significant positive or negative z-score, specifically, Mitotic Roles of Polo-Like Kinase; Role of CHK Proteins in Cell Cycle Checkpoint Control; Kinetochore Metaphase Signaling Pathway; Epithelial Adherens Junction Signaling; Osteoarthritis Pathway; Pulmonary Healing Signaling Pathway; Cell Cycle: G2/M DNA Damage Checkpoint Regulation; ATM Signaling; Role of BRCA1 in DNA Damage Response.

4.4.6.3 Biological Pathways differently modulated in males HR vs males LR adolescents The pathways analysis was performed on the 359 genes differently expressed in the comparison males HR vs males LR group (for the list of genes, see table 6E in Appendix E). From the analysis, 8 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched with more than three genes are reported in table 4.14 (see table 6G in Appendix G for the complete list of pathways). One pathway was shown to have a negative z-score < -2: Oxidative Phosphorylation (z-score -2.646). On the other hand, one pathway showed a positive z-score < 2: Leukocyte Extravasation Signaling (z-score 0.816).

| Ingenuity Canonical Pathways                             | p-value | Ratio | z-score | Molecules                                      |
|----------------------------------------------------------|---------|-------|---------|------------------------------------------------|
| Mitotic Roles of Polo-Like Kinase                        | < 0.000 | 0.12  | 1.342   | CDC20,CDC25A,ESPL1,KIF11,PK<br>MYT1,PLK1,PPM1J |
| Kinetochore Metaphase Signaling<br>Pathway               | 0.001   | 0.07  | 0.378   | AURKB,BUB1,CDC20,ESPL1,KNL<br>1,PLK1,SKA3      |
| Role of CHK Proteins in Cell Cycle<br>Checkpoint Control | 0.009   | 0.08  |         | CDC25A,CLSPN,PLK1,PPM1J                        |
| Intrinsic Prothrombin Activation<br>Pathway              | 0.017   | 0.09  |         | COL1A2,COL5A3,KLK1                             |
| Atherosclerosis Signaling                                | 0.035   | 0.04  |         | COL1A2,COL5A3,LPL,PDGFB,PL<br>A2G2D            |

Table 4.12. Pathways males MDD vs males HR (p-value < 0.05)

| Ingenuity Canonical Pathways                             | p-value | Ratio | z-score | Molecules                                                               |
|----------------------------------------------------------|---------|-------|---------|-------------------------------------------------------------------------|
| Mitotic Roles of Polo-Like Kinase                        | < 0.000 | 0.17  | 1.890   | CCNB1,CDC20,CDC25A,CDK1,E<br>SPL1,HSP90B1,KIF11,PKMYT1,P<br>LK1,PPP2R3A |
| Role of CHK Proteins in Cell Cycle<br>Checkpoint Control | < 0.000 | 0.17  | -1.890  | BRCA1,CDC25A,CDK1,CLSPN,E2<br>F2,E2F7,E2F8,PLK1,PPP2R3A                 |
| Kinetochore Metaphase Signaling<br>Pathway               | < 0.000 | 0.12  | 1.508   | AURKB,BUB1B,CCNB1,CDC20,C<br>DK1,CENPE,ESPL1,KNL1,MAD1L<br>1,PLK1,ZWINT |
| Estrogen-mediated S-phase Entry                          | < 0.000 | 0.23  | 2.449   | CCNA2,CDC25A,CDK1,E2F2,E2F<br>7,E2F8                                    |
| Cyclins and Cell Cycle Regulation                        | < 0.000 | 0.10  | 2.828   | CCNA2,CCNB1,CDC25A,CDK1,E<br>2F2,E2F7,E2F8,PPP2R3A                      |
| Epithelial Adherens Junction<br>Signaling                | 0.001   | 0.07  | -1.265  | AFDN,CTNNA2,MAGI1,MAGI2,<br>MET,MYH10,NECTIN2,NOTCH3<br>,PPP2R3A,WASF1  |
| Cell Cycle: G2/M DNA Damage<br>Checkpoint Regulation     | 0.003   | 0.10  | -0.447  | BRCA1,CCNB1,CDK1,PKMYT1,P<br>LK1                                        |
| Cell Cycle Regulation by BTG Family<br>Proteins          | 0.005   | 0.12  |         | E2F2,E2F7,E2F8,PPP2R3A                                                  |
| DNA damage-induced 14-3-3σ<br>Signaling                  | 0.005   | 0.17  |         | BRCA1,CCNB1,CDK1                                                        |
| Glutathione-mediated<br>Detoxification                   | 0.008   | 0.15  |         | GGH,GSTA1,PTGES                                                         |
| ATM Signaling                                            | 0.011   | 0.07  | 0       | BRCA1,CCNB1,CDC25A,CDK1,P<br>PP2R3A,TP73                                |
| Cell Cycle: G1/S Checkpoint<br>Regulation                | 0.012   | 0.07  | -2.236  | CDC25A,E2F2,E2F7,E2F8,NRG1                                              |
| Osteoarthritis Pathway                                   | 0.015   | 0.05  | 0.378   | CTNNA2,DCN,ELF3,FZD7,IL18R<br>AP,ITGA8,JAG1,PPARG,PPARGC<br>1A,VEGFC    |
| Pulmonary Healing Signaling<br>Pathway                   | 0.016   | 0.05  | 1       | CCNB1,CTRC,ELANE,FZD7,JAG1<br>,MMP8,NOTCH3,PRKD1,VEGFC                  |
| Role of BRCA1 in DNA Damage<br>Response                  | 0.019   | 0.07  | -0.447  | BRCA1,E2F2,E2F7,E2F8,PLK1                                               |
| Phospholipases                                           | 0.028   | 0.07  |         | GPLD1,LPL,PLA2G12A,PLAAT2                                               |
| Triacylglycerol Degradation                              | 0.040   | 0.08  |         | FAAH,LPL,PNPLA4                                                         |
| Inhibition of Matrix<br>Metalloproteases                 | 0.040   | 0.08  |         | MMP8,SDC1,SDC2                                                          |
| Iron homeostasis signaling pathway                       | 0.041   | 0.05  |         | BMP6,BMP8A,BMP8B,HBA1/H<br>BA2,HP,TFR2                                  |
| p53 Signaling                                            | 0.044   | 0.05  | 2.236   | BRCA1,PERP,PLAGL1,TP63,TP7<br>3                                         |
| Basal Cell Carcinoma Signaling                           | 0.047   | 0.06  |         | BMP6,BMP8A,BMP8B,FZD7                                                   |

# Table 4.13. Pathways males MDD vs males LR (p-value < 0.05)

| Ingenuity Canonical Pathways                                            | p-value | Ratio | z-score | Molecules                                                     |
|-------------------------------------------------------------------------|---------|-------|---------|---------------------------------------------------------------|
| Oxidative Phosphorylation                                               | 0.002   | 0.07  | -2.646  | ATP5PB,ATP5PF,ATP5PO,COX1<br>7,NDUFA1,NDUFS5,UQCRB            |
| Mitochondrial Dysfunction                                               | 0.007   | 0.05  |         | ATP5PB,ATP5PF,ATP5PO,COX1<br>7,MT-<br>ND6,NDUFA1,NDUFS5,UQCRB |
| Dermatan Sulfate Biosynthesis<br>(Late Stages)                          | 0.030   | 0.08  |         | HS3ST1,SULT1A3/SULT1A4,UST                                    |
| Chondroitin Sulfate Biosynthesis<br>(Late Stages)                       | 0.036   | 0.08  |         | HS3ST1,SULT1A3/SULT1A4,UST                                    |
| Role of Cytokines in Mediating<br>Communication between Immune<br>Cells | 0.044   | 0.07  |         | CXCL8,IL12A,IL15                                              |
| Leukocyte Extravasation Signaling                                       | 0.048   | 0.04  | 0.816   | ARHGAP5,CDH5,CLDN12,MMP<br>24,PRKCI,PTK2,RAPGEF3              |

Table 4.14. Pathways males HR vs males LR (p-value < 0.05)

# 4.4.7 Biological Pathways differently modulated accordingly to biological sex: females

In this section I will describe the pathways associated with genes differently expressed in females for each comparison MDD, HR and LR.

# 4.4.7.1 Biological Pathways differently modulated in females MDD vs females HR adolescents

The pathways analysis was performed on the 399 genes differently expressed in the group of females MDD vs females HR (for the list of genes, see table 7E in Appendix E). From the analysis, 49 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched with more than three genes are reported in table 4.15 (see table 7G in Appendix G for the complete list of pathways). Thirteen pathways presented a positive z-score > 2, indicating that were up-regulated in MDD females compared with HR: 1) Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of Influenza (z-score 4.243); 2) Interferon Signaling (z-score 3); 3) Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses (z-score 2.646); 4) Systemic Lupus Erythematosus In B Cell Signaling Pathway (z-score 2.668); 5) TREM1 Signaling (z-score 2.646); 6) IL-17 Signaling (z-score 3); 7) Crosstalk between Dendritic Cells and Natural Killer Cells (z-score 2); 8) Acute Phase Response Signaling (z-score 2.236); 9) Hepatic Fibrosis Signaling Pathway (z-score 2.714); 10) Neuroinflammation Signaling Pathway (z-score 2.714); 11) HMGB1 Signaling (z-score 2); 12) Cardiac Hypertrophy Signaling (Enhanced) (z-score 2.138); 13) Wound Healing Signaling Pathway (z-score 2.333).

One pathway presented a negative z-score, indicating its down-regulation in MDD females: Coronavirus Pathogenesis Pathway (z-score -1.508).

Moreover, other pathways presented a positive z-score < 2, indicating that they were moderately up-regulated in MDD females compared with the HR group, specifically: Activation of IRF by Cytosolic Pattern Recognition Receptors; Role of MAPK Signaling in Inhibiting the Pathogenesis of Influenza; Role of PKR in Interferon Induction and Antiviral Response; Role of RIG1-like Receptors in Antiviral Innate Immunity; PCP (Planar Cell Polarity) Pathway; Salvage Pathways of Pyrimidine Ribonucleotides; Colorectal Cancer Metastasis Signaling; Role of WNT/GSK-3β Signaling in the Pathogenesis of Influenza.

# 4.4.7.2 Biological Pathways differently modulated in females MDD vs females LR adolescents

The pathways analysis was performed on the 471 genes differently expressed in the comparison females MDD vs females LR group (for the list of genes, see table 8E in Appendix E). From the analysis, 37 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched with more than three genes are reported in table 4.16 (see table 8G in Appendix G for the complete list of pathways). None of the 37 pathways were shown to be significantly up- or down-regulated in MDD females compared with LR females (meaning a positive z-score > 2 or a negative z-score < -2 respectively). However, there were some pathways up-regulated in MDD females, such as: Phagosome Formation; Breast Cancer Regulation by Stathmin1; G-Protein Coupled Receptor Signaling; RHOGDI Signaling; Natural Killer Cell Signaling; Sphingosine-1-phosphate Signaling; Osteoarthritis Pathway; Cardiac

Hypertrophy Signaling (Enhanced); Gαs Signaling; Adrenomedullin signaling pathway; Hepatic Fibrosis Signaling Pathway; Gαi Signaling and Cyclins and Cell Cycle Regulation.

On the other hand, a negative z-score was identified for the following pathways: CREB Signaling in Neurons; STAT3 Pathway; CDK5 Signaling; PAK Signaling; eNOS Signaling; Stearate Biosynthesis I; RAC Signaling and Pulmonary Fibrosis Idiopathic Signaling Pathway.

# 4.4.7.3 Biological Pathways differently modulated in females HR vs females LR adolescents

The pathways analysis was performed on the 504 genes differently expressed in the comparison females HR *vs* females LR (for the list of genes, see table 9E in Appendix E). From the analysis, 34 pathways were shown to be significantly modulated (p-value < 0.05), and those pathways enriched with more than three genes are reported in table 4.17 (see table 9G in Appendix G for the complete list of pathways).

One pathway presented a positive z-score > 2: 1) HGF Signaling (z-score 2); whereas two had a negative z-score < -2, indicating their down-regulation in HR females compared with the LR: 1) Inflammasome pathway (z-score -2.236); 2) Pyroptosis Signaling Pathway (z-score -2.449).

| Ingenuity Canonical Pathways                                                          | p-value | Ratio | z-score | Molecules                                                                                                          |
|---------------------------------------------------------------------------------------|---------|-------|---------|--------------------------------------------------------------------------------------------------------------------|
| Role of<br>Hypercytokinemia/hyperchemokin<br>emia in the Pathogenesis of<br>Influenza | < 0.000 | 0.27  | 4.243   | CCL2,CCL3,CXCL10,CXCL8,DDX5<br>8,EIF2AK2,IFIT2,IFIT3,IL1RN,IRF<br>7,ISG15,MX1,OAS1,OAS2,OAS3<br>,RSAD2,STAT2,TLR3  |
| Interferon Signaling                                                                  | < 0.000 | 0.26  | 3       | IFI6,IFIT1,IFIT3,IFITM3,ISG15,JA<br>K2,MX1,OAS1,STAT2                                                              |
| Role of Pattern Recognition<br>Receptors in Recognition of<br>Bacteria and Viruses    | < 0.000 | 0.10  | 2.646   | C1QB,CXCL8,DDX58,EIF2AK2,IFI<br>H1,IRF7,OAS1,OAS2,OAS3,OSM<br>,PIK3C2A,TLR3,TNFSF10,TNFSF<br>13B                   |
| Systemic Lupus Erythematosus In B<br>Cell Signaling Pathway                           | < 0.000 | 0.07  | 2.668   | CD19,CD72,CD79A,CXCL8,FCGR<br>2B,IFIH1,IFIT2,IFIT3,IRF7,ISG15,<br>JAK2,OSM,PIK3C2A,STAT2,TLR3<br>,TNFSF10,TNFSF13B |
| Agranulocyte Adhesion and Diapedesis                                                  | < 0.000 | 0.08  |         | CCL2,CCL3,CCL8,CCR9,CLDN23,<br>CXCL10,CXCL8,GNAI1,IL1RN,M<br>MP24,MMP8,MYH11,XCL1                                  |
| Granulocyte Adhesion and<br>Diapedesis                                                | < 0.000 | 0.07  |         | CCL2,CCL3,CCL8,CCR9,CLDN23,<br>CXCL10,CXCL8,GNAI1,IL1RN,M<br>MP24,MMP8,XCL1                                        |
| Activation of IRF by Cytosolic<br>Pattern Recognition Receptors                       | < 0.000 | 0.13  | 1.134   | DDX58,DHX58,IFIH1,IFIT2,IRF7,<br>ISG15,STAT2                                                                       |
| TREM1 Signaling                                                                       | 0.001   | 0.10  | 2.646   | CASP5,CCL2,CCL3,CXCL8,FCGR2<br>B,JAK2,TLR3                                                                         |
| Salvage Pathways of Pyrimidine<br>Deoxyribonucleotides                                | 0.001   | 0.33  |         | APOBEC3A,APOBEC3B,TYMP                                                                                             |
| Role of MAPK Signaling in Inhibiting the Pathogenesis of Influenza                    | 0.001   | 0.10  | 1.89    | CCL2,CXCL10,CXCL8,EIF2AK2,PL<br>A2G4A,PLA2G4C,PLA2G7                                                               |
| Airway Pathology in Chronic<br>Obstructive Pulmonary Disease                          | 0.001   | 0.08  |         | CCL2,CXCL8,LCN12,LCN2,MMP<br>8,OSM,TNFSF10,TNFSF13B                                                                |
| Role of PKR in Interferon Induction<br>and Antiviral Response                         | 0.001   | 0.07  | 1.633   | CASP5,DDX58,EIF2AK2,IFIH1,IL<br>24,MARCO,MSR1,STAT2,TLR3                                                           |
| Coronavirus Pathogenesis Pathway                                                      | 0.001   | 0.06  | -1.508  | BST2,CCL2,CXCL8,DDX58,IRF7,<br>OAS1,OAS2,OAS3,SERPINE1,ST<br>AT2,TLR3                                              |
| Atherosclerosis Signaling                                                             | 0.003   | 0.07  |         | CCL2,CXCL8,IL1RN,MSR1,PLA2<br>G4A,PLA2G4C,PLA2G7,TPSAB1/<br>TPSB2                                                  |
| Role of Macrophages, Fibroblasts<br>and Endothelial Cells in<br>Rheumatoid Arthritis  | 0.004   | 0.05  |         | APC2,CCL2,CXCL8,FZD5,IL17RC,<br>IL1RN,JAK2,LRP6,OSM,PIK3C2A<br>,TLR3,TNFSF13B,WNT10A,WNT<br>5B                     |
| Communication between Innate<br>and Adaptive Immune Cells                             | 0.004   | 0.07  |         | CCL3,CD79A,CXCL10,CXCL8,IL1<br>RN,TLR3,TNFSF13B                                                                    |
| IL-17 Signaling                                                                       | 0.005   | 0.06  | 3       | CCL2,CXCL8,IL17RC,JAK2,LCN2,<br>OSM,PIK3C2A,TNFSF10,TNFSF1<br>3B                                                   |
| TR/RXR Activation                                                                     | 0.006   | 0.07  |         | ATP2A1,HP,PIK3C2A,PPARGC1<br>A,STRBP,THRB                                                                          |
| Role of RIG1-like Receptors in<br>Antiviral Innate Immunity                           | 0.007   | 0.11  | 1       | DDX58,DHX58,IFIH1,IRF7                                                                                             |

# Table 4.15. Pathways females MDD vs females HR (p-value < 0.05)

| Crosstalk between Dendritic Cells                                                                        |       |      |       | IL15RA,IL3RA,KIR3DL1,TLN2,TL                                                                                         |
|----------------------------------------------------------------------------------------------------------|-------|------|-------|----------------------------------------------------------------------------------------------------------------------|
| and Natural Killer Cells                                                                                 | 0.008 | 0.07 | 2     | R3,TNFSF10                                                                                                           |
| Role of NANOG in Mammalian<br>Embryonic Stem Cell Pluripotency                                           | 0.009 | 0.06 |       | APC2,FZD5,JAK2,PIK3C2A,TCL1<br>A,WNT10A,WNT5B                                                                        |
| Differential Regulation of Cytokine<br>Production in Intestinal Epithelial<br>Cells by IL-17A and IL-17F | 0.011 | 0.13 |       | CCL2,CCL3,LCN2                                                                                                       |
| Role of Cytokines in Mediating<br>Communication between Immune<br>Cells                                  | 0.011 | 0.09 |       | CXCL8,IL1RN,IL24,IL27                                                                                                |
| Role of IL-17F in Allergic<br>Inflammatory Airway Diseases                                               | 0.014 | 0.09 |       | CCL2,CXCL10,CXCL8,IL17RC                                                                                             |
| Neuroinflammation Signaling<br>Pathway                                                                   | 0.015 | 0.04 | 2.714 | CCL2,CCL3,CXCL10,CXCL8,GAB<br>RD,IRF7,JAK2,P2RX7,PIK3C2A,P<br>LA2G4A,PLA2G4C,TLR3                                    |
| IL-17A Signaling in Gastric Cells                                                                        | 0.016 | 0.12 |       | CXCL10,CXCL8,IL17RC                                                                                                  |
| Retinoate Biosynthesis I                                                                                 | 0.017 | 0.11 |       | ALDH1A1,ALDH8A1,RDH10                                                                                                |
| Role of MAPK Signaling in the<br>Pathogenesis of Influenza                                               | 0.020 | 0.07 |       | CCL2,CXCL10,PLA2G4A,PLA2G4<br>C,PLA2G7                                                                               |
| Acute Phase Response Signaling                                                                           | 0.023 | 0.05 | 2.236 | C1QB,C1R,C4BPA,HP,IL1RN,JAK<br>2,OSM,SERPINE1                                                                        |
| Complement System                                                                                        | 0.023 | 0.10 |       | C1QB,C1R,C4BPA                                                                                                       |
| MSP-RON Signaling Pathway                                                                                | 0.023 | 0.08 |       | CCL2,IL3RA,JAK2,PIK3C2A                                                                                              |
| Glucocorticoid Receptor Signaling                                                                        | 0.026 | 0.03 |       | CCL2,CCL3,CXCL8,ESR1,HP,IL15<br>RA,IL17RC,IL1RN,IL31RA,IL3RA,<br>JAK2,MMP8,PIK3C2A,PLA2G4A,<br>PLA2G4C,POMC,SERPINE1 |
| PCP (Planar Cell Polarity) Pathway                                                                       | 0.028 | 0.07 | 1     | FZD5,PRICKLE1,WNT10A,WNT5<br>B                                                                                       |
| Role of IL-17A in Arthritis                                                                              | 0.030 | 0.07 |       | CCL2,CXCL8,IL17RC,PIK3C2A                                                                                            |
| Airway Inflammation in Asthma                                                                            | 0.030 | 0.09 |       | CCL2,CXCL8,OSM                                                                                                       |
| Hepatic Fibrosis Signaling Pathway                                                                       | 0.030 | 0.04 | 2.714 | APC2,CCL2,CCL3,CXCL8,FZD5,G<br>NAI1,IL1RN,JAK2,LRP6,PIK3C2A<br>,SERPINE1,SUCNR1,WNT10A,W<br>NT5B                     |
| Salvage Pathways of Pyrimidine<br>Ribonucleotides                                                        | 0.034 | 0.06 | 1.342 | APOBEC3A,APOBEC3B,CMPK2,<br>EIF2AK2,NME4                                                                             |
| B Cell Development                                                                                       | 0.035 | 0.09 |       | CD19,CD79A,RAG1                                                                                                      |
| Colorectal Cancer Metastasis<br>Signaling                                                                | 0.036 | 0.04 | 1.414 | FZD5,GNAI1,JAK2,LRP6,MMP2<br>4,MMP8,PIK3C2A,TLR3,WNT10<br>A,WNT5B                                                    |
| Human Embryonic Stem Cell<br>Pluripotency                                                                | 0.036 | 0.05 |       | APC2,FZD5,GNAI1,PIK3C2A,S1P<br>R3,WNT10A,WNT5B                                                                       |
| HMGB1 Signaling                                                                                          | 0.040 | 0.05 | 2     | CCL2,CXCL8,OSM,PIK3C2A,SER<br>PINE1,TNFSF10,TNFSF13B                                                                 |
| Role of WNT/GSK-3β Signaling in the Pathogenesis of Influenza                                            | 0.043 | 0.06 | 1     | APC2,FZD5,WNT10A,WNT5B                                                                                               |
| IL-17A Signaling in Fibroblasts                                                                          | 0.043 | 0.08 |       | CCL2,IL17RC,LCN2                                                                                                     |
| Wound Healing Signaling Pathway                                                                          | 0.044 | 0.04 | 2.333 | COL15A1,CXCL8,IL1RN,JAK2,M<br>MP8,OSM,TNFSF10,TNFSF13B,<br>TPSAB1/TPSB2                                              |
| Cardiac Hypertrophy Signaling<br>(Enhanced)                                                              | 0.046 | 0.03 | 2.138 | ATP2A1,CXCL8,FZD5,GNAI1,IL1<br>5RA,IL17RC,IL31RA,IL3RA,JAK2,                                                         |

|                                |       |      | OSM,PDE7B,PIK3C2A,TNFSF10,<br>TNFSF13B,WNT10A,WNT5B |
|--------------------------------|-------|------|-----------------------------------------------------|
| Basal Cell Carcinoma Signaling | 0.047 | 0.06 | APC2,FZD5,WNT10A,WNT5B                              |

| Ingenuity Canonical Pathways                 | p-value | Ratio | z-score | Molecules                                                                                                                                                                                                            |
|----------------------------------------------|---------|-------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FAK Signaling                                | < 0.000 | 0.05  | 0       | ADGRA3,ADGRF3,ADGRL3,ADR<br>A1B,BCAR3,CCR9,COL18A1,CSF<br>2RB,CXCR1,CXCR2,ERBB2,FFAR<br>2,FZD5,GPR153,GPR27,GPRC5C<br>,HCAR2,HCAR3,HTR2B,IL3RA,IT<br>GA7,ITGA9,ITGAV,LPAR2,MRAS<br>,OXTR,PAK6,PDGFRB,S1PR3,TG<br>FB2 |
| Phagosome Formation                          | < 0.000 | 0.05  | 0.365   | ADGRA3,ADGRF3,ADGRL3,ADR<br>A1B,APBB1IP,CCR9,CXCR1,FCG<br>R2A,FFAR2,FZD5,GPR153,GPR2<br>7,GPRC5C,HCAR2,HCAR3,HTR2<br>B,ITGA7,ITGA9,ITGAV,LIMK2,LP<br>AR2,MARCKS,MRAS,MYD88,M<br>YH10,OXTR,PAK6,S1PR3,TLR2,T<br>TN    |
| CREB Signaling in Neurons                    | < 0.000 | 0.05  | -0.2    | ADCY10,ADCY2,ADGRA3,ADGR<br>F3,ADGRL3,ADRA1B,BMP6,CCR<br>9,CXCR1,FFAR2,FGFR4,FZD5,G<br>NAQ,GNG5,GPR153,GPR27,GP<br>RC5C,HCAR2,HCAR3,HTR2B,LP<br>AR2,MRAS,NTRK2,OXTR,PDGFR<br>B,S1PR3,TGFB2                           |
| Human Embryonic Stem Cell<br>Pluripotency    | 0.001   | 0.08  |         | BMP6,FGFR4,FZD5,GNAQ,GNG<br>5,INHBA,MRAS,NTRK2,PDGFRB<br>,S1PR3,SMAD1,TGFB2                                                                                                                                          |
| STAT3 Pathway                                | 0.001   | 0.08  | -0.707  | BMP6,CSF2RB,CXCR1,CXCR2,F<br>GFR4,IL1B,IL3RA,MRAS,NTRK2,<br>PDGFRB,TGFB2                                                                                                                                             |
| Breast Cancer Regulation by<br>Stathmin1     | 0.001   | 0.05  | 1       | ADGRA3,ADGRF3,ADGRL3,ADR<br>A1B,BMP6,CCR9,CXCR1,FFAR2,<br>FZD5,GNAQ,GNG5,GPR153,GP<br>R27,GPRC5C,HCAR2,HCAR3,HT<br>R2B,LPAR2,MRAS,OXTR,PPP2R<br>2C,PPP2R5A,S1PR3,TGFB2,TUB<br>B3                                     |
| G-Protein Coupled Receptor<br>Signaling      | 0.001   | 0.05  | 1.134   | ADCY10,ADCY2,ADGRA3,ADGR<br>F3,ADGRL3,ADRA1B,BORCS8-<br>MEF2B,CCR9,CXCR1,CXCR2,FFA<br>R2,FZD5,GNAQ,GNG5,GPR153,<br>GPR27,GPRC5C,HCAR2,HCAR3,<br>HTR2B,LPAR2,MRAS,OXTR,PAK<br>6,PDE7B,S1PR3,TTN,WWTR1                 |
| RHOGDI Signaling                             | 0.003   | 0.07  | 0.816   | CDH4,ESR1,GNAQ,GNG5,ITGA7<br>,ITGA9,ITGAV,LIMK2,MRAS,MY<br>H10,PAK6,RHOB                                                                                                                                             |
| GABA Receptor Signaling                      | 0.006   | 0.08  |         | ADCY10,ADCY2,GABRA5,GABR<br>D,GABRR2,GNAQ,GNG5,MRAS                                                                                                                                                                  |
| Mitochondrial L-carnitine Shuttle<br>Pathway | 0.009   | 0.18  |         | ACSL1,ACSL6,CPT1B                                                                                                                                                                                                    |
| Gαs Signaling                                | 0.010   | 0.07  | 1.134   | ADCY10,ADCY2,ADD2,GNAQ,G<br>NG5,HCAR2,HCAR3,MRAS                                                                                                                                                                     |

Table 4.16. Pathways females MDD vs females LR (p-value < 0.05)

| Cysteine Biosynthesis III<br>(mammalia)     | 0.016 | 0.14 |        | CBS/CBSL,EEF1AKMT3,SUV39H<br>2                                                                                                                      |
|---------------------------------------------|-------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Cardiac Hypertrophy Signaling<br>(Enhanced) | 0.016 | 0.04 | 0.728  | ADCY10,ADCY2,ADRA1B,BORCS<br>8-<br>MEF2B,CSF2RB,CXCR1,CXCR2,E<br>DA,FGF9,FGFR4,FZD5,GNAQ,G<br>NG5,IL1B,IL3RA,ITGA7,ITGA9,IT<br>GAV,MRAS,PDE7B,TGFB2 |
| Adrenomedullin signaling pathway            | 0.017 | 0.06 | 0.333  | ADCY10,ADCY2,ADM,GNAQ,IL1<br>B,IL1RN,MRAS,SHF,TFAP2E,TTN                                                                                            |
| Gαi Signaling                               | 0.017 | 0.06 | 1.134  | ADCY10,ADCY2,CXCR2,GNAQ,G<br>NG5,HCAR2,MRAS,S1PR3                                                                                                   |
| CDK5 Signaling                              | 0.018 | 0.07 | -1.134 | ADCY10,ADCY2,LAMC1,MRAS,<br>NTRK2,PPP2R2C,PPP2R5A                                                                                                   |
| PAK Signaling                               | 0.019 | 0.07 | -1     | ITGA7,ITGA9,ITGAV,LIMK2,MR<br>AS,PAK6,PDGFRB                                                                                                        |
| Hepatic Cholestasis                         | 0.019 | 0.06 |        | ABCB1,ADCY10,ADCY2,EDA,ES<br>R1,FGFR4,IL1B,IL1RN,MYD88,T<br>GFB2                                                                                    |
| Natural Killer Cell Signaling               | 0.021 | 0.05 | 1      | COL18A1,FCGR2A,HSPA1A/HSP<br>A1B,HSPA6,KIR3DL2,KLRC2,LIM<br>K2,MRAS,MYD88,PAK6                                                                      |
| Sphingosine-1-phosphate Signaling           | 0.022 | 0.06 | 1.134  | ADCY10,ADCY2,CASQ1,GNAQ,P<br>DGFRB,RHOB,S1PR3                                                                                                       |
| PI3K/AKT Signaling                          | 0.025 | 0.05 |        | CSF2RB,CXCR1,CXCR2,IL3RA,IT<br>GA7,ITGA9,ITGAV,MRAS,PPP2R<br>2C,PPP2R5A                                                                             |
| Osteoarthritis Pathway                      | 0.026 | 0.05 | 1.134  | CASQ1,CXCR2,FZD5,IL1B,ITGA7<br>,ITGA9,ITGAV,PTCH1,S1PR3,SM<br>AD1,TLR2                                                                              |
| eNOS Signaling                              | 0.030 | 0.06 | -0.378 | ADCY10,ADCY2,CCNA1,ESR1,G<br>NAQ,HSPA1A/HSPA1B,HSPA6,L<br>PAR2                                                                                      |
| IL-1 Signaling                              | 0.030 | 0.07 |        | ADCY10,ADCY2,GNAQ,GNG5,M<br>RAS,MYD88                                                                                                               |
| Stearate Biosynthesis I (Animals)           | 0.032 | 0.09 | -1     | ACSL1,ACSL6,BDH2,DHCR24                                                                                                                             |
| Agranulocyte Adhesion and Diapedesis        | 0.032 | 0.05 |        | CCL22,CCR9,CLDN9,CXCL16,CX<br>CR1,CXCR2,IL1B,IL1RN,MYH10                                                                                            |
| Axonal Guidance Signaling                   | 0.034 | 0.04 |        | ADAMTS6,BMP6,ERBB2,FZD5,G<br>NAQ,GNG5,ITGA7,ITGA9,ITGAV<br>,LIMK2,MRAS,NTRK2,PAK6,PTC<br>H1,SEMA4G,SHANK2,TUBB3,U<br>NC5B                           |
| PPARα/RXRα Activation                       | 0.036 | 0.05 | 0.707  | ACOX1,ADCY10,ADCY2,CPT1B,<br>GK,GNAQ,IL1B,MRAS,TGFB2                                                                                                |
| Dopamine Receptor Signaling                 | 0.036 | 0.07 |        | ADCY10,ADCY2,NCS1,PPP2R2C,<br>PPP2R5A                                                                                                               |
| Phospholipase C Signaling                   | 0.041 | 0.05 | 1.89   | ADCY10,ADCY2,BORCS8-<br>MEF2B,FCGR2A,GNAQ,GNG5,IT<br>GA7,ITGA9,ITGAV,MARCKS,MR<br>AS,RHOB                                                           |
| Cardiac β-adrenergic Signaling              | 0.041 | 0.05 | -0.816 | ADCY10,ADCY2,GNAQ,GNG5,M<br>RAS,PDE7B,PPP2R2C,PPP2R5A                                                                                               |
| Fatty Acid Activation                       | 0.043 | 0.15 |        | ACSL1,ACSL6                                                                                                                                         |

| Hepatic Fibrosis Signaling Pathway              | 0.046 | 0.04 | 0.905 | COL18A1,FTH1,FZD5,IL1B,IL1R<br>N,ITGA7,ITGA9,ITGAV,LRP5,MR<br>AS,MYD88,PDGFRB,PTCH1,RH<br>OB,TGFB2,TTN |
|-------------------------------------------------|-------|------|-------|--------------------------------------------------------------------------------------------------------|
| Sertoli Cell-Sertoli Cell Junction<br>Signaling | 0.047 | 0.05 |       | ADCY10,CLDN9,ITGA7,ITGA9,IT<br>GAV,MRAS,PALS2,TJP1,TUBB3                                               |
| Superpathway of Methionine<br>Degradation       | 0.049 | 0.09 |       | CBS/CBSL,EEF1AKMT3,SUV39H<br>2                                                                         |
| RAC Signaling                                   | 0.050 | 0.05 | -1    | ITGA7,ITGA9,ITGAV,LIMK2,MC<br>F2L,MRAS,PAK6                                                            |

| Ingenuity Canonical Pathways       | p-value | Ratio | z-score | Molecules                                      |
|------------------------------------|---------|-------|---------|------------------------------------------------|
|                                    |         |       |         | BMPR1A,CDKN1A,CISH,FGFR2,I                     |
| STAT3 Pathway                      | < 0.000 | 0.10  | 1.134   | GF1,IL11RA,IL12RB2,IL18RAP,IL                  |
|                                    | < 0.000 | 0.10  | 1.154   | 1RL1,IL4R,IL5RA,MAP3K20,SOC                    |
|                                    |         |       |         | S3                                             |
| Inflammasome pathway               | < 0.000 | 0.25  | -2.236  | AIM2,CASP1,CASP5,NLRC4,NLR<br>P3               |
|                                    |         |       |         | ALPL,ANKH,BMPR1A,CASP1,CA                      |
| Osteoarthritis Pathway             | < 0.000 | 0.07  | -0.577  | SP4,CASP5,CEBPB,DDIT4,FZD7,I                   |
|                                    |         |       |         | L18RAP,IL1RL1,ITGA2B,ITGA3,I                   |
|                                    |         |       |         | TGA8,ITGB4,ITGB8                               |
| PI3K/AKT Signaling                 | 0.001   | 0.07  | 1       | BCL2L1,CCND1,CDKN1A,IL11RA                     |
|                                    |         |       |         | ,IL12RB2,IL18RAP,IL1RL1,IL4R,I                 |
|                                    |         |       |         | L5RA,ITGA2B,ITGA3,ITGA8,ITG                    |
|                                    |         |       |         | B4,ITGB8                                       |
| Caveolar-mediated Endocytosis      | 0.003   | 0.10  |         | CAV1,CD55,ITGA2B,ITGA3,ITGA                    |
| Signaling                          | 0.005   | 0.10  |         | 8,ITGB4,ITGB8                                  |
| Granulocyte Adhesion and           |         |       |         | CCL23,CCL3L1,CCR9,CXCL16,CX                    |
| Diapedesis                         | 0.005   | 0.07  |         | CL6,HRH4,IL18RAP,IL1RL1,IL36                   |
|                                    |         |       |         | A,SDC1,SDC2                                    |
| PTEN Signaling                     |         |       |         | BCL2L1,BMPR1A,CCND1,CDKN                       |
|                                    | 0.006   | 0.07  | -1.633  | 1A,FGFR2,ITGA2B,ITGA3,ITGA8                    |
|                                    |         |       |         | ,ITGB4,ITGB8                                   |
| Eicosanoid Signaling               | 0.007   | 0.10  |         | AKR1C3,ALOX15,ALOX15B,CYSL                     |
|                                    | 0.007   | 0.10  |         | TR2,PLAAT5,PRDX6                               |
|                                    |         |       |         | ACE,ADCY10,ATP2A1,CACNB4,F                     |
|                                    |         |       |         | GFR2,FZD7,IGF1,IL11RA,IL12RB                   |
| Cardiac Hypertrophy Signaling      | 0.008   | 0.05  | 1.213   | 2,IL18RAP,IL1RL1,IL36A,IL4R,IL                 |
| (Enhanced)                         |         |       |         | 5RA,ITGA2B,ITGA3,ITGA8,ITGB                    |
|                                    |         |       |         | 4,ITGB8,MAP3K20,OSM,PDK1,                      |
|                                    | 0.000   | 0.42  |         | PIK3R6                                         |
| Complement System                  | 0.009   | 0.13  | 1       | C3,CD55,CFD,CR1<br>CASP1,CASP5,IL1RL1,NLRC4,NL |
| TREM1 Signaling                    | 0.011   | 0.09  | -1.633  | RP3,TREM1                                      |
|                                    |         |       |         | BLVRA,IL18RAP,IL1RL1,IL36A,IL                  |
| IL-10 Signaling                    | 0.012   | 0.09  |         | 4R,SOCS3                                       |
|                                    | 0.014   | 0.07  | 0.070   | ALOX15,ALOX15B,BCL2L1,CXCL                     |
| IL-13 Signaling Pathway            | 0.014   | 0.07  | 0.378   | 6,IL4R,PIK3R6,SOCS3                            |
|                                    | 0.016   | 0.06  | 0.905   | BCL2L1,BHLHA15,BMPR1A,CAV                      |
| ID1 Signaling Pathway              |         |       |         | 1,CCND1,CDKN1A,FGFR2,GSPT                      |
|                                    |         |       |         | 1,PIK3R6,RAP1GAP,TGM2                          |
| Iron homeostasis signaling pathway | 0.019   | 0.07  |         | ABCB10,ATP6V0C,BMPR1A,CD                       |
|                                    | 0.019   | 0.07  |         | C34,FECH,FTH1,HFE,SLC25A37                     |
|                                    |         |       |         | ADORA3,C3,CCR9,CLEC4D,CR1,                     |
| Phagosome Formation                | 0.022   | 0.04  | 0.816   | CYSLTR2,FCER1G,FCGR3A/FCG                      |
|                                    |         |       |         | R3B,FZD7,GPR146,HRH4,ITGA2                     |
|                                    |         |       |         | B,ITGA3,ITGA8,ITGB4,ITGB8,M                    |
|                                    |         |       |         | ARCO,MYO10,P2RY2,PIK3R6,PL                     |
|                                    |         |       |         | AAT5,PRDX6,PTGDR2,VTN                          |
| JAK/STAT Signaling                 | 0.023   | 0.07  | 0.816   | BCL2L1,CDKN1A,CEBPB,CISH,PI                    |
|                                    |         |       |         | K3R6,SOCS3                                     |
| HGF Signaling                      | 0.025   | 0.06  | 2       | CCND1,CDKN1A,ITGA2B,ITGA3,                     |
|                                    | 0.025   | 0.00  | _       | ITGA8,ITGB4,ITGB8,PIK3R6                       |

Table 4.17. Pathways females HR vs females LR (p-value < 0.05)

|                                     |       |      |        | AIM2,CASP1,CASP4,CASP5,NLR     |
|-------------------------------------|-------|------|--------|--------------------------------|
| Pyroptosis Signaling Pathway        | 0.026 | 0.07 | -2.449 | C4,NLRP3                       |
| Regulation of Cellular Mechanics by | 0.027 | 0.07 |        | CCND1,ITGA2B,ITGA3,ITGA8,IT    |
| Calpain Protease                    | 0.027 | 0.07 |        | GB4,ITGB8                      |
| Sertoli Cell-Sertoli Cell Junction  |       |      |        | ADCY10,ITGA2B,ITGA3,ITGA8,I    |
| Signaling                           | 0.028 | 0.05 |        | TGB4,ITGB8,MAP3K20,SPTA1,T     |
|                                     |       |      |        | UBB6,YBX3                      |
|                                     |       |      |        | HLA-                           |
| Th2 Pathway                         | 0.028 | 0.06 | 0      | DRB5,IL12RB2,IL1RL1,IL4R,NOT   |
|                                     |       |      |        | CH4,PIK3R6,PTGDR2,SOCS3        |
| Type II Diabetes Mellitus Signaling | 0.032 | 0.06 |        | ACSF2,ACSM1,ADIPOR1,CACNB      |
|                                     |       | _    |        | 4,CEBPB,PIK3R6,SMPD3,SOCS3     |
| Retinoate Biosynthesis I            | 0.036 | 0.11 |        | AKR1C3,ALDH1A2,HSD17B6         |
| FAK Signaling                       | 0.037 | 0.04 | 1.877  | ADORA3,CCND1,CCR9,CYSLTR2      |
|                                     |       |      |        | ,FCER1G,FZD7,GPR146,HRH4,IL    |
|                                     |       |      |        | 11RA,IL12RB2,IL18RAP,IL1RL1,I  |
|                                     |       |      |        | L4R,IL5RA,ITGA2B,ITGA3,ITGA8   |
|                                     |       |      |        | ,ITGB4,ITGB8,P2RY2,PIK3R6,PT   |
|                                     |       |      |        | GDR2,SOCS3                     |
|                                     |       |      |        | HLA-                           |
| Th1 and Th2 Activation Pathway      | 0.038 | 0.05 |        | DRB5,IL12RB2,IL1RL1,IL27,IL4R, |
|                                     |       |      |        | NOTCH4,PIK3R6,PTGDR2,SOCS      |
|                                     |       |      |        | 3                              |
| Endocannabinoid Cancer Inhibition   | 0.044 | 0.06 | -1.414 | ADCY10,CASP1,CASP4,CASP5,C     |
| Pathway                             |       |      |        | CND1,CDKN1A,PIK3R6,SMPD3       |
| LPS/IL-1 Mediated Inhibition of RXR | 0.040 | 0.05 |        | ABCB9,ACSF2,ACSM1,ALDH1A2      |
| Function                            | 0.048 | 0.05 |        | ,CHST10,CRAT,GSTM2,IL18RAP,    |
|                                     |       |      |        | IL1RL1,IL36A                   |

# 4.5 Comparison between microarrays and RNA-Seq

Given the fact that two different omics techniques were used, a correlation analysis was performed to investigate the correlation level of those two techniques. Specifically, quantitative comparison of the relative raw expression profile of the common genes present in each platform was computed by using Spearman's correlation. The correlation was performed with regards to the following comparison: MDD *vs* HR, MDD *vs* LR, and HR *vs* LR considering the entire cohort.

For the MDD vs HR comparison, 14821 genes were identified as differently modulated and in common between both RNA-Seq and microarray platform, and the Spearman's correlation computed between the fold-changes was 0.173 (p < 0.01). When considering only the DEGs with an unadjusted p-value lower than 0.05 and in common between both techniques, 52 genes were observed to be in common and they showed a correlation coefficient of 0.709 (p < 0.01).

For the MDD vs LR comparison, 14898 genes were identified as differently modulated in both RNA-Seq and microarray platform, and the Spearman's correlation computed between the fold-changes was 0.266 (p < 0.01). When considering only the DEGs with an unadjusted p-value lower than 0.05 and in common between both techniques, 104 genes were observed to be in common and they presented a correlation coefficient of 0.761 (p < 0.01).

For the HR vs LR, 14907 genes were identified as differently modulated in both RNA-Seq and microarray platform, and the Spearman's correlation computed between the fold-changes was 0.122 (p < 0.01). When considering only the DEGs with an unadjusted p-value lower than 0.05 and in common between both techniques, 14

genes were observed to be in common and they presented a correlation coefficient of

0.284 (p > 0.05).

# 5. Discussion

In this section, I will discuss the main findings reported in this doctoral thesis. I will start by briefly discussing the results of the quality control analysis, as important starting point for feasibility and quality of analyses for future studies recruiting in LMICs. It will follow the discussion of the biological results of the genome-wide gene expression results performed with both Affymetrix microarrays and RNA Sequencing techniques. I will firstly discuss the differences and similarities between the two techniques, by discussing pros and cons, and by also considering the results of the biological results, starting from analysing the DEGs and then by focusing the attention mainly on the results of the pathways analysis; both results will be discussed by focusing first on the entire cohort and then on the biological-sex driven results. Lastly, I will discuss strengths and limitations of my doctoral thesis in the context of the IDEA project, and I will provide possible future directions to implement the knowledge for study of adolescent depression specifically in LMICs.

# 5.1 Summary of findings

In this doctoral thesis, I performed a genome-wide gene expression analysis from blood samples of a cohort of 150 Brazilian adolescents stratified based on an increased risk of depression (Kieling et al., 2021). The cohort was constituted by 50 adolescents with a current diagnosis of depression and classified at high risk of developing the disorder accordingly to the composite risk score; 50 adolescents without a diagnosis of depression and at high risk of developing it, and 50 classified as low risk. Peripheral blood samples were collected from each adolescent to isolate nucleic acid for performing genome-wide gene expression analysis. The gene expression analysis was followed by the analysis of the genes differently expressed (DEGs) among the three risk groups as well as the pathways analysis to identify biological mechanisms underpinning the onset and the risk of depression.

The results from the genome-wide gene expression analysis with both microarrays and RNA-seq showed a possible modulation toward an activation of pathways associated with inflammation and immune system in adolescents with depression compared with their non-depressed peers. This result suggested that an activated status of inflammation and immunity might map the presence of depression in adolescents. On the other hand, a panel of pathways with a common biological pattern was not observed when comparing the non-depressed adolescents at high or low risk of developing MDD, and fewer biological differences were observed between these two groups, suggesting that no such stronger biological differences were detected within HR and LR groups.

The same analysis was also performed considering males and females separately, to investigate biological-sex driven differences in the pathways mapping adolescent depression. Overall, both males and female adolescents with depression showed an up-regulation of pathways associated with inflammation compared with both the non-depressed groups, similarly to what was observed in the results related to the entire cohort. However, inconsistent results were observed in boys with depression according to the two different techniques used. On the other hand, similarly to what observed for the entire cohort, no biological significant differences in males and females from HR and LR groups were detected.

A summary of the results corresponding to each aim in the paragraph "Aims and Hypothesis" can be found below.

<u>The first aim</u> was the identification of biological pathways mapping the presence and the risk of developing adolescent depression in Brazilian adolescents by using the microarray technique via Affymetrix Gene Atlas Platform. Being a hypothesis free approach, no *a priori* specific genes or pathways were predicted to be differently modulated among MDD, HR or LR adolescents. However, I predicted the existence of differences in terms of biological pathways differently modulated among the three groups. Indeed, I observed an up-regulation of inflammatory and immune system's pathways in adolescents with depression when compared with both risk groups, suggesting a possible role of inflammation as a characterizing factor of adolescent depression. On the other hand, I did not observe significant differences among the HR and LR adolescents, suggesting that biological differences were more evident in association with the presence rather than the increased risk of adolescent depression.

<u>The second aim</u> was the identification of differences underlying the presence of MDD and the risk of developing adolescent depression in Brazilian adolescents potentially driven by biological sex by using the microarray Affymetrix technique. Given the higher incidence of depression in females compared with males, I hypothesized that different pathways might be differently regulated in females and males with depression or accordingly to the risk. Indeed, similarly to the results observed for the entire cohort, a modulation toward an activation of inflammation resulted also when considering males and females separately, and the effect appeared to be more robust in males with depression rather than females. On the other hand, no significant biological differences were observed when comparing the risk groups, as previously described for the analysis on the entire cohort.

The third and the fourth aims were similar to the first two ones, but this time the hypothesis was focused on the results from the second genome-wide gene expression approach used, which was RNA Sequencing. Thus, the aims were the identification of biological pathways mapping the presence of MDD and the risk of adolescent depression in Brazilian adolescents, as well as identifying possible biological sex differences by using the RNA-Seq technique. Similarly to aims one and two, being a hypothesis free approach, no *a priori* specific genes or pathways were predicted to be differently modulated among the MDD, HR or LR adolescents or driven by biological pathways differently regulated among the three groups as well as differences driven by biological pathways differently regulated among the three groups as well as differences driven by biological sex.

Overall, an up-regulation of pathways associated with inflammation and immune system resulted in depressed adolescents compared with the HR group, whereas a less strong modulation was observed when compared the MDD group with the LR group. These results suggest a possible role of inflammation as a biological signature mapping the presence of depression in adolescents but not associated with the increased risk of developing the disorder, as no inflammation related pathways were observed when comparing HR and LR adolescents. Moreover, the stronger activation in MDD when compared with HR rather than when compared with LR, might suggest e role of inflammation in the onset of depression from a high-risk condition, as the MDD adolescents also met criteria for high risk of developing depression accordingly to the risk score.

When investigating the role of biological sex, inflammation-related pathways were upregulated in females with depression compared with HR females, whereas no such differences were observed in the male counterparts, suggesting this time a major effect of inflammation in females. Moreover, independently from biological sex, no major biological differences were observed in the comparison between the two risk groups.

# 5.2 Feasibility of conducting rigorous biological research for adolescent depression in under-represented and low-resource settings

A global challenge in mental health research is the development of biomarkers and endophenotypes that can accurately identify the risk for depression. Although technologies to develop comprehensive pictures of depression risk are widely available in HICs, there is limited opportunity to develop similarly comprehensive pictures in poorer settings, also due to limited equipment and qualified personnel. As part of the IDEA Project, assessing and understanding the feasibility of collecting biological samples in adolescents from Brazil was considered an important objective to open the opportunities of conducting biologically enriched studies in settings with cultural, social, and economical setting poorest than Brazil in the future (the so-called LMICs). Testing the feasibility of collection and handling of biological samples from adolescents in Brazil was considered an essential starting point for future studies in LMICs such as Nepal and Nigeria that were part of the project.

Moreover, assessing the quality of the samples collected was of paramount importance to ensure a good quality of the subsequent genome-wide gene expression analysis, which require a very good quality of RNA.

For the purpose of the study, the process of working alongside the Brazilian team to better adapt UK Standard Operating Procedure (SOP) to the local setting was proven an essential step to ensure feasibility of collection and handling of biological samples for the gene expression analyses. The quality checks analysis of the RNA samples showed that most samples had a RIN value higher than 8, indicating very good quality. The quality checks performed on the raw data from Affymetrix and NextSeq550

showed good quality runs, confirming that good quality of the starting RNA was a requirement for the subsequent analysis. My analyses and the work conducted as part of my doctorate clearly show feasibility of rigorous biological research for adolescent depression in under-represented and low-resource settings and support the importance of co-development of SOP with the local settings to ensure good quality of the biological samples for subsequent laboratory analyses. This approach and our findings support feasibility and importance of continuing and/or building capacity for future biological psychiatry research in LMICs such as Nepal and Nigeria.

#### 5.3 Transcriptional differences in MDD, HR and LR adolescents

The first results provided by the Affymetrix data are the lists of genes differently modulated in each of the three comparisons: MDD vs HR, MDD vs LR, and HR vs LR. As previously described in the Methods section, each gene list has been filtered for Fold-Change and p-values cut-offs, specifically FC  $\pm$ |1.2|, p<0.05, and q-value < 0.05 for both microarray and RNA-Seq techniques. In our research group, similar FC and unadjusted p-value cut-offs values were widely used for the microarrays analysis as indicative of biological significance for the identification of both genes significantly differently modulated as well as for the subsequent pathways analysis (Anacker et al., 2013; Borsini et al., 2018; Cattaneo et al., 2019; Cattaneo et al., 2018; Hepgul et al., 2016; X. Li et al., 2017). On the other hand, this was the first time that such cut-offs for the RNA-Seq were applied since this doctoral thesis represents the first time we did perform -omics analysis by using RNA-Seq. The data that will be discussed below were all generated by using the cut-offs values described, as already reported in the Results section.

In the following paragraphs I will discuss the genes differentially expressed (named DEGs) specifically by considering those surviving the cut-offs of p-value < 0.05 and FC  $\pm$ |1.2|. Specifically, I will discuss the overall number of DEGs for both techniques by focusing on differences and similarities between the different comparison. On the other hand, the DEGs also surviving the FDR correction (q-value < 0.05) will be discussed separately, as they represent a very small number and were identified only for RNA-Seq analysis and not for microarrays, as previously reported in the Results section.

For the microarrays analysis, in the comparison between adolescents with depression and HR participants I found 79 genes differently expressed, and 89.9% were upregulated in the MDD group compared with HR adolescents. In the comparison MDD *vs* LR, I found 23 genes differently expressed and again the majority (60.8%) were upregulated in the MDD group compared with LR. Lastly, only 11 genes were differently modulated in HR adolescents compared with the LR group, and 9 out of 11 genes were down-regulated in HR adolescents. By looking at these results, we can observe that the comparison MDD *vs* HR accounted for the highest number of DEGs, whereas the comparison HR *vs* LR accounted for the lowest. This result can be indicative of a higher variability in terms of gene expression in the depressed group compared with the risk groups, suggesting that a stronger biological difference might be attributable to the actual presence of depression rather than to the only risk of developing it.

On the other hand, when analyzing the microarray results separately for males and females, the differences in terms of DEGs was more robust, especially in the comparison of male adolescents with depression *vs* HR males which accounted for 592 genes differently expressed, whereas in the same comparison for the female counterparts the DEGs were only 42. This result might suggest a higher variability in terms of gene expression in males with depression compared with females with depression; however, to my knowledge no previous studies reported such similar differences in terms of DEGs in -omics approaches.

I observed differences within the comparisons also in terms of the number of genes up- or down-regulated. In the entire cohort, the comparison MDD *vs* HR and MDD *vs* LR showed a higher number of up-regulated genes (accounting for 89.9% and 60.8%

of the total, respectively), and similar results were observed also in the analysis in only males (90.4% and 80 % respectively) and females (71.4% and 68.6% respectively). On the other hand, the vast majority of DEGs in the comparison HR *vs* LR were downregulated, and this was observed in the entire cohorts (81.8%), in males (74%) and in females (81.4%). These results might indicate that the presence of depression is accompanied by changes in gene expression in adolescents, both males and females, as suggested by the very high number of up-regulated genes.

Regarding the number of DEGs from RNA-Seq, fewer differences within the comparisons were observed in terms of numerosity as well as general up- or down-regulation. In the entire cohort, 313 genes were differently expressed in MDD *vs* HR comparison and 55.3% were up-regulated in adolescents with depression. I then observed a higher number of DEGs in the comparison MDD *vs* LR, as 461 genes passed the cut-off values, and among them 44.7% were up-regulated in the depressed group, showing a different result compared to what I observed in the same comparison in the microarray results. Lastly, the comparison HR *vs* LR accounted for a lower number of DEGs, 192 of which 67.2% were down-regulated in the HR group.

When analyzing the RNA-Seq results divided by biological sex, I observed 310 DEGs in males with depression compared with HR, and 377 compared with LR. In the former comparison, the number of up- and down-regulated genes was almost identical, whereas in the latter the majority were up-regulated (62.9%). For the female counterpart, among the 399 DEGs in the MDD *vs* HR comparison, the majority was up-regulated (65.9%), whereas opposite results were observed in MDD *vs* LR which accounted for 471 DEGs and 55.6% were down-regulated. An opposite trend,

compared with microarray results resulted in the HR vs LR comparison in both males and females, as for both sexes I did not found a reduction in terms of numbers of DEGs compared with the other two comparisons. Regarding the direction of the gene expression, in males most genes were up-regulated in HR adolescents (around 60%) opposite to what was observed in the microarray results, whereas in HR females 60,9% of DEGs were down-regulated, accordingly to what previously observed for the microarray results.

### 5.4 Differences in DEGs identified by microarray and RNA-SEQ

Overall, I observed differences in the number of DEGs within the same comparisons in the two different -omics techniques. This difference is in line with the current knowledge about the comparability of Affymetrix and RNA-Seq, as similar results were already observed in literature.

A quantitative comparison of the relative raw expression profile of the common genes resulted from both platforms was computed by using SPSS software, and the results were reported in the results paragraph 4.5. Overall, the correlation coefficients were low when considering the entire panel of genes in common between the two techniques without applying any cut-offs value (ranging from 0.122 to 0.266). On the other hand, when considering only the genes who survived the cut-off value of unadjusted p-value lower than 0.05, the Spearman's coefficient was higher (0.709 for the MDD vs HR, and 0.761 for MDD vs LR), suggesting that the genes most significantly modulated and in common between the two platforms have a much higher correlation if compared with the total genes in common. Similar correlation coefficients were observed also in the study of Rao and colleagues, and further studies suggested such correlation index (Rao et al., 2018). These differences in the correlation results might be due to the intrinsic differences of the two techniques, and specifically to the limitations of the microarrays approach. However, the higher correlation that is observed only when comparing the genes more significantly differently modulated, might suggest that those genes could reasonably represent the strongest results, as not only in common between the two techniques but also highly correlated.

Moreover, in line with the results reported in this doctoral thesis, several studies reported higher numbers of genes detected as differently expressed in RNA-Seq compared with microarray (Munster SK, 2018; Perkins et al., 2014; Rao et al., 2018; S. Zhao, Fung-Leung, Bittner, Ngo, & Liu, 2014), especially for those that were down-regulated (S. Zhao et al., 2014).

As previously suggested, the reasons underpinning these differences lies in the intrinsic differences between the two techniques, that indeed highlighted the limitations of microarrays, which are mostly overcome by RNA-Seq. In line with the results presented in this doctoral thesis, previous studies showed that RNA-Seq is more sensitive in detecting genes with very low expression and more accurate in detecting expression of extremely abundant genes (S. Zhao et al., 2014). In contrast, microarrays measure the expression of thousands of genes in a sample by quantifying the hybridization of fragmented cDNA to a set of complementary probes specifically designed to detect a set of genes or transcripts. The two most significant drawbacks associated with microarrays are a non-specific binding and a signal saturation, which can negatively affect the detection of genes both highly and lowly expressed. The nonspecific binding leads to background signals which can prevent the detection of lowly expressed genes, while highly expressed transcripts may saturate the fluorescent signals, thus compromising their detection (Binder & Preibisch, 2005; Marioni, Mason, Mane, Stephens, & Gilad, 2008). On the other hand, RNA-seq does not present such disadvantages, and it is able to detect more DEGs than microarrays, explaining thus also the results presented in this doctoral thesis as well as those already published in the literature (S. Zhao et al., 2014). Furthermore, as the microarray technique is based on the binding of complementary cDNA fragments to specific probes on the

microarray itself, this approach is based on prior knowledge of the transcriptome and therefore microarrays can only interrogate a subset of known or predicted transcripts. Conversely, RNA-Seq does not need a priori knowledge of the transcriptome as it investigates the entire transcriptome, thus allowing the identification of more targets. The low correlation between Affymetrix and RNA-Seq observed in this doctoral thesis, might be explained also considering the observation of Perkins and colleagues. Specifically, they hypothesized that most of the genes differently expressed only in the microarray and not in the RNA-Seq might be false positive, as they had low FC values and thus the apparent significant change in expression might be due to nonspecific binding (Perkins et al., 2014; Z. Wang, Gerstein, & Snyder, 2009). Consequently, this drawback of the microarrays, together with the high background noise, might explain the low Pearson's correlations resulted when comparing the foldchanges of all the genes in common, as many of them presented a fold-change close to one, and thus they might be false positive. On the other hand, when considering only the genes most significantly modulated, the correlation coefficient is much higher, in line with previous literature studies.

As the RNA-Seq is more sensitive in detecting genes with very low expression and more accurate in detecting also extremely abundant genes, greater fold-change ranges can be detected in RNA-seq than in microarrays (Munster SK, 2018; S. Zhao et al., 2014), and this was observed also in the results of this doctoral thesis.

Overall, the results presented in this thesis showed a good correlation between the fold-changes of microarrays and RNA-Seq for the same genes when applying a p-value cut-off considering only the genes in common and most significantly differentially

expressed. However, both the data from this thesis (such as the correlation coefficient) as well as the literature demonstrated that RNA-Seq technique is more accurate, and it can provide a wider range of DEGs given the lack of disadvantages that were widely observed and described for the microarrays. Considering these results, the future analysis for the IDEA follow-up as well as the future -omics analysis that will be performed in our research group, will be conducted by using RNA-seq rather than microarrays, as it was widely observed to have less limitation and to be more accurate. Moreover, also the following discussion will be mainly focused on the results from the RNA-Seq, although also the microarrays results will be discussed given the good correlation observed for the most significant DEGs.

# 5.5 Transcriptional differences and focus on the top genes differently modulated in MDD, HR and LR adolescents

As already described in the results section, among the genes identified to be differently expressed based on the cut-off values of p-value < 0.05 and FC  $\pm$  |1.2|, none of those from the microarray analysis survived the FDR correction presenting a q-value < 0.05. On the other hand, some of DEGs genes identified from the RNA-Seq and based on the same cut-offs values previously described, survived the FDR correction and present a q-value < 0.05. Moreover, other DEGs from the RNA-seq results were shown to present a q-value < 0.1, which is a less strict cut-offs but already used in literature. In this paragraph, a brief discussion will follow to pinpoint possible roles of those genes presenting a q-value < 0.05 or a q-value < 0.1.

Before discussing the role of these genes, it is noteworthy to mention that such paucity of genes identified as differently expressed and that survived the FDR correction, is in line with other studies in literature, detecting few or no genes differently expressed in similar conditions. For instance, similar results were observed in the very recent study of Cole and colleagues published in 2021 (J. J. Cole et al., 2021). The authors performed RNA-Seq analysis on PBMC of 44 adult control individuals, 94 adult treatment-resistant depressed patients, 47 adult depressed treatment-responsive and 46 adult depressed untreated individuals; then, they performed differential expression analysis by using DESeq2 to characterize any differences between the healthy controls and each of the MDD groups. Their differential analysis showed only one gene to differ significantly (q-value < 0.01)

between HC and total MDD and none between HC and MDD sub-groups. Although their cut-off was tighter than the one used in this doctoral thesis, after investigating the distribution of the p-values among the different comparisons and by randomizing cases and controls and performing over representation analysis, they concluded that there was no justification for relaxing the p-value threshold in their data, and that there were no differences between control individuals and MDD groups. These results are comparable to previous transcriptomic studies in whole blood which also found no signature at adjusted p < 0.05 using larger sample numbers (Mostafavi et al., 2014). Moreover, other studies used different cut-offs values, ranging from p < 0.1 to p < 0.25(J. J. Cole et al., 2021).

Although only a few genes presented a q-value <0.05, for this discussion further investigations were performed to hypothesize their possible role in adolescent depression by considering the current literature. As previously mentioned, in this paragraph also the genes with a q-value < 0.1 will be described, as a significant difference in terms of q-value was observed between those genes and those with q-value >0.1.

Entire Cohort, MDD vs LR. In the analysis of the entire cohort of adolescents with depression versus LR adolescents, the gene NRCAM was down-regulated in the depressed group (FC -1.62, q-value 0.089). This gene encodes for the Neuronal Cell Adhesion Molecule, which is part of the Cell Adhesion Molecules (CAMs) family, transmembrane proteins located on the cell surface and involved in the binding with other cells (Walmod, Kolkova, Berezin, & Bock, 2004). CAMs are involved in several

vital processes controlling cell proliferation, activation, migration, and survival (McKeown, Wallace, & Anderson, 2013). Moreover, recent studies showed that CAMs play a role in several neurological and psychiatric diseases, such as Alzheimer's disease, schizophrenia, and depression (Brennaman & Maness, 2010; Sandi & Bisaz, 2007). CAMs were also shown to be involved in the inflammatory and immune response, suggesting a further role in depression (Lee et al., 2016). Specifically, NRCAM protein levels were investigated in depressed patients, showing heterogenous results. In line with the findings of this doctoral thesis, showing a down-regulation of NRCAM in adolescents with depression compared with LR non-depressed individuals, a down-regulation was shown in the CSF of depressed patients compared with healthy controls (Hidese et al., 2017). Moreover, pre-clinical studies showed that NRCAMdeficient mice exhibited depressive-like behavior (Aonurm-Helm et al., 2008), and chronically stressed rats showed a reduced NRCAM protein levels in the hippocampus (Venero et al., 2002). On the other hand, NRCAM was also shown to be up-regulated in plasma of depressed patients compared with controls (W. Liu et al., 2021) as well as in CSF of patients with unipolar depressive disorder (Poltorak et al., 1996). Consequently, further investigation might be needed specifically in blood samples of depressed patients, as most of the studies focused on CSF samples.

A further interesting gene is the Complement Component 4 Binding Protein Alpha (C4BPA), which was down-regulated in adolescents with depression compared with the LR group (FC -3.65, q-value 0.053). Complement is part of the human immune system that protects the body against the invasion and proliferation of various pathogens (Tichaczek-Goska, 2012). Accordingly, some researchers suggested that deficiencies in the complement classical pathway may be involved in autoimmune

related mechanisms that contribute to the onset of mental disorders. Specifically, within the complement system, some evidence indicated that dysfunction of the complement protein C4b may be involved in the alterations of the innate and adaptive immune systems in schizophrenia (Mayilyan, Dodds, Boyajyan, Soghoyan, & Sim, 2008). In line with the down-regulation observed in this thesis, the study performed by Focking and colleagues showed reduced levels of C4BPA protein in the plasma of individual at age 12 who reported psychotic experience at age 18 compared with control adolescents; on the other hand, in the same study other complement proteins were shown to be up-regulated in the same individuals (Focking et al., 2021). However, results regarding the role on C4BPA in schizophrenia were also inconsistent (S. Wang et al., 2015; Yue et al., 2011). On the other hand, few studies were conducted investigating the role of complement in depression. Indeed, reduced levels of C4BPA were associated with post-partum depression in the study of Mehta and colleagues (Mehta et al., 2021). Moreover, the complement factor H (CFH) was shown to confer susceptibility to depression in the Han Chinese population, as reported in the study of Zhang and colleagues showing reduced mRNA and protein levels of CFH in depressed individuals compared with controls (C. Zhang et al., 2016). On the other hand, Wei and colleagues showed increased levels of complement component 4 in peripheral blood of a cohort of adult Han Chinese patients with depression compared with controls as well as reduced levels after antidepressant treatment (Wei et al., 2018). Similar results were observed also by Kronfol and Housed, as increased levels of complement component 3 and 4 were measured in blood of patient with depression compared with control individuals (Kronfol & House, 1989) Hence, further investigation of the role of the complement system and C4PBA might shed light on its role in depression.

With regards to the other genes reporting a q-value < 0.1 PLS3, STRBP, and TBC1DH3, to the current knowledge no studies investigated their role in mental health disorders. The gene PLS3 encodes for the plastin 3 protein, also known as T-plastin or fimbrin. Studies showed that PLS3 knockout or mutation caused osteoporosis, whereas its overexpression induced osteoarthritis and several types of cancer. Moreover, the overexpression of PLS3 was shown to be protective in neuromuscular disorder, such as spinal muscular atrophy and amyotrophic lateral sclerosis (Wolff et al., 2021).

The gene STRBP encodes for the Spermatid Perinuclear RNA Binding Protein, a microtubule-associated RNA-binding protein. STRBP was shown to be mainly involved in spermatogenesis and sperm function, and to play a role in regulation of cell growth (Pires-daSilva et al., 2001).

Lastly, the gene TBC1DH3 encodes for the TBC1 Domain Family Member 3H protein, which acts as a GTPase activating protein for RAB5, a key factor in regulating early endocytosis (Hodzic et al., 2006).

<u>Males, MDD vs LR</u>. In the analysis of male adolescents, in the comparison MDD vs LR, the gene Cytochrome P450 Family 26 Subfamily B Member 1 (CYP26B1) was downregulated in the depressed group (FC -21.32, q-value 0.070). This gene encodes a member of the cytochrome P450 superfamily, that are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids, and other lipids. CPY26B1 is a critical regulator of all-trans retinoic acid levels by their specific inactivation, and this function was studied in pre-clinical studies in relation to depressive-like behavior. Knockdown of CP26B1 in the rats' nucleus

accumbens shell increased depression-related behavior, whereas decreased anxietylike behavior (Y. Zhang et al., 2019). Similarly, increased retinoic acid (RA) signaling reached by knocking down the RA degradation enzyme CYP26B1 within the nucleus accumbens shell increased cocaine-taking and -seeking behaviors in rats exposed to environmental enrichment (C. Zhang et al., 2016). Moreover, in this study environmentally enriched rats also showed a protective depression phenotype, therefore high RA signaling and thus reduced CYP26B1 levels (in line to the results of this doctoral thesis as well) may play a similar role in inducing depression-related behavior in this pre-clinical model. Another pre-clinical study showed that knockout of CYP26B1 in mice during postnatal life were associated with severe health problem and increased inflammation, via inducing an increase of all-trans retinoic acid which in turn triggered inflammation (Snyder et al., 2020).

The gene Defensin Alpha 1 (DEFA1) was up-regulated in male adolescents with depression compared with the LR counterpart (FC 15.06, q-value 0.080). The protein defensin alpha 1 is found in the microbicidal granules of neutrophils and plays a role in phagocyte-mediated host defense. To my knowledge, no studies investigated DEFA1 in association with depression; however, its up-regulation in adolescents with depression represents an interesting results as this protein was strongly associated with inflammation and immune response, as it was shown to be abundant in the granules of neutrophiles as well as to be expressed by platelets and megakaryocytes (Valle-Jimenez et al., 2020). Moreover, the defensin family was previously associated with schizophrenia, as DEFA4 and DEFA1b were shown to be up-regulated in patients with schizophrenia compared with controls (Gardiner et al., 2013).

With regards to the other genes reporting a q-value < 0.1 COCH, and SRGAP1, to my knowledge no studies investigated their role in mental health disorders.

The gene COCH encodes for Cochlin, a protein which was shown to be expressed in the cochlea and vestibule of the inner ear, as well as in lymphoid organs such as lymph and spleen. Cochlin functions are still poorly understood, however it was shown to play a role in various pathologies of the inner ear and eye (Rhyu, Bae, Jung, & Hyun, 2020; Shiiba et al., 2012).

The SRGAP1 gene encodes for the SLIT-ROBO Rho Gtpase Activating Protein 1, which is a GTPase activator that was observed to negatively regulate neuronal migrations (Tcherkezian & Lamarche-Vane, 2007).

<u>Females, MDD vs HR.</u> In the comparison MDD vs HR females, only the Chorionic Somatomammotropin Hormone 2 (CSH2) gene presented a q-value < 0.1 However, to my knowledge no studies investigated its role in relation to contexts relevant to this doctoral thesis or in relation to depression. Indeed, the CSH2 protein is produced only during pregnancy and it was shown to be involved in the stimulation of lactation, fetal growth and metabolism (Handwerger & Freemark, 2000).

<u>Females, HR vs LR</u>. In this comparison, the most interesting gene with a q-value < 0.1 is the Leukocyte Immunoglobulin Like Receptor A5 (LILRA5), which was downregulated in HR females compared with the LR counterpart (FC -1.66, q-value 0.091). The interest toward this gene is due to its major role in inflammation as it was shown to induce the production of several cytokines, such as IL-10, and its mRNA is regulated by pro-inflammatory cytokines such as TNF and IFN- $\gamma$  (Mitchell, Vaze, & Rao, 2009). Moreover, LILRA5 was shown to be a possible biomarker in predicting lithium response in males with bipolar disorder (Eugene, Masiak, & Eugene, 2018).

With regards to the other genes reporting a q-value < 0.1 TACSTD2, TBC1D3, SOX5, and DET1, to the current knowledge no studies investigated their role in mental health disorders or possibly associated with the context of this doctoral thesis.

The gene TACSTD2 encodes for the Tumor Associated Calcium Signal Transducer 2 protein, which was shown to be a carcinoma associated antigen (Linnenbach et al., 1993) and it was shown to be differently expressed in several cancers (Shvartsur & Bonavida, 2015),

The SOX5 gene encodes for the Sry-box Transcription Factor 5, which is a member of the SOX family. These proteins are a group of transcription factors deeply involved in tumorigenesis and cancer; SOX5 was shown to be involved in controlling the cell fate and differentiation in cancer (Grimm et al., 2020).

Lastly, the gene DET1 encodes for Partner Of COP1 E3 Ubiquitin Ligase and it was shown to promote ubiquitination and degradation of the protooncogenic transcription factor c-Jun (Wertz et al., 2004).

### 5.6 Biological pathways differently modulated between MDD and HR adolescents: focus on inflammation and immune system related pathways

The major finding from the pathways analysis performed on the genes differently expressed in the adolescents with depression compared with their peers with high risk of developing the disorder, was an enrichment in several biological signatures associated with inflammation and immune system. This finding was consistent in the analysis considering both the entire cohort and males or females separately.

When considering the comparison MDD vs HR in the entire cohort, several pathways were identified as being significantly modulated, and some of them were in common between the two platforms and shared common genes. Among the most interesting pathways that were identified: the role of the Hypercytokinemia/Hyperchemokinemia in the Pathogenesis of Influenza, the Interferon Signaling, the Complement System, the Activation of IRF by Cytosolic Pattern Recognition Receptors, and the Acute Phase Response Signaling. It is evident that all these pathways are associated with inflammation and immune response, suggesting a possible inflammatory landscape as underpinning the differences between the two groups. Moreover, among these pathways, the one related to the role of the Hypercytokinemia/Hyperchemokinemia in the pathogenesis of Influenza shared a positive z-score in both platforms, indicating its up-regulation in adolescents with depression compared with HR adolescents, and thus representing a common result suggesting a possible involvement of inflammation in adolescent depression.

The Interferon Signaling pathway and the Complement System pathway presented a positive z-score in the RNA-Seq results ,and the DEGs associated with these pathways and in common between the two platforms share a common direction, suggesting though a consistent possible role of both pathways as mapping the presence of adolescent depression, thus strengthening the hypothesis of a modulation of the inflammatory system in MDD compared with HR adolescents.

The link between inflammation and MDD is supported by gene expression studies on mRNA transcripts and, in line with the data shown in this doctoral thesis, an upregulation of genes involved in the Interferon signaling pathways was observed in the central nervous system and in peripheral blood of patients with depression (Ciobanu & Baune, 2018; Jansen et al., 2016; Mostafavi et al., 2014). Previous literature observed significant association between depression and Interferon  $\alpha/\beta$  signaling pathways' genes in large population-based sample (Ciobanu & Baune, 2018; Magri et al., 2021). Type I Interferons accounts for IFN- $\alpha$  and IFN- $\beta$ , the main cytokines of the innate immune system that respond primarily to viral infection and to malignant cells. A chronic activation of this signaling cascade was shown to play a role in autoimmune and neuroinflammatory disorders. Moreover, the activation of Interferon pathway in depression is consistent also with previous literature, as it is well known that patients receiving IFN-I therapies (IFN- $\alpha$  for hepatitis C or IFN- $\beta$  for multiple sclerosis) often develop clinically significant depression (Hepgul et al., 2016; Hepgul et al., 2018).

The complement system pathway was shown to be up-regulated in adolescents with depression compared with the HR group. The role of complement signaling was already discussed in the previous chapter, as the C4BPA gene was reported to survive the FDR correction and to be down-regulated in adolescents with depression

compared with the LR group. Although few studies investigated the role of complement in depression, given its role in activating the inflammatory response and considering the link between inflammation and depression, it is possible to suggest that its activation in adolescents with depression might be part of the general inflammatory trend suggested also by the previously discussed pathways. Interestingly, the complement system was shown to influence the Interferon signaling, as the complement component 3 was shown to mediate systemic IFN- $\beta$ -induced changes in neuroinflammation and behavior of mice subjected to unpredictable chronic mild stress (Tripathi et al., 2021). Moreover, a correlation was shown also in human, as increased expression levels of IFN-I stimulated genes and significant correlation with complement 3 and inflammatory markers were observed in the prefrontal cortex of suicide subjects with depression (Tripathi et al., 2021).

Regarding the pathway of the Role of Hypercytokinemia/hyperchemokinemia in the pathogenesis of Influenza, which presented a positive z-score and thus it is suggested to be up-regulated in MDD condition, to my knowledge, no studies investigated this specific pathway in the context of mental health disorders such as depression, but they all focused on its activation in virus response and influenza. However, a great body of studies focused their attention on the role of cytokines in depression and increased levels of cytokines were widely showed in depressed patients compared with control individuals. In adulthood, higher levels of peripheral inflammatory cytokines were widely observed in patients with depression (Kohler et al., 2017; Leighton et al., 2018; Osimo et al., 2019; Osimo, Pillinger, et al., 2020). For example, increased levels of pro-inflammatory cytokines such as IL-6, IL-10, IL-12, IL-13, IL-18, and TNF- $\alpha$  were observed in serum and plasma levels of depressed patients compared

with healthy controls, and increased levels of IL-6 and TNF- $\alpha$  were observed in CSF and *post-mortem* brain tissue of adults with depression compared with healthy controls. (Enache, Pariante, & Mondelli, 2019). Moreover, the hyperactivation of the immune system were considered as a risk factor for the development of depression (Raison et al., 2006). Increased levels of pro-inflammatory cytokines were observed also in adolescent individual with depression (D'Acunto et al., 2019; Khandaker et al., 2014; G. E. Miller & Cole, 2012). The meta-analysis of D'Acunto and colleagues showed higher TNF- $\alpha$  levels in adolescents aged up to 18 years old with depressive disorders versus control subjects (D'Acunto et al., 2019), and higher levels of CRP and IL-6 in adolescents with depression compared with their non-depressed peers were reported in the meta-analysis of Colasanto and colleagues (Colasanto et al., 2020). Similarly to adulthood, increased cytokines levels and in general increased inflammation was related to higher risk of developing depression also in adolescents. For example, high levels of IL-6 were observed to be associated with greater depression risk (Khandaker et al., 2014), as well as increases in TNF- $\alpha$  were shown to predict an increase in depressive symptoms (Moriarity et al., 2020). Moreover, increased inflammation was observed to be associated with increased risk of MDD when associated with early in life trauma (Z. Zajkowska, Walsh, et al., 2021).

Thus, these results suggested that the hyperactivation and secretion of proinflammatory cytokines were widely associated with depression, and the upregulation of such pro-inflammatory pathways showed in adolescents with depression compared with their HR peers is in line with the previous literature, suggesting thus a possible role of pro-inflammatory cytokines in mapping the presence of depression also in adolescents from LMICs.

Lastly, although no z-score was detected but given the previous results, it might be reasonable to believed that both the Activation of IRF by Cytosolic Pattern Recognition Receptors and the Acute Phase Response Signaling pathways could play a role in mapping adolescents with depression compared with non-depressed HR controls. Accordingly to the literature, both pathways plays an active role in inflammatory response as well as in depression. For instance, proteins involved in the acute phase response were shown to be up-regulated in MDD patients compared with controls (Q. Wang et al., 2019). One of the most studied among the acute phase proteins is the C-Reactive Protein (CRP), which is induced by the IL-6 action on the gene responsible for the transcription of CRP during the acute phase of an inflammatory process (Gabay & Kushner, 1999). CRP was shown to play a role in the recognition of pathogens and damaged cells and in activating the component pathways (Black, Kushner, & Samols, 2004). Peripheral blood CRP levels was also widely used to measure systemic inflammation, and different levels of CRP were established and widely used also in clinical trials using anti-cytokines therapies for MDD, in order to select depressed patients based on elevated levels of peripheral blood CRP concentrations (A. H. Miller, Haroon, & Felger, 2017). Moreover, CRP levels were also associated with resistance to antidepressant treatments, as elevated blood levels of CRP were observed in TRD patients with depression compared with both treatment-responsive and untreated patients (Chamberlain et al., 2019). As mentioned also in the studies cited before, increased levels of CRP were showed in blood of adult individuals with depression as well as in adolescents (Felger et al., 2020; Howren, Lamkin, & Suls, 2009; Jung & Kang, 2019), and increased levels of CRP were also associated with increased risk of developing depression (Osimo, Stochl, et al., 2020). Consequently, given the evidence

of increased CRP levels in association with depression, the identification of a possible up-regulation of the Acute Phase Response Signaling pathway in MDD vs HR adolescents showed in this doctoral thesis is in line with the literature, suggesting thus a possible role of inflammation and immune system as biological signatures characterizing adolescent depression in this Brazilian cohort of adolescents.

## 5.6.1 The role of biological sex on the inflammatory pathways activated in MDD compared with HR adolescents

The reason behind investigating both genes differentially expressed and the related pathways by considering males and females separately lies in the well-known difference in the incidence of depression in males and females. Therefore, I hypothesized that differences in the pathways underlying the presence of depression might be associated with biological sex.

The results of the pathways analysis from the comparison MDD *vs* HR in both males and females showed interesting and unexpected results, together with discrepancies among the two different techniques used.

The pathways analysis in females with depression compared with the HR counterpart showed very similar results to what I observed in the entire cohort. Among the pathways observed to be significantly modulated in females only, four of them were also observed in the analysis in the entire cohort previously described as well in common between the two -omics approaches; specifically they are: the Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of Influenza, the Activation of IRF by Cytosolic Pattern Recognition Receptors, the Interferon Signaling, and the Acute Phase Response Signaling. As discussed in the previous section, all these

pathways seem to be connected with inflammation, and their positive modulation in females with depression compared with HR females is consistent with the results observed for the entire cohort. Thus, these results might suggest that females with depression presented an up-regulation of pathways associated with inflammation, and this is in line with previous studies in literature showing increased levels of inflammation and pro-inflammatory cytokines in females with depression compared with control female individuals (Henje Blom et al., 2012; Pallavi et al., 2015).

On the other hand, the results in males are of more difficult interpretation given the fact that the two platforms showed conflicting results. The pathways analysis on DEGs from microarrays show a very robust modulation towards activation of inflammatory and immune system mechanisms in males with depression compared with HR peers, thus showing consistent results with the entire cohort. In contrast, no such inflammatory pattern resulted from the DEGs from RNA-Seq: the pathways resulted to be differently modulated in males are mostly related to cell-cycle and presented a very heterogenous biological profile. These discrepancies are likely attributable to the intrinsic differences between microarray and RNA-Seq, as previously described in the paragraph 5.3. Thus, it is possible that the inflammatory activation in males with depression shown by Affymetrix results might be less prominent than the one observed in females, and thus it was not replicated in the RNA-Seq data.

Overall, differently to what initially hypothesized, no specific or uniquely sex-related pathways associated with depression were shown in males or females separately compared with the entire cohort. However, the consistent modulation of inflammatory pathways in females and the inconsistent results in males might suggest

that the modulation of such inflammatory and immune system related pathways observed in the entire cohort could be driven by females.

To conclude, a modulation towards activation of inflammation-related pathways in adolescents with depression compared with their non-depressed HR peers, represents an important finding of this doctoral thesis. It is noteworthy to remember that also adolescents with depression were identified as having high risk of developing the disorder accordingly to the risk score (Kieling et al., 2021), thus the only difference between the MDD and HR group is the current diagnosis of depression for the former. This represents an important point as it may suggest that inflammation might be able to map the presence of depression in adolescents classified as having high risk of developing the disorder.

Acknowledging the current literature, the role of inflammation in the pathophysiology of depression in adolescents was less studied than in adults, despite the fact that adolescence represent a critical temporal window for both the onset of depression as well as for the major changes faced by the immune system, including reduction in lymphatic tissue size and changes in sex hormones that affect the release of cytokines (Osimo, Stochl, et al., 2020; Toenders et al., 2021). Nevertheless, the general pattern of modulation of inflammation in adolescents with depression showed in this doctoral thesis is consistent with most studies conducted so far investigating the role of inflammation in adolescent depression. Indeed, as previously shown, increased levels of pro-inflammatory cytokines were observed in adolescents with depression compared with controls (Gabbay, Klein, Alonso, et al., 2009; Gabbay, Klein, Guttman, et al., 2009; Kautz et al., 2020; Khandaker et al., 2014; Rengasamy et al., 2021). On the

other hand, further studies did not find any correlation between inflammation and depression in adolescents (Chaiton, O'Loughlin, Karp, & Lambert, 2010; McDade, Borja, Adair, & Kuzawa, 2013; Reid et al., 2020).

However, given the fact that the results of this doctoral thesis are part of the IDEA project which aims to identify pathways associated with adolescent depression in LMICs (as Nepal and Nigeria), it is noteworthy to acknowledge and discuss that very few studies were so far conducted in LMICs. In the study of Perez-Sanchez investigating depression in a cohort of 14-19-years-old in Mexico City, increased levels of pro-inflammatory cytokines were observed in depressed individuals compared with controls (Perez-Sanchez et al., 2018). In contrast, no increased inflammation was shown in two different studies investigating community-based adolescent depression in Philippines and Chile (McDade et al., 2013; Reid et al., 2020). An interesting explanation of such results, which are opposite to most of other studies conducted in HICs, was that chronic inflammation levels might be lower in environment characterized by higher prevalence of infection disease, such as the Philippines (McDade et al., 2013).

Hence, the results of this doctoral thesis might suggest that inflammation could be considered as a biological pathways mapping depression in those adolescents who were already classified as having high risk of developing the disorder accordingly to the risk score. It is important to acknowledge that the risk score was based on sociodemographic variables that in turn accounted for diverse environmental risk factors, so it is reasonable to believe that the association of both environmental – such

as childhood trauma or parental relationship - and biological risk factors – such as inflammation, can be suggested to play a common role in the risk of developing depression, and that can in turn be used for the prediction of the risk of developing adolescent depression. This is in line with the results of the systematic review conducted in the context of the IDEA project by our group, which showed an increased association of inflammation with the onset of MDD in adolescence, but particularly in the context of early life stress (Z. Zajkowska, Walsh, et al., 2021). The link between early in life stress and biological changes leading to vulnerability to develope MDD in adults was widely reported (Baumeister, Akhtar, Ciufolini, Pariante, & Mondelli, 2016; Heim & Nemeroff, 2001), and a mediation model was proposed to explain these findings, suggesting the hyperactivation of the sympathetic nervous system as the mediator between the experience of early in life stress and the activation of the inflammatory system which leads to the onset of depression (V. Mondelli & Vernon, 2019). However, this association was also explained by a moderation model, as Miller and colleagues showed that higher experiences of childhood trauma were associated with higher inflammatory levels in individual with depression, suggesting thus that increased inflammation was only associated with depression in adolescents exposed to childhood adversity (G. E. Miller & Cole, 2012). Therefore, it is reasonable to believe that considering multiple risk factors, such as environmental risk factors (e.g., childhood trauma) and biological markers (e.g., inflammation) might provide a higher predictive power as well as might help in the development of prevention strategies to modify trajectories from the experience of early adversities to the development of depression during adolescence.

### 5.7 Biological differences between MDD and LR adolescents

One of the innovative aspects of using the IDEA-RiSCo cohort is that it does not assume that adolescents without depression constitute a homogenous group. Most of the currently available mental health samples compare adolescents with depression *vs* adolescents without depression. However, adolescents without depression may have several risk factors that make them likely to develop a disorder in the future, leading to a high heterogeneity of findings in these studies. Comparing adolescent with depression separately with HR adolescents and then with LR adolescents allows us to identify potential pathways linked to development of depression *vs* pathways associated with presence of risk factors.

The biological pathways analysis performed on the DEGs from the comparison of adolescents with depression and LR adolescents in the entire cohort, showed the modulation of pathways associated with inflammation: the role of the Hypercytokinemia/hyperchemokinemia in the pathogenesis of Influenza, the Interferon Signaling, the Osteoarthritis Pathways, and the Complement System. The first three pathways were reported to have a positive z-score accordingly to RNA-Seq, indicating their up-regulation in adolescents with depression compared with the LR group.

The role of the Hypercytokinemia/hyperchemokinemia in the Pathogenesis of Influenza, the Interferon Signaling, and the Complement System pathways were already observed to be activated also in adolescents with depression compared with the HR. An enhance activation of inflammation in adolescents with depression also when compared with LR strengthens the hypothesis that inflammation could map the presence of depression in adolescents

Moreover, in the pathways analysis resulted from RNA-seq, it is interesting to notice that the Calcium Signaling and the Glutamate Receptor Signaling pathways were down-regulated in adolescents with depression. Both these pathways were previously associated with stress-related disorders and depression (Deutschenbaur et al., 2016). Calcium signaling pathways, together with the MAPK signaling, were observed to be down-regulated in the nucleus accumbens of rats exposed to chronic-mild stress and that develop a depressive like-behavior, whereas the up-regulation of this pathway was shown to be associated with resilience to depression (Si, Song, Sun, & Wang, 2018). Thus, the down-regulation of this pathways in adolescents with depression shown in this doctoral thesis is in line with the literature's results.

Alterations in the glutamatergic neurotransmission were previously observed in depression (Niciu, Ionescu, Richards, & Zarate, 2014), and alteration of glutamate levels in brain regions of patients with depression were observed by using magnetic resonance spectroscopy (MRS), although heterogenous findings were observed, as both an increase in brain glutamate in the basal ganglia as well as a decrease in glutamate levels were reported in depressed patients (Haroon & Miller, 2017; Kondo et al., 2011; Yuksel & Ongur, 2010). Indeed, the role of glutamate in depression was also shown by the antidepressant effects of the glutamatergic receptor NMDA antagonist Ketamine (Nikkheslat, 2021). Interestingly, inflammation was proposed as a possible mechanism responsible for the alterations of the glutamate system in depression (Haroon & Miller, 2017). Specifically, inflammatory process were shown to impact several aspects of glutamate neurotransmission, including alterations in the glutamate release and re-uptake mechanisms, and activation of metabolic pathways

involving the enzyme IDO and the KYN pathway, that can produce neuroactive metabolites which can in turn affect glutamate metabolism (Haroon & Miller, 2017). A correlation between inflammation and the KYN pathways was observed also in the study of Haroon and colleagues, showing that individuals with depression and increased levels of plasma inflammatory markers and KYN metabolites showed an increase in depressive symptom severity, anhedonia, and treatment non-responsiveness (Haroon et al., 2020). To note, it is not unusual to find such signaling pathways as differently modulated in peripheral tissue such as blood, as 18 known subunits of the ionotropic glutamate receptors were found to be expressed in human peripheral blood mononuclear cells (Bhandage et al., 2017).

Thus, it is possible to suggest that impairment in the glutamate transmission might represent an important difference mediating the biological differences between HR adolescent with a current diagnosis of depression and their peers with a low risk of developing depression. My data are in line with the current literature suggesting that an imbalance in the glutamatergic transmission together with an increased activation of inflammation might have a role in adolescent depression (Haroon & Miller, 2017; Haroon et al., 2020; Kadriu et al., 2019; Sanacora, Treccani, & Popoli, 2012).

## 5.7.1 The role of biological sex on the pathways differently modulated in MDD compared with LR adolescents

When considering males and females separately, the results presented some discrepancies when comparing the two -omics approaches. Affymetrix pathways analysis showed the up-regulation of signatures associated with inflammation in both males and females with depression, whereas the biological signatures resulted from

RNA-Seq analysis did show a more heterogenous picture of pathways in males and females with depression. Specifically, in the MDD vs LR comparison in males from the RNA-Seq, most of the pathways differently regulated were mainly associated with the cell cycle. On the other hand, the same comparison in females resulted in some pathways related to inflammation, although the z-score direction was more heterogeneous. For example, I observed a negative z-score in the STAT3 pathways, CDK5 signaling, and PAK Signaling, indicating their down-regulation in females with depression compared with LR; on the other hand, a positive z-score resulted for the Phagosome formation and Natural Killer Cell Signaling pathways. All these pathways were shown to be associated with inflammation, thus their different modulation contributed to the lack of a general trend toward an up-regulation or down-regulation of inflammatory related pathways as I observed in the MDD vs HR comparison. These discrepancies might be due indeed to the different -omics techniques which were used, and thus to the different DEGs detected by the two platforms. However, these differences might strengthen the hypothesis that inflammation might map the presence of depression mostly when comparing depressed and non-depressed adolescents both classified as having high risk of developing MDD.

# 5.8 Biological signatures associated with the risk of developing depression in adolescents without depression (HR vs LR)

As previously described, the IDEA-RS was developed based on eleven sociodemographic variables to distinguish between those adolescents with higher risk of developing depression and those with a lower risk. The diagnosis of depression was assessed after the risk score assessments, that is why all the adolescents with depression are also classified as having high risk of developing MDD. Thus, HR and LR adolescents represent in a way the control individuals with different risks of developing MDD accordingly to sociodemographic variables. One of the aims of this doctoral thesis was to investigate possible biological pathways associated with a higher or lower risk of developing depression, to possibly pave the way to preventive strategies as well as better dissecting vulnerability and resilience signatures in adolescents.

The results from the pathways analysis showed very heterogenous results, meaning that not a specific unique biological pattern of signatures was identified to be differently modulated between HR and LR. These results might also be related to the very low correlation between DEGs resulted from the comparison of the two techniques. Indeed, differently from the good correlation observed in the comparison MDD vs HR and MDD vs LR, for the HR vs LR comparison the Person's correlation coefficient was low even when considering the common genes most significantly modulated. This might suggest that the biological differences between non-depressed adolescents classified for different degrees of risk for depression could be less evident and detectable, as it will be discussed at the end of this paragraph.

The pathways resulted from the microarray data did not present a positive or negative z-score, both when considering the entire cohort or males and females separately. When considering the pathways resulted from the entire cohort, all the signatures are related to the degradation of neurotransmitters, such as Melatonin degradation, Tryptophan degradation, Noradrenaline and Adrenaline degradation, Serotonin degradation. However, given the absence of a z-score and the fact that all those pathways were identified by IPA as associated with a single differently expressed gene (SMOX), any conclusion may be too speculative. Similarly, no positive or negative z-score were identified also when looking at males and females separately.

When looking at the pathways analysis resulted from RNA Sequencing, in the entire cohort most pathways are down-regulated in HR adolescents compared with the LR group. The functional profile of these pathways is extremely heterogenous as they covered very different molecular mechanisms, such as cell communication and cardiovascular related pathways.

On the other hand, interestingly the same comparison in females resulted in some pathways ascribable to inflammation, although the z-score direction was more heterogeneous. For example, I observed a negative z-score in the Inflammasome pathways and in TREM1 Signaling indicating their down-regulation in HR females compared with LR, whereas a positive z-score resulted for STAT3 Pathways; lastly, IL-10 Signaling was identified as associated with the DEGs but the direction of the modulation (z-score) was not detected. The Inflammasome pathways (Strowig, Henao-Mejia, Elinav, & Flavell, 2012), TREM1 (DiSabato et al., 2021) and STAT3 pathways (Kong et al., 2015) were shown to be associated with inflammation, thus

their different modulation contributed to the lack of a general trend toward an activation or inactivation of inflammatory related pathways.

Lastly, in the males' analysis, the results were still very heterogenous. However, I observed a small up-regulation of the Leukocyte extravasation signaling in HR males compared with the LR counterpart, indicating thus a minor modulation of inflammation in HR males compared with females.

To conclude, it seems that the differences between HR and LR did not follow a unique and evident pattern as observed for the other comparisons, indicating thus that my analysis did not pinpoint strong and robust biological differences accordingly only to the risk of developing depression. This does not mean that the risk score is not able to detect biological differences based on the sociodemographic variables, rather that this might partly reflect the heterogeneity of the IDEA-RS, as this risk score included eleven different sociodemographic variables and different environmental risk factors. Similarly to the results found in this doctoral thesis, no differences in cytokines levels in plasma were detected between the same HR and LR groups (data submitted for publication, part of the IDEA project), whereas differences were observed in the levels of some cytokines in adolescents with depression compared with the risk groups. Nevertheless, functional MRI analysis conducted in the same IDEA cohort showed differences between HR and LR adolescents (Yoon et al., 2021). In this study, whole brain analysis found reduced reward-related activity in the lateral prefrontal cortex of patients and HR adolescents compared with LR adolescents. Compared with LR adolescents, HR and adolescents with depression showed reduced threat-related left amygdala connectivity with thalamus, superior temporal gyrus, inferior parietal gyrus,

precentral gyrus, and supplementary motor area (Yoon et al., 2021). Thus, these diverse results could suggest that different approaches for investigating the biological differences between HR and LR might be implemented and can represent a future direction, even considering the heterogeneity of the IDEA-RS.

## 5.9 Strength and Limitations of this doctoral thesis

One strength of this doctoral thesis is indeed the uniqueness of the IDEA-RiSCo. This cohort does not assume that adolescents without depression constitute a homogenous group; therefore, using a risk score to stratify for risk of future depression allowed the recruitment of two groups of adolescents without depression with different risk of developing depression, as these adolescents may have several risk factors that make them more or less likely to develop the disorder in the future. Indeed, this represent a unique strength, since most of the currently available samples from patients with mental disorders typically compare cases and non-cases, where the latter are defined only by lack of a current psychiatric disorder but not also for a possible risk of developing the disorder in the future. This allowed a more thorough investigation of biological mechanisms associated with depression which may depend or not on sociodemographic risk factors.

A second strength is represented by the fact that this doctoral thesis, as part of the IDEA project, aims to focus also on adolescents living in LMICs, who account for about 90% of adolescents worldwide. Indeed, the approach adopted for investigating adolescent depression in Brazil was aimed to develop strategies to be implemented and used also in LMICs which are part of the IDEA project, such as Nepal and Nigeria. This represents a strength as most of the research on depression during adolescence was conducted in cohorts from Europe and USA, highlighting a significant gap in the knowledge of biological signatures that could help in explaining how depression develops in adolescents in LMICs, where the psychosocial environment often differs from HICs.

A third strength is represented by the hypothesis-free approach used for the investigation of the biological mechanisms underlying the presence of depression and the different risk of developing it. The use of a genome-wide gene expression approaches allowed the study of such biological pathways by investigating the entire transcriptome, without *a priori* biased hypothesis and allowing thus to identify biological signatures or pattern never studied before.

However, this doctoral thesis has also some limitations. Firstly, the genome-wide gene expression techniques used are different and differences in terms of genes differently expressed were observed. Although a good correlation was observed when considering the DEGs most significantly modulated in both the two platforms, differences in terms of DEGs were observed, together with a very small number of genes surviving the FDR correction. For these reasons, it was not possible to center the main focus of the investigation and of the discussion on specific DEGs, but the attention was rather aimed on the biological pathways differently modulated in each comparison. The results in terms of both DEGs and pathways analysis, together with the advantages and disadvantages of both techniques that were previously explained in the discussion section, lead us to consider the RNA-Seq as the most valid -omic technique to be used for future studies, such as the 3-years follow up of the present IDEA study.

Secondly, this is a cross-sectional study, so to date it is not possible to suggest whether the biological signatures identified in the HR group will predict the development of depression later during adolescence. Consequently, it would be important to followup the participants to understand whether HR adolescents will develop depression or

not and therefore to identify vulnerability mechanisms and related biomarkers associated with the risk of developing MDD. To this point, it is possible that some adolescents in the HR group will be resilient and will not develop depression, as it is well-known that individuals exposed to risk for developing depression – such as early in life stress- might not end up in developing the disorder. Therefore, identifying adolescents who are resilient to depression even though classified as having a high risk, might represent an important starting point for investigating the biological pathways underlying resilience to depression. However, this limitation have already been acknowledge as a follow-up study, called IDEA-Flame, is ongoing (Valeria Mondelli et al., 2021). In the IDEA Flame study, the same adolescents are undergoing a three-years follow-up, and the blood sample collection as well as the clinical evaluation is currently ongoing. We plan to perform RNA-Seq analysis on blood samples, to identify possible biological mechanisms that lead adolescents from a condition of risk to the current presence of MDD. Moreover, we will be able to identify those adolescents who did or did not developed depression accordingly to their risk score, and thus investigate biological mechanisms associated with vulnerability and resilience to depression.

A third limitation is represented by the IDEA risk score. Specifically, although it was validated to predict depression (Rocha et al., 2021), it was also shown to predict the development of other psychiatric disorders, albeit with somewhat lower accuracy. For this reason, future longitudinal studies are needed to examine whether the observed biological signatures 1) predict the development of depression, 2) whether their predictive accuracy is greater for depression than other types of mental disorders, and

3) whether there are any differences in the observed biological signatures in earlier onset versus later-onset MDD.

Lastly, the IDEA risk-score was validated in HIC setting as well as in LMIC countries such as Nepal and Nigeria. The validation shown good discriminative values in both settings; however, adjustments were made in order to apply the risk factors in such different settings. This might represent a limitation as the IDEA-RS must be adjust accordingly to the different cultural, economic, and social background of the populations.

## 5.10 Identifying biological signatures underlying the presence of depression or the risk of developing the disorder – Clinical implications and future directions.

In my doctoral thesis, I identified that adolescents with depression showed an enrichment in inflammation and immune system related pathways compared with adolescents without depression. Furthermore, the results might also suggest that biological sex could play a role in modulating the pathways differently regulated among adolescents with and without depression, and specifically the modulation of inflammatory pathways seems to be more pronounced in females rather than in males. Lastly, I did not identify a panel of pathways differently modulated between HR and LR adolescents without a diagnosis of depression.

This doctoral thesis has the advantage of leveraging on a unique risk-stratified cohort of adolescents and of addressing the issues of comparing adolescents with depression with a potentially widely heterogenous sample of controls but stratified for risk of developing the depression accordingly to sociodemographic variables. Understanding the biological signatures involved in the presence or in the risk of adolescent depression will help to better identify adolescents at higher risk of developing depression at an early stage and potentially act before the onset of the symptomatology, by pinpointing potential key therapeutic targets to prevent the onset of adolescent depression worldwide. In this context, a longitudinal follow-up is needed to specifically identify mechanisms and trajectories leading from a risk of developing depression to the actual presence of the disorder. However, considering the follow-up study that is currently ongoing, it is reasonable to hypothesize that the

identification of differently regulated biological pathways might be useful in order to improve the identification of adolescents at risk at an early stage, to support targeted prevention interventions, and to better treat adolescent depression.

These steps are extremely important to improve the knowledge of adolescent depression and contribute to the development of effective early interventions that would potentially reduce the burden of depression in adolescence.

## 5.11 Conclusions

To conclude, I identified inflammation and immune system as leading biological pathways mapping the presence of adolescent depression in a cohort of 14-16 yearsold in Brazil. The modulation toward the up-regulation of inflammatory and immune system pathways in adolescents with depression resulted to be more evident when comparing adolescents with depression with the HR group, and this might represent an important observation as both depressed and HR adolescents are classified at high risk of developing MDD accordingly to the IDEA-RS. Therefore, at this stage an enhanced activity of inflammation might represent the biological pathways mapping the presence of depression in adolescents. Further investigations, and specifically a longitudinal study, will be required to understand whether HR adolescent who developed depression at the three-years follow-up showed an enhanced modulation of inflammation might represent a resilience mechanism for those adolescents who did not develop depression at the follow-up (Valeria Mondelli et al., 2021).

On the other hand, I did not find a homogeneous panel of biological pathways able to distinguish between adolescents without depression accordingly to the risk group. This result might partly reflect the heterogeneity of the IDEA-RS, as this risk score included diverse sociodemographic variables and different environmental risk factors, suggesting thus that the lack biological differences between HR and LR adolescents might reflect the heterogeneity of the sociodemographic and environmental variables considered by the IDEA-RS.

Lastly, given the differences in the results from the two -omics techniques applied and considering the numerous limitations of the microarrays, RNA-Seq was proved to be

more sensitive in terms of genes differently expressed in each comparison as well as in terms of pathways analysis. For this reason, the -omics analysis in the follow-up study will be performing exclusively by using the RNA-Seq technique (Mondelli et al., 2021).

Overall, the findings resulted in this doctoral thesis can represent a step toward the untangling of the complex system involved in the physiopathology of adolescent depression as well as in the risk of developing the disorder. Further studies, such as the ongoing longitudinal follow-up, might represent an important step toward the identification of mechanisms of vulnerability and resilience, and thus toward the ambitious goal of reducing the burden associated with adolescent depression specifically in the poorest settings, and that can be translated in the clinical practice worldwide.

- Adam, E. K., Doane, L. D., Zinbarg, R. E., Mineka, S., Craske, M. G., & Griffith, J. W. (2010). Prospective prediction of major depressive disorder from cortisol awakening responses in adolescence. Psychoneuroendocrinology, 35(6), 921-931. doi:10.1016/j.psyneuen.2009.12.007
- Allen, L., & Dwivedi, Y. (2020). MicroRNA mediators of early life stress vulnerability to depression and suicidal behavior. Mol Psychiatry, 25(2), 308-320. doi:10.1038/s41380-019-0597-8
- Allgaier, A. K., Pietsch, K., Fruhe, B., Prast, E., Sigl-Glockner, J., & Schulte-Korne, G. (2012). Depression in pediatric care: is the WHO-Five Well-Being Index a valid screening instrument for children and adolescents? Gen Hosp Psychiatry, 34(3), 234-241. doi:10.1016/j.genhosppsych.2012.01.007
- American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Washington, DC.
- Anacker, C., Cattaneo, A., Musaelyan, K., Zunszain, P. A., Horowitz, M., Molteni, R., . . . Pariante, C. M. (2013). Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc Natl Acad Sci U S A, 110(21), 8708-8713. doi:10.1073/pnas.1300886110
- Aonurm-Helm, A., Jurgenson, M., Zharkovsky, T., Sonn, K., Berezin, V., Bock, E., & Zharkovsky, A. (2008). Depression-like behaviour in neural cell adhesion molecule (NCAM)-deficient mice and its reversal by an NCAM-derived peptide, FGL. Eur J Neurosci, 28(8), 1618-1628. doi:10.1111/j.1460-9568.2008.06471.x

- APA. (2000). Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR. American Psychiatric Press, Washington, DC.
- APA. (2013). Diagnostic and Statistical Manual of Mental Disorders: DSM-V. American Psychiatric Press, Washington, DC.
- Bandelow, B., & Michaelis, S. (2015). Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci, 17(3), 327-335. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26487813
- Bao, A. M., & Swaab, D. F. (2010). Sex differences in the brain, behavior, and neuropsychiatric disorders. Neuroscientist, 16(5), 550-565. doi:10.1177/1073858410377005
- Bastiaens, L., & Galus, J. (2018). The DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure as a Screening Tool. Psychiatr Q, 89(1), 111-115. doi:10.1007/s11126-017-9518-7
- Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C. M., & Mondelli, V. (2016). Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-alpha. Mol Psychiatry, 21(5), 642-649. doi:10.1038/mp.2015.67
- Beck, C. T., Records, K., & Rice, M. (2006). Further development of the Postpartum Depression Predictors Inventory-Revised. J Obstet Gynecol Neonatal Nurs, 35(6), 735-745. doi:10.1111/j.1552-6909.2006.00094.x
- Bennett, D. S., Ambrosini, P. J., Kudes, D., Metz, C., & Rabinovich, H. (2005). Gender differences in adolescent depression: do symptoms differ for boys and girls? J Affect Disord, 89(1-3), 35-44. doi:10.1016/j.jad.2005.05.020

- Bereshchenko, O., Bruscoli, S., & Riccardi, C. (2018). Glucocorticoids, Sex Hormones, and Immunity. Front Immunol, 9, 1332. doi:10.3389/fimmu.2018.01332
- Bhandage, A. K., Jin, Z., Hellgren, C., Korol, S. V., Nowak, K., Williamsson, L., . . . Birnir,
  B. (2017). AMPA, NMDA and kainate glutamate receptor subunits are expressed in human peripheral blood mononuclear cells (PBMCs) where the expression of GluK4 is altered by pregnancy and GluN2D by depression in pregnant women. J Neuroimmunol, 305, 51-58. doi:10.1016/j.jneuroim.2017.01.013
- Bi, R., & Liu, P. (2016). Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments. BMC Bioinformatics, 17, 146. doi:10.1186/s12859-016-0994-9
- Bignardi, G., Dalmaijer, E. S., Anwyl-Irvine, A. L., Smith, T. A., Siugzdaite, R., Uh, S., & Astle, D. E. (2020). Longitudinal increases in childhood depression symptoms during the COVID-19 lockdown. Arch Dis Child. doi:10.1136/archdischild-2020-320372
- Binder, H., & Preibisch, S. (2005). Specific and nonspecific hybridization of oligonucleotide probes on microarrays. Biophys J, 89(1), 337-352. doi:10.1529/biophysj.104.055343
- Black, S., Kushner, I., & Samols, D. (2004). C-reactive Protein. J Biol Chem, 279(47), 48487-48490. doi:10.1074/jbc.R400025200

- Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185-193. doi:10.1093/bioinformatics/19.2.185
- Border, R., Johnson, E. C., Evans, L. M., Smolen, A., Berley, N., Sullivan, P. F., & Keller, M. C. (2019). No Support for Historical Candidate Gene or Candidate Gene-by-Interaction Hypotheses for Major Depression Across Multiple Large Samples. Am J Psychiatry, 176(5), 376-387. doi:10.1176/appi.ajp.2018.18070881
- Borsini, A., Cattaneo, A., Malpighi, C., Thuret, S., Harrison, N. A., Consortium, M. R. C.
  I., . . . Pariante, C. M. (2018). Interferon-Alpha Reduces Human Hippocampal Neurogenesis and Increases Apoptosis via Activation of Distinct STAT1Dependent Mechanisms. Int J Neuropsychopharmacol, 21(2), 187-200.
  doi:10.1093/ijnp/pyx083
- Bosker, F. J., Hartman, C. A., Nolte, I. M., Prins, B. P., Terpstra, P., Posthuma, D., . . . Nolen, W. A. (2011). Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol Psychiatry, 16(5), 516-532. doi:10.1038/mp.2010.38
- Brathwaite, R., Rocha, T. B., Kieling, C., Gautam, K., Koirala, S., Mondelli, V., . . . Fisher, H. L. (2021). Predicting the risk of depression among adolescents in Nepal using a model developed in Brazil: the IDEA Project. Eur Child Adolesc Psychiatry, 30(2), 213-223. doi:10.1007/s00787-020-01505-8

- Brathwaite, R., Rocha, T. B., Kieling, C., Kohrt, B. A., Mondelli, V., Adewuya, A. O., & Fisher, H. L. (2020). Predicting the risk of future depression among schoolattending adolescents in Nigeria using a model developed in Brazil. Psychiatry Res, 294, 113511. doi:10.1016/j.psychres.2020.113511
- Brennaman, L. H., & Maness, P. F. (2010). NCAM in neuropsychiatric and neurodegenerative disorders. Adv Exp Med Biol, 663, 299-317. doi:10.1007/978-1-4419-1170-4\_19
- Brinton, R. D., Thompson, R. F., Foy, M. R., Baudry, M., Wang, J., Finch, C. E., . . . Nilsen, J. (2008). Progesterone receptors: form and function in brain. Front Neuroendocrinol, 29(2), 313-339. doi:10.1016/j.yfrne.2008.02.001
- Brown, S. J., Huang, X. F., & Newell, K. A. (2021). The kynurenine pathway in major depression: What we know and where to next. Neurosci Biobehav Rev, 127, 917-927. doi:10.1016/j.neubiorev.2021.05.018
- Brunton, P. J., Russell, J. A., & Douglas, A. J. (2008). Adaptive responses of the maternal hypothalamic-pituitary-adrenal axis during pregnancy and lactation. J Neuroendocrinol, 20(6), 764-776. doi:10.1111/j.1365-2826.2008.01735.x
- Capuron, L., Ravaud, A., Neveu, P. J., Miller, A. H., Maes, M., & Dantzer, R. (2002). Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry, 7(5), 468-473. doi:10.1038/sj.mp.4000995
- Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., . . . Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297(5582), 851-854. doi:10.1126/science.1072290

- Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., . . . Poulton, R. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301(5631), 386-389. doi:10.1126/science.1083968
- Cattaneo, A., Begni, V., Malpighi, C., Cattane, N., Luoni, A., Pariante, C., & Riva, M. A. (2019). Transcriptional Signatures of Cognitive Impairment in Rat Exposed to Prenatal Stress. Mol Neurobiol, 56(9), 6251-6260. doi:10.1007/s12035-019-1523-4
- Cattaneo, A., Cattane, N., Malpighi, C., Czamara, D., Suarez, A., Mariani, N., . . . Pariante, C. M. (2018). FoxO1, A2M, and TGF-beta1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol Psychiatry, 23(11), 2192-2208. doi:10.1038/s41380-017-0002-4
- Cattaneo, A., Ferrari, C., Turner, L., Mariani, N., Enache, D., Hastings, C., . . . Pariante, C. M. (2020). Whole-blood expression of inflammasome- and glucocorticoidrelated mRNAs correctly separates treatment-resistant depressed patients from drug-free and responsive patients in the BIODEP study. Transl Psychiatry, 10(1), 232. doi:10.1038/s41398-020-00874-7
- Cattaneo, A., Gennarelli, M., Uher, R., Breen, G., Farmer, A., Aitchison, K. J., . . . Pariante, C. M. (2013). Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline 'predictors' and longitudinal 'targets'. Neuropsychopharmacology, 38(3), 377-385. doi:10.1038/npp.2012.191

- Caviedes, A., Lafourcade, C., Soto, C., & Wyneken, U. (2017). BDNF/NF-kappaB Signaling in the Neurobiology of Depression. Curr Pharm Des, 23(21), 3154-3163. doi:10.2174/1381612823666170111141915
- Chaiton, M., O'Loughlin, J., Karp, I., & Lambert, M. (2010). Depressive symptoms and C-reactive protein are not associated in a population-based sample of adolescents. Int J Behav Med, 17(3), 216-222. doi:10.1007/s12529-010-9078-9
- Chamberlain, S. R., Cavanagh, J., de Boer, P., Mondelli, V., Jones, D. N. C., Drevets, W. C., . . . Bullmore, E. T. (2019). Treatment-resistant depression and peripheral Creactive protein. Br J Psychiatry, 214(1), 11-19. doi:10.1192/bjp.2018.66
- Chen, M. C., Hamilton, J. P., & Gotlib, I. H. (2010). Decreased hippocampal volume in healthy girls at risk of depression. Arch Gen Psychiatry, 67(3), 270-276. doi:10.1001/archgenpsychiatry.2009.202
- Chiang, J. J., Cole, S. W., Bower, J. E., Irwin, M. R., Taylor, S. E., Arevalo, J., & Fuligni, A. J. (2019). Depressive symptoms and immune transcriptional profiles in late adolescents. Brain Behav Immun, 80, 163-169. doi:10.1016/j.bbi.2019.03.004
- Ciobanu, L. G., & Baune, B. T. (2018). Chapter 11 Gene Expression of Inflammation Markers in Depression. In B. T. Baune (Ed.), Inflammation and Immunity in Depression (pp. 199-222): Academic Press.
- Cobb, J. A., Simpson, J., Mahajan, G. J., Overholser, J. C., Jurjus, G. J., Dieter, L., . . .
  Stockmeier, C. A. (2013). Hippocampal volume and total cell numbers in major
  depressive disorder. J Psychiatr Res, 47(3), 299-306.
  doi:10.1016/j.jpsychires.2012.10.020

- Colasanto, M., Madigan, S., & Korczak, D. J. (2020). Depression and inflammation among children and adolescents: A meta-analysis. J Affect Disord, 277, 940-948. doi:10.1016/j.jad.2020.09.025
- Cole, D. A., Cai, L., Martin, N. C., Findling, R. L., Youngstrom, E. A., Garber, J., . . . Forehand, R. (2011). Structure and measurement of depression in youths: applying item response theory to clinical data. Psychol Assess, 23(4), 819-833. doi:10.1037/a0023518
- Cole, J. J., McColl, A., Shaw, R., Lynall, M. E., Cowen, P. J., de Boer, P., . . . Cavanagh, J. (2021). No evidence for differential gene expression in major depressive disorder PBMCs, but robust evidence of elevated biological ageing. Transl Psychiatry, 11(1), 404. doi:10.1038/s41398-021-01506-4
- Coleman, J. R. I., Gaspar, H. A., Bryois, J., Bipolar Disorder Working Group of the Psychiatric Genomics, C., Major Depressive Disorder Working Group of the Psychiatric Genomics, C., & Breen, G. (2020). The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls. Biol Psychiatry, 88(2), 169-184. doi:10.1016/j.biopsych.2019.10.015
- Colich, N. L., Kircanski, K., Foland-Ross, L. C., & Gotlib, I. H. (2015). HPA-axis reactivity interacts with stage of pubertal development to predict the onset of depression. Psychoneuroendocrinology, 55, 94-101. doi:10.1016/j.psyneuen.2015.02.004

- Colle, R., Chupin, M., Cury, C., Vandendrie, C., Gressier, F., Hardy, P., . . . Corruble, E. (2015). Depressed suicide attempters have smaller hippocampus than depressed patients without suicide attempts. J Psychiatr Res, 61, 13-18. doi:10.1016/j.jpsychires.2014.12.010
- Collier, D. A., Stober, G., Li, T., Heils, A., Catalano, M., Di Bella, D., ... Lesch, K. P. (1996).
  A novel functional polymorphism within the promoter of the serotonin transporter gene: possible role in susceptibility to affective disorders. Mol Psychiatry, 1(6), 453-460. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9154246
- Cree, R. A., Bitsko, R. H., Robinson, L. R., Holbrook, J. R., Danielson, M. L., Smith, C., . . . Peacock, G. (2018). Health Care, Family, and Community Factors Associated with Mental, Behavioral, and Developmental Disorders and Poverty Among Children Aged 2-8 Years - United States, 2016. MMWR Morb Mortal Wkly Rep, 67(50), 1377-1383. doi:10.15585/mmwr.mm6750a1
- D'Acunto, G., Nageye, F., Zhang, J., Masi, G., & Cortese, S. (2019). Inflammatory Cytokines in Children and Adolescents with Depressive Disorders: A Systematic Review and Meta-Analysis. J Child Adolesc Psychopharmacol, 29(5), 362-369. doi:10.1089/cap.2019.0015
- Dantzer, R., & Kelley, K. W. (2007). Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun, 21(2), 153-160. doi:10.1016/j.bbi.2006.09.006

- DelRosario, G. A., Chang, A. C., & Lee, E. D. (2013). Postpartum depression: symptoms, diagnosis, and treatment approaches. JAAPA, 26(2), 50-54. doi:10.1097/01720610-201302000-00009
- DePasquale, C. E., Donzella, B., & Gunnar, M. R. (2019). Pubertal recalibration of cortisol reactivity following early life stress: a cross-sectional analysis. J Child Psychol Psychiatry, 60(5), 566-575. doi:10.1111/jcpp.12992
- Deutschenbaur, L., Beck, J., Kiyhankhadiv, A., Muhlhauser, M., Borgwardt, S., Walter, M., . . . Lang, U. E. (2016). Role of calcium, glutamate and NMDA in major depression and therapeutic application. Prog Neuropsychopharmacol Biol Psychiatry, 64, 325-333. doi:10.1016/j.pnpbp.2015.02.015
- Dienes, K. A., Hazel, N. A., & Hammen, C. L. (2013). Cortisol secretion in depressed, and at-risk adults. Psychoneuroendocrinology, 38(6), 927-940. doi:10.1016/j.psyneuen.2012.09.019
- DiSabato, D. J., Nemeth, D. P., Liu, X., Witcher, K. G., O'Neil, S. M., Oliver, B., . . . Quan, N. (2021). Interleukin-1 receptor on hippocampal neurons drives social withdrawal and cognitive deficits after chronic social stress. Mol Psychiatry, 26(9), 4770-4782. doi:10.1038/s41380-020-0788-3
- Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E. K., & Lanctot, K. L. (2010). A meta-analysis of cytokines in major depression. Biol Psychiatry, 67(5), 446-457. doi:10.1016/j.biopsych.2009.09.033
- Duan, H., Yuan, Y., Zhang, L., Qin, S., Zhang, K., Buchanan, T. W., & Wu, J. (2013). Chronic stress exposure decreases the cortisol awakening response in healthy young men. Stress, 16(6), 630-637. doi:10.3109/10253890.2013.840579

- Duman, R. S., & Li, N. (2012). A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos Trans R Soc Lond B Biol Sci, 367(1601), 2475-2484. doi:10.1098/rstb.2011.0357
- Enache, D., Pariante, C. M., & Mondelli, V. (2019). Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and postmortem brain tissue. Brain Behav Immun, 81, 24-40. doi:10.1016/j.bbi.2019.06.015
- Eugene, A. R., Masiak, J., & Eugene, B. (2018). Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning. F1000Res, 7, 474. doi:10.12688/f1000research.14451.3
- Felger, J. C., Haroon, E., Patel, T. A., Goldsmith, D. R., Wommack, E. C., Woolwine, B.
  J., . . . Miller, A. H. (2020). What does plasma CRP tell us about peripheral and central inflammation in depression? Mol Psychiatry, 25(6), 1301-1311.
  doi:10.1038/s41380-018-0096-3
- Felger, J. C., & Lotrich, F. E. (2013). Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience, 246, 199-229. doi:10.1016/j.neuroscience.2013.04.060

Focking, M., Sabherwal, S., Cates, H. M., Scaife, C., Dicker, P., Hryniewiecka, M., . . .
Cotter, D. R. (2021). Complement pathway changes at age 12 are associated with psychotic experiences at age 18 in a longitudinal population-based study: evidence for a role of stress. Mol Psychiatry, 26(2), 524-533. doi:10.1038/s41380-018-0306-z

- Frackiewicz, E. J., Sramek, J. J., & Cutler, N. R. (2000). Gender differences in depression and antidepressant pharmacokinetics and adverse events. Ann Pharmacother, 34(1), 80-88. doi:10.1345/aph.18465
- Fratelli, C., Siqueira, J., Silva, C., Ferreira, E., & Silva, I. (2020). 5HTTLPR Genetic Variant and Major Depressive Disorder: A Review. Genes (Basel), 11(11). doi:10.3390/genes11111260
- Gabay, C., & Kushner, I. (1999). Acute-phase proteins and other systemic responses to inflammation. N Engl J Med, 340(6), 448-454. doi:10.1056/NEJM199902113400607
- Gabbay, V., Klein, R. G., Alonso, C. M., Babb, J. S., Nishawala, M., De Jesus, G., . . . Gonzalez, C. J. (2009). Immune system dysregulation in adolescent major depressive disorder. J Affect Disord, 115(1-2), 177-182. doi:10.1016/j.jad.2008.07.022
- Gabbay, V., Klein, R. G., Guttman, L. E., Babb, J. S., Alonso, C. M., Nishawala, M., . . . Gonzalez, C. J. (2009). A preliminary study of cytokines in suicidal and nonsuicidal adolescents with major depression. J Child Adolesc Psychopharmacol, 19(4), 423-430. doi:10.1089/cap.2008.0140
- Gardiner, E. J., Cairns, M. J., Liu, B., Beveridge, N. J., Carr, V., Kelly, B., . . . Tooney, P. A. (2013). Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells. J Psychiatr Res, 47(4), 425-437. doi:10.1016/j.jpsychires.2012.11.007

- Gill, H., El-Halabi, S., Majeed, A., Gill, B., Lui, L. M. W., Mansur, R. B., . . . Rosenblat, J. D. (2020). The Association Between Adverse Childhood Experiences and Inflammation in Patients with Major Depressive Disorder: A Systematic Review. J Affect Disord, 272, 1-7. doi:10.1016/j.jad.2020.03.145
- Gilliver, S. C. (2010). Sex steroids as inflammatory regulators. J Steroid Biochem Mol Biol, 120(2-3), 105-115. doi:10.1016/j.jsbmb.2009.12.015
- Goodman, S. H., & Gotlib, I. H. (1999). Risk for psychopathology in the children of depressed mothers: a developmental model for understanding mechanisms of transmission. Psychol Rev, 106(3), 458-490. doi:10.1037/0033-295x.106.3.458
- Goodman, S. H., Rouse, M. H., Connell, A. M., Broth, M. R., Hall, C. M., & Heyward, D. (2011). Maternal depression and child psychopathology: a meta-analytic review. Clin Child Fam Psychol Rev, 14(1), 1-27. doi:10.1007/s10567-010-0080-1
- Grimm, D., Bauer, J., Wise, P., Kruger, M., Simonsen, U., Wehland, M., . . . Corydon, T. J. (2020). The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol, 67(Pt 1), 122-153. doi:10.1016/j.semcancer.2019.03.004
- Grosso, G., Galvano, F., Marventano, S., Malaguarnera, M., Bucolo, C., Drago, F., & Caraci, F. (2014). Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxid Med Cell Longev, 2014, 313570. doi:10.1155/2014/313570
- Guillemin, G. J., Smythe, G., Takikawa, O., & Brew, B. J. (2005). Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia, 49(1), 15-23. doi:10.1002/glia.20090

- Gunnar, M. R., DePasquale, C. E., Reid, B. M., Donzella, B., & Miller, B. S. (2019). Pubertal stress recalibration reverses the effects of early life stress in postinstitutionalized children. Proc Natl Acad Sci U S A, 116(48), 23984-23988. doi:10.1073/pnas.1909699116
- Hacimusalar, Y., & Esel, E. (2018). Suggested Biomarkers for Major Depressive Disorder. Noro Psikiyatr Ars, 55(3), 280-290. doi:10.5152/npa.2017.19482
- Hall, L. S., Adams, M. J., Arnau-Soler, A., Clarke, T. K., Howard, D. M., Zeng, Y., . . .
  McIntosh, A. M. (2018). Genome-wide meta-analyses of stratified depression
  in Generation Scotland and UK Biobank. Transl Psychiatry, 8(1), 9.
  doi:10.1038/s41398-017-0034-1
- Handwerger, S., & Freemark, M. (2000). The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. J Pediatr Endocrinol Metab, 13(4), 343-356. doi:10.1515/jpem.2000.13.4.343
- Hardingham, G. E., Fukunaga, Y., & Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci, 5(5), 405-414. doi:10.1038/nn835
- Haroon, E., & Miller, A. H. (2017). Inflammation Effects on Brain Glutamate in Depression: Mechanistic Considerations and Treatment Implications. Curr Top Behav Neurosci, 31, 173-198. doi:10.1007/7854\_2016\_40
- Haroon, E., Welle, J. R., Woolwine, B. J., Goldsmith, D. R., Baer, W., Patel, T., ... Miller,
  A. H. (2020). Associations among peripheral and central kynurenine pathway
  metabolites and inflammation in depression. Neuropsychopharmacology,
  45(6), 998-1007. doi:10.1038/s41386-020-0607-1

- Hauser, W., Schmutzer, G., Brahler, E., & Glaesmer, H. (2011). Maltreatment in childhood and adolescence: results from a survey of a representative sample of the German population. Dtsch Arztebl Int, 108(17), 287-294. doi:10.3238/arztebl.2011.0287
- Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry, 49(12), 1023-1039. doi:10.1016/s0006-3223(01)01157-x
- Henje Blom, E., Lekander, M., Ingvar, M., Asberg, M., Mobarrez, F., & Serlachius, E. (2012). Pro-inflammatory cytokines are elevated in adolescent females with emotional disorders not treated with SSRIs. J Affect Disord, 136(3), 716-723. doi:10.1016/j.jad.2011.10.002
- Hennings, J. M., Uhr, M., Klengel, T., Weber, P., Putz, B., Touma, C., . . . Lucae, S. (2015). RNA expression profiling in depressed patients suggests retinoid-related orphan receptor alpha as a biomarker for antidepressant response. Transl Psychiatry, 5, e538. doi:10.1038/tp.2015.9
- Hepgul, N., Cattaneo, A., Agarwal, K., Baraldi, S., Borsini, A., Bufalino, C., . . . Pariante,
   C. M. (2016). Transcriptomics in Interferon-alpha-Treated Patients Identifies
   Inflammation-, Neuroplasticity- and Oxidative Stress-Related Signatures as
   Predictors and Correlates of Depression. Neuropsychopharmacology, 41(10),
   2502-2511. doi:10.1038/npp.2016.50

- Hepgul, N., Pariante, C. M., Baraldi, S., Borsini, A., Bufalino, C., Russell, A., . . . Hotopf,
  M. (2018). Depression and anxiety in patients receiving interferon-alpha: The
  role of illness perceptions. J Health Psychol, 23(11), 1405-1414.
  doi:10.1177/1359105316658967
- Hidese, S., Hattori, K., Sasayama, D., Miyakawa, T., Matsumura, R., Yokota, Y., . . .
  Kunugi, H. (2017). Cerebrospinal fluid neural cell adhesion molecule levels and their correlation with clinical variables in patients with schizophrenia, bipolar disorder, and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry, 76, 12-18. doi:10.1016/j.pnpbp.2017.02.016
- Hill, M. N., Miller, G. E., Ho, W. S., Gorzalka, B. B., & Hillard, C. J. (2008). Serum endocannabinoid content is altered in females with depressive disorders: a preliminary report. Pharmacopsychiatry, 41(2), 48-53. doi:10.1055/s-2007-993211
- Himmerich, H., Patsalos, O., Lichtblau, N., Ibrahim, M. A. A., & Dalton, B. (2019).
  Cytokine Research in Depression: Principles, Challenges, and Open Questions.
  Front Psychiatry, 10, 30. doi:10.3389/fpsyt.2019.00030
- Hodzic, D., Kong, C., Wainszelbaum, M. J., Charron, A. J., Su, X., & Stahl, P. D. (2006).
  TBC1D3, a hominoid oncoprotein, is encoded by a cluster of paralogues located on chromosome 17q12. Genomics, 88(6), 731-736.
  doi:10.1016/j.ygeno.2006.05.009
- Horesh, N., Klomek, A. B., & Apter, A. (2008). Stressful life events and major depressive disorders. Psychiatry Res, 160(2), 192-199. doi:10.1016/j.psychres.2007.06.008

- Howren, M. B., Lamkin, D. M., & Suls, J. (2009). Associations of depression with Creactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med, 71(2), 171-186. doi:10.1097/PSY.0b013e3181907c1b
- Huber, T. J., Issa, K., Schik, G., & Wolf, O. T. (2006). The cortisol awakening response is
  blunted in psychotherapy inpatients suffering from depression.
  Psychoneuroendocrinology, 31(7), 900-904.
  doi:10.1016/j.psyneuen.2006.03.005
- Iadarola, N. D., Niciu, M. J., Richards, E. M., Vande Voort, J. L., Ballard, E. D., Lundin, N.
  B., . . Zarate, C. A., Jr. (2015). Ketamine and other N-methyl-D-aspartate receptor antagonists in the treatment of depression: a perspective review. Ther Adv Chronic Dis, 6(3), 97-114. doi:10.1177/2040622315579059
- Infurna, M. R., Reichl, C., Parzer, P., Schimmenti, A., Bifulco, A., & Kaess, M. (2016). Associations between depression and specific childhood experiences of abuse and neglect: A meta-analysis. J Affect Disord, 190, 47-55. doi:10.1016/j.jad.2015.09.006
- Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., & Speed, T. P. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4(2), 249-264. doi:10.1093/biostatistics/4.2.249
- Jansen, R., Penninx, B. W., Madar, V., Xia, K., Milaneschi, Y., Hottenga, J. J., . . . Sullivan, P. F. (2016). Gene expression in major depressive disorder. Mol Psychiatry, 21(3), 339-347. doi:10.1038/mp.2015.57

- Jaworska, N., Yang, X. R., Knott, V., & MacQueen, G. (2015). A review of fMRI studies during visual emotive processing in major depressive disorder. World J Biol Psychiatry, 16(7), 448-471. doi:10.3109/15622975.2014.885659
- Jeon, S. W., & Kim, Y. K. (2017). Inflammation-induced depression: Its pathophysiology and therapeutic implications. J Neuroimmunol, 313, 92-98. doi:10.1016/j.jneuroim.2017.10.016
- Johnson, J. G., Harris, E. S., Spitzer, R. L., & Williams, J. B. (2002). The patient health questionnaire for adolescents: validation of an instrument for the assessment of mental disorders among adolescent primary care patients. J Adolesc Health, 30(3), 196-204. doi:10.1016/s1054-139x(01)00333-0
- Jung, Y. E., & Kang, K. Y. (2019). Elevated hs-CRP level is associated with depression in younger adults: Results from the Korean National Health and Nutrition Examination Survey (KNHANES 2016). Psychoneuroendocrinology, 109, 104397. doi:10.1016/j.psyneuen.2019.104397
- Kadriu, B., Musazzi, L., Henter, I. D., Graves, M., Popoli, M., & Zarate, C. A., Jr. (2019). Glutamatergic Neurotransmission: Pathway to Developing Novel Rapid-Acting Antidepressant Treatments. Int J Neuropsychopharmacol, 22(2), 119-135. doi:10.1093/ijnp/pyy094

Kambeitz, J. P., & Howes, O. D. (2015). The serotonin transporter in depression: Metaanalysis of in vivo and post mortem findings and implications for understanding and treating depression. J Affect Disord, 186, 358-366. doi:10.1016/j.jad.2015.07.034

- Kautz, M. M., Coe, C. L., McArthur, B. A., Mac Giollabhui, N., Ellman, L. M., Abramson,
  L. Y., & Alloy, L. B. (2020). Longitudinal changes of inflammatory biomarkers
  moderate the relationship between recent stressful life events and prospective
  symptoms of depression in a diverse sample of urban adolescents. Brain Behav
  Immun, 86, 43-52. doi:10.1016/j.bbi.2019.02.029
- Keenan, K., Hipwell, A., Babinski, D., Bortner, J., Henneberger, A., Hinze, A., . . .
  Sapotichne, B. (2013). Examining the developmental interface of cortisol and depression symptoms in young adolescent girls. Psychoneuroendocrinology, 38(10), 2291-2299. doi:10.1016/j.psyneuen.2013.04.017
- Kendler, K. S., & Gardner, C. O. (2014). Sex differences in the pathways to major depression: a study of opposite-sex twin pairs. Am J Psychiatry, 171(4), 426-435. doi:10.1176/appi.ajp.2013.13101375
- Kendler, K. S., Gatz, M., Gardner, C. O., & Pedersen, N. L. (2005). Age at onset and familial risk for major depression in a Swedish national twin sample. Psychol Med, 35(11), 1573-1579. doi:10.1017/S0033291705005714
- Kendler, K. S., Kuhn, J., & Prescott, C. A. (2004a). The interrelationship of neuroticism, sex, and stressful life events in the prediction of episodes of major depression. Am J Psychiatry, 161(4), 631-636. doi:10.1176/appi.ajp.161.4.631
- Kendler, K. S., Kuhn, J. W., & Prescott, C. A. (2004b). Childhood sexual abuse, stressful life events and risk for major depression in women. Psychol Med, 34(8), 1475-1482. doi:10.1017/s003329170400265x

- Kennis, M., Gerritsen, L., van Dalen, M., Williams, A., Cuijpers, P., & Bockting, C. (2020). Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis. Mol Psychiatry, 25(2), 321-338. doi:10.1038/s41380-019-0585z
- Khandaker, G. M., Pearson, R. M., Zammit, S., Lewis, G., & Jones, P. B. (2014).
  Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study.
  JAMA Psychiatry, 71(10), 1121-1128.
  doi:10.1001/jamapsychiatry.2014.1332
- Kieling, C., Buchweitz, C., Caye, A., Manfro, P., Pereira, R., Viduani, A., . . . Mondelli, V. (2021). The Identifying Depression Early in Adolescence Risk Stratified Cohort (IDEA-RiSCo): Rationale, Methods, and Baseline Characteristics. Front Psychiatry, 12, 697144. doi:10.3389/fpsyt.2021.697144
- Kim, E. J., Pellman, B., & Kim, J. J. (2015). Stress effects on the hippocampus: a critical review. Learn Mem, 22(9), 411-416. doi:10.1101/lm.037291.114
- Kohler, C. A., Freitas, T. H., Maes, M., de Andrade, N. Q., Liu, C. S., Fernandes, B. S., . .
  Carvalho, A. F. (2017). Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand, 135(5), 373-387. doi:10.1111/acps.12698
- Kondo, D. G., Hellem, T. L., Sung, Y. H., Kim, N., Jeong, E. K., Delmastro, K. K., . . . Renshaw, P. F. (2011). Review: magnetic resonance spectroscopy studies of pediatric major depressive disorder. Depress Res Treat, 2011, 650450. doi:10.1155/2011/650450

- Kong, E., Sucic, S., Monje, F. J., Savalli, G., Diao, W., Khan, D., . . . Pollak, D. D. (2015). STAT3 controls IL6-dependent regulation of serotonin transporter function and depression-like behavior. Sci Rep, 5, 9009. doi:10.1038/srep09009
- Kramer, A., Green, J., Pollard, J., Jr., & Tugendreich, S. (2014). Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, 30(4), 523-530. doi:10.1093/bioinformatics/btt703
- Kronfol, Z., & House, J. D. (1989). Lymphocyte mitogenesis, immunoglobulin and complement levels in depressed patients and normal controls. Acta Psychiatr Scand, 80(2), 142-147. doi:10.1111/j.1600-0447.1989.tb01316.x
- Labermaier, C., Masana, M., & Muller, M. B. (2013). Biomarkers predicting antidepressant treatment response: how can we advance the field? Dis Markers, 35(1), 23-31. doi:10.1155/2013/984845
- Lee, A. R., Ko, K. W., Lee, H., Yoon, Y. S., Song, M. R., & Park, C. S. (2016). Putative Cell Adhesion Membrane Protein Vstm5 Regulates Neuronal Morphology and Migration in the Central Nervous System. J Neurosci, 36(39), 10181-10197. doi:10.1523/JNEUROSCI.0541-16.2016
- Leighton, S. P., Nerurkar, L., Krishnadas, R., Johnman, C., Graham, G. J., & Cavanagh, J. (2018). Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Mol Psychiatry, 23(1), 48-58. doi:10.1038/mp.2017.205

- LeMoult, J., Humphreys, K. L., Tracy, A., Hoffmeister, J. A., Ip, E., & Gotlib, I. H. (2020). Meta-analysis: Exposure to Early Life Stress and Risk for Depression in Childhood and Adolescence. J Am Acad Child Adolesc Psychiatry, 59(7), 842-855. doi:10.1016/j.jaac.2019.10.011
- Li, M., D'Arcy, C., Li, X., Zhang, T., Joober, R., & Meng, X. (2019). What do DNA methylation studies tell us about depression? A systematic review. Transl Psychiatry, 9(1), 68. doi:10.1038/s41398-019-0412-y
- Li, X., Zhuang, X., Xu, T., Mao, M., Wang, C., Chen, Y., . . . Wu, J. (2017). Expression analysis of microRNAs and mRNAs in ovarian granulosa cells after microcystin-LR exposure. Toxicon, 129, 11-19. doi:10.1016/j.toxicon.2017.01.022
- Lin, E., & Tsai, S. J. (2016). Genome-wide microarray analysis of gene expression profiling in major depression and antidepressant therapy. Prog Neuropsychopharmacol Biol Psychiatry, 64, 334-340. doi:10.1016/j.pnpbp.2015.02.008
- Linnenbach, A. J., Seng, B. A., Wu, S., Robbins, S., Scollon, M., Pyrc, J. J., . . . Huebner, K. (1993). Retroposition in a family of carcinoma-associated antigen genes. Mol Cell Biol, 13(3), 1507-1515. doi:10.1128/mcb.13.3.1507-1515.1993
- Liu, J. J., Wei, Y. B., Strawbridge, R., Bao, Y., Chang, S., Shi, L., . . . Lu, L. (2020). Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis. Mol Psychiatry, 25(2), 339-350. doi:10.1038/s41380-019-0474-5

- Liu, W., Zheng, Y., Zhang, F., Zhu, M., Guo, Q., Xu, H., . . . Liu, X. (2021). A Preliminary Investigation on Plasma Cell Adhesion Molecules Levels by Protein Microarray Technology in Major Depressive Disorder. Front Psychiatry, 12, 627469. doi:10.3389/fpsyt.2021.627469
- Loades, M. E., Chatburn, E., Higson-Sweeney, N., Reynolds, S., Shafran, R., Brigden, A., ... Crawley, E. (2020). Rapid Systematic Review: The Impact of Social Isolation and Loneliness on the Mental Health of Children and Adolescents in the Context of COVID-19. J Am Acad Child Adolesc Psychiatry, 59(11), 1218-1239 e1213. doi:10.1016/j.jaac.2020.05.009
- Loechner, J., Sfarlea, A., Starman, K., Oort, F., Thomsen, L. A., Schulte-Korne, G., & Platt, B. (2020). Risk of Depression in the Offspring of Parents with Depression: The Role of Emotion Regulation, Cognitive Style, Parenting and Life Events. Child Psychiatry Hum Dev, 51(2), 294-309. doi:10.1007/s10578-019-00930-4
- Lombardo, G., Enache, D., Gianotti, L., Schatzberg, A. F., Young, A. H., Pariante, C. M., & Mondelli, V. (2019). Baseline cortisol and the efficacy of antiglucocorticoid treatment in mood disorders: A meta-analysis. Psychoneuroendocrinology, 110, 104420. doi:10.1016/j.psyneuen.2019.104420
- Lombardo, G., Mondelli, V., Dazzan, P., & Pariante, C. M. (2021). Sex hormones and immune system: A possible interplay in affective disorders? A systematic review. J Affect Disord, 290, 1-14. doi:10.1016/j.jad.2021.04.035

- Lopez-Duran, N. L., Kovacs, M., & George, C. J. (2009). Hypothalamic-pituitary-adrenal axis dysregulation in depressed children and adolescents: a meta-analysis. Psychoneuroendocrinology, 34(9), 1272-1283. doi:10.1016/j.psyneuen.2009.03.016
- Lopizzo, N., Mazzelli, M., Zonca, V., Begni, V., D'Aprile, I., Cattane, N., . . . Cattaneo, A. (2021). Alterations in 'inflammatory' pathways in the rat prefrontal cortex as early biological predictors of the long-term negative consequences of exposure to stress early in life. Psychoneuroendocrinology, 124, 104794. doi:10.1016/j.psyneuen.2020.104794
- Lopizzo, N., Tosato, S., Begni, V., Tomassi, S., Cattane, N., Barcella, M., . . . Cattaneo, A. (2017). Transcriptomic analyses and leukocyte telomere length measurement in subjects exposed to severe recent stressful life events. Transl Psychiatry, 7(2), e1042. doi:10.1038/tp.2017.5
- Lopizzo, N., Zonca, V., Cattane, N., Pariante, C. M., & Cattaneo, A. (2019). miRNAs in depression vulnerability and resilience: novel targets for preventive strategies. J Neural Transm (Vienna), 126(9), 1241-1258. doi:10.1007/s00702-019-02048-2
- Luo, X., Stavrakakis, N., Penninx, B. W., Bosker, F. J., Nolen, W. A., Boomsma, D. I., ...
  Hartman, C. A. (2016). Does refining the phenotype improve replication rates?
  A review and replication of candidate gene studies on Major Depressive
  Disorder and Chronic Major Depressive Disorder. Am J Med Genet B
  Neuropsychiatr Genet, 171B(2), 215-236. doi:10.1002/ajmg.b.32396

- Magri, C., Giacopuzzi, E., Sacco, C., Bocchio-Chiavetto, L., Minelli, A., & Gennarelli, M. (2021). Alterations observed in the interferon alpha and beta signaling pathway in MDD patients are marginally influenced by cis-acting alleles. Sci Rep, 11(1), 727. doi:10.1038/s41598-020-80374-2
- Mandelli, L., Petrelli, C., & Serretti, A. (2015). The role of specific early trauma in adult depression: A meta-analysis of published literature. Childhood trauma and adult depression. Eur Psychiatry, 30(6), 665-680. doi:10.1016/j.eurpsy.2015.04.007
- Marcus, S. M., Kerber, K. B., Rush, A. J., Wisniewski, S. R., Nierenberg, A., Balasubramani, G. K., . . . Trivedi, M. H. (2008). Sex differences in depression symptoms in treatment-seeking adults: confirmatory analyses from the Sequenced Treatment Alternatives to Relieve Depression study. Compr Psychiatry, 49(3), 238-246. doi:10.1016/j.comppsych.2007.06.012
- Mariani, N., Cattane, N., Pariante, C., & Cattaneo, A. (2021). Gene expression studies in Depression development and treatment: an overview of the underlying molecular mechanisms and biological processes to identify biomarkers. Transl Psychiatry, 11(1), 354. doi:10.1038/s41398-021-01469-6
- Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., & Gilad, Y. (2008). RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res, 18(9), 1509-1517. doi:10.1101/gr.079558.108
- Mayilyan, K. R., Dodds, A. W., Boyajyan, A. S., Soghoyan, A. F., & Sim, R. B. (2008). Complement C4B protein in schizophrenia. World J Biol Psychiatry, 9(3), 225-230. doi:10.1080/15622970701227803

- McDade, T. W., Borja, J. B., Adair, L. S., & Kuzawa, C. (2013). Depressive symptoms are not associated with inflammation in younger and older adults in the Philippines. Evol Med Public Health, 2013(1), 18-23. doi:10.1093/emph/eos004
- McKeown, S. J., Wallace, A. S., & Anderson, R. B. (2013). Expression and function of cell adhesion molecules during neural crest migration. Dev Biol, 373(2), 244-257. doi:10.1016/j.ydbio.2012.10.028
- Meda, N., Pardini, S., Slongo, I., Bodini, L., Zordan, M. A., Rigobello, P., . . . Novara, C.
  (2021). Students' mental health problems before, during, and after COVID-19
  lockdown in Italy. J Psychiatr Res, 134, 69-77.
  doi:10.1016/j.jpsychires.2020.12.045
- Mehta, D., Grewen, K., Pearson, B., Wani, S., Wallace, L., Henders, A. K., . . . Stuebe, A.
  M. (2021). Genome-wide gene expression changes in postpartum depression point towards an altered immune landscape. Transl Psychiatry, 11(1), 155. doi:10.1038/s41398-021-01270-5
- Menke, A. (2019). Is the HPA Axis as Target for Depression Outdated, or Is There a New Hope? Front Psychiatry, 10, 101. doi:10.3389/fpsyt.2019.00101
- Menke, A., Arloth, J., Putz, B., Weber, P., Klengel, T., Mehta, D., . . . Binder, E. B. (2012). Dexamethasone stimulated gene expression in peripheral blood is a sensitive marker for glucocorticoid receptor resistance in depressed patients. Neuropsychopharmacology, 37(6), 1455-1464. doi:10.1038/npp.2011.331
- Menon, V., Kar, S. K., Suthar, N., & Nebhinani, N. (2020). Vitamin D and Depression: A Critical Appraisal of the Evidence and Future Directions. Indian J Psychol Med, 42(1), 11-21. doi:10.4103/IJPSYM.IJPSYM\_160\_19

- Mikulska, J., Juszczyk, G., Gawronska-Grzywacz, M., & Herbet, M. (2021). HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci, 11(10). doi:10.3390/brainsci11101298
- Miller, A. H., Haroon, E., & Felger, J. C. (2017). Therapeutic Implications of Brain-Immune Interactions: Treatment in Translation. Neuropsychopharmacology, 42(1), 334-359. doi:10.1038/npp.2016.167
- Miller, G. E., & Cole, S. W. (2012). Clustering of depression and inflammation in adolescents previously exposed to childhood adversity. Biol Psychiatry, 72(1), 34-40. doi:10.1016/j.biopsych.2012.02.034
- Mitchell, A. J., Vaze, A., & Rao, S. (2009). Clinical diagnosis of depression in primary care: a meta-analysis. Lancet, 374(9690), 609-619. doi:10.1016/S0140-6736(09)60879-5
- Mondelli, V., Cattaneo, A., Nikkheslat, N., Souza, L., Walsh, A., Zajkowska, Z., . . . Di Meglio, P. (2021). Exploring the role of immune pathways in the risk and development of depression in adolescence: Research protocol of the IDEA-FLAME study. Brain, Behavior, & Immunity - Health, 18, 100396. doi:https://doi.org/10.1016/j.bbih.2021.100396
- Mondelli, V., & Vernon, A. C. (2019). From early adversities to immune activation in psychiatric disorders: the role of the sympathetic nervous system. Clin Exp Immunol, 197(3), 319-328. doi:10.1111/cei.13351
- Moret, C., & Briley, M. (2011). The importance of norepinephrine in depression. Neuropsychiatr Dis Treat, 7(Suppl 1), 9-13. doi:10.2147/NDT.S19619

- Moriarity, D. P., Kautz, M. M., Giollabui, N. M., Klugman, J., Coe, C. L., Ellman, L. M., . . . Alloy, L. B. (2020). Bidirectional Associations Between Inflammatory Biomarkers and Depressive Symptoms in Adolescents: Potential Causal Relationships. Clin Psychol Sci, 8(4), 690-703. doi:10.1177/2167702620917458
- Mostafavi, S., Battle, A., Zhu, X., Potash, J. B., Weissman, M. M., Shi, J., . . . Levinson, D. F. (2014). Type I interferon signaling genes in recurrent major depression: increased expression detected by whole-blood RNA sequencing. Mol Psychiatry, 19(12), 1267-1274. doi:10.1038/mp.2013.161
- Muller, N., Myint, A. M., & Schwarz, M. J. (2009). The impact of neuroimmune dysregulation on neuroprotection and neurotoxicity in psychiatric disorders-relation to drug treatment. Dialogues Clin Neurosci, 11(3), 319-332. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19877499
- Munster SK, W. V., Hutchings DC, Burian DM, Nicholson SJ. (2018). Comparison Study of Microarray and RNAseq for Differential Expression. Aerospace Medicine Technical Reports.
- Murphy, F., Nasa, A., Cullinane, D., Raajakesary, K., Gazzaz, A., Sooknarine, V., . . . Roddy, D. W. (2022). Childhood Trauma, the HPA Axis and Psychiatric Illnesses: A Targeted Literature Synthesis. Front Psychiatry, 13, 748372. doi:10.3389/fpsyt.2022.748372

Myint, A. M., Kim, Y. K., Verkerk, R., Scharpe, S., Steinbusch, H., & Leonard, B. (2007).
 Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord, 98(1-2), 143-151.
 doi:10.1016/j.jad.2006.07.013

- Nearchou, F., Flinn, C., Niland, R., Subramaniam, S. S., & Hennessy, E. (2020). Exploring the Impact of COVID-19 on Mental Health Outcomes in Children and Adolescents: A Systematic Review. Int J Environ Res Public Health, 17(22). doi:10.3390/ijerph17228479
- Neurauter, G., Schrocksnadel, K., Scholl-Burgi, S., Sperner-Unterweger, B., Schubert, C., Ledochowski, M., & Fuchs, D. (2008). Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr Drug Metab, 9(7), 622-627. doi:10.2174/138920008785821738
- Niciu, M. J., Ionescu, D. F., Richards, E. M., & Zarate, C. A., Jr. (2014). Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder. J Neural Transm (Vienna), 121(8), 907-924. doi:10.1007/s00702-013-1130-x
- Niki, A., Deguchi, Y., Iwasaki, S., Mitake, T., Okuda, Y., Sakaguchi, A., . . . Inoue, K. (2020). Gender differences in self-perceived changes among Japanese workers with depression. Occup Med (Lond), 70(9), 680-684. doi:10.1093/occmed/kqaa202
- Nikkheslat, N. (2021). Targeting inflammation in depression: Ketamine as an antiinflammatory antidepressant in psychiatric emergency. Brain Behav Immun Health, 18, 100383. doi:10.1016/j.bbih.2021.100383

Norkeviciene, A., Gocentiene, R., Sestokaite, A., Sabaliauskaite, R., Dabkeviciene, D., Jarmalaite, S., & Bulotiene, G. (2022). A Systematic Review of Candidate Genes for Major Depression. Medicina (Kaunas), 58(2). doi:10.3390/medicina58020285

- O'Connor, J. C., Lawson, M. A., Andre, C., Moreau, M., Lestage, J., Castanon, N., . . . Dantzer, R. (2009). Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry, 14(5), 511-522. doi:10.1038/sj.mp.4002148
- Oatridge, A., Holdcroft, A., Saeed, N., Hajnal, J. V., Puri, B. K., Fusi, L., & Bydder, G. M. (2002). Change in brain size during and after pregnancy: study in healthy women and women with preeclampsia. AJNR Am J Neuroradiol, 23(1), 19-26. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11827871
- Oertelt-Prigione, S. (2012). Immunology and the menstrual cycle. Autoimmun Rev, 11(6-7), A486-492. doi:10.1016/j.autrev.2011.11.023
- Osimo, E. F., Baxter, L. J., Lewis, G., Jones, P. B., & Khandaker, G. M. (2019). Prevalence of low-grade inflammation in depression: a systematic review and metaanalysis of CRP levels. Psychol Med, 49(12), 1958-1970. doi:10.1017/S0033291719001454
- Osimo, E. F., Pillinger, T., Rodriguez, I. M., Khandaker, G. M., Pariante, C. M., & Howes, O. D. (2020). Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun, 87, 901-909. doi:10.1016/j.bbi.2020.02.010

Osimo, E. F., Stochl, J., Zammit, S., Lewis, G., Jones, P. B., & Khandaker, G. M. (2020). Longitudinal population subgroups of CRP and risk of depression in the ALSPAC birth cohort. Compr Psychiatry, 96, 152143. doi:10.1016/j.comppsych.2019.152143

- Ota, V. K., Santoro, M. L., Spindola, L. M., Pan, P. M., Simabucuro, A., Xavier, G., . . . Belangero, S. I. (2020). Gene expression changes associated with trajectories of psychopathology in a longitudinal cohort of children and adolescents. Transl Psychiatry, 10(1), 99. doi:10.1038/s41398-020-0772-3
- Owens, M., Herbert, J., Jones, P. B., Sahakian, B. J., Wilkinson, P. O., Dunn, V. J., . . . Goodyer, I. M. (2014). Elevated morning cortisol is a stratified population-level biomarker for major depression in boys only with high depressive symptoms. Proc Natl Acad Sci U S A, 111(9), 3638-3643. doi:10.1073/pnas.1318786111
- Pajer, K., Andrus, B. M., Gardner, W., Lourie, A., Strange, B., Campo, J., . . . Redei, E. E.
   (2012). Discovery of blood transcriptomic markers for depression in animal models and pilot validation in subjects with early-onset major depression.
   Transl Psychiatry, 2, e101. doi:10.1038/tp.2012.26
- Pallavi, P., Sagar, R., Mehta, M., Sharma, S., Subramanium, A., Shamshi, F., . . .
  Mukhopadhyay, A. K. (2015). Serum cytokines and anxiety in adolescent depression patients: Gender effect. Psychiatry Res, 229(1-2), 374-380.
  doi:10.1016/j.psychres.2015.06.036
- Pandey, G. N., Rizavi, H. S., Zhang, H., Bhaumik, R., & Ren, X. (2018). Abnormal protein and mRNA expression of inflammatory cytokines in the prefrontal cortex of depressed individuals who died by suicide. J Psychiatry Neurosci, 43(6), 376-385. doi:10.1503/jpn.170192
- Pariante, C. M., & Lightman, S. L. (2008). The HPA axis in major depression: classical theories and new developments. Trends Neurosci, 31(9), 464-468. doi:10.1016/j.tins.2008.06.006

326

- Parker, G., & Brotchie, H. (2010). Gender differences in depression. Int Rev Psychiatry, 22(5), 429-436. doi:10.3109/09540261.2010.492391
- Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods, 14(4), 417-419. doi:10.1038/nmeth.4197
- Perez-Sanchez, G., Becerril-Villanueva, E., Arreola, R., Martinez-Levy, G., Hernandez-Gutierrez, M. E., Velasco-Velasquez, M. A., . . . Pavon, L. (2018). Inflammatory
  Profiles in Depressed Adolescents Treated with Fluoxetine: An 8-Week Follow-up
  Open Study. Mediators Inflamm, 2018, 4074051.
  doi:10.1155/2018/4074051
- Perkins, J. R., Antunes-Martins, A., Calvo, M., Grist, J., Rust, W., Schmid, R., . . . Bennett, D. L. (2014). A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat. Mol Pain, 10, 7. doi:10.1186/1744-8069-10-7
- Pfau, M. L., & Russo, S. J. (2015). Peripheral and Central Mechanisms of Stress Resilience. Neurobiol Stress, 1, 66-79. doi:10.1016/j.ynstr.2014.09.004
- Pierce, M., Hope, H., Ford, T., Hatch, S., Hotopf, M., John, A., . . . Abel, K. M. (2020). Mental health before and during the COVID-19 pandemic: a longitudinal probability sample survey of the UK population. Lancet Psychiatry, 7(10), 883-892. doi:10.1016/S2215-0366(20)30308-4

- Pires-daSilva, A., Nayernia, K., Engel, W., Torres, M., Stoykova, A., Chowdhury, K., & Gruss, P. (2001). Mice deficient for spermatid perinuclear RNA-binding protein show neurologic, spermatogenic, and sperm morphological abnormalities. Dev Biol, 233(2), 319-328. doi:10.1006/dbio.2001.0169
- Poltorak, M., Frye, M. A., Wright, R., Hemperly, J. J., George, M. S., Pazzaglia, P. J., ... Freed, W. J. (1996). Increased neural cell adhesion molecule in the CSF of patients with mood disorder. J Neurochem, 66(4), 1532-1538. doi:10.1046/j.1471-4159.1996.66041532.x
- Quide, Y., Andersson, F., Dufour-Rainfray, D., Descriaud, C., Brizard, B., Gissot, V., . . . El-Hage, W. (2018). Smaller hippocampal volume following sexual assault in women is associated with post-traumatic stress disorder. Acta Psychiatr Scand, 138(4), 312-324. doi:10.1111/acps.12920
- Quintero, O. L., Amador-Patarroyo, M. J., Montoya-Ortiz, G., Rojas-Villarraga, A., & Anaya, J. M. (2012). Autoimmune disease and gender: plausible mechanisms for the female predominance of autoimmunity. J Autoimmun, 38(2-3), J109-119. doi:10.1016/j.jaut.2011.10.003
- Raison, C. L., Capuron, L., & Miller, A. H. (2006). Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol, 27(1), 24-31. doi:10.1016/j.it.2005.11.006
- Raison, C. L., & Miller, A. H. (2013). The evolutionary significance of depression in Pathogen Host Defense (PATHOS-D). Mol Psychiatry, 18(1), 15-37. doi:10.1038/mp.2012.2

- Rao, M. S., Van Vleet, T. R., Ciurlionis, R., Buck, W. R., Mittelstadt, S. W., Blomme, E. A. G., & Liguori, M. J. (2018). Comparison of RNA-Seq and Microarray Gene Expression Platforms for the Toxicogenomic Evaluation of Liver From Short-Term Rat Toxicity Studies. Front Genet, 9, 636. doi:10.3389/fgene.2018.00636
- Rathod, S., Pinninti, N., Irfan, M., Gorczynski, P., Rathod, P., Gega, L., & Naeem, F. (2017). Mental Health Service Provision in Low- and Middle-Income Countries. Health Serv Insights, 10, 1178632917694350. doi:10.1177/1178632917694350
- Reid, B. M., Doom, J. R., Argote, R. B., Correa-Burrows, P., Lozoff, B., Blanco, E., & Gahagan, S. (2020). Pathways to inflammation in adolescence through early adversity, childhood depressive symptoms, and body mass index: A prospective longitudinal study of Chilean infants. Brain Behav Immun, 86, 4-13. doi:10.1016/j.bbi.2019.06.003
- Reis, S., & Grenyer, B. F. (2002). Pathways to anaclitic and introjective depression. Psychol Psychother, 75(Pt 4), 445-459. doi:10.1348/147608302321151934
- Rengasamy, M., Marsland, A., McClain, L., Kovats, T., Walko, T., Pan, L., & Price, R. B. (2021). Longitudinal relationships of cytokines, depression and anhedonia in depressed adolescents. Brain Behav Immun, 91, 74-80. doi:10.1016/j.bbi.2020.09.004

329

- Rezaie-Keikhaie, K., Arbabshastan, M. E., Rafiemanesh, H., Amirshahi, M., Ostadkelayeh, S. M., & Arbabisarjou, A. (2020). Systematic Review and Meta-Analysis of the Prevalence of the Maternity Blues in the Postpartum Period. J Obstet Gynecol Neonatal Nurs, 49(2), 127-136. doi:10.1016/j.jogn.2020.01.001
- Rhyu, H. J., Bae, S. H., Jung, J., & Hyun, Y. M. (2020). Cochlin-cleaved LCCL is a dualarmed regulator of the innate immune response in the cochlea during inflammation. BMB Rep, 53(9), 449-452. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/32635986
- Rice, F., Riglin, L., Lomax, T., Souter, E., Potter, R., Smith, D. J., . . . Thapar, A. (2019). Adolescent and adult differences in major depression symptom profiles. J Affect Disord, 243, 175-181. doi:10.1016/j.jad.2018.09.015
- Rocha, T. B., Fisher, H. L., Caye, A., Anselmi, L., Arseneault, L., Barros, F. C., . . . Kieling, C. (2021). Identifying Adolescents at Risk for Depression: A Prediction Score Performance in Cohorts Based in 3 Different Continents. J Am Acad Child Adolesc Psychiatry, 60(2), 262-273. doi:10.1016/j.jaac.2019.12.004
- Rocha, T. B., Graeff-Martins, A. S., Kieling, C., & Rohde, L. A. (2015). Provision of mental healthcare for children and adolescents: a worldwide view. Curr Opin Psychiatry, 28(4), 330-335. doi:10.1097/YCO.0000000000000169
- Sanacora, G., Treccani, G., & Popoli, M. (2012). Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology, 62(1), 63-77.
   doi:10.1016/j.neuropharm.2011.07.036

- Sandi, C., & Bisaz, R. (2007). A model for the involvement of neural cell adhesion molecules in stress-related mood disorders. Neuroendocrinology, 85(3), 158-176. doi:10.1159/000101535
- Shapero, B. G., Black, S. K., Liu, R. T., Klugman, J., Bender, R. E., Abramson, L. Y., & Alloy, L. B. (2014). Stressful life events and depression symptoms: the effect of childhood emotional abuse on stress reactivity. J Clin Psychol, 70(3), 209-223. doi:10.1002/jclp.22011
- Sher, L., Grunebaum, M. F., Sullivan, G. M., Burke, A. K., Cooper, T. B., Mann, J. J., & Oquendo, M. A. (2014). Association of testosterone levels and future suicide attempts in females with bipolar disorder. J Affect Disord, 166, 98-102. doi:10.1016/j.jad.2014.04.068
- Shiiba, K., Shindo, S., Ikezono, T., Sekine, K., Matsumura, T., Sekiguchi, S., . . . Okubo,
  K. (2012). Cochlin expression in the rat perilymph during postnatal
  development. Acta Otolaryngol, 132(11), 1134-1139.
  doi:10.3109/00016489.2012.687456
- Shorey, S., Ng, E. D., & Wong, C. H. J. (2021). Global prevalence of depression and elevated depressive symptoms among adolescents: A systematic review and meta-analysis. Br J Clin Psychol. doi:10.1111/bjc.12333
- Shvartsur, A., & Bonavida, B. (2015). Trop2 and its overexpression in cancers: regulation and clinical/therapeutic implications. Genes Cancer, 6(3-4), 84-105. doi:10.18632/genesandcancer.40

- Si, Y., Song, Z., Sun, X., & Wang, J. H. (2018). microRNA and mRNA profiles in nucleus accumbens underlying depression versus resilience in response to chronic stress. Am J Med Genet B Neuropsychiatr Genet, 177(6), 563-579. doi:10.1002/ajmg.b.32651
- Simon, N. M., Walton, Z. E., Bui, E., Prescott, J., Hoge, E., Keshaviah, A., . . . Wong, K.
   K. (2015). Telomere length and telomerase in a well-characterized sample of individuals with major depressive disorder compared to controls.
   Psychoneuroendocrinology, 58, 9-22. doi:10.1016/j.psyneuen.2015.04.004
- Snyder, J. M., Zhong, G., Hogarth, C., Huang, W., Topping, T., LaFrance, J., . . . Isoherranen, N. (2020). Knockout of Cyp26a1 and Cyp26b1 during postnatal life causes reduced lifespan, dermatitis, splenomegaly, and systemic inflammation in mice. FASEB J, 34(12), 15788-15804. doi:10.1096/fj.202001734R
- Spijker, S., Van Zanten, J. S., De Jong, S., Penninx, B. W., van Dyck, R., Zitman, F. G., . . . Hoogendijk, W. J. (2010). Stimulated gene expression profiles as a blood marker of major depressive disorder. Biol Psychiatry, 68(2), 179-186. doi:10.1016/j.biopsych.2010.03.017
- Spindola, L. M., Pan, P. M., Moretti, P. N., Ota, V. K., Santoro, M. L., Cogo-Moreira, H., . . . Belangero, S. I. (2017). Gene expression in blood of children and adolescents: Mediation between childhood maltreatment and major depressive disorder. J Psychiatr Res, 92, 24-30. doi:10.1016/j.jpsychires.2017.03.015

332

- Sramek, J. J., Murphy, M. F., & Cutler, N. R. (2016). Sex differences in the psychopharmacological treatment of depression. Dialogues Clin Neurosci, 18(4), 447-457. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28179816
- Stone, T. W. (1993). Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev, 45(3), 309-379. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8248282
- Strowig, T., Henao-Mejia, J., Elinav, E., & Flavell, R. (2012). Inflammasomes in health and disease. Nature, 481(7381), 278-286. doi:10.1038/nature10759
- Studd, J. (2015). Personal view: Hormones and depression in women. Climacteric, 18(1), 3-5. doi:10.3109/13697137.2014.918595
- Sullivan, P. F., Fan, C., & Perou, C. M. (2006). Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet, 141B(3), 261-268. doi:10.1002/ajmg.b.30272
- Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry, 157(10), 1552-1562. doi:10.1176/appi.ajp.157.10.1552
- Tang, S., Xiang, M., Cheung, T., & Xiang, Y. T. (2021). Mental health and its correlates among children and adolescents during COVID-19 school closure: The importance of parent-child discussion. J Affect Disord, 279, 353-360. doi:10.1016/j.jad.2020.10.016
- Tcherkezian, J., & Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biol Cell, 99(2), 67-86. doi:10.1042/BC20060086

- Teicher, M. H., Anderson, C. M., Ohashi, K., Khan, A., McGreenery, C. E., Bolger, E. A., .
  . Vitaliano, G. D. (2018). Differential effects of childhood neglect and abuse during sensitive exposure periods on male and female hippocampus. Neuroimage, 169, 443-452. doi:10.1016/j.neuroimage.2017.12.055
- Tichaczek-Goska, D. (2012). Deficiencies and excessive human complement system activation in disorders of multifarious etiology. Adv Clin Exp Med, 21(1), 105-114. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23214307
- Toenders, Y. J., Laskaris, L., Davey, C. G., Berk, M., Milaneschi, Y., Lamers, F., . . . Schmaal, L. (2021). Inflammation and depression in young people: a systematic review and proposed inflammatory pathways. Mol Psychiatry. doi:10.1038/s41380-021-01306-8
- Torres-Berrio, A., Issler, O., Parise, E. M., & Nestler, E. J. (2019). Unraveling the epigenetic landscape of depression: focus on early life stress. Dialogues Clin Neurosci, 21(4), 341-357. doi:10.31887/DCNS.2019.21.4/enestler
- Tozzi, F., Prokopenko, I., Perry, J. D., Kennedy, J. L., McCarthy, A. D., Holsboer, F., . . . Muglia, P. (2008). Family history of depression is associated with younger age of onset in patients with recurrent depression. Psychol Med, 38(5), 641-649. doi:10.1017/S0033291707002681
- Tripathi, A., Whitehead, C., Surrao, K., Pillai, A., Madeshiya, A., Li, Y., . . . Pillai, A. (2021). Type 1 interferon mediates chronic stress-induced neuroinflammation and behavioral deficits via complement component 3-dependent pathway. Mol Psychiatry, 26(7), 3043-3059. doi:10.1038/s41380-021-01065-6

- Ullah, M. F., Ahmad, A., Bhat, S. H., Abu-Duhier, F. M., Barreto, G. E., & Ashraf, G. M. (2019). Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders. Neurosci Biobehav Rev, 102, 95-105. doi:10.1016/j.neubiorev.2019.04.003
- Valle-Jimenez, X., Ramirez-Cosmes, A., Aquino-Dominguez, A. S., Sanchez-Pena, F.,
  Bustos-Arriaga, J., Romero-Tlalolini, M. L. A., . . . Aguilar Ruiz, S. R. (2020).
  Human platelets and megakaryocytes express defensin alpha 1. Platelets,
  31(3), 344-354. doi:10.1080/09537104.2019.1615612
- Venero, C., Tilling, T., Hermans-Borgmeyer, I., Schmidt, R., Schachner, M., & Sandi, C. (2002). Chronic stress induces opposite changes in the mRNA expression of the cell adhesion molecules NCAM and L1. Neuroscience, 115(4), 1211-1219. doi:10.1016/s0306-4522(02)00543-2
- Vreeburg, S. A., Hoogendijk, W. J., van Pelt, J., Derijk, R. H., Verhagen, J. C., van Dyck, R., . . . Penninx, B. W. (2009). Major depressive disorder and hypothalamicpituitary-adrenal axis activity: results from a large cohort study. Arch Gen Psychiatry, 66(6), 617-626. doi:10.1001/archgenpsychiatry.2009.50
- Vrshek-Schallhorn, S., Doane, L. D., Mineka, S., Zinbarg, R. E., Craske, M. G., & Adam,
  E. K. (2013). The cortisol awakening response predicts major depression:
  predictive stability over a 4-year follow-up and effect of depression history.
  Psychol Med, 43(3), 483-493. doi:10.1017/S0033291712001213

Waddington, C. H. (1940). Organisers and Genes. Cambridge University Pres.

- Wahid, S. S., Ottman, K., Hudhud, R., Gautam, K., Fisher, H. L., Kieling, C., . . . Kohrt, B.
  A. (2021). Identifying risk factors and detection strategies for adolescent depression in diverse global settings: A Delphi consensus study. J Affect Disord, 279, 66-74. doi:10.1016/j.jad.2020.09.098
- Wainberg, M. L., Scorza, P., Shultz, J. M., Helpman, L., Mootz, J. J., Johnson, K. A., . . . Arbuckle, M. R. (2017). Challenges and Opportunities in Global Mental Health: a Research-to-Practice Perspective. Curr Psychiatry Rep, 19(5), 28. doi:10.1007/s11920-017-0780-z
- Walmod, P. S., Kolkova, K., Berezin, V., & Bock, E. (2004). Zippers make signals: NCAMmediated molecular interactions and signal transduction. Neurochem Res, 29(11), 2015-2035. doi:10.1007/s11064-004-6875-z
- Wang, Q., Yu, C., Shi, S., Su, X., Zhang, J., Ding, Y., . . . Wei, T. (2019). An analysis of plasma reveals proteins in the acute phase response pathway to be candidate diagnostic biomarkers for depression. Psychiatry Res, 272, 404-410. doi:10.1016/j.psychres.2018.11.069
- Wang, S., Lu, H., Ni, J., Zhang, J., Tang, W., Lu, W., . . . Zhang, C. (2015). An evaluation of association between common variants in C4BPB/C4BPA genes and schizophrenia. Neurosci Lett, 590, 189-192. doi:10.1016/j.neulet.2015.02.005
- Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10(1), 57-63. doi:10.1038/nrg2484

- Watanabe, M., Wada, K., Sakata, Y., Aratake, Y., Kato, N., Ohta, H., & Tanaka, K. (2008). Maternity blues as predictor of postpartum depression: a prospective cohort study among Japanese women. J Psychosom Obstet Gynaecol, 29(3), 206-212. doi:10.1080/01674820801990577
- Wei, J., Liu, Y., Zhao, L., Yang, X., Ni, P., Wang, Y., . . . Ma, X. (2018). Plasma complement component 4 increases in patients with major depressive disorder. Neuropsychiatr Dis Treat, 14, 37-41. doi:10.2147/NDT.S151238
- Weissman, M. M., Wickramaratne, P., Nomura, Y., Warner, V., Pilowsky, D., & Verdeli, H. (2006). Offspring of depressed parents: 20 years later. Am J Psychiatry, 163(6), 1001-1008. doi:10.1176/ajp.2006.163.6.1001
- Weissman, M. M., Wickramaratne, P., Nomura, Y., Warner, V., Verdeli, H., Pilowsky,
  D. J., . . . Bruder, G. (2005). Families at high and low risk for depression: a 3generation study. Arch Gen Psychiatry, 62(1), 29-36. doi:10.1001/archpsyc.62.1.29
- Wertz, I. E., O'Rourke, K. M., Zhang, Z., Dornan, D., Arnott, D., Deshaies, R. J., & Dixit, V. M. (2004). Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science, 303(5662), 1371-1374. doi:10.1126/science.1093549
- Wichers, M. C., & Maes, M. (2004). The role of indoleamine 2,3-dioxygenase (IDO) in the pathophysiology of interferon-alpha-induced depression. J Psychiatry Neurosci, 29(1), 11-17. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14719046

- Widner, B., Ledochowski, M., & Fuchs, D. (2000). Interferon-gamma-induced tryptophan degradation: neuropsychiatric and immunological consequences. Curr Drug Metab, 1(2), 193-204. doi:10.2174/1389200003339063
- Widom, C. S., Dutton, M. A., Czaja, S. J., & DuMont, K. A. (2005). Development and validation of a new instrument to assess lifetime trauma and victimization history. J Trauma Stress, 18(5), 519-531. doi:10.1002/jts.20060
- Wizemann, T. M., & Pardue, M. L. (2001). In T. M. Wizemann & M. L. Pardue (Eds.), Exploring the Biological Contributions to Human Health: Does Sex Matter? Washington (DC).
- Wolff, L., Strathmann, E. A., Muller, I., Mahlich, D., Veltman, C., Niehoff, A., & Wirth, B. (2021). Plastin 3 in health and disease: a matter of balance. Cell Mol Life Sci, 78(13), 5275-5301. doi:10.1007/s00018-021-03843-5
- Woo, H. I., Lim, S. W., Myung, W., Kim, D. K., & Lee, S. Y. (2018). Differentially expressed genes related to major depressive disorder and antidepressant response: genome-wide gene expression analysis. Exp Mol Med, 50(8), 1-11. doi:10.1038/s12276-018-0123-0
- Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., Abdellaoui, A., .
  . Major Depressive Disorder Working Group of the Psychiatric Genomics, C.
  (2018). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet, 50(5), 668-681.
  doi:10.1038/s41588-018-0090-3

- Wu, G., Feder, A., Cohen, H., Kim, J. J., Calderon, S., Charney, D. S., & Mathe, A. A.
  (2013). Understanding resilience. Front Behav Neurosci, 7, 10.
  doi:10.3389/fnbeh.2013.00010
- Yang, Y., & Kozloski, M. (2012). Change of sex gaps in total and cause-specific mortality over the life span in the United States. Ann Epidemiol, 22(2), 94-103. doi:10.1016/j.annepidem.2011.06.006
- Yoon, L., Rohrsetzer, F., Battel, L., Anes, M., Manfro, P. H., Rohde, L. A., . . . Swartz, J.
   R. (2021). Reward- and threat-related neural function associated with risk and presence of depression in adolescents: a study using a composite risk score in Brazil. J Child Psychol Psychiatry. doi:10.1111/jcpp.13496
- Young, S. N. (2013). The effect of raising and lowering tryptophan levels on human mood and social behaviour. Philos Trans R Soc Lond B Biol Sci, 368(1615), 20110375. doi:10.1098/rstb.2011.0375
- Yuan, H., Mischoulon, D., Fava, M., & Otto, M. W. (2018). Circulating microRNAs as biomarkers for depression: Many candidates, few finalists. J Affect Disord, 233, 68-78. doi:10.1016/j.jad.2017.06.058
- Yue, W. H., Wang, H. F., Sun, L. D., Tang, F. L., Liu, Z. H., Zhang, H. X., . . . Zhang, D. (2011). Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet, 43(12), 1228-1231. doi:10.1038/ng.979
- Yuksel, C., & Ongur, D. (2010). Magnetic resonance spectroscopy studies of glutamaterelated abnormalities in mood disorders. Biol Psychiatry, 68(9), 785-794. doi:10.1016/j.biopsych.2010.06.016

- Zajkowska, Z., Gullett, N., Walsh, A., Zonca, V., Pedersen, G. A., Souza, L., . . . Mondelli,
  V. (2021). Cortisol and development of depression in adolescence and young
  adulthood a systematic review and meta-analysis.
  Psychoneuroendocrinology, 136, 105625.
  doi:10.1016/j.psyneuen.2021.105625
- Zajkowska, Z., Walsh, A., Zonca, V., Gullett, N., Pedersen, G. A., Kieling, C., . . . Mondelli, V. (2021). A systematic review of the association between biological markers and environmental stress risk factors for adolescent depression. J Psychiatr Res, 138, 163-175. doi:10.1016/j.jpsychires.2021.04.003
- Zajkowska, Z. E., Englund, A., & Zunszain, P. A. (2014). Towards a personalized treatment in depression: endocannabinoids, inflammation and stress response. Pharmacogenomics, 15(5), 687-698. doi:10.2217/pgs.14.40
- Zhang, C., Zhang, D. F., Wu, Z. G., Peng, D. H., Chen, J., Ni, J., . . . Fang, Y. R. (2016). Complement factor H and susceptibility to major depressive disorder in Han Chinese. Br J Psychiatry, 208(5), 446-452. doi:10.1192/bjp.bp.115.163790
- Zhang, Y., Crofton, E. J., Smith, T. E. S., Koshy, S., Li, D., & Green, T. A. (2019). Manipulation of retinoic acid signaling in the nucleus accumbens shell alters rat emotional behavior. Behav Brain Res, 376, 112177. doi:10.1016/j.bbr.2019.112177
- Zhao, B., Fan, Q., Liu, J., Yin, A., Wang, P., & Zhang, W. (2022). Identification of Key Modules and Genes Associated with Major Depressive Disorder in Adolescents. Genes (Basel), 13(3). doi:10.3390/genes13030464

- Zhao, S., Fung-Leung, W. P., Bittner, A., Ngo, K., & Liu, X. (2014). Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One, 9(1), e78644. doi:10.1371/journal.pone.0078644
- Zhong, M., Wang, X., Xiao, J., Yi, J., Zhu, X., Liao, J., . . Yao, S. (2011). Amygdala hyperactivation and prefrontal hypoactivation in subjects with cognitive vulnerability to depression. Biol Psychol, 88(2-3), 233-242. doi:10.1016/j.biopsycho.2011.08.007
- Zhu, C. B., Lindler, K. M., Owens, A. W., Daws, L. C., Blakely, R. D., & Hewlett, W. A. (2010). Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology, 35(13), 2510-2520. doi:10.1038/npp.2010.116
- Zonca, V. (2022a). The Biological Mechanisms Underlying Major Depressive Disorder. In S. Della Sala (Ed.), Encyclopedia of Behavioral Neuroscience, 2nd edition (Second Edition) (pp. 575-582). Oxford: Elsevier.
- Zonca, V. (2022b). Neural Basis of Gender. In S. Della Sala (Ed.), Encyclopedia of Behavioral Neuroscience, 2nd edition (Second Edition) (pp. 454-458). Oxford: Elsevier.

## APPENDIX A

Table A. RNA concentration, absorbance values at 260 nm and 280 nm, and A260/280 and A260/230 ratios. *For the risk group: A-High Risk; B-Low Risk; C-MDD*.

|           | Risk  | Nucleic Acid  |       |       |       |         |         |
|-----------|-------|---------------|-------|-------|-------|---------|---------|
| Sample ID | group | Concentration | Unit  | A260  | A280  | 260/280 | 260/230 |
| BR0001PAX | С     | 179.6         | ng/µl | 4.49  | 2.147 | 2.09    | 1.85    |
| BR0002PAX | С     | 280.6         | ng/µl | 7.015 | 3.363 | 2.09    | 0.96    |
| BR0005PAX | A     | 166.6         | ng/µl | 4.164 | 1.994 | 2.09    | 1.46    |
| BR0006PAX | С     | 380.5         | ng/μl | 9.512 | 4.557 | 2.09    | 1.51    |
| BR0009PAX | С     | 53.9          | ng/µl | 1.348 | 0.672 | 2.01    | 1.83    |
| BR0013PAX | В     | 232.4         | ng/µl | 5.811 | 2.767 | 2.1     | 1.89    |
| BR0015PAX | С     | 183           | ng/µl | 4.575 | 2.234 | 2.05    | 1.18    |
| BR0018PAX | С     | 121.2         | ng/µl | 3.029 | 1.447 | 2.09    | 0.32    |
| BR0019PAX | С     | 154.5         | ng/µl | 3.862 | 1.873 | 2.06    | 0.68    |
| BR0020PAX | A     | 109.9         | ng/µl | 2.747 | 1.321 | 2.08    | 1.54    |
| BR0021PAX | С     | 196.2         | ng/µl | 4.904 | 2.381 | 2.06    | 1.74    |
| BR0022PAX | С     | 177.6         | ng/µl | 4.44  | 2.166 | 2.05    | 0.81    |
| BR0024PAX | С     | 115.6         | ng/µl | 2.891 | 1.43  | 2.02    | 0.95    |
| BR0027PAX | С     | 230.3         | ng/µl | 5.757 | 2.831 | 2.03    | 1.6     |
| BR0028PAX | С     | 236.8         | ng/µl | 5.92  | 2.851 | 2.08    | 1.82    |
| BR0029PAX | С     | 103.6         | ng/µl | 2.59  | 1.268 | 2.04    | 1.01    |
| BR0030PAX | С     | 217.3         | ng/µl | 5.433 | 2.624 | 2.07    | 0.63    |
| BR0032PAX | С     | 171.1         | ng/µl | 4.277 | 2.08  | 2.06    | 0.77    |
| BR0033PAX | A     | 200.2         | ng/µl | 5.005 | 2.419 | 2.07    | 1.6     |
| BR0035PAX | В     | 115.7         | ng/µl | 2.892 | 1.406 | 2.06    | 1.26    |
| BR0036PAX | A     | 180.2         | ng/µl | 4.506 | 2.272 | 1.98    | 2.14    |
| BR0037PAX | A     | 142.3         | ng/µl | 3.557 | 1.712 | 2.08    | 0.9     |

| BR0038PAX | С | 229.6 | ng/μl | 5.74  | 2.761 | 2.08 | 1.54 |
|-----------|---|-------|-------|-------|-------|------|------|
| BR0039PAX | С | 241.4 | ng/µl | 6.034 | 2.869 | 2.1  | 1.14 |
| BR0040PAX | С | 363.5 | ng/µl | 9.088 | 4.334 | 2.1  | 0.99 |
| BR0043PAX | С | 135.6 | ng/µl | 3.391 | 1.674 | 2.03 | 0.83 |
| BR0044PAX | С | 330.7 | ng/µl | 8.267 | 4.062 | 2.04 | 2.05 |
| BR0045PAX | С | 147.5 | ng/µl | 3.688 | 1.787 | 2.06 | 1.9  |
| BR0046PAX | С | 180.8 | ng/µl | 4.52  | 2.147 | 2.11 | 2.09 |
| BR0047PAX | А | 210.8 | ng/µl | 5.27  | 2.542 | 2.07 | 1.52 |
| BR0048PAX | А | 169.7 | ng/µl | 4.242 | 2.02  | 2.1  | 1.96 |
| BR0049PAX | А | 254.3 | ng/µl | 6.356 | 3.034 | 2.1  | 1.85 |
| BR0050PAX | В | 229.7 | ng/µl | 5.742 | 2.912 | 1.97 | 1.38 |
| BR0051PAX | В | 170   | ng/µl | 4.249 | 2.04  | 2.08 | 1.58 |
| BR0052PAX | В | 242   | ng/µl | 6.049 | 2.895 | 2.09 | 1.38 |
| BR0053PAX | В | 112.3 | ng/µl | 2.809 | 1.386 | 2.03 | 0.35 |
| BR0054PAX | В | 226.2 | ng/µl | 5.656 | 2.727 | 2.07 | 1.85 |
| BR0055PAX | С | 120.1 | ng/µl | 3.002 | 1.504 | 2    | 0.86 |
| BR0056PAX | С | 115   | ng/µl | 2.876 | 1.415 | 2.03 | 1.37 |
| BR0057PAX | С | 162.3 | ng/µl | 4.057 | 1.945 | 2.09 | 0.87 |
| BR0058PAX | С | 87    | ng/µl | 2.176 | 1.049 | 2.07 | 1.6  |
| BR0059PAX | В | 155.1 | ng/µl | 3.878 | 1.857 | 2.09 | 1.11 |
| BR0060PAX | А | 172.4 | ng/µl | 4.311 | 2.072 | 2.08 | 1.38 |
| BR0061PAX | С | 155.2 | ng/µl | 3.879 | 1.905 | 2.04 | 1.46 |
| BR0064PAX | С | 171.4 | ng/µl | 4.285 | 2.049 | 2.09 | 1.28 |
| BR0065PAX | С | 278.8 | ng/µl | 6.97  | 3.365 | 2.07 | 2.04 |
| BR0066PAX | А | 149   | ng/µl | 3.725 | 1.791 | 2.08 | 1.81 |
| BR0067PAX | В | 191.6 | ng/µl | 4.791 | 2.34  | 2.05 | 1.02 |
| BR0069PAX | А | 166.7 | ng/µl | 4.168 | 2.069 | 2.01 | 1.75 |

|   |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A | 238.7                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| А | 291.4                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| А | 140.9                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| С | 200.9                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| А | 270.4                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| А | 193.4                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| В | 180.7                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| А | 167.6                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| В | 251.9                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| В | 191.2                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| В | 198.1                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| В | 117.3                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| В | 193.3                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| С | 230                                                                                                                                                                    | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| В | 157.6                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| В | 247.3                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| А | 160.3                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| В | 180.7                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| А | 135                                                                                                                                                                    | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| А | 210.5                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| С | 181.7                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| А | 171.8                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| С | 175.7                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| А | 198.9                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| А | 125.9                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| А | 215.1                                                                                                                                                                  | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| В | 242                                                                                                                                                                    | ng/µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | A<br>A<br>C<br>A<br>A<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>C<br>B<br>B<br>C<br>B<br>B<br>A<br>B<br>C<br>B<br>A<br>C<br>A<br>A<br>C<br>A<br>A<br>C<br>A<br>A<br>A<br>A | A       291.4         A       140.9         C       200.9         A       270.4         A       193.4         B       180.7         A       167.6         B       251.9         B       191.2         B       198.1         B       193.3         C       230         B       193.3         C       230         B       157.6         B       247.3         A       160.3         B       180.7         A       135         A       160.3         C       181.7         A       135         A       171.8         C       175.7         A       198.9         A       125.9         A       215.1 | A         291.4         ng/µl           A         140.9         ng/µl           C         200.9         ng/µl           A         270.4         ng/µl           A         270.4         ng/µl           A         193.4         ng/µl           A         193.4         ng/µl           B         180.7         ng/µl           B         180.7         ng/µl           B         191.2         ng/µl           B         191.2         ng/µl           B         198.1         ng/µl           B         197.3         ng/µl           C         230         ng/µl           B         157.6         ng/µl           A         160.3         ng/µl           A         160.3         ng/µl           A         135         ng/µl           A         135         ng/µl           A | A         291.4         ng/µl         7.285           A         140.9         ng/µl         3.522           C         200.9         ng/µl         5.023           A         270.4         ng/µl         6.76           A         193.4         ng/µl         4.835           B         180.7         ng/µl         4.518           A         167.6         ng/µl         4.518           A         167.6         ng/µl         4.518           B         180.7         ng/µl         4.518           B         197.2         ng/µl         4.78           B         191.2         ng/µl         4.952           B         198.1         ng/µl         4.952           B         197.3         ng/µl         4.833           C         230         ng/µl         3.94           B         157.6         ng/µl         3.94           B         157.6         ng/µl         4.007           B         160.3         ng/µl         4.519           A         160.3         ng/µl         3.375           A         135         ng/µl         4.519           < | A         291.4         ng/µl         7.285         3.463           A         140.9         ng/µl         3.522         1.726           C         200.9         ng/µl         5.023         2.382           A         270.4         ng/µl         6.76         3.406           A         193.4         ng/µl         4.835         2.344           B         180.7         ng/µl         4.518         2.167           A         167.6         ng/µl         4.19         2.032           B         180.7         ng/µl         4.19         2.032           B         197.2         ng/µl         4.19         2.032           B         197.2         ng/µl         4.19         2.032           B         197.2         ng/µl         4.19         2.032           B         191.2         ng/µl         4.78         2.296           B         191.3         ng/µl         4.952         2.359           B         197.3         ng/µl         4.952         2.359           B         197.3         ng/µl         4.833         2.316           C         230         ng/µl         4.007 | A         291.4         ng/µl         7.285         3.463         2.1           A         140.9         ng/µl         3.522         1.726         2.04           C         200.9         ng/µl         5.023         2.382         2.11           A         270.4         ng/µl         6.76         3.406         1.98           A         193.4         ng/µl         4.835         2.344         2.06           B         180.7         ng/µl         4.518         2.167         2.09           A         167.6         ng/µl         4.19         2.032         2.06           B         180.7         ng/µl         4.518         2.167         2.09           A         167.6         ng/µl         4.19         2.032         2.06           B         191.2         ng/µl         6.298         3.116         2.02           B         191.2         ng/µl         4.952         2.359         2.1           B         191.2         ng/µl         4.952         2.359         2.1           B         193.3         ng/µl         4.833         2.316         2.09           C         230         ng/µl |

|           | _ |       | · · · |       |       |      |      |
|-----------|---|-------|-------|-------|-------|------|------|
| BR0100PAX | В | 252.6 | ng/µl | 6.314 | 3.024 | 2.09 | 0.86 |
| BR0101PAX | A | 179.8 | ng/µl | 4.494 | 2.274 | 1.98 | 1.03 |
| BR0103PAX | С | 230   | ng/µl | 5.751 | 2.772 | 2.07 | 1.59 |
| BR0104PAX | А | 268.7 | ng/µl | 6.717 | 3.241 | 2.07 | 1.45 |
| BR0105PAX | В | 111.1 | ng/µl | 2.778 | 1.345 | 2.07 | 1.69 |
| BR0106PAX | В | 314.8 | ng/µl | 7.87  | 3.746 | 2.1  | 1.86 |
| BR0107PAX | А | 290.2 | ng/µl | 7.254 | 3.49  | 2.08 | 1.49 |
| BR0108PAX | А | 208.5 | ng/µl | 5.213 | 2.484 | 2.1  | 1.94 |
| BR0109PAX | А | 268.7 | ng/µl | 6.718 | 3.239 | 2.07 | 2.01 |
| BR0110PAX | А | 132.7 | ng/µl | 3.317 | 1.68  | 1.97 | 1.16 |
| BR0111PAX | А | 150.3 | ng/µl | 3.758 | 1.833 | 2.05 | 1.68 |
| BR0112PAX | А | 157.9 | ng/µl | 3.948 | 1.992 | 1.98 | 1.45 |
| BR0113PAX | В | 222.8 | ng/µl | 5.569 | 2.798 | 1.99 | 1.63 |
| BR0114PAX | В | 138.1 | ng/µl | 3.452 | 1.71  | 2.02 | 1.31 |
| BR0115PAX | В | 126.6 | ng/µl | 3.164 | 1.532 | 2.07 | 1.53 |
| BR0117PAX | В | 145.6 | ng/µl | 3.64  | 1.746 | 2.09 | 0.97 |
| BR0120PAX | В | 110.6 | ng/µl | 2.766 | 1.352 | 2.05 | 0.8  |
| BR0121PAX | А | 215.4 | ng/µl | 5.385 | 2.586 | 2.08 | 0.52 |
| BR0122PAX | С | 224.6 | ng/µl | 5.615 | 2.788 | 2.01 | 1.03 |
| BR0128PAX | В | 221.7 | ng/µl | 5.543 | 2.683 | 2.07 | 1.64 |
| BR0131PAX | В | 197.2 | ng/µl | 4.929 | 2.337 | 2.11 | 0.51 |
| BR0137PAX | В | 107.6 | ng/µl | 2.691 | 1.286 | 2.09 | 1.38 |
| BR0140PAX | А | 121.2 | ng/µl | 3.029 | 1.455 | 2.08 | 0.46 |
| BR0142PAX | В | 147.6 | ng/µl | 3.69  | 1.799 | 2.05 | 1.66 |
| BR0143PAX | А | 206.8 | ng/µl | 5.171 | 2.467 | 2.1  | 1.59 |
| BR0144PAX | В | 146.1 | ng/µl | 3.652 | 1.74  | 2.1  | 1.15 |
| BR0151PAX | В | 252.6 | ng/µl | 6.316 | 3.024 | 2.09 | 1.33 |

| BR0152PAX | В | 168.3  | ng/µl | 4.206 | 1.996 | 2.11 | 1.07 |
|-----------|---|--------|-------|-------|-------|------|------|
| BR0157PAX | В | 77.6   | ng/µl | 1.94  | 0.934 | 2.08 | 0.29 |
| BR0090PAX | С | 254.8  | ng/µl | 6.37  | 3.108 | 2.05 | 2.18 |
| BR0093PAX | А | 193.67 | ng/µl | 4.842 | 2.362 | 2.05 | 2.28 |
| BR0098PAX | А | 148.58 | ng/µl | 3.714 | 1.815 | 2.05 | 0.61 |
| BR0102PAX | А | 120.32 | ng/µl | 3.008 | 1.483 | 2.03 | 1.4  |
| BR0116PAX | А | 144.47 | ng/µl | 3.612 | 1.783 | 2.03 | 2.19 |
| BR0118PAX | А | 152.58 | ng/µl | 3.815 | 1.866 | 2.04 | 1.01 |
| BR0119PAX | А | 159.49 | ng/µl | 3.987 | 1.96  | 2.03 | 1.83 |
| BR0123PAX | С | 58.61  | ng/µl | 1.465 | 0.725 | 2.02 | 1.85 |
| BR0124PAX | С | 121.91 | ng/µl | 3.048 | 1.507 | 2.02 | 1.48 |
| BR0125PAX | А | 96.61  | ng/µl | 2.415 | 1.19  | 2.03 | 2.16 |
| BR0127PAX | С | 180.02 | ng/µl | 4.5   | 2.215 | 2.03 | 0.92 |
| BR0129PAX | А | 110.04 | ng/µl | 2.751 | 1.349 | 2.04 | 1.99 |
| BR0130PAX | А | 62.99  | ng/µl | 1.575 | 0.778 | 2.02 | 0.58 |
| BR0132PAX | С | 188.97 | ng/µl | 4.724 | 2.341 | 2.02 | 2.18 |
| BR0133PAX | В | 103.21 | ng/µl | 2.58  | 1.278 | 2.02 | 1.28 |
| BR0134PAX | С | 199.91 | ng/µl | 4.998 | 2.48  | 2.02 | 1.59 |
| BR0135PAX | В | 197.89 | ng/µl | 4.947 | 2.421 | 2.04 | 2.19 |
| BR0136PAX | В | 122.97 | ng/µl | 3.074 | 1.522 | 2.02 | 2.12 |
| BR0138PAX | А | 82.95  | ng/µl | 2.074 | 1.014 | 2.05 | 2.21 |
| BR0139PAX | В | 105.49 | ng/µl | 2.637 | 1.309 | 2.01 | 1.71 |
| BR0141PAX | В | 211.94 | ng/µl | 5.299 | 2.658 | 1.99 | 1.71 |
| BR0145PAX | В | 97.95  | ng/µl | 2.449 | 1.218 | 2.01 | 0.74 |
| BR0146PAX | А | 168.87 | ng/µl | 4.222 | 2.071 | 2.04 | 2.13 |
| BR0147PAX | В | 127.19 | ng/µl | 3.18  | 1.59  | 2    | 2.33 |
| BR0148PAX | В | 156.98 | ng/µl | 3.925 | 1.944 | 2.02 | 2.08 |
|           |   | 1      | I     | L     | l     | 1    | l    |

| BR0149PAX | А | 91.31  | ng/μl | 2.283 | 1.109 | 2.06 | 1.41 |
|-----------|---|--------|-------|-------|-------|------|------|
| BR0150PAX | A | 227.14 | ng/µl | 5.679 | 2.795 | 2.03 | 2.06 |
| BR0153PAX | В | 168.7  | ng/µl | 4.217 | 2.07  | 2.04 | 2.13 |
| BR0154PAX | А | 151.01 | ng/µl | 3.775 | 1.837 | 2.05 | 2.2  |
| BR0155PAX | A | 91.88  | ng/µl | 2.297 | 1.118 | 2.05 | 2.24 |
| BR0156PAX | С | 140.47 | ng/µl | 3.512 | 1.726 | 2.04 | 2.12 |
| BR0158PAX | В | 80.77  | ng/µl | 2.019 | 0.985 | 2.05 | 2.17 |
| BR0160PAX | В | 81.81  | ng/µl | 2.045 | 1.004 | 2.04 | 1.84 |
| BR0161PAX | В | 90.9   | ng/µl | 2.272 | 1.117 | 2.03 | 1.55 |
| BR0162PAX | В | 170.03 | ng/µl | 4.251 | 2.107 | 2.02 | 1.41 |
| BR0163PAX | С | 175.13 | ng/µl | 4.378 | 2.216 | 1.98 | 2.17 |
| BR0164PAX | В | 186.94 | ng/µl | 4.673 | 2.293 | 2.04 | 2.31 |
| BR0165PAX | С | 128.43 | ng/µl | 3.211 | 1.575 | 2.04 | 2.19 |
| BR0167PAX | С | 206.16 | ng/µl | 5.154 | 2.521 | 2.04 | 2.22 |
| BR0168PAX | В | 109.09 | ng/µl | 2.727 | 1.333 | 2.05 | 1.71 |
| BR0169PAX | С | 137.64 | ng/µl | 3.441 | 1.683 | 2.04 | 1.32 |
| BR0170PAX | С | 323.53 | ng/µl | 8.088 | 4.012 | 2.02 | 2.2  |
| BR0171PAX | С | 268.63 | ng/µl | 6.716 | 3.28  | 2.05 | 2.07 |
| BR0172PAX | С | 121.4  | ng/µl | 3.035 | 1.475 | 2.06 | 0.83 |
| BR0173PAX | С | 96.32  | ng/µl | 2.408 | 1.17  | 2.06 | 1.53 |

## **APPENDIX B**

Table B. RIN values of the 150 RNA samples assessed by using Agilent 2100 Bioanalyzer. For

the risk group: A-High Risk; B-Low Risk; C-MDD. N/A: RIN not detectable

| - · ·-    | <b>D</b> ' 1 | DIT |
|-----------|--------------|-----|
| Sample ID | Risk group   | RIN |
| BR0001PAX | С            | 9.4 |
| BR0002PAX | С            | 9.3 |
| BR0005PAX | A            | 9.1 |
| BR0006PAX | С            | 9.2 |
| BR0009PAX | С            | 9.1 |
| BR0013PAX | В            | 9.2 |
| BR0015PAX | С            | 9   |
| BR0018PAX | С            | 9.2 |
| BR0019PAX | С            | 8.8 |
| BR0020PAX | А            | 9.2 |
| BR0021PAX | С            | 9.6 |
| BR0022PAX | С            | 9.2 |
| BR0024PAX | С            | 7.9 |
| BR0027PAX | С            | 8.7 |
| BR0028PAX | С            | 8.2 |
| BR0029PAX | С            | 8.4 |
| BR0030PAX | С            | 8.3 |
| BR0032PAX | С            | 8.6 |
| BR0033PAX | A            | 8.2 |
| BR0035PAX | В            | 9.3 |
| BR0036PAX | А            | 8   |
| BR0037PAX | А            | 8   |
| BR0038PAX | С            | 8.3 |

| BR0039PAX | С | 7.8 |
|-----------|---|-----|
| BR0040PAX | С | 8.9 |
| BR0043PAX | С | 9.4 |
| BR0044PAX | С | 8   |
| BR0045PAX | С | 9.1 |
| BR0046PAX | С | 9.1 |
| BR0047PAX | A | 9.2 |
| BR0048PAX | A | 9.2 |
| BR0049PAX | A | 9.3 |
| BR0050PAX | В | N/A |
| BR0051PAX | В | 8.9 |
| BR0052PAX | В | 9   |
| BR0053PAX | В | 9.3 |
| BR0054PAX | В | 8.9 |
| BR0055PAX | С | 9.3 |
| BR0056PAX | С | 9.1 |
| BR0057PAX | С | 9.3 |
| BR0058PAX | С | 9.2 |
| BR0059PAX | В | 9.3 |
| BR0060PAX | A | 9.5 |
| BR0061PAX | С | 9.1 |
| BR0064PAX | С | 9.1 |
| BR0065PAX | С | 8.8 |
| BR0066PAX | A | 9   |
| BR0067PAX | В | 7.2 |
| BR0069PAX | A | 9.1 |
| BR0070PAX | A | 9   |

| BR0071PAX | А | 9.1 |
|-----------|---|-----|
| BR0072PAX | A | 9   |
| BR0073PAX | С | 9.2 |
| BR0074PAX | А | N/A |
| BR0075PAX | А | 8.8 |
| BR0076PAX | В | 9.1 |
| BR0077PAX | A | 9   |
| BR0078PAX | В | 8.6 |
| BR0079PAX | В | 9.1 |
| BR0080PAX | В | 9   |
| BR0081PAX | В | 9.1 |
| BR0082PAX | В | 9.4 |
| BR0083PAX | С | 9   |
| BR0084PAX | В | 9   |
| BR0085PAX | В | 8.8 |
| BR0086PAX | A | 9.2 |
| BR0087PAX | В | 8.8 |
| BR0088PAX | A | 9.3 |
| BR0089PAX | A | 9.1 |
| BR0091PAX | С | 9.2 |
| BR0092PAX | A | 9.6 |
| BR0094PAX | С | 9.2 |
| BR0095PAX | A | 8.9 |
| BR0096PAX | A | 9.2 |
| BR0097PAX | A | 8.9 |
| BR0099PAX | В | 9.1 |
| BR0100PAX | В | 9   |

| BR0101PAX | А | 8.8 |
|-----------|---|-----|
|           |   |     |
| BR0103PAX | С | 9.1 |
| BR0104PAX | А | 8.8 |
| BR0105PAX | В | 9.4 |
| BR0106PAX | В | 9   |
| BR0107PAX | A | 9.1 |
| BR0108PAX | A | 9.2 |
| BR0109PAX | А | 9.1 |
| BR0110PAX | А | 9   |
| BR0111PAX | А | 9   |
| BR0112PAX | А | 9   |
| BR0113PAX | В | 7.7 |
| BR0114PAX | В | 9   |
| BR0115PAX | В | 9.4 |
| BR0117PAX | В | 9.1 |
| BR0120PAX | В | 9.1 |
| BR0121PAX | A | 8.8 |
| BR0122PAX | С | 8.5 |
| BR0128PAX | В | 8.8 |
| BR0131PAX | В | 9.3 |
| BR0137PAX | В | 9.4 |
| BR0140PAX | А | 9.5 |
| BR0142PAX | В | N/A |
| BR0143PAX | А | 9.1 |
| BR0144PAX | В | 9.1 |
| BR0151PAX | В | 9.3 |
| BR0152PAX | В | 9   |

| В | 9.1                                                                                              |
|---|--------------------------------------------------------------------------------------------------|
|   |                                                                                                  |
| С | 9.6                                                                                              |
| А | 9.9                                                                                              |
| А | 10                                                                                               |
| А | 10                                                                                               |
| А | 9.7                                                                                              |
| А | 9.9                                                                                              |
| А | 9.6                                                                                              |
| С | 9.6                                                                                              |
| С | 10                                                                                               |
| А | 10                                                                                               |
| С | 9.9                                                                                              |
| А | 10                                                                                               |
| А | 9.8                                                                                              |
| С | 9.8                                                                                              |
| В | 9.8                                                                                              |
| С | 9.8                                                                                              |
| В | 9.9                                                                                              |
| В | 9.4                                                                                              |
| А | 9.8                                                                                              |
| В | 10                                                                                               |
| В | 8.7                                                                                              |
| В | 9.9                                                                                              |
| А | 9.7                                                                                              |
| В | 8.9                                                                                              |
| В | 9.3                                                                                              |
| А | 9.9                                                                                              |
|   | A<br>A<br>A<br>A<br>A<br>A<br>C<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>B<br>C<br>B<br>C |

| BR0150PAX | А | 9.8 |
|-----------|---|-----|
| BR0153PAX | В | 9.8 |
| BR0154PAX | A | 10  |
| BR0155PAX | А | 9.7 |
| BR0156PAX | С | 10  |
| BR0158PAX | В | N/A |
| BR0160PAX | В | 10  |
| BR0161PAX | В | 9.9 |
| BR0162PAX | В | 10  |
| BR0163PAX | С | 8.4 |
| BR0164PAX | В | 10  |
| BR0165PAX | С | 9.9 |
| BR0167PAX | С | 9.2 |
| BR0168PAX | В | 9.3 |
| BR0169PAX | С | 10  |
| BR0170PAX | С | 8.9 |
| BR0171PAX | С | 9.9 |
| BR0172PAX | С | 9.8 |
| BR0173PAX | С | 9.4 |
| L         | 1 |     |

## APPENDIX C

| less<br>Dap<br>True<br>True<br>True |
|-------------------------------------|
| True<br>True                        |
| True                                |
|                                     |
| True                                |
|                                     |
| True                                |
|                                     |

| BR0039 | Include | 125.71 | 33.3 | 0.38 | True | True | True | True |
|--------|---------|--------|------|------|------|------|------|------|
| BR0040 | Include | 75.4   | 34.3 | 0.22 | True | True | True | True |
| BR0043 | Include | 104.12 | 29.5 | 0.37 | True | True | True | True |
| BR0044 | Include | 100.44 | 28.5 | 0.38 | True | True | True | True |
| BR0045 | Include | 123.57 | 31.8 | 0.39 | True | True | True | True |
| BR0046 | Include | 113.65 | 31.8 | 0.37 | True | True | True | True |
| BR0047 | Include | 113.22 | 31.8 | 0.37 | True | True | True | True |
| BR0048 | Include | 112.2  | 31.8 | 0.36 | True | True | True | True |
| BR0049 | Include | 60.32  | 25.5 | 0.27 | True | True | True | True |
| BR0050 | Include | 95.35  | 30.8 | 0.33 | True | True | True | True |
| BR0051 | Include | 118.7  | 30   | 0.4  | True | True | True | True |
| BR0052 | Include | 127.97 | 36.5 | 0.35 | True | True | True | True |
| BR0053 | Include | 99.24  | 30.8 | 0.34 | True | True | True | True |
| BR0054 | Include | 101.73 | 29.5 | 0.37 | True | True | True | True |
| BR0055 | Include | 113.29 | 31.8 | 0.37 | True | True | True | True |
| BR0056 | Include | 108.74 | 30.3 | 0.37 | True | True | True | True |
| BR0057 | Include | 108.8  | 32   | 0.35 | True | True | True | True |
| BR0058 | Include | 113.29 | 28.8 | 0.41 | True | True | True | True |
| BR0059 | Include | 76.57  | 27.3 | 0.31 | True | True | True | True |
| BR0059 | Include | 90.48  | 32.5 | 0.29 | True | True | True | True |
| BR0060 | Include | 106.21 | 29.5 | 0.38 | True | True | True | True |
| BR0064 | Include | 121.71 | 31   | 0.4  | True | True | True | True |
| BR0065 | Include | 100.78 | 29.3 | 0.37 | True | True | True | True |
| BR0066 | Include | 85.44  | 29.3 | 0.32 | True | True | True | True |
| BR0067 | Include | 111.47 | 31   | 0.37 | True | True | True | True |
| BR0069 | Include | 108.86 | 31   | 0.37 | True | True | True | True |
| BR0070 | Include | 93.72  | 30   | 0.33 | True | True | True | True |
| BR0071 | Include | 93.74  | 27.5 | 0.37 | True | True | True | True |

| BR0072 | Include | 111.43 | 32   | 0.36 | True | True | True | True |
|--------|---------|--------|------|------|------|------|------|------|
| BR0073 | Include | 119.21 | 32   | 0.38 | True | True | True | True |
| BR0074 | Include | 102.41 | 32.5 | 0.33 | True | True | True | True |
| BR0075 | Include | 110.91 | 31.5 | 0.36 | True | True | True | True |
| BR0076 | Include | 61.45  | 25   | 0.28 | True | True | True | True |
| BR0077 | Include | 117.9  | 30.3 | 0.4  | True | True | True | True |
| BR0078 | Include | 96.37  | 32   | 0.32 | True | True | True | True |
| BR0079 | Include | 106.69 | 32.5 | 0.34 | True | True | True | True |
| BR0080 | Include | 120.99 | 34   | 0.36 | True | True | True | True |
| BR0081 | Include | 98.25  | 30.8 | 0.34 | True | True | True | True |
| BR0082 | Include | 92.13  | 30.5 | 0.32 | True | True | True | True |
| BR0083 | Include | 114.28 | 32.8 | 0.36 | True | True | True | True |
| BR0084 | Include | 106    | 31.3 | 0.35 | True | True | True | True |
| BR0085 | Include | 100.72 | 29.8 | 0.36 | True | True | True | True |
| BR0086 | Include | 104.3  | 29.8 | 0.37 | True | True | True | True |
| BR0086 | Include | 104.3  | 29.8 | 0.37 | True | True | True | True |
| BR0087 | Include | 61.77  | 27.8 | 0.24 | True | True | True | True |
| BR0089 | Include | 103.77 | 31.8 | 0.34 | True | True | True | True |
| BR0090 | Include | 104.34 | 33.3 | 0.33 | True | True | True | True |
| BR0091 | Include | 126.3  | 33.3 | 0.38 | True | True | True | True |
| BR0092 | Include | 99.2   | 31.3 | 0.33 | True | True | True | True |
| BR0093 | Include | 121.6  | 29.5 | 0.42 | True | True | True | True |
| BR0094 | Include | 111.69 | 30.3 | 0.38 | True | True | True | True |
| BR0095 | Include | 118.7  | 30.5 | 0.4  | True | True | True | True |
| BR0096 | Include | 101.25 | 31.8 | 0.33 | True | True | True | True |
| BR0097 | Include | 97.18  | 30.3 | 0.34 | True | True | True | True |
| BR0098 | Include | 129.86 | 33   | 0.39 | True | True | True | True |
| BR0099 | Include | 113.51 | 31.5 | 0.37 | True | True | True | True |

| BR0100 | Include | 96.74  | 27.3 | 0.38 | True | True | True | True |
|--------|---------|--------|------|------|------|------|------|------|
| BR0101 | Include | 105.37 | 31.3 | 0.35 | True | True | True | True |
| BR0102 | Include | 66.57  | 26.3 | 0.28 | True | True | True | True |
| BR0103 | Include | 101.96 | 34.3 | 0.31 | True | True | True | True |
| BR0104 | Include | 106.04 | 30.8 | 0.36 | True | True | True | True |
| BR0105 | Include | 115.85 | 30.3 | 0.39 | True | True | True | True |
| BR0106 | Include | 104.03 | 29.5 | 0.37 | True | True | True | True |
| BR0107 | Include | 85.34  | 30   | 0.31 | True | True | True | True |
| BR0108 | Include | 113.38 | 32   | 0.36 | True | True | True | True |
| BR0109 | Include | 72.63  | 26.3 | 0.31 | True | True | True | True |
| BR0110 | Include | 113.11 | 28.8 | 0.41 | True | True | True | True |
| BR0111 | Include | 112.24 | 30.5 | 0.38 | True | True | True | True |
| BR0112 | Include | 56.07  | 24.8 | 0.25 | True | True | True | True |
| BR0113 | Include | 100.62 | 31.3 | 0.34 | True | True | True | True |
| BR0113 | Include | 100.62 | 31.3 | 0.34 | True | True | True | True |
| BR0114 | Include | 97.19  | 29.3 | 0.36 | True | True | True | True |
| BR0115 | Include | 127.06 | 33   | 0.39 | True | True | True | True |
| BR0116 | Include | 170.68 | 37.8 | 0.42 | True | True | True | True |
| BR0117 | Include | 121.81 | 34.5 | 0.36 | True | True | True | True |
| BR0118 | Include | 120.93 | 34   | 0.36 | True | True | True | True |
| BR0119 | Include | 103.99 | 33   | 0.33 | True | True | True | True |
| BR0120 | Include | 127.63 | 34.5 | 0.37 | True | True | True | True |
| BR0121 | Include | 122.68 | 33.3 | 0.37 | True | True | True | True |
| BR0122 | Include | 57.64  | 25   | 0.26 | True | True | True | True |
| BR0123 | Include | 123.43 | 35.3 | 0.35 | True | True | True | True |
| BR0124 | Include | 145.27 | 33   | 0.42 | True | True | True | True |
| BR0125 | Include | 132.66 | 33.8 | 0.39 | True | True | True | True |
| BR0127 | Include | 121.43 | 36.3 | 0.34 | True | True | True | True |

| BR0128 | Include | 53.4   | 26.5 | 0.21 | True | True | True | True |
|--------|---------|--------|------|------|------|------|------|------|
| BR0129 | Include | 130.67 | 36.3 | 0.36 | True | True | True | True |
| BR0130 | Include | 140.65 | 33.8 | 0.41 | True | True | True | True |
| BR0131 | Include | 117    | 32.8 | 0.36 | True | True | True | True |
| BR0132 | Include | 103.01 | 33.5 | 0.32 | True | True | True | True |
| BR0133 | Include | 116.61 | 35.3 | 0.34 | True | True | True | True |
| BR0134 | Include | 117.29 | 38.8 | 0.3  | True | True | True | True |
| BR0135 | Include | 137.53 | 35.5 | 0.38 | True | True | True | True |
| BR0136 | Include | 112.76 | 32.5 | 0.36 | True | True | True | True |
| BR0137 | Include | 123.77 | 31.8 | 0.39 | True | True | True | True |
| BR0138 | Include | 137.38 | 41.3 | 0.32 | True | True | True | True |
| BR0139 | Include | 127.16 | 36   | 0.35 | True | True | True | True |
| BR0141 | Include | 133.64 | 31.3 | 0.42 | True | True | True | True |
| BR0142 | Include | 102.93 | 30.8 | 0.35 | True | True | True | True |
| BR0143 | Include | 105.61 | 31.5 | 0.35 | True | True | True | True |
| BR0144 | Include | 109.03 | 31   | 0.37 | True | True | True | True |
| BR0145 | Include | 145.53 | 36   | 0.39 | True | True | True | True |
| BR0146 | Include | 133.24 | 33.5 | 0.39 | True | True | True | True |
| BR0147 | Include | 106.13 | 34.3 | 0.32 | True | True | True | True |
| BR0148 | Include | 125.61 | 31.3 | 0.4  | True | True | True | True |
| BR0149 | Include | 122.67 | 45.3 | 0.26 | True | True | True | True |
| BR0150 | Include | 108.06 | 34.8 | 0.32 | True | True | True | True |
| BR0151 | Include | 96.36  | 30.8 | 0.33 | True | True | True | True |
| BR0152 | Include | 101.32 | 30.3 | 0.35 | True | True | True | True |
| BR0153 | Include | 102.94 | 34.5 | 0.31 | True | True | True | True |
| BR0154 | Include | 146.34 | 34.8 | 0.4  | True | True | True | True |
| BR0155 | Include | 92.42  | 33.3 | 0.29 | True | True | True | True |
| BR0156 | Include | 144.37 | 35   | 0.4  | True | True | True | True |

| BR0157 | Include | 134.2  | 33.3 | 0.4  | True | True | True | True |
|--------|---------|--------|------|------|------|------|------|------|
| BR0158 | Include | 119.5  | 31.3 | 0.39 | True | True | True | True |
| BR0160 | Include | 177.54 | 36.3 | 0.44 | True | True | True | True |
| BR0161 | Include | 124.37 | 34.8 | 0.36 | True | True | True | True |
| BR0162 | Include | 162.92 | 36.5 | 0.42 | True | True | True | True |
| BR0163 | Include | 103.18 | 40   | 0.26 | True | True | True | True |
| BR0164 | Include | 103.43 | 32.3 | 0.33 | True | True | True | True |
| BR0165 | Include | 124.43 | 41   | 0.3  | True | True | True | True |
| BR0167 | Include | 121.23 | 34.5 | 0.35 | True | True | True | True |
| BR0168 | Include | 143.33 | 32.8 | 0.42 | True | True | True | True |
| BR0169 | Include | 161.78 | 37   | 0.41 | True | True | True | True |
| BR0170 | Include | 95.94  | 30.8 | 0.33 | True | True | True | True |
| BR0171 | Include | 105.23 | 29   | 0.38 | True | True | True | True |
| BR0172 | Include | 121.61 | 31.3 | 0.39 | True | True | True | True |
| BR0172 | Include | 121.61 | 31.3 | 0.39 | True | True | True | True |
| BR0173 | Include | 110.57 | 32.5 | 0.35 | True | True | True | True |

## APPENDIX D

Table 1D. List of 79 genes differently modulated in MDD vs HR in the microarray analysis (FC  $\pm$ 

| Gene<br>Symbol | Gene Assignment                                                  | p-value | Fold-<br>Change |
|----------------|------------------------------------------------------------------|---------|-----------------|
| TRAJ19         | T Cell Receptor Alpha Joining 19 (Non-Functional)                | 0.007   | 1.44            |
| TRAJ40         | T Cell Receptor Alpha Joining 40                                 | 0.007   | 1.43            |
| HM13-IT1       | HM13 Intronic Transcript 1 (Non-Protein Coding)                  | 0.019   | 1.37            |
| OAS3           | 2'-5'-Oligoadenylate Synthetase 3, 100kda                        | 0.019   | 1.35            |
| COPE           | Coatomer Protein Complex, Subunit Epsilon                        | 0.004   | 1.35            |
| NR1H2          | Nuclear Receptor Subfamily 1, Group H, Member 2                  | 0.022   | 1.34            |
| SLED1          | Proteoglycan 3 Pseudogene                                        | 0.005   | 1.31            |
| СҮВА           | Cytochrome B-245, Alpha Polypeptide                              | 0.005   | 1.31            |
| НР             | Haptoglobin                                                      | 0.010   | 1.31            |
| MX1            | Myxovirus (Influenza Virus) Resistance 1, Interferon-Inducible P | 0.012   | 1.31            |
| XRRA1          | X-Ray Radiation Resistance Associated 1                          | 0.002   | 1.31            |
| TRDJ4          | T Cell Receptor Delta Joining 4                                  | 0.036   | 1.30            |
| СМРК2          | Cytidine Monophosphate (UMP-CMP) Kinase 2, Mitochondrial         | 0.033   | 1.30            |
| C2orf68        | Chromosome 2 Open Reading Frame 68                               | 0.006   | 1.29            |
| HIST1H2A<br>M  | Histone Cluster 1, H2am                                          | 0.010   | 1.28            |
| CEACAM8        | Carcinoembryonic Antigen-Related Cell Adhesion Molecule 8        | 0.050   | 1.28            |
| ANKFY1         | Ankyrin Repeat And FYVE Domain Containing 1                      | 0.002   | 1.28            |
| HERC5          | HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase 5     | 0.040   | 1.28            |
| TNFRSF1B       | Tumor Necrosis Factor Receptor Superfamily, Member 1B            | 0.011   | 1.27            |
| FKBP8          | FK506 Binding Protein 8, 38kda                                   | 0.019   | 1.27            |
| P2RX1          | Purinergic Receptor P2X, Ligand-Gated Ion Channel, 1             | 0.004   | 1.27            |
| TUBB1          | Tubulin, Beta 1 Class VI                                         | 0.045   | 1.26            |
| CRISPLD2       | Cysteine-Rich Secretory Protein LCCL Domain Containing 2         | 0.008   | 1.26            |
| SNORD14E       | Small Nucleolar RNA, C/D Box 14E                                 | 0.039   | 1.25            |

## |1.2|, p-value < 0.05)

| HMHA1    | Histocompatibility (Minor) HA-1                                | 0.010   | 1.25 |
|----------|----------------------------------------------------------------|---------|------|
| FLNA     | Filamin A, Alpha                                               | 0.015   | 1.25 |
| PLEKHO2  | Pleckstrin Homology Domain Containing, Family O Member 2       | 0.018   | 1.25 |
| ECRP     | Ribonuclease, Rnase A Family, 2                                | 0.046   | 1.25 |
| STAT2    | Signal Transducer And Activator Of Transcription 2, 113kda     | 0.002   | 1.25 |
| FBXW5    | F-Box And WD Repeat Domain Containing 5                        | 0.006   | 1.25 |
| IL18RAP  | Interleukin 18 Receptor Accessory Protein                      | 0.014   | 1.24 |
| TRAJ6    | T Cell Receptor Alpha Joining 6                                | 0.039   | 1.24 |
| FLOT2    | Flotillin 2                                                    | 0.008   | 1.24 |
| IP6K1    | Inositol Hexakisphosphate Kinase 1                             | 0.009   | 1.24 |
| AP5B1    | Adaptor-Related Protein Complex 5, Beta 1 Subunit              | 0.001   | 1.24 |
| FERMT3   | Fermitin Family Member 3                                       | 0.011   | 1.24 |
| UBN1     | Ubinuclein 1                                                   | 0.014   | 1.24 |
| C6orf130 | Chromosome 6 Open Reading Frame 130                            | 0.005   | 1.24 |
| KDM4B    | Lysine (K)-Specific Demethylase 4B                             | 0.007   | 1.24 |
| CNP      | 2',3'-Cyclic Nucleotide 3' Phosphodiesterase                   | < 0.001 | 1.23 |
| CYP4F3   | Cytochrome P450, Family 4, Subfamily F, Polypeptide 3          | 0.021   | 1.23 |
| ZER1     | Zer-1 Homolog (C. Elegans)                                     | 0.023   | 1.23 |
| ACSL1    | Acyl-Coa Synthetase Long-Chain Family Member 1                 | 0.009   | 1.23 |
| CSK      | C-Src Tyrosine Kinase                                          | 0.048   | 1.23 |
| CCDC69   | Coiled-Coil Domain Containing 69                               | 0.044   | 1.22 |
| CSF2RB   | Colony Stimulating Factor 2 Receptor, Beta, Low-Affinity       | 0.012   | 1.22 |
| IFIT2    | Interferon-Induced Protein With Tetratricopeptide Repeats 2    | 0.019   | 1.22 |
| ITGA2B   | Integrin, Alpha 2b                                             | 0.007   | 1.22 |
| APOBEC3A | Apolipoprotein B Mrna Editing Enzyme, Catalytic Polypeptide-Li | 0.003   | 1.22 |
| PLEKHM2  | Pleckstrin Homology Domain Containing, Family M                | 0.024   | 1.22 |
| FAM106CP | Family With Sequence Similarity 106, Member C, Pseudogene      | 0.029   | 1.21 |
| NACC1    | Nucleus Accumbens Associated 1                                 | 0.025   | 1.21 |
| C22orf32 | Chromosome 22 Open Reading Frame 32                            | 0.043   | 1.21 |
| APOBR    | Apolipoprotein B Receptor                                      | 0.016   | 1.21 |

| SMOX     | Spermine Oxidase                                               | 0.008   | 1.21  |
|----------|----------------------------------------------------------------|---------|-------|
| TMEM140  | Transmembrane Protein 140                                      | < 0.001 | 1.21  |
| MVP      | Major Vault Protein                                            | 0.020   | 1.21  |
| OAS2     | 2'-5'-Oligoadenylate Synthetase 2, 69/71kda                    | 0.036   | 1.21  |
| CPT1A    | Carnitine Palmitoyltransferase 1A (Liver)                      | 0.014   | 1.21  |
| PRIC285  | Peroxisomal Proliferator-Activated Receptor A Interacting Co   | 0.003   | 1.21  |
| МОВЗА    | MOB Kinase Activator 3A                                        | 0.046   | 1.21  |
| MAP3K11  | Mitogen-Activated Protein Kinase Kinase Kinase 11              | 0.013   | 1.21  |
| JAK3     | Janus Kinase 3                                                 | 0.004   | 1.21  |
| СНМР6    | Charged Multivesicular Body Protein 6                          | 0.004   | 1.21  |
| NOTCH1   | Notch 1                                                        | 0.005   | 1.20  |
| ITGAM    | Integrin,Alpha M(Complement Component 3,Receptor 3<br>Subunit) | 0.027   | 1.20  |
| VPS72    | Vacuolar Protein Sorting 72 Homolog (S. Cerevisiae)            | 0.037   | 1.20  |
| FCAR     | Fc Fragment Of Iga, Receptor                                   | 0.002   | 1.20  |
| BST2     | Bone Marrow Stromal Cell Antigen 2                             | 0.013   | 1.20  |
| UNC13D   | Unc-13 Homolog D (C. Elegans)                                  | 0.020   | 1.20  |
| C10orf54 | Chromosome 10 Open Reading Frame 54                            | 0.014   | 1.20  |
| SNORD69  | Small Nucleolar RNA, C/D Box 69                                | 0.032   | -1.21 |
| TRAV26-2 | T Cell Receptor Alpha Variable 26-2                            | 0.048   | -1.21 |
| RN5S110  | RNA, 5S Ribosomal 110                                          | 0.034   | -1.25 |
| SPINK8   | Serine Peptidase Inhibitor, Kazal Type 8 (Putative)            | 0.009   | -1.26 |
| TCL1B    | T-Cell Leukemia/Lymphoma 1B                                    | 0.006   | -1.36 |
| C4BPA    | Complement Component 4 Binding Protein, Alpha                  | 0.021   | -1.43 |
| RNU4ATAC | RNA, U4atac Small Nuclear (U12-Dependent Splicing)             | 0.010   | -1.62 |
| IGHV1-58 | Immunoglobulin Heavy Variable 1-58                             | 0.047   | -2.00 |

Table 2D. List of 23 genes differently modulated in MDD vs LR in the microarray analysis (FC  $\pm |1.2|$ , p-value < 0.05)

.

| Gene     | Gene Assignment                                                | p-value | Fold-  |
|----------|----------------------------------------------------------------|---------|--------|
| Symbol   |                                                                | p-value | Change |
| НР       | Haptoglobin                                                    | 0.004   | 1.35   |
| CASP5    | Caspase 5, Apoptosis-Related Cysteine Peptidase                | 0.015   | 1.34   |
| HERC5    | HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase 5   | 0.017   | 1.33   |
| SLED1    | Proteoglycan 3 Pseudogene                                      | 0.010   | 1.28   |
| XRRA1    | X-Ray Radiation Resistance Associated 1                        | 0.003   | 1.28   |
| СМРК2    | Cytidine Monophosphate (UMP-CMP) Kinase 2, Mitochondrial       | 0.049   | 1.27   |
| CARD17   | Caspase Recruitment Domain Family, Member 17                   | 0.027   | 1.24   |
| SNRPN    | Small Nuclear Ribonucleoprotein Polypeptide N                  | 0.011   | 1.24   |
| MX1      | Myxovirus (Influenza Virus) Resistance 1, Interferon-Inducible | 0.042   | 1.24   |
| IGLV3-1  | Immunoglobulin Lambda Variable 3-1                             | 0.023   | 1.24   |
| MTVR2    | Mouse Mammary Tumor Virus Receptor Homolog 2                   | 0.003   | 1.23   |
| TRAV2    | T Cell Receptor Alpha Variable 2                               | 0.017   | 1.23   |
| IFIT2    | Interferon-Induced Protein With Tetratricopeptide Repeats 2    | 0.018   | 1.23   |
| IL18RAP  | Interleukin 18 Receptor Accessory Protein                      | 0.033   | 1.21   |
| HCG8     | HLA Complex Group 8                                            | 0.017   | -1.20  |
| SPINK8   | Serine Peptidase Inhibitor, Kazal Type 8 (Putative)            | 0.030   | -1.21  |
| SNORA11  | Small Nucleolar RNA, H/ACA Box 11                              | 0.029   | -1.23  |
| CBR3     | Carbonyl Reductase 3                                           | 0.003   | -1.25  |
| ZNRD1    | Zinc Ribbon Domain Containing 1                                | 0.015   | -1.26  |
| TRAV26-2 | T Cell Receptor Alpha Variable 26-2                            | 0.017   | -1.26  |
| AHSP     | Alpha Hemoglobin Stabilizing Protein                           | 0.047   | -1.27  |
| LHB      | Luteinizing Hormone Beta Polypeptide                           | 0.038   | -1.28  |
| C4BPA    | Complement Component 4 Binding Protein, Alpha                  | 0.008   | -1.52  |

| Gene<br>Symbol | Gene Assignment                                           | p-value | Fold-<br>Change |
|----------------|-----------------------------------------------------------|---------|-----------------|
| TCL1B          | T-Cell Leukemia/Lymphoma 1B                               | 0.004   | 1.39            |
| SNRPN          | Small Nuclear Ribonucleoprotein Polypeptide N             | 0.018   | 1.28            |
| BSG            | Basigin (Ok Blood Group)                                  | 0.013   | -1.20           |
| FAR1-IT1       | FAR1 Intronic Transcript 1 (Non-Protein Coding)           | 0.019   | -1.21           |
| SMOX           | Spermine Oxidase                                          | 0.009   | -1.21           |
| EPB49          | Erythrocyte Membrane Protein Band 4.9 (Dematin)           | 0.028   | -1.21           |
| ANO7L1         | Anoctamin 7-Like 1                                        | 0.024   | -1.22           |
| EPB42          | Erythrocyte Membrane Protein Band 4.2                     | 0.036   | -1.23           |
| OR2W3          | Olfactory Receptor, Family 2, Subfamily W, Member 3       | 0.007   | -1.26           |
| PDIA3P         | Protein Disulfide Isomerase Family A, Member 3 Pseudogene | 0.015   | -1.32           |
| CCDC144A       | Coiled-Coil Domain Containing 144A                        | 0.004   | -1.37           |

Table 3D. List of 11 genes differently modulated in HR vs LR (FC  $\pm$  |1.2|, p-value < 0.05)

Table 4D. List of 592 genes differently modulated in males MDD vs males HR in the microarray analysis (FC  $\pm$  |1.2|, p-value < 0.05)

| Gene          | Gene Assignment p-value                               | n valuo | Fold-  |
|---------------|-------------------------------------------------------|---------|--------|
| Symbol        |                                                       | p-value | Change |
| HM13-IT1      | HM13 Intronic Transcript 1 (Non-Protein Coding)       | 0.010   | 1.61   |
| COPE          | Coatomer Protein Complex, Subunit Epsilon             | 0.001   | 1.61   |
| NR1H2         | Nuclear Receptor Subfamily 1, Group H, Member 2       | 0.008   | 1.61   |
| IGHA1         | Immunoglobulin Heavy Constant Alpha 1                 | 0.026   | 1.59   |
| IGHA2         | Immunoglobulin Heavy Constant Alpha 2 (A2m Marker)    | 0.036   | 1.59   |
| P2RX1         | Purinergic Receptor P2X, Ligand-Gated Ion Channel, 1  | < 0.001 | 1.55   |
| PPP4C         | Protein Phosphatase 4, Catalytic Subunit              | 0.031   | 1.53   |
| TSPAN3        | Tetraspanin 3                                         | 0.016   | 1.52   |
| C2orf68       | Chromosome 2 Open Reading Frame 68                    | 0.001   | 1.52   |
| HIST1H2A<br>M | Histone Cluster 1, H2am                               | 0.003   | 1.52   |
| IP6K1         | Inositol Hexakisphosphate Kinase 1                    | < 0.001 | 1.51   |
| FLNA          | Filamin A, Alpha                                      | 0.001   | 1.50   |
| IGHG4         | Immunoglobulin Heavy Constant Gamma 4 (G4m Marker)    | 0.026   | 1.49   |
| СҮВА          | Cytochrome B-245, Alpha Polypeptide                   | 0.004   | 1.47   |
| SLC35E2B      | Solute Carrier Family 35, Member E2B                  | 0.006   | 1.46   |
| CSNK1G2       | Casein Kinase 1, Gamma 2                              | 0.038   | 1.46   |
| HMHA1         | Histocompatibility (Minor) HA-1                       | 0.002   | 1.46   |
| MYH9          | Myosin, Heavy Chain 9, Non-Muscle                     | 0.008   | 1.45   |
| HIST1H2B<br>M | Histone Cluster 1, H2bm                               | 0.010   | 1.45   |
| HIST1H3I      | Histone Cluster 1, H3i                                | 0.017   | 1.45   |
| FBXW5         | F-Box And WD Repeat Domain Containing 5               | 0.001   | 1.44   |
| TNFRSF1B      | Tumor Necrosis Factor Receptor Superfamily, Member 1B | 0.005   | 1.44   |
| PPP1R15B      | Protein Phosphatase 1, Regulatory Subunit 15B         | 0.031   | 1.43   |
| TUBB1         | Tubulin, Beta 1 Class VI                              | 0.025   | 1.43   |

| CCDC69   | Coiled-Coil Domain Containing 69                                 | 0.013   | 1.42 |
|----------|------------------------------------------------------------------|---------|------|
| ATP6AP1  | Atpase, H+ Transporting, Lysosomal Accessory Protein 1           | 0.020   | 1.41 |
| FERMT3   | Fermitin Family Member 3                                         | 0.004   | 1.41 |
| ST3GAL2  | ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 2               | < 0.001 | 1.41 |
| CHMP6    | Charged Multivesicular Body Protein 6                            | < 0.001 | 1.41 |
| FLOT2    | Flotillin 2                                                      | 0.004   | 1.40 |
| FCHO1    | FCH Domain Only 1                                                | 0.008   | 1.40 |
| MAP3K11  | Mitogen-Activated Protein Kinase Kinase Kinase 11                | 0.001   | 1.40 |
| PPIP5K1  | Diphosphoinositol Pentakisphosphate Kinase 1                     | 0.026   | 1.40 |
| PLEKHO2  | Pleckstrin Homology Domain Containing, Family O Member 2         | 0.012   | 1.39 |
| POLR2E   | Polymerase (RNA) II (DNA Directed) Polypeptide E, 25kda          | 0.026   | 1.39 |
| GRAP     | GRB2-Related Adaptor Protein                                     | 0.011   | 1.39 |
| HGS      | Hepatocyte Growth Factor-Regulated Tyrosine Kinase<br>Substrate  | 0.010   | 1.39 |
| RASA4    | RAS P21 Protein Activator 4                                      | 0.025   | 1.39 |
| ITGAM    | Integrin, Alpha M (Complement Component 3 Receptor 3<br>Subunit) | 0.005   | 1.39 |
| PLEKHM2  | Pleckstrin Homology Domain Containing, Family M                  | 0.008   | 1.39 |
| CRISPLD2 | Cysteine-Rich Secretory Protein LCCL Domain Containing 2         | 0.006   | 1.39 |
| PTBP1    | Polypyrimidine Tract Binding Protein 1                           | 0.035   | 1.39 |
| LRRC59   | Leucine Rich Repeat Containing 59                                | 0.021   | 1.38 |
| MVP      | Major Vault Protein                                              | 0.005   | 1.38 |
| МОВЗА    | MOB Kinase Activator 3A                                          | 0.015   | 1.38 |
| CNP      | 2',3'-Cyclic Nucleotide 3' Phosphodiesterase                     | < 0.001 | 1.37 |
| G6PC3    | Glucose 6 Phosphatase, Catalytic, 3                              | < 0.001 | 1.37 |
| FAR1-IT1 | FAR1 Intronic Transcript 1 (Non-Protein Coding)                  | 0.005   | 1.37 |
| UNC13D   | Unc-13 Homolog D (C. Elegans)                                    | 0.004   | 1.37 |
| ATF6B    | Activating Transcription Factor 6 Beta                           | 0.009   | 1.37 |
| BAK1     | BCL2-Antagonist/Killer 1                                         | < 0.001 | 1.37 |
| PLAC4    | Placenta-Specific 4                                              | 0.002   | 1.37 |

| JAK3     | Janus Kinase 3                                                     | 0.001   | 1.37 |
|----------|--------------------------------------------------------------------|---------|------|
| LILRA6   | Leukocyte Immunoglobulin-Like Receptor, Subfamily A                | 0.006   | 1.37 |
| SHKBP1   | SH3KBP1 Binding Protein 1                                          | 0.004   | 1.36 |
| IGHG1    | Immunoglobulin Heavy Constant Gamma 1 (G1m Marker)                 | 0.014   | 1.36 |
| VPS72    | Vacuolar Protein Sorting 72 Homolog (S. Cerevisiae)                | 0.013   | 1.36 |
| TET3     | Tet Methylcytosine Dioxygenase 3                                   | < 0.001 | 1.36 |
| ZER1     | Zer-1 Homolog (C. Elegans)                                         | 0.018   | 1.36 |
| AP5B1    | Adaptor-Related Protein Complex 5, Beta 1 Subunit                  | 0.001   | 1.35 |
| UBN1     | Ubinuclein 1                                                       | 0.012   | 1.35 |
| FKBP8    | FK506 Binding Protein 8, 38kda                                     | 0.036   | 1.35 |
| ARHGAP30 | Rho Gtpase Activating Protein 30                                   | 0.011   | 1.35 |
| TRAJ33   | T Cell Receptor Alpha Joining 33                                   | 0.005   | 1.35 |
| CXXC1    | CXXC Finger Protein 1                                              | 0.035   | 1.35 |
| ALG12    | Asparagine-Linked Glycosylation 12, Alpha-1,6-                     | 0.025   | 1.35 |
|          | Mannosyltransferase                                                |         | 1.00 |
| ANKFY1   | Ankyrin Repeat And FYVE Domain Containing 1                        | 0.006   | 1.35 |
| ACAP1    | Arfgap With Coiled-Coil, Ankyrin Repeat And PH Domains 1           | 0.014   | 1.35 |
| PRKCSH   | Protein Kinase C Substrate 80K-H                                   | 0.008   | 1.35 |
| CDK9     | Cyclin-Dependent Kinase 9                                          | 0.007   | 1.35 |
| SGTA     | Small Glutamine-Rich Tetratricopeptide Repeat (TPR)-               | 0.006   | 1.35 |
|          | Containing                                                         |         |      |
| GANAB    | Glucosidase, Alpha; Neutral AB                                     | 0.002   | 1.35 |
| РКМ      | Pyruvate Kinase, Muscle                                            | 0.026   | 1.34 |
| APOBR    | Apolipoprotein B Receptor                                          | 0.008   | 1.34 |
| PREX1    | Phosphatidylinositol-3,4,5-Trisphosphate-Dependent Rac<br>Exchange | 0.006   | 1.34 |
| Septin 1 | Septin 1                                                           | 0.040   | 1.34 |
| DYSF     | Dysferlin, Limb Girdle Muscular Dystrophy 2B (Autosomal Recessi    | 0.011   | 1.34 |
| C10orf54 | Chromosome 10 Open Reading Frame 54                                | 0.005   | 1.34 |
| UPF1     | UPF1 Regulator Of Nonsense Transcripts Homolog (Yeast)             | 0.009   | 1.34 |

| TRBV20-1     | T Cell Receptor Beta Variable 20-1                                  | 0.007 | 1.34 |
|--------------|---------------------------------------------------------------------|-------|------|
| PIK3CD       | Phosphoinositide-3-Kinase, Catalytic, Delta Polypeptide             | 0.016 | 1.34 |
| CSF2RB       | Colony Stimulating Factor 2 Receptor, Beta, Low-Affinity<br>(Granul | 0.011 | 1.33 |
| FCAR         | Fc Fragment Of Iga, Receptor For                                    | 0.001 | 1.33 |
| SDF4         | Stromal Cell Derived Factor 4                                       | 0.023 | 1.33 |
| VPS18        | Vacuolar Protein Sorting 18 Homolog (S. Cerevisiae)                 | 0.005 | 1.33 |
| TMEM161<br>A | Transmembrane Protein 161A                                          | 0.002 | 1.33 |
| MAN2C1       | Mannosidase, Alpha, Class 2C, Member 1                              | 0.008 | 1.33 |
| PLIN3        | Perilipin 3                                                         | 0.039 | 1.33 |
| UBA1         | Ubiquitin-Like Modifier Activating Enzyme 1                         | 0.012 | 1.33 |
| VAV1         | Vav 1 Guanine Nucleotide Exchange Factor                            | 0.049 | 1.33 |
| CD22         | CD22 Molecule                                                       | 0.032 | 1.33 |
| TNFAIP2      | Tumor Necrosis Factor, Alpha-Induced Protein 2                      | 0.011 | 1.33 |
| ENO1         | Enolase 1, (Alpha)                                                  | 0.007 | 1.33 |
| ZNF836       | Zinc Finger Protein 836                                             | 0.004 | 1.33 |
| SNORD10      | Small Nucleolar RNA, C/D Box 10                                     | 0.006 | 1.33 |
| SUN2         | Sad1 And UNC84 Domain Containing 2                                  | 0.004 | 1.33 |
| CD93         | CD93 Molecule                                                       | 0.018 | 1.33 |
| TLN1         | Talin 1                                                             | 0.005 | 1.33 |
| NOTCH1       | Notch 1                                                             | 0.002 | 1.33 |
| NACC1        | Nucleus Accumbens Associated 1, BEN And BTB (POZ)                   | 0.018 | 1.33 |
| MLL4         | Myeloid/Lymphoid Or Mixed-Lineage Leukemia 4                        | 0.001 | 1.32 |
| ATHL1        | ATH1, Acid Trehalase-Like 1 (Yeast)                                 | 0.001 | 1.32 |
| AP1M1        | Adaptor-Related Protein Complex 1, Mu 1 Subunit                     | 0.002 | 1.32 |
| MAN2B1       | Mannosidase, Alpha, Class 2B, Member 1                              | 0.002 | 1.32 |
| LTB          | Lymphotoxin Beta (TNF Superfamily, Member 3)                        | 0.010 | 1.32 |
| PSD4         | Pleckstrin And Sec7 Domain Containing 4                             | 0.022 | 1.32 |
| KDM4B        | Lysine (K)-Specific Demethylase 4B                                  | 0.011 | 1.32 |

| ASNA1    | Arsa Arsenite Transporter, ATP-Binding, Homolog 1 (Bacterial)           | 0.001   | 1.32 |
|----------|-------------------------------------------------------------------------|---------|------|
| SLC39A3  | Solute Carrier Family 39 (Zinc Transporter), Member 3                   | 0.008   | 1.32 |
| NPRL3    | Nitrogen Permease Regulator-Like 3 (S. Cerevisiae)                      | 0.032   | 1.32 |
| OR52K2   | Olfactory Receptor, Family 52, Subfamily K, Member 2                    | 0.019   | 1.32 |
| SIN3B    | SIN3 Transcription Regulator Homolog B (Yeast)                          | 0.003   | 1.31 |
| ADRBK1   | Adrenergic, Beta, Receptor Kinase 1                                     | < 0.001 | 1.31 |
| OGDH     | Oxoglutarate (Alpha-Ketoglutarate) Dehydrogenase<br>(Lipoamide)         | 0.015   | 1.31 |
| NLRC3    | NLR Family, CARD Domain Containing 3                                    | 0.005   | 1.31 |
| TBC1D10C | TBC1 Domain Family, Member 10C                                          | 0.003   | 1.31 |
| IL4R     | Interleukin 4 Receptor                                                  | 0.005   | 1.31 |
| CLCN7    | Chloride Channel, Voltage-Sensitive 7                                   | 0.004   | 1.31 |
| RHOA-IT1 | RHOA Intronic Transcript 1 (Non-Protein Coding)                         | 0.015   | 1.31 |
| XRRA1    | X-Ray Radiation Resistance Associated 1                                 | 0.022   | 1.31 |
| EEF2     | Eukaryotic Translation Elongation Factor 2                              | 0.006   | 1.31 |
| AGAP2    | Arfgap With Gtpase Domain, Ankyrin Repeat And PH Domain 2               | 0.001   | 1.31 |
| PCNXL3   | Pecanex-Like 3 (Drosophila)                                             | < 0.001 | 1.31 |
| MZB1     | Marginal Zone B And B1 Cell-Specific Protein                            | 0.021   | 1.31 |
| ACSL1    | Acyl-Coa Synthetase Long-Chain Family Member 1                          | 0.016   | 1.31 |
| NBEAL2   | Neurobeachin-Like 2                                                     | < 0.001 | 1.31 |
| ABT1     | Activator Of Basal Transcription 1                                      | 0.001   | 1.31 |
| IGLV3-25 | Immunoglobulin Lambda Variable 3-25                                     | 0.024   | 1.31 |
| STRN4    | Striatin, Calmodulin Binding Protein 4                                  | < 0.001 | 1.30 |
| FMNL1    | Formin-Like 1                                                           | 0.010   | 1.30 |
| CPT1A    | Carnitine Palmitoyltransferase 1A (Liver)                               | 0.015   | 1.30 |
| ITGA2B   | Integrin, Alpha 2b (Platelet Glycoprotein lib Of lib/liia<br>Complement | 0.011   | 1.30 |
| TSC22D4  | TSC22 Domain Family, Member 4                                           | 0.006   | 1.30 |
| TRANK1   | Tetratricopeptide Repeat And Ankyrin Repeat Containing 1                | 0.003   | 1.30 |
| TMEM181  | Transmembrane Protein 181                                               | < 0.001 | 1.30 |

| MAPK8IP3  | Mitogen-Activated Protein Kinase 8 Interacting Protein 3    | < 0.001 | 1.30 |
|-----------|-------------------------------------------------------------|---------|------|
| FURIN     | Furin (Paired Basic Amino Acid Cleaving Enzyme)             | 0.001   | 1.30 |
| ASB6      | Ankyrin Repeat And SOCS Box Containing 6                    | 0.004   | 1.30 |
| SH2D3C    | SH2 Domain Containing 3C                                    | 0.034   | 1.30 |
| DHRSX-IT1 | DHRSX Intronic Transcript 1 (Non-Protein Coding)            | 0.006   | 1.30 |
| SEC24C    | SEC24 Family, Member C (S. Cerevisiae)                      | < 0.001 | 1.30 |
| WBP1L     | WW Domain Binding Protein 1-Like                            | < 0.001 | 1.30 |
| PCIF1     | PDX1 C-Terminal Inhibiting Factor 1                         | 0.040   | 1.30 |
| ABTB1     | Ankyrin Repeat And BTB (POZ) Domain Containing 1            | 0.028   | 1.30 |
| TREML2    | Triggering Receptor Expressed On Myeloid Cells-Like         | 0.008   | 1.30 |
| ATP2A3    | Atpase, Ca++ Transporting, Ubiquitous                       | 0.027   | 1.30 |
| PPP6R1    | Protein Phosphatase 6, Regulatory Subunit 1                 | < 0.001 | 1.30 |
| SMARCD2   | SWI/SNF Related, Matrix Associated, Actin Dependent         | 0.001   | 1.30 |
|           | Regulatory                                                  |         |      |
| CLU       | Clusterin                                                   | 0.036   | 1.29 |
| PADI4     | Peptidyl Arginine Deiminase, Type IV                        | 0.027   | 1.29 |
| SLC7A5    | Solute Carrier Family 7 (Amino Acid Transporter Light Chain | 0.031   | 1.29 |
| SUPT6H    | Suppressor Of Ty 6 Homolog (S. Cerevisiae)                  | 0.005   | 1.29 |
| NCLN      | Nicalin                                                     | < 0.001 | 1.29 |
| CYP4F3    | Cytochrome P450, Family 4, Subfamily F, Polypeptide 3       | 0.034   | 1.29 |
| USP5      | Ubiquitin Specific Peptidase 5 (Isopeptidase T)             | 0.042   | 1.29 |
| PLCG2     | Phospholipase C, Gamma 2 (Phosphatidylinositol-Specific)    | 0.006   | 1.29 |
| ELF4      | E74-Like Factor 4 (Ets Domain Transcription Factor)         | 0.005   | 1.29 |
| MMP25     | Matrix Metallopeptidase 25                                  | 0.024   | 1.29 |
| FGD2      | FYVE, Rhogef And PH Domain Containing 2                     | 0.003   | 1.29 |
| TWF2      | Twinfilin, Actin-Binding Protein, Homolog 2 (Drosophila)    | 0.040   | 1.29 |
| BICD2     | Bicaudal D Homolog 2 (Drosophila)                           | 0.002   | 1.29 |
| SRPR      | Signal Recognition Particle Receptor (Docking Protein)      | 0.001   | 1.29 |
|           |                                                             |         |      |
| OS9       | Osteosarcoma Amplified 9, Endoplasmic Reticulum Lectin      | 0.028   | 1.29 |

| MAP3K3   | Mitogen-Activated Protein Kinase Kinase Kinase 3                    | 0.002   | 1.29 |
|----------|---------------------------------------------------------------------|---------|------|
| IMPDH1   | IMP (Inosine 5'-Monophosphate) Dehydrogenase 1                      | 0.018   | 1.28 |
| MKNK2    | MAP Kinase Interacting Serine/Threonine Kinase 2                    | 0.002   | 1.28 |
| MYO1F    | Myosin IF                                                           | 0.019   | 1.28 |
| ACLY     | ATP Citrate Lyase                                                   | 0.016   | 1.28 |
| SNORA59A | Small Nucleolar RNA, H/ACA Box 59A                                  | 0.002   | 1.28 |
| C6orf130 | Chromosome 6 Open Reading Frame 130                                 | 0.021   | 1.28 |
| PACSIN2  | Protein Kinase C And Casein Kinase Substrate In Neurons 2           | 0.007   | 1.28 |
| DOK3     | Docking Protein 3                                                   | 0.002   | 1.28 |
| ZSCAN29  | Zinc Finger And SCAN Domain Containing 29                           | 0.001   | 1.28 |
| KIF21B   | Kinesin Family Member 21B                                           | 0.002   | 1.28 |
| ADCY7    | Adenylate Cyclase 7                                                 | 0.011   | 1.28 |
| CTSD     | Cathepsin D                                                         | 0.017   | 1.28 |
| DNASE1   | Deoxyribonuclease I                                                 | 0.012   | 1.28 |
| TECPR2   | Tectonin Beta-Propeller Repeat Containing 2                         | 0.003   | 1.28 |
| GATAD2A  | GATA Zinc Finger Domain Containing 2A                               | 0.029   | 1.28 |
| PDIA4    | Protein Disulfide Isomerase Family A, Member 4                      | < 0.001 | 1.28 |
| KIAA0100 | Kiaa0100                                                            | 0.005   | 1.28 |
| PFKFB3   | 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3               | 0.036   | 1.28 |
| PIM1     | Pim-1 Oncogene                                                      | 0.027   | 1.28 |
| PRIC285  | Peroxisomal Proliferator-Activated Receptor A                       | 0.005   | 1.28 |
| HCFC1    | Host Cell Factor C1 (VP16-Accessory Protein)                        | 0.006   | 1.28 |
| C6orf48  | Chromosome 6 Open Reading Frame 48                                  | 0.005   | 1.28 |
| STK40    | Serine/Threonine Kinase 40                                          | 0.010   | 1.28 |
| ZDHHC18  | Zinc Finger, DHHC-Type Containing 18                                | 0.004   | 1.28 |
| TSPAN14  | Tetraspanin 14                                                      | 0.043   | 1.28 |
| EMR2     | Egf-Like Module Containing, Mucin-Like, Hormone Receptor-<br>Like 2 | 0.023   | 1.28 |
| AP2A1    | Adaptor-Related Protein Complex 2, Alpha 1 Subunit                  | 0.006   | 1.27 |
| IGKC     | Immunoglobulin Kappa Constant                                       | 0.044   | 1.27 |

| TMEM120<br>A | Transmembrane Protein 120A                                         | 0.033   | 1.27 |
|--------------|--------------------------------------------------------------------|---------|------|
| RAP1GAP2     | RAP1 Gtpase Activating Protein 2                                   | 0.013   | 1.27 |
| POLA2        | Polymerase (DNA Directed), Alpha 2, Accessory Subunit              | < 0.001 | 1.27 |
| U2AF2        | U2 Small Nuclear RNA Auxiliary Factor 2                            | 0.011   | 1.27 |
| FCRLA        | Fc Receptor-Like A                                                 | 0.023   | 1.27 |
| TMEM43       | Transmembrane Protein 43                                           | 0.031   | 1.27 |
| KCTD5        | Potassium Channel Tetramerisation Domain Containing 5              | 0.028   | 1.27 |
| PKN1         | Protein Kinase N1                                                  | 0.005   | 1.27 |
| FBXW2        | F-Box And WD Repeat Domain Containing 2                            | < 0.001 | 1.27 |
| NOM01        | NODAL Modulator 1                                                  | 0.035   | 1.27 |
| FCGRT        | Fc Fragment Of Igg, Receptor, Transporter, Alpha                   | 0.012   | 1.27 |
| ZGPAT        | Zinc Finger, CCCH-Type With G Patch Domain                         | 0.013   | 1.27 |
| C19orf38     | Chromosome 19 Open Reading Frame 38                                | 0.004   | 1.27 |
| MAU2         | MAU2 Chromatid Cohesion Factor Homolog (C. Elegans)                | 0.011   | 1.27 |
| SNORA9       | Small Nucleolar RNA, H/ACA Box 9                                   | 0.022   | 1.27 |
| STK11        | Serine/Threonine Kinase 11                                         | 0.009   | 1.27 |
| PLEKHM1      | Pleckstrin Homology Domain Containing, Family M (With RUN<br>Domai | 0.020   | 1.27 |
| ткт          | Transketolase                                                      | < 0.001 | 1.27 |
| ARHGEF18     | Rho/Rac Guanine Nucleotide Exchange Factor (GEF) 18                | 0.017   | 1.27 |
| STAT2        | Signal Transducer And Activator Of Transcription 2, 113kda         | 0.018   | 1.27 |
| FXR2         | Fragile X Mental Retardation, Autosomal Homolog 2                  | 0.005   | 1.27 |
| VPS39        | Vacuolar Protein Sorting 39 Homolog (S. Cerevisiae                 | 0.022   | 1.27 |
| ACSS1        | Acyl-Coa Synthetase Short-Chain Family Member 1                    | 0.003   | 1.27 |
| INPP5D       | Inositol Polyphosphate-5-Phosphatase, 145kda                       | 0.016   | 1.27 |
| RAB1B        | RAB1B, Member RAS Oncogene Family                                  | < 0.001 | 1.27 |
| DCAF11       | DDB1 And CUL4 Associated Factor 11                                 | 0.010   | 1.26 |
| PCSK7        | Proprotein Convertase Subtilisin/Kexin Type 7                      | 0.004   | 1.26 |
| DCAF5        | DDB1 And CUL4 Associated Factor 5                                  | < 0.001 | 1.26 |

| ATP13A2 | Atpase Type 13A2                                          | 0.006   | 1.26 |
|---------|-----------------------------------------------------------|---------|------|
| GRAMD1A | GRAM Domain Containing 1A                                 | 0.034   | 1.26 |
| TBC1D2  | TBC1 Domain Family, Member 2                              | 0.021   | 1.26 |
| PCYT2   | Phosphate Cytidylyltransferase 2, Ethanolamine            | 0.046   | 1.26 |
| BCL6    | B-Cell CLL/Lymphoma 6                                     | 0.033   | 1.26 |
| NUP210  | Nucleoporin 210kda                                        | 0.005   | 1.26 |
| RFWD3   | Ring Finger And WD Repeat Domain 3                        | < 0.001 | 1.26 |
| MON1B   | MON1 Homolog B (Yeast)                                    | 0.007   | 1.26 |
| FEM1A   | Fem-1 Homolog A (C. Elegans)                              | 0.033   | 1.26 |
| TBC1D3H | TBC1 Domain Family, Member 3H                             | 0.011   | 1.26 |
| HDAC1   | Histone Deacetylase 1                                     | 0.006   | 1.26 |
| MSN     | Moesin                                                    | 0.013   | 1.26 |
| PLB1    | Phospholipase B1                                          | 0.031   | 1.26 |
| C20orf3 | Chromosome 20 Open Reading Frame 3                        | 0.013   | 1.26 |
| ITPR3   | Inositol 1,4,5-Trisphosphate Receptor, Type 3             | 0.001   | 1.26 |
| LMAN2   | Lectin, Mannose-Binding 2                                 | 0.006   | 1.26 |
| PGPEP1  | Pyroglutamyl-Peptidase I                                  | 0.011   | 1.26 |
| RAPGEF1 | Rap Guanine Nucleotide Exchange Factor (GEF) 1            | 0.014   | 1.26 |
| PRPF8   | PRP8 Pre-Mrna Processing Factor 8 Homolog (S. Cerevisiae) | 0.013   | 1.26 |
| CXCR1   | Chemokine (C-X-C Motif) Receptor 1                        | 0.005   | 1.26 |
| LRRC4   | Leucine Rich Repeat Containing 4                          | 0.002   | 1.26 |
| MLKL    | Mixed Lineage Kinase Domain-Like                          | 0.037   | 1.26 |
| PXN     | Paxillin                                                  | 0.024   | 1.26 |
| SBNO2   | Strawberry Notch Homolog 2 (Drosophila)                   | 0.003   | 1.26 |
| MKRN2   | Makorin Ring Finger Protein 2                             | < 0.001 | 1.26 |
| RABL2B  | RAB, Member Of RAS Oncogene Family-Like 2B                | 0.028   | 1.26 |
| ARPC1B  | Actin Related Protein 2/3 Complex, Subunit 1B, 41kda      | 0.020   | 1.26 |
| VCP     | Valosin Containing Protein                                | 0.001   | 1.26 |
| GMIP    | GEM Interacting Protein                                   | 0.022   | 1.26 |
| VASP    | Vasodilator-Stimulated Phosphoprotein                     | 0.008   | 1.26 |

| NUDT19Nudix (Nucleoside Diphosphate Linked Moiety X)-Type Motif 190.0041.26STAT6Signal Transducer And Activator Of Transcription 60.0021.25WDR1WD Repeat Domain 10.0071.25RASGRP4RAS Guanyl Releasing Protein 40.0071.25CHPF2Chondroitin Polymerizing Factor 20.0061.25MAN2A2Mannosidase, Alpha, Class 2A, Member 20.0021.25RASA3RAS P21 Protein Activator 30.0311.25CARD11Caspase Recruitment Domain Family, Member 110.0311.25DOK1Docking Protein 1, 62kda (Downstream Of Tyrosine Kinase 1)0.0161.25EH03EH-Domain Containing 30.0371.25CRO1ACoronin, Actin Binding Protein, 1A0.0011.25ING4Inhibitor Of Growth Family, Member 40.0211.25ING4Inhibitor Of Growth Family, Member 40.0211.25SPA1Signal-Induced Proliferation-Associated 10.0031.25INPM2Dynamin 20.0201.25SIPA1Signal-Induced Proliferation-Associated Protein 10.0011.25GP51G Protein Pathway Suppressor 10.0101.25SIRPASamil Nuclear Ribonucleoprotein Receptor-Related Protein 10.0021.25GP51G Protein Pathway Suppressor 10.0101.25SIRPASmail Nuclear Ribonucleoprotein Polypeptide A0.0331.25SIRPASmail Nuclear Ribonucleoprotein Polypeptide A0.0331.25G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                                               |         |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------|---------|------|
| WDR1WD Repeat Domain 10.0001.25WDR4RAS Guanyl Releasing Protein 40.0071.25CHPF2Chondroitin Polymerizing Factor 20.0001.25HIATL1Hippocampus Abundant Transcript-Like 10.0131.25MAN2A2Mannosidase, Alpha, Class 2A, Member 20.0021.25RASA3RAS P21 Protein Activator 30.0341.25CMD11Caspase Recruitment Domain Family, Member 110.0311.25DOK1Docking Protein 1, 62kda (Downstream Of Tyrosine Kinase 1)0.0161.25EH03EH-Domain Containing 30.0371.25COR01ACoronin, Actin Binding Protein, 1A0.0411.25ING4Inhibitor Of Growth Family, Member 40.0211.25ING4Inhibitor Of Growth Family, Member 40.0211.25INM2Signal-Induced Proliferation-Associated 10.0031.25INM2Signal-Induced Proliferation-Associated 10.0011.25INM2Ory Molecule0.0211.25CD7CD7 Molecule0.0211.25GPS1G Protein Pathway Suppresor 10.0101.25SNRASmall Nuclear Ribonucleoprotein Rolpupetide A0.0311.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function)<br>Asso0.0221.25P2RY8Purinergic Receptor P2Y, G-Protein Coupled, 80.0331.25LASP1LiM And SH3 Protein 1<0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NUDT19  | Nudix (Nucleoside Diphosphate Linked Moiety X)-Type Motif 19  | 0.004   | 1.26 |
| RASGRP4RAS Guanyl Releasing Protein 40.0071.25RASGRP4RAS Guanyl Releasing Protein 40.0071.25CHPF2Chondroitin Polymerizing Factor 20.0021.25HIATL1Hippocampus Abundant Transcript-Like 10.0131.25MAN2A2Mannosidase, Alpha, Class 2A, Member 20.00341.25CARD11Caspase Recruitment Domain Family, Member 110.0311.25DOK1Docking Protein 1, 62kda (Downstream Of Tyrosine Kinase 1)0.0161.25EHD3EH-Domain Containing 30.0371.25COR01ACoronin, Actin Binding Protein, 1A0.0451.25ING4Inhibitor Of Growth Family, Member 40.0011.25RASSF3Ras Association (Ralgds/AF-6) Domain Family Member 30.0181.25DNM2Dynamin 20.0201.25IRF1Low Density Lipoprotein Receptor-Related Protein 10.0021.25IRP1Low Density Lipoprotein Kinase Kinase Kinase 20.0271.25GPS1G Protein Pathway Suppressor 10.0141.25GPS1Small Nuclear Ribonucleoprotein Polypeptide A0.0341.25IRPALMinger-Activated Protein 1, C180, Lymphocyte Function<br>Asso0.0321.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function<br>Asso0.0321.25IRPALim And SH3 Protein 10.0321.25IRPC4APIranseit Receptor P2Y, G-Protein Coupled, 80.0331.25ITGALLim And SH3 Protein 10.032 <td< td=""><td>STAT6</td><td>Signal Transducer And Activator Of Transcription 6</td><td>0.002</td><td>1.25</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STAT6   | Signal Transducer And Activator Of Transcription 6            | 0.002   | 1.25 |
| CHPF2Chondroitin Polymerizing Factor 20.00061.25HIATL1Hippocampus Abundant Transcript-Like 10.0131.25MAN2A2Mannosidase, Alpha, Class 2A, Member 20.0021.25RASA3RAS P21 Protein Activator 30.0341.25CARD11Caspase Recruitment Domain Family, Member 110.0311.25DOK1Docking Protein 1, 62kda (Downstream Of Tyrosine Kinase 1)0.0161.25EHD3EH-Domain Containing 30.0371.25COR01ACoronin, Actin Binding Protein, 1A0.0011.25ATP11AAtpase, Class VI, Type 11A0.0011.25ING4Inhibitor Of Growth Family, Member 40.0211.25DNM2Dynamin 20.0331.25SIPA1Signal-Induced Proliferation-Associated 10.0021.25IRF1Low Density Lipoprotein Receptor-Related Protein 10.0011.25GPS1G Protein Pathway Suppressor 10.0141.25GNRASmall Nuclear Ribonucleoprotein Polypeptide A0.0491.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function<br>Asso0.0311.25IRSPUrinergic Receptor P2Y, G-Protein Coupled, 80.0321.25LASP1Lim And SH3 Protein 10.0321.25IRCA4PIransent Receptor Potential Cation Channel, Subfamily C0.0321.25ITGALLim And SH3 Protein 10.0321.25IRA5Lim And SH3 Protein 10.0321.25IRA5Lim And SH3 Protei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WDR1    | WD Repeat Domain 1                                            | 0.001   | 1.25 |
| HIATL1Hippocampus Abundant Transcript-Like 10.0131.25MAN2A2Mannosidase, Alpha, Class 2A, Member 20.0021.25RASA3RAS P21 Protein Activator 30.0341.25CARD11Caspase Recruitment Domain Family, Member 110.0311.25DOK1Docking Protein 1, 62kda (Downstream Of Tyrosine Kinase 1)0.0161.25EHD3EH-Domain Containing 30.0371.25COR01ACoronin, Actin Binding Protein, 1A0.0451.25ING4Inhibitor Of Growth Family, Member 40.0211.25ING4Inhibitor Of Growth Family, Member 40.0311.25SIPA1Signal-Induced Proliferation-Associated 10.0031.25SIPA1Signal-Induced Proliferation-Associated Protein 10.0011.25GP51GP rotein Pathway Suppressor 10.0101.25SINPASmall Nuclear Ribonucleoprotein Polypeptide A0.0491.25SIRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0101.25ITGALAlpisprotein I, 20.0101.25SIRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0101.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function<br>Asso0.0031.25ITGALLitMand SH3 Protein 10.0031.25INRPAUIM and SH3 Protein 10.0041.25INRPAVarsient Receptor P2Y, G-Protein Coupled, 80.0281.25INRPAVarsient Receptor P2Y, G-Protein Coupled, S0.0281.25 <td>RASGRP4</td> <td>RAS Guanyl Releasing Protein 4</td> <td>0.007</td> <td>1.25</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RASGRP4 | RAS Guanyl Releasing Protein 4                                | 0.007   | 1.25 |
| MAN2A2Mannosidase, Alpha, Class 2A, Member 20.00021.25RASA3RAS P21 Protein Activator 30.0341.25CARD11Caspase Recruitment Domain Family, Member 110.0311.25DOK1Docking Protein 1, 62kda (Downstream Of Tyrosine Kinase 1)0.0161.25EHD3EH-Domain Containing 30.0371.25COR01ACoronin, Actin Binding Protein, 1A0.0011.25ATP11AAtpase, Class VI, Type 11A0.0011.25ING4Inhibitor Of Growth Family, Member 40.0011.25RASSF3Ras Association (Ralgds/AF-6) Domain Family Member 30.0181.25DNM2Dynamin 20.0031.25SIPA1Signal-Induced Proliferation-Associated 10.0011.25MAP4K2Mitogen-Activated Protein Receptor-Related Protein 10.0011.25GP51G Protein Pathway Suppressor 10.0111.25SINRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0131.25APO12Apolipoprotein L20.0111.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function<br>Asso0.0031.25ITGALLIMAnd SH3 Protein 10.0031.25IASP1UIM And SH3 Protein 10.0031.25INRPCAAPKASP3 Protein Family Homolog 5 Pseudogene0.0280.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHPF2   | Chondroitin Polymerizing Factor 2                             | 0.006   | 1.25 |
| RASA3RAS P21 Protein Activator 30.0341.25RASD1Caspase Recruitment Domain Family, Member 110.0311.25DOK1Docking Protein 1, 62kda (Downstream Of Tyrosine Kinase 1)0.0161.25EHD3EH-Domain Containing 30.0371.25COR01ACoronin, Actin Binding Protein, 1A0.0451.25ATP11AAtpase, Class VI, Type 11A0.0011.25ING4Inhibitor Of Growth Family, Member 40.0211.25DNM2Dynamin 20.0331.25SIPA1Signal-Induced Proliferation-Associated 10.0011.25LRP1Low Density Lipoprotein Receptor-Related Protein 10.0101.25GPS1G Protein Pathway Suppressor 10.0101.25SIRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0491.25APOL2Apolipoprotein L, 20.0101.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function Associated 10.0011.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function Associated 10.0021.25SIRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0031.25APOL2Apolipoprotein L, 20.0101.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function Associated Associated Protein Coupled, 80.0331.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function Associated Associated Protein Coupled, 80.0331.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HIATL1  | Hippocampus Abundant Transcript-Like 1                        | 0.013   | 1.25 |
| CARD11CARD11CARD11CARD11CARD11Caspase Recruitment Domain Family, Member 110.0311.25DOK1Docking Protein 1, 62kda (Downstream Of Tyrosine Kinase 1)0.0161.25EHD3EH-Domain Containing 30.0371.25COR01ACoronin, Actin Binding Protein, 1A0.0451.25ATP11AAtpase, Class VI, Type 11A0.0011.25ING4Inhibitor Of Growth Family, Member 40.0211.25RASSF3Ras Association (Ralgds/AF-6) Domain Family Member 30.0181.25DNM2Dynamin 20.0031.25SIPA1Signal-Induced Proliferation-Associated 10.0011.25LRP1Low Density Lipoprotein Receptor-Related Protein 10.0011.25CD7CD7 Molecule0.0481.25GPS1G Protein Pathway Suppressor 10.0101.25SNRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0021.25P2RV8Purinergic Receptor P2Y, G-Protein Coupled, 80.0331.25LASP1LIM And SH3 Protein 1<0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MAN2A2  | Mannosidase, Alpha, Class 2A, Member 2                        | 0.002   | 1.25 |
| IndexIndexDOK1Docking Protein 1, 62kda (Downstream Of Tyrosine Kinase 1)0.0161.25EHD3EH-Domain Containing 30.0371.25COR01ACoronin, Actin Binding Protein, 1A0.0451.25ATP11AAtpase, Class VI, Type 11A0.0011.25ING4Inhibitor Of Growth Family, Member 40.0211.25RASSF3Ras Association (Ralgds/AF-6) Domain Family Member 30.0181.25DNM2Dynamin 20.0031.25SIPA1Signal-Induced Proliferation-Associated 10.0011.25MAP4K2Mitogen-Activated Protein Kinase Kinase Kinase Z0.0271.25CD7CD7 Molecule0.0101.25SNRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0491.25APOL2Apolipoprotein L, 20.0101.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-Associated 10.0021.25ITGALLinegrin, Alpha L Antigen CD11A (P180), Lymphocyte Function-Associated 10.0311.25ITGALLinegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-Associated 10.0021.25ITGALLinegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-Associated 10.0331.25ITAGALLinegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-Associated 10.0021.25ITGALLinegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-Associated 10.0331.25ITAGALVininergic Receptor P2Y, G-Protein Coupled, 80.0331.25<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RASA3   | RAS P21 Protein Activator 3                                   | 0.034   | 1.25 |
| EndInterface of the second          | CARD11  | Caspase Recruitment Domain Family, Member 11                  | 0.031   | 1.25 |
| InterpretermInterpretermCORO1ACoronin, Actin Binding Protein, 1A0.0451.25ATP11AAtpase, Class VI, Type 11A0.0011.25ING4Inhibitor Of Growth Family, Member 40.0211.25RASSF3Ras Association (Ralgds/AF-6) Domain Family Member 30.0181.25DNM2Dynamin 20.0031.25SIPA1Signal-Induced Proliferation-Associated 10.0201.25LRP1Low Density Lipoprotein Receptor-Related Protein 10.0011.25MAP4K2Mitogen-Activated Protein Kinase Kinase Kinase 20.0271.25CD7CD7 Molecule0.0101.25SNRPAG Protein Pathway Suppressor 10.0101.25APOL2Apolipoprotein L, 20.0101.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-Asso0.0021.25P2RY8Purinergic Receptor P2Y, G-Protein Coupled, 80.0331.25ITASP1LIM And SH3 Protein 1<0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DOK1    | Docking Protein 1, 62kda (Downstream Of Tyrosine Kinase 1)    | 0.016   | 1.25 |
| AreaAreaAreaATP11AAtpase, Class VI, Type 11A0.0011.25ING4Inhibitor Of Growth Family, Member 40.0211.25RASSF3Ras Association (Ralgds/AF-6) Domain Family Member 30.0181.25DNM2Dynamin 20.0031.25SIPA1Signal-Induced Proliferation-Associated 10.0011.25LRP1Low Density Lipoprotein Receptor-Related Protein 10.0011.25MAP4K2Mitogen-Activated Protein Kinase Kinase Kinase Xinase 20.0271.25GP51G Protein Pathway Suppressor 10.0101.25SNRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0491.25APOL2Apolipoprotein L, 20.0111.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function<br>Asso0.0021.25IXSP1LIM And SH3 Protein 1<0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EHD3    | EH-Domain Containing 3                                        | 0.037   | 1.25 |
| IndexIndexIndexING4Inhibitor Of Growth Family, Member 40.0211.25RASSF3Ras Association (Ralgds/AF-6) Domain Family Member 30.0181.25DNM2Dynamin 20.0031.25SIPA1Signal-Induced Proliferation-Associated 10.0011.25LRP1Low Density Lipoprotein Receptor-Related Protein 10.0011.25MAP4K2Mitogen-Activated Protein Kinase Kinase Kinase 20.0271.25CD7CD7 Molecule0.0481.25SNRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0491.25APOL2Apolipoprotein L, 20.0111.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-Asso0.0021.25P2RY8Purinergic Receptor P2Y, G-Protein Coupled, 80.0311.25ITRPC4APTransient Receptor Potential Cation Channel, Subfamily C0.0021.25WASH5PWAS Protein Family Homolog 5 Pseudogene0.0280.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CORO1A  | Coronin, Actin Binding Protein, 1A                            | 0.045   | 1.25 |
| Image: Constraint of the second sec | ATP11A  | Atpase, Class VI, Type 11A                                    | 0.001   | 1.25 |
| DNM2Dynamin 20.0031.25SIPA1Signal-Induced Proliferation-Associated 10.0201.25LRP1Low Density Lipoprotein Receptor-Related Protein 10.0011.25MAP4K2Mitogen-Activated Protein Kinase Kinase Kinase 20.0271.25CD7CD7 Molecule0.0481.25GP51G Protein Pathway Suppressor 10.0101.25SNRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0491.25APOL2Apolipoprotein L, 20.0101.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-Asso0.0021.25P2RY8Purinergic Receptor P2Y, G-Protein Coupled, 80.0331.25LASP1LIM And SH3 Protein 1<0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ING4    | Inhibitor Of Growth Family, Member 4                          | 0.021   | 1.25 |
| Image: Additional systemImage: Additional systemSIPA1Signal-Induced Proliferation-Associated 10.0201.25LRP1Low Density Lipoprotein Receptor-Related Protein 10.0011.25MAP4K2Mitogen-Activated Protein Kinase Kinase Kinase 20.0271.25CD7CD7 Molecule0.0481.25GPS1G Protein Pathway Suppressor 10.0101.25SNRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0491.25APOL2Apolipoprotein L, 20.0101.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-<br>Asso0.0021.25P2RY8Purinergic Receptor P2Y, G-Protein Coupled, 80.0331.25IASP1LIM And SH3 Protein 1<0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RASSF3  | Ras Association (Ralgds/AF-6) Domain Family Member 3          | 0.018   | 1.25 |
| LRP1Low Density Lipoprotein Receptor-Related Protein 10.0011.25MAP4K2Mitogen-Activated Protein Kinase Kinase Kinase 20.0271.25CD7CD7 Molecule0.0481.25GPS1G Protein Pathway Suppressor 10.0101.25SNRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0491.25APOL2Apolipoprotein L, 20.0101.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-Asso0.0021.25P2RY8Purinergic Receptor P2Y, G-Protein Coupled, 80.0331.25LASP1LIM And SH3 Protein 1<0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DNM2    | Dynamin 2                                                     | 0.003   | 1.25 |
| MAP4K2Mitogen-Activated Protein Kinase Kinase Kinase Xinase 20.0271.25CD7CD7 Molecule0.0481.25GPS1G Protein Pathway Suppressor 10.0101.25SNRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0491.25APOL2Apolipoprotein L, 20.0101.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-<br>Asso0.0021.25P2RY8Purinergic Receptor P2Y, G-Protein Coupled, 80.0331.25LASP1LIM And SH3 Protein 1<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SIPA1   | Signal-Induced Proliferation-Associated 1                     | 0.020   | 1.25 |
| CD7CD7 Molecule0.0481.25GPS1G Protein Pathway Suppressor 10.0101.25SNRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0491.25APOL2Apolipoprotein L, 20.0101.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-<br>Asso0.0021.25P2RY8Purinergic Receptor P2Y, G-Protein Coupled, 80.0331.25LASP1LIM And SH3 Protein 1<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LRP1    | Low Density Lipoprotein Receptor-Related Protein 1            | 0.001   | 1.25 |
| GPS1G Protein Pathway Suppressor 1O.0101.25SNRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0491.25APOL2Apolipoprotein L, 20.0101.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-<br>Asso0.0021.25P2RY8Purinergic Receptor P2Y, G-Protein Coupled, 80.0331.25LASP1LIM And SH3 Protein 1<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MAP4K2  | Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2       | 0.027   | 1.25 |
| SNRPASmall Nuclear Ribonucleoprotein Polypeptide A0.0491.25APOL2Apolipoprotein L, 20.0101.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-<br>Asso0.0021.25P2RY8Purinergic Receptor P2Y, G-Protein Coupled, 80.0331.25LASP1LIM And SH3 Protein 1<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CD7     | CD7 Molecule                                                  | 0.048   | 1.25 |
| APOL2Apolipoprotein L, 20.0101.25ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-<br>Asso0.0021.25P2RY8Purinergic Receptor P2Y, G-Protein Coupled, 80.0331.25LASP1LIM And SH3 Protein 1<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GPS1    | G Protein Pathway Suppressor 1                                | 0.010   | 1.25 |
| ITGALIntegrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function-<br>Asso0.0021.25P2RY8Purinergic Receptor P2Y, G-Protein Coupled, 80.0331.25LASP1LIM And SH3 Protein 1<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SNRPA   | Small Nuclear Ribonucleoprotein Polypeptide A                 | 0.049   | 1.25 |
| ITGAL0.0021.25P2RY8Purinergic Receptor P2Y, G-Protein Coupled, 80.0331.25LASP1LIM And SH3 Protein 1<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | APOL2   | Apolipoprotein L, 2                                           | 0.010   | 1.25 |
| AssoImage: Comparison of the second seco          | ITGAL   | Integrin, Alpha L (Antigen CD11A (P180), Lymphocyte Function- | 0.002   | 1.25 |
| LASP1LIM And SH3 Protein 1< 0.0011.25TRPC4APTransient Receptor Potential Cation Channel, Subfamily C0.0021.25WASH5PWAS Protein Family Homolog 5 Pseudogene0.0281.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | Asso                                                          | 0.001   | 2.20 |
| TRPC4AP     Transient Receptor Potential Cation Channel, Subfamily C     0.002     1.25       WASH5P     WAS Protein Family Homolog 5 Pseudogene     0.028     1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P2RY8   | Purinergic Receptor P2Y, G-Protein Coupled, 8                 | 0.033   | 1.25 |
| WASH5P     WAS Protein Family Homolog 5 Pseudogene     0.028     1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LASP1   | LIM And SH3 Protein 1                                         | < 0.001 | 1.25 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRPC4AP | Transient Receptor Potential Cation Channel, Subfamily C      | 0.002   | 1.25 |
| DGAT1 Diacylglycerol O-Acyltransferase 1 0.008 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WASH5P  | WAS Protein Family Homolog 5 Pseudogene                       | 0.028   | 1.25 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DGAT1   | Diacylglycerol O-Acyltransferase 1                            | 0.008   | 1.25 |

| EFTUD2Elongation Factor Tu GTP Binding Domain Containing 20.0121.25TRAM2Translocation Associated Membrane Protein 20.0051.25SNRNP200Small Nuclear Ribonucleoprotein 200kda (U5)0.0011.25PNPLA6Patatin-Like Phospholipase Domain Containing 60.0041.25NS3BPA Kinase (PRKA) Anchor Protein 8-Like0.0011.25APOBEC3AApolipoprotein B Mrna Editing Enzyme, Catalytic Polypeptide-Li0.0011.24NFE2L1Nuclear Factor (Erythroid-Derived 2)-Like 10.0211.24PIEZ01Piezo-Type Mechanosensitive Ion Channel Component 1< 0.0011.24SMOXSpermine Oxidase0.0321.24KIAA0195Kiaa01950.0011.24LIMK1LIM Domain Kinase 10.0031.24ZNF76Zinc Finger Protein 760.0011.24ZNF76Zinc Finger Protein 750.0111.24KIAA0226Kiaa02260.0121.24EPD11Endonuclease/Exonuclease/Phosphatase Family Domain<br>Containing 10.0121.24IAR52Isoleucyl-Trna Synthetase 2, Mitochondrial0.0311.24ARIGAP1Rho Gtpase Activating Protein 5-Like0.0011.24ARIGAP1Rho Gtpase Activating Protein 5-Like0.0111.24GHZSH3-Binding Domain Protein 5-Like0.0311.24LIAR52SH3-Binding Domain Protein 5-Like0.0341.24GHZNinjurin 10.0381.24IARGAP1Rho Gtpase Activating Protei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                                                |         |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------|---------|------|
| SNRNP200Small Nuclear Ribonucleoprotein 200kda (US)0.0011.25SNRNP200Small Nuclear Ribonucleoprotein 200kda (US)0.0041.25PNPLA6Patain-Like Phospholipase Domain Containing 60.0041.25AKAP8LA Kinase (PRKA) Anchor Protein 8-Like0.0011.25NS3BPNs3bp0.0011.24PNPEA6Apolipoprotein B Mrna Editing Enzyme, Catalytic Polypeptide-Li0.0201.24NFE211Nuclear Factor (Erythroid-Derived 2)-Like 10.0211.24PIEZ01Piezo-Type Mechanosensitive Ion Channel Component 1<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EFTUD2   | Elongation Factor Tu GTP Binding Domain Containing 2           | 0.012   | 1.25 |
| PNPLA6Patatin-Like Phospholipase Domain Containing 60.0041.25AKAP8LA Kinase (PRKA) Anchor Protein 8-Like0.0011.25NS3BPNs3bp0.0011.25APOBEC3AApolipoprotein B Mrna Editing Enzyme, Catalytic Polypeptide-Li0.0201.24NFE211Nuclear Factor (Erythroid-Derived 2)-Like 10.0211.24PIEZ01Piezo-Type Mechanosensitive Ion Channel Component 1<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRAM2    | Translocation Associated Membrane Protein 2                    | 0.005   | 1.25 |
| AKAP8LA Kinase (PRKA) Anchor Protein 8-Like0.0041.25NS3BPNs3bp0.0011.25APOBEC3AApolipoprotein B Mrna Editing Enzyme, Catalytic Polypeptide-Li0.0201.24NFE2L1Nuclear Factor (Erythroid-Derived 2)-Like 10.0211.24PIEZO1Piezo-Type Mechanosensitive Ion Channel Component 1<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SNRNP200 | Small Nuclear Ribonucleoprotein 200kda (U5)                    | 0.001   | 1.25 |
| NS3BPNs3bp0.0011.25APOBEC3AApolipoprotein B Mrna Editing Enzyme, Catalytic Polypeptide-Li0.0201.24NFE2L1Nuclear Factor (Erythroid-Derived 2)-Like 10.0211.24PIEZ01Piezo-Type Mechanosensitive Ion Channel Component 1<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PNPLA6   | Patatin-Like Phospholipase Domain Containing 6                 | 0.004   | 1.25 |
| APOBEC3AApolipoprotein B Mrna Editing Enzyme, Catalytic Polypeptide-Li0.0201.24NFE2L1Nuclear Factor (Erythroid-Derived 2)-Like 10.0211.24PIEZ01Piezo-Type Mechanosensitive Ion Channel Component 1<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AKAP8L   | A Kinase (PRKA) Anchor Protein 8-Like                          | 0.004   | 1.25 |
| NF22L1         Nuclear Factor (Erythroid-Derived 2)-Like 1         0.021         1.24           PIEZO1         Piezo-Type Mechanosensitive Ion Channel Component 1         < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NS3BP    | Ns3bp                                                          | 0.001   | 1.25 |
| PIEZO1         Piezo-Type Mechanosensitive Ion Channel Component 1         < 0.001         1.24           PIEZD1         TBC1 Domain Family, Member 25         0.001         1.24           SMOX         Spermine Oxidase         0.032         1.24           UBL7         Ubiquitin-Like 7 (Bone Marrow Stromal Cell-Derived)         0.032         1.24           KIAA0195         Kiaa0195         0.009         1.24           LIMK1         LIM Domain Kinase 1         0.003         1.24           ZNF76         Zinc Finger Protein 76         0.001         1.24           RFNG         RFNG O-Fucosylpeptide 3-Beta-N-<br>Acetylglucosaminyltransferase         0.011         1.24           TBC1D30         TBC1 Domain Family, Member 3G         0.012         1.24           KIAA0226         Kiaa0226         0.012         1.24           KIAA0226         Kiaa0226         0.012         1.24           KIAA0226         Kiaa0226         0.012         1.24           SH3P5L         Soleucyl-Trna Synthetase 2, Mitochondrial         0.012         1.24           SH3BP5L         SH3-Binding Domain Protein 5-Like         0.001         1.24           ARHGAP1         Rho Gtpase Activating Protein 1         0.038         1.24           NINJ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | APOBEC3A | Apolipoprotein B Mrna Editing Enzyme, Catalytic Polypeptide-Li | 0.020   | 1.24 |
| TBC1D25         TBC1 Domain Family, Member 25         0.001         1.24           SMOX         Spermine Oxidase         0.032         1.24           UBL7         Ubiquitin-Like 7 (Bone Marrow Stromal Cell-Derived)         0.032         1.24           KIAA0195         Kiaa0195         0.009         1.24           LIMK1         LIM Domain Kinase 1         0.003         1.24           ZNF76         Zinc Finger Protein 76         0.001         1.24           RFNG         RFNG O-Fucosylpeptide 3-Beta-N-<br>Acetylglucosaminyltransferase         0.011         1.24           TBC1D36         TBC1 Domain Family, Member 3G         0.018         1.24           KIAA0226         Kiaa0226         0.012         1.24           KIAA0226         Kiaa0226         0.018         1.24           EEPD1         Endonuclease/Exonuclease/Phosphatase Family Domain<br>Containing 1         0.012         1.24           IARS2         Isoleucyl-Trna Synthetase 2, Mitochondrial         <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NFE2L1   | Nuclear Factor (Erythroid-Derived 2)-Like 1                    | 0.021   | 1.24 |
| SMOXSpermine Oxidase0.0321.24UBL7Ubiquitin-Like 7 (Bone Marrow Stromal Cell-Derived)0.0321.24UBL7Ubiquitin-Like 7 (Bone Marrow Stromal Cell-Derived)0.0091.24KIAA0195Kiaa01950.0091.24LIMK1LIM Domain Kinase 10.0031.24ZNF76Zinc Finger Protein 760.0011.24RFNGRFNG O-Fucosylpeptide 3-Beta-N-<br>Acetylglucosaminyltransferase0.0111.24TBC1D36TBC1 Domain Family, Member 3G0.0181.24KIAA0226Kiaa02260.0121.24EEPD1Endonuclease/Exonuclease/Phosphatase Family Domain<br>Containing 10.0121.24IARS2Isoleucyl-Trna Synthetase 2, Mitochondrial<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PIEZO1   | Piezo-Type Mechanosensitive Ion Channel Component 1            | < 0.001 | 1.24 |
| UBL7Ubiquitin-Like 7 (Bone Marrow Stromal Cell-Derived)0.0321.24KIAA0195Kiaa01950.0091.24LIMK1LIM Domain Kinase 10.0031.24ZNF76Zinc Finger Protein 760.0011.24RFNGRFNG O-Fucosylpeptide 3-Beta-N-<br>Acetylglucosaminyltransferase0.0111.24TBC1D3GTBC1 Domain Family, Member 3G0.0181.24KIAA0226Kiaa02260.0121.24EEPD1Endonuclease/Exonuclease/Phosphatase Family Domain<br>Containing 10.0121.24IARS2Isoleucyl-Trna Synthetase 2, Mitochondrial<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TBC1D25  | TBC1 Domain Family, Member 25                                  | 0.001   | 1.24 |
| KIAA0195         Kiaa0195         0.009         1.24           LIMK1         LIM Domain Kinase 1         0.003         1.24           ZNF76         Zinc Finger Protein 76         0.001         1.24           RFNG         Zinc Finger Protein 76         0.011         1.24           RFNG         TBC1Domain Family, Member 3G         0.011         1.24           KIAA0226         Kiaa0226         0.012         1.24           KIAA0226         Kiaa0226         0.012         1.24           EEPD1         Endonuclease/Exonuclease/Phosphatase Family Domain<br>Containing 1         0.012         1.24           IARS2         Isoleucyl-Trna Synthetase 2, Mitochondrial         0.011         1.24           SH3BP5L         SH3-Binding Domain Protein 5-Like         0.001         1.24           ININ1         Ninger Activation Of T Cells Family, Member 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SMOX     | Spermine Oxidase                                               | 0.032   | 1.24 |
| Limk1Lim CommunityLimLIMK1LIM Domain Kinase 10.0031.24ZNF76Zinc Finger Protein 760.0011.24RFNGRFNG O-Fucosylpeptide 3-Beta-N-<br>Acetylglucosaminyltransferase0.0111.24TBC1D3GTBC1 Domain Family, Member 3G0.0121.24KIAA0226Kiaa02260.0121.24EEPD1Endonuclease/Exonuclease/Phosphatase Family Domain<br>Containing 10.0121.24IARS2Isoleucyl-Trna Synthetase 2, Mitochondrial0.0011.24SH3BP5LSH3-Binding Domain Protein 5-Like0.0011.24IAT2Linker For Activation Of T Cells Family, Member 20.0441.24NINJ1Ninjurin 10.0381.24IGF2RInsulin-Like Growth Factor 2 Receptor0.0191.24NOTCH2Notch 2Notch 20.0011.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UBL7     | Ubiquitin-Like 7 (Bone Marrow Stromal Cell-Derived)            | 0.032   | 1.24 |
| ZNF76Ich<br>Ich<br>Ich<br>Sinc Finger Protein 76Ich<br>Ich<br>IchRFNGRFNG O-Fucosylpeptide 3-Beta-N-<br>Acetylglucosaminyltransferase0.0111.24TBC1D3GTBC1 Domain Family, Member 3G0.0181.24KIAA0226Kiaa02260.0121.24EEPD1Endonuclease/Exonuclease/Phosphatase Family Domain<br>Containing 10.0121.24IARS2Isoleucyl-Trna Synthetase 2, Mitochondrial<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KIAA0195 | Kiaa0195                                                       | 0.009   | 1.24 |
| RFNGRFNG O-Fucosylpeptide 3-Beta-N-<br>Acetylglucosaminyltransferase0.0111.24TBC1D3GTBC1 Domain Family, Member 3G0.0181.24KIAA0226Kiaa02260.0121.24EEPD1Endonuclease/Exonuclease/Phosphatase Family Domain<br>Containing 10.0121.24IARS2Isoleucyl-Trna Synthetase 2, Mitochondrial<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LIMK1    | LIM Domain Kinase 1                                            | 0.003   | 1.24 |
| RFNGAcetylglucosaminyltransferase0.0111.24TBC1D3GTBC1 Domain Family, Member 3G0.0181.24KIAA0226Kiaa02260.0121.24EEPD1Endonuclease/Exonuclease/Phosphatase Family Domain<br>Containing 10.0121.24IARS2Isoleucyl-Trna Synthetase 2, Mitochondrial< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ZNF76    | Zinc Finger Protein 76                                         | 0.001   | 1.24 |
| AcetylglucosaminyltransferaseImage: Constraint of the sector | RFNG     | RFNG O-Fucosylpeptide 3-Beta-N-                                | 0.011   | 1.24 |
| KIAA0226Kiaa02260.0121.24EEPD1Endonuclease/Exonuclease/Phosphatase Family Domain<br>Containing 10.0121.24IARS2Isoleucyl-Trna Synthetase 2, Mitochondrial< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _        | Acetylglucosaminyltransferase                                  |         |      |
| EEPD1Endonuclease/Exonuclease/Phosphatase Family Domain<br>Containing 10.0121.24IARS2Isoleucyl-Trna Synthetase 2, Mitochondrial< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TBC1D3G  | TBC1 Domain Family, Member 3G                                  | 0.018   | 1.24 |
| EEPD10.0121.24IARS2Isoleucyl-Trna Synthetase 2, Mitochondrial< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KIAA0226 | Kiaa0226                                                       | 0.012   | 1.24 |
| SH3BP5LSH3-Binding Domain Protein 5-Like0.0011.24LAT2Linker For Activation Of T Cells Family, Member 20.0441.24ARHGAP1Rho Gtpase Activating Protein 10.0491.24NINJ1Ninjurin 10.0381.24CDK5RAP3CDK5 Regulatory Subunit Associated Protein 30.0261.24IGF2RInsulin-Like Growth Factor 2 Receptor0.0191.24NOTCH2Notch 20.0011.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EEPD1    |                                                                | 0.012   | 1.24 |
| LAT2Linker For Activation Of T Cells Family, Member 20.0441.24ARHGAP1Rho Gtpase Activating Protein 10.0491.24NINJ1Ninjurin 10.0381.24CDK5RAP3CDK5 Regulatory Subunit Associated Protein 30.0261.24IGF2RInsulin-Like Growth Factor 2 Receptor0.0191.24NOTCH2Notch 20.0011.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IARS2    | Isoleucyl-Trna Synthetase 2, Mitochondrial                     | < 0.001 | 1.24 |
| ARHGAP1Rho Gtpase Activating Protein 10.0491.24NINJ1Ninjurin 10.0381.24CDK5RAP3CDK5 Regulatory Subunit Associated Protein 30.0261.24IGF2RInsulin-Like Growth Factor 2 Receptor0.0191.24NOTCH2Notch 20.0011.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SH3BP5L  | SH3-Binding Domain Protein 5-Like                              | 0.001   | 1.24 |
| NINJ1Ninjurin 10.0381.24CDK5RAP3CDK5 Regulatory Subunit Associated Protein 30.0261.24IGF2RInsulin-Like Growth Factor 2 Receptor0.0191.24NOTCH2Notch 20.0011.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LAT2     | Linker For Activation Of T Cells Family, Member 2              | 0.044   | 1.24 |
| CDK5RAP3CDK5 Regulatory Subunit Associated Protein 30.0261.24IGF2RInsulin-Like Growth Factor 2 Receptor0.0191.24NOTCH2Notch 20.0011.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ARHGAP1  | Rho Gtpase Activating Protein 1                                | 0.049   | 1.24 |
| IGF2R     Insulin-Like Growth Factor 2 Receptor     0.019     1.24       NOTCH2     Notch 2     0.001     1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NINJ1    | Ninjurin 1                                                     | 0.038   | 1.24 |
| NOTCH2         Notch 2         0.001         1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CDK5RAP3 | CDK5 Regulatory Subunit Associated Protein 3                   | 0.026   | 1.24 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IGF2R    | Insulin-Like Growth Factor 2 Receptor                          | 0.019   | 1.24 |
| GIT1 G Protein-Coupled Receptor Kinase Interacting Arfgap 1 0.004 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NOTCH2   | Notch 2                                                        | 0.001   | 1.24 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GIT1     | G Protein-Coupled Receptor Kinase Interacting Arfgap 1         | 0.004   | 1.24 |

| ELMO2    | Engulfment And Cell Motility 2                            | 0.036   | 1.24 |
|----------|-----------------------------------------------------------|---------|------|
| BIN3     | Bridging Integrator 3                                     | 0.017   | 1.24 |
| PTGER4   | Prostaglandin E Receptor 4 (Subtype EP4)                  | 0.003   | 1.24 |
| NCKAP1L  | NCK-Associated Protein 1-Like                             | < 0.001 | 1.24 |
| CNPY3    | Canopy 3 Homolog (Zebrafish)                              | 0.035   | 1.24 |
| POLR2J2  | Polymerase (RNA) II (DNA Directed) Polypeptide J2         | 0.016   | 1.24 |
| ΤΑΟΚ2    | TAO Kinase 2                                              | 0.002   | 1.24 |
| РТК2В    | PTK2B Protein Tyrosine Kinase 2 Beta                      | 0.021   | 1.24 |
| ABCA7    | ATP-Binding Cassette, Sub-Family A (ABC1), Member 7       | 0.010   | 1.24 |
| TBC1D3F  | TBC1 Domain Family, Member 3F                             | 0.007   | 1.24 |
| IL6R     | Interleukin 6 Receptor                                    | 0.031   | 1.24 |
| TRBV6-1  | T Cell Receptor Beta Variable 6-1                         | 0.019   | 1.24 |
| RPUSD1   | RNA Pseudouridylate Synthase Domain Containing 1          | 0.005   | 1.24 |
| CALCOCO1 | Calcium Binding And Coiled-Coil Domain 1                  | 0.007   | 1.24 |
| MLX      | MAX-Like Protein X                                        | 0.002   | 1.24 |
| DCTN1    | Dynactin 1                                                | 0.005   | 1.24 |
| VAC14    | Vac14 Homolog (S. Cerevisiae)                             | 0.040   | 1.24 |
| TRIM8    | Tripartite Motif Containing 8                             | 0.012   | 1.24 |
| TAS2R14  | Taste Receptor, Type 2, Member 14                         | 0.037   | 1.24 |
| BTBD2    | BTB (POZ) Domain Containing 2                             | 0.010   | 1.24 |
| SNORD23  | Small Nucleolar RNA, C/D Box 23                           | 0.023   | 1.24 |
| ARAP1    | Arfgap With Rhogap Domain, Ankyrin Repeat And PH Domain 1 | 0.001   | 1.24 |
| USP19    | Ubiquitin Specific Peptidase 19                           | 0.003   | 1.24 |
| CSF1R    | Colony Stimulating Factor 1 Receptor                      | 0.004   | 1.24 |
| МҮО9В    | Myosin IXB                                                | 0.007   | 1.24 |
| SLFN12L  | Schlafen Family Member 12-Like                            | 0.012   | 1.24 |
| ESYT1    | Extended Synaptotagmin-Like Protein 1                     | 0.023   | 1.24 |
| MAN2B2   | Mannosidase, Alpha, Class 2B, Member 2                    | 0.003   | 1.24 |
| XAB2     | XPA Binding Protein 2                                     | 0.020   | 1.24 |
| PIM2     | Pim-2 Oncogene                                            | 0.015   | 1.24 |

| CFP     | Complement Factor Properdin                                      | 0.004 | 1.24 |
|---------|------------------------------------------------------------------|-------|------|
| DEF6    | Differentially Expressed In FDCP 6 Homolog (Mouse)               | 0.002 | 1.24 |
| PNPLA2  | Patatin-Like Phospholipase Domain Containing 2                   | 0.005 | 1.24 |
| FAM91A2 | Family With Sequence Similarity 91, Member A2                    | 0.005 | 1.24 |
| RGS19   | Regulator Of G-Protein Signaling 19                              | 0.004 | 1.23 |
| BMP6    | Bone Morphogenetic Protein 6                                     | 0.001 | 1.23 |
| FES     | Feline Sarcoma Oncogene                                          | 0.005 | 1.23 |
| TRAJ4   | T Cell Receptor Alpha Joining 4                                  | 0.032 | 1.23 |
| CD4.4.1 | Glycosylphosphatidylinositol Anchor Attachment Protein 1         | 0.000 | 1.22 |
| GPAA1   | Homolog                                                          | 0.002 | 1.23 |
| MINK1   | Misshapen-Like Kinase 1                                          | 0.001 | 1.23 |
| MAST3   | Microtubule Associated Serine/Threonine Kinase 3                 | 0.037 | 1.23 |
| TGFB1   | Transforming Growth Factor, Beta 1                               | 0.005 | 1.23 |
| TAF6    | TAF6 RNA Polymerase II, TATA Box Binding Protein (TBP)-          | 0.024 | 1 22 |
| IAFO    | Associated                                                       | 0.024 | 1.23 |
| ACOT8   | Acyl-Coa Thioesterase 8                                          | 0.002 | 1.23 |
| ZNF319  | Zinc Finger Protein 319                                          | 0.019 | 1.23 |
| NCF2    | Neutrophil Cytosolic Factor 2                                    | 0.026 | 1.23 |
| НКЗ     | Hexokinase 3 (White Cell)                                        | 0.038 | 1.23 |
| TMC6    | Transmembrane Channel-Like 6                                     | 0.017 | 1.23 |
| WDTC1   | WD And Tetratricopeptide Repeats 1                               | 0.007 | 1.23 |
| FAM215A | Family With Sequence Similarity 215, Member A                    | 0.015 | 1.23 |
| SRCAP   | Snf2-Related CREBBP Activator Protein                            | 0.011 | 1.23 |
| TBC1D3B | TBC1 Domain Family, Member 3B                                    | 0.028 | 1.23 |
| TMEM140 | Transmembrane Protein 140                                        | 0.004 | 1.23 |
| LRSAM1  | Leucine Rich Repeat And Sterile Alpha Motif Containing 1         | 0.001 | 1.23 |
| BSG     | Basigin (Ok Blood Group)                                         | 0.047 | 1.23 |
| STAB1   | Stabilin 1                                                       | 0.001 | 1.23 |
| GPI     | Glucose-6-Phosphate Isomerase                                    | 0.012 | 1.23 |
| ITGAX   | Integrin, Alpha X (Complement Component 3 Receptor 4<br>Subunit) | 0.020 | 1.23 |

| IGLV3-12 | Immunoglobulin Lambda Variable 3-12                                           | 0.048   | 1.23 |
|----------|-------------------------------------------------------------------------------|---------|------|
| IGKV4-1  | Immunoglobulin Kappa Variable 4-1                                             | 0.008   | 1.23 |
| DIP2A    | DIP2 Disco-Interacting Protein 2 Homolog A (Drosophila)                       | 0.001   | 1.23 |
| ATG4B    | Autophagy Related 4B, Cysteine Peptidase                                      | 0.014   | 1.23 |
| TMEM63A  | Transmembrane Protein 63A                                                     | 0.011   | 1.23 |
| ADAP1    | Arfgap With Dual PH Domains 1                                                 | 0.006   | 1.23 |
| CPSF1    | Cleavage And Polyadenylation Specific Factor 1, 160kda                        | 0.036   | 1.23 |
| LRP10    | Low Density Lipoprotein Receptor-Related Protein 10                           | 0.017   | 1.23 |
| GRK6     | G Protein-Coupled Receptor Kinase 6                                           | 0.011   | 1.23 |
| AKNA     | AT-Hook Transcription Factor                                                  | 0.003   | 1.23 |
| GNB2     | Guanine Nucleotide Binding Protein (G Protein), Beta Polypep                  | < 0.001 | 1.23 |
| PNKP     | Polynucleotide Kinase 3'-Phosphatase                                          | 0.010   | 1.23 |
| BRPF1    | Bromodomain And PHD Finger Containing, 1                                      | 0.009   | 1.23 |
| CD99L2   | CD99 Molecule-Like 2                                                          | 0.019   | 1.23 |
| ARHGEF2  | Rho/Rac Guanine Nucleotide Exchange Factor (GEF) 2                            | 0.006   | 1.23 |
| CLCN4    | Chloride Channel, Voltage-Sensitive 4                                         | 0.011   | 1.23 |
| XYLT2    | Xylosyltransferase II                                                         | 0.025   | 1.23 |
| TBL3     | Transducin (Beta)-Like 3                                                      | 0.015   | 1.23 |
| ADAR     | Adenosine Deaminase, RNA-Specific                                             | 0.016   | 1.23 |
| C11orf68 | Chromosome 11 Open Reading Frame 68                                           | 0.008   | 1.23 |
| MY01G    | Myosin IG                                                                     | 0.001   | 1.23 |
| QSOX1    | Quiescin Q6 Sulfhydryl Oxidase 1                                              | 0.041   | 1.23 |
| TRMT2B   | Trna Methyltransferase 2 Homolog B (S. Cerevisiae)                            | 0.006   | 1.23 |
| NEURL4   | Neuralized Homolog 4 (Drosophila)                                             | < 0.001 | 1.23 |
| AGTRAP   | Angiotensin II Receptor-Associated Protein                                    | 0.032   | 1.23 |
| STAT3    | Signal Transducer And Activator Of Transcription 3 (Acute-<br>Phase Response) | 0.009   | 1.22 |
| HCP5     | HLA Complex P5 (Non-Protein Coding)                                           | 0.024   | 1.22 |
| ICAM3    | Intercellular Adhesion Molecule 3                                             | 0.012   | 1.22 |
| FYCO1    | FYVE And Coiled-Coil Domain Containing 1                                      | 0.003   | 1.22 |

| CECR1     | Cat Eye Syndrome Chromosome Region, Candidate 1          | 0.004   | 1.22 |
|-----------|----------------------------------------------------------|---------|------|
| ZNF335    | Zinc Finger Protein 335                                  | 0.003   | 1.22 |
| PPP1R18   | Protein Phosphatase 1, Regulatory Subunit 18             | 0.001   | 1.22 |
| PMS2      | PMS2 Postmeiotic Segregation Increased 2 (S. Cerevisiae) | 0.028   | 1.22 |
| DYNC1H1   | Dynein, Cytoplasmic 1, Heavy Chain 1                     | 0.004   | 1.22 |
| TBC1D17   | TBC1 Domain Family, Member 17                            | 0.005   | 1.22 |
| ACTR1B    | ARP1 Actin-Related Protein 1 Homolog B, Centractin Beta  | 0.014   | 1.22 |
| HSPA1B    | Heat Shock 70kda Protein 1B                              | 0.027   | 1.22 |
| ТҮК2      | Tyrosine Kinase 2                                        | 0.006   | 1.22 |
| ZNF142    | Zinc Finger Protein 142                                  | 0.014   | 1.22 |
| MED16     | Mediator Complex Subunit 16                              | 0.021   | 1.22 |
| ABCG1     | ATP-Binding Cassette, Sub-Family G (WHITE), Member 1     | 0.026   | 1.22 |
| TRIM44    | Tripartite Motif Containing 44                           | 0.022   | 1.22 |
| ELAC2     | Elac Homolog 2 (E. Coli)                                 | 0.003   | 1.22 |
| CMTM8     | CKLF-Like MARVEL Transmembrane Domain Containing 8       | 0.019   | 1.22 |
| NPIP      | Nuclear Pore Complex Interacting Protein                 | 0.003   | 1.22 |
| CDS2      | CDP-Diacylglycerol Synthase (Phosphatidate               | < 0.001 | 1.22 |
|           | Cytidylyltransferase) 2                                  |         |      |
| APOL6     | Apolipoprotein L, 6                                      | 0.020   | 1.22 |
| INTS3     | Integrator Complex Subunit 3                             | 0.008   | 1.22 |
| KCTD7     | Potassium Channel Tetramerisation Domain Containing 7    | 0.012   | 1.22 |
| ELOVL1    | ELOVL Fatty Acid Elongase 1                              | 0.003   | 1.22 |
| HIST1H1E  | Histone Cluster 1, H1e                                   | 0.003   | 1.22 |
| TRAFD1    | TRAF-Type Zinc Finger Domain Containing 1                | 0.008   | 1.22 |
| ANXA5     | Annexin A5                                               | 0.002   | 1.22 |
| NOMO2     | NODAL Modulator 2                                        | 0.031   | 1.22 |
| HIST2H2BA | Histone Cluster 2, H2ba (Pseudogene)                     | 0.007   | 1.22 |
| PRKCD     | Protein Kinase C, Delta                                  | 0.003   | 1.22 |
| C17orf62  | Chromosome 17 Open Reading Frame 62                      | 0.001   | 1.22 |
| CD82      | CD82 Molecule                                            | 0.017   | 1.22 |

| ATP6V0D1Atpase, H+ Transporting, Lysosomal 38kda, V0 Subunit D10.013FLIIFlightless I Homolog (Drosophila)0.006MFNGMFNG O-Fucosylpeptide 3-Beta-N<br>Acetylglucosaminyltransferase0.009CLN3Ceroid-Lipofuscinosis, Neuronal 30.049GIGYF1GRB10 Interacting GYF Protein 10.007PLD3Phospholipase D Family, Member 30.004ARSGArylsulfatase G<0.003GLG1Golgi Glycoprotein 10.003SPPL2BSignal Peptide Peptidase Like 2B0.006DENND5BDENN/MADD Domain Containing 5B0.003ARPC4Actin Related Protein 2/3 Complex, Subunit 4, 20kda0.001ITGB2Integrin, Beta 2 (Complement Component 3 Receptor 3 And 4 S0.037UBE2OUbiquitin-Conjugating Enzyme E2O0.034GAAGlucosidase, Alpha; Acid0.002NCR1Natural Cytotoxicity Triggering Receptor 10.002GAKCyclin G Associated Kinase0.012ABHD2Abhydrolase Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NED9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PRF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.036 |           |                                                             | 0.010   | 4.00 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------|---------|------|
| FLIIFlightless I Homolog (Drosophila)0.006MFNGMFNG O-Fucosylpeptide 3-Beta-N<br>Acetylglucosaminyltransferase0.009CLN3Ceroid-Lipofuscinosis, Neuronal 30.049GIGYF1GRB10 Interacting GYF Protein 10.007PLD3Phospholipase D Family, Member 30.004ARSGArylsulfatase G<0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NG2 N     | Netrin G2                                                   | 0.013   | 1.22 |
| MFNGMFNG O-Fucosylpeptide 3-Beta-N<br>Acetylglucosaminyltransferase0.009CLN3Ceroid-Lipofuscinosis, Neuronal 30.049GIGYF1GRB10 Interacting GYF Protein 10.007PLD3Phospholipase D Family, Member 30.004ARSGArylsulfatase G<0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P6V0D1 At | Atpase, H+ Transporting, Lysosomal 38kda, VO Subunit D1     | 0.013   | 1.22 |
| MFNGAcetylglucosaminyltransferase0.009CLN3Ceroid-Lipofuscinosis, Neuronal 30.049GIGYF1GRB10 Interacting GYF Protein 10.007PLD3Phospholipase D Family, Member 30.004ARSGArylsulfatase G<0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I FI      | lightless I Homolog (Drosophila)                            | 0.006   | 1.22 |
| AcetylglucosaminyltransferaseAcetylglucosaminyltransferaseCLN3Ceroid-Lipofuscinosis, Neuronal 30.049GIGYF1GRB10 Interacting GYF Protein 10.007PLD3Phospholipase D Family, Member 30.004ARSGArylsulfatase G<0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | MFNG O-Fucosylpeptide 3-Beta-N                              | 0.009   | 1.22 |
| GIGYF1GRB10 Interacting GYF Protein 10.007PLD3Phospholipase D Family, Member 30.004ARSGArylsulfatase G<0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | Acetylglucosaminyltransferase                               | 0.005   | 1.22 |
| PLD3Phospholipase D Family, Member 30.004ARSGArylsulfatase G< 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N3 Ce     | Ceroid-Lipofuscinosis, Neuronal 3                           | 0.049   | 1.22 |
| ARSGArylsulfatase G< 0.00GLG1Golgi Glycoprotein 10.003SPPL2BSignal Peptide Peptidase Like 2B0.006DENND5BDENN/MADD Domain Containing 5B0.003ARPC4Actin Related Protein 2/3 Complex, Subunit 4, 20kda0.001ITGB2Integrin, Beta 2 (Complement Component 3 Receptor 3 And 4 S0.037UBE2OUbiquitin-Conjugating Enzyme E2O0.034GAAGlucosidase, Alpha; Acid0.009NCR1Natural Cytotoxicity Triggering Receptor 10.010KCNQ1Potassium Voltage-Gated Channel, KQT-Like Subfamily,<br>Member 10.002GAKCyclin G Associated Kinase0.012ABHD2Abhydrolase Domain Containing 20.003SEMA4DSema Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.034PRF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.036COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                 | GYF1 G    | GRB10 Interacting GYF Protein 1                             | 0.007   | 1.22 |
| GLG1Golgi Glycoprotein 10.003SPPL2BSignal Peptide Peptidase Like 2B0.006DENND5BDENN/MADD Domain Containing 5B0.003ARPC4Actin Related Protein 2/3 Complex, Subunit 4, 20kda0.001ITGB2Integrin, Beta 2 (Complement Component 3 Receptor 3 And 4 S0.037UBE20Ubiquitin-Conjugating Enzyme E200.034GAAGlucosidase, Alpha; Acid0.009NCR1Natural Cytotoxicity Triggering Receptor 10.010KCNQ1Potassium Voltage-Gated Channel, KQT-Like Subfamily,<br>Member 10.002GAKCyclin G Associated Kinase0.012ABHD2Abhydrolase Domain Containing 20.003SEMA4DSema Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.036COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                            | )3 PI     | Phospholipase D Family, Member 3                            | 0.004   | 1.22 |
| SPPL2BSignal Peptide Peptidase Like 2B0.006DENND5BDENN/MADD Domain Containing 5B0.003ARPC4Actin Related Protein 2/3 Complex, Subunit 4, 20kda0.001ITGB2Integrin, Beta 2 (Complement Component 3 Receptor 3 And 4 S0.037UBE20Ubiquitin-Conjugating Enzyme E2O0.034GAAGlucosidase, Alpha; Acid0.009NCR1Natural Cytotoxicity Triggering Receptor 10.010KCNQ1Potassium Voltage-Gated Channel, KQT-Like Subfamily,<br>Member 10.002GAKCyclin G Associated Kinase0.012ABHD2Abhydrolase Domain Containing 20.003SEMA4DSema Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.036COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                         | SG A      | Arylsulfatase G                                             | < 0.001 | 1.22 |
| DENND5BDENN/MADD Domain Containing 5B0.003ARPC4Actin Related Protein 2/3 Complex, Subunit 4, 20kda0.001ITGB2Integrin, Beta 2 (Complement Component 3 Receptor 3 And 4 S0.037UBE20Ubiquitin-Conjugating Enzyme E200.034GAAGlucosidase, Alpha; Acid0.009NCR1Natural Cytotoxicity Triggering Receptor 10.010KCNQ1Potassium Voltage-Gated Channel, KQT-Like Subfamily,<br>Member 10.002GAKCyclin G Associated Kinase0.012ABHD2Abhydrolase Domain Containing 20.003SEMA4DSema Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.038COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                                                                    | G1 G      | Golgi Glycoprotein 1                                        | 0.003   | 1.22 |
| ARPC4Actin Related Protein 2/3 Complex, Subunit 4, 20kda0.001ITGB2Integrin, Beta 2 (Complement Component 3 Receptor 3 And 4 S0.037UBE20Ubiquitin-Conjugating Enzyme E2O0.034GAAGlucosidase, Alpha; Acid0.009NCR1Natural Cytotoxicity Triggering Receptor 10.010KCNQ1Potassium Voltage-Gated Channel, KQT-Like Subfamily,<br>Member 10.002GAKCyclin G Associated Kinase0.012ABHD2Abhydrolase Domain Containing 20.003SEMA4DSema Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.038COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                                                                                                              | PL2B Si   | Signal Peptide Peptidase Like 2B                            | 0.006   | 1.22 |
| ITGB2Integrin, Beta 2 (Complement Component 3 Receptor 3 And 4 S0.037UBE20Ubiquitin-Conjugating Enzyme E2O0.034GAAGlucosidase, Alpha; Acid0.009NCR1Natural Cytotoxicity Triggering Receptor 10.010KCNQ1Potassium Voltage-Gated Channel, KQT-Like Subfamily,<br>Member 10.002GAKCyclin G Associated Kinase0.012ABHD2Abhydrolase Domain Containing 20.003SEMA4DSema Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.038COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                                                                                                                                                                           | NND5B D   | DENN/MADD Domain Containing 5B                              | 0.003   | 1.22 |
| UBE20Ubiquitin-Conjugating Enzyme E200.034GAAGlucosidase, Alpha; Acid0.009NCR1Natural Cytotoxicity Triggering Receptor 10.010KCNQ1Potassium Voltage-Gated Channel, KQT-Like Subfamily,<br>Member 10.002GAKCyclin G Associated Kinase0.012ABHD2Abhydrolase Domain Containing 20.003SEMA4DSema Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.038COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                | PC4 A     | Actin Related Protein 2/3 Complex, Subunit 4, 20kda         | 0.001   | 1.22 |
| GAAGlucosidase, Alpha; Acid0.009NCR1Natural Cytotoxicity Triggering Receptor 10.010KCNQ1Potassium Voltage-Gated Channel, KQT-Like Subfamily,<br>Member 10.002GAKCyclin G Associated Kinase0.012ABHD2Abhydrolase Domain Containing 20.003SEMA4DSema Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.038COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iB2 In    | ntegrin, Beta 2 (Complement Component 3 Receptor 3 And 4 S  | 0.037   | 1.22 |
| NCR1Natural Cytotoxicity Triggering Receptor 10.010KCNQ1Potassium Voltage-Gated Channel, KQT-Like Subfamily,<br>Member 10.002GAKCyclin G Associated Kinase0.012ABHD2Abhydrolase Domain Containing 20.003SEMA4DSema Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.036COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E2O U     | Jbiquitin-Conjugating Enzyme E2O                            | 0.034   | 1.22 |
| KCNQ1Potassium Voltage-Gated Channel, KQT-Like Subfamily,<br>Member 10.002GAKCyclin G Associated Kinase0.012ABHD2Abhydrolase Domain Containing 20.003SEMA4DSema Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.038COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A G       | Glucosidase, Alpha; Acid                                    | 0.009   | 1.22 |
| KCNQ1Member 10.002GAKCyclin G Associated Kinase0.012ABHD2Abhydrolase Domain Containing 20.003SEMA4DSema Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.038COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R1 N      | Natural Cytotoxicity Triggering Receptor 1                  | 0.010   | 1.22 |
| GAKCyclin G Associated Kinase0.012ABHD2Abhydrolase Domain Containing 20.003SEMA4DSema Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.038COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NQ1       |                                                             | 0.002   | 1.22 |
| ABHD2Abhydrolase Domain Containing 20.003SEMA4DSema Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.038COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                                                             |         |      |
| SEMA4DSema Domain, Immunoglobulin Domain (Ig), Transmembrane<br>Domain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.038COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K Cy      | Cyclin G Associated Kinase                                  | 0.012   | 1.22 |
| SEMA4DDomain0.011NEDD9Neural Precursor Cell Expressed, Developmentally Down-Regul0.008PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.038COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HD2 A     | Abhydrolase Domain Containing 2                             | 0.003   | 1.22 |
| PREBProlactin Regulatory Element Binding0.034PRPF6PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)0.038COX10-AS1COX10 Antisense RNA 1 (Non-Protein Coding)0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MA4D      |                                                             | 0.011   | 1.21 |
| PRPF6       PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)       0.038         COX10-AS1       COX10 Antisense RNA 1 (Non-Protein Coding)       0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DD9 N     | Neural Precursor Cell Expressed, Developmentally Down-Regul | 0.008   | 1.21 |
| COX10-AS1 COX10 Antisense RNA 1 (Non-Protein Coding) 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EB PI     | Prolactin Regulatory Element Binding                        | 0.034   | 1.21 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PF6 Pi    | PRP6 Pre-Mrna Processing Factor 6 Homolog (S. Cerevisiae)   | 0.038   | 1.21 |
| CIRBP Cold Inducible RNA Binding Protein 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X10-AS1 C | COX10 Antisense RNA 1 (Non-Protein Coding)                  | 0.036   | 1.21 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BP C      | Cold Inducible RNA Binding Protein                          | 0.037   | 1.21 |
| ACOX1 Acyl-Coa Oxidase 1, Palmitoyl 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OX1 A     | Acyl-Coa Oxidase 1, Palmitoyl                               | 0.012   | 1.21 |
| CIITA Class II, Major Histocompatibility Complex, Transactivator 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ra Ci     | Class II, Major Histocompatibility Complex, Transactivator  | 0.017   | 1.21 |
| AES Amino-Terminal Enhancer Of Split 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S A       | Amino-Terminal Enhancer Of Split                            | 0.034   | 1.21 |

| ABI3     | ABI Family, Member 3                                                 | 0.036   | 1.21 |
|----------|----------------------------------------------------------------------|---------|------|
| CSF3R    | Colony Stimulating Factor 3 Receptor (Granulocyte)                   | 0.027   | 1.21 |
| ERLIN1   | ER Lipid Raft Associated 1                                           | < 0.001 | 1.21 |
| STK10    | Serine/Threonine Kinase 10                                           | 0.011   | 1.21 |
| C19orf10 | Chromosome 19 Open Reading Frame 10                                  | 0.029   | 1.21 |
| CES2     | Carboxylesterase 2                                                   | 0.015   | 1.21 |
| PRKD2    | Protein Kinase D2                                                    | 0.005   | 1.21 |
| ІКВКЕ    | Inhibitor Of Kappa Light Polypeptide Gene Enhancer In B-Cells,<br>Ki | 0.022   | 1.21 |
| CD101    | CD101 Molecule                                                       | 0.010   | 1.21 |
| FAM134C  | Family With Sequence Similarity 134, Member C                        | 0.044   | 1.21 |
| PTDSS1   | Phosphatidylserine Synthase 1                                        | 0.001   | 1.21 |
| SIRPB2   | Signal-Regulatory Protein Beta 2                                     | 0.004   | 1.21 |
| PRRC2B   | Proline-Rich Coiled-Coil 2B                                          | 0.032   | 1.21 |
| SNORD84  | Small Nucleolar RNA, C/D Box 84                                      | 0.012   | 1.21 |
| FGD3     | FYVE, Rhogef And PH Domain Containing 3                              | 0.012   | 1.21 |
| HIF1AN   | Hypoxia Inducible Factor 1, Alpha Subunit Inhibitor                  | 0.015   | 1.21 |
| SH3BP5   | SH3-Domain Binding Protein 5 (BTK-Associated)                        | 0.018   | 1.21 |
| SNORD88A | Small Nucleolar RNA, C/D Box 88A                                     | 0.018   | 1.21 |
| RHOT2    | Ras Homolog Family Member T2                                         | 0.018   | 1.21 |
| DGCR2    | Digeorge Syndrome Critical Region Gene 2                             | 0.046   | 1.21 |
| PHF15    | PHD Finger Protein 15                                                | 0.005   | 1.21 |
| ERN1     | Endoplasmic Reticulum To Nucleus Signaling 1                         | 0.025   | 1.21 |
| САМКК2   | Calcium/Calmodulin-Dependent Protein Kinase Kinase 2, Beta           | 0.028   | 1.21 |
| MPDU1    | Mannose-P-Dolichol Utilization Defect 1                              | 0.001   | 1.21 |
| ITGA5    | Integrin, Alpha 5 (Fibronectin Receptor, Alpha Polypeptide)          | 0.028   | 1.21 |
| EIF4H    | Eukaryotic Translation Initiation Factor 4H                          | 0.006   | 1.21 |
| PSENEN   | Presenilin Enhancer 2 Homolog (C. Elegans)                           | 0.008   | 1.21 |
| EPHB1    | EPH Receptor B1                                                      | 0.027   | 1.21 |
| ZZEF1    | Zinc Finger, ZZ-Type With EF-Hand Domain 1                           | 0.003   | 1.21 |

| HIST1H2BL | Histone Cluster 1, H2bl                                            | 0.034 | 1.21 |
|-----------|--------------------------------------------------------------------|-------|------|
| HIST1H2BC | Histone Cluster 1, H2bc                                            | 0.042 | 1.21 |
| MTA2      | Metastasis Associated 1 Family, Member 2                           | 0.028 | 1.21 |
| APLP2     | Amyloid Beta (A4) Precursor-Like Protein 2                         | 0.018 | 1.21 |
| DPP7      | Dipeptidyl-Peptidase 7                                             | 0.030 | 1.21 |
| SLC16A3   | Solute Carrier Family 16, Member 3                                 | 0.018 | 1.21 |
| MTMR14    | Myotubularin Related Protein 14                                    | 0.041 | 1.21 |
| ZNF552    | Zinc Finger Protein 552                                            | 0.006 | 1.21 |
| KLHDC3    | Kelch Domain Containing 3                                          | 0.039 | 1.21 |
| SLC12A9   | Solute Carrier Family 12 (Potassium/Chloride Transporters)         | 0.021 | 1.21 |
| MAVS      | Mitochondrial Antiviral Signaling Protein                          | 0.039 | 1.21 |
| C14orf43  | Chromosome 14 Open Reading Frame 43                                | 0.007 | 1.21 |
| STAT5B    | Signal Transducer And Activator Of Transcription 5B                | 0.001 | 1.21 |
| SASH3     | SAM And SH3 Domain Containing 3                                    | 0.026 | 1.21 |
| ARMC6     | Armadillo Repeat Containing 6                                      | 0.004 | 1.21 |
| FOSL2     | FOS-Like Antigen 2                                                 | 0.035 | 1.21 |
| TFE3      | Transcription Factor Binding To IGHM Enhancer 3                    | 0.006 | 1.21 |
| UBR4      | Ubiquitin Protein Ligase E3 Component N-Recognin 4                 | 0.001 | 1.21 |
| DENND4B   | DENN/MADD Domain Containing 4B                                     | 0.009 | 1.21 |
| CORO2A    | Coronin, Actin Binding Protein, 2A                                 | 0.032 | 1.21 |
| RALY      | RNA Binding Protein, Autoantigenic                                 | 0.008 | 1.21 |
| KCNAB2    | Potassium Voltage-Gated Channel, Shaker-Related Subfamily,<br>Beta | 0.046 | 1.21 |
| API5      | Apoptosis Inhibitor 5                                              | 0.002 | 1.21 |
| C7orf43   | Chromosome 7 Open Reading Frame 43                                 | 0.003 | 1.20 |
| LAPTM5    | Lysosomal Protein Transmembrane 5                                  | 0.036 | 1.20 |
| DEDD      | Death Effector Domain Containing                                   | 0.015 | 1.20 |
| SYMPK     | Symplekin                                                          | 0.001 | 1.20 |
| NLRC5     | NLR Family, CARD Domain Containing 5                               | 0.006 | 1.20 |
| AMPD2     | Adenosine Monophosphate Deaminase 2                                | 0.001 | 1.20 |

| PLEKHM1P | Pleckstrin Homology Domain Containing, Family M              | 0.026 | 1.20  |
|----------|--------------------------------------------------------------|-------|-------|
| GPR108   | G Protein-Coupled Receptor 108                               | 0.043 | 1.20  |
| SZT2     | Seizure Threshold 2 Homolog (Mouse)                          | 0.001 | 1.20  |
| MLC1     | Megalencephalic Leukoencephalopathy With Subcortical Cysts 1 | 0.016 | 1.20  |
| PSIMCT-1 | Malignant T Cell Amplified Sequence 1 Pseudogene             | 0.010 | 1.20  |
| ARHGAP4  | Rho Gtpase Activating Protein 4                              | 0.019 | 1.20  |
| ZMAT5    | Zinc Finger, Matrin-Type 5                                   | 0.021 | 1.20  |
| CAPN1    | Calpain 1, (Mu/I) Large Subunit                              | 0.010 | 1.20  |
| KLHL6    | Kelch-Like 6 (Drosophila)                                    | 0.009 | 1.20  |
| PIGO     | Phosphatidylinositol Glycan Anchor Biosynthesis, Class O     | 0.004 | 1.20  |
| HM13     | Histocompatibility (Minor) 13                                | 0.002 | 1.20  |
| PTPRM    | Protein Tyrosine Phosphatase, Receptor Type, M               | 0.020 | 1.20  |
| UNK      | Unkempt Homolog (Drosophila)                                 | 0.002 | 1.20  |
| KDM3B    | Lysine (K)-Specific Demethylase 3B                           | 0.003 | 1.20  |
| AP5Z1    | Adaptor-Related Protein Complex 5, Zeta 1 Subunit            | 0.002 | 1.20  |
| MLLT1    | Myeloid/Lymphoid Or Mixed-Lineage Leukemia                   | 0.008 | 1.20  |
| MTRNR2L8 | MT-RNR2-Like 8                                               | 0.048 | 1.20  |
| SLC27A3  | Solute Carrier Family 27 (Fatty Acid Transporter)            | 0.022 | 1.20  |
| MOV10    | Mov10, Moloney Leukemia Virus 10, Homolog (Mouse)            | 0.025 | 1.20  |
| KDM5D    | Lysine (K)-Specific Demethylase 5D                           | 0.009 | 1.20  |
| ELOF1    | Elongation Factor 1 Homolog (S. Cerevisiae)                  | 0.048 | 1.20  |
| FKRP     | Fukutin Related Protein                                      | 0.004 | 1.20  |
| NEK6     | NIMA (Never In Mitosis Gene A)-Related Kinase 6              | 0.017 | 1.20  |
| SUMF2    | Sulfatase Modifying Factor 2                                 | 0.037 | 1.20  |
| COBRA1   | Cofactor Of BRCA1                                            | 0.045 | 1.20  |
| ZNF813   | Zinc Finger Protein 813                                      | 0.020 | -1.20 |
| KRTAP6-3 | Keratin Associated Protein 6-3                               | 0.001 | -1.20 |
| C8orf40  | Chromosome 8 Open Reading Frame 40                           | 0.011 | -1.20 |
|          |                                                              |       |       |

| АТР5Н           | ATP Synthase, H+ Transporting, Mitochondrial Fo Complex,<br>Subunit | 0.028   | -1.20 |
|-----------------|---------------------------------------------------------------------|---------|-------|
| F2RL2           | Coagulation Factor II (Thrombin) Receptor-Like 2                    | 0.001   | -1.20 |
| VCX3B           | Variable Charge, X-Linked 3B                                        | 0.037   | -1.21 |
| TRAPPC5         | Trafficking Protein Particle Complex 5                              | 0.011   | -1.21 |
| WDR53           | WD Repeat Domain 53                                                 | < 0.001 | -1.21 |
| TMEM14A         | Transmembrane Protein 14A                                           | 0.041   | -1.21 |
| NDUFB1          | NADH Dehydrogenase (Ubiquinone) 1 Beta Subcomplex, 1,<br>7kda       | 0.007   | -1.21 |
| HBZ             | Hemoglobin, Zeta                                                    | 0.042   | -1.22 |
| ASNSD1          | Asparagine Synthetase Domain Containing 1                           | 0.023   | -1.22 |
| PPP2R3B-<br>AS1 | PPP2R3B Antisense RNA 1 (Non-Protein Coding)                        | 0.027   | -1.22 |
| NDUFA2          | NADH Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex, 2,<br>8kda      | 0.006   | -1.23 |
| TPRKB           | TP53RK Binding Protein                                              | 0.015   | -1.23 |
| SNORD113<br>-8  | Small Nucleolar RNA, C/D Box 113-8                                  | 0.014   | -1.23 |
| FRA10AC1        | Fragile Site, Folic Acid Type, Rare, Fra(10)(Q23.3) Or Fra(10)      | 0.005   | -1.23 |
| LINC00239       | Long Intergenic Non-Protein Coding RNA 239                          | 0.003   | -1.23 |
| UQCRHL          | Ubiquinol-Cytochrome C Reductase Hinge Protein-Like                 | 0.031   | -1.23 |
| HBD             | Hemoglobin, Delta                                                   | 0.024   | -1.23 |
| PIN1P1          | Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1<br>Pseudogen | 0.016   | -1.23 |
| POLR2J          | Polymerase (RNA) II (DNA Directed) Polypeptide J, 13.3kda           | 0.015   | -1.24 |
| RPL13AP2<br>0   | Ribosomal Protein L13a Pseudogene 20                                | 0.008   | -1.24 |
| TMOD4           | Tropomodulin 4 (Muscle)                                             | 0.006   | -1.24 |
| BEX5            | Brain Expressed, X-Linked 5                                         | 0.020   | -1.24 |
| GPR18           | G Protein-Coupled Receptor 18                                       | 0.014   | -1.24 |
| CBR3            | Carbonyl Reductase 3                                                | 0.038   | -1.24 |
| TXNDC17         | Thioredoxin Domain Containing 17                                    | 0.034   | -1.24 |

| SNORA70G   | Small Nucleolar RNA, H/ACA Box 70G                         | 0.016 | -1.25 |
|------------|------------------------------------------------------------|-------|-------|
| HIGD1A     | HIG1 Hypoxia Inducible Domain Family, Member 1A            | 0.008 | -1.25 |
| ROM01      | Reactive Oxygen Species Modulator 1                        | 0.006 | -1.25 |
| KLHL22-IT1 | KLHL22 Intronic Transcript 1 (Non-Protein Coding)          | 0.036 | -1.25 |
| NDUFB6     | NADH Dehydrogenase (Ubiquinone) 1 Beta Subcomplex, 6, 17kd | 0.009 | -1.26 |
| FAM209B    | Family With Sequence Similarity 209, Member B              | 0.040 | -1.26 |
| CHCHD1     | Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 1    | 0.019 | -1.26 |
| MT1F       | Metallothionein 1F                                         | 0.047 | -1.26 |
| PAGE2B     | P Antigen Family, Member 2B                                | 0.021 | -1.27 |
| TSIX       | TSIX Transcript, XIST Antisense RNA (Non-Protein Coding)   | 0.030 | -1.27 |
| CCDC30     | Coiled-Coil Domain Containing 30                           | 0.022 | -1.27 |
| RPF2       | Ribosome Production Factor 2 Homolog (S. Cerevisiae)       | 0.030 | -1.28 |
| SNHG8      | Small Nucleolar RNA Host Gene 8 (Non-Protein Coding)       | 0.030 | -1.28 |
| HCG14      | HLA Complex Group 14                                       | 0.001 | -1.28 |
| GAGE12C    | G Antigen 12C /                                            | 0.013 | -1.29 |
| COX6A1     | Cytochrome C Oxidase Subunit Via Polypeptide 1             | 0.012 | -1.29 |
| SNORD69    | Small Nucleolar RNA, C/D Box 69                            | 0.037 | -1.30 |
| HLA-E      | Major Histocompatibility Complex, Class I, E               | 0.019 | -1.30 |
| SNORD14A   | Small Nucleolar RNA, C/D Box 14A                           | 0.040 | -1.32 |
| ZNF404     | Zinc Finger Protein 404                                    | 0.028 | -1.32 |
| HSD17B13   | Hydroxysteroid (17-Beta) Dehydrogenase 13                  | 0.001 | -1.34 |
| TMSB4XP4   | Thymosin Beta 4, X-Linked Pseudogene 4                     | 0.005 | -1.35 |
| SPINK8     | Serine Peptidase Inhibitor, Kazal Type 8 (Putative)        | 0.014 | -1.36 |
| НВМ        | Hemoglobin, Mu                                             | 0.018 | -1.37 |
| TCL1B      | T-Cell Leukemia/Lymphoma 1B                                | 0.047 | -1.37 |
| PLGLB1     | Plasminogen-Like B1                                        | 0.044 | -1.40 |
| ECH1       | Enoyl Coa Hydratase 1, Peroxisomal                         | 0.037 | -1.46 |
| AHSP       | Alpha Hemoglobin Stabilizing Protein                       | 0.013 | -1.52 |

Table 5D. List of 130 genes differently modulated in males MDD vs males LR in the microarray analysis (FC  $\pm$  |1.2|, p-value < 0.05)

| Gene          | Cone Assignment                                    | p-value | Fold-  |
|---------------|----------------------------------------------------|---------|--------|
| Symbol        | Gene Assignment                                    | p-value | Change |
| IGHA2         | Immunoglobulin Heavy Constant Alpha 2 (A2m Marker) | 0.018   | 1.69   |
| IGHA1         | Immunoglobulin Heavy Constant Alpha 1              | 0.017   | 1.64   |
| GGTLC2        | Gamma-Glutamyltransferase Light Chain 2            | 0.004   | 1.61   |
| IGHG1         | Immunoglobulin Heavy Constant Gamma 1 (G1m Marker) | 0.001   | 1.56   |
| IGLV2-11      | Immunoglobulin Lambda Variable 2-11                | 0.006   | 1.54   |
| HM13-IT1      | HM13 Intronic Transcript 1 (Non-Protein Coding)    | 0.034   | 1.48   |
| IGHG4         | Immunoglobulin Heavy Constant Gamma 4 (G4m Marker) | 0.031   | 1.47   |
| HIST1H2B<br>M | Histone Cluster 1, H2bm                            | 0.008   | 1.46   |
| LTF           | Lactotransferrin                                   | 0.001   | 1.45   |
| СОРЕ          | Coatomer Protein Complex, Subunit Epsilon          | 0.015   | 1.43   |
| НР            | Haptoglobin                                        | 0.019   | 1.42   |
| XRRA1         | X-Ray Radiation Resistance Associated 1            | 0.007   | 1.38   |
| SNRPN         | Small Nuclear Ribonucleoprotein Polypeptide N      | 0.008   | 1.37   |
| СҮВА          | Cytochrome B-245, Alpha Polypeptide                | 0.019   | 1.37   |
| FLNA          | Filamin A, Alpha                                   | 0.015   | 1.36   |
| ATHL1         | ATH1, Acid Trehalase-Like 1 (Yeast)                | < 0.001 | 1.35   |
| RASA4         | RAS P21 Protein Activator 4                        | 0.040   | 1.35   |
| IGLC2         | Immunoglobulin Lambda Constant 2 (Kern-Oz- Marker) | 0.005   | 1.35   |
| MMP8          | Matrix Metallopeptidase 8 (Neutrophil Collagenase) | 0.025   | 1.34   |
| MZB1          | Marginal Zone B And B1 Cell-Specific Protein       | 0.012   | 1.34   |
| HMHA1         | Histocompatibility (Minor) HA-1                    | 0.017   | 1.33   |
| IL18RAP       | Interleukin 18 Receptor Accessory Protein          | 0.022   | 1.33   |
| OLFM4         | Olfactomedin 4                                     | 0.003   | 1.33   |
| IGLV3-25      | Immunoglobulin Lambda Variable 3-25                | 0.017   | 1.33   |
| IGLV3-10      | Immunoglobulin Lambda Variable 3-10                | 0.049   | 1.31   |

| ITPR3        | Inositol 1,4,5-Trisphosphate Receptor, Type 3       | < 0.001 | 1.31 |
|--------------|-----------------------------------------------------|---------|------|
| PLAC4        | Placenta-Specific 4                                 | 0.008   | 1.31 |
| IP6K1        | Inositol Hexakisphosphate Kinase 1                  | 0.019   | 1.31 |
| ABT1         | Activator Of Basal Transcription 1                  | 0.001   | 1.30 |
| LILRB1       | Leukocyte Immunoglobulin-Like Receptor, Subfamily B | 0.023   | 1.30 |
| MVP          | Major Vault Protein                                 | 0.029   | 1.29 |
| IGLC7        | Immunoglobulin Lambda Constant 7                    | 0.032   | 1.29 |
| RNPEPL1      | Arginyl Aminopeptidase (Aminopeptidase B)-Like 1    | 0.001   | 1.28 |
| NOTCH1       | Notch 1                                             | 0.007   | 1.28 |
| PLEKHM2      | Pleckstrin Homology Domain Containing, Family M     | 0.042   | 1.28 |
| NLRC3        | NLR Family, CARD Domain Containing 3                | 0.011   | 1.28 |
| BAK1         | BCL2-Antagonist/Killer 1                            | 0.001   | 1.28 |
| MTVR2        | Mouse Mammary Tumor Virus Receptor Homolog 2        | 0.016   | 1.28 |
| ST3GAL2      | ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 2  | 0.010   | 1.27 |
| TMEM161<br>A | Transmembrane Protein 161A                          | 0.011   | 1.27 |
| MAN2A2       | Mannosidase, Alpha, Class 2A, Member 2              | 0.001   | 1.27 |
| TBC1D3B      | TBC1 Domain Family, Member 3B                       | 0.013   | 1.27 |
| ANKFY1       | Ankyrin Repeat And FYVE Domain Containing 1         | 0.032   | 1.26 |
| MXRA7        | Matrix-Remodelling Associated 7                     | 0.018   | 1.26 |
| RHOA-IT1     | RHOA Intronic Transcript 1 (Non-Protein Coding)     | 0.038   | 1.26 |
| CHMP6        | Charged Multivesicular Body Protein 6               | 0.010   | 1.26 |
| IGKV1D-39    | Immunoglobulin Kappa Variable 1D-39                 | 0.035   | 1.26 |
| TBC1D3G      | TBC1 Domain Family, Member 3G                       | 0.014   | 1.25 |
| UNC13D       | Unc-13 Homolog D (C. Elegans)                       | 0.038   | 1.25 |
| PRKCSH       | Protein Kinase C Substrate 80K-H                    | 0.047   | 1.25 |
| SUN2         | Sad1 And UNC84 Domain Containing 2                  | 0.023   | 1.25 |
| TBC1D10C     | TBC1 Domain Family, Member 10C                      | 0.015   | 1.25 |
| G6PC3        | Glucose 6 Phosphatase, Catalytic, 3                 | 0.010   | 1.25 |
| ARRDC4       | Arrestin Domain Containing 4                        | 0.027   | 1.25 |

| ARAP1     | Arfgap With Rhogap Domain, Ankyrin Repeat And PH Domain 1      | 0.001   | 1.25 |
|-----------|----------------------------------------------------------------|---------|------|
| HIST1H2BL | Histone Cluster 1, H2bl                                        | 0.015   | 1.24 |
| TRAJ25    | T Cell Receptor Alpha Joining 25 (Non-Functional)              | 0.037   | 1.24 |
| CNP       | 2',3'-Cyclic Nucleotide 3' Phosphodiesterase                   | < 0.001 | 1.24 |
| SNRPN     | Small Nuclear Ribonucleoprotein Polypeptide N                  | 0.036   | 1.24 |
| HSP90B1   | Heat Shock Protein 90kda Beta (Grp94), Member 1                | 0.019   | 1.24 |
| C10orf54  | Chromosome 10 Open Reading Frame 54                            | 0.039   | 1.24 |
| TBC1D3H   | TBC1 Domain Family, Member 3H                                  | 0.021   | 1.24 |
| PRIC285   | Peroxisomal Proliferator-Activated Receptor A                  | 0.015   | 1.24 |
| APOBEC3A  | Apolipoprotein B Mrna Editing Enzyme, Catalytic Polypeptide-Li | 0.025   | 1.24 |
| IGLV2-18  | Immunoglobulin Lambda Variable 2-18                            | 0.047   | 1.23 |
| GANAB     | Glucosidase, Alpha; Neutral AB                                 | 0.031   | 1.23 |
| HIST1H1E  | Histone Cluster 1, H1e                                         | 0.002   | 1.23 |
| IGLV1-44  | Immunoglobulin Lambda Variable 1-44                            | 0.023   | 1.23 |
| CRISP3    | Cysteine-Rich Secretory Protein 3                              | 0.044   | 1.23 |
| AP5B1     | Adaptor-Related Protein Complex 5, Beta 1 Subunit              | 0.026   | 1.23 |
| C2CD2     | C2 Calcium-Dependent Domain Containing 2                       | 0.026   | 1.23 |
| JAK3      | Janus Kinase 3                                                 | 0.024   | 1.23 |
| PLCG2     | Phospholipase C, Gamma 2 (Phosphatidylinositol-Specific)       | 0.026   | 1.23 |
| U2AF2     | U2 Small Nuclear RNA Auxiliary Factor 2                        | 0.030   | 1.23 |
| FCAR      | Fc Fragment Of Iga, Receptor                                   | 0.018   | 1.23 |
| FMNL1     | Formin-Like 1                                                  | 0.047   | 1.23 |
| DUS3L     | Dihydrouridine Synthase 3-Like (S. Cerevisiae)                 | 0.031   | 1.22 |
| RFNG      | RFNG O-Fucosylpeptide 3-Beta-N-                                | 0.019   | 1.22 |
|           | Acetylglucosaminyltransferase                                  |         |      |
| IGK@      | Immunoglobulin Kappa Locus                                     | 0.041   | 1.22 |
| NBEAL2    | Neurobeachin-Like 2                                            | 0.004   | 1.22 |
| DNASE1    | Deoxyribonuclease I                                            | 0.043   | 1.22 |
| TBC1D3F   | TBC1 Domain Family, Member 3F                                  | 0.012   | 1.22 |
| SNORA75   | Small Nucleolar RNA, H/ACA Box 75                              | 0.028   | 1.22 |

| HIST1H3B       | Histone Cluster 1, H3b                                           | 0.023 | 1.22  |
|----------------|------------------------------------------------------------------|-------|-------|
| STAT2          | Signal Transducer And Activator Of Transcription 2, 113kda       | 0.049 | 1.21  |
| MAN2B1         | Mannosidase, Alpha, Class 2B, Member 1                           | 0.032 | 1.21  |
| PKN1           | Protein Kinase N1                                                | 0.021 | 1.21  |
| ткт            | Transketolase                                                    | 0.004 | 1.21  |
| HCFC1          | Host Cell Factor C1 (VP16-Accessory Protein)                     | 0.028 | 1.21  |
| HIST1H2BC      | Histone Cluster 1, H2bc                                          | 0.038 | 1.21  |
| ZNF646         | Zinc Finger Protein 646                                          | 0.018 | 1.21  |
| CLCN7          | Chloride Channel, Voltage-Sensitive 7                            | 0.036 | 1.21  |
| IGKV4-1        | Immunoglobulin Kappa Variable 4-1                                | 0.013 | 1.21  |
| DISC1-IT1      | DISC1 Intronic Transcript 1 (Non-Protein Coding)                 | 0.019 | 1.21  |
| ADRBK1         | Adrenergic, Beta, Receptor Kinase 1                              | 0.006 | 1.21  |
| TET3           | Tet Methylcytosine Dioxygenase 3                                 | 0.022 | 1.21  |
| SNORA45        | Small Nucleolar RNA, H/ACA Box 45                                | 0.032 | 1.21  |
| ITGAX          | Integrin, Alpha X (Complement Component 3 Receptor 4<br>Subunit) | 0.034 | 1.20  |
| NLRC5          | NLR Family, CARD Domain Containing 5                             | 0.006 | 1.20  |
| RGS19          | Regulator Of G-Protein Signaling 19                              | 0.010 | 1.20  |
| STOM           | Stomatin                                                         | 0.005 | 1.20  |
| MAPK8IP3       | Mitogen-Activated Protein Kinase 8 Interacting Protein 3         | 0.010 | 1.20  |
| TRANK1         | Tetratricopeptide Repeat And Ankyrin Repeat Containing 1         | 0.038 | 1.20  |
| PNPLA6         | Patatin-Like Phospholipase Domain Containing 6                   | 0.016 | 1.20  |
| SPATA25        | Spermatogenesis Associated 25                                    | 0.024 | -1.20 |
| RPL13AP2<br>0  | Ribosomal Protein L13a Pseudogene 20                             | 0.020 | -1.20 |
| RAB11B-<br>AS1 | RAB11B Antisense RNA 1 (Non-Protein Coding)                      | 0.021 | -1.21 |
| FLJ43681       | Ribosomal Protein L23a Pseudogene                                | 0.049 | -1.21 |
| TMEM220        | Transmembrane Protein 220                                        | 0.005 | -1.21 |
| IGLV4-60       | Immunoglobulin Lambda Variable 4-60                              | 0.028 | -1.21 |
| ZNRF2P1        | Zinc And Ring Finger 2 Pseudogene 1                              | 0.031 | -1.21 |

| TIGD3          | Tigger Transposable Element Derived 3                               | 0.015 | -1.22 |
|----------------|---------------------------------------------------------------------|-------|-------|
| TXNDC17        | Thioredoxin Domain Containing 17                                    | 0.046 | -1.23 |
| KRTAP20-1      | Keratin Associated Protein 20-1                                     | 0.002 | -1.24 |
| CBR3           | Carbonyl Reductase 3                                                | 0.032 | -1.25 |
| TMSB4XP4       | Thymosin Beta 4, X-Linked Pseudogene 4                              | 0.035 | -1.25 |
| HCG8           | HLA Complex Group 8                                                 | 0.033 | -1.26 |
| SHFM1          | Split Hand/Foot Malformation (Ectrodactyly) Type 1                  | 0.001 | -1.26 |
| KLHL22-IT1     | KLHL22 Intronic Transcript 1 (Non-Protein Coding)                   | 0.031 | -1.26 |
| TRAV41         | T Cell Receptor Alpha Variable 41                                   | 0.007 | -1.27 |
| POLR2J         | Polymerase (RNA) II (DNA Directed) Polypeptide J, 13.3kda           | 0.005 | -1.28 |
| LINC00243      | Long Intergenic Non-Protein Coding RNA 243                          | 0.043 | -1.29 |
| SPINK8         | Serine Peptidase Inhibitor, Kazal Type 8 (Putative)                 | 0.034 | -1.30 |
| PIN1P1         | Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1<br>Pseudogen | 0.002 | -1.31 |
| SLC9A9-<br>AS2 | SLC9A9 Antisense RNA 2 (Non-Protein Coding)                         | 0.013 | -1.32 |
| SNORA11        | Small Nucleolar RNA, H/ACA Box 11                                   | 0.019 | -1.37 |
| LHB            | Luteinizing Hormone Beta Polypeptide                                | 0.033 | -1.43 |
| AHSP           | Alpha Hemoglobin Stabilizing Protein                                | 0.028 | -1.45 |
| SNORD93        | Small Nucleolar RNA, C/D Box 93                                     | 0.027 | -1.64 |
| TUBB2A         | Tubulin, Beta 2A Class lia                                          | 0.041 | -1.75 |

Table 6D. List of 23 genes differently modulated in males HR vs males LR in the microarray analysis (FC  $\pm$  |1.2|, p-value < 0.05)

| Gene          | Cono Accignment                                      | p-value | Fold-  |
|---------------|------------------------------------------------------|---------|--------|
| Symbol        | Gene Assignment                                      | p-value | Change |
| TCL1B         | T-Cell Leukemia/Lymphoma 1B                          | 0.030   | 1.42   |
| SNORA45       | Small Nucleolar RNA, H/ACA Box 45                    | < 0.001 | 1.37   |
| SNORD14A      | Small Nucleolar RNA, C/D Box 14A                     | 0.021   | 1.37   |
| TRAJ20        | T Cell Receptor Alpha Joining 20                     | 0.011   | 1.34   |
| TRAV29DV<br>5 | T Cell Receptor Alpha Variable 29/Delta Variable 5   | 0.013   | 1.24   |
| RN5S104       | RNA, 5S Ribosomal 104                                | 0.021   | 1.20   |
| KRTAP9-8      | Keratin Associated Protein 9-8                       | 0.006   | -1.21  |
| SEC14L1P1     | SEC14-Like 1 Pseudogene 1                            | 0.014   | -1.21  |
| RN5S370       | RNA, 5S Ribosomal 370                                | 0.032   | -1.21  |
| TRAV41        | T Cell Receptor Alpha Variable 41                    | 0.028   | -1.21  |
| ZNF718        | Zinc Finger Protein 718                              | 0.010   | -1.22  |
| ZNF486        | Zinc Finger Protein 486                              | 0.026   | -1.22  |
| MAP3K11       | Mitogen-Activated Protein Kinase Kinase Kinase 11    | 0.048   | -1.23  |
| RPL23AP5<br>3 | Ribosomal Protein L23a Pseudogene 53                 | 0.027   | -1.23  |
| RN5S203       | RNA, 5S Ribosomal 203                                | 0.049   | -1.24  |
| LILRA6        | Leukocyte Immunoglobulin-Like Receptor, Subfamily A  | 0.044   | -1.26  |
| RAVER2        | Ribonucleoprotein, PTB-Binding 2                     | 0.008   | -1.26  |
| RNY4P19       | RNA, Ro-Associated Y4 Pseudogene 19                  | 0.042   | -1.26  |
| ANAPC1        | Anaphase Promoting Complex Subunit 1                 | 0.048   | -1.28  |
| RNU5E-9P      | RNA, U5E Small Nuclear 9, Pseudogene                 | 0.042   | -1.28  |
| P2RX1         | Purinergic Receptor P2X, Ligand-Gated Ion Channel, 1 | 0.018   | -1.30  |
| FAR1-IT1      | FAR1 Intronic Transcript 1 (Non-Protein Coding)      | 0.005   | -1.38  |
| SIGLEC14      | Sialic Acid Binding Ig-Like Lectin 14                | 0.047   | -1.47  |

Table 7D. List of 42 genes differently modulated in females MDD vs females HR in the microarray analysis (FC  $\pm$  |1.2|, p-value < 0.05)

| Gene      | Cono Assignment                                                  |         | Fold-  |
|-----------|------------------------------------------------------------------|---------|--------|
| Symbol    | Gene Assignment                                                  | p-value | Change |
| MX1       | Myxovirus (Influenza Virus) Resistance 1, Interferon-Inducible P | 0.007   | 1.50   |
| TRAJ19    | T Cell Receptor Alpha Joining 19 (Non-Functional)                | 0.043   | 1.47   |
| HERC5     | HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase 5     | 0.023   | 1.47   |
| TRAJ40    | T Cell Receptor Alpha Joining 40                                 | 0.049   | 1.45   |
| PLGLB1    | Plasminogen-Like B1                                              | 0.037   | 1.41   |
| SNORA36B  | Small Nucleolar RNA, H/ACA Box 36B                               | 0.030   | 1.39   |
| ANO7L1    | Anoctamin 7-Like 1                                               | 0.010   | 1.38   |
| TNFAIP6   | Tumor Necrosis Factor, Alpha-Induced Protein 6                   | 0.025   | 1.38   |
| НР        | Haptoglobin                                                      | 0.031   | 1.38   |
| CD177     | CD177 Molecule                                                   | 0.002   | 1.37   |
| IFIT2     | Interferon-Induced Protein With Tetratricopeptide Repeats 2      | 0.014   | 1.35   |
| FAM106CP  | Family With Sequence Similarity 106, Member C, Pseudogene        | 0.018   | 1.34   |
| SLED1     | Proteoglycan 3 Pseudogene                                        | 0.037   | 1.33   |
| HPSE      | Heparanase                                                       | 0.009   | 1.30   |
| XRRA1     | X-Ray Radiation Resistance Associated 1                          | 0.025   | 1.30   |
| SNORD99   | Small Nucleolar RNA, C/D Box 99                                  | 0.034   | 1.30   |
| RTP4      | Receptor (Chemosensory) Transporter Protein 4                    | 0.039   | 1.27   |
| LINC00264 | Long Intergenic Non-Protein Coding RNA 264                       | 0.033   | 1.26   |
| C19orf59  | Chromosome 19 Open Reading Frame 59                              | 0.047   | 1.25   |
| GBP4      | Guanylate Binding Protein 4                                      | 0.030   | 1.25   |
| NEBL      | Nebulette                                                        | 0.012   | 1.25   |
| GK        | Glycerol Kinase                                                  | 0.021   | 1.25   |
| SPATS2L   | Spermatogenesis Associated, Serine-Rich 2-Like                   | 0.014   | 1.25   |
| IL8       | Interleukin 8                                                    | 0.019   | 1.24   |
| STAT2     | Signal Transducer And Activator Of Transcription 2, 113kda       | 0.035   | 1.23   |
| PNPT1     | Polyribonucleotide Nucleotidyltransferase 1                      | 0.045   | 1.22   |

| CCZ1B         | CCZ1 Vacuolar Protein Trafficking And Biogenesis Associated | 0.003   | 1.22  |
|---------------|-------------------------------------------------------------|---------|-------|
| CEACAM3       | Carcinoembryonic Antigen-Related Cell Adhesion Molecule 3   | 0.022   | 1.20  |
| ZCCHC2        | Zinc Finger, CCHC Domain Containing 2                       | 0.031   | 1.20  |
| DHX58         | DEXH (Asp-Glu-X-His) Box Polypeptide 58                     | 0.044   | 1.20  |
| KCNRG         | Potassium Channel Regulator                                 | 0.012   | -1.20 |
| RNF144B       | Ring Finger Protein 144B                                    | 0.048   | -1.21 |
| IGHV6-1       | Immunoglobulin Heavy Variable 6-1                           | 0.012   | -1.21 |
| RPL19P12      | Ribosomal Protein L19 Pseudogene 12                         | 0.031   | -1.21 |
| HIST1H3J      | Histone Cluster 1, H3j                                      | < 0.001 | -1.21 |
| ZNF33B        | Zinc Finger Protein 33B                                     | 0.007   | -1.23 |
| ADAM6         | ADAM Metallopeptidase Domain 6 (Pseudogene)                 | 0.048   | -1.24 |
| HRASLS5       | HRAS-Like Suppressor Family, Member 5                       | 0.013   | -1.24 |
| OR2T34        | Olfactory Receptor, Family 2, Subfamily T, Member 34        | < 0.001 | -1.25 |
| TNNT1         | Troponin T Type 1 (Skeletal, Slow)                          | 0.036   | -1.28 |
| TRAV23DV<br>6 | T Cell Receptor Alpha Variable 23/Delta Variable 6          | 0.001   | -1.31 |
| C4BPA         | Complement Component 4 Binding Protein, Alpha               | 0.031   | -1.60 |
|               |                                                             |         |       |

Table 8D. List of 67 genes differently modulated in females MDD vs females LR in the microarray analysis (FC  $\pm$  |1.2|, p-value < 0.05)

| Gene<br>Symbol | Gene Assignment                                                      | p-value | Fold-<br>Change |
|----------------|----------------------------------------------------------------------|---------|-----------------|
| IFI44L         | Interferon-Induced Protein 44-Like                                   | 0.035   | 1.75            |
| RSAD2          | Radical S-Adenosyl Methionine Domain Containing 2                    | 0.011   | 1.71            |
| HERC5          | HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase 5         | 0.004   | 1.63            |
| IFIT1          | Interferon-Induced Protein With Tetratricopeptide Repeats 1          | 0.021   | 1.59            |
| CASP5          | Caspase 5, Apoptosis-Related Cysteine Peptidase                      | 0.013   | 1.52            |
| PLGLB1         | Plasminogen-Like B1                                                  | 0.018   | 1.48            |
| СМРК2          | Cytidine Monophosphate (UMP-CMP) Kinase 2, Mitochondrial             | 0.030   | 1.46            |
| MX1            | Myxovirus (Influenza Virus) Resistance 1, Interferon-Inducible P     | 0.013   | 1.45            |
| IFIT2          | Interferon-Induced Protein With Tetratricopeptide Repeats 2          | 0.006   | 1.40            |
| CARD17         | Caspase Recruitment Domain Family, Member 17                         | 0.023   | 1.37            |
| TNFAIP6        | Tumor Necrosis Factor, Alpha-Induced Protein 6                       | 0.033   | 1.36            |
| HPSE           | Heparanase                                                           | 0.003   | 1.36            |
| EIF2AK2        | Eukaryotic Translation Initiation Factor 2-Alpha Kinase 2            | 0.016   | 1.34            |
| SLED1          | Proteoglycan 3 Pseudogene                                            | 0.041   | 1.32            |
| PNPT1          | Polyribonucleotide Nucleotidyltransferase 1                          | 0.006   | 1.32            |
| SNORA16B       | Small Nucleolar RNA, H/ACA Box 16B                                   | 0.013   | 1.32            |
| IFIT5          | Interferon-Induced Protein With Tetratricopeptide Repeats 5          | 0.022   | 1.31            |
| CEP19          | Centrosomal Protein 19kda                                            | 0.006   | 1.31            |
| KCNJ2-AS1      | KCNJ2 Antisense RNA 1                                                | 0.011   | 1.29            |
| SPATS2L        | Spermatogenesis Associated, Serine-Rich 2-Like                       | 0.006   | 1.28            |
| IFIH1          | Interferon Induced With Helicase C Domain 1                          | 0.038   | 1.27            |
| SAMD9L         | Sterile Alpha Motif Domain Containing 9-Like                         | 0.030   | 1.27            |
| AIM2           | Absent In Melanoma 2                                                 | 0.026   | 1.27            |
| EAF1-AS1       | EAF1 Antisense RNA 1                                                 | 0.043   | 1.27            |
| IFITM3         | Interferon Induced Transmembrane Protein 3                           | 0.041   | 1.27            |
| HERC6          | HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase<br>Family | 0.030   | 1.26            |

| SLC26A8   | Solute Carrier Family 26, Member 8                             | 0.024   | 1.25  |
|-----------|----------------------------------------------------------------|---------|-------|
| DPRXP4    | Divergent-Paired Related Homeobox Pseudogene 4                 | 0.032   | 1.25  |
| FFAR2     | Free Fatty Acid Receptor 2                                     | 0.004   | 1.24  |
| MORC3     | MORC Family CW-Type Zinc Finger 3                              | 0.009   | 1.24  |
| CD177     | CD177 Molecule                                                 | 0.027   | 1.24  |
| FAR2      | Fatty Acyl Coa Reductase 2                                     | 0.014   | 1.23  |
| NSFP1     | N-Ethylmaleimide-Sensitive Factor Pseudogene 1                 | 0.023   | 1.23  |
| DOCK4     | Dedicator Of Cytokinesis 4                                     | 0.038   | 1.23  |
| TDRD7     | Tudor Domain Containing 7                                      | 0.002   | 1.22  |
| USP32P2   | Ubiquitin Specific Peptidase 32 Pseudogene 2                   | 0.004   | 1.22  |
| DDX58     | DEAD (Asp-Glu-Ala-Asp) Box Polypeptide 58                      | 0.024   | 1.22  |
| ZCCHC2    | Zinc Finger, CCHC Domain Containing 2                          | 0.023   | 1.22  |
| TLR2      | Toll-Like Receptor 2                                           | 0.005   | 1.21  |
| NAPG      | N-Ethylmaleimide-Sensitive Factor Attachment Protein,<br>Gamma | < 0.001 | 1.21  |
| HIST1H2BC | Histone Cluster 1, H2bc                                        | 0.004   | 1.21  |
| CAPNS2    | Calpain, Small Subunit 2                                       | 0.003   | 1.21  |
| LPP-AS2   | LPP Antisense RNA 2                                            | 0.037   | 1.20  |
| GBP3      | Guanylate Binding Protein 3                                    | 0.044   | 1.20  |
| TECPR2    | Tectonin Beta-Propeller Repeat Containing 2                    | 0.023   | 1.20  |
| SAMD9     | Sterile Alpha Motif Domain Containing 9                        | 0.037   | 1.20  |
| ZNF33B    | Zinc Finger Protein 33B                                        | 0.019   | -1.20 |
| NEFL      | Neurofilament, Light Polypeptide                               | 0.003   | -1.20 |
| SH3GL1    | SH3-Domain GRB2-Like 1                                         | 0.008   | -1.20 |
| ТРТЕ      | Transmembrane Phosphatase With Tensin Homology                 | 0.003   | -1.20 |
| стѕѡ      | Cathepsin W                                                    | 0.032   | -1.21 |
| TBC1D22B  | TBC1 Domain Family, Member 22B                                 | 0.048   | -1.21 |
| FAM106A   | Family With Sequence Similarity 106, Member A                  | 0.002   | -1.22 |
| PVALB     | Parvalbumin                                                    | 0.048   | -1.22 |
| SNORD92   | Small Nucleolar RNA, C/D Box 92                                | 0.003   | -1.23 |

| ZNF17          | Zinc Finger Protein 17                          | 0.003 | -1.23 |
|----------------|-------------------------------------------------|-------|-------|
| SLC35E2        | Solute Carrier Family 35, Member E2             | 0.022 | -1.25 |
| ADAM6          | ADAM Metallopeptidase Domain 6                  | 0.042 | -1.25 |
| CBR3           | Carbonyl Reductase 3                            | 0.029 | -1.26 |
| SNORD10        | Small Nucleolar RNA, C/D Box 10                 | 0.020 | -1.27 |
| CATSPER2<br>P1 | Cation Channel, Sperm Associated 2 Pseudogene 1 | 0.021 | -1.27 |
| PRSS21         | Protease, Serine, 21 (Testisin)                 | 0.031 | -1.28 |
| SNORA84        | Small Nucleolar RNA, H/ACA Box 84               | 0.047 | -1.28 |
| CCDC144A       | Coiled-Coil Domain Containing 144A              | 0.044 | -1.36 |
| SMYD3-IT1      | SMYD3 Intronic Transcript 1                     | 0.014 | -1.44 |
| TUBBP5         | Tubulin, Beta Pseudogene 5                      | 0.023 | -1.49 |
| C4BPA          | Complement Component 4 Binding Protein, Alpha   | 0.021 | -1.66 |

Table 9D. List of 43 genes differently modulated in females HR vs females LR in the microarray analysis (FC  $\pm$  |1.2|, p-value < 0.05)

| Gene           | Gene Assignment                                                    | p-value | Fold-  |
|----------------|--------------------------------------------------------------------|---------|--------|
| Symbol         |                                                                    | p-value | Change |
| MORC3          | MORC Family CW-Type Zinc Finger 3                                  | 0.001   | 1.33   |
| TRAJ50         | T Cell Receptor Alpha Joining 50                                   | 0.048   | 1.31   |
| IGHV1-3        | Immunoglobulin Heavy Variable 1-3                                  | 0.042   | 1.29   |
| NSFP1          | N-Ethylmaleimide-Sensitive Factor Pseudogene 1                     | 0.007   | 1.28   |
| DHFR           | Dihydrofolate Reductase                                            | 0.039   | 1.26   |
| SNORA70G       | Small Nucleolar RNA, H/ACA Box 70G                                 | 0.026   | 1.22   |
| DRG1           | Developmentally Regulated GTP Binding Protein 1                    | 0.046   | 1.21   |
| CEP19          | Centrosomal Protein 19kda                                          | 0.048   | 1.21   |
| FAM215A        | Family With Sequence Similarity 215, Member A                      | 0.032   | -1.20  |
| PLVAP          | Plasmalemma Vesicle Associated Protein                             | 0.049   | -1.21  |
| GPR146         | G Protein-Coupled Receptor 146                                     | 0.021   | -1.21  |
| March2         | Membrane-Associated Ring Finger (C3HC4) 2, E3 Ubiquitin<br>Protein | 0.014   | -1.21  |
| FMO4           | Flavin Containing Monooxygenase 4                                  | 0.002   | -1.22  |
| GBAP1          | Glucosidase, Beta, Acid Pseudogene 1                               | < 0.001 | -1.22  |
| GRIK1-AS2      | GRIK1 Antisense RNA 2 (Non-Protein Coding)                         | 0.024   | -1.22  |
| MAP2K3         | Mitogen-Activated Protein Kinase Kinase 3                          | 0.012   | -1.22  |
| MS4A7          | Membrane-Spanning 4-Domains, Subfamily A, Member 7                 | 0.026   | -1.22  |
| LPAL2          | Lipoprotein, Lp(A)-Like 2, Pseudogene                              | 0.028   | -1.23  |
| BABAM1         | BRISC And BRCA1 A Complex Member 1                                 | 0.050   | -1.25  |
| CATSPER2<br>P1 | Cation Channel, Sperm Associated 2 Pseudogene 1                    | 0.033   | -1.25  |
| SLC35E2        | Solute Carrier Family 35, Member E2                                | 0.020   | -1.25  |
| PIM1           | Pim-1 Oncogene                                                     | 0.043   | -1.25  |
| ZNF14          | Zinc Finger Protein 14                                             | 0.008   | -1.25  |
| FAM210B        | Family With Sequence Similarity 210, Member B                      | 0.032   | -1.27  |

| CTSW     | Cathepsin W                                               | 0.008 | -1.27 |
|----------|-----------------------------------------------------------|-------|-------|
|          |                                                           |       |       |
| TRIM58   | Tripartite Motif Containing 58                            | 0.038 | -1.27 |
| OSBP2    | Oxysterol Binding Protein 2                               | 0.010 | -1.27 |
| BSG      | Basigin (Ok Blood Group)                                  | 0.020 | -1.27 |
| SNAR-D   | Small ILF3/NF90-Associated RNA D                          | 0.030 | -1.27 |
| CRYBB2P1 | Crystallin, Beta B2 Pseudogene 1                          | 0.042 | -1.28 |
| March8   | Membrane-Associated Ring Finger (C3HC4) 8, E3 Ubiquitin   | 0.007 | -1.28 |
| Widi Cho | Prote                                                     | 0.007 | -1.20 |
| SMOX     | Spermine Oxidase                                          | 0.015 | -1.28 |
| EPB49    | Erythrocyte Membrane Protein Band 4.9 (Dematin)           | 0.033 | -1.30 |
| FAM106CP | Family With Sequence Similarity 106, Member C, Pseudogene | 0.028 | -1.32 |
| MMP8     | Matrix Metallopeptidase 8 (Neutrophil Collagenase)        | 0.027 | -1.33 |
| EPB42    | Erythrocyte Membrane Protein Band 4.2                     | 0.041 | -1.34 |
| SH2D1B   | SH2 Domain Containing 1B                                  | 0.013 | -1.34 |
| C19orf77 | Chromosome 19 Open Reading Frame 77                       | 0.034 | -1.36 |
| OR2W3    | Olfactory Receptor, Family 2, Subfamily W, Member 3       | 0.007 | -1.40 |
| RETN     | Resistin                                                  | 0.015 | -1.40 |
| KIR3DL2  | Killer Cell Immunoglobulin-Like Receptor                  | 0.018 | -1.45 |
| CCDC144A | Coiled-Coil Domain Containing 144A                        | 0.010 | -1.48 |
| PDIA3P   | Protein Disulfide Isomerase Family A, Member 3 Pseudogene | 0.003 | -1.63 |

## APPENDIX E

Table 1E. List of 313 genes differently modulated in MDD vs HR from the RNA-Seq analysis (FC

| Gene             | Cono Accignment                                   |         | Fold-  |
|------------------|---------------------------------------------------|---------|--------|
| Symbol           | Gene Assignment                                   | p-value | Change |
| TBC1D3G          | TBC1 Domain Family Member 3G                      | 0.007   | 279.44 |
| TBC1D3           | TBC1 Domain Family Member 3                       | 0.001   | 8.96   |
| PTP4A1           | Protein Tyrosine Phosphatase 4A1                  | 0.011   | 4.71   |
| ADARB2           | Adenosine Deaminase RNA Specific B2 (Inactive)    | 0.001   | 4.59   |
| KLHL41           | Kelch Like Family Member 41                       | < 0.001 | 3.15   |
| CD177            | CD177 Molecule                                    | < 0.001 | 2.76   |
| CCL8             | C-C Motif Chemokine Ligand 8                      | 0.010   | 2.32   |
| NDST3            | N-Deacetylase And N-Sulfotransferase 3            | 0.010   | 2.30   |
| RSAD2            | Radical S-Adenosyl Methionine Domain Containing 2 | 0.001   | 2.18   |
| DCN              | Decorin                                           | 0.002   | 2.18   |
| IFI44L           | Interferon Induced Protein 44 Like                | 0.001   | 2.13   |
| DOK6             | Docking Protein 6                                 | 0.011   | 2.09   |
| KLF14            | Kruppel Like Factor 14                            | 0.017   | 2.08   |
| POC1B-<br>GALNT4 | POC1B-GALNT4 Readthrough                          | 0.045   | 2.07   |
| NEBL             | Nebulette                                         | 0.037   | 2.03   |
| SYCE1            | Synaptonemal Complex Central Element Protein 1    | 0.027   | 2.00   |
| MRGPRE           | MAS Related GPR Family Member E                   | 0.025   | 1.99   |
| CCL2             | C-C Motif Chemokine Ligand 2                      | 0.007   | 1.99   |
| EPB41L4B         | Erythrocyte Membrane Protein Band 4.1 Like 4B     | 0.027   | 1.99   |
| ITGA8            | Integrin Subunit Alpha 8                          | 0.021   | 1.97   |
| ZBED9            | Zinc Finger BED-Type Containing 9                 | 0.023   | 1.96   |
| PLSCR2           | Phospholipid Scramblase 2                         | 0.023   | 1.95   |
| TEAD1            | TEA Domain Transcription Factor 1                 | 0.036   | 1.95   |

## ± |1.2|, p-value < 0.05)

| SIGLEC1  | Sialic Acid Binding Ig Like Lectin 1                         | 0.002 | 1.94 |
|----------|--------------------------------------------------------------|-------|------|
| NEUROD4  | Neuronal Differentiation 4                                   | 0.028 | 1.93 |
| GPR26    | G Protein-Coupled Receptor 26                                | 0.040 | 1.92 |
| RGS13    | Regulator Of G Protein Signaling 13                          | 0.027 | 1.88 |
| CD200R1L | CD200 Receptor 1 Like                                        | 0.014 | 1.87 |
| CCL25    | C-C Motif Chemokine Ligand 25                                | 0.011 | 1.87 |
| IFIT1    | Interferon Induced Protein With Tetratricopeptide Repeats 1  | 0.003 | 1.85 |
| IFI27    | Interferon Alpha Inducible Protein 27                        | 0.020 | 1.84 |
| ISG15    | ISG15 Ubiquitin Like Modifier                                | 0.002 | 1.83 |
| SHISA3   | Shisa Family Member 3                                        | 0.037 | 1.79 |
| СМРК2    | Cytidine/Uridine Monophosphate Kinase 2                      | 0.004 | 1.76 |
| PSMB11   | Proteasome Subunit Beta 11                                   | 0.015 | 1.76 |
| USP18    | Ubiquitin Specific Peptidase 18                              | 0.001 | 1.74 |
| PARD3B   | Par-3 Family Cell Polarity Regulator Beta                    | 0.023 | 1.74 |
| COL1A2   | Collagen Type I Alpha 2 Chain                                | 0.020 | 1.74 |
| FBLIM1   | Filamin Binding LIM Protein 1                                | 0.045 | 1.74 |
| CD163L1  | CD163 Molecule Like 1                                        | 0.024 | 1.73 |
| IFI44    | Interferon Induced Protein 44                                | 0.005 | 1.72 |
| OAS3     | 2'-5'-Oligoadenylate Synthetase 3                            | 0.005 | 1.70 |
| DLC1     | DLC1 Rho Gtpase Activating Protein                           | 0.006 | 1.69 |
| APOBEC3B | Apolipoprotein B Mrna Editing Enzyme Catalytic Subunit 3B    | 0.012 | 1.68 |
| DGKI     | Diacylglycerol Kinase lota                                   | 0.043 | 1.67 |
| TERT     | Telomerase Reverse Transcriptase                             | 0.006 | 1.66 |
| POU5F2   | POU Domain Class 5, Transcription Factor 2                   | 0.018 | 1.63 |
| HTRA3    | Htra Serine Peptidase 3                                      | 0.019 | 1.63 |
| MX1      | MX Dynamin Like Gtpase 1                                     | 0.003 | 1.62 |
| HERC5    | HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase 5 | 0.005 | 1.62 |
| DZIP1L   | DAZ Interacting Zinc Finger Protein 1 Like                   | 0.005 | 1.61 |
| PRRG1    | Proline Rich And Gla Domain 1                                | 0.037 | 1.61 |
| L        | 1                                                            | 1     |      |

| LOC112267 |                                                             |       |      |
|-----------|-------------------------------------------------------------|-------|------|
| 968       | Uncharacterized LOC112267968                                | 0.018 | 1.59 |
| NACAD     | NAC Alpha Domain Containing                                 | 0.030 | 1.58 |
| PDE3A     | Phosphodiesterase 3A                                        | 0.024 | 1.54 |
| IFI6      | Interferon Alpha Inducible Protein 6                        | 0.009 | 1.54 |
| SPATA1    | Spermatogenesis Associated 1                                | 0.007 | 1.54 |
| IFIT3     | Interferon Induced Protein With Tetratricopeptide Repeats 3 | 0.012 | 1.53 |
| CXCL10    | C-X-C Motif Chemokine Ligand 10                             | 0.029 | 1.53 |
| KCNMA1    | Potassium Calcium-Activated Channel Subfamily M Alpha 1     | 0.020 | 1.53 |
| PADI6     | Peptidyl Arginine Deiminase 6                               | 0.013 | 1.53 |
| C1QC      | Complement C1q C Chain                                      | 0.049 | 1.53 |
| TRIM6     | Tripartite Motif Containing 6                               | 0.011 | 1.52 |
| C1QB      | Complement C1q B Chain                                      | 0.036 | 1.50 |
| PPARG     | Peroxisome Proliferator Activated Receptor Gamma            | 0.025 | 1.50 |
| MCM10     | Minichromosome Maintenance 10 Replication Initiation Factor | 0.013 | 1.49 |
| MMP8      | Matrix Metallopeptidase 8                                   | 0.021 | 1.49 |
| OAS1      | 2'-5'-Oligoadenylate Synthetase 1                           | 0.008 | 1.48 |
| SLC41A2   | Solute Carrier Family 41 Member 2                           | 0.011 | 1.48 |
| CDC25A    | Cell Division Cycle 25A                                     | 0.008 | 1.48 |
| RNF43     | Ring Finger Protein 43                                      | 0.004 | 1.47 |
| LIPH      | Lipase H                                                    | 0.048 | 1.47 |
| A3GALT2   | Alpha 1,3-Galactosyltransferase 2                           | 0.035 | 1.46 |
| KNL1      | Kinetochore Scaffold 1                                      | 0.010 | 1.46 |
| HPN       | Hepsin                                                      | 0.023 | 1.46 |
| AGRN      | Agrin                                                       | 0.010 | 1.45 |
| EXOC3L1   | Exocyst Complex Component 3 Like 1                          | 0.019 | 1.45 |
| LAMP3     | Lysosomal Associated Membrane Protein 3                     | 0.040 | 1.45 |
| IFIT2     | Interferon Induced Protein With Tetratricopeptide Repeats 2 | 0.008 | 1.45 |
| MYH11     | Myosin Heavy Chain 11                                       | 0.027 | 1.44 |
| OASL      | 2'-5'-Oligoadenylate Synthetase Like                        | 0.020 | 1.43 |

| SAMD4A   | Sterile Alpha Motif Domain Containing 4A                     | 0.005 | 1.43 |
|----------|--------------------------------------------------------------|-------|------|
| PRG4     | Proteoglycan 4                                               | 0.005 | 1.43 |
| LGALS9B  | Galectin 9B                                                  | 0.008 | 1.43 |
| HEY1     | Hes Related Family Bhlh Transcription Factor With YRPW Motif | 0.017 | 1.43 |
| RSPH9    | Radial Spoke Head Component 9                                | 0.015 | 1.42 |
| MSR1     | Macrophage Scavenger Receptor 1                              | 0.019 | 1.41 |
| FRMD3    | FERM Domain Containing 3                                     | 0.001 | 1.41 |
| CHRFAM7A | CHRNA7 (Exons 5-10) And FAM7A (Exons A-E) Fusion             | 0.018 | 1.41 |
| CCDC194  | Coiled-Coil Domain Containing 194                            | 0.033 | 1.41 |
| MIXL1    | Mix Paired-Like Homeobox                                     | 0.038 | 1.40 |
| CCNA1    | Cyclin A1                                                    | 0.024 | 1.40 |
| AFAP1L1  | Actin Filament Associated Protein 1 Like 1                   | 0.033 | 1.40 |
| TMC4     | Transmembrane Channel Like 4                                 | 0.005 | 1.40 |
| OAS2     | 2'-5'-Oligoadenylate Synthetase 2                            | 0.013 | 1.40 |
| C1QA     | Complement C1q A Chain                                       | 0.028 | 1.40 |
| NEXN     | Nexilin F-Actin Binding Protein                              | 0.016 | 1.39 |
| CA6      | Carbonic Anhydrase 6                                         | 0.050 | 1.39 |
| SOX7     | SRY-Box Transcription Factor 7                               | 0.005 | 1.39 |
| SERPINE1 | Serpin Family E Member 1                                     | 0.003 | 1.39 |
| ANO5     | Anoctamin 5                                                  | 0.022 | 1.39 |
| ARHGAP23 | Rho Gtpase Activating Protein 23                             | 0.024 | 1.39 |
| ARNTL2   | Aryl Hydrocarbon Receptor Nuclear Translocator Like 2        | 0.021 | 1.38 |
| CIBAR1   | CBY1 Interacting BAR Domain Containing 1                     | 0.047 | 1.38 |
| GLDC     | Glycine Decarboxylase                                        | 0.046 | 1.37 |
| SAPCD1   | Suppressor APC Domain Containing 1                           | 0.020 | 1.36 |
| TNFAIP6  | TNF Alpha Induced Protein 6                                  | 0.026 | 1.36 |
| KIF4A    | Kinesin Family Member 4A                                     | 0.030 | 1.36 |
| TBC1D8B  | TBC1 Domain Family Member 8B                                 | 0.020 | 1.36 |
| EDA      | Ectodysplasin A                                              | 0.018 | 1.36 |

| ERG      | ETS Transcription Factor ERG                                                  | 0.041 | 1.35 |
|----------|-------------------------------------------------------------------------------|-------|------|
| MARCO    | Macrophage Receptor With Collagenous Structure                                | 0.013 | 1.35 |
| EIF2AK2  | Eukaryotic Translation Initiation Factor 2 Alpha Kinase 2                     | 0.011 | 1.34 |
| PRSS21   | Serine Protease 21                                                            | 0.021 | 1.34 |
| UNC13B   | Unc-13 Homolog B                                                              | 0.001 | 1.33 |
| ASPM     | Assembly Factor For Spindle Microtubules                                      | 0.040 | 1.33 |
| HERC6    | HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase<br>Family Member 6 | 0.005 | 1.33 |
| TDRP     | Testis Development Related Protein                                            | 0.023 | 1.33 |
| HMMR     | Hyaluronan Mediated Motility Receptor                                         | 0.046 | 1.33 |
| FAM187A  | Family With Sequence Similarity 187 Member A                                  | 0.047 | 1.32 |
| ANGPT1   | Angiopoietin 1                                                                | 0.027 | 1.32 |
| LOXHD1   | Lipoxygenase Homology PLAT Domains 1                                          | 0.025 | 1.32 |
| CD80     | CD80 Molecule                                                                 | 0.028 | 1.32 |
| IFITM3   | Interferon Induced Transmembrane Protein 3                                    | 0.048 | 1.32 |
| PLSCR1   | Phospholipid Scramblase 1                                                     | 0.018 | 1.32 |
| CD1B     | CD1b Molecule                                                                 | 0.038 | 1.32 |
| DDX60    | Dexd/H-Box Helicase 60                                                        | 0.018 | 1.31 |
| SH3PXD2B | SH3 And PX Domains 2B                                                         | 0.039 | 1.31 |
| TMEM51   | Transmembrane Protein 51                                                      | 0.024 | 1.31 |
| НР       | Haptoglobin                                                                   | 0.028 | 1.31 |
| RGS16    | Regulator Of G Protein Signaling 16                                           | 0.003 | 1.31 |
| IFIT5    | Interferon Induced Protein With Tetratricopeptide Repeats 5                   | 0.018 | 1.30 |
| TMEM40   | Transmembrane Protein 40                                                      | 0.046 | 1.30 |
| CCNE2    | Cyclin E2                                                                     | 0.030 | 1.30 |
| ZNF107   | Zinc Finger Protein 107                                                       | 0.002 | 1.30 |
| TLR3     | Toll Like Receptor 3                                                          | 0.024 | 1.30 |
| GNAI1    | G Protein Subunit Alpha I1                                                    | 0.032 | 1.29 |
| SUCNR1   | Succinate Receptor 1                                                          | 0.040 | 1.29 |
| ВАМВІ    | BMP And Activin Membrane Bound Inhibitor                                      | 0.045 | 1.28 |

| IFIH1    | Interferon Induced With Helicase C Domain 1               | 0.010 | 1.28 |
|----------|-----------------------------------------------------------|-------|------|
| НОХА9    | Homeobox A9                                               | 0.036 | 1.28 |
| RECQL4   | Recq Like Helicase 4                                      | 0.009 | 1.28 |
| RIPOR3   | RIPOR Family Member 3                                     | 0.027 | 1.28 |
| MT2A     | Metallothionein 2A                                        | 0.043 | 1.28 |
| GPER1    | G Protein-Coupled Estrogen Receptor 1                     | 0.030 | 1.27 |
| COL4A4   | Collagen Type IV Alpha 4 Chain                            | 0.024 | 1.27 |
| EME1     | Essential Meiotic Structure-Specific Endonuclease 1       | 0.027 | 1.27 |
| CLDN12   | Claudin 12                                                | 0.034 | 1.27 |
| TNS4     | Tensin 4                                                  | 0.050 | 1.26 |
| TENM1    | Teneurin Transmembrane Protein 1                          | 0.033 | 1.26 |
| CBX2     | Chromobox 2                                               | 0.021 | 1.26 |
| ANGPTL6  | Angiopoietin Like 6                                       | 0.023 | 1.26 |
| ZNF684   | Zinc Finger Protein 684                                   | 0.028 | 1.25 |
| ANKRD9   | Ankyrin Repeat Domain 9                                   | 0.016 | 1.25 |
| PGAM2    | Phosphoglycerate Mutase 2                                 | 0.037 | 1.25 |
| DDX60L   | Dexd/H-Box 60 Like                                        | 0.024 | 1.24 |
| ICA1L    | Islet Cell Autoantigen 1 Like                             | 0.026 | 1.24 |
| CDCA7    | Cell Division Cycle Associated 7                          | 0.015 | 1.24 |
| TMEM255B | Transmembrane Protein 255B                                | 0.045 | 1.24 |
| DHX58    | Dexh-Box Helicase 58                                      | 0.028 | 1.24 |
| RAD9B    | RAD9 Checkpoint Clamp Component B                         | 0.034 | 1.23 |
| LRRCC1   | Leucine Rich Repeat And Coiled-Coil Centrosomal Protein 1 | 0.031 | 1.23 |
| BMP6     | Bone Morphogenetic Protein 6                              | 0.002 | 1.23 |
| TFEC     | Transcription Factor EC                                   | 0.023 | 1.23 |
| KIF24    | Kinesin Family Member 24                                  | 0.020 | 1.23 |
| TNFSF10  | TNF Superfamily Member 10                                 | 0.025 | 1.22 |
| SLC16A7  | Solute Carrier Family 16 Member 7                         | 0.010 | 1.22 |
| AGBL2    | AGBL Carboxypeptidase 2                                   | 0.024 | 1.22 |
| CDKL1    | Cyclin Dependent Kinase Like 1                            | 0.036 | 1.22 |

| CCDCG2   | Coiled Coil Domain Containing 62                                 | 0.047 | 1 71  |
|----------|------------------------------------------------------------------|-------|-------|
| CCDC62   | Coiled-Coil Domain Containing 62                                 | 0.047 | 1.21  |
| NOMO3    | NODAL Modulator 3                                                | 0.003 | 1.20  |
| INSL3    | Insulin Like 3                                                   | 0.034 | 1.20  |
| NT5C3A   | 5'-Nucleotidase, Cytosolic IIIA                                  | 0.013 | 1.20  |
| LRP11    | LDL Receptor Related Protein 11                                  | 0.036 | -1.21 |
| PDE7B    | Phosphodiesterase 7B                                             | 0.008 | -1.21 |
| RPL11    | Ribosomal Protein L11                                            | 0.046 | -1.21 |
| ATP1A3   | Atpase Na+/K+ Transporting Subunit Alpha 3                       | 0.030 | -1.21 |
| CYP4F22  | Cytochrome P450 Family 4 Subfamily F Member 22                   | 0.042 | -1.22 |
| EEF1B2   | Eukaryotic Translation Elongation Factor 1 Beta 2                | 0.034 | -1.23 |
| TRIP10   | Thyroid Hormone Receptor Interactor 10                           | 0.007 | -1.23 |
| MMP23B   | Matrix Metallopeptidase 23B                                      | 0.029 | -1.23 |
| PPP1R13L | Protein Phosphatase 1 Regulatory Subunit 13 Like                 | 0.001 | -1.25 |
| NEFL     | Neurofilament Light Chain                                        | 0.013 | -1.26 |
| BFSP1    | Beaded Filament Structural Protein 1                             | 0.034 | -1.27 |
| ATP2A1   | Atpase Sarcoplasmic/Endoplasmic Reticulum Ca2+ Transporting<br>1 | 0.043 | -1.27 |
| GCAT     | Glycine C-Acetyltransferase                                      | 0.043 | -1.28 |
| CUZD1    | CUB And Zona Pellucida Like Domains 1                            | 0.049 | -1.28 |
| GLB1L2   | Galactosidase Beta 1 Like 2                                      | 0.048 | -1.28 |
| DRICH1   | Aspartate Rich 1                                                 | 0.021 | -1.29 |
| LRRC36   | Leucine Rich Repeat Containing 36                                | 0.046 | -1.29 |
| TMSB15B  | Thymosin Beta 15B                                                | 0.043 | -1.29 |
| TFCP2L1  | Transcription Factor CP2 Like 1                                  | 0.035 | -1.29 |
| CBR3     | Carbonyl Reductase 3                                             | 0.005 | -1.29 |
| ZNF683   | Zinc Finger Protein 683                                          | 0.019 | -1.30 |
| SYBU     | Syntabulin                                                       | 0.021 | -1.30 |
| REELD1   | Reeler Domain Containing 1                                       | 0.028 | -1.30 |
| GSTA4    | Glutathione S-Transferase Alpha 4                                | 0.004 | -1.30 |
| SNX32    | Sorting Nexin 32                                                 | 0.015 | -1.31 |

| GARNL3   | Gtpase Activating Rap/Rangap Domain Like 3              | 0.036   | -1.32 |
|----------|---------------------------------------------------------|---------|-------|
| TTC39A   | Tetratricopeptide Repeat Domain 39A                     | 0.021   | -1.32 |
| SHD      | Src Homology 2 Domain Containing Transforming Protein D | 0.049   | -1.32 |
| PGLYRP2  | Peptidoglycan Recognition Protein 2                     | 0.030   | -1.32 |
| COLEC12  | Collectin Subfamily Member 12                           | 0.033   | -1.33 |
| EPHB3    | EPH Receptor B3                                         | 0.017   | -1.33 |
| CEMP1    | Cementum Protein 1                                      | 0.031   | -1.33 |
| PFDN4    | Prefoldin Subunit 4                                     | 0.034   | -1.33 |
| TNNT1    | Troponin T1, Slow Skeletal Type                         | 0.035   | -1.34 |
| ARHGEF25 | Rho Guanine Nucleotide Exchange Factor 25               | 0.010   | -1.34 |
| PLA2G2D  | Phospholipase A2 Group IID                              | 0.011   | -1.34 |
| LRRN2    | Leucine Rich Repeat Neuronal 2                          | 0.042   | -1.34 |
| LBX2     | Ladybird Homeobox 2                                     | 0.037   | -1.34 |
| PMFBP1   | Polyamine Modulated Factor 1 Binding Protein 1          | 0.025   | -1.34 |
| RHCE     | Rh Blood Group Ccee Antigens                            | 0.021   | -1.34 |
| CYP46A1  | Cytochrome P450 Family 46 Subfamily A Member 1          | 0.006   | -1.35 |
| ZDHHC11B | Zinc Finger DHHC-Type Containing 11B                    | 0.018   | -1.35 |
| SEZ6L2   | Seizure Related 6 Homolog Like 2                        | 0.044   | -1.35 |
| FAM110C  | Family With Sequence Similarity 110 Member C            | 0.035   | -1.36 |
| PRR36    | Proline Rich 36                                         | 0.049   | -1.36 |
| TLCD1    | TLC Domain Containing 1                                 | 0.029   | -1.36 |
| GRIK5    | Glutamate Ionotropic Receptor Kainate Type Subunit 5    | 0.008   | -1.36 |
| SFRP5    | Secreted Frizzled Related Protein 5                     | 0.047   | -1.37 |
| IGDCC4   | Immunoglobulin Superfamily DCC Subclass Member 4        | 0.014   | -1.37 |
| PLA2G4C  | Phospholipase A2 Group IVC                              | 0.036   | -1.37 |
| MOCS1    | Molybdenum Cofactor Synthesis 1                         | 0.017   | -1.38 |
| CCDC171  | Coiled-Coil Domain Containing 171                       | 0.042   | -1.39 |
| GDF7     | Growth Differentiation Factor 7                         | 0.025   | -1.39 |
| PLLP     | Plasmolipin                                             | < 0.001 | -1.39 |
| MARVELD2 | MARVEL Domain Containing 2                              | 0.031   | -1.39 |

| BICDL2   | BICD Family Like Cargo Adaptor 2                       | 0.047 | -1.40 |
|----------|--------------------------------------------------------|-------|-------|
| SPTSSB   | Serine Palmitoyltransferase Small Subunit B            | 0.044 | -1.40 |
| PRODH    | Proline Dehydrogenase 1                                | 0.031 | -1.40 |
| EFNA5    | Ephrin A5                                              | 0.043 | -1.40 |
| RPL9     | Ribosomal Protein L9                                   | 0.010 | -1.41 |
| COL15A1  | Collagen Type XV Alpha 1 Chain                         | 0.045 | -1.41 |
| MAST1    | Microtubule Associated Serine/Threonine Kinase 1       | 0.024 | -1.41 |
| PLS3     | Plastin 3                                              | 0.009 | -1.42 |
| TCTE1    | T-Complex-Associated-Testis-Expressed 1                | 0.043 | -1.42 |
| CCDC163  | Coiled-Coil Domain Containing 163                      | 0.010 | -1.42 |
| KNDC1    | Kinase Non-Catalytic C-Lobe Domain Containing 1        | 0.003 | -1.42 |
| ABCA6    | ATP Binding Cassette Subfamily A Member 6              | 0.015 | -1.43 |
| FHAD1    | Forkhead Associated Phosphopeptide Binding Domain 1    | 0.033 | -1.43 |
| PTPRG    | Protein Tyrosine Phosphatase Receptor Type G           | 0.024 | -1.44 |
| ANKRD53  | Ankyrin Repeat Domain 53                               | 0.045 | -1.44 |
| SPP1     | Secreted Phosphoprotein 1                              | 0.034 | -1.44 |
| ATP2B3   | Atpase Plasma Membrane Ca2+ Transporting 3             | 0.050 | -1.45 |
| GRM7     | Glutamate Metabotropic Receptor 7                      | 0.019 | -1.45 |
| AKAP6    | A-Kinase Anchoring Protein 6                           | 0.021 | -1.46 |
| TMEM151A | Transmembrane Protein 151A                             | 0.028 | -1.46 |
| GATD3    | Glutamine Amidotransferase Class 1 Domain Containing 3 | 0.019 | -1.47 |
| RSPH4A   | Radial Spoke Head Component 4A                         | 0.011 | -1.47 |
| EVPL     | Envoplakin                                             | 0.010 | -1.47 |
| FEZF2    | FEZ Family Zinc Finger 2                               | 0.026 | -1.47 |
| MEX3A    | Mex-3 RNA Binding Family Member A                      | 0.030 | -1.48 |
| RAG1     | Recombination Activating 1                             | 0.026 | -1.49 |
| SIGLEC12 | Sialic Acid Binding Ig Like Lectin 12                  | 0.040 | -1.49 |
| SHC3     | SHC Adaptor Protein 3                                  | 0.040 | -1.49 |
| TMC2     | Transmembrane Channel Like 2                           | 0.016 | -1.51 |
| RHBDF1   | Rhomboid 5 Homolog 1                                   | 0.047 | -1.52 |

| LPIN3   | Lipin 3                                                             | 0.027 | -1.52 |
|---------|---------------------------------------------------------------------|-------|-------|
| SPOCK3  | SPARC (Osteonectin), Cwcv And Kazal Like Domains                    | 0.032 | -1.53 |
|         | Proteoglycan 3                                                      |       |       |
| RPL34   | Ribosomal Protein L34                                               | 0.029 | -1.54 |
| BICC1   | Bicc Family RNA Binding Protein 1                                   | 0.031 | -1.54 |
| TGFBR3L | Transforming Growth Factor Beta Receptor 3 Like                     | 0.043 | -1.55 |
| STAC    | SH3 And Cysteine Rich Domain                                        | 0.047 | -1.55 |
| KLC3    | Kinesin Light Chain 3                                               | 0.002 | -1.55 |
| BCAM    | Basal Cell Adhesion Molecule (Lutheran Blood Group)                 | 0.011 | -1.57 |
| AOC1    | Amine Oxidase Copper Containing 1                                   | 0.042 | -1.58 |
| CNNM1   | Cyclin And CBS Domain Divalent Metal Cation Transport<br>Mediator 1 | 0.023 | -1.58 |
| MROH7   | Maestro Heat Like Repeat Family Member 7                            | 0.017 | -1.60 |
| DRD3    | Dopamine Receptor D3                                                | 0.025 | -1.61 |
| FSIP2   | Fibrous Sheath Interacting Protein 2                                | 0.039 | -1.61 |
| GSTM5   | Glutathione S-Transferase Mu 5                                      | 0.027 | -1.62 |
| LPL     | Lipoprotein Lipase                                                  | 0.005 | -1.63 |
| RPL36A  | Ribosomal Protein L36a                                              | 0.037 | -1.65 |
| SAXO2   | Stabilizer Of Axonemal Microtubules 2                               | 0.050 | -1.66 |
| TAC3    | Tachykinin Precursor 3                                              | 0.030 | -1.66 |
| PNMA8B  | PNMA Family Member 8B                                               | 0.018 | -1.66 |
| PLG     | Plasminogen                                                         | 0.020 | -1.68 |
| EFCAB1  | EF-Hand Calcium Binding Domain 1                                    | 0.040 | -1.68 |
| DPP10   | Dipeptidyl Peptidase Like 10                                        | 0.031 | -1.70 |
| VANGL2  | VANGL Planar Cell Polarity Protein 2                                | 0.007 | -1.73 |
| KCNA1   | Potassium Voltage-Gated Channel Subfamily A Member 1                | 0.009 | -1.74 |
| FOLR3   | Folate Receptor Gamma                                               | 0.002 | -1.75 |
| NKAIN2  | Sodium/Potassium Transporting Atpase Interacting 2                  | 0.008 | -1.77 |
| HOXA7   | Homeobox A7                                                         | 0.009 | -1.79 |
| SLC30A3 | Solute Carrier Family 30 Member 3                                   | 0.009 | -1.79 |

| RPRML    | Reprimo Like                                               | 0.007   | -1.84 |
|----------|------------------------------------------------------------|---------|-------|
| TNS2     | Tensin 2                                                   | < 0.001 | -1.85 |
| MANSC4   | MANSC Domain Containing 4                                  | 0.011   | -1.86 |
| PCDHGA5  | Protocadherin Gamma Subfamily A, 5                         | 0.041   | -1.87 |
| GRIP1    | Glutamate Receptor Interacting Protein 1                   | 0.001   | -1.88 |
| SYN3     | Synapsin III                                               | 0.016   | -1.89 |
| AANAT    | Aralkylamine N-Acetyltransferase                           | 0.037   | -1.95 |
| MAGED4   | MAGE Family Member D4                                      | 0.028   | -1.97 |
| VPREB1   | V-Set Pre-B Cell Surrogate Light Chain 1                   | 0.022   | -1.97 |
| KCNJ8    | Potassium Inwardly Rectifying Channel Subfamily J Member 8 | 0.046   | -2.00 |
| LEKR1    | Leucine, Glutamate And Lysine Rich 1                       | 0.005   | -2.02 |
| CHST6    | Carbohydrate Sulfotransferase 6                            | 0.007   | -2.04 |
| TACSTD2  | Tumor Associated Calcium Signal Transducer 2               | < 0.001 | -2.10 |
| MSLN     | Mesothelin                                                 | 0.005   | -2.26 |
| TNNI3    | Troponin I3, Cardiac Type                                  | 0.012   | -2.29 |
| NAALAD2  | N-Acetylated Alpha-Linked Acidic Dipeptidase 2             | 0.006   | -2.33 |
| LPAR4    | Lysophosphatidic Acid Receptor 4                           | 0.011   | -2.33 |
| PCDHA4   | Protocadherin Alpha 4                                      | 0.038   | -2.34 |
| CBLN2    | Cerebellin 2 Precursor                                     | 0.002   | -2.45 |
| POU2F3   | POU Class 2 Homeobox 3                                     | 0.007   | -2.59 |
| PNMA8A   | PNMA Family Member 8A                                      | 0.017   | -2.66 |
| NXF3     | Nuclear RNA Export Factor 3                                | 0.015   | -2.74 |
| MTRNR2L8 | MT-RNR2 Like 8                                             | < 0.001 | -2.75 |
| GRIP2    | Glutamate Receptor Interacting Protein 2                   | 0.002   | -2.76 |
| TACR3    | Tachykinin Receptor 3                                      | 0.038   | -2.77 |
| C4BPA    | Complement Component 4 Binding Protein Alpha               | < 0.001 | -2.86 |
| RNF150   | Ring Finger Protein 150                                    | 0.001   | -3.32 |

Table 2E. List of 461 genes differently modulated in MDD vs LR from the RNA-Seq analysis (FC ± |1.2|, p-value < 0.05).

| Gene     |                                                             |         | Fold-  |
|----------|-------------------------------------------------------------|---------|--------|
| Symbol   | Gene Assignment                                             | p-value | Change |
| TBC1D3   | TBC1 Domain Family Member 3                                 | 0.001   | 13.97  |
| OR6N1    | Olfactory Receptor Family 6 Subfamily N Member 1            | 0.007   | 2.77   |
| PRSS50   | Serine Protease 50                                          | 0.007   | 2.64   |
| DCN      | Decorin                                                     | 0.002   | 2.36   |
| C2CD6    | C2 Calcium Dependent Domain Containing 6                    | 0.039   | 2.33   |
| ITGA8    | Integrin Subunit Alpha 8                                    | 0.013   | 2.31   |
| SRGAP1   | SLIT-ROBO Rho Gtpase Activating Protein 1                   | < 0.001 | 2.16   |
| FBXO16   | F-Box Protein 16                                            | 0.014   | 2.16   |
| INTU     | Inturned Planar Cell Polarity Protein                       | 0.012   | 2.07   |
| RGS13    | Regulator Of G Protein Signaling 13                         | 0.014   | 1.99   |
| TULP2    | TUB Like Protein 2                                          | 0.044   | 1.96   |
| DNAH17   | Dynein Axonemal Heavy Chain 17                              | 0.001   | 1.96   |
| IFI44L   | Interferon Induced Protein 44 Like                          | 0.005   | 1.93   |
| FTCD     | Formimidoyltransferase Cyclodeaminase                       | 0.027   | 1.92   |
| C9orf152 | Chromosome 9 Open Reading Frame 152                         | 0.024   | 1.89   |
| KLF14    | Kruppel Like Factor 14                                      | 0.039   | 1.88   |
| DZIP1L   | DAZ Interacting Zinc Finger Protein 1 Like                  | < 0.001 | 1.87   |
| RSAD2    | Radical S-Adenosyl Methionine Domain Containing 2           | 0.016   | 1.87   |
| SIGLEC1  | Sialic Acid Binding Ig Like Lectin 1                        | 0.005   | 1.86   |
| CCL2     | C-C Motif Chemokine Ligand 2                                | 0.016   | 1.85   |
| SCUBE2   | Signal Peptide, CUB Domain And EGF Like Domain Containing 2 | 0.007   | 1.83   |
| INAVA    | Innate Immunity Activator                                   | 0.002   | 1.83   |
| APOBEC3B | Apolipoprotein B Mrna Editing Enzyme Catalytic Subunit 3B   | 0.003   | 1.82   |
| RNASE1   | Ribonuclease A Family Member 1, Pancreatic                  | 0.002   | 1.80   |
| VEGFC    | Vascular Endothelial Growth Factor C                        | 0.003   | 1.79   |
| OLFM4    | Olfactomedin 4                                              | 0.009   | 1.76   |

| TSPO2            | Translocator Protein 2                                      | 0.001 | 1.74 |
|------------------|-------------------------------------------------------------|-------|------|
| ABCC11           | ATP Binding Cassette Subfamily C Member 11                  | 0.030 | 1.73 |
| СМРК2            | Cytidine/Uridine Monophosphate Kinase 2                     | 0.011 | 1.69 |
| PPARG            | Peroxisome Proliferator Activated Receptor Gamma            | 0.010 | 1.68 |
| IFIT1            | Interferon Induced Protein With Tetratricopeptide Repeats 1 | 0.019 | 1.68 |
| NEK5             | NIMA Related Kinase 5                                       | 0.046 | 1.68 |
| SPATA1           | Spermatogenesis Associated 1                                | 0.001 | 1.67 |
| IFI44            | Interferon Induced Protein 44                               | 0.013 | 1.66 |
| KNL1             | Kinetochore Scaffold 1                                      | 0.002 | 1.66 |
| LOC11226<br>7968 | Uncharacterized LOC112267968                                | 0.017 | 1.63 |
| RNASE2           | Ribonuclease A Family Member 2                              | 0.001 | 1.63 |
| ISG15            | ISG15 Ubiquitin Like Modifier                               | 0.020 | 1.63 |
| BMP8A            | Bone Morphogenetic Protein 8a                               | 0.007 | 1.63 |
| HTRA3            | Htra Serine Peptidase 3                                     | 0.008 | 1.62 |
| USP18            | Ubiquitin Specific Peptidase 18                             | 0.008 | 1.62 |
| PLEKHH2          | Pleckstrin Homology, Myth4 And FERM Domain Containing H2    | 0.027 | 1.62 |
| РКРЗ             | Plakophilin 3                                               | 0.038 | 1.62 |
| FPGT-<br>TNNI3K  | FPGT-TNNI3K Readthrough                                     | 0.035 | 1.61 |
| NECTIN2          | Nectin Cell Adhesion Molecule 2                             | 0.019 | 1.59 |
| KCNMA1           | Potassium Calcium-Activated Channel Subfamily M Alpha 1     | 0.009 | 1.59 |
| CEACAM8          | CEA Cell Adhesion Molecule 8                                | 0.014 | 1.58 |
| MMP8             | Matrix Metallopeptidase 8                                   | 0.011 | 1.58 |
| RBM24            | RNA Binding Motif Protein 24                                | 0.043 | 1.58 |
| PAQR5            | Progestin And Adipoq Receptor Family Member 5               | 0.019 | 1.58 |
| LTF              | Lactotransferrin                                            | 0.009 | 1.57 |
| RFX8             | Regulatory Factor X8                                        | 0.023 | 1.56 |
| TMEM119          | Transmembrane Protein 119                                   | 0.005 | 1.56 |
| FGF17            | Fibroblast Growth Factor 17                                 | 0.040 | 1.55 |

| OAS3     | 2'-5'-Oligoadenylate Synthetase 3                            | 0.030 | 1.55 |
|----------|--------------------------------------------------------------|-------|------|
| IFIT3    | Interferon Induced Protein With Tetratricopeptide Repeats 3  | 0.017 | 1.54 |
| SAMD13   | Sterile Alpha Motif Domain Containing 13                     | 0.038 | 1.54 |
| KIF7     | Kinesin Family Member 7                                      | 0.003 | 1.54 |
| HERC5    | HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase 5 | 0.019 | 1.53 |
| DEFA4    | Defensin Alpha 4                                             | 0.041 | 1.52 |
| C1QB     | Complement C1q B Chain                                       | 0.020 | 1.51 |
| TNFAIP6  | TNF Alpha Induced Protein 6                                  | 0.007 | 1.50 |
| SDC1     | Syndecan 1                                                   | 0.046 | 1.50 |
| MIXL1    | Mix Paired-Like Homeobox                                     | 0.030 | 1.50 |
| RSPH9    | Radial Spoke Head Component 9                                | 0.004 | 1.49 |
| ALPK3    | Alpha Kinase 3                                               | 0.001 | 1.49 |
|          |                                                              |       |      |
| ZPBP2    | Zona Pellucida Binding Protein 2                             | 0.046 | 1.48 |
| MX1      | MX Dynamin Like Gtpase 1                                     | 0.024 | 1.48 |
| C1QC     | Complement C1q C Chain                                       | 0.045 | 1.48 |
| IFI6     | Interferon Alpha Inducible Protein 6                         | 0.030 | 1.48 |
| KIF4A    | Kinesin Family Member 4A                                     | 0.015 | 1.47 |
| SPATS2L  | Spermatogenesis Associated Serine Rich 2 Like                | 0.016 | 1.47 |
| LAMP3    | Lysosomal Associated Membrane Protein 3                      | 0.036 | 1.47 |
| SEMG1    | Semenogelin 1                                                | 0.009 | 1.47 |
| RNF43    | Ring Finger Protein 43                                       | 0.013 | 1.47 |
| IFIT2    | Interferon Induced Protein With Tetratricopeptide Repeats 2  | 0.010 | 1.46 |
| ADGRG6   | Adhesion G Protein-Coupled Receptor G6                       | 0.043 | 1.46 |
| SMIM10   | Small Integral Membrane Protein 10                           | 0.018 | 1.46 |
| ELANE    | Elastase, Neutrophil Expressed                               | 0.016 | 1.45 |
| ARHGAP23 | Rho Gtpase Activating Protein 23                             | 0.008 | 1.45 |
|          | HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase   | 0.001 | 1 45 |
| HERC6    | Family Member 6                                              | 0.001 | 1.45 |
| SDS      | Serine Dehydratase                                           | 0.015 | 1.45 |
| GRIN3B   | Glutamate Ionotropic Receptor NMDA Type Subunit 3B           | 0.013 | 1.44 |

|              | -                                                                 |       |      |
|--------------|-------------------------------------------------------------------|-------|------|
| TRIM6        | Tripartite Motif Containing 6                                     | 0.041 | 1.44 |
| BRCA2        | BRCA2 DNA Repair Associated                                       | 0.033 | 1.43 |
| CRISP3       | Cysteine Rich Secretory Protein 3                                 | 0.006 | 1.43 |
| OSCP1        | Organic Solute Carrier Partner 1                                  | 0.014 | 1.43 |
| MYH11        | Myosin Heavy Chain 11                                             | 0.033 | 1.43 |
| ABCG2        | ATP Binding Cassette Subfamily G Member 2 (Junior Blood<br>Group) | 0.024 | 1.42 |
| LRRIQ3       | Leucine Rich Repeats And IQ Motif Containing 3                    | 0.048 | 1.42 |
| GLDC         | Glycine Decarboxylase                                             | 0.045 | 1.42 |
| LGALS4       | Galectin 4                                                        | 0.019 | 1.42 |
| E2F7         | E2F Transcription Factor 7                                        | 0.041 | 1.42 |
| RHD          | Rh Blood Group D Antigen                                          | 0.045 | 1.42 |
| AXL          | AXL Receptor Tyrosine Kinase                                      | 0.016 | 1.40 |
| LRRC70       | Leucine Rich Repeat Containing 70                                 | 0.024 | 1.39 |
| CD80         | CD80 Molecule                                                     | 0.014 | 1.39 |
| POLN         | DNA Polymerase Nu                                                 | 0.017 | 1.39 |
| HPN          | Hepsin                                                            | 0.045 | 1.38 |
| ASPM         | Assembly Factor For Spindle Microtubules                          | 0.021 | 1.38 |
| BUB1B        | BUB1 Mitotic Checkpoint Serine/Threonine Kinase B                 | 0.016 | 1.38 |
| ABCA13       | ATP Binding Cassette Subfamily A Member 13                        | 0.040 | 1.38 |
| TMEM255<br>B | Transmembrane Protein 255B                                        | 0.006 | 1.38 |
| MGAM2        | Maltase-Glucoamylase 2 (Putative)                                 | 0.012 | 1.38 |
| LAMA2        | Laminin Subunit Alpha 2                                           | 0.041 | 1.38 |
| CFAP54       | Cilia And Flagella Associated Protein 54                          | 0.042 | 1.37 |
| ТР63         | Tumor Protein P63                                                 | 0.048 | 1.37 |
| LCN2         | Lipocalin 2                                                       | 0.036 | 1.37 |
| AGRN         | Agrin                                                             | 0.043 | 1.37 |
| CRHBP        | Corticotropin Releasing Hormone Binding Protein                   | 0.019 | 1.36 |
| BAMBI        | BMP And Activin Membrane Bound Inhibitor                          | 0.033 | 1.36 |
| l            |                                                                   | 1     |      |

| FFAR3         Free Fatty Acid Receptor 3         0.039         1.35           OAS2         2'-5'-Oligoadenylate Synthetase 2         0.029         1.35           ITGA9         Integrin Subunit Alpha 9         0.032         1.35           HPDL         4-Hydroxyphenylpyruvate Dioxygenase Like         0.042         1.34           EIF2AK2         Eukaryotic Translation Initiation Factor 2 Alpha Kinase 2         0.020         1.34           CHDH         Choline Dehydrogenase         0.019         1.34           HORMAD1         HORMA Domain Containing 1         0.044         1.33           NEXN         Nexilin F-Actin Binding Protein         0.039         1.33           MZB1         Marginal Zone B And B1 Cell Specific Protein         0.036         1.33           RASSF6         Ras Association Domain Family Member 6         0.036         1.33           XAF1         XIAP Associated Factor 1         0.044         1.33           IFIH1         Interferon Induced With Helicase C Domain 1         0.037         1.33           ADAMDEC         ADAM Like Decysin 1         0.037         1.33           PLSCR1         Phospholipid Scramblase 1         0.024         1.32           FAM174B         Family With Sequence Similarity 174 Member B         0.002 |         |                                                           |       |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------|-------|------|
| OAS2         2'-5'-Oligoadenylate Synthetase 2         0.029         1.35           ITGA9         Integrin Subunit Alpha 9         0.032         1.35           HPDL         4-Hydroxyphenylpyruvate Dioxygenase Like         0.042         1.34           EIF2AK2         Eukaryotic Translation Initiation Factor 2 Alpha Kinase 2         0.020         1.34           CHDH         Choline Dehydrogenase         0.019         1.34           HORMAD1         HORMA Domain Containing 1         0.044         1.33           NEXN         Nexilin F-Actin Binding Protein         0.038         1.33           MZB1         Marginal Zone B And B1 Cell Specific Protein         0.036         1.33           XAF1         XIAP Associated Factor 1         0.043         1.33           IFIH1         Interferon Induced With Helicase C Domain 1         0.005         1.33           PTH2R         Parathyroid Hormone 2 Receptor         0.044         1.33           ADAMDEC         ADAM Like Decysin 1         0.023         1.32           FAM174B         Family With Sequence Similarity 174 Member 8         0.002         1.32           CASP5         Caspase 5         0.040         1.31           SCN4B         Sodium Voltage-Gated Channel Beta Subunit 4         0.048          | CAV2    | Caveolin 2                                                | 0.047 | 1.36 |
| ITGA9         Integrin Subunit Alpha 9         0.032         1.35           HPDL         4-Hydroxyphenylpyruvate Dioxygenase Like         0.042         1.34           EIF2AK2         Eukaryotic Translation Initiation Factor 2 Alpha Kinase 2         0.020         1.34           CHDH         Choline Dehydrogenase         0.019         1.34           HORMAD1         HORMA Domain Containing 1         0.044         1.33           NEXN         Nexilin F-Actin Binding Protein         0.038         1.33           MZB1         Marginal Zone B And B1 Cell Specific Protein         0.036         1.33           RASSF6         Ras Association Domain Family Member 6         0.036         1.33           XAF1         XIAP Associated Factor 1         0.043         1.33           IFH1         Interferon Induced With Helicase C Domain 1         0.005         1.33           PTH2R         Parathyroid Hormone 2 Receptor         0.044         1.33           ADAMDEC         ADAM Like Decysin 1         0.037         1.32           CHIT1         Chitinase 1         0.023         1.32           FAM174B         Family With Sequence Similarity 174 Member B         0.002         1.32           CASP5         Caspase 5         0.040         1.31         ScN4          | FFAR3   | Free Fatty Acid Receptor 3                                | 0.039 | 1.35 |
| HPDL4-Hydroxyphenylpyruvate Dioxygenase Like0.0421.34EIF2AK2Eukaryotic Translation Initiation Factor 2 Alpha Kinase 20.0201.34CHDHCholine Dehydrogenase0.0191.34HORMAD1HORMA Domain Containing 10.0441.33NEXNNexilin F-Actin Binding Protein0.0381.33MZB1Marginal Zone B And B1 Cell Specific Protein0.0391.33RASSF6Ras Association Domain Family Member 60.0361.33XAF1XIAP Associated Factor 10.0431.33IFIH1Interferon Induced With Helicase C Domain 10.0051.33PTH2RParathyroid Hormone 2 Receptor0.0441.33ADAMDECADAM Like Decysin 10.0371.32CHIT1Chitinase 10.0241.32FAM174BFamily With Sequence Similarity 174 Member B0.0021.31SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0441.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                               | OAS2    | 2'-5'-Oligoadenylate Synthetase 2                         | 0.029 | 1.35 |
| EIF2AK2Eukaryotic Translation Initiation Factor 2 Alpha Kinase 20.0201.34CHDHCholine Dehydrogenase0.0191.34HORMAD1HORMA Domain Containing 10.0441.33NEXNNexilin F-Actin Binding Protein0.0381.33MZB1Marginal Zone B And B1 Cell Specific Protein0.0391.33RASSF6Ras Association Domain Family Member 60.0361.33XAF1XIAP Associated Factor 10.0431.33IFIH1Interferon Induced With Helicase C Domain 10.0051.33PTH2RParathyroid Hormone 2 Receptor0.0441.33ADAMDECADAM Like Decysin 10.0371.33PLSCR1Phospholipid Scramblase 10.0231.32CHIT1Chitinase 10.0241.32FAM174BFamily With Sequence Similarity 174 Member B0.0021.32CASP5Caspase 50.0401.31SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DX60Dexd/H-Box Helicase 600.0401.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                      | ITGA9   | Integrin Subunit Alpha 9                                  | 0.032 | 1.35 |
| CHDHCholine Dehydrogenase0.0191.34HORMAD1HORMA Domain Containing 10.0441.33NEXNNexilin F-Actin Binding Protein0.0381.33MZB1Marginal Zone B And B1 Cell Specific Protein0.0391.33RASSF6Ras Association Domain Family Member 60.0361.33XAF1XIAP Associated Factor 10.0431.33IFIH1Interferon Induced With Helicase C Domain 10.0051.33PTH2RParathyroid Hormone 2 Receptor0.0441.33ADAMDECADAM Like Decysin 10.0371.33PLSCR1Phospholipid Scramblase 10.0231.32CHIT1Chitinase 10.0241.32FAM174BFamily With Sequence Similarity 174 Member B0.0021.32SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0401.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HPDL    | 4-Hydroxyphenylpyruvate Dioxygenase Like                  | 0.042 | 1.34 |
| HORMAD1         HORMA Domain Containing 1         0.044         1.33           NEXN         Nexilin F-Actin Binding Protein         0.038         1.33           MZB1         Marginal Zone B And B1 Cell Specific Protein         0.039         1.33           RASSF6         Ras Association Domain Family Member 6         0.036         1.33           XAF1         XIAP Associated Factor 1         0.043         1.33           IFIH1         Interferon Induced With Helicase C Domain 1         0.005         1.33           PTH2R         Parathyroid Hormone 2 Receptor         0.044         1.33           ADAMDEC         ADAM Like Decysin 1         0.037         1.33           PLSCR1         Phospholipid Scramblase 1         0.023         1.32           CHIT1         Chitinase 1         0.024         1.32           FAM174B         Family With Sequence Similarity 174 Member B         0.002         1.32           CASP5         Caspase 5         0.040         1.31           SCN4B         Sodium Voltage-Gated Channel Beta Subunit 4         0.048         1.31           XCL1         X-C Motif Chemokine Ligand 1         0.017         1.31           CACNA1E         Calcium Voltage-Gated Channel Subunit Alpha1 E         0.022         1.31                    | EIF2AK2 | Eukaryotic Translation Initiation Factor 2 Alpha Kinase 2 | 0.020 | 1.34 |
| NEXNNexilin F-Actin Binding Protein0.0381.33MZB1Marginal Zone B And B1 Cell Specific Protein0.0391.33RASSF6Ras Association Domain Family Member 60.0361.33XAF1XIAP Associated Factor 10.0431.33IFIH1Interferon Induced With Helicase C Domain 10.0051.33PTH2RParathyroid Hormone 2 Receptor0.0441.33ADAMDECADAM Like Decysin 10.0371.33PLSCR1Phospholipid Scramblase 10.0231.32CHIT1Chitinase 10.0021.32FAM174BFamily With Sequence Similarity 174 Member B0.0021.31SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0401.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHDH    | Choline Dehydrogenase                                     | 0.019 | 1.34 |
| MZB1Marginal Zone B And B1 Cell Specific Protein0.0391.33RASSF6Ras Association Domain Family Member 60.0361.33XAF1XIAP Associated Factor 10.0431.33IFIH1Interferon Induced With Helicase C Domain 10.0051.33PTH2RParathyroid Hormone 2 Receptor0.0441.33ADAMDECADAM Like Decysin 10.0371.33PLSCR1Phospholipid Scramblase 10.0231.32CHIT1Chitinase 10.0241.32FAM174BFamily With Sequence Similarity 174 Member B0.0021.32CASP5Caspase 50.0401.31SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.30DDX60Dexd/H-Box Helicase 600.0401.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HORMAD1 | HORMA Domain Containing 1                                 | 0.044 | 1.33 |
| RASSF6Ras Association Domain Family Member 60.0361.33XAF1XIAP Associated Factor 10.0431.33IFIH1Interferon Induced With Helicase C Domain 10.0051.33PTH2RParathyroid Hormone 2 Receptor0.0441.33ADAMDECADAM Like Decysin 10.0371.33PLSCR1Phospholipid Scramblase 10.0231.32CHIT1Chitinase 10.0241.32FAM174BFamily With Sequence Similarity 174 Member B0.0021.32CASP5Caspase 50.0401.31SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0281.30DDX60Dexd/H-Box Helicase 600.0441.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NEXN    | Nexilin F-Actin Binding Protein                           | 0.038 | 1.33 |
| XAF1XIAP Associated Factor 10.0431.33IFIH1Interferon Induced With Helicase C Domain 10.0051.33PTH2RParathyroid Hormone 2 Receptor0.0441.33ADAMDECADAM Like Decysin 10.0371.33PLSCR1Phospholipid Scramblase 10.0231.32CHIT1Chitinase 10.0241.32FAM174BFamily With Sequence Similarity 174 Member B0.0021.32CASP5Caspase 50.0401.31SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0441.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MZB1    | Marginal Zone B And B1 Cell Specific Protein              | 0.039 | 1.33 |
| IFIH1Interferon Induced With Helicase C Domain 10.0051.33PTH2RParathyroid Hormone 2 Receptor0.0441.33ADAMDECADAM Like Decysin 10.0371.33PLSCR1Phospholipid Scramblase 10.0231.32CHIT1Chitinase 10.0241.32FAM174BFamily With Sequence Similarity 174 Member B0.0021.32CASP5Caspase 50.0401.31SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0441.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RASSF6  | Ras Association Domain Family Member 6                    | 0.036 | 1.33 |
| PTH2RParathyroid Hormone 2 Receptor0.0441.33ADAMDEC<br>1ADAM Like Decysin 10.0371.33PLSCR1Phospholipid Scramblase 10.0231.32CHIT1Chitinase 10.0241.32FAM174BFamily With Sequence Similarity 174 Member B0.0021.32CASP5Caspase 50.0401.31SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XAF1    | XIAP Associated Factor 1                                  | 0.043 | 1.33 |
| ADAMDEC<br>1ADAM Like Decysin 10.0371.33PLSCR1Phospholipid Scramblase 10.0231.32CHIT1Chitinase 10.0241.32FAM174BFamily With Sequence Similarity 174 Member B0.0021.32CASP5Caspase 50.0401.31SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0441.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IFIH1   | Interferon Induced With Helicase C Domain 1               | 0.005 | 1.33 |
| ADAM Like Decysin 10.0371.33PLSCR1Phospholipid Scramblase 10.0231.32CHIT1Chitinase 10.0241.32FAM174BFamily With Sequence Similarity 174 Member B0.0021.32CASP5Caspase 50.0401.31SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0441.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PTH2R   | Parathyroid Hormone 2 Receptor                            | 0.044 | 1.33 |
| CHIT1Chitinase 10.0241.32FAM174BFamily With Sequence Similarity 174 Member B0.0021.32CASP5Caspase 50.0401.31SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | ADAM Like Decysin 1                                       | 0.037 | 1.33 |
| FAM174BFamily With Sequence Similarity 174 Member B0.0021.32CASP5Caspase 50.0401.31SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PLSCR1  | Phospholipid Scramblase 1                                 | 0.023 | 1.32 |
| CASP5Caspase 50.0401.31SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0401.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHIT1   | Chitinase 1                                               | 0.024 | 1.32 |
| SCN4BSodium Voltage-Gated Channel Beta Subunit 40.0481.31XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0401.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FAM174B | Family With Sequence Similarity 174 Member B              | 0.002 | 1.32 |
| XCL1X-C Motif Chemokine Ligand 10.0171.31CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0401.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CASP5   | Caspase 5                                                 | 0.040 | 1.31 |
| CACNA1ECalcium Voltage-Gated Channel Subunit Alpha1 E0.0221.31SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0401.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SCN4B   | Sodium Voltage-Gated Channel Beta Subunit 4               | 0.048 | 1.31 |
| SHISA8Shisa Family Member 80.0281.30DDX60Dexd/H-Box Helicase 600.0401.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | XCL1    | X-C Motif Chemokine Ligand 1                              | 0.017 | 1.31 |
| DDX60Dexd/H-Box Helicase 600.0401.30EDAEctodysplasin A0.0441.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CACNA1E | Calcium Voltage-Gated Channel Subunit Alpha1 E            | 0.022 | 1.31 |
| EDA Ectodysplasin A 0.044 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SHISA8  | Shisa Family Member 8                                     | 0.028 | 1.30 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DDX60   | Dexd/H-Box Helicase 60                                    | 0.040 | 1.30 |
| PRG4 Proteoglycan 4 0.049 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EDA     | Ectodysplasin A                                           | 0.044 | 1.30 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRG4    | Proteoglycan 4                                            | 0.049 | 1.29 |
| AIM2 Absent In Melanoma 2 0.030 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AIM2    | Absent In Melanoma 2                                      | 0.030 | 1.29 |
| TXNDC5Thioredoxin Domain Containing 50.0491.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TXNDC5  | Thioredoxin Domain Containing 5                           | 0.049 | 1.29 |

| LOC40049<br>9 | Putative Uncharacterized Protein LOC400499                  | 0.003 | 1.29 |
|---------------|-------------------------------------------------------------|-------|------|
| DDX60L        | Dexd/H-Box 60 Like                                          | 0.015 | 1.29 |
| FRMD3         | FERM Domain Containing 3                                    | 0.015 | 1.29 |
| RIBC1         | RIB43A Domain With Coiled-Coils 1                           | 0.015 | 1.29 |
| DCAF4L1       | DDB1 And CUL4 Associated Factor 4 Like 1                    | 0.009 | 1.28 |
| СОСН          | Cochlin                                                     | 0.022 | 1.28 |
| MT2A          | Metallothionein 2A                                          | 0.039 | 1.28 |
| IFIT5         | Interferon Induced Protein With Tetratricopeptide Repeats 5 | 0.046 | 1.28 |
| SFN           | Stratifin                                                   | 0.038 | 1.28 |
| TMC4          | Transmembrane Channel Like 4                                | 0.046 | 1.28 |
| DOCK4         | Dedicator Of Cytokinesis 4                                  | 0.014 | 1.28 |
| GABRR2        | Gamma-Aminobutyric Acid Type A Receptor Subunit Rho2        | 0.023 | 1.28 |
| XRRA1         | X-Ray Radiation Resistance Associated 1                     | 0.035 | 1.27 |
| ZNF714        | Zinc Finger Protein 714                                     | 0.017 | 1.27 |
| LGALSL        | Galectin Like                                               | 0.017 | 1.26 |
| RAB23         | RAB23, Member RAS Oncogene Family                           | 0.029 | 1.26 |
| SAMD9L        | Sterile Alpha Motif Domain Containing 9 Like                | 0.035 | 1.25 |
| AFDN          | Afadin, Adherens Junction Formation Factor                  | 0.036 | 1.25 |
| ATP8B4        | Atpase Phospholipid Transporting 8B4 (Putative)             | 0.001 | 1.25 |
| ADM           | Adrenomedullin                                              | 0.025 | 1.25 |
| DDX58         | Dexd/H-Box Helicase 58                                      | 0.040 | 1.25 |
| IL18RAP       | Interleukin 18 Receptor Accessory Protein                   | 0.018 | 1.24 |
| B4GALT6       | Beta-1,4-Galactosyltransferase 6                            | 0.024 | 1.24 |
| CFAP45        | Cilia And Flagella Associated Protein 45                    | 0.014 | 1.24 |
| ODF3B         | Outer Dense Fiber Of Sperm Tails 3B                         | 0.030 | 1.24 |
| IRF7          | Interferon Regulatory Factor 7                              | 0.046 | 1.24 |
| PARP9         | Poly(ADP-Ribose) Polymerase Family Member 9                 | 0.028 | 1.24 |
| TRIM22        | Tripartite Motif Containing 22                              | 0.031 | 1.24 |
| SAMD9         | Sterile Alpha Motif Domain Containing 9                     | 0.016 | 1.24 |

| ZBP1     | Z-DNA Binding Protein 1                                    | 0.039 | 1.24 |
|----------|------------------------------------------------------------|-------|------|
| KIAA0319 | Kiaa0319                                                   | 0.006 | 1.24 |
| CRABP2   | Cellular Retinoic Acid Binding Protein 2                   | 0.017 | 1.23 |
| HCAR3    | Hydroxycarboxylic Acid Receptor 3                          | 0.007 | 1.23 |
| NUGGC    | Nuclear Gtpase, Germinal Center Associated                 | 0.006 | 1.23 |
| AGBL2    | AGBL Carboxypeptidase 2                                    | 0.027 | 1.23 |
| STEAP4   | STEAP4 Metalloreductase                                    | 0.014 | 1.23 |
| PTPN13   | Protein Tyrosine Phosphatase Non-Receptor Type 13          | 0.030 | 1.23 |
| TNFSF10  | TNF Superfamily Member 10                                  | 0.045 | 1.23 |
| NT5C3A   | 5'-Nucleotidase, Cytosolic IIIA                            | 0.016 | 1.22 |
| АРОВЕСЗА | Apolipoprotein B Mrna Editing Enzyme Catalytic Subunit 3A  | 0.012 | 1.22 |
| TCN2     | Transcobalamin 2                                           | 0.044 | 1.22 |
| KIAA1958 | Kiaa1958                                                   | 0.033 | 1.22 |
| ELL2     | Elongation Factor For RNA Polymerase II 2                  | 0.004 | 1.22 |
| C5orf34  | Chromosome 5 Open Reading Frame 34                         | 0.041 | 1.22 |
| NSUN7    | NOP2/Sun RNA Methyltransferase Family Member 7             | 0.023 | 1.22 |
| MX2      | MX Dynamin Like Gtpase 2                                   | 0.017 | 1.22 |
| BMP6     | Bone Morphogenetic Protein 6                               | 0.004 | 1.22 |
| SCO2     | Synthesis Of Cytochrome C Oxidase 2                        | 0.033 | 1.22 |
| HELZ2    | Helicase With Zinc Finger 2                                | 0.048 | 1.21 |
| NOXRED1  | NADP Dependent Oxidoreductase Domain Containing 1          | 0.048 | 1.21 |
| KCNJ2    | Potassium Inwardly Rectifying Channel Subfamily J Member 2 | 0.011 | 1.21 |
| ZNF107   | Zinc Finger Protein 107                                    | 0.037 | 1.21 |
| GGH      | Gamma-Glutamyl Hydrolase                                   | 0.039 | 1.21 |
| HCAR2    | Hydroxycarboxylic Acid Receptor 2                          | 0.011 | 1.21 |
| SLFN12   | Schlafen Family Member 12                                  | 0.015 | 1.21 |
| TUT1     | Terminal Uridylyl Transferase 1, U6 Snrna-Specific         | 0.021 | 1.21 |
| KIF24    | Kinesin Family Member 24                                   | 0.041 | 1.21 |
| NHS      | NHS Actin Remodeling Regulator                             | 0.027 | 1.21 |
| SMAD1    | SMAD Family Member 1                                       | 0.041 | 1.21 |

| KIAA0825 | Kiaa0825                                  | 0.023 | 1.21  |
|----------|-------------------------------------------|-------|-------|
| SGPP2    | Sphingosine-1-Phosphate Phosphatase 2     | 0.004 | 1.21  |
| PRRG4    | Proline Rich And Gla Domain 4             | 0.019 | 1.21  |
| MAP3K7CL | MAP3K7 C-Terminal Like                    | 0.012 | 1.20  |
| TLR5     | Toll Like Receptor 5                      | 0.035 | 1.20  |
| C18orf54 | Chromosome 18 Open Reading Frame 54       | 0.029 | 1.20  |
| IL1RN    | Interleukin 1 Receptor Antagonist         | 0.027 | 1.20  |
| NTNG2    | Netrin G2                                 | 0.040 | 1.20  |
| SV2A     | Synaptic Vesicle Glycoprotein 2A          | 0.014 | -1.20 |
| PRICKLE1 | Prickle Planar Cell Polarity Protein 1    | 0.007 | -1.20 |
| BBS7     | Bardet-Biedl Syndrome 7                   | 0.019 | -1.20 |
| NLGN2    | Neuroligin 2                              | 0.034 | -1.20 |
| WASF1    | WASP Family Member 1                      | 0.018 | -1.21 |
| CBR3     | Carbonyl Reductase 3                      | 0.026 | -1.21 |
| SLC9A3R2 | SLC9A3 Regulator 2                        | 0.004 | -1.21 |
| ARMCX2   | Armadillo Repeat Containing X-Linked 2    | 0.024 | -1.21 |
| IGSF9B   | Immunoglobulin Superfamily Member 9B      | 0.050 | -1.21 |
| KIF9     | Kinesin Family Member 9                   | 0.049 | -1.21 |
| SYP      | Synaptophysin                             | 0.043 | -1.22 |
| PRRT1    | Proline Rich Transmembrane Protein 1      | 0.013 | -1.22 |
| ENC1     | Ectodermal-Neural Cortex 1                | 0.011 | -1.22 |
| BFSP1    | Beaded Filament Structural Protein 1      | 0.041 | -1.22 |
| CD248    | CD248 Molecule                            | 0.005 | -1.22 |
| CRB3     | Crumbs Cell Polarity Complex Component 3  | 0.026 | -1.22 |
| ATP1B1   | Atpase Na+/K+ Transporting Subunit Beta 1 | 0.024 | -1.23 |
| GSTA4    | Glutathione S-Transferase Alpha 4         | 0.023 | -1.23 |
| SPAG8    | Sperm Associated Antigen 8                | 0.015 | -1.23 |
| PFN2     | Profilin 2                                | 0.039 | -1.23 |
| MAD1L1   | Mitotic Arrest Deficient 1 Like 1         | 0.002 | -1.23 |
| NET1     | Neuroepithelial Cell Transforming 1       | 0.001 | -1.23 |

| MTMR8    | Myotubularin Related Protein 8                      | 0.044   | -1.23 |
|----------|-----------------------------------------------------|---------|-------|
| TESC     | Tescalcin                                           | 0.014   | -1.23 |
| ZRANB3   | Zinc Finger RANBP2-Type Containing 3                | 0.045   | -1.24 |
| PLPP3    | Phospholipid Phosphatase 3                          | 0.024   | -1.24 |
| FBLN2    | Fibulin 2                                           | 0.005   | -1.24 |
| PSD      | Pleckstrin And Sec7 Domain Containing               | 0.013   | -1.25 |
| ARHGAP39 | Rho Gtpase Activating Protein 39                    | 0.047   | -1.25 |
| SLC5A10  | Solute Carrier Family 5 Member 10                   | 0.037   | -1.25 |
| SUSD4    | Sushi Domain Containing 4                           | 0.028   | -1.25 |
| FAAH     | Fatty Acid Amide Hydrolase                          | 0.001   | -1.26 |
| FILIP1L  | Filamin A Interacting Protein 1 Like                | 0.015   | -1.26 |
| BSN      | Bassoon Presynaptic Cytomatrix Protein              | 0.030   | -1.26 |
| KLHL33   | Kelch Like Family Member 33                         | 0.031   | -1.26 |
| ZNF667   | Zinc Finger Protein 667                             | 0.043   | -1.26 |
| NR4A1    | Nuclear Receptor Subfamily 4 Group A Member 1       | 0.007   | -1.26 |
| SMARCA1  | SWI/SNF Related, Matrix Associated, Actin Dependent | 0.028   | -1.26 |
|          | Regulator Of Chromatin, Subfamily A, Member 1       | 0.020   | 1.20  |
| SLC22A17 | Solute Carrier Family 22 Member 17                  | 0.012   | -1.26 |
| ZFP2     | ZFP2 Zinc Finger Protein                            | 0.041   | -1.26 |
| DLGAP3   | DLG Associated Protein 3                            | 0.028   | -1.26 |
| RTN4RL2  | Reticulon 4 Receptor Like 2                         | 0.042   | -1.26 |
| STRBP    | Spermatid Perinuclear RNA Binding Protein           | < 0.001 | -1.26 |
| EEF1A2   | Eukaryotic Translation Elongation Factor 1 Alpha 2  | 0.034   | -1.27 |
| ZNF563   | Zinc Finger Protein 563                             | 0.031   | -1.27 |
| TSPAN7   | Tetraspanin 7                                       | 0.047   | -1.27 |
| EIF5AL1  | Eukaryotic Translation Initiation Factor 5A Like 1  | 0.041   | -1.27 |
| C1QTNF4  | C1q And TNF Related 4                               | 0.045   | -1.27 |
| EFNB2    | Ephrin B2                                           | 0.014   | -1.27 |
| SERPINE2 | Serpin Family E Member 2                            | 0.007   | -1.27 |
| ADGRA3   | Adhesion G Protein-Coupled Receptor A3              | 0.004   | -1.27 |

| STXBP1   | Syntaxin Binding Protein 1                                                        | 0.007 | -1.28 |
|----------|-----------------------------------------------------------------------------------|-------|-------|
| DBNDD1   | Dysbindin Domain Containing 1                                                     | 0.010 | -1.28 |
| SYBU     | Syntabulin                                                                        | 0.020 | -1.28 |
| MACROD2  | Mono-ADP Ribosylhydrolase 2                                                       | 0.012 | -1.28 |
| МАРТ     | Microtubule Associated Protein Tau                                                | 0.036 | -1.28 |
| MOCS1    | Molybdenum Cofactor Synthesis 1                                                   | 0.016 | -1.28 |
| SARDH    | Sarcosine Dehydrogenase                                                           | 0.004 | -1.28 |
| ELFN2    | Extracellular Leucine Rich Repeat And Fibronectin Type III<br>Domain Containing 2 | 0.006 | -1.28 |
| PDZK1IP1 | PDZK1 Interacting Protein 1                                                       | 0.034 | -1.29 |
| SLC7A8   | Solute Carrier Family 7 Member 8                                                  | 0.027 | -1.29 |
| PTPRF    | Protein Tyrosine Phosphatase Receptor Type F                                      | 0.036 | -1.29 |
| TXNRD3   | Thioredoxin Reductase 3                                                           | 0.005 | -1.29 |
| DLGAP1   | DLG Associated Protein 1                                                          | 0.044 | -1.29 |
| SOX8     | SRY-Box Transcription Factor 8                                                    | 0.005 | -1.29 |
| PGLYRP2  | Peptidoglycan Recognition Protein 2                                               | 0.036 | -1.29 |
| SLC17A7  | Solute Carrier Family 17 Member 7                                                 | 0.037 | -1.29 |
| P3H2     | Prolyl 3-Hydroxylase 2                                                            | 0.033 | -1.30 |
| TUSC3    | Tumor Suppressor Candidate 3                                                      | 0.045 | -1.30 |
| DIRAS1   | DIRAS Family Gtpase 1                                                             | 0.027 | -1.30 |
| FAIM2    | Fas Apoptotic Inhibitory Molecule 2                                               | 0.046 | -1.30 |
| MFSD6L   | Major Facilitator Superfamily Domain Containing 6 Like                            | 0.043 | -1.30 |
| FBXL16   | F-Box And Leucine Rich Repeat Protein 16                                          | 0.011 | -1.31 |
| CNN3     | Calponin 3                                                                        | 0.002 | -1.31 |
| САМК2А   | Calcium/Calmodulin Dependent Protein Kinase II Alpha                              | 0.028 | -1.31 |
| TFCP2L1  | Transcription Factor CP2 Like 1                                                   | 0.033 | -1.32 |
| RASL10B  | RAS Like Family 10 Member B                                                       | 0.027 | -1.32 |
| GRIA2    | Glutamate Ionotropic Receptor AMPA Type Subunit 2                                 | 0.036 | -1.32 |
| MAP2     | Microtubule Associated Protein 2                                                  | 0.020 | -1.32 |
| CELF3    | CUGBP Elav-Like Family Member 3                                                   | 0.042 | -1.32 |

| ANK2    | Ankyrin 2                                                             | 0.033 | -1.32 |
|---------|-----------------------------------------------------------------------|-------|-------|
| FGFR4   | Fibroblast Growth Factor Receptor 4                                   | 0.021 | -1.32 |
| DPF3    | Double PHD Fingers 3                                                  | 0.004 | -1.33 |
| KHDRBS3 | KH RNA Binding Domain Containing, Signal Transduction<br>Associated 3 | 0.042 | -1.33 |
| GAD1    | Glutamate Decarboxylase 1                                             | 0.049 | -1.33 |
| CDK5R2  | Cyclin Dependent Kinase 5 Regulatory Subunit 2                        | 0.028 | -1.33 |
| SLC1A2  | Solute Carrier Family 1 Member 2                                      | 0.048 | -1.34 |
| NDRG4   | NDRG Family Member 4                                                  | 0.024 | -1.34 |
| GCAT    | Glycine C-Acetyltransferase                                           | 0.009 | -1.34 |
| TAGLN3  | Transgelin 3                                                          | 0.025 | -1.34 |
| NPTX1   | Neuronal Pentraxin 1                                                  | 0.007 | -1.34 |
| PRH1    | Proline Rich Protein Haeiii Subfamily 1                               | 0.012 | -1.34 |
| CSPG5   | Chondroitin Sulfate Proteoglycan 5                                    | 0.042 | -1.35 |
| DSCAML1 | DS Cell Adhesion Molecule Like 1                                      | 0.032 | -1.35 |
| PDE8B   | Phosphodiesterase 8B                                                  | 0.025 | -1.35 |
| NRXN2   | Neurexin 2                                                            | 0.024 | -1.35 |
| GYPE    | Glycophorin E (MNS Blood Group)                                       | 0.049 | -1.35 |
| ACTG2   | Actin Gamma 2, Smooth Muscle                                          | 0.030 | -1.36 |
| CC2D2A  | Coiled-Coil And C2 Domain Containing 2A                               | 0.017 | -1.36 |
| HOMER1  | Homer Scaffold Protein 1                                              | 0.014 | -1.37 |
| GPM6A   | Glycoprotein M6A                                                      | 0.036 | -1.37 |
| ANKRD31 | Ankyrin Repeat Domain 31                                              | 0.034 | -1.37 |
| PDZD7   | PDZ Domain Containing 7                                               | 0.038 | -1.37 |
| RAPGEF5 | Rap Guanine Nucleotide Exchange Factor 5                              | 0.039 | -1.37 |
| LRP5    | LDL Receptor Related Protein 5                                        | 0.005 | -1.38 |
| RYR1    | Ryanodine Receptor 1                                                  | 0.012 | -1.38 |
| GPC3    | Glypican 3                                                            | 0.015 | -1.38 |
| GRIA1   | Glutamate Ionotropic Receptor AMPA Type Subunit 1                     | 0.047 | -1.38 |
| NALF1   | NALCN Channel Auxiliary Factor 1                                      | 0.047 | -1.38 |

| STXBP4   | Syntaxin Pinding Protoin 4                                          | 0.001   | -1.39 |
|----------|---------------------------------------------------------------------|---------|-------|
| STXBP4   | Syntaxin Binding Protein 4                                          | 0.001   | -1.39 |
| PFDN4    | Prefoldin Subunit 4                                                 | 0.034   | -1.39 |
| KLC3     | Kinesin Light Chain 3                                               | 0.011   | -1.39 |
| ZNF835   | Zinc Finger Protein 835                                             | 0.005   | -1.39 |
| TNNT1    | Troponin T1, Slow Skeletal Type                                     | 0.040   | -1.39 |
| DEGS2    | Delta 4-Desaturase, Sphingolipid 2                                  | 0.004   | -1.40 |
| PPP2R2C  | Protein Phosphatase 2 Regulatory Subunit Bgamma                     | 0.026   | -1.40 |
| SPRED3   | Sprouty Related EVH1 Domain Containing 3                            | 0.015   | -1.40 |
| SOBP     | Sine Oculis Binding Protein Homolog                                 | 0.006   | -1.40 |
| KRT2     | Keratin 2                                                           | 0.023   | -1.40 |
| НРСА     | Hippocalcin                                                         | 0.012   | -1.40 |
| ροτει    | POTE Ankyrin Domain Family Member I                                 | 0.017   | -1.40 |
| SOX2     | SRY-Box Transcription Factor 2                                      | 0.042   | -1.40 |
| SLC16A11 | Solute Carrier Family 16 Member 11                                  | < 0.001 | -1.41 |
| ATP2B2   | Atpase Plasma Membrane Ca2+ Transporting 2                          | 0.046   | -1.41 |
| ССК      | Cholecystokinin                                                     | 0.015   | -1.42 |
| KCNC1    | Potassium Voltage-Gated Channel Subfamily C Member 1                | 0.034   | -1.42 |
| SDC2     | Syndecan 2                                                          | 0.042   | -1.42 |
| COLEC12  | Collectin Subfamily Member 12                                       | 0.030   | -1.42 |
| TNR      | Tenascin R                                                          | 0.041   | -1.42 |
| GALNT16  | Polypeptide N-Acetylgalactosaminyltransferase 16                    | 0.040   | -1.43 |
| ТТС9В    | Tetratricopeptide Repeat Domain 9B                                  | 0.038   | -1.43 |
| PRSS57   | Serine Protease 57                                                  | 0.004   | -1.43 |
| MMEL1    | Membrane Metalloendopeptidase Like 1                                | 0.004   | -1.43 |
| ATP1A3   | Atpase Na+/K+ Transporting Subunit Alpha 3                          | 0.003   | -1.43 |
| ΡΟΤΕΜ    | POTE Ankyrin Domain Family Member M                                 | 0.015   | -1.44 |
| CAMSAP3  | Calmodulin Regulated Spectrin Associated Protein Family<br>Member 3 | 0.017   | -1.44 |
| TEDC2    | Tubulin Epsilon And Delta Complex 2                                 | 0.022   | -1.44 |
| TTYH1    | Tweety Family Member 1                                              | 0.018   | -1.44 |
| L        |                                                                     |         |       |

| KIF5A   | Kinesin Family Member 5A                                   | 0.010 | -1.44 |
|---------|------------------------------------------------------------|-------|-------|
|         |                                                            |       |       |
| EPB41L1 | Erythrocyte Membrane Protein Band 4.1 Like 1               | 0.013 | -1.45 |
| STMN2   | Stathmin 2                                                 | 0.013 | -1.45 |
| MXRA8   | Matrix Remodeling Associated 8                             | 0.004 | -1.46 |
| TUBB3   | Tubulin Beta 3 Class III                                   | 0.012 | -1.46 |
| APBA1   | Amyloid Beta Precursor Protein Binding Family A Member 1   | 0.002 | -1.47 |
| ACTC1   | Actin Alpha Cardiac Muscle 1                               | 0.046 | -1.47 |
| EPHA7   | EPH Receptor A7                                            | 0.023 | -1.47 |
| RGPD3   | RANBP2 Like And GRIP Domain Containing 3                   | 0.016 | -1.48 |
| SLCO1C1 | Solute Carrier Organic Anion Transporter Family Member 1C1 | 0.035 | -1.48 |
| GRIA3   | Glutamate Ionotropic Receptor AMPA Type Subunit 3          | 0.027 | -1.48 |
| FHAD1   | Forkhead Associated Phosphopeptide Binding Domain 1        | 0.029 | -1.48 |
| BRINP1  | BMP/Retinoic Acid Inducible Neural Specific 1              | 0.004 | -1.49 |
| SEZ6L2  | Seizure Related 6 Homolog Like 2                           | 0.006 | -1.49 |
| GRIP1   | Glutamate Receptor Interacting Protein 1                   | 0.040 | -1.50 |
| EPHA5   | EPH Receptor A5                                            | 0.039 | -1.50 |
| DPYSL4  | Dihydropyrimidinase Like 4                                 | 0.048 | -1.50 |
| ABCA6   | ATP Binding Cassette Subfamily A Member 6                  | 0.007 | -1.51 |
| FHOD3   | Formin Homology 2 Domain Containing 3                      | 0.027 | -1.51 |
| PPM1E   | Protein Phosphatase, Mg2+/Mn2+ Dependent 1E                | 0.030 | -1.51 |
| PROM2   | Prominin 2                                                 | 0.018 | -1.51 |
| RBFOX2  | RNA Binding Fox-1 Homolog 2                                | 0.003 | -1.51 |
| MY01A   | Myosin IA                                                  | 0.003 | -1.52 |
| GRM7    | Glutamate Metabotropic Receptor 7                          | 0.007 | -1.53 |
| BCAM    | Basal Cell Adhesion Molecule (Lutheran Blood Group)        | 0.015 | -1.53 |
| STARD13 | Star Related Lipid Transfer Domain Containing 13           | 0.003 | -1.53 |
| PTPN20  | Protein Tyrosine Phosphatase Non-Receptor Type 20          | 0.035 | -1.54 |
| KNDC1   | Kinase Non-Catalytic C-Lobe Domain Containing 1            | 0.001 | -1.54 |
| DCLK1   | Doublecortin Like Kinase 1                                 | 0.006 | -1.55 |
| ADCY2   | Adenylate Cyclase 2                                        | 0.020 | -1.55 |

| IGSF21  | Immunoglobin Superfamily Member 21                                      | 0.039   | -1.56 |
|---------|-------------------------------------------------------------------------|---------|-------|
| BRINP2  | BMP/Retinoic Acid Inducible Neural Specific 2                           | 0.008   | -1.56 |
| MYH10   | Myosin Heavy Chain 10                                                   | 0.004   | -1.56 |
| STAC2   | SH3 And Cysteine Rich Domain 2                                          | 0.002   | -1.57 |
| EVPL    | Envoplakin                                                              | 0.001   | -1.58 |
| RGS4    | Regulator Of G Protein Signaling 4                                      | 0.030   | -1.58 |
| GRIN1   | Glutamate Ionotropic Receptor NMDA Type Subunit 1                       | 0.007   | -1.58 |
| AOC1    | Amine Oxidase Copper Containing 1                                       | 0.049   | -1.59 |
| RASD2   | RASD Family Member 2                                                    | 0.031   | -1.59 |
| MAGI1   | Membrane Associated Guanylate Kinase, WW And PDZ Domain<br>Containing 1 | 0.030   | -1.59 |
| SULT1A4 | Sulfotransferase Family 1A Member 4                                     | 0.037   | -1.59 |
| DLL3    | Delta Like Canonical Notch Ligand 3                                     | 0.021   | -1.59 |
| TUBB8B  | Tubulin Beta 8B                                                         | 0.042   | -1.60 |
| NKAIN2  | Sodium/Potassium Transporting Atpase Interacting 2                      | 0.006   | -1.60 |
| ADGRL3  | Adhesion G Protein-Coupled Receptor L3                                  | 0.007   | -1.61 |
| GABRA3  | Gamma-Aminobutyric Acid Type A Receptor Subunit Alpha3                  | 0.010   | -1.61 |
| NRCAM   | Neuronal Cell Adhesion Molecule                                         | < 0.001 | -1.62 |
| LRRC36  | Leucine Rich Repeat Containing 36                                       | 0.001   | -1.63 |
| МАРК4   | Mitogen-Activated Protein Kinase 4                                      | 0.047   | -1.63 |
| CHRNB2  | Cholinergic Receptor Nicotinic Beta 2 Subunit                           | 0.046   | -1.63 |
| RAG1    | Recombination Activating 1                                              | 0.008   | -1.63 |
| LMOD1   | Leiomodin 1                                                             | 0.013   | -1.64 |
| CTTNBP2 | Cortactin Binding Protein 2                                             | 0.002   | -1.64 |
| BHLHE22 | Basic Helix-Loop-Helix Family Member E22                                | 0.014   | -1.65 |
| LPL     | Lipoprotein Lipase                                                      | 0.004   | -1.66 |
| MEIOC   | Meiosis Specific With Coiled-Coil Domain                                | 0.048   | -1.66 |
| HOXA5   | Homeobox A5                                                             | 0.026   | -1.67 |
| TGFBR3L | Transforming Growth Factor Beta Receptor 3 Like                         | 0.018   | -1.67 |
| STXBP6  | Syntaxin Binding Protein 6                                              | 0.013   | -1.67 |

| LCA5         | Lebercilin LCA5                                                          | 0.006   | -1.69 |
|--------------|--------------------------------------------------------------------------|---------|-------|
| RIMS4        | Regulating Synaptic Membrane Exocytosis 4                                | 0.047   | -1.69 |
| VSTM2B       | V-Set And Transmembrane Domain Containing 2B                             | 0.016   | -1.70 |
| FEZF2        | FEZ Family Zinc Finger 2                                                 | 0.002   | -1.70 |
| TMEM132<br>A | Transmembrane Protein 132A                                               | 0.002   | -1.70 |
| FOXH1        | Forkhead Box H1                                                          | 0.017   | -1.71 |
| ASIC2        | Acid Sensing Ion Channel Subunit 2                                       | 0.006   | -1.71 |
| NTRK3        | Neurotrophic Receptor Tyrosine Kinase 3                                  | 0.006   | -1.71 |
| FNDC5        | Fibronectin Type III Domain Containing 5                                 | 0.008   | -1.72 |
| ERBB4        | Erb-B2 Receptor Tyrosine Kinase 4                                        | 0.010   | -1.73 |
| KCNAB1       | Potassium Voltage-Gated Channel Subfamily A Regulatory Beta<br>Subunit 1 | 0.004   | -1.73 |
| GPR176       | G Protein-Coupled Receptor 176                                           | 0.017   | -1.73 |
| TTLL10       | Tubulin Tyrosine Ligase Like 10                                          | 0.001   | -1.74 |
| TJP1         | Tight Junction Protein 1                                                 | 0.002   | -1.77 |
| GLRB         | Glycine Receptor Beta                                                    | 0.012   | -1.78 |
| TACSTD2      | Tumor Associated Calcium Signal Transducer 2                             | 0.005   | -1.79 |
| SYN3         | Synapsin III                                                             | 0.026   | -1.80 |
| SHC3         | SHC Adaptor Protein 3                                                    | 0.009   | -1.80 |
| GABRD        | Gamma-Aminobutyric Acid Type A Receptor Subunit Delta                    | 0.004   | -1.82 |
| DMRTC1       | DMRT Like Family C1                                                      | 0.028   | -1.83 |
| ABCC8        | ATP Binding Cassette Subfamily C Member 8                                | 0.023   | -1.87 |
| FIBCD1       | Fibrinogen C Domain Containing 1                                         | 0.016   | -1.87 |
| GSTA1        | Glutathione S-Transferase Alpha 1                                        | 0.009   | -1.87 |
| MESP2        | Mesoderm Posterior Bhlh Transcription Factor 2                           | 0.016   | -1.88 |
| GLRA2        | Glycine Receptor Alpha 2                                                 | 0.027   | -1.89 |
| PLS3         | Plastin 3                                                                | < 0.001 | -1.90 |
| RALYL        | RALY RNA Binding Protein Like                                            | 0.001   | -1.94 |
| RGS11        | Regulator Of G Protein Signaling 11                                      | 0.047   | -1.96 |

| INSYN2A  | Inhibitory Synaptic Factor 2A                                           | 0.008   | -1.96 |
|----------|-------------------------------------------------------------------------|---------|-------|
| FOLR3    | Folate Receptor Gamma                                                   | < 0.001 | -1.99 |
|          |                                                                         |         |       |
| KCNJ10   | Potassium Inwardly Rectifying Channel Subfamily J Member 10             | 0.001   | -1.99 |
| DNAH11   | Dynein Axonemal Heavy Chain 11                                          | 0.016   | -1.99 |
| HTR2B    | 5-Hydroxytryptamine Receptor 2B                                         | 0.033   | -1.99 |
| CASQ1    | Calsequestrin 1                                                         | 0.029   | -2.08 |
| DNAAF3   | Dynein Axonemal Assembly Factor 3                                       | 0.038   | -2.10 |
| MAGI2    | Membrane Associated Guanylate Kinase, WW And PDZ Domain<br>Containing 2 | 0.003   | -2.18 |
| CFAP61   | Cilia And Flagella Associated Protein 61                                | 0.029   | -2.19 |
| KCNQ2    | Potassium Voltage-Gated Channel Subfamily Q Member 2                    | 0.003   | -2.20 |
| GRIP2    | Glutamate Receptor Interacting Protein 2                                | 0.022   | -2.23 |
| HOXA7    | Homeobox A7                                                             | < 0.001 | -2.26 |
| SLC12A1  | Solute Carrier Family 12 Member 1                                       | 0.014   | -2.28 |
| TP53TG3D | TP53 Target 3D                                                          | 0.029   | -2.29 |
| MEDAG    | Mesenteric Estrogen Dependent Adipogenesis                              | 0.003   | -2.33 |
| VWA3B    | Von Willebrand Factor A Domain Containing 3B                            | 0.028   | -2.35 |
| RPS4Y2   | Ribosomal Protein S4 Y-Linked 2                                         | 0.046   | -2.37 |
| GRM6     | Glutamate Metabotropic Receptor 6                                       | 0.033   | -2.39 |
| NPR1     | Natriuretic Peptide Receptor 1                                          | 0.016   | -2.48 |
| CFAP46   | Cilia And Flagella Associated Protein 46                                | 0.002   | -2.55 |
| TACR3    | Tachykinin Receptor 3                                                   | 0.027   | -2.59 |
| TREML4   | Triggering Receptor Expressed On Myeloid Cells Like 4                   | 0.024   | -2.61 |
| CRHR1    | Corticotropin Releasing Hormone Receptor 1                              | 0.020   | -2.71 |
| NAALAD2  | N-Acetylated Alpha-Linked Acidic Dipeptidase 2                          | 0.004   | -2.77 |
| TFAP2A   | Transcription Factor AP-2 Alpha                                         | 0.016   | -2.80 |
| TNNI3    | Troponin I3, Cardiac Type                                               | 0.002   | -2.97 |
| CBLN2    | Cerebellin 2 Precursor                                                  | < 0.001 | -3.00 |
| CYP26B1  | Cytochrome P450 Family 26 Subfamily B Member 1                          | 0.040   | -3.48 |
| C4BPA    | Complement Component 4 Binding Protein Alpha                            | < 0.001 | -3.65 |

| TBC1D3H | TBC1 Domain Family Member 3H | < 0.001 | -1140.3 |
|---------|------------------------------|---------|---------|
| IBCIDSH |                              | < 0.001 | -1140   |

Table 3E. List of 192 genes differently modulated in HR vs LR from the RNA-Seq analysis (FC  $\pm$ 

|1.2|, p-value < 0.05)

| Gene     | Gene Assignment                              | p-value | Fold-  |
|----------|----------------------------------------------|---------|--------|
| Symbol   | Gene Assignment                              | p-value | Change |
| FBXO10   | F-Box Protein 10                             | 0.007   | 3.62   |
| FBXO16   | F-Box Protein 16                             | 0.002   | 2.62   |
| CNDP1    | Carnosine Dipeptidase 1                      | 0.002   | 2.34   |
| MTRNR2L8 | MT-RNR2 Like 8                               | 0.002   | 2.31   |
| RNF150   | Ring Finger Protein 150                      | 0.015   | 2.28   |
| NECTIN2  | Nectin Cell Adhesion Molecule 2              | < 0.001 | 2.22   |
| ТРО      | Thyroid Peroxidase                           | 0.002   | 2.17   |
| HSPB6    | Heat Shock Protein Family B (Small) Member 6 | 0.029   | 2.13   |
| MANSC4   | MANSC Domain Containing 4                    | 0.005   | 2.13   |
| CHST6    | Carbohydrate Sulfotransferase 6              | 0.007   | 2.09   |
| H3C12    | H3 Clustered Histone 12                      | 0.033   | 2.06   |
| VPREB1   | V-Set Pre-B Cell Surrogate Light Chain 1     | 0.014   | 2.01   |
| TWIST2   | Twist Family Bhlh Transcription Factor 2     | 0.015   | 1.93   |
| USP50    | Ubiquitin Specific Peptidase 50              | 0.026   | 1.91   |
| SRGAP1   | SLIT-ROBO Rho Gtpase Activating Protein 1    | 0.001   | 1.86   |
| LEKR1    | Leucine, Glutamate And Lysine Rich 1         | 0.011   | 1.84   |
| RYR2     | Ryanodine Receptor 2                         | 0.011   | 1.84   |
| RHOD     | Ras Homolog Family Member D                  | 0.010   | 1.83   |
| PLG      | Plasminogen                                  | 0.023   | 1.73   |
| MYOM2    | Myomesin 2                                   | 0.049   | 1.71   |
| COL16A1  | Collagen Type XVI Alpha 1 Chain              | 0.032   | 1.68   |
| DNAI3    | Dynein Axonemal Intermediate Chain 3         | 0.029   | 1.65   |
| SLC2A10  | Solute Carrier Family 2 Member 10            | 0.040   | 1.65   |
| HHIPL1   | HHIP Like 1                                  | 0.046   | 1.62   |
| SLC25A27 | Solute Carrier Family 25 Member 27           | 0.028   | 1.62   |
| FOXD1    | Forkhead Box D1                              | 0.017   | 1.58   |

| CBS      | Cystathionine Beta-Synthase                        | 0.029   | 1.58 |
|----------|----------------------------------------------------|---------|------|
| C19orf84 | Chromosome 19 Open Reading Frame 84                | 0.020   | 1.53 |
| WNK3     | WNK Lysine Deficient Protein Kinase 3              | 0.045   | 1.52 |
| RGPD4    | RANBP2 Like And GRIP Domain Containing 4           | 0.024   | 1.51 |
| PLIN1    | Perilipin 1                                        | 0.019   | 1.50 |
| RNASE1   | Ribonuclease A Family Member 1, Pancreatic         | 0.024   | 1.49 |
| MEX3A    | Mex-3 RNA Binding Family Member A                  | 0.032   | 1.48 |
| NFATC4   | Nuclear Factor Of Activated T Cells 4              | 0.049   | 1.46 |
| SUSD2    | Sushi Domain Containing 2                          | 0.005   | 1.46 |
| OSCP1    | Organic Solute Carrier Partner 1                   | 0.023   | 1.41 |
| IL9R     | Interleukin 9 Receptor                             | 0.028   | 1.38 |
| TMEM262  | Transmembrane Protein 262                          | 0.035   | 1.38 |
| FAM110C  | Family With Sequence Similarity 110 Member C       | 0.017   | 1.36 |
| CABYR    | Calcium Binding Tyrosine Phosphorylation Regulated | 0.041   | 1.36 |
| CHDH     | Choline Dehydrogenase                              | 0.049   | 1.35 |
| ZDHHC11B | Zinc Finger DHHC-Type Containing 11B               | 0.024   | 1.34 |
| SGSM1    | Small G Protein Signaling Modulator 1              | < 0.001 | 1.34 |
| SCN4B    | Sodium Voltage-Gated Channel Beta Subunit 4        | 0.043   | 1.34 |
| GRIN3B   | Glutamate Ionotropic Receptor NMDA Type Subunit 3B | 0.047   | 1.32 |
| OR11G2   | Olfactory Receptor Family 11 Subfamily G Member 2  | 0.027   | 1.31 |
| GAS2     | Growth Arrest Specific 2                           | 0.022   | 1.30 |
| CRHBP    | Corticotropin Releasing Hormone Binding Protein    | 0.036   | 1.30 |
| GLB1L2   | Galactosidase Beta 1 Like 2                        | 0.031   | 1.29 |
| GALNT8   | Polypeptide N-Acetylgalactosaminyltransferase 8    | 0.035   | 1.29 |
| ZNF20    | Zinc Finger Protein 20                             | 0.017   | 1.28 |
| ARHGEF25 | Rho Guanine Nucleotide Exchange Factor 25          | 0.035   | 1.27 |
| ZNF683   | Zinc Finger Protein 683                            | 0.017   | 1.27 |
| RIBC1    | RIB43A Domain With Coiled-Coils 1                  | 0.022   | 1.27 |
| ALPK3    | Alpha Kinase 3                                     | 0.010   | 1.27 |
| NTN5     | Netrin 5                                           | 0.009   | 1.26 |

|          |                                                   | ſ     |       |
|----------|---------------------------------------------------|-------|-------|
| ZDHHC19  | Zinc Finger DHHC-Type Palmitoyltransferase 19     | 0.039 | 1.26  |
| RIPK4    | Receptor Interacting Serine/Threonine Kinase 4    | 0.029 | 1.25  |
| TGM1     | Transglutaminase 1                                | 0.044 | 1.24  |
| NOXRED1  | NADP Dependent Oxidoreductase Domain Containing 1 | 0.025 | 1.22  |
| PRSS36   | Serine Protease 36                                | 0.022 | 1.21  |
| SUV39H2  | SUV39H2 Histone Lysine Methyltransferase          | 0.039 | 1.21  |
| ZNF566   | Zinc Finger Protein 566                           | 0.009 | 1.20  |
| ZNF135   | Zinc Finger Protein 135                           | 0.019 | -1.21 |
| H2BC11   | H2B Clustered Histone 11                          | 0.039 | -1.21 |
| POMC     | Proopiomelanocortin                               | 0.026 | -1.21 |
| ITGAV    | Integrin Subunit Alpha V                          | 0.044 | -1.21 |
| SLC22A23 | Solute Carrier Family 22 Member 23                | 0.006 | -1.22 |
| NPRL3    | NPR3 Like, GATOR1 Complex Subunit                 | 0.030 | -1.22 |
| MRAS     | Muscle RAS Oncogene Homolog                       | 0.021 | -1.23 |
| FILIP1L  | Filamin A Interacting Protein 1 Like              | 0.023 | -1.23 |
| PLEKHN1  | Pleckstrin Homology Domain Containing N1          | 0.034 | -1.23 |
| NEURL1B  | Neuralized E3 Ubiquitin Protein Ligase 1B         | 0.021 | -1.23 |
| SERPINE2 | Serpin Family E Member 2                          | 0.015 | -1.24 |
| SASH1    | SAM And SH3 Domain Containing 1                   | 0.022 | -1.24 |
| SLC6A8   | Solute Carrier Family 6 Member 8                  | 0.050 | -1.24 |
| TXNRD3   | Thioredoxin Reductase 3                           | 0.033 | -1.24 |
| PDGFC    | Platelet Derived Growth Factor C                  | 0.015 | -1.25 |
| UNC13B   | Unc-13 Homolog B                                  | 0.021 | -1.25 |
| GUCY1A1  | Guanylate Cyclase 1 Soluble Subunit Alpha 1       | 0.014 | -1.25 |
| NKD1     | NKD Inhibitor Of WNT Signaling Pathway 1          | 0.036 | -1.26 |
| DIRAS1   | DIRAS Family Gtpase 1                             | 0.043 | -1.26 |
| ZRANB3   | Zinc Finger RANBP2-Type Containing 3              | 0.043 | -1.26 |
| ACY3     | Aminoacylase 3                                    | 0.021 | -1.26 |
| IQCK     | IQ Motif Containing K                             | 0.035 | -1.26 |
| CCDC62   | Coiled-Coil Domain Containing 62                  | 0.025 | -1.26 |

| SMARCA1 | SWI/SNF Related, Matrix Associated, Actin Dependent        | 0.029 | -1.26 |
|---------|------------------------------------------------------------|-------|-------|
|         | Regulator Of Chromatin, Subfamily A, Member 1              |       |       |
| EME1    | Essential Meiotic Structure-Specific Endonuclease 1        | 0.027 | -1.27 |
| LRP5    | LDL Receptor Related Protein 5                             | 0.046 | -1.27 |
| CBX2    | Chromobox 2                                                | 0.032 | -1.27 |
| FBXL16  | F-Box And Leucine Rich Repeat Protein 16                   | 0.021 | -1.27 |
| EBLN2   | Endogenous Bornavirus Like Nucleoprotein 2                 | 0.048 | -1.28 |
| SCNN1D  | Sodium Channel Epithelial 1 Subunit Delta                  | 0.004 | -1.28 |
| STXBP4  | Syntaxin Binding Protein 4                                 | 0.027 | -1.29 |
| NPTX1   | Neuronal Pentraxin 1                                       | 0.027 | -1.29 |
| BCAT1   | Branched Chain Amino Acid Transaminase 1                   | 0.036 | -1.29 |
| PCYT1B  | Phosphate Cytidylyltransferase 1B, Choline                 | 0.026 | -1.30 |
| TDRD9   | Tudor Domain Containing 9                                  | 0.020 | -1.30 |
| RNFT2   | Ring Finger Protein, Transmembrane 2                       | 0.008 | -1.31 |
| DOCK1   | Dedicator Of Cytokinesis 1                                 | 0.021 | -1.31 |
| LOXHD1  | Lipoxygenase Homology PLAT Domains 1                       | 0.035 | -1.31 |
| ANK2    | Ankyrin 2                                                  | 0.044 | -1.32 |
| SCN2A   | Sodium Voltage-Gated Channel Alpha Subunit 2               | 0.037 | -1.34 |
| OR2W3   | Olfactory Receptor Family 2 Subfamily W Member 3           | 0.023 | -1.35 |
| NRCAM   | Neuronal Cell Adhesion Molecule                            | 0.004 | -1.35 |
| SOX7    | SRY-Box Transcription Factor 7                             | 0.030 | -1.36 |
| FGFR4   | Fibroblast Growth Factor Receptor 4                        | 0.012 | -1.36 |
| LRRC36  | Leucine Rich Repeat Containing 36                          | 0.021 | -1.37 |
| APBA1   | Amyloid Beta Precursor Protein Binding Family A Member 1   | 0.009 | -1.37 |
| SLC7A9  | Solute Carrier Family 7 Member 9                           | 0.019 | -1.38 |
| ELAVL4  | ELAV Like RNA Binding Protein 4                            | 0.019 | -1.38 |
| CELF3   | CUGBP Elav-Like Family Member 3                            | 0.038 | -1.38 |
| MYLPF   | Myosin Light Chain, Phosphorylatable, Fast Skeletal Muscle | 0.022 | -1.38 |
| CAV1    | Caveolin 1                                                 | 0.031 | -1.38 |
| ERG     | ETS Transcription Factor ERG                               | 0.044 | -1.38 |

| CC2D2A       | Coiled-Coil And C2 Domain Containing 2A              | 0.015 | -1.39 |
|--------------|------------------------------------------------------|-------|-------|
| PRKG2        | Protein Kinase Cgmp-Dependent 2                      | 0.045 | -1.39 |
| FGF9         | Fibroblast Growth Factor 9                           | 0.039 | -1.39 |
| ARHGAP20     | Rho Gtpase Activating Protein 20                     | 0.039 | -1.39 |
| BNC2         | Basonuclin 2                                         | 0.023 | -1.39 |
| MCF2L2       | MCF.2 Cell Line Derived Transforming Sequence-Like 2 | 0.008 | -1.39 |
| CD1B         | CD1b Molecule                                        | 0.017 | -1.39 |
| GRB14        | Growth Factor Receptor Bound Protein 14              | 0.024 | -1.40 |
| LHFPL6       | LHFPL Tetraspan Subfamily Member 6                   | 0.020 | -1.41 |
| SLC8A2       | Solute Carrier Family 8 Member A2                    | 0.039 | -1.41 |
| TTC28        | Tetratricopeptide Repeat Domain 28                   | 0.005 | -1.42 |
| GRM5         | Glutamate Metabotropic Receptor 5                    | 0.049 | -1.43 |
| SEC14L4      | SEC14 Like Lipid Binding 4                           | 0.022 | -1.43 |
| NOVA1        | NOVA Alternative Splicing Regulator 1                | 0.044 | -1.44 |
| CHRFAM7<br>A | CHRNA7 (Exons 5-10) And FAM7A (Exons A-E) Fusion     | 0.020 | -1.44 |
| ITLN1        | Intelectin 1                                         | 0.011 | -1.45 |
| ACTG2        | Actin Gamma 2, Smooth Muscle                         | 0.018 | -1.45 |
| TTLL10       | Tubulin Tyrosine Ligase Like 10                      | 0.038 | -1.46 |
| CADPS2       | Calcium Dependent Secretion Activator 2              | 0.041 | -1.47 |
| STARD13      | Star Related Lipid Transfer Domain Containing 13     | 0.009 | -1.49 |
| PDE1A        | Phosphodiesterase 1A                                 | 0.038 | -1.49 |
| TLN2         | Talin 2                                              | 0.017 | -1.49 |
| RBPMS2       | RNA Binding Protein, Mrna Processing Factor 2        | 0.034 | -1.51 |
| FJX1         | Four-Jointed Box Kinase 1                            | 0.033 | -1.52 |
| CTTNBP2      | Cortactin Binding Protein 2                          | 0.011 | -1.52 |
| MMP21        | Matrix Metallopeptidase 21                           | 0.037 | -1.53 |
| LY6G6C       | Lymphocyte Antigen 6 Family Member G6C               | 0.041 | -1.53 |
| RAI14        | Retinoic Acid Induced 14                             | 0.030 | -1.54 |
|              |                                                      |       |       |

| TUBB3   | Tubulin Beta 3 Class III                                           | 0.005 | -1.55 |
|---------|--------------------------------------------------------------------|-------|-------|
| AREG    | Amphiregulin                                                       | 0.021 | -1.56 |
| PRL     | Prolactin                                                          | 0.045 | -1.57 |
| NTRK2   | Neurotrophic Receptor Tyrosine Kinase 2                            | 0.001 | -1.58 |
| KRT2    | Keratin 2                                                          | 0.003 | -1.58 |
| CHSY3   | Chondroitin Sulfate Synthase 3                                     | 0.038 | -1.59 |
| C4orf36 | Chromosome 4 Open Reading Frame 36                                 | 0.042 | -1.61 |
| DYNLT5  | Dynein Light Chain Tctex-Type Family Member 5                      | 0.027 | -1.63 |
| DPYSL4  | Dihydropyrimidinase Like 4                                         | 0.010 | -1.63 |
| HOXA5   | Homeobox A5                                                        | 0.020 | -1.66 |
| AK7     | Adenylate Kinase 7                                                 | 0.034 | -1.66 |
| SCHIP1  | Schwannomin Interacting Protein 1                                  | 0.020 | -1.66 |
| RALYL   | RALY RNA Binding Protein Like                                      | 0.019 | -1.67 |
| AFAP1L1 | Actin Filament Associated Protein 1 Like 1                         | 0.002 | -1.69 |
| KCNQ2   | Potassium Voltage-Gated Channel Subfamily Q Member 2               | 0.037 | -1.70 |
| SKIDA1  | SKI/DACH Domain Containing 1                                       | 0.023 | -1.70 |
| GLI3    | GLI Family Zinc Finger 3                                           | 0.020 | -1.77 |
| H3C13   | H3 Clustered Histone 13                                            | 0.042 | -1.77 |
| KCNJ10  | Potassium Inwardly Rectifying Channel Subfamily J Member 10        | 0.011 | -1.81 |
| MEDAG   | Mesenteric Estrogen Dependent Adipogenesis                         | 0.037 | -1.81 |
| LURAP1L | Leucine Rich Adaptor Protein 1 Like                                | 0.009 | -1.83 |
| CCL25   | C-C Motif Chemokine Ligand 25                                      | 0.034 | -1.83 |
| ATRNL1  | Attractin Like 1                                                   | 0.003 | -1.86 |
| ENTPD3  | Ectonucleoside Triphosphate Diphosphohydrolase 3                   | 0.041 | -1.87 |
| ZBED9   | Zinc Finger BED-Type Containing 9                                  | 0.023 | -1.88 |
| SOX11   | SRY-Box Transcription Factor 11                                    | 0.030 | -1.90 |
| MRGPRE  | MAS Related GPR Family Member E                                    | 0.048 | -1.91 |
| AIF1L   | Allograft Inflammatory Factor 1 Like                               | 0.011 | -1.91 |
| HECW1   | HECT, C2 And WW Domain Containing E3 Ubiquitin Protein<br>Ligase 1 | 0.032 | -1.91 |

| DNAH14   | Dynein Axonemal Heavy Chain 14           | 0.041 | -1.94   |
|----------|------------------------------------------|-------|---------|
| MYO18B   | Myosin XVIIIB                            | 0.032 | -1.95   |
| DOK6     | Docking Protein 6                        | 0.017 | -1.96   |
| CLVS1    | Clavesin 1                               | 0.008 | -2.02   |
| MUC16    | Mucin 16, Cell Surface Associated        | 0.016 | -2.04   |
| DGKI     | Diacylglycerol Kinase Iota               | 0.012 | -2.09   |
| GLP1R    | Glucagon Like Peptide 1 Receptor         | 0.005 | -2.14   |
| C8orf34  | Chromosome 8 Open Reading Frame 34       | 0.008 | -2.15   |
| CCDC144A | Coiled-Coil Domain Containing 144A       | 0.008 | -2.15   |
| SPHKAP   | SPHK1 Interactor, AKAP Domain Containing | 0.026 | -2.19   |
| CHRD     | Chordin                                  | 0.019 | -2.33   |
| ARID3C   | AT-Rich Interaction Domain 3C            | 0.015 | -2.36   |
| TFAP2A   | Transcription Factor AP-2 Alpha          | 0.050 | -2.44   |
| PTH1R    | Parathyroid Hormone 1 Receptor           | 0.022 | -2.45   |
| PLEKHS1  | Pleckstrin Homology Domain Containing S1 | 0.002 | -2.52   |
| MMP1     | Matrix Metallopeptidase 1                | 0.004 | -3.13   |
| TBC1D3F  | TBC1 Domain Family Member 3F             | 0.012 | -5.03   |
| TBC1D3H  | TBC1 Domain Family Member 3H             | 0.002 | -80.56  |
| TBC1D3G  | TBC1 Domain Family Member 3G             | 0.002 | -355.26 |

Table 4E. List of 310 genes differently modulated in males MDD vs males HR from the RNA-Seq analysis (FC  $\pm$  |1.2|, p-value < 0.05)

| Gene             | Gene Gene Assignment Symbol                              | p-value | Fold-  |
|------------------|----------------------------------------------------------|---------|--------|
| Symbol           |                                                          | p-value | Change |
| TBC1D3G          | TBC1 Domain Family Member 3G                             | < 0.001 | 4963.1 |
| TBC1D3           | TBC1 Domain Family Member 3                              | 0.023   | 10.86  |
| ADARB2           | Adenosine Deaminase RNA Specific B2 (Inactive)           | 0.003   | 9.15   |
| PTP4A1           | Protein Tyrosine Phosphatase 4A1                         | 0.033   | 7.24   |
| ITGA8            | Integrin Subunit Alpha 8                                 | 0.008   | 3.72   |
| TGIF2-<br>RAB5IF | TGIF2-RAB5IF Readthrough                                 | 0.025   | 3.68   |
| CHURC1-<br>FNTB  | CHURC1-FNTB Readthrough                                  | 0.043   | 3.64   |
| POC1B-<br>GALNT4 | POC1B-GALNT4 Readthrough                                 | 0.033   | 3.53   |
| KLHL41           | Kelch Like Family Member 41                              | 0.010   | 3.44   |
| ADAMTS2          | ADAM Metallopeptidase With Thrombospondin Type 1 Motif 2 | 0.002   | 3.08   |
| POU5F2           | POU Domain Class 5, Transcription Factor 2               | 0.002   | 2.84   |
| DCN              | Decorin                                                  | 0.009   | 2.78   |
| C16orf46         | Chromosome 16 Open Reading Frame 46                      | 0.038   | 2.76   |
| DGKI             | Diacylglycerol Kinase Iota                               | 0.008   | 2.72   |
| MEIKIN           | Meiotic Kinetochore Factor                               | 0.029   | 2.67   |
| PRR15            | Proline Rich 15                                          | 0.027   | 2.59   |
| SLC13A4          | Solute Carrier Family 13 Member 4                        | 0.022   | 2.51   |
| SLC5A11          | Solute Carrier Family 5 Member 11                        | 0.016   | 2.49   |
| PSMB11           | Proteasome Subunit Beta 11                               | 0.023   | 2.43   |
| GLI3             | GLI Family Zinc Finger 3                                 | 0.023   | 2.40   |
| VWDE             | Von Willebrand Factor D And EGF Domains                  | 0.029   | 2.31   |
| GPRC5D           | G Protein-Coupled Receptor Class C Group 5 Member D      | 0.006   | 2.26   |
| РКРЗ             | Plakophilin 3                                            | 0.018   | 2.26   |
| LHFPL5           | LHFPL Tetraspan Subfamily Member 5                       | 0.030   | 2.22   |

| COL1A2       | Collagen Type I Alpha 2 Chain                                | 0.036 | 2.20 |
|--------------|--------------------------------------------------------------|-------|------|
| LRRTM3       | Leucine Rich Repeat Transmembrane Neuronal 3                 | 0.006 | 2.16 |
| GLDC         | Glycine Decarboxylase                                        | 0.002 | 2.11 |
| SDC1         | Syndecan 1                                                   | 0.028 | 2.05 |
| CD177        | CD177 Molecule                                               | 0.029 | 1.99 |
| TERT         | Telomerase Reverse Transcriptase                             | 0.026 | 1.99 |
| ATP2C2       | Atpase Secretory Pathway Ca2+ Transporting 2                 | 0.049 | 1.98 |
| MIXL1        | Mix Paired-Like Homeobox                                     | 0.007 | 1.96 |
| NACAD        | NAC Alpha Domain Containing                                  | 0.024 | 1.95 |
| PADI6        | Peptidyl Arginine Deiminase 6                                | 0.006 | 1.95 |
| SLITRK3      | SLIT And NTRK Like Family Member 3                           | 0.012 | 1.91 |
| C1QC         | Complement C1q C Chain                                       | 0.018 | 1.88 |
| A3GALT2      | Alpha 1,3-Galactosyltransferase 2                            | 0.041 | 1.86 |
| NLGN4Y       | Neuroligin 4 Y-Linked                                        | 0.038 | 1.84 |
| DNAH17       | Dynein Axonemal Heavy Chain 17                               | 0.044 | 1.83 |
| SCHIP1       | Schwannomin Interacting Protein 1                            | 0.042 | 1.82 |
| DRC1         | Dynein Regulatory Complex Subunit 1                          | 0.044 | 1.79 |
| CDC25A       | Cell Division Cycle 25A                                      | 0.007 | 1.79 |
| HEY1         | Hes Related Family Bhlh Transcription Factor With YRPW Motif | 0.019 | 1.79 |
| SKA3         | Spindle And Kinetochore Associated Complex Subunit 3         | 0.004 | 1.78 |
| KCNMA1       | Potassium Calcium-Activated Channel Subfamily M Alpha 1      | 0.020 | 1.77 |
| POLQ         | DNA Polymerase Theta                                         | 0.004 | 1.76 |
| TBC1D8B      | TBC1 Domain Family Member 8B                                 | 0.008 | 1.76 |
| CHRFAM7<br>A | CHRNA7 (Exons 5-10) And FAM7A (Exons A-E) Fusion             | 0.003 | 1.75 |
| KNL1         | Kinetochore Scaffold 1                                       | 0.011 | 1.73 |
| C3orf52      | Chromosome 3 Open Reading Frame 52                           | 0.018 | 1.73 |
| CDC20        | Cell Division Cycle 20                                       | 0.019 | 1.72 |
| BHLHA15      | Basic Helix-Loop-Helix Family Member A15                     | 0.028 | 1.71 |

| ARNTL2       | Aryl Hydrocarbon Receptor Nuclear Translocator Like 2                | 0.005 | 1.71 |
|--------------|----------------------------------------------------------------------|-------|------|
| LSAMP        | Limbic System Associated Membrane Protein                            | 0.039 | 1.70 |
| MZB1         | Marginal Zone B And B1 Cell Specific Protein                         | 0.011 | 1.69 |
| BMP8A        | Bone Morphogenetic Protein 8a                                        | 0.042 | 1.68 |
| PRG4         | Proteoglycan 4                                                       | 0.011 | 1.66 |
| TMEM255<br>A | Transmembrane Protein 255A                                           | 0.035 | 1.66 |
| HTR3B        | 5-Hydroxytryptamine Receptor 3B                                      | 0.041 | 1.64 |
| ERCC6L       | ERCC Excision Repair 6 Like, Spindle Assembly Checkpoint<br>Helicase | 0.032 | 1.64 |
| COL5A3       | Collagen Type V Alpha 3 Chain                                        | 0.043 | 1.63 |
| PHYHD1       | Phytanoyl-Coa Dioxygenase Domain Containing 1                        | 0.006 | 1.63 |
| FAM187A      | Family With Sequence Similarity 187 Member A                         | 0.022 | 1.63 |
| RAP1GAP      | RAP1 Gtpase Activating Protein                                       | 0.028 | 1.62 |
| ASPM         | Assembly Factor For Spindle Microtubules                             | 0.017 | 1.62 |
| KIFC1        | Kinesin Family Member C1                                             | 0.003 | 1.62 |
| TTBK1        | Tau Tubulin Kinase 1                                                 | 0.034 | 1.61 |
| FFAR3        | Free Fatty Acid Receptor 3                                           | 0.001 | 1.61 |
| CENPF        | Centromere Protein F                                                 | 0.042 | 1.60 |
| TXNDC5       | Thioredoxin Domain Containing 5                                      | 0.014 | 1.60 |
| BAMBI        | BMP And Activin Membrane Bound Inhibitor                             | 0.015 | 1.60 |
| POLN         | DNA Polymerase Nu                                                    | 0.013 | 1.60 |
| ESPL1        | Extra Spindle Pole Bodies Like 1, Separase                           | 0.021 | 1.59 |
| SH3PXD2B     | SH3 And PX Domains 2B                                                | 0.008 | 1.58 |
| RRM2         | Ribonucleotide Reductase Regulatory Subunit M2                       | 0.050 | 1.58 |
| CLSPN        | Claspin                                                              | 0.008 | 1.57 |
| FRMD3        | FERM Domain Containing 3                                             | 0.001 | 1.56 |
| ARHGAP23     | Rho Gtpase Activating Protein 23                                     | 0.031 | 1.56 |
| KIF4A        | Kinesin Family Member 4A                                             | 0.030 | 1.55 |
|              |                                                                      |       |      |

| ТК1      | Thymidine Kinase 1                                       | 0.007 | 1.52 |
|----------|----------------------------------------------------------|-------|------|
| KIF18B   | Kinesin Family Member 18B                                | 0.047 | 1.51 |
| EME1     | Essential Meiotic Structure-Specific Endonuclease 1      | 0.025 | 1.51 |
| BUB1     | BUB1 Mitotic Checkpoint Serine/Threonine Kinase          | 0.017 | 1.50 |
| LOXHD1   | Lipoxygenase Homology PLAT Domains 1                     | 0.011 | 1.50 |
| RSPH9    | Radial Spoke Head Component 9                            | 0.039 | 1.49 |
| СОСН     | Cochlin                                                  | 0.009 | 1.47 |
| PKMYT1   | Protein Kinase, Membrane Associated Tyrosine/Threonine 1 | 0.008 | 1.47 |
| SEMA3G   | Semaphorin 3G                                            | 0.021 | 1.47 |
| UNC13B   | Unc-13 Homolog B                                         | 0.004 | 1.45 |
| GTSE1    | G2 And S-Phase Expressed 1                               | 0.009 | 1.45 |
| DERL3    | Derlin 3                                                 | 0.036 | 1.45 |
| RIPOR3   | RIPOR Family Member 3                                    | 0.023 | 1.43 |
| COL4A4   | Collagen Type IV Alpha 4 Chain                           | 0.046 | 1.42 |
| IQCK     | IQ Motif Containing K                                    | 0.036 | 1.41 |
| ARL6     | ADP Ribosylation Factor Like Gtpase 6                    | 0.002 | 1.41 |
| TPX2     | TPX2 Microtubule Nucleation Factor                       | 0.030 | 1.41 |
| RGS16    | Regulator Of G Protein Signaling 16                      | 0.009 | 1.40 |
| KLK1     | Kallikrein 1                                             | 0.043 | 1.39 |
| RECQL4   | Recq Like Helicase 4                                     | 0.015 | 1.39 |
| AURKB    | Aurora Kinase B                                          | 0.004 | 1.39 |
| B9D1     | B9 Domain Containing 1                                   | 0.032 | 1.39 |
| CD38     | CD38 Molecule                                            | 0.033 | 1.37 |
| ANGPTL6  | Angiopoietin Like 6                                      | 0.015 | 1.37 |
| DAAM1    | Dishevelled Associated Activator Of Morphogenesis 1      | 0.001 | 1.37 |
| KIF24    | Kinesin Family Member 24                                 | 0.018 | 1.36 |
| BMP6     | Bone Morphogenetic Protein 6                             | 0.001 | 1.36 |
| SERPINE1 | Serpin Family E Member 1                                 | 0.044 | 1.36 |
| H4C15    | H4 Clustered Histone 15                                  | 0.040 | 1.35 |
| VWA7     | Von Willebrand Factor A Domain Containing 7              | 0.015 | 1.35 |

| GPT2     | GlutamicPyruvic Transaminase 2                      | 0.006 | 1.34 |
|----------|-----------------------------------------------------|-------|------|
| NUGGC    | Nuclear Gtpase, Germinal Center Associated          | 0.007 | 1.34 |
| BCAR3    | BCAR3 Adaptor Protein, NSP Family Member            | 0.018 | 1.33 |
| PLK1     | Polo Like Kinase 1                                  | 0.011 | 1.33 |
| ELL2     | Elongation Factor For RNA Polymerase II 2           | 0.007 | 1.33 |
| ORC1     | Origin Recognition Complex Subunit 1                | 0.047 | 1.32 |
| ALG10    | ALG10 Alpha-1,2-Glucosyltransferase                 | 0.005 | 1.32 |
| ZNF107   | Zinc Finger Protein 107                             | 0.029 | 1.31 |
| ARRDC4   | Arrestin Domain Containing 4                        | 0.013 | 1.31 |
| QRICH2   | Glutamine Rich 2                                    | 0.011 | 1.30 |
| ADM      | Adrenomedullin                                      | 0.049 | 1.30 |
| ZDHHC21  | Zinc Finger DHHC-Type Palmitoyltransferase 21       | 0.016 | 1.30 |
| KIF11    | Kinesin Family Member 11                            | 0.038 | 1.29 |
| PDGFB    | Platelet Derived Growth Factor Subunit B            | 0.008 | 1.29 |
| MYO1D    | Myosin ID                                           | 0.024 | 1.29 |
| MFSD14B  | Major Facilitator Superfamily Domain Containing 14B | 0.002 | 1.29 |
| CHPF     | Chondroitin Polymerizing Factor                     | 0.019 | 1.28 |
| UHRF1    | Ubiquitin Like With PHD And Ring Finger Domains 1   | 0.048 | 1.28 |
| ARL13B   | ADP Ribosylation Factor Like Gtpase 13B             | 0.011 | 1.26 |
| SLC44A1  | Solute Carrier Family 44 Member 1                   | 0.002 | 1.26 |
| EHD3     | EH Domain Containing 3                              | 0.001 | 1.26 |
| EPHB1    | EPH Receptor B1                                     | 0.039 | 1.26 |
| TENT5C   | Terminal Nucleotidyltransferase 5C                  | 0.047 | 1.25 |
| KRTCAP3  | Keratinocyte Associated Protein 3                   | 0.050 | 1.25 |
| MAP3K7CL | MAP3K7 C-Terminal Like                              | 0.028 | 1.24 |
| MISP3    | MISP Family Member 3                                | 0.011 | 1.24 |
| SLC1A4   | Solute Carrier Family 1 Member 4                    | 0.043 | 1.24 |
| P2RX1    | Purinergic Receptor P2X 1                           | 0.040 | 1.23 |
| UAP1     | UDP-N-Acetylglucosamine Pyrophosphorylase 1         | 0.028 | 1.23 |
| FBXO22   | F-Box Protein 22                                    | 0.016 | 1.22 |

| FKBP11        | FKBP Prolyl Isomerase 11                                             | 0.022 | 1.22  |
|---------------|----------------------------------------------------------------------|-------|-------|
| LRFN3         | Leucine Rich Repeat And Fibronectin Type III Domain<br>Containing 3  | 0.045 | 1.22  |
| ASNS          | Asparagine Synthetase (Glutamine-Hydrolyzing)                        | 0.035 | 1.21  |
| SMIM13        | Small Integral Membrane Protein 13                                   | 0.015 | 1.21  |
| MMD           | Monocyte To Macrophage Differentiation Associated                    | 0.024 | 1.21  |
| FHIP2A        | FHF Complex Subunit HOOK Interacting Protein 2A                      | 0.014 | 1.21  |
| NCOA7         | Nuclear Receptor Coactivator 7                                       | 0.044 | 1.21  |
| NOTCH2NL<br>A | Notch 2 N-Terminal Like A                                            | 0.030 | 1.21  |
| ABCB6         | ATP Binding Cassette Subfamily B Member 6 (Langereis Blood<br>Group) | 0.049 | 1.20  |
| SLC33A1       | Solute Carrier Family 33 Member 1                                    | 0.001 | 1.20  |
| PI4K2B        | Phosphatidylinositol 4-Kinase Type 2 Beta                            | 0.027 | 1.20  |
| SH3PXD2A      | SH3 And PX Domains 2A                                                | 0.036 | -1.20 |
| ΝΑΑΑ          | N-Acylethanolamine Acid Amidase                                      | 0.038 | -1.20 |
| EPHX2         | Epoxide Hydrolase 2                                                  | 0.037 | -1.21 |
| HEATR5A       | HEAT Repeat Containing 5A                                            | 0.038 | -1.21 |
| CDC42BPB      | CDC42 Binding Protein Kinase Beta                                    | 0.044 | -1.21 |
| WDR27         | WD Repeat Domain 27                                                  | 0.032 | -1.21 |
| TSSK6         | Testis Specific Serine Kinase 6                                      | 0.024 | -1.21 |
| TRIP10        | Thyroid Hormone Receptor Interactor 10                               | 0.045 | -1.21 |
| ATPSCKMT      | ATP Synthase C Subunit Lysine N-Methyltransferase                    | 0.025 | -1.21 |
| POPDC2        | Popeye Domain Containing 2                                           | 0.029 | -1.22 |
| ICA1          | Islet Cell Autoantigen 1                                             | 0.030 | -1.22 |
| AOPEP         | Aminopeptidase O (Putative)                                          | 0.009 | -1.23 |
| TOGARAM<br>1  | TOG Array Regulator Of Axonemal Microtubules 1                       | 0.037 | -1.23 |
| DNAJC16       | Dnaj Heat Shock Protein Family (Hsp40) Member C16                    | 0.013 | -1.23 |
| LILRB1        | Leukocyte Immunoglobulin Like Receptor B1                            | 0.017 | -1.23 |
| CRTAM         | Cytotoxic And Regulatory T Cell Molecule                             | 0.021 | -1.24 |

| CSPP1    | Centrosome And Spindle Pole Associated Protein 1         | < 0.001 | -1.24 |
|----------|----------------------------------------------------------|---------|-------|
| GEMIN2   | Gem Nuclear Organelle Associated Protein 2               | 0.049   | -1.24 |
| TMEM256  | Transmembrane Protein 256                                | 0.035   | -1.24 |
| RPS28    | Ribosomal Protein S28                                    | 0.031   | -1.25 |
| ITM2A    | Integral Membrane Protein 2A                             | 0.035   | -1.25 |
| LIN7B    | Lin-7 Homolog B, Crumbs Cell Polarity Complex Component  | 0.021   | -1.26 |
| ZNF528   | Zinc Finger Protein 528                                  | 0.004   | -1.26 |
| FER      | FER Tyrosine Kinase                                      | 0.023   | -1.26 |
| PASK     | PAS Domain Containing Serine/Threonine Kinase            | 0.018   | -1.27 |
| HDGFL3   | HDGF Like 3                                              | 0.042   | -1.27 |
| ТРРРЗ    | Tubulin Polymerization Promoting Protein Family Member 3 | 0.026   | -1.27 |
| PLXDC1   | Plexin Domain Containing 1                               | 0.041   | -1.27 |
| ADAM22   | ADAM Metallopeptidase Domain 22                          | 0.023   | -1.28 |
| PPP1R13L | Protein Phosphatase 1 Regulatory Subunit 13 Like         | 0.019   | -1.28 |
| IGSF9B   | Immunoglobulin Superfamily Member 9B                     | 0.036   | -1.28 |
| GTPBP10  | GTP Binding Protein 10                                   | 0.027   | -1.28 |
| ATG9B    | Autophagy Related 9B                                     | 0.010   | -1.28 |
| TRIM73   | Tripartite Motif Containing 73                           | 0.029   | -1.29 |
| UST      | Uronyl 2-Sulfotransferase                                | 0.007   | -1.29 |
| MICALL2  | MICAL Like 2                                             | 0.011   | -1.30 |
| RPS15A   | Ribosomal Protein S15a                                   | 0.034   | -1.30 |
| ADGRA3   | Adhesion G Protein-Coupled Receptor A3                   | 0.025   | -1.30 |
| CFAP44   | Cilia And Flagella Associated Protein 44                 | 0.019   | -1.31 |
| PSPH     | Phosphoserine Phosphatase                                | 0.017   | -1.31 |
| AMOTL1   | Angiomotin Like 1                                        | 0.016   | -1.32 |
| SEZ6L    | Seizure Related 6 Homolog Like                           | 0.027   | -1.32 |
| FAM20C   | FAM20C Golgi Associated Secretory Pathway Kinase         | 0.026   | -1.32 |
| NAP1L3   | Nucleosome Assembly Protein 1 Like 3                     | 0.007   | -1.33 |
| RAB3IP   | RAB3A Interacting Protein                                | 0.003   | -1.33 |
| ZC3H12B  | Zinc Finger CCCH-Type Containing 12B                     | 0.027   | -1.33 |

| NT5C3B        | 5'-Nucleotidase, Cytosolic IIIB                                     | 0.004 | -1.34 |
|---------------|---------------------------------------------------------------------|-------|-------|
| BTBD19        | BTB Domain Containing 19                                            | 0.026 | -1.34 |
| ACOT13        | Acyl-Coa Thioesterase 13                                            | 0.003 | -1.35 |
| ADHFE1        | Alcohol Dehydrogenase Iron Containing 1                             | 0.002 | -1.35 |
| NIPSNAP3<br>B | Nipsnap Homolog 3B                                                  | 0.020 | -1.36 |
| PPM1J         | Protein Phosphatase, Mg2+/Mn2+ Dependent 1J                         | 0.022 | -1.36 |
| CUX2          | Cut Like Homeobox 2                                                 | 0.010 | -1.37 |
| ATP1A3        | Atpase Na+/K+ Transporting Subunit Alpha 3                          | 0.025 | -1.37 |
| NPIPB2        | Nuclear Pore Complex Interacting Protein Family Member B2           | 0.021 | -1.37 |
| PTPRN         | Protein Tyrosine Phosphatase Receptor Type N                        | 0.044 | -1.38 |
| ARHGEF25      | Rho Guanine Nucleotide Exchange Factor 25                           | 0.030 | -1.39 |
| SUSD4         | Sushi Domain Containing 4                                           | 0.012 | -1.39 |
| ADGRD1        | Adhesion G Protein-Coupled Receptor D1                              | 0.031 | -1.39 |
| NPIPB13       | Nuclear Pore Complex Interacting Protein Family, Member B13         | 0.029 | -1.39 |
| ZNF177        | Zinc Finger Protein 177                                             | 0.046 | -1.39 |
| SERF1A        | Small EDRK-Rich Factor 1A                                           | 0.014 | -1.39 |
| KANK2         | KN Motif And Ankyrin Repeat Domains 2                               | 0.043 | -1.39 |
| C16orf87      | Chromosome 16 Open Reading Frame 87                                 | 0.014 | -1.40 |
| EPB41L1       | Erythrocyte Membrane Protein Band 4.1 Like 1                        | 0.047 | -1.40 |
| CERCAM        | Cerebral Endothelial Cell Adhesion Molecule                         | 0.016 | -1.41 |
| KCNE5         | Potassium Voltage-Gated Channel Subfamily E Regulatory<br>Subunit 5 | 0.021 | -1.41 |
| GAS1          | Growth Arrest Specific 1                                            | 0.045 | -1.42 |
| PLLP          | Plasmolipin                                                         | 0.015 | -1.43 |
| ARL17A        | ADP Ribosylation Factor Like Gtpase 17A                             | 0.014 | -1.43 |
| ULK4          | Unc-51 Like Kinase 4                                                | 0.016 | -1.43 |
| NRIP3         | Nuclear Receptor Interacting Protein 3                              | 0.009 | -1.43 |
| ANKUB1        | Ankyrin Repeat And Ubiquitin Domain Containing 1                    | 0.047 | -1.43 |
| LZTS1         | Leucine Zipper Tumor Suppressor 1                                   | 0.038 | -1.44 |

| NTN5     | Netrin 5                                                | 0.026 | -1.44 |
|----------|---------------------------------------------------------|-------|-------|
| UPK3B    | Uroplakin 3B                                            | 0.045 | -1.44 |
| DCST2    | DC-STAMP Domain Containing 2                            | 0.035 | -1.46 |
| TMEM182  | Transmembrane Protein 182                               | 0.012 | -1.46 |
| ZP3      | Zona Pellucida Glycoprotein 3                           | 0.012 | -1.47 |
| PLA2G2D  | Phospholipase A2 Group IID                              | 0.037 | -1.48 |
| RYR1     | Ryanodine Receptor 1                                    | 0.019 | -1.48 |
| PCDHGA6  | Protocadherin Gamma Subfamily A, 6                      | 0.030 | -1.49 |
| PGLYRP2  | Peptidoglycan Recognition Protein 2                     | 0.038 | -1.51 |
| CD34     | CD34 Molecule                                           | 0.017 | -1.52 |
| SFTPD    | Surfactant Protein D                                    | 0.009 | -1.56 |
| ZNF391   | Zinc Finger Protein 391                                 | 0.003 | -1.56 |
| SHD      | Src Homology 2 Domain Containing Transforming Protein D | 0.032 | -1.57 |
| RHCE     | Rh Blood Group Ccee Antigens                            | 0.029 | -1.59 |
| PDZD2    | PDZ Domain Containing 2                                 | 0.043 | -1.59 |
| SPTSSB   | Serine Palmitoyltransferase Small Subunit B             | 0.020 | -1.60 |
| GARNL3   | Gtpase Activating Rap/Rangap Domain Like 3              | 0.013 | -1.60 |
| ZDHHC11B | Zinc Finger DHHC-Type Containing 11B                    | 0.009 | -1.61 |
| PRR36    | Proline Rich 36                                         | 0.037 | -1.61 |
| TRNP1    | TMF1 Regulated Nuclear Protein 1                        | 0.004 | -1.62 |
| MYO1B    | Myosin IB                                               | 0.009 | -1.63 |
| CEMP1    | Cementum Protein 1                                      | 0.028 | -1.63 |
| MXRA8    | Matrix Remodeling Associated 8                          | 0.009 | -1.64 |
| HACD1    | 3-Hydroxyacyl-Coa Dehydratase 1                         | 0.008 | -1.66 |
| PFDN4    | Prefoldin Subunit 4                                     | 0.009 | -1.67 |
| ALDH7A1  | Aldehyde Dehydrogenase 7 Family Member A1               | 0.021 | -1.68 |
| CCDC171  | Coiled-Coil Domain Containing 171                       | 0.043 | -1.69 |
| KCNK1    | Potassium Two Pore Domain Channel Subfamily K Member 1  | 0.049 | -1.70 |
| PLS3     | Plastin 3                                               | 0.010 | -1.71 |
| TLCD1    | TLC Domain Containing 1                                 | 0.015 | -1.72 |

| ASIC2    | Acid Sensing Ion Channel Subunit 2                                      | 0.042   | -1.72 |
|----------|-------------------------------------------------------------------------|---------|-------|
| COLEC12  | Collectin Subfamily Member 12                                           | 0.009   | -1.72 |
| ABCA6    | ATP Binding Cassette Subfamily A Member 6                               | 0.018   | -1.73 |
| CDHR5    | Cadherin Related Family Member 5                                        | 0.025   | -1.76 |
| GALNT9   | Polypeptide N-Acetylgalactosaminyltransferase 9                         | 0.027   | -1.77 |
| TNS2     | Tensin 2                                                                | 0.009   | -1.77 |
| PLIN1    | Perilipin 1                                                             | 0.025   | -1.78 |
| MAGI2    | Membrane Associated Guanylate Kinase, WW And PDZ Domain<br>Containing 2 | 0.024   | -1.79 |
| KIAA1549 | Kiaa1549                                                                | 0.029   | -1.80 |
| MATN1    | Matrilin 1                                                              | 0.036   | -1.83 |
| ROBO1    | Roundabout Guidance Receptor 1                                          | 0.001   | -1.85 |
| LRP6     | LDL Receptor Related Protein 6                                          | < 0.001 | -1.86 |
| ANKRD18A | Ankyrin Repeat Domain 18A                                               | 0.043   | -1.87 |
| FOLR3    | Folate Receptor Gamma                                                   | 0.013   | -1.87 |
| NFILZ    | NFIL3 Like Basic Leucine Zipper                                         | 0.009   | -1.87 |
| SFRP5    | Secreted Frizzled Related Protein 5                                     | 0.009   | -1.90 |
| STXBP6   | Syntaxin Binding Protein 6                                              | 0.044   | -1.92 |
| NKAIN2   | Sodium/Potassium Transporting Atpase Interacting 2                      | 0.023   | -1.96 |
| NPC1L1   | NPC1 Like Intracellular Cholesterol Transporter 1                       | 0.045   | -1.96 |
| PLGLB2   | Plasminogen Like B2                                                     | 0.001   | -1.97 |
| BCL2L14  | BCL2 Like 14                                                            | 0.021   | -1.99 |
| SHC3     | SHC Adaptor Protein 3                                                   | 0.044   | -1.99 |
| SLC7A3   | Solute Carrier Family 7 Member 3                                        | 0.027   | -1.99 |
| NECAB1   | N-Terminal EF-Hand Calcium Binding Protein 1                            | 0.030   | -1.99 |
| ZNF704   | Zinc Finger Protein 704                                                 | 0.042   | -2.01 |
| DRC3     | Dynein Regulatory Complex Subunit 3                                     | 0.013   | -2.05 |
| SIGLEC11 | Sialic Acid Binding Ig Like Lectin 11                                   | 0.005   | -2.05 |
| SLC6A20  | Solute Carrier Family 6 Member 20                                       | 0.035   | -2.07 |
| TAC3     | Tachykinin Precursor 3                                                  | 0.035   | -2.12 |

| HOXA7   | Homeobox A7                                                         | 0.019   | -2.19   |
|---------|---------------------------------------------------------------------|---------|---------|
| PLG     | Plasminogen                                                         | 0.019   | -2.19   |
| CNNM1   | Cyclin And CBS Domain Divalent Metal Cation Transport<br>Mediator 1 | 0.003   | -2.23   |
| BICC1   | Bicc Family RNA Binding Protein 1                                   | 0.008   | -2.25   |
| LPL     | Lipoprotein Lipase                                                  | < 0.001 | -2.39   |
| DNAH2   | Dynein Axonemal Heavy Chain 2                                       | 0.035   | -2.41   |
| SUMO4   | Small Ubiquitin Like Modifier 4                                     | 0.010   | -2.43   |
| CEMIP   | Cell Migration Inducing Hyaluronidase 1                             | 0.032   | -2.44   |
| VANGL2  | VANGL Planar Cell Polarity Protein 2                                | 0.007   | -2.47   |
| IGSF11  | Immunoglobulin Superfamily Member 11                                | 0.001   | -2.58   |
| GSTM5   | Glutathione S-Transferase Mu 5                                      | 0.002   | -2.60   |
| GSTT2B  | Glutathione S-Transferase Theta 2B                                  | 0.048   | -2.66   |
| LEKR1   | Leucine, Glutamate And Lysine Rich 1                                | 0.010   | -2.66   |
| CBLN2   | Cerebellin 2 Precursor                                              | 0.008   | -2.76   |
| DNAH11  | Dynein Axonemal Heavy Chain 11                                      | 0.021   | -2.89   |
| HBZ     | Hemoglobin Subunit Zeta                                             | 0.002   | -3.20   |
| CHST6   | Carbohydrate Sulfotransferase 6                                     | 0.009   | -3.22   |
| C4BPA   | Complement Component 4 Binding Protein Alpha                        | 0.001   | -3.44   |
| ZSCAN23 | Zinc Finger And SCAN Domain Containing 23                           | 0.003   | -3.83   |
| SYPL2   | Synaptophysin Like 2                                                | 0.002   | -3.90   |
| PNMA8B  | PNMA Family Member 8B                                               | < 0.001 | -3.94   |
| POU2F3  | POU Class 2 Homeobox 3                                              | 0.004   | -4.04   |
| OR7D2   | Olfactory Receptor Family 7 Subfamily D Member 2                    | 0.020   | -4.11   |
| PNMA8A  | PNMA Family Member 8A                                               | 0.004   | -11.80  |
| CYP26B1 | Cytochrome P450 Family 26 Subfamily B Member 1                      | 0.001   | -16.46  |
| TBC1D3H | TBC1 Domain Family Member 3H                                        | < 0.001 | -2507.3 |

Table 5E. List of 377 genes differently modulated in males MDD vs males LR from the RNA-Seq analysis (FC  $\pm$  |1.2|, p-value < 0.05).

| Gene     | Gene Assignment                                             | p-value | Fold-  |
|----------|-------------------------------------------------------------|---------|--------|
| Symbol   |                                                             | p-value | Change |
| DEFA1    | Defensin Alpha 1                                            | < 0.001 | 15.06  |
| ADARB2   | Adenosine Deaminase RNA Specific B2 (Inactive)              | 0.001   | 11.41  |
| PRR15    | Proline Rich 15                                             | < 0.001 | 5.92   |
| AMPD1    | Adenosine Monophosphate Deaminase 1                         | 0.014   | 3.76   |
| SRGAP1   | SLIT-ROBO Rho Gtpase Activating Protein 1                   | < 0.001 | 3.69   |
| TTC23L   | Tetratricopeptide Repeat Domain 23 Like                     | 0.037   | 3.66   |
| ITGA8    | Integrin Subunit Alpha 8                                    | 0.011   | 3.65   |
| DCN      | Decorin                                                     | 0.007   | 3.44   |
| CCDC68   | Coiled-Coil Domain Containing 68                            | 0.021   | 3.31   |
| SHISA3   | Shisa Family Member 3                                       | 0.019   | 3.21   |
| IGF1     | Insulin Like Growth Factor 1                                | 0.013   | 3.14   |
| ESRRB    | Estrogen Related Receptor Beta                              | 0.018   | 3.10   |
| ZYG11A   | Zyg-11 Family Member A, Cell Cycle Regulator                | 0.016   | 3.06   |
| OLFM4    | Olfactomedin 4                                              | < 0.001 | 3.03   |
| RGS13    | Regulator Of G Protein Signaling 13                         | 0.014   | 2.98   |
| FZD7     | Frizzled Class Receptor 7                                   | < 0.001 | 2.86   |
| EYA2     | EYA Transcriptional Coactivator And Phosphatase 2           | 0.003   | 2.77   |
| SDC1     | Syndecan 1                                                  | 0.003   | 2.77   |
| SLC44A5  | Solute Carrier Family 44 Member 5                           | 0.037   | 2.72   |
| NLGN4Y   | Neuroligin 4 Y-Linked                                       | 0.002   | 2.72   |
| PLAAT2   | Phospholipase A And Acyltransferase 2                       | 0.005   | 2.70   |
| C9orf152 | Chromosome 9 Open Reading Frame 152                         | 0.047   | 2.67   |
| CPS1     | Carbamoyl-Phosphate Synthase 1                              | 0.003   | 2.66   |
| SCUBE2   | Signal Peptide, CUB Domain And EGF Like Domain Containing 2 | 0.004   | 2.66   |
| ZNF474   | Zinc Finger Protein 474                                     | 0.041   | 2.58   |
| SH2D5    | SH2 Domain Containing 5                                     | 0.038   | 2.56   |

| MEIS3    | Meis Homeobox 3                                                   | 0.032   | 2.53 |
|----------|-------------------------------------------------------------------|---------|------|
| ТР63     | Tumor Protein P63                                                 | < 0.001 | 2.51 |
| RHOD     | Ras Homolog Family Member D                                       | 0.012   | 2.47 |
| GPRC5D   | G Protein-Coupled Receptor Class C Group 5 Member D               | 0.007   | 2.45 |
| MET      | MET Proto-Oncogene, Receptor Tyrosine Kinase                      | 0.047   | 2.41 |
| BMP8A    | Bone Morphogenetic Protein 8a                                     | 0.002   | 2.38 |
| PRSS8    | Serine Protease 8                                                 | 0.021   | 2.28 |
| FAM149A  | Family With Sequence Similarity 149 Member A                      | 0.028   | 2.26 |
| PPARG    | Peroxisome Proliferator Activated Receptor Gamma                  | 0.009   | 2.19 |
| BHLHA15  | Basic Helix-Loop-Helix Family Member A15                          | 0.004   | 2.19 |
| GLDC     | Glycine Decarboxylase                                             | 0.004   | 2.19 |
| VEGFC    | Vascular Endothelial Growth Factor C                              | 0.005   | 2.15 |
| MIXL1    | Mix Paired-Like Homeobox                                          | 0.009   | 2.13 |
| HTRA3    | Htra Serine Peptidase 3                                           | 0.011   | 2.13 |
| LTF      | Lactotransferrin                                                  | 0.005   | 2.09 |
| DEPDC1   | DEP Domain Containing 1                                           | 0.014   | 2.07 |
| DNAH17   | Dynein Axonemal Heavy Chain 17                                    | 0.013   | 2.07 |
| TSPO2    | Translocator Protein 2                                            | 0.009   | 2.05 |
| MTUS2    | Microtubule Associated Scaffold Protein 2                         | 0.042   | 2.04 |
| SPATA1   | Spermatogenesis Associated 1                                      | 0.005   | 2.01 |
| JCHAIN   | Joining Chain Of Multimeric Iga And Igm                           | 0.010   | 2.00 |
| TERT     | Telomerase Reverse Transcriptase                                  | 0.018   | 1.99 |
| TROAP    | Trophinin Associated Protein                                      | < 0.001 | 1.99 |
| СОСН     | Cochlin                                                           | < 0.001 | 1.98 |
| GAREM1   | GRB2 Associated Regulator Of MAPK1 Subtype 1                      | 0.033   | 1.98 |
| SDS      | Serine Dehydratase                                                | 0.003   | 1.95 |
| APOBEC3B | Apolipoprotein B Mrna Editing Enzyme Catalytic Subunit 3B         | 0.019   | 1.94 |
| DEFA4    | Defensin Alpha 4                                                  | 0.044   | 1.94 |
| ABCG2    | ATP Binding Cassette Subfamily G Member 2 (Junior Blood<br>Group) | 0.003   | 1.92 |

| MZB1     | Marginal Zone B And B1 Cell Specific Protein               | 0.004 | 1.91 |
|----------|------------------------------------------------------------|-------|------|
| NECTIN2  | Nectin Cell Adhesion Molecule 2                            | 0.016 | 1.90 |
| PAQR5    | Progestin And Adipoq Receptor Family Member 5              | 0.017 | 1.90 |
| VAT1L    | Vesicle Amine Transport 1 Like                             | 0.046 | 1.89 |
| CEACAM6  | CEA Cell Adhesion Molecule 6                               | 0.018 | 1.89 |
| TXNDC5   | Thioredoxin Domain Containing 5                            | 0.003 | 1.89 |
| AP3B2    | Adaptor Related Protein Complex 3 Subunit Beta 2           | 0.033 | 1.89 |
| ZBED6    | Zinc Finger BED-Type Containing 6                          | 0.019 | 1.88 |
| CRISP3   | Cysteine Rich Secretory Protein 3                          | 0.001 | 1.88 |
| KCNJ3    | Potassium Inwardly Rectifying Channel Subfamily J Member 3 | 0.037 | 1.88 |
| MMP8     | Matrix Metallopeptidase 8                                  | 0.028 | 1.87 |
| KCNN3    | Potassium Calcium-Activated Channel Subfamily N Member 3   | 0.034 | 1.86 |
| LOC11226 | Uncharacterized LOC112267968                               | 0.037 | 1.86 |
| 7968     |                                                            |       |      |
| TNFRSF17 | TNF Receptor Superfamily Member 17                         | 0.024 | 1.85 |
| ILDR2    | Immunoglobulin Like Domain Containing Receptor 2           | 0.038 | 1.84 |
| E2F8     | E2F Transcription Factor 8                                 | 0.017 | 1.83 |
| PPARGC1A | PPARG Coactivator 1 Alpha                                  | 0.006 | 1.82 |
| LIPH     | Lipase H                                                   | 0.026 | 1.81 |
| CHAD     | Chondroadherin                                             | 0.001 | 1.80 |
| CDC25A   | Cell Division Cycle 25A                                    | 0.017 | 1.80 |
| ALG14    | ALG14 UDP-N-Acetylglucosaminyltransferase Subunit          | 0.015 | 1.79 |
| TP73     | Tumor Protein P73                                          | 0.013 | 1.79 |
| E2F7     | E2F Transcription Factor 7                                 | 0.019 | 1.79 |
| IGLL5    | Immunoglobulin Lambda Like Polypeptide 5                   | 0.020 | 1.78 |
| ZNF521   | Zinc Finger Protein 521                                    | 0.039 | 1.77 |
| CEACAM8  | CEA Cell Adhesion Molecule 8                               | 0.045 | 1.76 |
| CRHBP    | Corticotropin Releasing Hormone Binding Protein            | 0.003 | 1.76 |
| SLC28A3  | Solute Carrier Family 28 Member 3                          | 0.027 | 1.75 |
| ELANE    | Elastase, Neutrophil Expressed                             | 0.022 | 1.75 |

| RASSF6 | Ras Association Domain Family Member 6                           | 0.008 | 1.74 |
|--------|------------------------------------------------------------------|-------|------|
| ADGRG6 | Adhesion G Protein-Coupled Receptor G6                           | 0.039 | 1.74 |
| HPDL   | 4-Hydroxyphenylpyruvate Dioxygenase Like                         | 0.006 | 1.72 |
| DTL    | Denticleless E3 Ubiquitin Protein Ligase Homolog                 | 0.013 | 1.71 |
| KIF4A  | Kinesin Family Member 4A                                         | 0.020 | 1.71 |
| POLN   | DNA Polymerase Nu                                                | 0.006 | 1.70 |
| DZIP1L | DAZ Interacting Zinc Finger Protein 1 Like                       | 0.032 | 1.69 |
| RNASE2 | Ribonuclease A Family Member 2                                   | 0.027 | 1.69 |
| CDC20  | Cell Division Cycle 20                                           | 0.019 | 1.69 |
| PRUNE2 | Prune Homolog 2 With BCH Domain                                  | 0.045 | 1.68 |
| PLIN1  | Perilipin 1                                                      | 0.023 | 1.68 |
| ESPL1  | Extra Spindle Pole Bodies Like 1, Separase                       | 0.009 | 1.67 |
| BUB1B  | BUB1 Mitotic Checkpoint Serine/Threonine Kinase B                | 0.008 | 1.67 |
| KIF26B | Kinesin Family Member 26B                                        | 0.020 | 1.66 |
| SSC4D  | Scavenger Receptor Cysteine Rich Family Member With 4<br>Domains | 0.044 | 1.66 |
| CAV2   | Caveolin 2                                                       | 0.020 | 1.65 |
| RNF43  | Ring Finger Protein 43                                           | 0.026 | 1.64 |
| TLDC2  | TBC/Lysm-Associated Domain Containing 2                          | 0.047 | 1.64 |
| CD80   | CD80 Molecule                                                    | 0.015 | 1.64 |
| DERL3  | Derlin 3                                                         | 0.010 | 1.64 |
| KNL1   | Kinetochore Scaffold 1                                           | 0.032 | 1.63 |
| SAPCD1 | Suppressor APC Domain Containing 1                               | 0.026 | 1.63 |
| PIF1   | PIF1 5'-To-3' DNA Helicase                                       | 0.002 | 1.63 |
| LGALS4 | Galectin 4                                                       | 0.030 | 1.62 |
| NUAK1  | NUAK Family Kinase 1                                             | 0.016 | 1.61 |
| HASPIN | Histone H3 Associated Protein Kinase                             | 0.005 | 1.61 |
| CKAP2L | Cytoskeleton Associated Protein 2 Like                           | 0.044 | 1.60 |
| TBC1D3 | TBC1 Domain Family Member 3                                      | 0.035 | 1.59 |
| LCN2   | Lipocalin 2                                                      | 0.045 | 1.59 |

| CDC6     | Cell Division Cycle 6                                  | 0.025   | 1.59 |
|----------|--------------------------------------------------------|---------|------|
| CDK1     | Cyclin Dependent Kinase 1                              | 0.039   | 1.58 |
| BMP8B    | Bone Morphogenetic Protein 8b                          | 0.005   | 1.58 |
| SMIM10   | Small Integral Membrane Protein 10                     | 0.046   | 1.57 |
| FSCN2    | Fascin Actin-Bundling Protein 2, Retinal               | 0.009   | 1.57 |
| ABCA13   | ATP Binding Cassette Subfamily A Member 13             | 0.045   | 1.57 |
| KIF24    | Kinesin Family Member 24                               | 0.001   | 1.56 |
| CEP128   | Centrosomal Protein 128                                | < 0.001 | 1.56 |
| BTN1A1   | Butyrophilin Subfamily 1 Member A1                     | 0.039   | 1.56 |
| GPLD1    | Glycosylphosphatidylinositol Specific Phospholipase D1 | 0.010   | 1.55 |
| CHIT1    | Chitinase 1                                            | 0.017   | 1.55 |
| CLSPN    | Claspin                                                | 0.036   | 1.54 |
| ARHGAP23 | Rho Gtpase Activating Protein 23                       | 0.039   | 1.53 |
| KIF14    | Kinesin Family Member 14                               | 0.037   | 1.53 |
| GINS2    | GINS Complex Subunit 2                                 | 0.009   | 1.52 |
| NRG1     | Neuregulin 1                                           | 0.013   | 1.52 |
| TRIM74   | Tripartite Motif Containing 74                         | 0.037   | 1.52 |
| COL4A4   | Collagen Type IV Alpha 4 Chain                         | 0.022   | 1.52 |
| PARM1    | Prostate Androgen-Regulated Mucin-Like Protein 1       | 0.001   | 1.52 |
| AZU1     | Azurocidin 1                                           | 0.043   | 1.52 |
| SSPN     | Sarcospan                                              | 0.010   | 1.52 |
| NUGGC    | Nuclear Gtpase, Germinal Center Associated             | < 0.001 | 1.51 |
| ALDH1A2  | Aldehyde Dehydrogenase 1 Family Member A2              | 0.028   | 1.51 |
| CENPM    | Centromere Protein M                                   | 0.009   | 1.51 |
| ASPM     | Assembly Factor For Spindle Microtubules               | 0.049   | 1.51 |
| НР       | Haptoglobin                                            | 0.029   | 1.50 |
| ARHGAP42 | Rho Gtpase Activating Protein 42                       | 0.044   | 1.50 |
| CENPE    | Centromere Protein E                                   | 0.008   | 1.49 |
| ZNF714   | Zinc Finger Protein 714                                | 0.008   | 1.49 |
| KCND3    | Potassium Voltage-Gated Channel Subfamily D Member 3   | 0.026   | 1.48 |

| RNF112<br>RETN | ZW10 Interacting Kinetochore Protein Ring Finger Protein 112 Resistin | 0.014 | 1.48<br>1.48 |
|----------------|-----------------------------------------------------------------------|-------|--------------|
| RETN           |                                                                       | 0.028 | 1.48         |
|                | Resistin                                                              |       | l            |
| KIFC1          |                                                                       | 0.016 | 1.47         |
|                | Kinesin Family Member C1                                              | 0.021 | 1.47         |
| NOXRED1        | NADP Dependent Oxidoreductase Domain Containing 1                     | 0.013 | 1.47         |
| AURKB          | Aurora Kinase B                                                       | 0.013 | 1.45         |
| ARRDC4         | Arrestin Domain Containing 4                                          | 0.001 | 1.45         |
| TRIM36         | Tripartite Motif Containing 36                                        | 0.020 | 1.45         |
| PHYHD1         | Phytanoyl-Coa Dioxygenase Domain Containing 1                         | 0.024 | 1.45         |
| ELL2           | Elongation Factor For RNA Polymerase II 2                             | 0.002 | 1.44         |
| CCNA2          | Cyclin A2                                                             | 0.021 | 1.44         |
| GGH            | Gamma-Glutamyl Hydrolase                                              | 0.008 | 1.44         |
| SLC1A4         | Solute Carrier Family 1 Member 4                                      | 0.001 | 1.43         |
| RIBC1          | RIB43A Domain With Coiled-Coils 1                                     | 0.024 | 1.43         |
| CD38           | CD38 Molecule                                                         | 0.020 | 1.42         |
| CD209          | CD209 Molecule                                                        | 0.029 | 1.42         |
| LGALSL         | Galectin Like                                                         | 0.011 | 1.40         |
| МРО            | Myeloperoxidase                                                       | 0.016 | 1.39         |
| CHRNE          | Cholinergic Receptor Nicotinic Epsilon Subunit                        | 0.001 | 1.39         |
| GTSE1          | G2 And S-Phase Expressed 1                                            | 0.019 | 1.39         |
| RGS16          | Regulator Of G Protein Signaling 16                                   | 0.031 | 1.39         |
| MYO1D          | Myosin ID                                                             | 0.004 | 1.39         |
| NT5DC2         | 5'-Nucleotidase Domain Containing 2                                   | 0.037 | 1.39         |
| CHPF           | Chondroitin Polymerizing Factor                                       | 0.003 | 1.38         |
| DENND5B        | DENN Domain Containing 5B                                             | 0.010 | 1.38         |
| PERP           | P53 Apoptosis Effector Related To PMP22                               | 0.014 | 1.38         |
| B4GALT6        | Beta-1,4-Galactosyltransferase 6                                      | 0.046 | 1.38         |
| UBE2C          | Ubiquitin Conjugating Enzyme E2 C                                     | 0.015 | 1.38         |
| PLK1           | Polo Like Kinase 1                                                    | 0.005 | 1.38         |
| CDCA3          | Cell Division Cycle Associated 3                                      | 0.024 | 1.38         |

| DSC2          | Desmocollin 2                                            | 0.049 | 1.37 |
|---------------|----------------------------------------------------------|-------|------|
|               |                                                          |       |      |
| UHRF1         | Ubiquitin Like With PHD And Ring Finger Domains 1        | 0.013 | 1.37 |
| CAPS2         | Calcyphosine 2                                           | 0.033 | 1.37 |
| IRF4          | Interferon Regulatory Factor 4                           | 0.004 | 1.36 |
| PPFIA3        | PTPRF Interacting Protein Alpha 3                        | 0.009 | 1.36 |
| RIPOR3        | RIPOR Family Member 3                                    | 0.046 | 1.36 |
| AFDN          | Afadin, Adherens Junction Formation Factor               | 0.027 | 1.36 |
| TPX2          | TPX2 Microtubule Nucleation Factor                       | 0.044 | 1.36 |
| PKMYT1        | Protein Kinase, Membrane Associated Tyrosine/Threonine 1 | 0.022 | 1.35 |
| TNFRSF13<br>B | TNF Receptor Superfamily Member 13B                      | 0.035 | 1.34 |
| EIF5A2        | Eukaryotic Translation Initiation Factor 5A2             | 0.019 | 1.34 |
| TENT5C        | Terminal Nucleotidyltransferase 5C                       | 0.006 | 1.34 |
| CCNB1         | Cyclin B1                                                | 0.021 | 1.33 |
| KIAA0319      | Kiaa0319                                                 | 0.015 | 1.32 |
| SLC4A5        | Solute Carrier Family 4 Member 5                         | 0.009 | 1.32 |
| DST           | Dystonin                                                 | 0.012 | 1.31 |
| ANKRD36       | Ankyrin Repeat Domain 36                                 | 0.028 | 1.31 |
| FAM174B       | Family With Sequence Similarity 174 Member B             | 0.038 | 1.31 |
| KLF5          | Kruppel Like Factor 5                                    | 0.023 | 1.30 |
| MAP3K7CL      | MAP3K7 C-Terminal Like                                   | 0.005 | 1.30 |
| DAAM1         | Dishevelled Associated Activator Of Morphogenesis 1      | 0.005 | 1.30 |
| SGPP2         | Sphingosine-1-Phosphate Phosphatase 2                    | 0.004 | 1.30 |
| TTF2          | Transcription Termination Factor 2                       | 0.016 | 1.29 |
| SESTD1        | SEC14 And Spectrin Domain Containing 1                   | 0.015 | 1.29 |
| KIF11         | Kinesin Family Member 11                                 | 0.043 | 1.28 |
| IL18RAP       | Interleukin 18 Receptor Accessory Protein                | 0.017 | 1.28 |
| FANCI         | FA Complementation Group I                               | 0.016 | 1.28 |
| PLTP          | Phospholipid Transfer Protein                            | 0.025 | 1.28 |

| NOTCH2NL<br>A   | Notch 2 N-Terminal Like A                                        | 0.015 | 1.27 |
|-----------------|------------------------------------------------------------------|-------|------|
| TMEM231         | Transmembrane Protein 231                                        | 0.019 | 1.27 |
| PDIA4           | Protein Disulfide Isomerase Family A Member 4                    | 0.002 | 1.27 |
| E2F2            | E2F Transcription Factor 2                                       | 0.012 | 1.27 |
| SLC22A5         | Solute Carrier Family 22 Member 5                                | 0.014 | 1.27 |
| SLC2A5          | Solute Carrier Family 2 Member 5                                 | 0.050 | 1.26 |
| PALM2AKA<br>P2  | PALM2 And AKAP2 Fusion                                           | 0.027 | 1.26 |
| BMP6            | Bone Morphogenetic Protein 6                                     | 0.005 | 1.26 |
| SLC44A1         | Solute Carrier Family 44 Member 1                                | 0.002 | 1.26 |
| FAR2            | Fatty Acyl-Coa Reductase 2                                       | 0.002 | 1.26 |
| ANKRD37         | Ankyrin Repeat Domain 37                                         | 0.029 | 1.26 |
| ARPIN-<br>AP3S2 | ARPIN-AP3S2 Readthrough                                          | 0.027 | 1.25 |
| HSP90B1         | Heat Shock Protein 90 Beta Family Member 1                       | 0.002 | 1.25 |
| SPATA6          | Spermatogenesis Associated 6                                     | 0.038 | 1.25 |
| PDPR            | Pyruvate Dehydrogenase Phosphatase Regulatory Subunit            | 0.025 | 1.24 |
| PLA2G12A        | Phospholipase A2 Group XIIA                                      | 0.040 | 1.24 |
| FAAP24          | FA Core Complex Associated Protein 24                            | 0.039 | 1.24 |
| TXLNB           | Taxilin Beta                                                     | 0.039 | 1.24 |
| CCDC170         | Coiled-Coil Domain Containing 170                                | 0.048 | 1.24 |
| CCDC88A         | Coiled-Coil Domain Containing 88A                                | 0.007 | 1.24 |
| MCUR1           | Mitochondrial Calcium Uniporter Regulator 1                      | 0.012 | 1.24 |
| JAG1            | Jagged Canonical Notch Ligand 1                                  | 0.040 | 1.24 |
| B3GNT5          | UDP-Glcnac:Betagal Beta-1,3-N-Acetylglucosaminyltransferase<br>5 | 0.017 | 1.23 |
| PRIMPOL         | Primase And DNA Directed Polymerase                              | 0.018 | 1.22 |
| ZFHX3           | Zinc Finger Homeobox 3                                           | 0.006 | 1.22 |
| REEP3           | Receptor Accessory Protein 3                                     | 0.005 | 1.22 |
| GCNT1           | Glucosaminyl (N-Acetyl) Transferase 1                            | 0.033 | 1.22 |

| ZNF324B | Zinc Finger Protein 324B                                        | 0.012 | 1.21  |
|---------|-----------------------------------------------------------------|-------|-------|
| SEC22A  | SEC22 Homolog A, Vesicle Trafficking Protein                    | 0.021 | 1.21  |
| EOGT    | EGF Domain Specific O-Linked N-Acetylglucosamine<br>Transferase | 0.049 | 1.21  |
| PALLD   | Palladin, Cytoskeletal Associated Protein                       | 0.032 | 1.21  |
| PLAGL1  | PLAG1 Like Zinc Finger 1                                        | 0.018 | 1.21  |
| BRCA1   | BRCA1 DNA Repair Associated                                     | 0.010 | 1.21  |
| LARS2   | Leucyl-Trna Synthetase 2, Mitochondrial                         | 0.013 | 1.20  |
| TFR2    | Transferrin Receptor 2                                          | 0.041 | 1.20  |
| ZNF501  | Zinc Finger Protein 501                                         | 0.032 | 1.20  |
| TMEM128 | Transmembrane Protein 128                                       | 0.003 | -1.20 |
| GPRASP2 | G Protein-Coupled Receptor Associated Sorting Protein 2         | 0.038 | -1.20 |
| SHLD1   | Shieldin Complex Subunit 1                                      | 0.013 | -1.21 |
| CARMIL1 | Capping Protein Regulator And Myosin 1 Linker 1                 | 0.038 | -1.21 |
| NBPF1   | NBPF Member 1                                                   | 0.040 | -1.21 |
| PTPRS   | Protein Tyrosine Phosphatase Receptor Type S                    | 0.047 | -1.22 |
| CD1A    | CD1a Molecule                                                   | 0.045 | -1.22 |
| CEP83   | Centrosomal Protein 83                                          | 0.042 | -1.22 |
| ATG9B   | Autophagy Related 9B                                            | 0.035 | -1.22 |
| TNK1    | Tyrosine Kinase Non Receptor 1                                  | 0.046 | -1.22 |
| PNPLA4  | Patatin Like Phospholipase Domain Containing 4                  | 0.022 | -1.22 |
| OLFM2   | Olfactomedin 2                                                  | 0.013 | -1.23 |
| DBN1    | Drebrin 1                                                       | 0.007 | -1.23 |
| COQ3    | Coenzyme Q3, Methyltransferase                                  | 0.023 | -1.23 |
| GRAPL   | GRB2 Related Adaptor Protein Like                               | 0.037 | -1.24 |
| CLEC11A | C-Type Lectin Domain Containing 11A                             | 0.018 | -1.24 |
| TTC24   | Tetratricopeptide Repeat Domain 24                              | 0.036 | -1.24 |
| FAAH    | Fatty Acid Amide Hydrolase                                      | 0.041 | -1.24 |
| WDR27   | WD Repeat Domain 27                                             | 0.036 | -1.25 |
| SPRED1  | Sprouty Related EVH1 Domain Containing 1                        | 0.031 | -1.25 |

| FBLN2   | Fibulin 2                                                    | 0.043 | -1.25 |
|---------|--------------------------------------------------------------|-------|-------|
| C3orf33 | Chromosome 3 Open Reading Frame 33                           | 0.047 | -1.26 |
| YEATS4  | YEATS Domain Containing 4                                    | 0.015 | -1.26 |
| PCGF5   | Polycomb Group Ring Finger 5                                 | 0.049 | -1.26 |
| DLG5    | Discs Large MAGUK Scaffold Protein 5                         | 0.045 | -1.27 |
| ΡΚΙΑ    | Camp-Dependent Protein Kinase Inhibitor Alpha                | 0.010 | -1.27 |
| CD248   | CD248 Molecule                                               | 0.020 | -1.28 |
| FGGY    | FGGY Carbohydrate Kinase Domain Containing                   | 0.015 | -1.28 |
| IMMP2L  | Inner Mitochondrial Membrane Peptidase Subunit 2             | 0.037 | -1.29 |
| RPS28   | Ribosomal Protein S28                                        | 0.017 | -1.31 |
| CACHD1  | Cache Domain Containing 1                                    | 0.019 | -1.31 |
| ST8SIA1 | ST8 Alpha-N-Acetyl-Neuraminide Alpha-2,8-Sialyltransferase 1 | 0.029 | -1.32 |
| ASAH2B  | N-Acylsphingosine Amidohydrolase 2B                          | 0.020 | -1.32 |
| MAD1L1  | Mitotic Arrest Deficient 1 Like 1                            | 0.003 | -1.32 |
| HBA1    | Hemoglobin Subunit Alpha 1                                   | 0.047 | -1.32 |
| WHRN    | Whirlin                                                      | 0.036 | -1.32 |
| MMEL1   | Membrane Metalloendopeptidase Like 1                         | 0.028 | -1.32 |
| SUSD4   | Sushi Domain Containing 4                                    | 0.038 | -1.32 |
| WASF1   | WASP Family Member 1                                         | 0.005 | -1.33 |
| EFCAB7  | EF-Hand Calcium Binding Domain 7                             | 0.015 | -1.33 |
| ZRANB3  | Zinc Finger RANBP2-Type Containing 3                         | 0.044 | -1.33 |
| PLVAP   | Plasmalemma Vesicle Associated Protein                       | 0.042 | -1.33 |
| SIRT4   | Sirtuin 4                                                    | 0.026 | -1.34 |
| PRTFDC1 | Phosphoribosyl Transferase Domain Containing 1               | 0.048 | -1.37 |
| PDE9A   | Phosphodiesterase 9A                                         | 0.012 | -1.37 |
| FAM184A | Family With Sequence Similarity 184 Member A                 | 0.042 | -1.37 |
| CNN3    | Calponin 3                                                   | 0.004 | -1.38 |
| CLEC4C  | C-Type Lectin Domain Family 4 Member C                       | 0.041 | -1.39 |
| PTGES   | Prostaglandin E Synthase                                     | 0.040 | -1.39 |
| NRIP3   | Nuclear Receptor Interacting Protein 3                       | 0.015 | -1.42 |

| TKTL1    | Transketolase Like 1                                                  | 0.009 | -1.43 |
|----------|-----------------------------------------------------------------------|-------|-------|
| CUX2     | Cut Like Homeobox 2                                                   | 0.016 | -1.43 |
| KHDRBS2  | KH RNA Binding Domain Containing, Signal Transduction<br>Associated 2 | 0.014 | -1.43 |
| SOX8     | SRY-Box Transcription Factor 8                                        | 0.011 | -1.43 |
| ANK2     | Ankyrin 2                                                             | 0.044 | -1.43 |
| NRCAM    | Neuronal Cell Adhesion Molecule                                       | 0.021 | -1.43 |
| RBFOX2   | RNA Binding Fox-1 Homolog 2                                           | 0.041 | -1.46 |
| PPP2R3A  | Protein Phosphatase 2 Regulatory Subunit B"alpha                      | 0.035 | -1.46 |
| ZNF835   | Zinc Finger Protein 835                                               | 0.014 | -1.46 |
| GRIK5    | Glutamate Ionotropic Receptor Kainate Type Subunit 5                  | 0.036 | -1.46 |
| ZNF177   | Zinc Finger Protein 177                                               | 0.021 | -1.46 |
| MYH10    | Myosin Heavy Chain 10                                                 | 0.033 | -1.47 |
| SLC16A11 | Solute Carrier Family 16 Member 11                                    | 0.015 | -1.47 |
| ZDHHC11B | Zinc Finger DHHC-Type Containing 11B                                  | 0.036 | -1.47 |
| GARNL3   | Gtpase Activating Rap/Rangap Domain Like 3                            | 0.022 | -1.48 |
| GCAT     | Glycine C-Acetyltransferase                                           | 0.013 | -1.50 |
| TTC39A   | Tetratricopeptide Repeat Domain 39A                                   | 0.028 | -1.50 |
| NRXN2    | Neurexin 2                                                            | 0.015 | -1.51 |
| KIF5A    | Kinesin Family Member 5A                                              | 0.036 | -1.53 |
| STARD13  | Star Related Lipid Transfer Domain Containing 13                      | 0.040 | -1.53 |
| ATP1A2   | Atpase Na+/K+ Transporting Subunit Alpha 2                            | 0.042 | -1.54 |
| ABCA6    | ATP Binding Cassette Subfamily A Member 6                             | 0.046 | -1.56 |
| LMCD1    | LIM And Cysteine Rich Domains 1                                       | 0.017 | -1.56 |
| GYPE     | Glycophorin E (MNS Blood Group)                                       | 0.039 | -1.56 |
| KIRREL3  | Kirre Like Nephrin Family Adhesion Molecule 3                         | 0.044 | -1.57 |
| SDC2     | Syndecan 2                                                            | 0.036 | -1.57 |
| SPTSSB   | Serine Palmitoyltransferase Small Subunit B                           | 0.034 | -1.57 |
| STXBP4   | Syntaxin Binding Protein 4                                            | 0.003 | -1.58 |
| MYO1A    | Myosin IA                                                             | 0.023 | -1.58 |

| H4C4     | H4 Clustered Histone 4                                                  | 0.031 | -1.59 |
|----------|-------------------------------------------------------------------------|-------|-------|
| IFITM3   | Interferon Induced Transmembrane Protein 3                              | 0.036 | -1.60 |
| PDZD7    | PDZ Domain Containing 7                                                 | 0.016 | -1.62 |
| GRM7     | Glutamate Metabotropic Receptor 7                                       | 0.030 | -1.63 |
| SFRP5    | Secreted Frizzled Related Protein 5                                     | 0.031 | -1.64 |
| GPD1     | Glycerol-3-Phosphate Dehydrogenase 1                                    | 0.021 | -1.64 |
| APBA1    | Amyloid Beta Precursor Protein Binding Family A Member 1                | 0.001 | -1.65 |
| ASB9     | Ankyrin Repeat And SOCS Box Containing 9                                | 0.046 | -1.66 |
| EPB41L1  | Erythrocyte Membrane Protein Band 4.1 Like 1                            | 0.009 | -1.66 |
| TG       | Thyroglobulin                                                           | 0.017 | -1.67 |
| TLN2     | Talin 2                                                                 | 0.021 | -1.69 |
| ELF3     | E74 Like ETS Transcription Factor 3                                     | 0.040 | -1.69 |
| CCDC171  | Coiled-Coil Domain Containing 171                                       | 0.004 | -1.70 |
| CTNNA2   | Catenin Alpha 2                                                         | 0.038 | -1.70 |
| TTLL10   | Tubulin Tyrosine Ligase Like 10                                         | 0.026 | -1.72 |
| C17orf97 | Chromosome 17 Open Reading Frame 97                                     | 0.027 | -1.72 |
| TUBB2A   | Tubulin Beta 2A Class lia                                               | 0.024 | -1.73 |
| CTRC     | Chymotrypsin C                                                          | 0.015 | -1.74 |
| FEZF2    | FEZ Family Zinc Finger 2                                                | 0.019 | -1.74 |
| FOLR3    | Folate Receptor Gamma                                                   | 0.034 | -1.74 |
| TNR      | Tenascin R                                                              | 0.048 | -1.75 |
| TACSTD2  | Tumor Associated Calcium Signal Transducer 2                            | 0.044 | -1.77 |
| CERS3    | Ceramide Synthase 3                                                     | 0.036 | -1.78 |
| PRR36    | Proline Rich 36                                                         | 0.013 | -1.82 |
| DSG2     | Desmoglein 2                                                            | 0.040 | -1.82 |
| LPL      | Lipoprotein Lipase                                                      | 0.012 | -1.82 |
| NOTCH3   | Notch Receptor 3                                                        | 0.010 | -1.83 |
| MXRA8    | Matrix Remodeling Associated 8                                          | 0.001 | -1.84 |
| MAGI1    | Membrane Associated Guanylate Kinase, WW And PDZ Domain<br>Containing 1 | 0.021 | -1.86 |
|          | Containing 1                                                            |       |       |

| FNDCSFibronectin Type III Domain Containing 50.010-1.86RALYLRALY RNA Binding Protein Like0.034-1.91SLC7A9Solute Carrier Family 7 Member 90.004-1.92PPIAL4EPeptidylprolyl isomerase A Like 4E0.031-1.93FOXH1Forkhead Box H10.034-1.96SIGLEC11Sialic Acid Binding Ig Like Lectin 110.001-1.99INSYN2BInhibitory Synaptic Factor Family Member 280.009-2.07GSTA1Glutathione S-Transferase Alpha 10.023-2.10MAGI2Membrane Associated Guanylate Kinase, WW And PDZ Domain<br>Containing 20.001-2.11PLS3Plastin 3< 0.001-2.13RRC36Leucine Rich Repeat Containing 36< 0.001-2.13RRC36Leucine Rich Repeat Containing 36< 0.001-2.23MEDAGMesenteric Estrogen Dependent Adipogenesis0.045-2.33HBZHemoglobin Subunit Zeta0.019-2.39ST18ST18 C2H2C-Type Zinc Finger Transcription Factor0.023-2.44CD01Cysteine Dioxygenase Type 10.001-2.64GLP1RGlucagon Like Peptide 1 Receptor0.001-2.81KCNQ2Potassium Voltage-Gated Channel Subfamily Q Member 20.002-3.01DPP6Dipeptidyl Peptidase Like 60.003-3.10DPF6Dipeptidyl Peptidase Like 60.003-3.13CBLN2Cerebellin 2 Precursor0.003-3.13 |          |                                                             |         |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------|---------|-------|
| SLC7A9Solute Carrier Family 7 Member 90.004-1.92PPIAL4EPeptidylprolyl Isomerase A Like 4E0.031-1.93FOXH1Forkhead Box H10.004-1.96SIGLEC11Sialic Acid Binding Ig Like Letin 110.001-1.99INSYN2BInhibitory Synaptic Factor Family Member 2B0.009-2.07GSTA1Glutathione S-Transferase Alpha 10.023-2.10MAGI2Membrane Associated Guanylate Kinase, WW And PDZ Domain<br>Containing 20.014-2.11PLS3Plastin 3< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FNDC5    | Fibronectin Type III Domain Containing 5                    | 0.010   | -1.86 |
| PPIAL4EPeptidylprolyl isomerase A Like 4E0.031-1.93FOXH1Forkhead Box H10.034-1.96SIGLEC11Sialic Acid Binding Ig Like Lectin 110.001-1.99INSYN2BInhibitory Synaptic Factor Family Member 2B0.009-2.07GSTA1Glutathione S-Transferase Alpha 10.023-2.10MAGI2Membrane Associated Guanylate Kinase, WW And PDZ Domain<br>Containing 20.014-2.11PLS3Plastin 3< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RALYL    | RALY RNA Binding Protein Like                               | 0.034   | -1.91 |
| FOXH1Forkhead Box H10.034-1.96SIGLEC11Sialic Acid Binding Ig Like Lectin 110.001-1.99INSYN2BInhibitory Synaptic Factor Family Member 2B0.009-2.07GSTA1Glutathione S-Transferase Alpha 10.023-2.10MAGI2Membrane Associated Guanylate Kinase, WW And PDZ Domain<br>Containing 20.014-2.11PLS3Plastin 3<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SLC7A9   | Solute Carrier Family 7 Member 9                            | 0.004   | -1.92 |
| SIGLEC11Sialic Acid Binding Ig Like Lectin 110.001-1.99INSYN2BInhibitory Synaptic Factor Family Member 2B0.009-2.07GSTA1Glutathione S-Transferase Alpha 10.023-2.10MAGI2Membrane Associated Guanylate Kinase, WW And PDZ Domain<br>Containing 20.014-2.11PLS3Plastin 3<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PPIAL4E  | Peptidylprolyl Isomerase A Like 4E                          | 0.031   | -1.93 |
| INSYN2BInhibitory Synaptic Factor Family Member 2B0.009-2.07GSTA1Glutathione S-Transferase Alpha 10.023-2.10MAGI2Membrane Associated Guanylate Kinase, WW And PDZ Domain<br>Containing 20.014-2.11PLS3Plastin 3< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FOXH1    | Forkhead Box H1                                             | 0.034   | -1.96 |
| GSTA1Glutathione S-Transferase Alpha 10.023-2.10MAGI2Membrane Associated Guanylate Kinase, WW And PDZ Domain<br>Containing 20.014-2.11PLS3Plastin 3< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SIGLEC11 | Sialic Acid Binding Ig Like Lectin 11                       | 0.001   | -1.99 |
| MAGI2Membrane Associated Guanylate Kinase, WW And PDZ Domain<br>Containing 20.014-2.11PLS3Plastin 3< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INSYN2B  | Inhibitory Synaptic Factor Family Member 2B                 | 0.009   | -2.07 |
| MAGI2<br>Containing 20.014<br>Containing 2-2.11PLS3Plastin 3<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GSTA1    | Glutathione S-Transferase Alpha 1                           | 0.023   | -2.10 |
| Containing 2Containing 2PLS3Plastin 3< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAGI2    | Membrane Associated Guanylate Kinase, WW And PDZ Domain     | 0.014   | 2 11  |
| COLEC12Collectin Subfamily Member 120.001-2.13LRRC36Leucine Rich Repeat Containing 36< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAGIZ    | Containing 2                                                | 0.014   | -2.11 |
| LRRC36Leucine Rich Repeat Containing 36< 0.001-2.15ROB01Roundabout Guidance Receptor 10.003-2.18PRKD1Protein Kinase D10.046-2.29EIF2S3BEukaryotic Translation Initiation Factor 2 Subunit Gamma B0.007-2.32MEDAGMesenteric Estrogen Dependent Adipogenesis0.045-2.35HBZHemoglobin Subunit Zeta0.019-2.39ST18ST18 C2H2C-Type Zinc Finger Transcription Factor0.023-2.44CD01Cysteine Dioxygenase Type 10.028-2.49CFAP46Cilia And Flagella Associated Protein 460.016-2.49PNMA8BPNMA Family Member 8B0.001-2.66KCNJ10Potassium Inwardly Rectifying Channel Subfamily J Member 10< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PLS3     | Plastin 3                                                   | < 0.001 | -2.11 |
| ROBO1Roundabout Guidance Receptor 10.003-2.18PRKD1Protein Kinase D10.046-2.29EIF2S3BEukaryotic Translation Initiation Factor 2 Subunit Gamma B0.007-2.32MEDAGMesenteric Estrogen Dependent Adipogenesis0.045-2.35HBZHemoglobin Subunit Zeta0.019-2.39ST18ST18 C2H2C-Type Zinc Finger Transcription Factor0.023-2.44CD01Cysteine Dioxygenase Type 10.028-2.48CFAP46Cilia And Flagella Associated Protein 460.016-2.49PNMA8BPNMA Family Member 8B0.001-2.64GLP1RGlucagon Like Peptide 1 Receptor0.009-2.66KCNJ10Potassium Inwardly Rectifying Channel Subfamily J Member 10< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COLEC12  | Collectin Subfamily Member 12                               | 0.001   | -2.13 |
| PRKD1Protein Kinase D10.046-2.29EIF2S3BEukaryotic Translation Initiation Factor 2 Subunit Gamma B0.007-2.32MEDAGMesenteric Estrogen Dependent Adipogenesis0.045-2.35HBZHemoglobin Subunit Zeta0.019-2.39ST18ST18 C2H2C-Type Zinc Finger Transcription Factor0.023-2.44CD01Cysteine Dioxygenase Type 10.028-2.48CFAP46Cilia And Flagella Associated Protein 460.016-2.49PNMA8BPNMA Family Member 8B0.001-2.64GLP1RGlucagon Like Peptide 1 Receptor0.009-2.66KCNJ10Potassium Inwardly Rectifying Channel Subfamily J Member 10< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LRRC36   | Leucine Rich Repeat Containing 36                           | < 0.001 | -2.15 |
| EIF2S3BEukaryotic Translation Initiation Factor 2 Subunit Gamma B0.007-2.32MEDAGMesenteric Estrogen Dependent Adipogenesis0.045-2.35HBZHemoglobin Subunit Zeta0.019-2.39ST18ST18 C2H2C-Type Zinc Finger Transcription Factor0.023-2.44CDO1Cysteine Dioxygenase Type 10.028-2.48CFAP46Cilia And Flagella Associated Protein 460.016-2.49PNMA8BPNMA Family Member 8B0.001-2.64GLP1RGlucagon Like Peptide 1 Receptor0.009-2.66KCNJ10Potassium Inwardly Rectifying Channel Subfamily J Member 10< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ROBO1    | Roundabout Guidance Receptor 1                              | 0.003   | -2.18 |
| MEDAGMesenteric Estrogen Dependent Adipogenesis0.045-2.35HBZHemoglobin Subunit Zeta0.019-2.39ST18ST18 C2H2C-Type Zinc Finger Transcription Factor0.023-2.44CD01Cysteine Dioxygenase Type 10.028-2.48CFAP46Cilia And Flagella Associated Protein 460.016-2.49PNMA8BPNMA Family Member 8B0.001-2.64GLP1RGlucagon Like Peptide 1 Receptor0.009-2.66KCNJ10Potassium Inwardly Rectifying Channel Subfamily J Member 10<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRKD1    | Protein Kinase D1                                           | 0.046   | -2.29 |
| HBZHemoglobin Subunit Zeta0.019-2.39ST18ST18 C2H2C-Type Zinc Finger Transcription Factor0.023-2.44CDO1Cysteine Dioxygenase Type 10.028-2.48CFAP46Cilia And Flagella Associated Protein 460.016-2.49PNMA8BPNMA Family Member 8B0.001-2.64GLP1RGlucagon Like Peptide 1 Receptor0.009-2.66KCNJ10Potassium Inwardly Rectifying Channel Subfamily J Member 10< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EIF2S3B  | Eukaryotic Translation Initiation Factor 2 Subunit Gamma B  | 0.007   | -2.32 |
| ST18ST18 C2H2C-Type Zinc Finger Transcription Factor0.023-2.44CD01Cysteine Dioxygenase Type 10.028-2.48CFAP46Cilia And Flagella Associated Protein 460.016-2.49PNMA8BPNMA Family Member 8B0.001-2.64GLP1RGlucagon Like Peptide 1 Receptor0.009-2.66KCNJ10Potassium Inwardly Rectifying Channel Subfamily J Member 10< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MEDAG    | Mesenteric Estrogen Dependent Adipogenesis                  | 0.045   | -2.35 |
| CD01Cysteine Dioxygenase Type 10.028-2.48CFAP46Cilia And Flagella Associated Protein 460.016-2.49PNMA8BPNMA Family Member 8B0.001-2.64GLP1RGlucagon Like Peptide 1 Receptor0.009-2.66KCNJ10Potassium Inwardly Rectifying Channel Subfamily J Member 10< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HBZ      | Hemoglobin Subunit Zeta                                     | 0.019   | -2.39 |
| CFAP46Cilia And Flagella Associated Protein 460.016-2.49PNMA8BPNMA Family Member 8B0.001-2.64GLP1RGlucagon Like Peptide 1 Receptor0.009-2.66KCNJ10Potassium Inwardly Rectifying Channel Subfamily J Member 10< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ST18     | ST18 C2H2C-Type Zinc Finger Transcription Factor            | 0.023   | -2.44 |
| PNMA8BPNMA Family Member 8B0.001-2.64GLP1RGlucagon Like Peptide 1 Receptor0.009-2.66KCNJ10Potassium Inwardly Rectifying Channel Subfamily J Member 10< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CDO1     | Cysteine Dioxygenase Type 1                                 | 0.028   | -2.48 |
| GLP1RGlucagon Like Peptide 1 Receptor0.009-2.66KCNJ10Potassium Inwardly Rectifying Channel Subfamily J Member 10< 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CFAP46   | Cilia And Flagella Associated Protein 46                    | 0.016   | -2.49 |
| KCNJ10Potassium Inwardly Rectifying Channel Subfamily J Member 10< 0.001-2.81KCNQ2Potassium Voltage-Gated Channel Subfamily Q Member 20.005-2.96SLC6A20Solute Carrier Family 6 Member 200.002-3.01DPP6Dipeptidyl Peptidase Like 60.050-3.02INSYN2AInhibitory Synaptic Factor 2A0.003-3.10DCHS2Dachsous Cadherin-Related 20.016-3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PNMA8B   | PNMA Family Member 8B                                       | 0.001   | -2.64 |
| KCNQ2Potassium Voltage-Gated Channel Subfamily Q Member 20.005-2.96SLC6A20Solute Carrier Family 6 Member 200.002-3.01DPP6Dipeptidyl Peptidase Like 60.050-3.02INSYN2AInhibitory Synaptic Factor 2A0.003-3.10DCHS2Dachsous Cadherin-Related 20.016-3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GLP1R    | Glucagon Like Peptide 1 Receptor                            | 0.009   | -2.66 |
| SLC6A20Solute Carrier Family 6 Member 200.002-3.01DPP6Dipeptidyl Peptidase Like 60.050-3.02INSYN2AInhibitory Synaptic Factor 2A0.003-3.10DCHS2Dachsous Cadherin-Related 20.016-3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KCNJ10   | Potassium Inwardly Rectifying Channel Subfamily J Member 10 | < 0.001 | -2.81 |
| DPP6Dipeptidyl Peptidase Like 60.050-3.02INSYN2AInhibitory Synaptic Factor 2A0.003-3.10DCHS2Dachsous Cadherin-Related 20.016-3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KCNQ2    | Potassium Voltage-Gated Channel Subfamily Q Member 2        | 0.005   | -2.96 |
| INSYN2AInhibitory Synaptic Factor 2A0.003-3.10DCHS2Dachsous Cadherin-Related 20.016-3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLC6A20  | Solute Carrier Family 6 Member 20                           | 0.002   | -3.01 |
| DCHS2 Dachsous Cadherin-Related 2 0.016 -3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DPP6     | Dipeptidyl Peptidase Like 6                                 | 0.050   | -3.02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INSYN2A  | Inhibitory Synaptic Factor 2A                               | 0.003   | -3.10 |
| CBLN2Cerebellin 2 Precursor0.003-3.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DCHS2    | Dachsous Cadherin-Related 2                                 | 0.016   | -3.12 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CBLN2    | Cerebellin 2 Precursor                                      | 0.003   | -3.13 |

| TREML4  | Triggering Receptor Expressed On Myeloid Cells Like 4 | 0.043   | -4.97  |
|---------|-------------------------------------------------------|---------|--------|
| CTAGE8  | CTAGE Family Member 8                                 | 0.004   | -7.13  |
| CYP26B1 | Cytochrome P450 Family 26 Subfamily B Member 1        | < 0.001 | -21.32 |

Table 6E. List of 359 genes differently modulated in males HR vs males LR from the RNA-Seq analysis (FC  $\pm$  |1.2|, p-value < 0.05)

| Gene         | Gene<br>Gene Assignment                              | p-value | Fold-  |
|--------------|------------------------------------------------------|---------|--------|
| Symbol       | Gene Assignment                                      | p-value | Change |
| PCDHA6       | Protocadherin Alpha 6                                | 0.037   | 90.93  |
| TBC1D3K      | TBC1 Domain Family Member 3K                         | 0.047   | 71.15  |
| TBC1D3       | TBC1 Domain Family Member 3                          | 0.016   | 14.00  |
| DLGAP2       | DLG Associated Protein 2                             | 0.001   | 10.36  |
| MGAT4C       | MGAT4 Family Member C                                | 0.015   | 4.52   |
| AS3MT        | Arsenite Methyltransferase                           | 0.012   | 4.20   |
| SLC12A1      | Solute Carrier Family 12 Member 1                    | 0.017   | 3.25   |
| TRIM72       | Tripartite Motif Containing 72                       | < 0.001 | 3.17   |
| CCDC110      | Coiled-Coil Domain Containing 110                    | 0.016   | 3.12   |
| KLHL41       | Kelch Like Family Member 41                          | 0.032   | 2.98   |
| CA12         | Carbonic Anhydrase 12                                | 0.007   | 2.96   |
| DCC          | DCC Netrin 1 Receptor                                | 0.036   | 2.88   |
| AGT          | Angiotensinogen                                      | 0.002   | 2.80   |
| SULT1A4      | Sulfotransferase Family 1A Member 4                  | < 0.001 | 2.79   |
| PROX1        | Prospero Homeobox 1                                  | 0.034   | 2.68   |
| VWA5B2       | Von Willebrand Factor A Domain Containing 5B2        | 0.035   | 2.67   |
| EVA1A        | Eva-1 Homolog A, Regulator Of Programmed Cell Death  | 0.043   | 2.67   |
| PPL          | Periplakin                                           | 0.002   | 2.64   |
| KCND2        | Potassium Voltage-Gated Channel Subfamily D Member 2 | 0.021   | 2.63   |
| ESRP2        | Epithelial Splicing Regulatory Protein 2             | 0.018   | 2.63   |
| FAM184B      | Family With Sequence Similarity 184 Member B         | 0.001   | 2.62   |
| SYCE1        | Synaptonemal Complex Central Element Protein 1       | 0.043   | 2.55   |
| CHRNA4       | Cholinergic Receptor Nicotinic Alpha 4 Subunit       | 0.025   | 2.55   |
| TMEM132<br>B | Transmembrane Protein 132B                           | 0.028   | 2.54   |
| NR2F2        | Nuclear Receptor Subfamily 2 Group F Member 2        | 0.022   | 2.51   |

| KIAA1614     | Kiaa1614                                             | 0.010 | 2.46 |
|--------------|------------------------------------------------------|-------|------|
| ASCL5        | Achaete-Scute Family Bhlh Transcription Factor 5     | 0.027 | 2.36 |
| CERKL        | Ceramide Kinase Like                                 | 0.043 | 2.25 |
| KCNQ2        | Potassium Voltage-Gated Channel Subfamily Q Member 2 | 0.041 | 2.25 |
| ZNF492       | Zinc Finger Protein 492                              | 0.008 | 2.23 |
| IQGAP3       | IQ Motif Containing Gtpase Activating Protein 3      | 0.001 | 2.20 |
| LGI3         | Leucine Rich Repeat LGI Family Member 3              | 0.045 | 2.20 |
| HPSE2        | Heparanase 2 (Inactive)                              | 0.028 | 2.18 |
| ATP6V1C2     | Atpase H+ Transporting V1 Subunit C2                 | 0.016 | 2.17 |
| TMEM200<br>B | Transmembrane Protein 200B                           | 0.009 | 2.17 |
| B3GAT2       | Beta-1,3-Glucuronyltransferase 2                     | 0.027 | 2.16 |
| SCN5A        | Sodium Voltage-Gated Channel Alpha Subunit 5         | 0.042 | 2.13 |
| SLC6A13      | Solute Carrier Family 6 Member 13                    | 0.004 | 2.12 |
| CAVIN4       | Caveolae Associated Protein 4                        | 0.019 | 2.05 |
| SPATA21      | Spermatogenesis Associated 21                        | 0.012 | 1.98 |
| RGS5         | Regulator Of G Protein Signaling 5                   | 0.043 | 1.94 |
| C17orf97     | Chromosome 17 Open Reading Frame 97                  | 0.015 | 1.91 |
| C6orf52      | Chromosome 6 Open Reading Frame 52                   | 0.038 | 1.89 |
| CHRNA5       | Cholinergic Receptor Nicotinic Alpha 5 Subunit       | 0.017 | 1.87 |
| LONRF2       | LON Peptidase N-Terminal Domain And Ring Finger 2    | 0.043 | 1.86 |
| HSD17B14     | Hydroxysteroid 17-Beta Dehydrogenase 14              | 0.026 | 1.86 |
| SLC26A1      | Solute Carrier Family 26 Member 1                    | 0.006 | 1.83 |
| DOC2B        | Double C2 Domain Beta                                | 0.024 | 1.83 |
| SH3RF2       | SH3 Domain Containing Ring Finger 2                  | 0.035 | 1.75 |
| STKLD1       | Serine/Threonine Kinase Like Domain Containing 1     | 0.030 | 1.75 |
| AMH          | Anti-Mullerian Hormone                               | 0.008 | 1.74 |
| CHD5         | Chromodomain Helicase DNA Binding Protein 5          | 0.045 | 1.73 |
| TMEM191<br>B | Transmembrane Protein 191B                           | 0.026 | 1.72 |

| PLEKHA6   | Pleckstrin Homology Domain Containing A6                | 0.011 | 1.70 |
|-----------|---------------------------------------------------------|-------|------|
| CFAP73    | Cilia And Flagella Associated Protein 73                | 0.045 | 1.70 |
| TLDC2     | TBC/Lysm-Associated Domain Containing 2                 | 0.047 | 1.70 |
| LAIR2     | Leukocyte Associated Immunoglobulin Like Receptor 2     | 0.035 | 1.70 |
| EHF       | ETS Homologous Factor                                   | 0.021 | 1.69 |
| TMEM262   | Transmembrane Protein 262                               | 0.031 | 1.67 |
| WDR17     | WD Repeat Domain 17                                     | 0.013 | 1.67 |
| ALDH1A2   | Aldehyde Dehydrogenase 1 Family Member A2               | 0.004 | 1.67 |
| CTRC      | Chymotrypsin C                                          | 0.014 | 1.66 |
| EREG      | Epiregulin                                              | 0.039 | 1.65 |
| CYP21A2   | Cytochrome P450 Family 21 Subfamily A Member 2          | 0.031 | 1.64 |
| ZACN      | Zinc Activated Ion Channel                              | 0.002 | 1.64 |
| GOLGA6L4  | Golgin A6 Family Like 4                                 | 0.030 | 1.64 |
| SERPINB10 | Serpin Family B Member 10                               | 0.048 | 1.62 |
| AJUBA     | Ajuba LIM Protein                                       | 0.005 | 1.61 |
| PTTG2     | Pituitary Tumor-Transforming 2                          | 0.006 | 1.59 |
| SHISA7    | Shisa Family Member 7                                   | 0.029 | 1.59 |
| KCNK17    | Potassium Two Pore Domain Channel Subfamily K Member 17 | 0.044 | 1.59 |
| DCLK2     | Doublecortin Like Kinase 2                              | 0.017 | 1.58 |
| DCBLD2    | Discoidin, CUB And LCCL Domain Containing 2             | 0.005 | 1.56 |
| MYRF      | Myelin Regulatory Factor                                | 0.022 | 1.55 |
| RAPGEF3   | Rap Guanine Nucleotide Exchange Factor 3                | 0.021 | 1.54 |
| SNX32     | Sorting Nexin 32                                        | 0.009 | 1.54 |
| TMEM198   | Transmembrane Protein 198                               | 0.021 | 1.54 |
| TLN2      | Talin 2                                                 | 0.029 | 1.53 |
| CFAP97D2  | CFAP97 Domain Containing 2                              | 0.019 | 1.53 |
| IL12A     | Interleukin 12A                                         | 0.012 | 1.53 |
| CXCL8     | C-X-C Motif Chemokine Ligand 8                          | 0.013 | 1.52 |
| NKD1      | NKD Inhibitor Of WNT Signaling Pathway 1                | 0.007 | 1.50 |
| EML6      | EMAP Like 6                                             | 0.043 | 1.49 |

| ZNF714           | Zinc Finger Protein 714                                                           | 0.005 | 1.49 |
|------------------|-----------------------------------------------------------------------------------|-------|------|
| VNN1             | Vanin 1                                                                           | 0.007 | 1.48 |
| PIF1             | PIF1 5'-To-3' DNA Helicase                                                        | 0.013 | 1.48 |
| KLRC1            | Killer Cell Lectin Like Receptor C1                                               | 0.005 | 1.48 |
| MMP24            | Matrix Metallopeptidase 24                                                        | 0.048 | 1.47 |
| IRAK1BP1         | Interleukin 1 Receptor Associated Kinase 1 Binding Protein 1                      | 0.014 | 1.43 |
| FBXO36           | F-Box Protein 36                                                                  | 0.006 | 1.43 |
| LAMB2            | Laminin Subunit Beta 2                                                            | 0.048 | 1.43 |
| GPLD1            | Glycosylphosphatidylinositol Specific Phospholipase D1                            | 0.024 | 1.43 |
| TRPC1            | Transient Receptor Potential Cation Channel Subfamily C<br>Member 1               | 0.020 | 1.42 |
| STARD4           | Star Related Lipid Transfer Domain Containing 4                                   | 0.014 | 1.42 |
| GINS2            | GINS Complex Subunit 2                                                            | 0.023 | 1.42 |
| LRRC69           | Leucine Rich Repeat Containing 69                                                 | 0.043 | 1.40 |
| MTCL1            | Microtubule Crosslinking Factor 1                                                 | 0.045 | 1.40 |
| ELAPOR2          | Endosome-Lysosome Associated Apoptosis And Autophagy<br>Regulator Family Member 2 | 0.021 | 1.39 |
| TTC23            | Tetratricopeptide Repeat Domain 23                                                | 0.050 | 1.38 |
| REELD1           | Reeler Domain Containing 1                                                        | 0.041 | 1.38 |
| MANEA            | Mannosidase Endo-Alpha                                                            | 0.015 | 1.37 |
| GOLGA8H          | Golgin A8 Family Member H                                                         | 0.014 | 1.37 |
| ZBTB41           | Zinc Finger And BTB Domain Containing 41                                          | 0.047 | 1.37 |
| PTGDS            | Prostaglandin D2 Synthase                                                         | 0.014 | 1.37 |
| KIAA0895L        | KIAA0895 Like                                                                     | 0.004 | 1.36 |
| SLC4A10          | Solute Carrier Family 4 Member 10                                                 | 0.042 | 1.36 |
| ARMCX4           | Armadillo Repeat Containing X-Linked 4                                            | 0.007 | 1.35 |
| BRMS1L           | BRMS1 Like Transcriptional Repressor                                              | 0.009 | 1.35 |
| IKZF2            | IKAROS Family Zinc Finger 2                                                       | 0.027 | 1.34 |
| LOC10272<br>4488 | Synaptotagmin-15                                                                  | 0.045 | 1.34 |
| RAD51AP1         | RAD51 Associated Protein 1                                                        | 0.045 | 1.34 |

| ENPP4    | Ectonucleotide Pyrophosphatase/Phosphodiesterase 4           | 0.016 | 1.33 |
|----------|--------------------------------------------------------------|-------|------|
| OPHN1    | Oligophrenin 1                                               | 0.010 | 1.33 |
| CCR9     | C-C Motif Chemokine Receptor 9                               | 0.040 | 1.33 |
| HSF4     | Heat Shock Transcription Factor 4                            | 0.017 | 1.33 |
| LTK      | Leukocyte Receptor Tyrosine Kinase                           | 0.026 | 1.33 |
| SYNGR1   | Synaptogyrin 1                                               | 0.008 | 1.33 |
| ZNF850   | Zinc Finger Protein 850                                      | 0.022 | 1.33 |
| CLDN12   | Claudin 12                                                   | 0.032 | 1.32 |
| DENND1B  | DENN Domain Containing 1B                                    | 0.013 | 1.32 |
| ZNF600   | Zinc Finger Protein 600                                      | 0.005 | 1.32 |
| SPTBN5   | Spectrin Beta, Non-Erythrocytic 5                            | 0.023 | 1.32 |
| PIWIL4   | Piwi Like RNA-Mediated Gene Silencing 4                      | 0.026 | 1.32 |
| TMEM237  | Transmembrane Protein 237                                    | 0.009 | 1.32 |
| TENM1    | Teneurin Transmembrane Protein 1                             | 0.023 | 1.31 |
| DUSP19   | Dual Specificity Phosphatase 19                              | 0.045 | 1.31 |
| TMEM67   | Transmembrane Protein 67                                     | 0.044 | 1.31 |
| SLC19A2  | Solute Carrier Family 19 Member 2                            | 0.012 | 1.31 |
| SNX16    | Sorting Nexin 16                                             | 0.016 | 1.31 |
| FAM169A  | Family With Sequence Similarity 169 Member A                 | 0.048 | 1.30 |
| FZD6     | Frizzled Class Receptor 6                                    | 0.032 | 1.30 |
| IL15     | Interleukin 15                                               | 0.045 | 1.30 |
| TMEM144  | Transmembrane Protein 144                                    | 0.026 | 1.30 |
| RAVER2   | Ribonucleoprotein, PTB Binding 2                             | 0.004 | 1.30 |
| HKDC1    | Hexokinase Domain Containing 1                               | 0.048 | 1.29 |
| ZNF205   | Zinc Finger Protein 205                                      | 0.024 | 1.29 |
| ADAMTS10 | ADAM Metallopeptidase With Thrombospondin Type 1 Motif<br>10 | 0.021 | 1.29 |
| OR4D1    | Olfactory Receptor Family 4 Subfamily D Member 1             | 0.026 | 1.29 |
| ND6      | NADH Dehydrogenase Subunit 6                                 | 0.049 | 1.29 |
| SLC4A4   | Solute Carrier Family 4 Member 4                             | 0.020 | 1.29 |

| LRRN1        | Leucine Rich Repeat Neuronal 1                        | 0.039 | 1.28 |
|--------------|-------------------------------------------------------|-------|------|
| RAB40B       | RAB40B, Member RAS Oncogene Family                    | 0.049 | 1.28 |
| ТМХ3         | Thioredoxin Related Transmembrane Protein 3           | 0.008 | 1.28 |
| OSBPL8       | Oxysterol Binding Protein Like 8                      | 0.011 | 1.28 |
| ARVCF        | ARVCF Delta Catenin Family Member                     | 0.028 | 1.28 |
| RCN3         | Reticulocalbin 3                                      | 0.020 | 1.28 |
| MAP3K21      | Mitogen-Activated Protein Kinase Kinase Kinase 21     | 0.020 | 1.28 |
| FAM221A      | Family With Sequence Similarity 221 Member A          | 0.042 | 1.28 |
| KBTBD8       | Kelch Repeat And BTB Domain Containing 8              | 0.036 | 1.28 |
| PRKCI        | Protein Kinase C lota                                 | 0.007 | 1.28 |
| ITGAV        | Integrin Subunit Alpha V                              | 0.015 | 1.28 |
| GCNT4        | Glucosaminyl (N-Acetyl) Transferase 4                 | 0.041 | 1.28 |
| MEX3B        | Mex-3 RNA Binding Family Member B                     | 0.047 | 1.27 |
| HSPA13       | Heat Shock Protein Family A (Hsp70) Member 13         | 0.009 | 1.27 |
| HES6         | Hes Family Bhlh Transcription Factor 6                | 0.010 | 1.27 |
| RAP2A        | RAP2A, Member Of RAS Oncogene Family                  | 0.018 | 1.27 |
| IGSF9B       | Immunoglobulin Superfamily Member 9B                  | 0.046 | 1.27 |
| ARHGAP5      | Rho Gtpase Activating Protein 5                       | 0.011 | 1.27 |
| CPEB2        | Cytoplasmic Polyadenylation Element Binding Protein 2 | 0.019 | 1.26 |
| TGFBR3       | Transforming Growth Factor Beta Receptor 3            | 0.026 | 1.26 |
| TOGARAM<br>1 | TOG Array Regulator Of Axonemal Microtubules 1        | 0.035 | 1.26 |
| CD151        | CD151 Molecule (Raph Blood Group)                     | 0.030 | 1.26 |
| COL6A2       | Collagen Type VI Alpha 2 Chain                        | 0.019 | 1.26 |
| CCDC30       | Coiled-Coil Domain Containing 30                      | 0.024 | 1.26 |
| LRRC24       | Leucine Rich Repeat Containing 24                     | 0.016 | 1.26 |
| DGKQ         | Diacylglycerol Kinase Theta                           | 0.016 | 1.26 |
| CCDC14       | Coiled-Coil Domain Containing 14                      | 0.005 | 1.26 |
| TET1         | Tet Methylcytosine Dioxygenase 1                      | 0.040 | 1.26 |
| SLC30A4      | Solute Carrier Family 30 Member 4                     | 0.014 | 1.25 |

| ECT2      | Epithelial Cell Transforming 2                            | 0.032 | 1.25 |
|-----------|-----------------------------------------------------------|-------|------|
| P2RX1     | Purinergic Receptor P2X 1                                 | 0.026 | 1.25 |
| VPS13A    | Vacuolar Protein Sorting 13 Homolog A                     | 0.025 | 1.25 |
| ZDHHC17   | Zinc Finger DHHC-Type Palmitoyltransferase 17             | 0.019 | 1.25 |
| RAB11FIP2 | RAB11 Family Interacting Protein 2                        | 0.018 | 1.25 |
| UCN       | Urocortin                                                 | 0.050 | 1.25 |
| USP45     | Ubiquitin Specific Peptidase 45                           | 0.021 | 1.25 |
| FOXN2     | Forkhead Box N2                                           | 0.010 | 1.24 |
| FIGNL2    | Fidgetin Like 2                                           | 0.047 | 1.24 |
| KLHL17    | Kelch Like Family Member 17                               | 0.033 | 1.24 |
| MYSM1     | Myb Like, SWIRM And MPN Domains 1                         | 0.022 | 1.23 |
| MIER3     | MIER Family Member 3                                      | 0.021 | 1.23 |
| CARNMT1   | Carnosine N-Methyltransferase 1                           | 0.021 | 1.23 |
| SLC4A7    | Solute Carrier Family 4 Member 7                          | 0.046 | 1.23 |
| SEMA6C    | Semaphorin 6C                                             | 0.025 | 1.23 |
| OSBPL5    | Oxysterol Binding Protein Like 5                          | 0.010 | 1.23 |
| PI4K2B    | Phosphatidylinositol 4-Kinase Type 2 Beta                 | 0.049 | 1.23 |
| ETNK1     | Ethanolamine Kinase 1                                     | 0.020 | 1.23 |
| SHPRH     | SNF2 Histone Linker PHD RING Helicase                     | 0.004 | 1.23 |
| MIB1      | MIB E3 Ubiquitin Protein Ligase 1                         | 0.042 | 1.23 |
| NMRK1     | Nicotinamide Riboside Kinase 1                            | 0.005 | 1.22 |
| PRIMPOL   | Primase And DNA Directed Polymerase                       | 0.027 | 1.22 |
| ZC3H6     | Zinc Finger CCCH-Type Containing 6                        | 0.008 | 1.22 |
| KCNH2     | Potassium Voltage-Gated Channel Subfamily H Member 2      | 0.042 | 1.22 |
| PDIK1L    | PDLIM1 Interacting Kinase 1 Like                          | 0.009 | 1.22 |
| TMTC4     | Transmembrane O-Mannosyltransferase Targeting Cadherins 4 | 0.031 | 1.22 |
| EPHA4     | EPH Receptor A4                                           | 0.043 | 1.22 |
| ADCK5     | Aarf Domain Containing Kinase 5                           | 0.006 | 1.22 |
| TP53I13   | Tumor Protein P53 Inducible Protein 13                    | 0.005 | 1.22 |
| VAMP1     | Vesicle Associated Membrane Protein 1                     | 0.004 | 1.22 |

| FASTKD1  | FAST Kinase Domains 1                                                      | 0.036 | 1.22  |
|----------|----------------------------------------------------------------------------|-------|-------|
| SLC25A29 | Solute Carrier Family 25 Member 29                                         | 0.044 | 1.21  |
| ZNF331   | Zinc Finger Protein 331                                                    | 0.001 | 1.21  |
| ENGASE   | Endo-Beta-N-Acetylglucosaminidase                                          | 0.035 | 1.21  |
| CFAP418  | Cilia And Flagella Associated Protein 418                                  | 0.049 | 1.21  |
| CEP192   | Centrosomal Protein 192                                                    | 0.003 | 1.21  |
| PKN2     | Protein Kinase N2                                                          | 0.018 | 1.21  |
| GMFB     | Glia Maturation Factor Beta                                                | 0.041 | 1.21  |
| PACRGL   | Parkin Coregulated Like                                                    | 0.031 | 1.21  |
| TRUB1    | Trub Pseudouridine Synthase Family Member 1                                | 0.029 | 1.21  |
| NAA16    | N-Alpha-Acetyltransferase 16, Nata Auxiliary Subunit                       | 0.009 | 1.21  |
| TCF19    | Transcription Factor 19                                                    | 0.006 | 1.21  |
| PGM2L1   | Phosphoglucomutase 2 Like 1                                                | 0.021 | 1.20  |
| CROT     | Carnitine O-Octanoyltransferase                                            | 0.034 | 1.20  |
| ZNF599   | Zinc Finger Protein 599                                                    | 0.020 | 1.20  |
| SMIM13   | Small Integral Membrane Protein 13                                         | 0.025 | 1.20  |
| UFC1     | Ubiquitin-Fold Modifier Conjugating Enzyme 1                               | 0.039 | -1.20 |
| АТР5РВ   | ATP Synthase Peripheral Stalk-Membrane Subunit B                           | 0.048 | -1.20 |
| SCAPER   | S-Phase Cyclin A Associated Protein In The ER                              | 0.038 | -1.20 |
| AIMP1    | Aminoacyl Trna Synthetase Complex Interacting<br>Multifunctional Protein 1 | 0.016 | -1.21 |
| WDPCP    | WD Repeat Containing Planar Cell Polarity Effector                         | 0.010 | -1.21 |
| MTHFD1L  | Methylenetetrahydrofolate Dehydrogenase (NADP+<br>Dependent) 1 Like        | 0.035 | -1.21 |
| ZBTB8OS  | Zinc Finger And BTB Domain Containing 8 Opposite Strand                    | 0.014 | -1.21 |
| UST      | Uronyl 2-Sulfotransferase                                                  | 0.036 | -1.21 |
| MTIF3    | Mitochondrial Translational Initiation Factor 3                            | 0.014 | -1.21 |
| RPAP3    | RNA Polymerase II Associated Protein 3                                     | 0.035 | -1.22 |
| C2orf81  | Chromosome 2 Open Reading Frame 81                                         | 0.043 | -1.22 |
| THYN1    | Thymocyte Nuclear Protein 1                                                | 0.005 | -1.22 |

| GAS8     | Growth Arrest Specific 8                            | 0.033 | -1.22 |
|----------|-----------------------------------------------------|-------|-------|
| UPF3B    | UPF3B Regulator Of Nonsense Mediated Mrna Decay     | 0.021 | -1.22 |
| GEMIN6   | Gem Nuclear Organelle Associated Protein 6          | 0.024 | -1.22 |
| TMSB10   | Thymosin Beta 10                                    | 0.036 | -1.23 |
| THG1L    | Trna-Histidine Guanylyltransferase 1 Like           | 0.008 | -1.23 |
| PTK2     | Protein Tyrosine Kinase 2                           | 0.002 | -1.23 |
| RBM8A    | RNA Binding Motif Protein 8A                        | 0.024 | -1.23 |
| FCER1G   | Fc Fragment Of Ige Receptor Ig                      | 0.034 | -1.23 |
| CWC15    | CWC15 Spliceosome Associated Protein Homolog        | 0.038 | -1.23 |
| PRICKLE1 | Prickle Planar Cell Polarity Protein 1              | 0.037 | -1.24 |
| ZNF565   | Zinc Finger Protein 565                             | 0.007 | -1.24 |
| TIPIN    | TIMELESS Interacting Protein                        | 0.035 | -1.24 |
| РНАХ     | Phosphorylated Adaptor For RNA Export               | 0.044 | -1.24 |
| COX17    | Cytochrome C Oxidase Copper Chaperone COX17         | 0.017 | -1.25 |
| HEATR5A  | HEAT Repeat Containing 5A                           | 0.011 | -1.25 |
| SNX8     | Sorting Nexin 8                                     | 0.028 | -1.25 |
| NUTM2E   | NUT Family Member 2E                                | 0.039 | -1.25 |
| LLPH     | LLP Homolog, Long-Term Synaptic Facilitation Factor | 0.026 | -1.25 |
| NKIRAS1  | NFKB Inhibitor Interacting Ras Like 1               | 0.040 | -1.26 |
| RNASE6   | Ribonuclease A Family Member K6                     | 0.024 | -1.26 |
| VRK1     | VRK Serine/Threonine Kinase 1                       | 0.037 | -1.27 |
| CCDC170  | Coiled-Coil Domain Containing 170                   | 0.028 | -1.28 |
| DNM3     | Dynamin 3                                           | 0.036 | -1.28 |
| MRPL39   | Mitochondrial Ribosomal Protein L39                 | 0.044 | -1.29 |
| MIX23    | Mitochondrial Matrix Import Factor 23               | 0.049 | -1.29 |
| CASP1    | Caspase 1                                           | 0.025 | -1.29 |
| LRRC37A2 | Leucine Rich Repeat Containing 37 Member A2         | 0.027 | -1.29 |
| LARP7    | La Ribonucleoprotein 7, Transcriptional Regulator   | 0.050 | -1.29 |
| CLU      | Clusterin                                           | 0.044 | -1.29 |
| PSMC2    | Proteasome 26S Subunit, Atpase 2                    | 0.024 | -1.30 |

| PBDC1    | Polysaccharide Biosynthesis Domain Containing 1           | 0.042   | -1.30 |
|----------|-----------------------------------------------------------|---------|-------|
| CWC27    | CWC27 Spliceosome Associated Cyclophilin                  | 0.019   | -1.31 |
| APOBEC3H | Apolipoprotein B Mrna Editing Enzyme Catalytic Subunit 3H | 0.034   | -1.31 |
| CIR1     | Corepressor Interacting With RBPJ, CIR1                   | 0.013   | -1.31 |
| PUM3     | Pumilio RNA Binding Family Member 3                       | < 0.001 | -1.32 |
| PFDN2    | Prefoldin Subunit 2                                       | 0.012   | -1.32 |
| PTGR2    | Prostaglandin Reductase 2                                 | 0.038   | -1.33 |
| STAP1    | Signal Transducing Adaptor Family Member 1                | 0.017   | -1.33 |
| CFDP1    | Craniofacial Development Protein 1                        | 0.038   | -1.33 |
| H1-2     | H1.2 Linker Histone, Cluster Member                       | 0.031   | -1.33 |
| PSD3     | Pleckstrin And Sec7 Domain Containing 3                   | 0.042   | -1.33 |
| ТВСА     | Tubulin Folding Cofactor A                                | 0.038   | -1.34 |
| TYW1B    | Trna-Yw Synthesizing Protein 1 Homolog B                  | 0.040   | -1.35 |
| ATP5PO   | ATP Synthase Peripheral Stalk Subunit OSCP                | 0.039   | -1.36 |
| GIMAP7   | Gtpase, IMAP Family Member 7                              | 0.043   | -1.36 |
| ZNF660   | Zinc Finger Protein 660                                   | 0.050   | -1.36 |
| ENY2     | ENY2 Transcription And Export Complex 2 Subunit           | 0.034   | -1.37 |
| PPIG     | Peptidylprolyl Isomerase G                                | 0.045   | -1.38 |
| ATP5PF   | ATP Synthase Peripheral Stalk Subunit F6                  | 0.044   | -1.38 |
| KANK1    | KN Motif And Ankyrin Repeat Domains 1                     | 0.026   | -1.39 |
| ZMAT2    | Zinc Finger Matrin-Type 2                                 | 0.028   | -1.40 |
| PSMA3    | Proteasome 20S Subunit Alpha 3                            | 0.027   | -1.40 |
| TRIM36   | Tripartite Motif Containing 36                            | 0.029   | -1.40 |
| FCGR1A   | Fc Fragment Of Igg Receptor Ia                            | 0.024   | -1.40 |
| NINL     | Ninein Like                                               | 0.018   | -1.42 |
| GLB1L    | Galactosidase Beta 1 Like                                 | 0.005   | -1.42 |
| SRP14    | Signal Recognition Particle 14                            | 0.033   | -1.42 |
| CPXM1    | Carboxypeptidase X, M14 Family Member 1                   | 0.049   | -1.43 |
| AIF1     | Allograft Inflammatory Factor 1                           | 0.023   | -1.43 |
| ZNF20    | Zinc Finger Protein 20                                    | 0.039   | -1.43 |

| MRPL51  | Mitochondrial Ribosomal Protein L51                    | 0.020 | -1.43 |
|---------|--------------------------------------------------------|-------|-------|
| RPL36AL | Ribosomal Protein L36a Like                            | 0.007 | -1.45 |
| CLEC1B  | C-Type Lectin Domain Family 1 Member B                 | 0.020 | -1.45 |
| СРАЗ    | Carboxypeptidase A3                                    | 0.014 | -1.45 |
| IL20RB  | Interleukin 20 Receptor Subunit Beta                   | 0.014 | -1.46 |
| GGT5    | Gamma-Glutamyltransferase 5                            | 0.032 | -1.46 |
| C2orf74 | Chromosome 2 Open Reading Frame 74                     | 0.016 | -1.48 |
| ATP5ME  | ATP Synthase Membrane Subunit E                        | 0.036 | -1.48 |
| MRPL47  | Mitochondrial Ribosomal Protein L47                    | 0.034 | -1.49 |
| RPL22   | Ribosomal Protein L22                                  | 0.042 | -1.49 |
| C4A     | Complement C4A (Rodgers Blood Group)                   | 0.040 | -1.49 |
| RNLS    | Renalase, FAD Dependent Amine Oxidase                  | 0.005 | -1.49 |
| NKAPL   | NFKB Activating Protein Like                           | 0.011 | -1.50 |
| C1orf54 | Chromosome 1 Open Reading Frame 54                     | 0.011 | -1.50 |
| FABP5   | Fatty Acid Binding Protein 5                           | 0.013 | -1.51 |
| TTC39A  | Tetratricopeptide Repeat Domain 39A                    | 0.019 | -1.51 |
| MTARC2  | Mitochondrial Amidoxime Reducing Component 2           | 0.016 | -1.51 |
| IL31RA  | Interleukin 31 Receptor A                              | 0.036 | -1.51 |
| AP1M2   | Adaptor Related Protein Complex 1 Subunit Mu 2         | 0.041 | -1.52 |
| PIN4    | Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 4 | 0.020 | -1.52 |
| FAM153B | Family With Sequence Similarity 153 Member B           | 0.042 | -1.54 |
| PLCD3   | Phospholipase C Delta 3                                | 0.002 | -1.55 |
| MN1     | MN1 Proto-Oncogene, Transcriptional Regulator          | 0.013 | -1.56 |
| DBI     | Diazepam Binding Inhibitor, Acyl-Coa Binding Protein   | 0.020 | -1.56 |
| NDUFS5  | NADH:Ubiquinone Oxidoreductase Subunit S5              | 0.028 | -1.57 |
| PTGR1   | Prostaglandin Reductase 1                              | 0.044 | -1.58 |
| RPS23   | Ribosomal Protein S23                                  | 0.020 | -1.60 |
| LRRC37A | Leucine Rich Repeat Containing 37A                     | 0.002 | -1.63 |
| ALG14   | ALG14 UDP-N-Acetylglucosaminyltransferase Subunit      | 0.017 | -1.64 |
| SARNP   | SAP Domain Containing Ribonucleoprotein                | 0.035 | -1.64 |

| NDUFA1             | NADH:Ubiquinone Oxidoreductase Subunit A1        | 0.015 | -1.65 |
|--------------------|--------------------------------------------------|-------|-------|
| EMC2               | ER Membrane Protein Complex Subunit 2            | 0.025 | -1.66 |
| SNRPD1             | Small Nuclear Ribonucleoprotein D1 Polypeptide   | 0.033 | -1.66 |
| NOTCH2NL<br>B      | Notch 2 N-Terminal Like B                        | 0.033 | -1.66 |
| APOL4              | Apolipoprotein L4                                | 0.030 | -1.67 |
| KRT72              | Keratin 72                                       | 0.020 | -1.68 |
| MINDY4             | MINDY Lysine 48 Deubiquitinase 4                 | 0.030 | -1.69 |
| KRT8               | Keratin 8                                        | 0.009 | -1.69 |
| ABCA6              | ATP Binding Cassette Subfamily A Member 6        | 0.013 | -1.70 |
| KRT73              | Keratin 73                                       | 0.008 | -1.70 |
| HOXA3              | Homeobox A3                                      | 0.040 | -1.73 |
| CHDH               | Choline Dehydrogenase                            | 0.009 | -1.76 |
| RPL26              | Ribosomal Protein L26                            | 0.044 | -1.77 |
| HS3ST1             | Heparan Sulfate-Glucosamine 3-Sulfotransferase 1 | 0.002 | -1.78 |
| SEM1               | SEM1 26S Proteasome Subunit                      | 0.006 | -1.80 |
| DMC1               | DNA Meiotic Recombinase 1                        | 0.049 | -1.86 |
| B4GALNT3           | Beta-1,4-N-Acetyl-Galactosaminyltransferase 3    | 0.033 | -1.87 |
| NECTIN2            | Nectin Cell Adhesion Molecule 2                  | 0.020 | -1.94 |
| SAMD13             | Sterile Alpha Motif Domain Containing 13         | 0.019 | -1.94 |
| CARD16             | Caspase Recruitment Domain Family Member 16      | 0.015 | -1.99 |
| CADM2              | Cell Adhesion Molecule 2                         | 0.003 | -2.11 |
| DUOX2              | Dual Oxidase 2                                   | 0.030 | -2.11 |
| SOX6               | SRY-Box Transcription Factor 6                   | 0.005 | -2.12 |
| РКІВ               | Camp-Dependent Protein Kinase Inhibitor Beta     | 0.003 | -2.17 |
| MTUS2              | Microtubule Associated Scaffold Protein 2        | 0.025 | -2.19 |
| SOX5               | SRY-Box Transcription Factor 5                   | 0.002 | -2.22 |
| RPL36A-<br>HNRNPH2 | RPL36A-HNRNPH2 Readthrough                       | 0.017 | -2.26 |
| RIMBP3C            | RIMS Binding Protein 3C                          | 0.039 | -2.30 |

| SLC28A2 | Solute Carrier Family 28 Member 2                  | 0.030 | -2.36   |
|---------|----------------------------------------------------|-------|---------|
| RP1L1   | RP1 Like 1                                         | 0.036 | -2.51   |
| CDH5    | Cadherin 5                                         | 0.020 | -2.52   |
| RPL36A  | Ribosomal Protein L36a                             | 0.004 | -2.54   |
| UQCRB   | Ubiquinol-Cytochrome C Reductase Binding Protein   | 0.003 | -2.57   |
| STAC    | SH3 And Cysteine Rich Domain                       | 0.001 | -2.66   |
| RGS8    | Regulator Of G Protein Signaling 8                 | 0.039 | -2.75   |
| FAM81B  | Family With Sequence Similarity 81 Member B        | 0.018 | -2.95   |
| RPRM    | Reprimo, TP53 Dependent G2 Arrest Mediator Homolog | 0.046 | -3.17   |
| SNCAIP  | Synuclein Alpha Interacting Protein                | 0.023 | -3.21   |
| POU2F3  | POU Class 2 Homeobox 3                             | 0.030 | -3.56   |
| OR6N1   | Olfactory Receptor Family 6 Subfamily N Member 1   | 0.002 | -4.67   |
| CTAGE8  | CTAGE Family Member 8                              | 0.007 | -6.19   |
| TBC1D3E | TBC1 Domain Family Member 3E                       | 0.009 | -122.10 |

Table 7E. List of 399 genes differently modulated in females MDD vs females HR from the RNA-Seq analysis (FC  $\pm$  |1.2|, p-value < 0.05).</td>

| Gene Cono Assignment | Gene Assignment                                  | p-value | Fold-  |
|----------------------|--------------------------------------------------|---------|--------|
| Symbol               | Gene Assignment                                  | p-value | Change |
| TBC1D3               | TBC1 Domain Family Member 3                      | 0.001   | 30.28  |
| ADARB2               | Adenosine Deaminase RNA Specific B2 (Inactive)   | 0.005   | 6.48   |
| NDST3                | N-Deacetylase And N-Sulfotransferase 3           | 0.011   | 4.21   |
| CCL8                 | C-C Motif Chemokine Ligand 8                     | 0.005   | 3.70   |
| KLHL41               | Kelch Like Family Member 41                      | 0.006   | 3.62   |
| GPR26                | G Protein-Coupled Receptor 26                    | 0.046   | 3.32   |
| OR2C3                | Olfactory Receptor Family 2 Subfamily C Member 3 | 0.019   | 3.01   |
| OR6K3                | Olfactory Receptor Family 6 Subfamily K Member 3 | 0.004   | 2.92   |
| PLSCR2               | Phospholipid Scramblase 2                        | 0.018   | 2.91   |
| CD177                | CD177 Molecule                                   | 0.005   | 2.79   |
| BCL2L14              | BCL2 Like 14                                     | 0.012   | 2.77   |
| MRGPRE               | MAS Related GPR Family Member E                  | 0.007   | 2.58   |
| CCL2                 | C-C Motif Chemokine Ligand 2                     | 0.003   | 2.55   |
| THSD7A               | Thrombospondin Type 1 Domain Containing 7A       | 0.009   | 2.55   |
| SIGLEC1              | Sialic Acid Binding Ig Like Lectin 1             | 0.001   | 2.46   |
| FBLIM1               | Filamin Binding LIM Protein 1                    | 0.035   | 2.43   |
| SLC28A2              | Solute Carrier Family 28 Member 2                | 0.038   | 2.42   |
| DCN                  | Decorin                                          | 0.030   | 2.39   |
| HESX1                | HESX Homeobox 1                                  | 0.021   | 2.38   |
| SLC7A4               | Solute Carrier Family 7 Member 4                 | 0.015   | 2.34   |
| IFI44L               | Interferon Induced Protein 44 Like               | 0.005   | 2.30   |
| TPSAB1               | Tryptase Alpha/Beta 1                            | 0.012   | 2.29   |
| IFI27                | Interferon Alpha Inducible Protein 27            | 0.016   | 2.28   |
| CCNA1                | Cyclin A1                                        | < 0.001 | 2.26   |
| EPHA10               | EPH Receptor A10                                 | 0.030   | 2.25   |
| PRRG1                | Proline Rich And Gla Domain 1                    | 0.012   | 2.25   |

| PROX1    | Prospero Homeobox 1                                         | 0.049   | 2.25 |
|----------|-------------------------------------------------------------|---------|------|
| RSAD2    | Radical S-Adenosyl Methionine Domain Containing 2           | 0.018   | 2.20 |
| CD163L1  | CD163 Molecule Like 1                                       | 0.047   | 2.18 |
| SFTPB    | Surfactant Protein B                                        | 0.046   | 2.16 |
| USP18    | Ubiquitin Specific Peptidase 18                             | 0.002   | 2.14 |
| ISG15    | ISG15 Ubiquitin Like Modifier                               | 0.006   | 2.13 |
| CFAP141  | Cilia And Flagella Associated Protein 141                   | 0.028   | 2.12 |
| PARD3B   | Par-3 Family Cell Polarity Regulator Beta                   | 0.036   | 2.11 |
| APOBEC3B | Apolipoprotein B Mrna Editing Enzyme Catalytic Subunit 3B   | 0.012   | 2.10 |
| SPAG17   | Sperm Associated Antigen 17                                 | 0.034   | 2.09 |
| H2BE1    | H2B.E Variant Histone 1                                     | 0.001   | 2.04 |
| IFIT1    | Interferon Induced Protein With Tetratricopeptide Repeats 1 | 0.012   | 2.04 |
| DLC1     | DLC1 Rho Gtpase Activating Protein                          | 0.010   | 2.00 |
| IFI44    | Interferon Induced Protein 44                               | 0.010   | 1.99 |
| SPESP1   | Sperm Equatorial Segment Protein 1                          | 0.027   | 1.98 |
| CXCL10   | C-X-C Motif Chemokine Ligand 10                             | 0.026   | 1.97 |
| TMC4     | Transmembrane Channel Like 4                                | < 0.001 | 1.96 |
| OAS3     | 2'-5'-Oligoadenylate Synthetase 3                           | 0.009   | 1.96 |
| СМРК2    | Cytidine/Uridine Monophosphate Kinase 2                     | 0.013   | 1.95 |
| VEPH1    | Ventricular Zone Expressed PH Domain Containing 1           | 0.005   | 1.94 |
| HPN      | Hepsin                                                      | 0.016   | 1.91 |
| DZIP1L   | DAZ Interacting Zinc Finger Protein 1 Like                  | 0.012   | 1.90 |
| PTGES3L  | Prostaglandin E Synthase 3 Like                             | 0.030   | 1.90 |
| TMEM92   | Transmembrane Protein 92                                    | 0.009   | 1.88 |
| MX1      | MX Dynamin Like Gtpase 1                                    | 0.004   | 1.87 |
| ВОК      | BCL2 Family Apoptosis Regulator BOK                         | 0.003   | 1.85 |
| MMP8     | Matrix Metallopeptidase 8                                   | 0.003   | 1.85 |
| TEX101   | Testis Expressed 101                                        | 0.032   | 1.85 |
| PTH2R    | Parathyroid Hormone 2 Receptor                              | 0.012   | 1.84 |
| PLSCR4   | Phospholipid Scramblase 4                                   | 0.048   | 1.84 |

| TMEM132<br>C | Transmembrane Protein 132C                                   | 0.044 | 1.83 |
|--------------|--------------------------------------------------------------|-------|------|
| SLC8A2       | Solute Carrier Family 8 Member A2                            | 0.022 | 1.80 |
| LAMP3        | Lysosomal Associated Membrane Protein 3                      | 0.025 | 1.79 |
| SPATA1       | Spermatogenesis Associated 1                                 | 0.005 | 1.79 |
| IFI6         | Interferon Alpha Inducible Protein 6                         | 0.012 | 1.78 |
| TRIM6        | Tripartite Motif Containing 6                                | 0.009 | 1.78 |
| HERC5        | HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase 5 | 0.013 | 1.77 |
| TLN2         | Talin 2                                                      | 0.038 | 1.77 |
| CATSPERE     | Catsper Channel Auxiliary Subunit Epsilon                    | 0.010 | 1.76 |
| BRCA2        | BRCA2 DNA Repair Associated                                  | 0.014 | 1.75 |
| MYH11        | Myosin Heavy Chain 11                                        | 0.031 | 1.75 |
| SERPINE1     | Serpin Family E Member 1                                     | 0.002 | 1.73 |
| C1QB         | Complement C1q B Chain                                       | 0.048 | 1.72 |
| MSR1         | Macrophage Scavenger Receptor 1                              | 0.010 | 1.71 |
| CCDC194      | Coiled-Coil Domain Containing 194                            | 0.023 | 1.71 |
| MCM10        | Minichromosome Maintenance 10 Replication Initiation Factor  | 0.025 | 1.71 |
| KIF7         | Kinesin Family Member 7                                      | 0.007 | 1.71 |
| AGRN         | Agrin                                                        | 0.003 | 1.70 |
| EXOC3L1      | Exocyst Complex Component 3 Like 1                           | 0.019 | 1.69 |
| IL31RA       | Interleukin 31 Receptor A                                    | 0.003 | 1.69 |
| KIF26A       | Kinesin Family Member 26A                                    | 0.022 | 1.68 |
| IFIT3        | Interferon Induced Protein With Tetratricopeptide Repeats 3  | 0.029 | 1.68 |
| CA6          | Carbonic Anhydrase 6                                         | 0.045 | 1.68 |
| ANO5         | Anoctamin 5                                                  | 0.005 | 1.68 |
| SAMD4A       | Sterile Alpha Motif Domain Containing 4A                     | 0.002 | 1.67 |
| TNFAIP6      | TNF Alpha Induced Protein 6                                  | 0.011 | 1.67 |
| NEXN         | Nexilin F-Actin Binding Protein                              | 0.020 | 1.66 |
| ANGPT1       | Angiopoietin 1                                               | 0.003 | 1.66 |
| LRRC43       | Leucine Rich Repeat Containing 43                            | 0.030 | 1.66 |

| PNMA5            | PNMA Family Member 5                                                                      | 0.028   | 1.65 |
|------------------|-------------------------------------------------------------------------------------------|---------|------|
| SELENOP          | Selenoprotein P                                                                           | 0.041   | 1.65 |
| IFIT2            | Interferon Induced Protein With Tetratricopeptide Repeats 2                               | 0.011   | 1.64 |
| LRRC7            | Leucine Rich Repeat Containing 7                                                          | 0.046   | 1.64 |
| LOC11226<br>7968 | Uncharacterized LOC112267968                                                              | 0.039   | 1.63 |
| SPX              | Spexin Hormone                                                                            | 0.005   | 1.63 |
| OASL             | 2'-5'-Oligoadenylate Synthetase Like                                                      | 0.027   | 1.62 |
| RUFY4            | RUN And FYVE Domain Containing 4                                                          | 0.006   | 1.62 |
| PIP5KL1          | Phosphatidylinositol-4-Phosphate 5-Kinase Like 1                                          | 0.024   | 1.62 |
| OAS2             | 2'-5'-Oligoadenylate Synthetase 2                                                         | 0.013   | 1.62 |
| LRRC37A          | Leucine Rich Repeat Containing 37A                                                        | 0.041   | 1.62 |
| IL27             | Interleukin 27                                                                            | 0.019   | 1.61 |
| XCL1             | X-C Motif Chemokine Ligand 1                                                              | 0.003   | 1.61 |
| OAS1             | 2'-5'-Oligoadenylate Synthetase 1                                                         | 0.022   | 1.61 |
| MIA              | MIA SH3 Domain Containing                                                                 | 0.046   | 1.60 |
| TTC26            | Tetratricopeptide Repeat Domain 26                                                        | 0.007   | 1.60 |
| MARCO            | Macrophage Receptor With Collagenous Structure                                            | 0.004   | 1.60 |
| CLDN23           | Claudin 23                                                                                | 0.001   | 1.58 |
| RSPH9            | Radial Spoke Head Component 9                                                             | 0.027   | 1.58 |
| IFITM3           | Interferon Induced Transmembrane Protein 3                                                | 0.042   | 1.57 |
| TRNP1            | TMF1 Regulated Nuclear Protein 1                                                          | 0.014   | 1.57 |
| CXCL8            | C-X-C Motif Chemokine Ligand 8                                                            | 0.032   | 1.56 |
| PLA2G7           | Phospholipase A2 Group VII                                                                | < 0.001 | 1.56 |
| ZNF684           | Zinc Finger Protein 684                                                                   | 0.008   | 1.56 |
| PLSCR1           | Phospholipid Scramblase 1                                                                 | 0.004   | 1.55 |
| PGAM2            | Phosphoglycerate Mutase 2                                                                 | 0.003   | 1.54 |
| GNAI1            | G Protein Subunit Alpha I1                                                                | 0.014   | 1.54 |
| KIR3DL1          | Killer Cell Immunoglobulin Like Receptor, Three Ig Domains<br>And Long Cytoplasmic Tail 1 | 0.010   | 1.53 |

| LGALS9B          | Galectin 9B                                                                   | 0.012 | 1.53 |
|------------------|-------------------------------------------------------------------------------|-------|------|
| HERC6            | HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase<br>Family Member 6 | 0.003 | 1.53 |
| PRR5-<br>ARHGAP8 | PRR5-ARHGAP8 Readthrough                                                      | 0.045 | 1.53 |
| TMEM51           | Transmembrane Protein 51                                                      | 0.018 | 1.53 |
| CDKL1            | Cyclin Dependent Kinase Like 1                                                | 0.004 | 1.53 |
| SOX7             | SRY-Box Transcription Factor 7                                                | 0.028 | 1.52 |
| FAT4             | FAT Atypical Cadherin 4                                                       | 0.046 | 1.52 |
| XYLB             | Xylulokinase                                                                  | 0.020 | 1.52 |
| DIXDC1           | DIX Domain Containing 1                                                       | 0.009 | 1.51 |
| WNT5B            | Wnt Family Member 5B                                                          | 0.006 | 1.50 |
| OBSL1            | Obscurin Like Cytoskeletal Adaptor 1                                          | 0.030 | 1.50 |
| GAS2L3           | Growth Arrest Specific 2 Like 3                                               | 0.037 | 1.49 |
| SPATC1           | Spermatogenesis And Centriole Associated 1                                    | 0.043 | 1.49 |
| TFEC             | Transcription Factor EC                                                       | 0.005 | 1.49 |
| TLR3             | Toll Like Receptor 3                                                          | 0.014 | 1.48 |
| EIF2AK2          | Eukaryotic Translation Initiation Factor 2 Alpha Kinase 2                     | 0.009 | 1.48 |
| LRP6             | LDL Receptor Related Protein 6                                                | 0.031 | 1.47 |
| MT2A             | Metallothionein 2A                                                            | 0.043 | 1.47 |
| SUCNR1           | Succinate Receptor 1                                                          | 0.041 | 1.46 |
| IFIT5            | Interferon Induced Protein With Tetratricopeptide Repeats 5                   | 0.014 | 1.46 |
| DDX60            | Dexd/H-Box Helicase 60                                                        | 0.020 | 1.46 |
| CASP5            | Caspase 5                                                                     | 0.033 | 1.45 |
| C1R              | Complement C1r                                                                | 0.001 | 1.44 |
| TENM1            | Teneurin Transmembrane Protein 1                                              | 0.029 | 1.44 |
| ZNF117           | Zinc Finger Protein 117                                                       | 0.001 | 1.44 |
| LCN2             | Lipocalin 2                                                                   | 0.019 | 1.44 |
| НОХА9            | Homeobox A9                                                                   | 0.028 | 1.43 |
| ANKRD9           | Ankyrin Repeat Domain 9                                                       | 0.012 | 1.43 |

| TDRP    | Testis Development Related Protein                                              | 0.038   | 1.42 |
|---------|---------------------------------------------------------------------------------|---------|------|
| IL3RA   | Interleukin 3 Receptor Subunit Alpha                                            | 0.004   | 1.42 |
| BCAT1   | Branched Chain Amino Acid Transaminase 1                                        | 0.046   | 1.42 |
| TDRD9   | Tudor Domain Containing 9                                                       | 0.025   | 1.41 |
| DDX60L  | Dexd/H-Box 60 Like                                                              | 0.007   | 1.41 |
| FRMD3   | FERM Domain Containing 3                                                        | 0.031   | 1.41 |
| TCN2    | Transcobalamin 2                                                                | 0.015   | 1.41 |
| IFIH1   | Interferon Induced With Helicase C Domain 1                                     | 0.009   | 1.41 |
| НР      | Haptoglobin                                                                     | 0.044   | 1.40 |
| LRRC75B | Leucine Rich Repeat Containing 75B                                              | 0.017   | 1.40 |
| CA8     | Carbonic Anhydrase 8                                                            | 0.039   | 1.40 |
| ODF3B   | Outer Dense Fiber Of Sperm Tails 3B                                             | 0.018   | 1.39 |
| SNORC   | Secondary Ossification Center Associated Regulator Of<br>Chondrocyte Maturation | 0.030   | 1.39 |
| LAP3    | Leucine Aminopeptidase 3                                                        | 0.032   | 1.39 |
| TNFSF10 | TNF Superfamily Member 10                                                       | 0.014   | 1.38 |
| DHX58   | Dexh-Box Helicase 58                                                            | 0.018   | 1.38 |
| SRGAP2B | SLIT-ROBO Rho Gtpase Activating Protein 2B                                      | 0.009   | 1.38 |
| PGAP1   | Post-GPI Attachment To Proteins Inositol Deacylase 1                            | 0.037   | 1.37 |
| ALDH8A1 | Aldehyde Dehydrogenase 8 Family Member A1                                       | 0.019   | 1.37 |
| CNTLN   | Centlein                                                                        | 0.009   | 1.36 |
| CDH26   | Cadherin 26                                                                     | 0.039   | 1.36 |
| IRF7    | Interferon Regulatory Factor 7                                                  | 0.029   | 1.36 |
| GCSAML  | Germinal Center Associated Signaling And Motility Like                          | 0.048   | 1.36 |
| BATF3   | Basic Leucine Zipper ATF-Like Transcription Factor 3                            | 0.020   | 1.36 |
| NOMO3   | NODAL Modulator 3                                                               | < 0.001 | 1.36 |
| DDX58   | Dexd/H-Box Helicase 58                                                          | 0.037   | 1.36 |
| TRPM4   | Transient Receptor Potential Cation Channel Subfamily M<br>Member 4             | 0.030   | 1.35 |
| РОМС    | Proopiomelanocortin                                                             | 0.017   | 1.35 |

| DERPC    | DERPC Proline And Glycine Rich Nuclear Protein            | 0.019 | 1.35 |
|----------|-----------------------------------------------------------|-------|------|
| LRRC37A2 | Leucine Rich Repeat Containing 37 Member A2               | 0.045 | 1.35 |
| FLACC1   | Flagellum Associated Containing Coiled-Coil Domains 1     | 0.037 | 1.34 |
| LYVE1    | Lymphatic Vessel Endothelial Hyaluronan Receptor 1        | 0.047 | 1.34 |
| MX2      | MX Dynamin Like Gtpase 2                                  | 0.011 | 1.34 |
| SLC16A4  | Solute Carrier Family 16 Member 4                         | 0.043 | 1.34 |
| H4C8     | H4 Clustered Histone 8                                    | 0.033 | 1.34 |
| SAMD9L   | Sterile Alpha Motif Domain Containing 9 Like              | 0.033 | 1.34 |
| FGD6     | FYVE, Rhogef And PH Domain Containing 6                   | 0.011 | 1.34 |
| KIAA1958 | Kiaa1958                                                  | 0.035 | 1.34 |
| TRIM22   | Tripartite Motif Containing 22                            | 0.039 | 1.33 |
| PARP12   | Poly(ADP-Ribose) Polymerase Family Member 12              | 0.015 | 1.33 |
| SAMD9    | Sterile Alpha Motif Domain Containing 9                   | 0.023 | 1.33 |
| SHB      | SH2 Domain Containing Adaptor Protein B                   | 0.017 | 1.33 |
| APOBEC3A | Apolipoprotein B Mrna Editing Enzyme Catalytic Subunit 3A | 0.011 | 1.32 |
| FZD5     | Frizzled Class Receptor 5                                 | 0.018 | 1.32 |
| ZNF107   | Zinc Finger Protein 107                                   | 0.004 | 1.32 |
| ALDH1A1  | Aldehyde Dehydrogenase 1 Family Member A1                 | 0.006 | 1.32 |
| ICA1L    | Islet Cell Autoantigen 1 Like                             | 0.041 | 1.31 |
| FCGR2B   | Fc Fragment Of Igg Receptor lib                           | 0.017 | 1.31 |
| SDSL     | Serine Dehydratase Like                                   | 0.043 | 1.31 |
| AGBL2    | AGBL Carboxypeptidase 2                                   | 0.036 | 1.31 |
| CCDC24   | Coiled-Coil Domain Containing 24                          | 0.003 | 1.31 |
| STEAP3   | STEAP3 Metalloreductase                                   | 0.021 | 1.30 |
| IL17RC   | Interleukin 17 Receptor C                                 | 0.018 | 1.30 |
| OSM      | Oncostatin M                                              | 0.014 | 1.30 |
| TNFSF13B | TNF Superfamily Member 13b                                | 0.050 | 1.30 |
| HPSE     | Heparanase                                                | 0.010 | 1.30 |
| CCDC62   | Coiled-Coil Domain Containing 62                          | 0.046 | 1.29 |
| TREX1    | Three Prime Repair Exonuclease 1                          | 0.018 | 1.29 |

| FOLR2     | Folate Receptor Beta                               | 0.014 | 1.29 |
|-----------|----------------------------------------------------|-------|------|
| PARP9     | Poly(ADP-Ribose) Polymerase Family Member 9        | 0.039 | 1.29 |
|           |                                                    |       |      |
| SLFN12    | Schlafen Family Member 12                          | 0.028 | 1.29 |
| IL1RN     | Interleukin 1 Receptor Antagonist                  | 0.035 | 1.29 |
| KIF16B    | Kinesin Family Member 16B                          | 0.006 | 1.28 |
| TMEM123   | Transmembrane Protein 123                          | 0.020 | 1.28 |
| FLVCR2    | FLVCR Heme Transporter 2                           | 0.007 | 1.28 |
| STON2     | Stonin 2                                           | 0.044 | 1.28 |
| ERMN      | Ermin                                              | 0.021 | 1.28 |
| SLC24A4   | Solute Carrier Family 24 Member 4                  | 0.017 | 1.27 |
| RNF165    | Ring Finger Protein 165                            | 0.038 | 1.27 |
| ATP8B4    | Atpase Phospholipid Transporting 8B4 (Putative)    | 0.003 | 1.27 |
| NT5C3A    | 5'-Nucleotidase, Cytosolic IIIA                    | 0.029 | 1.27 |
| ТҮМР      | Thymidine Phosphorylase                            | 0.036 | 1.27 |
| MAFB      | MAF Bzip Transcription Factor B                    | 0.035 | 1.27 |
| KIAA0895L | KIAA0895 Like                                      | 0.025 | 1.27 |
| IL15RA    | Interleukin 15 Receptor Subunit Alpha              | 0.008 | 1.27 |
| SCARF1    | Scavenger Receptor Class F Member 1                | 0.036 | 1.27 |
| PLA2G4A   | Phospholipase A2 Group IVA                         | 0.017 | 1.26 |
| CCL3      | C-C Motif Chemokine Ligand 3                       | 0.021 | 1.26 |
| CCDC78    | Coiled-Coil Domain Containing 78                   | 0.025 | 1.26 |
| KIAA1522  | Kiaa1522                                           | 0.011 | 1.26 |
| IFI16     | Interferon Gamma Inducible Protein 16              | 0.009 | 1.26 |
| ERV3-1    | Endogenous Retrovirus Group 3 Member 1, Envelope   | 0.019 | 1.25 |
| BST2      | Bone Marrow Stromal Cell Antigen 2                 | 0.037 | 1.25 |
| STAT2     | Signal Transducer And Activator Of Transcription 2 | 0.050 | 1.25 |
| C9orf72   | C9orf72-SMCR8 Complex Subunit                      | 0.012 | 1.25 |
| TRIM5     | Tripartite Motif Containing 5                      | 0.035 | 1.25 |
| ZNF253    | Zinc Finger Protein 253                            | 0.027 | 1.25 |
| RIN2      | Ras And Rab Interactor 2                           | 0.031 | 1.24 |

| CD300E       | CD300e Molecule                                                              | 0.047 | 1.24 |
|--------------|------------------------------------------------------------------------------|-------|------|
| NPIPB11      | Nuclear Pore Complex Interacting Protein Family Member B11                   | 0.011 | 1.24 |
| TMEM150<br>B | Transmembrane Protein 150B                                                   | 0.017 | 1.24 |
| NETO2        | Neuropilin And Tolloid Like 2                                                | 0.038 | 1.23 |
| NEK3         | NIMA Related Kinase 3                                                        | 0.001 | 1.23 |
| CPNE8        | Copine 8                                                                     | 0.031 | 1.23 |
| S1PR3        | Sphingosine-1-Phosphate Receptor 3                                           | 0.023 | 1.23 |
| РІКЗС2А      | Phosphatidylinositol-4-Phosphate 3-Kinase Catalytic Subunit<br>Type 2 Alpha  | 0.044 | 1.23 |
| H2BC21       | H2B Clustered Histone 21                                                     | 0.037 | 1.23 |
| GPD2         | Glycerol-3-Phosphate Dehydrogenase 2                                         | 0.034 | 1.23 |
| LMO2         | LIM Domain Only 2                                                            | 0.013 | 1.22 |
| RBM43        | RNA Binding Motif Protein 43                                                 | 0.011 | 1.22 |
| CCDC149      | Coiled-Coil Domain Containing 149                                            | 0.008 | 1.22 |
| STX2         | Syntaxin 2                                                                   | 0.025 | 1.22 |
| MNDA         | Myeloid Cell Nuclear Differentiation Antigen                                 | 0.012 | 1.22 |
| PBLD         | Phenazine Biosynthesis Like Protein Domain Containing                        | 0.012 | 1.22 |
| KCNMB1       | Potassium Calcium-Activated Channel Subfamily M Regulatory<br>Beta Subunit 1 | 0.036 | 1.22 |
| JAK2         | Janus Kinase 2                                                               | 0.032 | 1.21 |
| CREG1        | Cellular Repressor Of E1A Stimulated Genes 1                                 | 0.002 | 1.21 |
| KANK3        | KN Motif And Ankyrin Repeat Domains 3                                        | 0.045 | 1.21 |
| CCRL2        | C-C Motif Chemokine Receptor Like 2                                          | 0.023 | 1.21 |
| ZNF528       | Zinc Finger Protein 528                                                      | 0.045 | 1.21 |
| MARCHF1      | Membrane Associated Ring-CH-Type Finger 1                                    | 0.024 | 1.21 |
| PHF11        | PHD Finger Protein 11                                                        | 0.007 | 1.21 |
| UNC93B1      | Unc-93 Homolog B1, TLR Signaling Regulator                                   | 0.025 | 1.21 |
| ASGR1        | Asialoglycoprotein Receptor 1                                                | 0.050 | 1.21 |
| STAC3        | SH3 And Cysteine Rich Domain 3                                               | 0.036 | 1.21 |
| TSPAN4       | Tetraspanin 4                                                                | 0.003 | 1.20 |

| CPVL             | Carboxypeptidase Vitellogenic Like                                  | 0.014 | 1.20  |
|------------------|---------------------------------------------------------------------|-------|-------|
| FAM8A1           | Family With Sequence Similarity 8 Member A1                         | 0.020 | 1.20  |
| CALML4           | Calmodulin Like 4                                                   | 0.019 | 1.20  |
| SLC2A9           | Solute Carrier Family 2 Member 9                                    | 0.003 | 1.20  |
| P2RX7            | Purinergic Receptor P2X 7                                           | 0.024 | 1.20  |
| H2AC6            | H2A Clustered Histone 6                                             | 0.026 | 1.20  |
| НІВСН            | 3-Hydroxyisobutyryl-Coa Hydrolase                                   | 0.021 | -1.20 |
| RAB30            | RAB30, Member RAS Oncogene Family                                   | 0.047 | -1.20 |
| CD79A            | CD79a Molecule                                                      | 0.039 | -1.21 |
| SEMA4F           | Ssemaphorin 4F                                                      | 0.004 | -1.21 |
| C16orf74         | Chromosome 16 Open Reading Frame 74                                 | 0.024 | -1.21 |
| CD72             | CD72 Molecule                                                       | 0.045 | -1.22 |
| NME4             | NME/NM23 Nucleoside Diphosphate Kinase 4                            | 0.025 | -1.22 |
| PLXNA1           | Plexin A1                                                           | 0.017 | -1.22 |
| FBLN7            | Fibulin 7                                                           | 0.029 | -1.22 |
| NET1             | Neuroepithelial Cell Transforming 1                                 | 0.039 | -1.22 |
| STRBP            | Spermatid Perinuclear RNA Binding Protein                           | 0.010 | -1.22 |
| CD19             | CD19 Molecule                                                       | 0.026 | -1.23 |
| PALD1            | Phosphatase Domain Containing Paladin 1                             | 0.032 | -1.23 |
| PMEPA1           | Prostate Transmembrane Protein, Androgen Induced 1                  | 0.038 | -1.23 |
| FAM241B          | Family With Sequence Similarity 241 Member B                        | 0.015 | -1.23 |
| NT5DC2           | 5'-Nucleotidase Domain Containing 2                                 | 0.049 | -1.23 |
| KLHL14           | Kelch Like Family Member 14                                         | 0.034 | -1.23 |
| WFS1             | Wolframin ER Transmembrane Glycoprotein                             | 0.026 | -1.23 |
| LRFN3            | Leucine Rich Repeat And Fibronectin Type III Domain<br>Containing 3 | 0.029 | -1.24 |
| PRICKLE1         | Prickle Planar Cell Polarity Protein 1                              | 0.030 | -1.24 |
| LOC11269<br>4756 | Uncharaterized LOC112694756                                         | 0.039 | -1.24 |
| PHACTR1          | Phosphatase And Actin Regulator 1                                   | 0.036 | -1.25 |

| ZNF28    | Zinc Finger Protein 28                                   | 0.040   | -1.25 |
|----------|----------------------------------------------------------|---------|-------|
| NBPF20   | NBPF Member 20                                           | 0.034   | -1.25 |
| ENC1     | Ectodermal-Neural Cortex 1                               | 0.044   | -1.25 |
| RDH10    | Retinol Dehydrogenase 10                                 | 0.006   | -1.25 |
| SLC9A7   | Solute Carrier Family 9 Member A7                        | 0.003   | -1.26 |
| KRTCAP3  | Keratinocyte Associated Protein 3                        | 0.022   | -1.26 |
| PDE7B    | Phosphodiesterase 7B                                     | 0.032   | -1.27 |
| PPP1R13L | Protein Phosphatase 1 Regulatory Subunit 13 Like         | 0.025   | -1.27 |
| RTN4RL1  | Reticulon 4 Receptor Like 1                              | 0.047   | -1.28 |
| DPF3     | Double PHD Fingers 3                                     | 0.043   | -1.29 |
| CBR3     | Carbonyl Reductase 3                                     | 0.038   | -1.30 |
| SVIP     | Small VCP Interacting Protein                            | 0.043   | -1.30 |
| SPAG8    | Sperm Associated Antigen 8                               | 0.029   | -1.30 |
| WNT10A   | Wnt Family Member 10A                                    | 0.010   | -1.30 |
| COBLL1   | ,<br>Cordon-Bleu WH2 Repeat Protein Like 1               | 0.024   | -1.30 |
| DTX1     | Deltex E3 Ubiquitin Ligase 1                             | < 0.001 | -1.31 |
| ESR1     | Estrogen Receptor 1                                      | 0.028   | -1.31 |
| SLC16A11 | Solute Carrier Family 16 Member 11                       | 0.040   | -1.32 |
| XPNPEP2  | X-Prolyl Aminopeptidase 2                                | 0.018   | -1.32 |
| AFAP1    | Actin Filament Associated Protein 1                      | 0.035   | -1.33 |
| EML5     | EMAP Like 5                                              |         | -1.33 |
|          |                                                          | 0.016   |       |
| ANKRD26  | Ankyrin Repeat Domain 26                                 | 0.022   | -1.34 |
| RHOBTB3  | Rho Related BTB Domain Containing 3                      | 0.036   | -1.34 |
| FBXO2    | F-Box Protein 2                                          | 0.006   | -1.34 |
| PKMYT1   | Protein Kinase, Membrane Associated Tyrosine/Threonine 1 | 0.043   | -1.35 |
| CEP170B  | Centrosomal Protein 170B                                 | 0.024   | -1.35 |
| SLC35F3  | Solute Carrier Family 35 Member F3                       | 0.025   | -1.39 |
| CCR9     | C-C Motif Chemokine Receptor 9                           | 0.044   | -1.40 |
| TCL1A    | TCL1 Family AKT Coactivator A                            | 0.013   | -1.40 |
| SLC16A14 | Solute Carrier Family 16 Member 14                       | 0.046   | -1.41 |

| MSC     | Musculin                                                         | 0.019   | -1.42 |
|---------|------------------------------------------------------------------|---------|-------|
| GRIK5   | Glutamate Ionotropic Receptor Kainate Type Subunit 5             | 0.024   | -1.42 |
| ZNF683  | Zinc Finger Protein 683                                          | 0.007   | -1.42 |
| ACOT11  | Acyl-Coa Thioesterase 11                                         | 0.042   | -1.42 |
| CCDC170 | Coiled-Coil Domain Containing 170                                | 0.006   | -1.42 |
| SEC14L2 | SEC14 Like Lipid Binding 2                                       | 0.016   | -1.42 |
| MMP24   | Matrix Metallopeptidase 24                                       | 0.029   | -1.43 |
| NRCAM   | Neuronal Cell Adhesion Molecule                                  | 0.028   | -1.43 |
| CYP46A1 | Cytochrome P450 Family 46 Subfamily A Member 1                   | 0.012   | -1.46 |
| GLB1L2  | Galactosidase Beta 1 Like 2                                      | 0.025   | -1.47 |
| ЕРНВЗ   | EPH Receptor B3                                                  | 0.032   | -1.47 |
| GPHN    | Gephyrin                                                         | < 0.001 | -1.47 |
| GGT5    | Gamma-Glutamyltransferase 5                                      | 0.036   | -1.48 |
| LCN12   | Lipocalin 12                                                     | 0.025   | -1.48 |
| KLC3    | Kinesin Light Chain 3                                            | 0.041   | -1.49 |
| ТТСЗ9А  | Tetratricopeptide Repeat Domain 39A                              | 0.013   | -1.49 |
| ISM1    | Isthmin 1                                                        | 0.017   | -1.50 |
| PLLP    | Plasmolipin                                                      | 0.001   | -1.51 |
| PTPRF   | Protein Tyrosine Phosphatase Receptor Type F                     | 0.050   | -1.51 |
| RPL9    | Ribosomal Protein L9                                             | 0.037   | -1.51 |
| ESPNL   | Espin Like                                                       | 0.023   | -1.52 |
| PMFBP1  | Polyamine Modulated Factor 1 Binding Protein 1                   | 0.013   | -1.53 |
| GSTA4   | Glutathione S-Transferase Alpha 4                                | 0.008   | -1.54 |
| APOLD1  | Apolipoprotein L Domain Containing 1                             | 0.019   | -1.55 |
| DHDH    | Dihydrodiol Dehydrogenase                                        | 0.024   | -1.56 |
| REELD1  | Reeler Domain Containing 1                                       | 0.010   | -1.57 |
| SLC5A10 | Solute Carrier Family 5 Member 10                                | 0.004   | -1.57 |
| ATP2A1  | Atpase Sarcoplasmic/Endoplasmic Reticulum Ca2+<br>Transporting 1 | 0.013   | -1.57 |

| KHDRBS3  | KH RNA Binding Domain Containing, Signal Transduction<br>Associated 3 | 0.034 | -1.60 |
|----------|-----------------------------------------------------------------------|-------|-------|
| SNX32    | Sorting Nexin 32                                                      | 0.004 | -1.60 |
| SEMA5A   | Semaphorin 5A                                                         | 0.028 | -1.61 |
| CABP7    | Calcium Binding Protein 7                                             | 0.036 | -1.63 |
| IL24     | Interleukin 24                                                        | 0.044 | -1.65 |
| ERVH48-1 | Endogenous Retrovirus Group 48 Member 1                               | 0.029 | -1.66 |
| IGDCC4   | Immunoglobulin Superfamily DCC Subclass Member 4                      | 0.013 | -1.67 |
| FSIP1    | Fibrous Sheath Interacting Protein 1                                  | 0.049 | -1.67 |
| THRB     | Thyroid Hormone Receptor Beta                                         | 0.016 | -1.68 |
| FAM78B   | Family With Sequence Similarity 78 Member B                           | 0.021 | -1.68 |
| CFAP251  | Cilia And Flagella Associated Protein 251                             | 0.007 | -1.71 |
| CPNE6    | Copine 6                                                              | 0.022 | -1.71 |
| PLA2G4C  | Phospholipase A2 Group IVC                                            | 0.011 | -1.73 |
| FMN1     | Formin 1                                                              | 0.032 | -1.74 |
| TNNT1    | Troponin T1, Slow Skeletal Type                                       | 0.001 | -1.76 |
| PDZD3    | PDZ Domain Containing 3                                               | 0.018 | -1.76 |
| MYBPC2   | Myosin Binding Protein C2                                             | 0.038 | -1.77 |
| CDH4     | Cadherin 4                                                            | 0.038 | -1.77 |
| SIGLEC12 | Sialic Acid Binding Ig Like Lectin 12                                 | 0.023 | -1.77 |
| APC2     | APC Regulator Of WNT Signaling Pathway 2                              | 0.043 | -1.79 |
| TM4SF19  | Transmembrane 4 L Six Family Member 19                                | 0.009 | -1.80 |
| MAST1    | Microtubule Associated Serine/Threonine Kinase 1                      | 0.011 | -1.81 |
| TNS2     | Tensin 2                                                              | 0.022 | -1.84 |
| GABRD    | Gamma-Aminobutyric Acid Type A Receptor Subunit Delta                 | 0.025 | -1.89 |
| COL15A1  | Collagen Type XV Alpha 1 Chain                                        | 0.023 | -1.89 |
| GRK7     | G Protein-Coupled Receptor Kinase 7                                   | 0.024 | -1.90 |
| SLC2A12  | Solute Carrier Family 2 Member 12                                     | 0.046 | -1.93 |
| PLPP2    | Phospholipid Phosphatase 2                                            | 0.024 | -1.93 |
| LCA5     | Lebercilin LCA5                                                       | 0.033 | -1.93 |

| SCN11A        | Sodium Voltage-Gated Channel Alpha Subunit 11     | 0.012   | -1.97               |
|---------------|---------------------------------------------------|---------|---------------------|
| PPARGC1A      | PPARG Coactivator 1 Alpha                         | 0.037   | -1.98               |
| TACSTD2       | Tumor Associated Calcium Signal Transducer 2      | 0.010   | -2.01               |
| EFCAB1        | EF-Hand Calcium Binding Domain 1                  | 0.038   | -2.01               |
| CPA5          | Carboxypeptidase A5                               | 0.028   | -2.02               |
| CDK15         | Cyclin Dependent Kinase 15                        | 0.034   | -2.03               |
| CERKL         | Ceramide Kinase Like                              | 0.018   | -2.09               |
| LONRF2        | LON Peptidase N-Terminal Domain And Ring Finger 2 | 0.046   | -2.10               |
| RPRML         | Reprimo Like                                      | 0.040   | -2.12               |
| TENM4         | Teneurin Transmembrane Protein 4                  | 0.025   | -2.14               |
| EYA1          | EYA Transcriptional Coactivator And Phosphatase 1 | 0.041   | -2.15               |
| IGSF9         | Immunoglobulin Superfamily Member 9               | 0.015   | -2.20               |
| RAG1          | Recombination Activating 1                        | 0.001   | -2.25               |
| GRIP1         | Glutamate Receptor Interacting Protein 1          | 0.001   | -2.34               |
| SMIM10L2<br>B | Small Integral Membrane Protein 10 Like 2B        | 0.033   | -2.40               |
| SAXO2         | Stabilizer Of Axonemal Microtubules 2             | 0.013   | -2.47               |
| PCDH8         | Protocadherin 8                                   | 0.004   | -2.50               |
| MTRNR2L8      | MT-RNR2 Like 8                                    | 0.003   | -2.69               |
| VPREB1        | V-Set Pre-B Cell Surrogate Light Chain 1          | 0.016   | -2.97               |
| C4BPA         | Complement Component 4 Binding Protein Alpha      | 0.006   | -2.97               |
| PCDHA4        | Protocadherin Alpha 4                             | 0.040   | -3.04               |
| C17orf50      | Chromosome 17 Open Reading Frame 50               | 0.020   | -3.10               |
| MUC12         | Mucin 12, Cell Surface Associated                 | 0.041   | -3.21               |
| DMRTC1        | DMRT Like Family C1                               | 0.002   | -3.67               |
| RNF150        | Ring Finger Protein 150                           | 0.006   | -4.42               |
| GRIP2         | Glutamate Receptor Interacting Protein 2          | 0.002   | -5.49               |
| CSH2          | Chorionic Somatomammotropin Hormone 2             | < 0.001 | -40x10 <sup>5</sup> |

Table 8E. List of 471 genes differently modulated in females MDD vs females LR from the RNA-Seq analysis (FC  $\pm |1.2|$ , p-value < 0.05)</td>

-----

| Gene     | Gene Assignment                                     | p-value | Fold-  |
|----------|-----------------------------------------------------|---------|--------|
| Symbol   |                                                     | p-value | Change |
| TBC1D3   | TBC1 Domain Family Member 3                         | 0.002   | 39.05  |
| PRSS50   | Serine Protease 50                                  | 0.004   | 4.66   |
| SCGB3A1  | Secretoglobin Family 3A Member 1                    | < 0.001 | 4.52   |
| TM4SF1   | Transmembrane 4 L Six Family Member 1               | 0.017   | 3.95   |
| RP1L1    | RP1 Like 1                                          | 0.044   | 3.10   |
| HBG2     | Hemoglobin Subunit Gamma 2                          | 0.013   | 2.72   |
| DNAH12   | Dynein Axonemal Heavy Chain 12                      | 0.015   | 2.64   |
| CA12     | Carbonic Anhydrase 12                               | 0.006   | 2.56   |
| ADCY10   | Adenylate Cyclase 10                                | 0.010   | 2.52   |
| INAVA    | Innate Immunity Activator                           | 0.004   | 2.51   |
| KIF26A   | Kinesin Family Member 26A                           | 0.006   | 2.47   |
| VSIG8    | V-Set And Immunoglobulin Domain Containing 8        | 0.011   | 2.37   |
| FAM72C   | Family With Sequence Similarity 72 Member C         | 0.045   | 2.32   |
| SFTPB    | Surfactant Protein B                                | 0.036   | 2.31   |
| COL16A1  | Collagen Type XVI Alpha 1 Chain                     | 0.049   | 2.30   |
| SPESP1   | Sperm Equatorial Segment Protein 1                  | 0.013   | 2.28   |
| PLSCR4   | Phospholipid Scramblase 4                           | 0.018   | 2.22   |
| DNAH7    | Dynein Axonemal Heavy Chain 7                       | 0.033   | 2.20   |
| GPRC5C   | G Protein-Coupled Receptor Class C Group 5 Member C | 0.011   | 2.13   |
| DRC3     | Dynein Regulatory Complex Subunit 3                 | 0.032   | 2.02   |
| CIART    | Circadian Associated Repressor Of Transcription     | 0.025   | 1.91   |
| CATSPERE | Catsper Channel Auxiliary Subunit Epsilon           | 0.006   | 1.91   |
| CBS      | Cystathionine Beta-Synthase                         | 0.003   | 1.90   |
| SHANK2   | SH3 And Multiple Ankyrin Repeat Domains 2           | 0.028   | 1.89   |
| CERS3    | Ceramide Synthase 3                                 | 0.036   | 1.88   |
| HPN      | Hepsin                                              | 0.022   | 1.84   |

| CORO7-  |                                                    | 0.000 | 4.00 |
|---------|----------------------------------------------------|-------|------|
| PAM16   | CORO7-PAM16 Readthrough                            | 0.022 | 1.80 |
| H2BC17  | H2B Clustered Histone 17                           | 0.014 | 1.76 |
| KIF7    | Kinesin Family Member 7                            | 0.020 | 1.76 |
| DNAH17  | Dynein Axonemal Heavy Chain 17                     | 0.049 | 1.74 |
| TMEM92  | Transmembrane Protein 92                           | 0.026 | 1.73 |
| OXTR    | Oxytocin Receptor                                  | 0.022 | 1.73 |
| U2AF1   | U2 Small Nuclear RNA Auxiliary Factor 1            | 0.024 | 1.73 |
| DZIP1L  | DAZ Interacting Zinc Finger Protein 1 Like         | 0.044 | 1.71 |
| ITGA9   | Integrin Subunit Alpha 9                           | 0.014 | 1.69 |
| RASL10A | RAS Like Family 10 Member A                        | 0.010 | 1.68 |
| SEMG1   | Semenogelin 1                                      | 0.036 | 1.68 |
| TMC4    | Transmembrane Channel Like 4                       | 0.003 | 1.66 |
| KIF4A   | Kinesin Family Member 4A                           | 0.033 | 1.65 |
| PRRG2   | Proline Rich And Gla Domain 2                      | 0.037 | 1.64 |
| CYB5R2  | Cytochrome B5 Reductase 2                          | 0.027 | 1.64 |
| CLEC18B | C-Type Lectin Domain Family 18 Member B            | 0.028 | 1.63 |
| GRIN3B  | Glutamate Ionotropic Receptor NMDA Type Subunit 3B | 0.018 | 1.61 |
| DUSP13  | Dual Specificity Phosphatase 13                    | 0.044 | 1.61 |
| OSCP1   | Organic Solute Carrier Partner 1                   | 0.049 | 1.60 |
| TNFAIP6 | TNF Alpha Induced Protein 6                        | 0.025 | 1.59 |
| SFN     | Stratifin                                          | 0.013 | 1.59 |
| WWTR1   | WW Domain Containing Transcription Regulator 1     | 0.031 | 1.58 |
| CCNA1   | Cyclin A1                                          | 0.049 | 1.54 |
| ALPK3   | Alpha Kinase 3                                     | 0.010 | 1.52 |
| H2AC8   | H2A Clustered Histone 8                            | 0.015 | 1.51 |
| C5orf34 | Chromosome 5 Open Reading Frame 34                 | 0.016 | 1.49 |
| GBP6    | Guanylate Binding Protein Family Member 6          | 0.029 | 1.48 |
| MGAM2   | Maltase-Glucoamylase 2 (Putative)                  | 0.034 | 1.47 |
| LYG1    | Lysozyme G1                                        | 0.002 | 1.46 |

| LOC40049 |                                                         | 0.001   | 4.46 |
|----------|---------------------------------------------------------|---------|------|
| 9        | Putative Uncharacterized Protein LOC400499              | 0.001   | 1.46 |
| EDA      | Ectodysplasin A                                         | 0.044   | 1.46 |
| DCAF4L1  | DDB1 And CUL4 Associated Factor 4 Like 1                | 0.007   | 1.46 |
| RSPH9    | Radial Spoke Head Component 9                           | 0.048   | 1.44 |
| CFAP45   | Cilia And Flagella Associated Protein 45                | 0.008   | 1.44 |
| SUV39H2  | SUV39H2 Histone Lysine Methyltransferase                | 0.023   | 1.44 |
| C4orf50  | Chromosome 4 Open Reading Frame 50                      | 0.045   | 1.44 |
| COL18A1  | Collagen Type XVIII Alpha 1 Chain                       | 0.005   | 1.43 |
| C1R      | Complement C1r                                          | 0.002   | 1.43 |
| LSMEM1   | Leucine Rich Single-Pass Membrane Protein 1             | 0.013   | 1.42 |
| FAM174B  | Family With Sequence Similarity 174 Member B            | 0.008   | 1.42 |
| GCM1     | Glial Cells Missing Transcription Factor 1              | 0.007   | 1.41 |
| FANCM    | FA Complementation Group M                              | 0.036   | 1.41 |
| SCARF1   | Scavenger Receptor Class F Member 1                     | 0.003   | 1.40 |
| GABRR2   | Gamma-Aminobutyric Acid Type A Receptor Subunit Rho2    | 0.014   | 1.40 |
| INSL3    | Insulin Like 3                                          | 0.010   | 1.39 |
| H2BC8    | H2B Clustered Histone 8                                 | 0.019   | 1.39 |
| PTGFRN   | Prostaglandin F2 Receptor Inhibitor                     | 0.043   | 1.38 |
| PIGB     | Phosphatidylinositol Glycan Anchor Biosynthesis Class B | 0.001   | 1.37 |
| VNN1     | Vanin 1                                                 | 0.040   | 1.37 |
| H2BC21   | H2B Clustered Histone 21                                | < 0.001 | 1.36 |
| S1PR3    | Sphingosine-1-Phosphate Receptor 3                      | 0.001   | 1.36 |
| PRRG4    | Proline Rich And Gla Domain 4                           | 0.012   | 1.36 |
| ASPRV1   | Aspartic Peptidase Retroviral Like 1                    | 0.022   | 1.36 |
| HOXA1    | Homeobox A1                                             | 0.027   | 1.35 |
| CRABP2   | Cellular Retinoic Acid Binding Protein 2                | 0.047   | 1.35 |
| GGT1     | Gamma-Glutamyltransferase 1                             | 0.011   | 1.34 |
| PLAU     | Plasminogen Activator, Urokinase                        | 0.035   | 1.34 |
| HCAR3    | Hydroxycarboxylic Acid Receptor 3                       | 0.004   | 1.34 |

| NHLH1    | Nescient Helix-Loop-Helix 1                             | 0.018 | 1.34 |
|----------|---------------------------------------------------------|-------|------|
| IL1RN    | Interleukin 1 Receptor Antagonist                       | 0.009 | 1.34 |
| BORCS8-  | BORCS8-MEF2B Readthrough                                | 0.049 | 1.33 |
| MEF2B    |                                                         | 0.045 | 1.55 |
| IL3RA    | Interleukin 3 Receptor Subunit Alpha                    | 0.024 | 1.33 |
| FZD5     | Frizzled Class Receptor 5                               | 0.030 | 1.33 |
| EEF1AKMT | EEF1A Lysine Methyltransferase 3                        | 0.016 | 1.33 |
| 3        |                                                         | 0.010 | 1.00 |
| ADM      | Adrenomedullin                                          | 0.036 | 1.32 |
| GHRL     | Ghrelin And Obestatin Prepropeptide                     | 0.008 | 1.32 |
| HSPA1B   | Heat Shock Protein Family A (Hsp70) Member 1B           | 0.003 | 1.32 |
| NFIL3    | Nuclear Factor, Interleukin 3 Regulated                 | 0.002 | 1.32 |
| UBE2D1   | Ubiquitin Conjugating Enzyme E2 D1                      | 0.021 | 1.32 |
| TLR2     | Toll Like Receptor 2                                    | 0.003 | 1.32 |
| SMAD1    | SMAD Family Member 1                                    | 0.031 | 1.32 |
| TAFA2    | TAFA Chemokine Like Family Member 2                     | 0.047 | 1.31 |
| PLGLB1   | Plasminogen Like B1                                     | 0.037 | 1.31 |
| ZCCHC2   | Zinc Finger CCHC-Type Containing 2                      | 0.045 | 1.31 |
| CLEC1A   | C-Type Lectin Domain Family 1 Member A                  | 0.036 | 1.31 |
| LOXL2    | Lysyl Oxidase Like 2                                    | 0.022 | 1.31 |
| ACSL1    | Acyl-Coa Synthetase Long Chain Family Member 1          | 0.026 | 1.31 |
| HCAR2    | Hydroxycarboxylic Acid Receptor 2                       | 0.006 | 1.31 |
| B4GALT5  | Beta-1,4-Galactosyltransferase 5                        | 0.004 | 1.30 |
| TRPM6    | Transient Receptor Potential Cation Channel Subfamily M | 0.029 | 1.30 |
|          | Member 6                                                | 01025 | 2.00 |
| ATP8B4   | Atpase Phospholipid Transporting 8B4 (Putative)         | 0.018 | 1.30 |
| FLVCR1   | FLVCR Heme Transporter 1                                | 0.010 | 1.30 |
| RRP12    | Ribosomal RNA Processing 12 Homolog                     | 0.014 | 1.30 |
| ZNF107   | Zinc Finger Protein 107                                 | 0.018 | 1.29 |
| SIPA1L2  | Signal Induced Proliferation Associated 1 Like 2        | 0.011 | 1.29 |
| CPT1B    | Carnitine Palmitoyltransferase 1B                       | 0.023 | 1.29 |
| L        | 1                                                       | 1     |      |

| WDFY3     | WD Repeat And FYVE Domain Containing 3                      | 0.019   | 1.29 |
|-----------|-------------------------------------------------------------|---------|------|
| MORN3     | MORN Repeat Containing 3                                    | 0.032   | 1.29 |
| C10orf105 | Chromosome 10 Open Reading Frame 105                        | 0.002   | 1.29 |
| H2BC4     | H2B Clustered Histone 4                                     | 0.005   | 1.29 |
| KIAA0319  | Kiaa0319                                                    | 0.017   | 1.29 |
| CEP126    | Centrosomal Protein 126                                     | 0.037   | 1.28 |
| GPR27     | G Protein-Coupled Receptor 27                               | 0.016   | 1.28 |
| HSPA6     | Heat Shock Protein Family A (Hsp70) Member 6                | 0.007   | 1.28 |
| LRG1      | Leucine Rich Alpha-2-Glycoprotein 1                         | 0.022   | 1.28 |
| MX2       | MX Dynamin Like Gtpase 2                                    | 0.031   | 1.28 |
| CEP19     | Centrosomal Protein 19                                      | 0.013   | 1.28 |
| MARCKS    | Myristoylated Alanine Rich Protein Kinase C Substrate       | 0.013   | 1.28 |
| SIGLEC5   | Sialic Acid Binding Ig Like Lectin 5                        | 0.018   | 1.28 |
| TRIP6     | Thyroid Hormone Receptor Interactor 6                       | < 0.001 | 1.27 |
| SLC22A4   | Solute Carrier Family 22 Member 4                           | 0.026   | 1.27 |
| AVIL      | Advillin                                                    | 0.017   | 1.27 |
| FFAR2     | Free Fatty Acid Receptor 2                                  | 0.022   | 1.27 |
| REM2      | RRAD And GEM Like Gtpase 2                                  | 0.004   | 1.27 |
| SH3GLB1   | SH3 Domain Containing GRB2 Like, Endophilin B1              | 0.008   | 1.27 |
| GLS2      | Glutaminase 2                                               | 0.028   | 1.27 |
| TMEM140   | Transmembrane Protein 140                                   | 0.008   | 1.27 |
| SERF1A    | Small EDRK-Rich Factor 1A                                   | 0.022   | 1.26 |
| KCNJ15    | Potassium Inwardly Rectifying Channel Subfamily J Member 15 | 0.042   | 1.26 |
| PMM2      | Phosphomannomutase 2                                        | 0.043   | 1.26 |
| KATNBL1   | Katanin Regulatory Subunit B1 Like 1                        | 0.048   | 1.26 |
| HPSE      | Heparanase                                                  | 0.022   | 1.26 |
| BMP6      | Bone Morphogenetic Protein 6                                | 0.043   | 1.26 |
| RNASET2   | Ribonuclease T2                                             | 0.005   | 1.26 |
| DNA2      | DNA Replication Helicase/Nuclease 2                         | 0.044   | 1.25 |
| DRAM1     | DNA Damage Regulated Autophagy Modulator 1                  | 0.024   | 1.25 |

| СТВЅ          | Chitobiase                                                                         | 0.015 | 1.25 |
|---------------|------------------------------------------------------------------------------------|-------|------|
| FAM8A1        | Family With Sequence Similarity 8 Member A1                                        | 0.025 | 1.25 |
| FCGR2A        | Fc Fragment Of Igg Receptor lia                                                    | 0.004 | 1.25 |
| MANSC1        | MANSC Domain Containing 1                                                          | 0.050 | 1.25 |
| CITED4        | Cbp/P300 Interacting Transactivator With Glu/Asp Rich<br>Carboxy-Terminal Domain 4 | 0.017 | 1.25 |
| FTH1          | Ferritin Heavy Chain 1                                                             | 0.003 | 1.25 |
| MCUR1         | Mitochondrial Calcium Uniporter Regulator 1                                        | 0.026 | 1.25 |
| TTLL4         | Tubulin Tyrosine Ligase Like 4                                                     | 0.010 | 1.24 |
| UHRF1BP1<br>L | UHRF1 Binding Protein 1 Like                                                       | 0.020 | 1.24 |
| ARL11         | ADP Ribosylation Factor Like Gtpase 11                                             | 0.031 | 1.24 |
| INAFM1        | Inaf Motif Containing 1                                                            | 0.004 | 1.24 |
| CEP63         | Centrosomal Protein 63                                                             | 0.011 | 1.24 |
| MOSPD2        | Motile Sperm Domain Containing 2                                                   | 0.030 | 1.24 |
| ALPK1         | Alpha Kinase 1                                                                     | 0.020 | 1.24 |
| IMPA2         | Inositol Monophosphatase 2                                                         | 0.031 | 1.24 |
| PSRC1         | Proline And Serine Rich Coiled-Coil 1                                              | 0.030 | 1.24 |
| PPP2R5A       | Protein Phosphatase 2 Regulatory Subunit B'alpha                                   | 0.008 | 1.23 |
| SERPINA1      | Serpin Family A Member 1                                                           | 0.021 | 1.23 |
| CLDN9         | Claudin 9                                                                          | 0.029 | 1.23 |
| TMPRSS13      | Transmembrane Serine Protease 13                                                   | 0.046 | 1.23 |
| CPPED1        | Calcineurin Like Phosphoesterase Domain Containing 1                               | 0.009 | 1.23 |
| ARHGAP26      | Rho Gtpase Activating Protein 26                                                   | 0.003 | 1.23 |
| SIRPA         | Signal Regulatory Protein Alpha                                                    | 0.006 | 1.23 |
| IL1B          | Interleukin 1 Beta                                                                 | 0.031 | 1.23 |
| GK            | Glycerol Kinase                                                                    | 0.025 | 1.23 |
| FUT7          | Fucosyltransferase 7                                                               | 0.026 | 1.23 |
| SECTM1        | Secreted And Transmembrane 1                                                       | 0.022 | 1.23 |
| BACH1         | BTB Domain And CNC Homolog 1                                                       | 0.030 | 1.23 |

| GNAQ     | G Protein Subunit Alpha Q                                                     | 0.026 | 1.23 |
|----------|-------------------------------------------------------------------------------|-------|------|
| CXCR1    | C-X-C Motif Chemokine Receptor 1                                              | 0.014 | 1.22 |
| CPNE2    | Copine 2                                                                      | 0.006 | 1.22 |
| CXCR2    | C-X-C Motif Chemokine Receptor 2                                              | 0.012 | 1.22 |
| GBGT1    | Globoside Alpha-1,3-N-Acetylgalactosaminyltransferase 1<br>(FORS Blood Group) | 0.004 | 1.22 |
| APOBEC3A | Apolipoprotein B Mrna Editing Enzyme Catalytic Subunit 3A                     | 0.037 | 1.22 |
| CXCL16   | C-X-C Motif Chemokine Ligand 16                                               | 0.035 | 1.22 |
| EBPL     | EBP Like                                                                      | 0.017 | 1.22 |
| FBXL5    | F-Box And Leucine Rich Repeat Protein 5                                       | 0.040 | 1.22 |
| FRAT2    | FRAT Regulator Of WNT Signaling Pathway 2                                     | 0.036 | 1.22 |
| ST8SIA4  | ST8 Alpha-N-Acetyl-Neuraminide Alpha-2,8-Sialyltransferase 4                  | 0.023 | 1.22 |
| TREM1    | Triggering Receptor Expressed On Myeloid Cells 1                              | 0.025 | 1.22 |
| RHOB     | Ras Homolog Family Member B                                                   | 0.004 | 1.22 |
| SESN3    | Sestrin 3                                                                     | 0.030 | 1.22 |
| LIMK2    | LIM Domain Kinase 2                                                           | 0.033 | 1.22 |
| FAM241A  | Family With Sequence Similarity 241 Member A                                  | 0.016 | 1.22 |
| IFI16    | Interferon Gamma Inducible Protein 16                                         | 0.033 | 1.22 |
| ITM2B    | Integral Membrane Protein 2B                                                  | 0.006 | 1.22 |
| RICTOR   | RPTOR Independent Companion Of MTOR Complex 2                                 | 0.048 | 1.21 |
| PEAK3    | PEAK Family Member 3                                                          | 0.046 | 1.21 |
| LPAR2    | Lysophosphatidic Acid Receptor 2                                              | 0.022 | 1.21 |
| MYD88    | MYD88 Innate Immune Signal Transduction Adaptor                               | 0.003 | 1.21 |
| DCAF10   | DDB1 And CUL4 Associated Factor 10                                            | 0.029 | 1.21 |
| SLC19A1  | Solute Carrier Family 19 Member 1                                             | 0.017 | 1.21 |
| CPD      | Carboxypeptidase D                                                            | 0.037 | 1.21 |
| SLC9A8   | Solute Carrier Family 9 Member A8                                             | 0.002 | 1.21 |
| FNIP1    | Folliculin Interacting Protein 1                                              | 0.021 | 1.21 |
| CSF2RB   | Colony Stimulating Factor 2 Receptor Subunit Beta                             | 0.011 | 1.21 |

| APBB1IP  | Amyloid Beta Precursor Protein Binding Family B Member 1 | 0.028 | 1.20  |
|----------|----------------------------------------------------------|-------|-------|
|          | Interacting Protein                                      |       |       |
| MCTP2    | Multiple C2 And Transmembrane Domain Containing 2        | 0.044 | 1.20  |
| PIM3     | Pim-3 Proto-Oncogene, Serine/Threonine Kinase            | 0.006 | 1.20  |
| B9D2     | B9 Domain Containing 2                                   | 0.008 | 1.20  |
| IQCN     | IQ Motif Containing N                                    | 0.048 | 1.20  |
| LILRA2   | Leukocyte Immunoglobulin Like Receptor A2                | 0.021 | 1.20  |
| AP5B1    | Adaptor Related Protein Complex 5 Subunit Beta 1         | 0.015 | 1.20  |
| PICALM   | Phosphatidylinositol Binding Clathrin Assembly Protein   | 0.013 | 1.20  |
| ACOX1    | Acyl-Coa Oxidase 1                                       | 0.021 | 1.20  |
| IGSF6    | Immunoglobulin Superfamily Member 6                      | 0.019 | 1.20  |
| GNG5     | G Protein Subunit Gamma 5                                | 0.009 | 1.20  |
| ADAL     | Adenosine Deaminase Like                                 | 0.025 | -1.20 |
| RPE      | Ribulose-5-Phosphate-3-Epimerase                         | 0.031 | -1.20 |
| TFAP2E   | Transcription Factor AP-2 Epsilon                        | 0.039 | -1.20 |
| ZNF124   | Zinc Finger Protein 124                                  | 0.018 | -1.21 |
| CENPH    | Centromere Protein H                                     | 0.008 | -1.22 |
| DTX1     | Deltex E3 Ubiquitin Ligase 1                             | 0.034 | -1.22 |
| FCRLA    | Fc Receptor Like A                                       | 0.035 | -1.22 |
| SLFN13   | Schlafen Family Member 13                                | 0.020 | -1.22 |
| ZCCHC18  | Zinc Finger CCHC-Type Containing 18                      | 0.032 | -1.22 |
| ACACB    | Acetyl-Coa Carboxylase Beta                              | 0.023 | -1.22 |
| SIPA1L3  | Signal Induced Proliferation Associated 1 Like 3         | 0.007 | -1.23 |
| ZNF599   | Zinc Finger Protein 599                                  | 0.015 | -1.23 |
| C1orf74  | Chromosome 1 Open Reading Frame 74                       | 0.013 | -1.23 |
| ABCB1    | ATP Binding Cassette Subfamily B Member 1                | 0.026 | -1.23 |
| ZNF670   | Zinc Finger Protein 670                                  | 0.047 | -1.23 |
| NPTXR    | Neuronal Pentraxin Receptor                              | 0.013 | -1.23 |
| ARHGAP32 | Rho Gtpase Activating Protein 32                         | 0.010 | -1.23 |
| ACSL6    | Acyl-Coa Synthetase Long Chain Family Member 6           | 0.004 | -1.24 |

| ZNF567           | Zinc Finger Protein 567                                                   | 0.035 | -1.24 |
|------------------|---------------------------------------------------------------------------|-------|-------|
| SV2A             | Synaptic Vesicle Glycoprotein 2A                                          | 0.044 | -1.24 |
| SLC9A7           | Solute Carrier Family 9 Member A7                                         | 0.031 | -1.24 |
| TAF1A            | TATA-Box Binding Protein Associated Factor, RNA Polymerase I<br>Subunit A | 0.020 | -1.24 |
| MTSS1            | MTSS I-BAR Domain Containing 1                                            | 0.002 | -1.24 |
| ENC1             | Ectodermal-Neural Cortex 1                                                | 0.048 | -1.25 |
| TCEA3            | Transcription Elongation Factor A3                                        | 0.008 | -1.25 |
| TMEM38B          | Transmembrane Protein 38B                                                 | 0.045 | -1.25 |
| ERICH1           | Glutamate Rich 1                                                          | 0.002 | -1.25 |
| OTUD3            | OTU Deubiquitinase 3                                                      | 0.035 | -1.25 |
| ARL16            | ADP Ribosylation Factor Like Gtpase 16                                    | 0.024 | -1.25 |
| KLHL3            | Kelch Like Family Member 3                                                | 0.016 | -1.25 |
| PCDH9            | Protocadherin 9                                                           | 0.040 | -1.25 |
| PPP1R13L         | Protein Phosphatase 1 Regulatory Subunit 13 Like                          | 0.043 | -1.26 |
| ZC3H8            | Zinc Finger CCCH-Type Containing 8                                        | 0.009 | -1.26 |
| CBX8             | Chromobox 8                                                               | 0.018 | -1.26 |
| RBM41            | RNA Binding Motif Protein 41                                              | 0.020 | -1.26 |
| KDM8             | Lysine Demethylase 8                                                      | 0.002 | -1.26 |
| FBXO4            | F-Box Protein 4                                                           | 0.028 | -1.27 |
| FEZ1             | Fasciculation And Elongation Protein Zeta 1                               | 0.022 | -1.27 |
| DHCR24           | 24-Dehydrocholesterol Reductase                                           | 0.001 | -1.27 |
| TMA16            | Translation Machinery Associated 16 Homolog                               | 0.003 | -1.27 |
| B3GNT7           | UDP-Glcnac:Betagal Beta-1,3-N-Acetylglucosaminyltransferase<br>7          | 0.038 | -1.28 |
| LOC10272<br>4428 | Salt Inducible Kinase 1B (Putative)                                       | 0.030 | -1.28 |
| ZNF565           | Zinc Finger Protein 565                                                   | 0.019 | -1.28 |
| ZNF570           | Zinc Finger Protein 570                                                   | 0.014 | -1.29 |
| ZNF69            | Zinc Finger Protein 69                                                    | 0.006 | -1.29 |
| CTSW             | Cathepsin W                                                               | 0.027 | -1.29 |

| ZNF320   | Zinc Finger Protein 320                                      | 0.026 | -1.29 |
|----------|--------------------------------------------------------------|-------|-------|
| STRBP    | Spermatid Perinuclear RNA Binding Protein                    | 0.002 | -1.29 |
| PDE7B    | Phosphodiesterase 7B                                         | 0.032 | -1.29 |
| ERBB2    | Erb-B2 Receptor Tyrosine Kinase 2                            | 0.028 | -1.29 |
| PTCH1    | Patched 1                                                    | 0.015 | -1.29 |
| CDHR1    | Cadherin Related Family Member 1                             | 0.042 | -1.30 |
| ADD2     | Adducin 2                                                    | 0.012 | -1.30 |
| NFYB     | Nuclear Transcription Factor Y Subunit Beta                  | 0.041 | -1.30 |
| DLG5     | Discs Large MAGUK Scaffold Protein 5                         | 0.040 | -1.30 |
| DISP1    | Dispatched RND Transporter Family Member 1                   | 0.027 | -1.30 |
| SLC16A11 | Solute Carrier Family 16 Member 11                           | 0.044 | -1.30 |
| KCNQ5    | Potassium Voltage-Gated Channel Subfamily Q Member 5         | 0.017 | -1.30 |
| B4GALT7  | Beta-1,4-Galactosyltransferase 7                             | 0.028 | -1.31 |
| PTPRK    | Protein Tyrosine Phosphatase Receptor Type K                 | 0.045 | -1.31 |
| TCL1A    | TCL1 Family AKT Coactivator A                                | 0.024 | -1.31 |
| PRICKLE1 | Prickle Planar Cell Polarity Protein 1                       | 0.015 | -1.31 |
| BCAR3    | BCAR3 Adaptor Protein, NSP Family Member                     | 0.027 | -1.31 |
| BBS7     | Bardet-Biedl Syndrome 7                                      | 0.034 | -1.31 |
| MICAL3   | Microtubule Associated Monooxygenase, Calponin And LIM       | 0.012 | -1.31 |
|          | Domain Containing 3                                          |       |       |
| SARDH    | Sarcosine Dehydrogenase                                      | 0.039 | -1.32 |
| ITGAV    | Integrin Subunit Alpha V                                     | 0.047 | -1.32 |
| ZIK1     | Zinc Finger Protein Interacting With K Protein 1             | 0.001 | -1.32 |
| ARVCF    | ARVCF Delta Catenin Family Member                            | 0.015 | -1.32 |
| USP51    | Ubiquitin Specific Peptidase 51                              | 0.034 | -1.33 |
| MCF2L    | MCF.2 Cell Line Derived Transforming Sequence Like           | 0.003 | -1.33 |
| NET1     | Neuroepithelial Cell Transforming 1                          | 0.003 | -1.33 |
| ST8SIA6  | ST8 Alpha-N-Acetyl-Neuraminide Alpha-2,8-Sialyltransferase 6 | 0.018 | -1.33 |
| ESR1     | Estrogen Receptor 1                                          | 0.041 | -1.34 |
| EML5     | EMAP Like 5                                                  | 0.032 | -1.34 |

| FAM131B  | Family With Sequence Similarity 131 Member B         | 0.049 | -1.34 |
|----------|------------------------------------------------------|-------|-------|
| TMEM126  | Transmembrane Protein 126A                           | 0.050 | -1.34 |
| A        |                                                      |       |       |
| BEND5    | BEN Domain Containing 5                              | 0.029 | -1.34 |
| SERPINE2 | Serpin Family E Member 2                             | 0.025 | -1.35 |
| ANKRD26  | Ankyrin Repeat Domain 26                             | 0.008 | -1.35 |
| FAM222A  | Family With Sequence Similarity 222 Member A         | 0.042 | -1.35 |
| MRAS     | Muscle RAS Oncogene Homolog                          | 0.019 | -1.35 |
| GPR153   | G Protein-Coupled Receptor 153                       | 0.046 | -1.35 |
| CNN3     | Calponin 3                                           | 0.030 | -1.35 |
| EFHD1    | EF-Hand Domain Family Member D1                      | 0.050 | -1.35 |
| KCNA2    | Potassium Voltage-Gated Channel Subfamily A Member 2 | 0.042 | -1.35 |
| RGS9     | Regulator Of G Protein Signaling 9                   | 0.009 | -1.35 |
| NR4A1    | Nuclear Receptor Subfamily 4 Group A Member 1        | 0.023 | -1.36 |
| FAM153A  | Family With Sequence Similarity 153 Member A         | 0.010 | -1.36 |
| РАК6     | P21 (RAC1) Activated Kinase 6                        | 0.044 | -1.37 |
| BDH2     | 3-Hydroxybutyrate Dehydrogenase 2                    | 0.034 | -1.37 |
| LOC10272 | U2 Small Nuclear RNA Auxiliary Factor 1 Like 5       | 0.019 | -1.38 |
| 4594     |                                                      |       |       |
| SMIM24   | Small Integral Membrane Protein 24                   | 0.043 | -1.38 |
| ZNRF3    | Zinc And Ring Finger 3                               | 0.033 | -1.38 |
| BFSP1    | Beaded Filament Structural Protein 1                 | 0.029 | -1.39 |
| SHF      | Src Homology 2 Domain Containing F                   | 0.033 | -1.39 |
| CBR3     | Carbonyl Reductase 3                                 | 0.006 | -1.39 |
| MACROD2  | Mono-ADP Ribosylhydrolase 2                          | 0.018 | -1.40 |
| ZNF365   | Zinc Finger Protein 365                              | 0.036 | -1.40 |
| BEX2     | Brain Expressed X-Linked 2                           | 0.024 | -1.40 |
| AIFM3    | Apoptosis Inducing Factor Mitochondria Associated 3  | 0.005 | -1.40 |
| ZACN     | Zinc Activated Ion Channel                           | 0.042 | -1.41 |
| ZFP2     | ZFP2 Zinc Finger Protein                             | 0.044 | -1.41 |
|          | 1                                                    |       |       |

| KLRC4   | Killer Cell Lectin Like Receptor C4                        | 0.043 | -1.41 |
|---------|------------------------------------------------------------|-------|-------|
| B3GAT1  | Beta-1,3-Glucuronyltransferase 1                           | 0.049 | -1.41 |
| ITGA7   | Integrin Subunit Alpha 7                                   | 0.044 | -1.41 |
| KIR3DL2 | Killer Cell Immunoglobulin Like Receptor, Three Ig Domains | 0.030 | -1.41 |
|         | And Long Cytoplasmic Tail 2                                |       |       |
| RAB30   | RAB30, Member RAS Oncogene Family                          | 0.003 | -1.42 |
| FGFBP2  | Fibroblast Growth Factor Binding Protein 2                 | 0.021 | -1.42 |
| LAMC1   | Laminin Subunit Gamma 1                                    | 0.011 | -1.42 |
| NCAM1   | Neural Cell Adhesion Molecule 1                            | 0.003 | -1.42 |
| SNX32   | Sorting Nexin 32                                           | 0.040 | -1.42 |
| MTCL1   | Microtubule Crosslinking Factor 1                          | 0.030 | -1.43 |
| MTMR8   | Myotubularin Related Protein 8                             | 0.023 | -1.43 |
| TXNRD3  | Thioredoxin Reductase 3                                    | 0.010 | -1.44 |
| SYBU    | Syntabulin                                                 | 0.021 | -1.45 |
| PRR29   | Proline Rich 29                                            | 0.031 | -1.45 |
| MAP2    | Microtubule Associated Protein 2                           | 0.038 | -1.45 |
| TUBB3   | Tubulin Beta 3 Class III                                   | 0.044 | -1.45 |
| PALS2   | Protein Associated With LIN7 2, MAGUK Family Member        | 0.015 | -1.45 |
| DPF3    | Double PHD Fingers 3                                       | 0.008 | -1.46 |
| LRP5    | LDL Receptor Related Protein 5                             | 0.020 | -1.46 |
| TMSB15B | Thymosin Beta 15B                                          | 0.010 | -1.46 |
| НРСА    | Hippocalcin                                                | 0.036 | -1.46 |
| CDKN1C  | Cyclin Dependent Kinase Inhibitor 1C                       | 0.022 | -1.46 |
| RAB38   | RAB38, Member RAS Oncogene Family                          | 0.015 | -1.46 |
| HOMER1  | Homer Scaffold Protein 1                                   | 0.031 | -1.46 |
| ADGRA3  | Adhesion G Protein-Coupled Receptor A3                     | 0.003 | -1.48 |
| COBLL1  | Cordon-Bleu WH2 Repeat Protein Like 1                      | 0.007 | -1.48 |
| MMEL1   | Membrane Metalloendopeptidase Like 1                       | 0.049 | -1.48 |
| FAM110C | Family With Sequence Similarity 110 Member C               | 0.035 | -1.49 |

| ICAM4    | Intercellular Adhesion Molecule 4 (Landsteiner-Wiener Blood<br>Group) | 0.004 | -1.49 |
|----------|-----------------------------------------------------------------------|-------|-------|
| GOLGA8R  | Golgin A8 Family Member R                                             | 0.020 | -1.50 |
| CCR9     | C-C Motif Chemokine Receptor 9                                        | 0.004 | -1.50 |
| PMFBP1   | Polyamine Modulated Factor 1 Binding Protein 1                        | 0.022 | -1.51 |
| NTRK2    | Neurotrophic Receptor Tyrosine Kinase 2                               | 0.036 | -1.52 |
| EAF2     | ELL Associated Factor 2                                               | 0.045 | -1.52 |
| TTN      | Titin                                                                 | 0.027 | -1.53 |
| PRSS23   | Serine Protease 23                                                    | 0.004 | -1.54 |
| PPP2R2C  | Protein Phosphatase 2 Regulatory Subunit Bgamma                       | 0.024 | -1.55 |
| JAG2     | Jagged Canonical Notch Ligand 2                                       | 0.015 | -1.56 |
| SOBP     | Sine Oculis Binding Protein Homolog                                   | 0.018 | -1.56 |
| DPPA4    | Developmental Pluripotency Associated 4                               | 0.006 | -1.56 |
| UGGT2    | UDP-Glucose Glycoprotein Glucosyltransferase 2                        | 0.031 | -1.57 |
| ZNF883   | Zinc Finger Protein 883                                               | 0.008 | -1.57 |
| RPL9     | Ribosomal Protein L9                                                  | 0.002 | -1.58 |
| SLC5A10  | Solute Carrier Family 5 Member 10                                     | 0.004 | -1.59 |
| DEGS2    | Delta 4-Desaturase, Sphingolipid 2                                    | 0.012 | -1.59 |
| KHDRBS3  | KH RNA Binding Domain Containing, Signal Transduction<br>Associated 3 | 0.022 | -1.59 |
| MYO1A    | Myosin IA                                                             | 0.040 | -1.59 |
| P3H2     | Prolyl 3-Hydroxylase 2                                                | 0.023 | -1.59 |
| ZMYND12  | Zinc Finger MYND-Type Containing 12                                   | 0.036 | -1.59 |
| MFSD6L   | Major Facilitator Superfamily Domain Containing 6 Like                | 0.041 | -1.59 |
| ANKRD31  | Ankyrin Repeat Domain 31                                              | 0.044 | -1.59 |
| MYO6     | Myosin VI                                                             | 0.003 | -1.60 |
| CYTL1    | Cytokine Like 1                                                       | 0.044 | -1.61 |
| FGF9     | Fibroblast Growth Factor 9                                            | 0.049 | -1.61 |
| B4GALNT4 | Beta-1,4-N-Acetyl-Galactosaminyltransferase 4                         | 0.015 | -1.61 |
| CETN3    | Centrin 3                                                             | 0.020 | -1.61 |

| ADAMTS6  | ADAM Metallopeptidase With Thrombospondin Type 1 Motif 6 | 0.020 | 1 6 2 |
|----------|----------------------------------------------------------|-------|-------|
|          |                                                          | 0.020 | -1.63 |
| RET      | Ret Proto-Oncogene                                       | 0.016 | -1.63 |
| MYH10    | Myosin Heavy Chain 10                                    | 0.036 | -1.63 |
| TMC2     | Transmembrane Channel Like 2                             | 0.027 | -1.64 |
| NCS1     | Neuronal Calcium Sensor 1                                | 0.020 | -1.64 |
| PLS3     | Plastin 3                                                | 0.021 | -1.67 |
| STAC2    | SH3 And Cysteine Rich Domain 2                           | 0.015 | -1.67 |
| AKR1E2   | Aldo-Keto Reductase Family 1 Member E2                   | 0.038 | -1.68 |
| SEMA4G   | Semaphorin 4G                                            | 0.021 | -1.68 |
| SERF1A   | Small EDRK-Rich Factor 1A                                | 0.011 | -1.69 |
| ADGRL3   | Adhesion G Protein-Coupled Receptor L3                   | 0.040 | -1.69 |
| TEDC2    | Tubulin Epsilon And Delta Complex 2                      | 0.037 | -1.69 |
| BCAM     | Basal Cell Adhesion Molecule (Lutheran Blood Group)      | 0.026 | -1.69 |
| TMEM132  | Transmembrane Protein 132A                               | 0.042 | -1.69 |
| А        |                                                          |       |       |
| CDC25C   | Cell Division Cycle 25C                                  | 0.044 | -1.69 |
| PNMA6A   | PNMA Family Member 6A                                    | 0.043 | -1.70 |
| KLRC2    | Killer Cell Lectin Like Receptor C2                      | 0.040 | -1.71 |
| FGFR4    | Fibroblast Growth Factor Receptor 4                      | 0.004 | -1.71 |
| CTTNBP2  | Cortactin Binding Protein 2                              | 0.025 | -1.72 |
| TTLL10   | Tubulin Tyrosine Ligase Like 10                          | 0.044 | -1.72 |
| GLIPR1L2 | GLIPR1 Like 2                                            | 0.042 | -1.72 |
| DCLK1    | Doublecortin Like Kinase 1                               | 0.015 | -1.73 |
| IGSF3    | Immunoglobulin Superfamily Member 3                      | 0.047 | -1.74 |
| RBFOX2   | RNA Binding Fox-1 Homolog 2                              | 0.004 | -1.74 |
| SRCIN1   | SRC Kinase Signaling Inhibitor 1                         | 0.013 | -1.75 |
| ADGRF3   | Adhesion G Protein-Coupled Receptor F3                   | 0.044 | -1.75 |
| ADCY2    | Adenylate Cyclase 2                                      | 0.044 | -1.75 |
| PROM2    | Prominin 2                                               | 0.039 | -1.76 |
| PDGFRB   | Platelet Derived Growth Factor Receptor Beta             | 0.003 | -1.76 |

| INHBA        | Inhibin Subunit Beta A                              | 0.041   | -1.76 |
|--------------|-----------------------------------------------------|---------|-------|
| TFCP2L1      | Transcription Factor CP2 Like 1                     | 0.002   | -1.77 |
| SFRP2        | Secreted Frizzled Related Protein 2                 | 0.012   | -1.77 |
| PTPRG        | Protein Tyrosine Phosphatase Receptor Type G        | 0.008   | -1.79 |
| ANKRD63      | Ankyrin Repeat Domain 63                            | 0.023   | -1.79 |
| LRRC63       | Leucine Rich Repeat Containing 63                   | 0.038   | -1.81 |
| BNC2         | Basonuclin 2                                        | 0.005   | -1.82 |
| ACKR2        | Atypical Chemokine Receptor 2                       | 0.042   | -1.82 |
| NRCAM        | Neuronal Cell Adhesion Molecule                     | < 0.001 | -1.82 |
| RALYL        | RALY RNA Binding Protein Like                       | 0.033   | -1.83 |
| CCDC42       | Coiled-Coil Domain Containing 42                    | 0.031   | -1.84 |
| ADRA1B       | Adrenoceptor Alpha 1B                               | 0.050   | -1.84 |
| LIMCH1       | LIM And Calponin Homology Domains 1                 | 0.022   | -1.85 |
| KNDC1        | Kinase Non-Catalytic C-Lobe Domain Containing 1     | 0.002   | -1.87 |
| RASIP1       | Ras Interacting Protein 1                           | 0.039   | -1.89 |
| CDK15        | Cyclin Dependent Kinase 15                          | 0.046   | -1.90 |
| TMEM200<br>B | Transmembrane Protein 200B                          | 0.016   | -1.92 |
| CDH4         | Cadherin 4                                          | 0.011   | -1.93 |
| PTX4         | Pentraxin 4                                         | 0.022   | -1.93 |
| AIF1L        | Allograft Inflammatory Factor 1 Like                | 0.042   | -1.94 |
| ARHGEF28     | Rho Guanine Nucleotide Exchange Factor 28           | 0.009   | -1.94 |
| LINGO2       | Leucine Rich Repeat And Ig Domain Containing 2      | 0.005   | -1.95 |
| EVPL         | Envoplakin                                          | 0.006   | -1.96 |
| GPR20        | G Protein-Coupled Receptor 20                       | 0.009   | -1.96 |
| TGFBR3L      | Transforming Growth Factor Beta Receptor 3 Like     | 0.047   | -1.97 |
| FHAD1        | Forkhead Associated Phosphopeptide Binding Domain 1 | 0.027   | -1.97 |
| UNC5B        | Unc-5 Netrin Receptor B                             | 0.014   | -1.99 |
| GRIP1        | Glutamate Receptor Interacting Protein 1            | 0.006   | -1.99 |
| TJP1         | Tight Junction Protein 1                            | 0.007   | -2.03 |

| MYH15<br>OPCML | Myosin Heavy Chain 15                                                      | 0.040   | -2.03 |
|----------------|----------------------------------------------------------------------------|---------|-------|
| OPCML          |                                                                            |         | -2.05 |
|                | Opioid Binding Protein/Cell Adhesion Molecule Like                         | 0.027   | -2.04 |
| TM4SF19        | Transmembrane 4 L Six Family Member 19                                     | 0.002   | -2.10 |
| SLC2A12        | Solute Carrier Family 2 Member 12                                          | 0.046   | -2.10 |
| PRSS57         | Serine Protease 57                                                         | < 0.001 | -2.10 |
| TGFB2          | Transforming Growth Factor Beta 2                                          | 0.019   | -2.10 |
| NUAK1          | NUAK Family Kinase 1                                                       | 0.004   | -2.13 |
| PLPP2          | Phospholipid Phosphatase 2                                                 | 0.013   | -2.13 |
| TXNDC2         | Thioredoxin Domain Containing 2                                            | 0.049   | -2.15 |
| VSTM2B         | V-Set And Transmembrane Domain Containing 2B                               | 0.010   | -2.23 |
| LCA5           | Lebercilin LCA5                                                            | 0.016   | -2.23 |
| COL4A2         | Collagen Type IV Alpha 2 Chain                                             | 0.030   | -2.24 |
| SCHIP1         | Schwannomin Interacting Protein 1                                          | 0.046   | -2.26 |
| PTPN20         | Protein Tyrosine Phosphatase Non-Receptor Type 20                          | 0.020   | -2.28 |
| GOLGA8Q        | Golgin A8 Family Member Q                                                  | 0.011   | -2.30 |
| HCN4           | Hyperpolarization Activated Cyclic Nucleotide Gated Potassium<br>Channel 4 | 0.020   | -2.35 |
| ANKRD53        | Ankyrin Repeat Domain 53                                                   | 0.036   | -2.37 |
| GABRA5         | Gamma-Aminobutyric Acid Type A Receptor Subunit Alpha5                     | 0.029   | -2.37 |
| OR2A7          | Olfactory Receptor Family 2 Subfamily A Member 7                           | 0.011   | -2.43 |
| TMEM108        | Transmembrane Protein 108                                                  | 0.015   | -2.45 |
| TACSTD2        | Tumor Associated Calcium Signal Transducer 2                               | 0.002   | -2.52 |
| TENM4          | Teneurin Transmembrane Protein 4                                           | 0.007   | -2.52 |
| DNAH11         | Dynein Axonemal Heavy Chain 11                                             | 0.022   | -2.55 |
| BCL6B          | BCL6B Transcription Repressor                                              | 0.025   | -2.56 |
| CCL22          | C-C Motif Chemokine Ligand 22                                              | 0.025   | -2.56 |
| CSMD1          | CUB And Sushi Multiple Domains 1                                           | 0.006   | -2.58 |
| KRT79          | Keratin 79                                                                 | 0.044   | -2.61 |
| HTR2B          | 5-Hydroxytryptamine Receptor 2B                                            | 0.042   | -2.71 |
| IQUB           | IQ Motif And Ubiquitin Domain Containing                                   | 0.047   | -2.72 |

| FBLN1         | Fibulin 1                                             | 0.008   | -2.80                 |
|---------------|-------------------------------------------------------|---------|-----------------------|
| CBLN2         | Cerebellin 2 Precursor                                | 0.022   | -2.83                 |
| PLEKHS1       | Pleckstrin Homology Domain Containing S1              | 0.036   | -2.89                 |
| HOXA7         | Homeobox A7                                           | 0.007   | -2.90                 |
| SHC4          | SHC Adaptor Protein 4                                 | 0.045   | -2.91                 |
| DMRTC1        | DMRT Like Family C1                                   | 0.006   | -2.91                 |
| GABRD         | Gamma-Aminobutyric Acid Type A Receptor Subunit Delta | 0.001   | -2.92                 |
| MAEL          | Maelstrom Spermatogenic Transposon Silencer           | 0.026   | -3.13                 |
| CASQ1         | Calsequestrin 1                                       | 0.016   | -3.34                 |
| SMIM10L2<br>B | Small Integral Membrane Protein 10 Like 2B            | 0.004   | -3.63                 |
| DNAAF3        | Dynein Axonemal Assembly Factor 3                     | 0.014   | -3.79                 |
| CFAP46        | Cilia And Flagella Associated Protein 46              | 0.008   | -4.01                 |
| C4BPA         | Complement Component 4 Binding Protein Alpha          | < 0.001 | -4.50                 |
| SLC44A5       | Solute Carrier Family 44 Member 5                     | < 0.001 | -5.01                 |
| TBC1D3G       | TBC1 Domain Family Member 3G                          | < 0.001 | -<br>5579.9<br>1      |
| TBC1D3H       | TBC1 Domain Family Member 3H                          | < 0.001 | -10,9x10 <sup>3</sup> |

Table 9E. List of 504 genes differently modulated in females HR vs females LR from the RNA-Seq analysis (FC  $\pm$  |1.2|, p-value < 0.05).

| Gene     | Gene Assignment                                         | p-value | Fold-  |
|----------|---------------------------------------------------------|---------|--------|
| Symbol   |                                                         | p-value | Change |
| TBC1D3K  | TBC1 Domain Family Member 3K                            | 0.020   | 231.14 |
| BTNL3    | Butyrophilin Like 3                                     | 0.049   | 7.17   |
| TACSTD2  | Tumor Associated Calcium Signal Transducer 2            | < 0.001 | 6.27   |
| DNAH11   | Dynein Axonemal Heavy Chain 11                          | < 0.001 | 4.94   |
| PCDHGC4  | Protocadherin Gamma Subfamily C, 4                      | 0.025   | 4.56   |
| MUC12    | Mucin 12, Cell Surface Associated                       | 0.044   | 3.89   |
| IGF1     | Insulin Like Growth Factor 1                            | 0.003   | 3.58   |
| FOXI1    | Forkhead Box I1                                         | 0.004   | 3.27   |
| DSG3     | Desmoglein 3                                            | 0.007   | 2.93   |
| ITGA8    | Integrin Subunit Alpha 8                                | 0.005   | 2.88   |
| DISP2    | Dispatched RND Transporter Family Member 2              | 0.002   | 2.70   |
| ZNF695   | Zinc Finger Protein 695                                 | 0.041   | 2.70   |
| PTPN14   | Protein Tyrosine Phosphatase Non-Receptor Type 14       | 0.031   | 2.64   |
| MYO16    | Myosin XVI                                              | 0.010   | 2.61   |
| ZNF704   | Zinc Finger Protein 704                                 | 0.013   | 2.55   |
| VTN      | Vitronectin                                             | 0.019   | 2.53   |
| HSF2BP   | Heat Shock Transcription Factor 2 Binding Protein       | 0.016   | 2.52   |
| CDK15    | Cyclin Dependent Kinase 15                              | 0.015   | 2.51   |
| TRPC6    | Transient Receptor Potential Cation Channel Subfamily C | 0.003   | 2.48   |
|          | Member 6                                                |         |        |
| PRSS41   | Serine Protease 41                                      | 0.005   | 2.40   |
| MTRNR2L8 | MT-RNR2 Like 8                                          | 0.008   | 2.39   |
| DEPDC1   | DEP Domain Containing 1                                 | 0.015   | 2.38   |
| TMEM108  | Transmembrane Protein 108                               | 0.032   | 2.36   |
| CCL23    | C-C Motif Chemokine Ligand 23                           | 0.025   | 2.36   |
| LIMCH1   | LIM And Calponin Homology Domains 1                     | 0.004   | 2.34   |

| ABCC11   | ATP Binding Cassette Subfamily C Member 11               | 0.031   | 2.33 |
|----------|----------------------------------------------------------|---------|------|
| IL36A    | Interleukin 36 Alpha                                     | 0.009   | 2.31 |
| C10orf82 | Chromosome 10 Open Reading Frame 82                      | 0.043   | 2.31 |
| OLIG2    | Oligodendrocyte Transcription Factor 2                   | 0.002   | 2.30 |
| PLAAT5   | Phospholipase A And Acyltransferase 5                    | 0.001   | 2.29 |
| ALOX15   | Arachidonate 15-Lipoxygenase                             | 0.002   | 2.29 |
| CCL3L1   | C-C Motif Chemokine Ligand 3 Like 1                      | 0.035   | 2.28 |
| FGFR2    | Fibroblast Growth Factor Receptor 2                      | < 0.001 | 2.27 |
| PPIAL4C  | Peptidylprolyl Isomerase A Like 4C                       | 0.017   | 2.25 |
| KCNN3    | Potassium Calcium-Activated Channel Subfamily N Member 3 | 0.020   | 2.24 |
| MROH7    | Maestro Heat Like Repeat Family Member 7                 | 0.032   | 2.24 |
| TNS2     | Tensin 2                                                 | 0.006   | 2.21 |
| TENT5B   | Terminal Nucleotidyltransferase 5B                       | 0.007   | 2.19 |
| MYCT1    | MYC Target 1                                             | 0.001   | 2.18 |
| ID01     | Indoleamine 2,3-Dioxygenase 1                            | 0.001   | 2.15 |
| SIGLEC8  | Sialic Acid Binding Ig Like Lectin 8                     | 0.006   | 2.13 |
| TNR      | Tenascin R                                               | 0.004   | 2.10 |
| UNC5B    | Unc-5 Netrin Receptor B                                  | 0.011   | 1.99 |
| PRSS33   | Serine Protease 33                                       | 0.015   | 1.99 |
| CCDC40   | Coiled-Coil Domain Containing 40                         | 0.043   | 1.96 |
| CHD5     | Chromodomain Helicase DNA Binding Protein 5              | 0.044   | 1.96 |
| IL5RA    | Interleukin 5 Receptor Subunit Alpha                     | 0.002   | 1.93 |
| PNMA6A   | PNMA Family Member 6A                                    | 0.034   | 1.90 |
| COL4A1   | Collagen Type IV Alpha 1 Chain                           | 0.039   | 1.88 |
| SDC1     | Syndecan 1                                               | 0.013   | 1.88 |
| CACNB4   | Calcium Voltage-Gated Channel Auxiliary Subunit Beta 4   | 0.002   | 1.88 |
| ТР73     | Tumor Protein P73                                        | 0.006   | 1.88 |
| USP6     | Ubiquitin Specific Peptidase 6                           | 0.026   | 1.87 |
| ADORA3   | Adenosine A3 Receptor                                    | 0.003   | 1.84 |
| FRRS1    | Ferric Chelate Reductase 1                               | < 0.001 | 1.84 |

| SLC16A14 | Solute Carrier Family 16 Member 14                                      | 0.005   | 1.84 |
|----------|-------------------------------------------------------------------------|---------|------|
|          |                                                                         |         | _    |
| МҮВРН    | Myosin Binding Protein H                                                | 0.009   | 1.83 |
| RAG1     | Recombination Activating 1                                              | 0.033   | 1.83 |
| ZNF521   | Zinc Finger Protein 521                                                 | 0.035   | 1.82 |
| SLC29A1  | Solute Carrier Family 29 Member 1 (Augustine Blood Group)               | 0.002   | 1.81 |
| ITGB8    | Integrin Subunit Beta 8                                                 | 0.016   | 1.81 |
| ARHGEF39 | Rho Guanine Nucleotide Exchange Factor 39                               | < 0.001 | 1.81 |
| TRIM36   | Tripartite Motif Containing 36                                          | 0.001   | 1.81 |
| PRUNE2   | Prune Homolog 2 With BCH Domain                                         | 0.035   | 1.79 |
| BEGAIN   | Brain Enriched Guanylate Kinase Associated                              | 0.046   | 1.78 |
| CCDC141  | Coiled-Coil Domain Containing 141                                       | 0.007   | 1.76 |
| DTL      | Denticleless E3 Ubiquitin Protein Ligase Homolog                        | 0.025   | 1.76 |
| CLEC9A   | C-Type Lectin Domain Containing 9A                                      | 0.003   | 1.75 |
| CAV2     | Caveolin 2                                                              | 0.028   | 1.74 |
| CEBPE    | CCAAT Enhancer Binding Protein Epsilon                                  | 0.002   | 1.74 |
| MINAR1   | Membrane Integral NOTCH2 Associated Receptor 1                          | 0.005   | 1.74 |
| ERG      | ETS Transcription Factor ERG                                            | 0.017   | 1.73 |
| CYP4F12  | Cytochrome P450 Family 4 Subfamily F Member 12                          | 0.007   | 1.73 |
| ACOT11   | Acyl-Coa Thioesterase 11                                                | 0.004   | 1.72 |
| LRTOMT   | Leucine Rich Transmembrane And O-Methyltransferase<br>Domain Containing | 0.031   | 1.72 |
| TDRD12   | Tudor Domain Containing 12                                              | 0.036   | 1.72 |
| ESPNL    | Espin Like                                                              | 0.010   | 1.72 |
| IL34     | Interleukin 34                                                          | 0.030   | 1.71 |
| AJAP1    | Adherens Junctions Associated Protein 1                                 | 0.029   | 1.71 |
| PTGDR2   | Prostaglandin D2 Receptor 2                                             | 0.003   | 1.71 |
| IL1RL1   | Interleukin 1 Receptor Like 1                                           | 0.030   | 1.70 |
| BUB1B    | BUB1 Mitotic Checkpoint Serine/Threonine Kinase B                       | 0.006   | 1.70 |
| CCR9     | C-C Motif Chemokine Receptor 9                                          | 0.002   | 1.69 |
| SMPD3    | Sphingomyelin Phosphodiesterase 3                                       | 0.006   | 1.69 |

| SPNS3   | Sphingolipid Transporter 3 (Putative)                                | 0.003 | 1.68 |
|---------|----------------------------------------------------------------------|-------|------|
| CCND1   | Cyclin D1                                                            | 0.001 | 1.68 |
| LGALS12 | Galectin 12                                                          | 0.001 | 1.67 |
| HRH4    | Histamine Receptor H4                                                | 0.011 | 1.67 |
| ESCO2   | Establishment Of Sister Chromatid Cohesion N-<br>Acetyltransferase 2 | 0.025 | 1.66 |
| SDC2    | Syndecan 2                                                           | 0.025 | 1.66 |
| RHOBTB3 | Rho Related BTB Domain Containing 3                                  | 0.001 | 1.66 |
| ACSM1   | Acyl-Coa Synthetase Medium Chain Family Member 1                     | 0.048 | 1.65 |
| FZD7    | Frizzled Class Receptor 7                                            | 0.027 | 1.65 |
| CACNG8  | Calcium Voltage-Gated Channel Auxiliary Subunit Gamma 8              | 0.025 | 1.65 |
| HDC     | Histidine Decarboxylase                                              | 0.013 | 1.64 |
| ASB2    | Ankyrin Repeat And SOCS Box Containing 2                             | 0.001 | 1.63 |
| PRH1    | Proline Rich Protein Haeiii Subfamily 1                              | 0.008 | 1.62 |
| RAB44   | RAB44, Member RAS Oncogene Family                                    | 0.002 | 1.62 |
| CXCL6   | C-X-C Motif Chemokine Ligand 6                                       | 0.030 | 1.62 |
| CAV1    | Caveolin 1                                                           | 0.023 | 1.62 |
| FBN1    | Fibrillin 1                                                          | 0.022 | 1.61 |
| PMP22   | Peripheral Myelin Protein 22                                         | 0.036 | 1.60 |
| KIF15   | Kinesin Family Member 15                                             | 0.036 | 1.60 |
| ATP2A1  | Atpase Sarcoplasmic/Endoplasmic Reticulum Ca2+<br>Transporting 1     | 0.026 | 1.60 |
| POLR3G  | RNA Polymerase III Subunit G                                         | 0.038 | 1.59 |
| NPB     | Neuropeptide B                                                       | 0.036 | 1.58 |
| PARPBP  | PARP1 Binding Protein                                                | 0.029 | 1.57 |
| AKAP12  | A-Kinase Anchoring Protein 12                                        | 0.038 | 1.56 |
| RHEX    | Regulator Of Hemoglobinization And Erythroid Cell Expansion          | 0.040 | 1.56 |
| PIK3R6  | Phosphoinositide-3-Kinase Regulatory Subunit 6                       | 0.002 | 1.55 |
| RGL3    | Ral Guanine Nucleotide Dissociation Stimulator Like 3                | 0.046 | 1.55 |
| CRIP2   | Cysteine Rich Protein 2                                              | 0.003 | 1.54 |

| ZC2HC1A      | Zinc Finger C2HC-Type Containing 1A                | 0.021 | 1.53 |
|--------------|----------------------------------------------------|-------|------|
|              |                                                    |       |      |
| SLC18A2      | Solute Carrier Family 18 Member A2                 | 0.034 | 1.53 |
| REXO5        | RNA Exonuclease 5                                  | 0.010 | 1.52 |
| IGLL5        | Immunoglobulin Lambda Like Polypeptide 5           | 0.022 | 1.52 |
| С3           | Complement C3                                      | 0.037 | 1.51 |
| DNAJC28      | Dnaj Heat Shock Protein Family (Hsp40) Member C28  | 0.039 | 1.51 |
| SRGAP3       | SLIT-ROBO Rho Gtpase Activating Protein 3          | 0.026 | 1.51 |
| MEIS1        | Meis Homeobox 1                                    | 0.015 | 1.50 |
| JAKMIP3      | Janus Kinase And Microtubule Interacting Protein 3 | 0.041 | 1.50 |
| TAS2R14      | Taste 2 Receptor Member 14                         | 0.041 | 1.49 |
| BHLHA15      | Basic Helix-Loop-Helix Family Member A15           | 0.039 | 1.49 |
| TXNDC5       | Thioredoxin Domain Containing 5                    | 0.012 | 1.48 |
| NT5DC2       | 5'-Nucleotidase Domain Containing 2                | 0.002 | 1.48 |
| ZACN         | Zinc Activated Ion Channel                         | 0.024 | 1.48 |
| ARPIN        | Actin Related Protein 2/3 Complex Inhibitor        | 0.044 | 1.48 |
| NDFIP2       | Nedd4 Family Interacting Protein 2                 | 0.008 | 1.48 |
| HYAL3        | Hyaluronidase 3                                    | 0.006 | 1.47 |
| GAREM2       | GRB2 Associated Regulator Of MAPK1 Subtype 2       | 0.010 | 1.46 |
| ACE          | Angiotensin I Converting Enzyme                    | 0.020 | 1.46 |
| CD200R1      | CD200 Receptor 1                                   | 0.001 | 1.46 |
| USP53        | Ubiquitin Specific Peptidase 53                    | 0.006 | 1.45 |
| TMEM200<br>A | Transmembrane Protein 200A                         | 0.030 | 1.45 |
| EPN2         | Epsin 2                                            | 0.004 | 1.45 |
| ITGA3        | Integrin Subunit Alpha 3                           | 0.001 | 1.43 |
| MZB1         | Marginal Zone B And B1 Cell Specific Protein       | 0.027 | 1.43 |
| CCN3         | Cellular Communication Network Factor 3            | 0.028 | 1.42 |
| BUB1         | BUB1 Mitotic Checkpoint Serine/Threonine Kinase    | 0.044 | 1.42 |
| SLC16A10     | Solute Carrier Family 16 Member 10                 | 0.021 | 1.41 |
| CENPU        | Centromere Protein U                               | 0.030 | 1.40 |

| KLHL14       | Kelch Like Family Member 14                                         | 0.005 | 1.40 |
|--------------|---------------------------------------------------------------------|-------|------|
| MED12L       | Mediator Complex Subunit 12L                                        | 0.027 | 1.40 |
| ZNF502       | Zinc Finger Protein 502                                             | 0.006 | 1.40 |
| ZC3H12C      | Zinc Finger CCCH-Type Containing 12C                                | 0.044 | 1.40 |
| ттс9         | Tetratricopeptide Repeat Domain 9                                   | 0.001 | 1.39 |
| ABCB9        | ATP Binding Cassette Subfamily B Member 9                           | 0.006 | 1.38 |
| TRPV3        | Transient Receptor Potential Cation Channel Subfamily V<br>Member 3 | 0.019 | 1.37 |
| ND6          | NADH Dehydrogenase Subunit 6                                        | 0.032 | 1.37 |
| CYSLTR2      | Cysteinyl Leukotriene Receptor 2                                    | 0.029 | 1.37 |
| ZNF726       | Zinc Finger Protein 726                                             | 0.029 | 1.37 |
| PAPLN        | Papilin, Proteoglycan Like Sulfated Glycoprotein                    | 0.034 | 1.36 |
| GSTM2        | Glutathione S-Transferase Mu 2                                      | 0.002 | 1.35 |
| BMPR1A       | Bone Morphogenetic Protein Receptor Type 1A                         | 0.012 | 1.35 |
| CCDC154      | Coiled-Coil Domain Containing 154                                   | 0.039 | 1.35 |
| GPHN         | Gephyrin                                                            | 0.009 | 1.34 |
| TOGARAM<br>1 | TOG Array Regulator Of Axonemal Microtubules 1                      | 0.021 | 1.34 |
| FAAH         | Fatty Acid Amide Hydrolase                                          | 0.007 | 1.33 |
| SEMA7A       | Semaphorin 7A (John Milton Hagen Blood Group)                       | 0.008 | 1.33 |
| CPAMD8       | C3 And PZP Like Alpha-2-Macroglobulin Domain Containing 8           | 0.028 | 1.32 |
| MEST         | Mesoderm Specific Transcript                                        | 0.025 | 1.31 |
| ZCCHC18      | Zinc Finger CCHC-Type Containing 18                                 | 0.008 | 1.31 |
| P2RY2        | Purinergic Receptor P2Y2                                            | 0.040 | 1.31 |
| CD24         | CD24 Molecule                                                       | 0.024 | 1.31 |
| ZNF708       | Zinc Finger Protein 708                                             | 0.030 | 1.31 |
| L2HGDH       | L-2-Hydroxyglutarate Dehydrogenase                                  | 0.041 | 1.30 |
| SEMA6C       | Semaphorin 6C                                                       | 0.032 | 1.29 |
| PLEKHA7      | Pleckstrin Homology Domain Containing A7                            | 0.028 | 1.29 |
| ARL6IP6      | ADP Ribosylation Factor Like Gtpase 6 Interacting Protein 6         | 0.024 | 1.28 |

| GIPR C<br>ACSF2 A | Vicrotubule Associated Protein 7<br>Gastric Inhibitory Polypeptide Receptor<br>Acyl-Coa Synthetase Family Member 2 | 0.039<br>0.043 | 1.27<br>1.27 |
|-------------------|--------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| ACSF2 A           |                                                                                                                    | 0.043          | 1.27         |
|                   | Acyl-Coa Synthetase Family Member 2                                                                                |                |              |
| POMT2 P           |                                                                                                                    | 0.006          | 1.26         |
|                   | Protein O-Mannosyltransferase 2                                                                                    | 0.033          | 1.26         |
| DLEU7 D           | Deleted In Lymphocytic Leukemia 7                                                                                  | 0.043          | 1.26         |
| KCTD3 P           | Potassium Channel Tetramerization Domain Containing 3                                                              | 0.049          | 1.25         |
| CHPF C            | Chondroitin Polymerizing Factor                                                                                    | 0.045          | 1.25         |
| ΜΤΑΡ Ν            | Methylthioadenosine Phosphorylase                                                                                  | 0.021          | 1.25         |
| DECR2 2           | 2,4-Dienoyl-Coa Reductase 2                                                                                        | 0.035          | 1.25         |
| CDHR3 C           | Cadherin Related Family Member 3                                                                                   | 0.047          | 1.25         |
| ABCB10 A          | ATP Binding Cassette Subfamily B Member 10                                                                         | 0.030          | 1.24         |
| NUDT17 N          | Nudix Hydrolase 17                                                                                                 | 0.035          | 1.23         |
| ITM2C II          | ntegral Membrane Protein 2C                                                                                        | 0.041          | 1.22         |
| IL11RA II         | nterleukin 11 Receptor Subunit Alpha                                                                               | 0.001          | 1.22         |
| PDK1 P            | Pyruvate Dehydrogenase Kinase 1                                                                                    | 0.008          | 1.22         |
| GLCCI1 G          | Glucocorticoid Induced 1                                                                                           | 0.011          | 1.22         |
| НІВСН 3           | 3-Hydroxyisobutyryl-Coa Hydrolase                                                                                  | 0.019          | 1.22         |
| KLHL3 K           | Kelch Like Family Member 3                                                                                         | 0.041          | 1.21         |
| ABCC1 A           | ATP Binding Cassette Subfamily C Member 1                                                                          | 0.004          | 1.21         |
| AXIN2 A           | Axin 2                                                                                                             | 0.024          | 1.21         |
| IMPACT II         | mpact RWD Domain Protein                                                                                           | 0.021          | 1.21         |
| CUL9 C            | Cullin 9                                                                                                           | 0.014          | 1.21         |
| LNPK L            | Lunapark, ER Junction Formation Factor                                                                             | 0.035          | 1.21         |
| RYK R             | Receptor Like Tyrosine Kinase                                                                                      | 0.009          | 1.20         |
| PROCA1 P          | Protein Interacting With Cyclin A1                                                                                 | 0.017          | 1.20         |
| ANO9 A            | Anoctamin 9                                                                                                        | 0.022          | 1.20         |
| HAUS5 H           | HAUS Augmin Like Complex Subunit 5                                                                                 | 0.006          | 1.20         |
| ZNF674 Z          | Zinc Finger Protein 674                                                                                            | 0.022          | 1.20         |
| PLOD1 P           | Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 1                                                                  | 0.036          | -1.20        |
| СЕВРВ С           | CCAAT Enhancer Binding Protein Beta                                                                                | 0.045          | -1.20        |

| SLC9A8   | Solute Carrier Family 9 Member A8                       | 0.030 | -1.20 |
|----------|---------------------------------------------------------|-------|-------|
| GALK1    | Galactokinase 1                                         | 0.008 | -1.20 |
| MSH5     | Muts Homolog 5                                          | 0.041 | -1.20 |
| ATP6V0C  | Atpase H+ Transporting V0 Subunit C                     | 0.013 | -1.20 |
| FTH1     | Ferritin Heavy Chain 1                                  | 0.012 | -1.21 |
| NLRP3    | NLR Family Pyrin Domain Containing 3                    | 0.013 | -1.21 |
| HFE      | Homeostatic Iron Regulator                              | 0.038 | -1.21 |
| CDKN1A   | Cyclin Dependent Kinase Inhibitor 1A                    | 0.028 | -1.21 |
| ZBTB16   | Zinc Finger And BTB Domain Containing 16                | 0.040 | -1.21 |
| CISH     | Cytokine Inducible SH2 Containing Protein               | 0.012 | -1.22 |
| BSG      | Basigin (Ok Blood Group)                                | 0.007 | -1.22 |
| DDIT4    | DNA Damage Inducible Transcript 4                       | 0.015 | -1.22 |
| KIF3A    | Kinesin Family Member 3A                                | 0.041 | -1.22 |
| MAP3K20  | Mitogen-Activated Protein Kinase Kinase Kinase 20       | 0.042 | -1.22 |
| SLC2A1   | Solute Carrier Family 2 Member 1                        | 0.008 | -1.22 |
| IL4R     | Interleukin 4 Receptor                                  | 0.024 | -1.22 |
| B4GALT7  | Beta-1,4-Galactosyltransferase 7                        | 0.038 | -1.22 |
| SECTM1   | Secreted And Transmembrane 1                            | 0.044 | -1.22 |
| ASCC2    | Activating Signal Cointegrator 1 Complex Subunit 2      | 0.050 | -1.23 |
| PARP11   | Poly(ADP-Ribose) Polymerase Family Member 11            | 0.048 | -1.23 |
| SIDT2    | SID1 Transmembrane Family Member 2                      | 0.036 | -1.23 |
| 37469    | Argonaute RISC Catalytic Component 2                    | 0.039 | -1.23 |
| C1orf198 | Chromosome 1 Open Reading Frame 198                     | 0.006 | -1.23 |
| EFCAB2   | EF-Hand Calcium Binding Domain 2                        | 0.043 | -1.23 |
| MFN2     | Mitofusin 2                                             | 0.023 | -1.23 |
| CASP4    | Caspase 4                                               | 0.008 | -1.24 |
| LYPD3    | LY6/PLAUR Domain Containing 3                           | 0.047 | -1.24 |
| SMCO4    | Single-Pass Membrane Protein With Coiled-Coil Domains 4 | 0.021 | -1.24 |
| LILRB2   | Leukocyte Immunoglobulin Like Receptor B2               | 0.013 | -1.24 |
| CCDC71L  | Coiled-Coil Domain Containing 71 Like                   | 0.033 | -1.24 |

| TBC1D8  | TBC1 Domain Family Member 8                               | 0.033 | -1.24 |
|---------|-----------------------------------------------------------|-------|-------|
| GBGT1   | Globoside Alpha-1,3-N-Acetylgalactosaminyltransferase 1   | 0.020 | -1.24 |
|         | (FORS Blood Group)                                        | 0.020 |       |
| NDUFAF5 | NADH: Ubiquinone Oxidoreductase Complex Assembly Factor 5 | 0.016 | -1.24 |
| CSRNP1  | Cysteine And Serine Rich Nuclear Protein 1                | 0.029 | -1.24 |
| SIAH2   | Siah E3 Ubiquitin Protein Ligase 2                        | 0.002 | -1.24 |
| CIR1    | Corepressor Interacting With RBPJ, CIR1                   | 0.020 | -1.24 |
| MPP1    | Membrane Palmitoylated Protein 1                          | 0.019 | -1.25 |
| ING2    | Inhibitor Of Growth Family Member 2                       | 0.026 | -1.25 |
| LILRB4  | Leukocyte Immunoglobulin Like Receptor B4                 | 0.022 | -1.25 |
| ZNF596  | Zinc Finger Protein 596                                   | 0.041 | -1.25 |
| CHST10  | Carbohydrate Sulfotransferase 10                          | 0.015 | -1.25 |
| DHRS13  | Dehydrogenase/Reductase 13                                | 0.029 | -1.25 |
| CARM1   | Coactivator Associated Arginine Methyltransferase 1       | 0.037 | -1.25 |
| LGALS3  | Galectin 3                                                | 0.023 | -1.26 |
| NLRC4   | NLR Family CARD Domain Containing 4                       | 0.014 | -1.26 |
| TUBB6   | Tubulin Beta 6 Class V                                    | 0.019 | -1.26 |
| TREM1   | Triggering Receptor Expressed On Myeloid Cells 1          | 0.049 | -1.26 |
| SLC2A3  | Solute Carrier Family 2 Member 3                          | 0.048 | -1.26 |
| BLVRA   | Biliverdin Reductase A                                    | 0.041 | -1.27 |
| SLC24A4 | Solute Carrier Family 24 Member 4                         | 0.040 | -1.27 |
| DHRS12  | Dehydrogenase/Reductase 12                                | 0.027 | -1.27 |
| NOTCH4  | Notch Receptor 4                                          | 0.038 | -1.27 |
| USB1    | U6 Snrna Biogenesis Phosphodiesterase 1                   | 0.003 | -1.27 |
| SNX8    | Sorting Nexin 8                                           | 0.010 | -1.27 |
| SEMA4A  | Semaphorin 4A                                             | 0.024 | -1.27 |
| CD55    | CD55 Molecule (Cromer Blood Group)                        | 0.010 | -1.27 |
| PFKFB3  | 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3     | 0.039 | -1.28 |
| CASP1   | Caspase 1                                                 | 0.016 | -1.28 |
| LAPTM4B | Lysosomal Protein Transmembrane 4 Beta                    | 0.027 | -1.28 |

| ST3GAL4  | ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 4                      | 0.011 | -1.28 |
|----------|-------------------------------------------------------------------------|-------|-------|
| FKBP5    | FKBP Prolyl Isomerase 5                                                 | 0.011 | -1.28 |
|          |                                                                         |       | -     |
| ZDHHC1   | Zinc Finger DHHC-Type Containing 1                                      | 0.017 | -1.28 |
| FCGR3A   | Fc Fragment Of Igg Receptor Iiia                                        | 0.026 | -1.29 |
| LMNB1    | Lamin B1                                                                | 0.011 | -1.29 |
| SIRPD    | Signal Regulatory Protein Delta                                         | 0.021 | -1.29 |
| ME1      | Malic Enzyme 1                                                          | 0.048 | -1.29 |
| TECPR2   | Tectonin Beta-Propeller Repeat Containing 2                             | 0.034 | -1.29 |
| F13A1    | Coagulation Factor XIII A Chain                                         | 0.036 | -1.29 |
| DCAF12   | DDB1 And CUL4 Associated Factor 12                                      | 0.031 | -1.29 |
| ANKH     | ANKH Inorganic Pyrophosphate Transport Regulator                        | 0.024 | -1.29 |
| NME7     | NME/NM23 Family Member 7                                                | 0.020 | -1.29 |
| LIMS2    | LIM Zinc Finger Domain Containing 2                                     | 0.041 | -1.29 |
| RTN2     | Reticulon 2                                                             | 0.022 | -1.29 |
| ZMYND15  | Zinc Finger MYND-Type Containing 15                                     | 0.034 | -1.30 |
| B4GALT5  | Beta-1,4-Galactosyltransferase 5                                        | 0.017 | -1.30 |
| OSM      | Oncostatin M                                                            | 0.022 | -1.30 |
| S100A11  | S100 Calcium Binding Protein A11                                        | 0.011 | -1.30 |
| PRDX6    | Peroxiredoxin 6                                                         | 0.012 | -1.30 |
| BTF3     | Basic Transcription Factor 3                                            | 0.046 | -1.30 |
| C9orf78  | Chromosome 9 Open Reading Frame 78                                      | 0.049 | -1.30 |
| EMC3     | ER Membrane Protein Complex Subunit 3                                   | 0.015 | -1.30 |
| GABRR2   | Gamma-Aminobutyric Acid Type A Receptor Subunit Rho2                    | 0.046 | -1.31 |
| GFUS     | GDP-L-Fucose Synthase                                                   | 0.005 | -1.31 |
| RNF10    | Ring Finger Protein 10                                                  | 0.006 | -1.31 |
| RRP12    | Ribosomal RNA Processing 12 Homolog                                     | 0.005 | -1.31 |
| GRINA    | Glutamate Ionotropic Receptor NMDA Type Subunit Associated<br>Protein 1 | 0.001 | -1.32 |
| CDC34    | Cell Division Cycle 34, Ubiqiutin Conjugating Enzyme                    | 0.013 | -1.32 |
| SLC25A37 | Solute Carrier Family 25 Member 37                                      | 0.031 | -1.32 |

| HAGH     | Hydroxyacylglutathione Hydrolase                      | 0.017   | -1.32 |
|----------|-------------------------------------------------------|---------|-------|
| HLA-DRB5 | Major Histocompatibility Complex, Class II, DR Beta 5 | 0.027   | -1.32 |
| SHKBP1   | SH3KBP1 Binding Protein 1                             | 0.010   | -1.33 |
| RNF208   | Ring Finger Protein 208                               | 0.050   | -1.33 |
| TBC1D24  | TBC1 Domain Family Member 24                          | 0.008   | -1.33 |
| ARMCX4   | Armadillo Repeat Containing X-Linked 4                | 0.015   | -1.33 |
| SDSL     | Serine Dehydratase Like                               | 0.047   | -1.34 |
| CYSTM1   | Cysteine Rich Transmembrane Module Containing 1       | 0.012   | -1.34 |
| CRAT     | Carnitine O-Acetyltransferase                         | < 0.001 | -1.34 |
| CR1      | Complement C3b/C4b Receptor 1 (Knops Blood Group)     | 0.031   | -1.34 |
| FCER1G   | Fc Fragment Of Ige Receptor Ig                        | 0.007   | -1.35 |
| CXCL16   | C-X-C Motif Chemokine Ligand 16                       | 0.004   | -1.35 |
| IL12RB2  | Interleukin 12 Receptor Subunit Beta 2                | 0.019   | -1.35 |
| RBM38    | RNA Binding Motif Protein 38                          | 0.004   | -1.35 |
| GSPT1    | G1 To S Phase Transition 1                            | 0.009   | -1.35 |
| RILP     | Rab Interacting Lysosomal Protein                     | 0.020   | -1.35 |
| TAGLN    | Transgelin                                            | 0.021   | -1.35 |
| RPL36AL  | Ribosomal Protein L36a Like                           | 0.034   | -1.36 |
| GP1BB    | Glycoprotein Ib Platelet Subunit Beta                 | 0.018   | -1.36 |
| UBXN6    | UBX Domain Protein 6                                  | 0.027   | -1.36 |
| FKBP8    | FKBP Prolyl Isomerase 8                               | 0.035   | -1.36 |
| CLU      | Clusterin                                             | 0.019   | -1.37 |
| SPARC    | Secreted Protein Acidic And Cysteine Rich             | 0.013   | -1.38 |
| GYPC     | Glycophorin C (Gerbich Blood Group)                   | 0.030   | -1.38 |
| ZMAT2    | Zinc Finger Matrin-Type 2                             | 0.039   | -1.38 |
| NFIX     | Nuclear Factor I X                                    | 0.038   | -1.39 |
| NID1     | Nidogen 1                                             | 0.009   | -1.39 |
| TSPAN5   | Tetraspanin 5                                         | 0.037   | -1.39 |
| CST7     | Cystatin F                                            | 0.011   | -1.39 |
| HEMGN    | Hemogen                                               | 0.025   | -1.40 |

| PR0K2Prokineticin 20.030-1.40CASP5Caspase 50.0341.40SIPA1L2Signal Induced Proliferation Associated 1 Like 20.015-1.40AGBL2AGBL Carboxypeptidase 20.0071.41STK32BSerine/Threonine Kinase 32B0.023-1.41KIR2D14Killer Cell Immunoglobulin Like Receptor, Two Ig Domains And<br>Long Cytoplasmic Tail 40.038-1.42GLX5Glutaredoxin 50.002-1.43ASTLAstacin Like Metalloendopeptidase0.039-1.43TREM11Triggering Receptor Expressed On Myeloid Cells Like 10.005-1.44FCHAllograft Inflammatory Factor 10.039-1.44FECHFerrochelatase0.002-1.44FECHFerrochelatase0.002-1.44HSA12AHeat Shock Protein Signaling 60.027-1.44HSPA12AInterleukin 18 Receptor Accessory Protein0.010-1.45EPHB2EPH Receptor B20.029-1.45ADMAdrenomedullin0.001-1.45ADMAdrenomedullin0.002-1.45ADIVAAdrigonettin Receptor 10.003-1.45SRRDSR1 Domain Containing0.021-1.45SRRDSR1 Domain Containing0.040-1.46CNF4Virupel Like Factor 10.041-1.46ZNF480Zinc Finger Protein 4800.040-1.46SRRDSR1 Domain Containing 30.011-1.46SNF14Kruppel Like Factor 1 <t< th=""><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                            |          |                                                       |       |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------|-------|-------|
| SIPA1L2Signal Induced Proliferation Associated 1 Like 20.0151.40AGBL2AGBL Carboxypeptidase 20.0071.41STK32BSerine/Threonine Kinase 32B0.023-1.41KIR2DL4Killer Cell Immunoglobulin Like Receptor, Two Ig Domains And<br>Long Cytoplasmic Tail 40.038-1.42GLRX5Glutaredoxin 50.002-1.43ASTLAstacin Like Metalloendopeptidase0.039-1.43AFFLIriggering Receptor Expressed On Myeloid Cells Like 10.005-1.44FECHRegulator Of G Protein Signaling 60.027-1.44FECHFerrochelatase0.022-1.44EGR3Early Growth Response 30.022-1.44LIBRAPInterleukin 18 Receptor Accessory Protein0.014-1.45EPHB2EPH Receptor B20.002-1.45ADMAdrenomedullin0.004-1.45ALOX15BArachidonate 15-Lipoxygenase Type B0.022-1.45ADIPOR1Adiponectin Receptor 10.003-1.45PIPOXPipecolic Acid And Sarcosine Oxidase0.023-1.45SRRDSRR1 Domain Containing0.041-1.45SIRFAKruppel Like Factor 10.041-1.46ANKRD9Ankyrin Repeat Domain 90.016-1.46SIRFACreebral Dopamine Neurotrophic Factor0.018-1.47ADIPOR1Adiponectin Receptor 10.016-1.46SIRFAGuerel Acid And Sarcosine Oxidase0.022-1.45SIRFACreebral Dopami                                                                                                                                                                                                                                                            | PROK2    | Prokineticin 2                                        | 0.030 | -1.40 |
| AGBL2AGBL Carboxypeptidase 20.0071.11STK32BSerine/Threonine Kinase 32B0.0231.141KIR2DL4Killer Cell Immunoglobulin Like Receptor, Two Ig Domains And<br>Long Cytoplasmic Tail 40.0381.42GLRX5Glutaredoxin 50.0021.421ASTLAstacin Like Metalloendopeptidase0.0391.431TREML1Triggering Receptor Expressed On Myeloid Cells Like 10.0051.431RS6Regulator Of G Protein Signaling 60.0271.444FECHFerrochelatase0.0021.441ERR3Early Growth Response 30.0221.444IL18RAPInterleukin 18 Receptor Accessory Protein0.0411.445FEPHB2EPH Receptor B20.0271.445ADMAdrenomedullin0.0021.455ADMS',3'-Nucleotidase, Mitochondrial0.0021.455ADIPOR1Adiponectin Receptor 10.0391.455SRDSR1 Domain Containing0.0211.456SRDZinz Finger Protein 4800.0411.466ANKRD9Ankyrin Repeat Domain 90.0161.456SCCS3Suppressor Of Cytokine Signaling 30.0011.466CDNFCerebral Dopamine Neurotrophic Factor0.0181.477                                                                                                                                                                                                                                                                                                                                                                                                                                                | CASP5    | Caspase 5                                             | 0.034 | -1.40 |
| STK32BSerine/Threonine Kinase 32B0.023-1.41KIR2DL4Killer Cell Immunoglobulin Like Receptor, Two Ig Domains And<br>Long Cytoplasmic Tail 40.038-1.42GLRX5Glutaredoxin 50.002-1.42ASTLAstacin Like Metalloendopeptidase0.039-1.43TREML1Triggering Receptor Expressed On Myeloid Cells Like 10.005-1.43RS6Regulator Of G Protein Signaling 60.027-1.44FECHFerrochelatase0.002-1.44IL18RAPInterleukin 18 Receptor Accessory Protein0.041-1.44HSPA12AHeat Shock Protein Family A (Hsp70) Member 12A0.014-1.45ADMAdrenomedullin0.002-1.45-1.45ADMS',3'-Nucleotidase, Mitochondrial0.015-1.45ADIPOR1Adiponectin Receptor 10.003-1.45ADIPOR1Adiponectin Receptor 10.003-1.45SRRDSR1 Domain Containing0.021-1.45SRRDZint Finger Protein 4800.041-1.46ANKRD9Ankyrin Repeat Domain 90.016-1.46SNTSASuppressor Of Cytokine Signaling 30.001-1.46CDNFCerebral Dopamine Neurotrophic Factor0.018-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                           | SIPA1L2  | Signal Induced Proliferation Associated 1 Like 2      | 0.015 | -1.40 |
| KIR2DL4Killer Cell Immunoglobulin Like Receptor, Two Ig Domains And<br>Long Cytoplasmic Tail 40.038-1.42GLRX5Glutaredoxin 50.0002-1.43ASTLAstacin Like Metalloendopeptidase0.039-1.43TREML1Triggering Receptor Expressed On Myeloid Cells Like 10.005-1.43AIF1Allograft Inflammatory Factor 10.039-1.43RGS6Regulator Of G Protein Signaling 60.027-1.44FECHFerrochelatase0.002-1.44ILIBRAPInterleukin 18 Receptor Accessory Protein0.041-1.45EPHB2EPH Receptor B20.024-1.45ADMAdrenomedullin0.004-1.45ALV5158Arachidonate 15-Lipoxygenase Type B0.027-1.45ADPOR1Adiponectin Receptor 10.003-1.45PIPOXPipecolic Acid And Sarcosine Oxidase0.023-1.45SRRDSRR1 Domain Containing0.041-1.45SUF4800Zinc Finger Protein 4800.041-1.46ANRD9Ankyrin Repeat Domain 90.016-1.46SUF4800Suppressor Of Cytokine Signaling 30.001-1.46SUF4800Suppressor Of Cytokine Signaling 30.001-1.46SUF4802Suppressor Of Cytokine Signaling 30.016-1.46SUF4803Suppressor Of Cytokine Signaling 30.016-1.46SUF4804Licucine Rich Repeat Containing 37 Member A20.0121.47                                                                                                                                                                                                                                                                                     | AGBL2    | AGBL Carboxypeptidase 2                               | 0.007 | -1.41 |
| KIR2DL4Long Cytoplasmic Tail 40.038-1.42GLRX5Glutaredoxin 50.002-1.43ASTLAstacin Like Metalloendopeptidase0.039-1.43TREML1Triggering Receptor Expressed On Myeloid Cells Like 10.005-1.43AIF1Allograft Inflammatory Factor 10.039-1.43RGS6Regulator Of G Protein Signaling 60.027-1.44FECHFerrochelatase0.005-1.44EGR3Early Growth Response 30.022-1.44IL18RAPInterleukin 18 Receptor Accessory Protein0.041-1.45EPHB2EPH Receptor B20.029-1.45ADMAdrenomedullin0.004-1.45ALX15BArachidonate 15-Lipoxygenase Type B0.027-1.45ADIPOR1Adiponectin Receptor 10.003-1.45SRRDSRR1 Domain Containing0.041-1.46ZNF480Zinc Finger Protein 4800.040-1.46ANKRD9Ankyrin Repeat Domain 90.016-1.46SNCS3Suppressor Of Cytokine Signaling 30.001-1.46CDNFCerebral Dopamine Neurotrophic Factor0.018-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STK32B   | Serine/Threonine Kinase 32B                           | 0.023 | -1.41 |
| ASTL         Astacin Like Metalloendopeptidase         0.039         1.1.43           ASTL         Astacin Like Metalloendopeptidase         0.039         1.1.43           TREML1         Triggering Receptor Expressed On Myeloid Cells Like 1         0.005         1.1.43           AIF1         Allograft Inflammatory Factor 1         0.039         1.1.43           RGS6         Regulator Of G Protein Signaling 6         0.027         1.1.44           FECH         Ferrochelatase         0.005         1.1.44           EGR3         Early Growth Response 3         0.022         -1.44           HSPA12A         Heat Shock Protein Family A (Hsp70) Member 12A         0.014         1.1.45           EPHB2         EPH Receptor B2         0.029         -1.45           ADM         Adrenomedullin         0.004         -1.45           ADM         Adrenomedullin         0.015         -1.45           ADM         S'.3'-Nucleotidase, Mitochondrial         0.015         -1.45           ADIPOR1         Adiponectin Receptor 1         0.003         -1.45           PIPOX         Pipecolic Acid And Sarcosine Oxidase         0.022         -1.45           SRRD         SRR1 Domain Containing         0.040         -1.46           ZINF480 <td>KIR2DL4</td> <td></td> <td>0.038</td> <td>-1.42</td> | KIR2DL4  |                                                       | 0.038 | -1.42 |
| TREML1         Triggering Receptor Expressed On Myeloid Cells Like 1         0.005         1.43           AIF1         Allograft Inflammatory Factor 1         0.039         -1.43           RGS6         Regulator Of G Protein Signaling 6         0.027         -1.44           FECH         Ferrochelatase         0.005         -1.44           EGR3         Early Growth Response 3         0.022         -1.44           IL18RAP         Interleukin 18 Receptor Accessory Protein         0.041         -1.45           EPH32         EPH Receptor B2         0.029         -1.45           ADM         Adrenomedullin         0.004         -1.45           ALX15B         Arachidonate 15-Lipoxygenase Type B         0.027         -1.45           ADPOR1         Adiponectin Receptor 1         0.003         -1.45           ADPOR1         Adiponectin Receptor 1         0.003         -1.45           SRRD         SRR1 Domain Containing         0.002         -1.45           SRRD         SRR1 Domain Containing         0.002         -1.45           AIKRD9         Ankyrin Repeat Domain 9         0.016         -1.46           ZNF480         Zinc Finger Protein 480         0.040         -1.46           ZNF480         Suppressor Of Cy                                                               | GLRX5    | Glutaredoxin 5                                        | 0.002 | -1.42 |
| AIF1Allograft Inflammatory Factor 10.0391.43RGS6Regulator Of G Protein Signaling 60.0271.44FECHFerrochelatase0.0051.44EGR3Early Growth Response 30.0221.44IL18RAPInterleukin 18 Receptor Accessory Protein0.0411.44HSPA12AHeat Shock Protein Family A (Hsp70) Member 12A0.0141.45EPHB2EPH Receptor B20.0291.45ADMAdrenomedullin0.0041.45ALOX15BArachidonate 15-Lipoxygenase Type B0.0271.45ADPOR1Adiponectin Receptor 10.0031.45PIPOXPipecolic Acid And Sarcosine Oxidase0.0231.45SRRDSRR1 Domain Containing0.0401.46ZNF480Zinc Finger Protein 4800.0401.46ANKRD9Ankyrin Repeat Domain 90.0161.46CONFCerebral Dopamine Neurotrophic Factor0.0181.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.0121.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASTL     | Astacin Like Metalloendopeptidase                     | 0.039 | -1.43 |
| RGS6Regulator Of G Protein Signaling 60.0271.44FECHFerrochelatase0.0051.44EGR3Early Growth Response 30.0221.44IL18RAPInterleukin 18 Receptor Accessory Protein0.0411.145HSPA12AHeat Shock Protein Family A (Hsp70) Member 12A0.0141.45EPHB2EPH Receptor B20.0021.45ADMAdrenomedullin0.0041.45ALOX15BArachidonate 15-Lipoxygenase Type B0.0271.45ADIPOR1Adiponectin Receptor 10.0031.45PIPOXPipecolic Acid And Sarcosine Oxidase0.0231.45SRRDSRR1 Domain Containing0.0411.466ZNF480Zinc Finger Protein 4800.0411.466ANKRD9Ankyrin Repeat Domain 90.0161.466CONFCerebral Dopamine Neurotrophic Factor0.0181.477LRRC37A2Leucine Rich Repeat Containing 37 Member A20.0121.477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TREML1   | Triggering Receptor Expressed On Myeloid Cells Like 1 | 0.005 | -1.43 |
| FECHFerrochelatase0.005-1.44EGR3Early Growth Response 30.022-1.44IL18RAPInterleukin 18 Receptor Accessory Protein0.041-1.44HSPA12AHeat Shock Protein Family A (Hsp70) Member 12A0.014-1.45EPHB2EPH Receptor B20.029-1.45ADMAdrenomedullin0.004-1.45ALOX15BArachidonate 15-Lipoxygenase Type B0.027-1.45ADIPOR1Adiponectin Receptor 10.003-1.45SRRDSRR1 Domain Containing0.002-1.45SRRDSRR1 Domain Containing0.002-1.46ZNF480Zinc Finger Protein 4800.001-1.46SOCS3Suppressor Of Cytokine Signaling 30.001-1.46CDNFCerebral Dopamine Neurotrophic Factor0.018-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AIF1     | Allograft Inflammatory Factor 1                       | 0.039 | -1.43 |
| EGR3Interleukin 18 Receptor Accessory Protein0.0221.44IL18RAPInterleukin 18 Receptor Accessory Protein0.041-1.45HSPA12AHeat Shock Protein Family A (Hsp70) Member 12A0.014-1.45EPHB2EPH Receptor B20.029-1.45ADMAdrenomedullin0.004-1.45ALOX15BArachidonate 15-Lipoxygenase Type B0.027-1.45NT5M5',3'-Nucleotidase, Mitochondrial0.003-1.45ADIPOR1Adiponectin Receptor 10.003-1.45SRRDSRR1 Domain Containing0.002-1.45KLF1Kruppel Like Factor 10.041-1.46ZNF480Zinc Finger Protein 4800.040-1.46SNCS3Suppressor Of Cytokine Signaling 30.001-1.46CDNFCerebral Dopamine Neurotrophic Factor0.012-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RGS6     | Regulator Of G Protein Signaling 6                    | 0.027 | -1.44 |
| Interleukin 18 Receptor Accessory ProteinInterleukin 18 Receptor Accessory ProteinInterleukin 18 Receptor Accessory ProteinHSPA12AHeat Shock Protein Family A (Hsp70) Member 12A0.014-1.45EPHB2EPH Receptor B20.029-1.45ADMAdrenomedullin0.004-1.45ALOX15BArachidonate 15-Lipoxygenase Type B0.027-1.45NT5M5',3'-Nucleotidase, Mitochondrial0.013-1.45ADIPOR1Adiponectin Receptor 10.003-1.45SRRDSR1 Domain Containing0.023-1.45KLF1Kruppel Like Factor 10.041-1.46ZNF480Zinc Finger Protein 4800.041-1.46SOCS3Suppressor Of Cytokine Signaling 30.001-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FECH     | Ferrochelatase                                        | 0.005 | -1.44 |
| HSPA12AHeat Shock Protein Family A (Hsp70) Member 12A0.014-1.45EPHB2EPH Receptor B20.029-1.45ADMAdrenomedullin0.004-1.45ALOX15BArachidonate 15-Lipoxygenase Type B0.027-1.45NT5M5',3'-Nucleotidase, Mitochondrial0.015-1.45ADIPOR1Adiponectin Receptor 10.003-1.45PIPOXPipecolic Acid And Sarcosine Oxidase0.023-1.45SRRDSRR1 Domain Containing0.002-1.45KLF1Kruppel Like Factor 10.041-1.46ZNF480Zinc Finger Protein 4800.016-1.46SOCS3Suppressor Of Cytokine Signaling 30.001-1.46CDNFCerebral Dopamine Neurotrophic Factor0.018-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EGR3     | Early Growth Response 3                               | 0.022 | -1.44 |
| EPHB2IPH Receptor B20.029-1.45ADMAdrenomedullin0.004-1.45ALOX15BArachidonate 15-Lipoxygenase Type B0.027-1.45NT5M5',3'-Nucleotidase, Mitochondrial0.015-1.45ADIPOR1Adiponectin Receptor 10.003-1.45PIPOXPipecolic Acid And Sarcosine Oxidase0.023-1.45SRRDSRR1 Domain Containing0.002-1.45KLF1Kruppel Like Factor 10.041-1.46ZNF480Zinc Finger Protein 4800.040-1.46SNCS3Suppressor Of Cytokine Signaling 30.001-1.46CDNFCerebral Dopamine Neurotrophic Factor0.018-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IL18RAP  | Interleukin 18 Receptor Accessory Protein             | 0.041 | -1.44 |
| ADMAdrenomedullin0.004-1.45ALOX15BArachidonate 15-Lipoxygenase Type B0.027-1.45NT5M5',3'-Nucleotidase, Mitochondrial0.015-1.45ADIPOR1Adiponectin Receptor 10.003-1.45PIPOXPipecolic Acid And Sarcosine Oxidase0.023-1.45SRRDSRR1 Domain Containing0.002-1.45KLF1Kruppel Like Factor 10.001-1.46ZNF480Zinc Finger Protein 4800.040-1.46SNKD9Ankyrin Repeat Domain 90.016-1.46SOCS3Suppressor Of Cytokine Signaling 30.001-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HSPA12A  | Heat Shock Protein Family A (Hsp70) Member 12A        | 0.014 | -1.45 |
| ALOX15BArachidonate 15-Lipoxygenase Type B0.027-1.45NT5M5',3'-Nucleotidase, Mitochondrial0.015-1.45ADIPOR1Adiponectin Receptor 10.003-1.45PIPOXPipecolic Acid And Sarcosine Oxidase0.023-1.45SRRDSRR1 Domain Containing0.002-1.45KLF1Kruppel Like Factor 10.041-1.46ZNF480Zinc Finger Protein 4800.040-1.46ANKRD9Ankyrin Repeat Domain 90.016-1.46SOCS3Suppressor Of Cytokine Signaling 30.001-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPHB2    | EPH Receptor B2                                       | 0.029 | -1.45 |
| NT5MComparisonComparisonNT5M5',3'-Nucleotidase, Mitochondrial0.015-1.45ADIPOR1Adiponectin Receptor 10.003-1.45PIPOXPipecolic Acid And Sarcosine Oxidase0.023-1.45SRRDSRR1 Domain Containing0.002-1.45KLF1Kruppel Like Factor 10.041-1.46ZNF480Zinc Finger Protein 4800.040-1.46ANKRD9Ankyrin Repeat Domain 90.016-1.46SOCS3Suppressor Of Cytokine Signaling 30.001-1.46CDNFCerebral Dopamine Neurotrophic Factor0.018-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADM      | Adrenomedullin                                        | 0.004 | -1.45 |
| ADIPOR1Adiponectin Receptor 10.003-1.45PIPOXPipecolic Acid And Sarcosine Oxidase0.023-1.45SRRDSRR1 Domain Containing0.002-1.45KLF1Kruppel Like Factor 10.041-1.46ZNF480Zinc Finger Protein 4800.040-1.46ANKRD9Ankyrin Repeat Domain 90.016-1.46SOCS3Suppressor Of Cytokine Signaling 30.001-1.46CDNFCerebral Dopamine Neurotrophic Factor0.018-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ALOX15B  | Arachidonate 15-Lipoxygenase Type B                   | 0.027 | -1.45 |
| PIPOXPipecolic Acid And Sarcosine Oxidase0.023-1.45SRRDSRR1 Domain Containing0.002-1.45KLF1Kruppel Like Factor 10.041-1.46ZNF480Zinc Finger Protein 4800.040-1.46ANKRD9Ankyrin Repeat Domain 90.016-1.46SOCS3Suppressor Of Cytokine Signaling 30.001-1.46CDNFCerebral Dopamine Neurotrophic Factor0.018-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NT5M     | 5',3'-Nucleotidase, Mitochondrial                     | 0.015 | -1.45 |
| SRRDSRR1 Domain Containing0.002-1.45KLF1Kruppel Like Factor 10.041-1.46ZNF480Zinc Finger Protein 4800.040-1.46ANKRD9Ankyrin Repeat Domain 90.016-1.46SOCS3Suppressor Of Cytokine Signaling 30.001-1.46CDNFCerebral Dopamine Neurotrophic Factor0.018-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ADIPOR1  | Adiponectin Receptor 1                                | 0.003 | -1.45 |
| KLF1Kruppel Like Factor 10.041-1.46ZNF480Zinc Finger Protein 4800.040-1.46ANKRD9Ankyrin Repeat Domain 90.016-1.46SOCS3Suppressor Of Cytokine Signaling 30.001-1.46CDNFCerebral Dopamine Neurotrophic Factor0.018-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PIPOX    | Pipecolic Acid And Sarcosine Oxidase                  | 0.023 | -1.45 |
| ZNF480Zinc Finger Protein 4800.040-1.46ANKRD9Ankyrin Repeat Domain 90.016-1.46SOCS3Suppressor Of Cytokine Signaling 30.001-1.46CDNFCerebral Dopamine Neurotrophic Factor0.018-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SRRD     | SRR1 Domain Containing                                | 0.002 | -1.45 |
| ANKRD9Ankyrin Repeat Domain 90.016-1.46SOCS3Suppressor Of Cytokine Signaling 30.001-1.46CDNFCerebral Dopamine Neurotrophic Factor0.018-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KLF1     | Kruppel Like Factor 1                                 | 0.041 | -1.46 |
| SOCS3Suppressor Of Cytokine Signaling 30.001-1.46CDNFCerebral Dopamine Neurotrophic Factor0.018-1.47LRRC37A2Leucine Rich Repeat Containing 37 Member A20.012-1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ZNF480   | Zinc Finger Protein 480                               | 0.040 | -1.46 |
| CDNF     Cerebral Dopamine Neurotrophic Factor     0.018     -1.47       LRRC37A2     Leucine Rich Repeat Containing 37 Member A2     0.012     -1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANKRD9   | Ankyrin Repeat Domain 9                               | 0.016 | -1.46 |
| LRRC37A2     Leucine Rich Repeat Containing 37 Member A2     0.012     -1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SOCS3    | Suppressor Of Cytokine Signaling 3                    | 0.001 | -1.46 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CDNF     | Cerebral Dopamine Neurotrophic Factor                 | 0.018 | -1.47 |
| FHIP1A       FHF Complex Subunit HOOK Interacting Protein 1A       0.009       -1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LRRC37A2 | Leucine Rich Repeat Containing 37 Member A2           | 0.012 | -1.47 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FHIP1A   | FHF Complex Subunit HOOK Interacting Protein 1A       | 0.009 | -1.47 |

| GAS7           | Growth Arrest Specific 7                                                             | < 0.001 | -1.47 |
|----------------|--------------------------------------------------------------------------------------|---------|-------|
| KEL            | Kell Metallo-Endopeptidase (Kell Blood Group)                                        | 0.049   | -1.47 |
| DMTN           | Dematin Actin Binding Protein                                                        | 0.026   | -1.48 |
| TMEM272        | Transmembrane Protein 272                                                            | 0.014   | -1.48 |
| НВМ            | Hemoglobin Subunit Mu                                                                | 0.044   | -1.48 |
| MXI1           | MAX Interactor 1, Dimerization Protein                                               | 0.003   | -1.48 |
| ZDHHC19        | Zinc Finger DHHC-Type Palmitoyltransferase 19                                        | 0.040   | -1.48 |
| AKR1C3         | Aldo-Keto Reductase Family 1 Member C3                                               | 0.039   | -1.48 |
| PRSS27         | Serine Protease 27                                                                   | 0.027   | -1.48 |
| ZNF385C        | Zinc Finger Protein 385C                                                             | 0.046   | -1.49 |
| GPR146         | G Protein-Coupled Receptor 146                                                       | 0.015   | -1.49 |
| KANK2          | KN Motif And Ankyrin Repeat Domains 2                                                | 0.045   | -1.49 |
| SLC25A39       | Solute Carrier Family 25 Member 39                                                   | 0.041   | -1.49 |
| ZNF391         | Zinc Finger Protein 391                                                              | 0.030   | -1.50 |
| RUNDC3A        | RUN Domain Containing 3A                                                             | 0.026   | -1.50 |
| ANXA3          | Annexin A3                                                                           | 0.012   | -1.50 |
| RAB13          | RAB13, Member RAS Oncogene Family                                                    | 0.001   | -1.50 |
| KIR2DL3        | Killer Cell Immunoglobulin Like Receptor, Two Ig Domains And Long Cytoplasmic Tail 3 | 0.023   | -1.50 |
| CACNA1E        | Calcium Voltage-Gated Channel Subunit Alpha1 E                                       | 0.016   | -1.50 |
| SAMD14         | Sterile Alpha Motif Domain Containing 14                                             | 0.050   | -1.51 |
| AIM2           | Absent In Melanoma 2                                                                 | 0.003   | -1.51 |
| BCL2L1         | BCL2 Like 1                                                                          | 0.010   | -1.51 |
| ST6GALNA<br>C4 | ST6 N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 4                            | 0.002   | -1.51 |
| IGF2BP2        | Insulin Like Growth Factor 2 Mrna Binding Protein 2                                  | 0.005   | -1.51 |
| NHSL1          | NHS Like 1                                                                           | 0.027   | -1.51 |
| TAL1           | TAL Bhlh Transcription Factor 1, Erythroid Differentiation<br>Factor                 | 0.031   | -1.51 |
| ALPL           | Alkaline Phosphatase, Biomineralization Associated                                   | 0.018   | -1.51 |
| CLEC4D         | C-Type Lectin Domain Family 4 Member D                                               | 0.031   | -1.53 |

| CABP5         | Calcium Binding Protein 5                                    | 0.021   | -1.53 |
|---------------|--------------------------------------------------------------|---------|-------|
| NOTCH2NL<br>C | Notch 2 N-Terminal Like C                                    | 0.003   | -1.53 |
| OLFML2B       | Olfactomedin Like 2B                                         | 0.020   | -1.54 |
| IFIT1B        | Interferon Induced Protein With Tetratricopeptide Repeats 1B | 0.024   | -1.54 |
| KREMEN1       | Kringle Containing Transmembrane Protein 1                   | 0.016   | -1.54 |
| CDR2L         | Cerebellar Degeneration Related Protein 2 Like               | 0.031   | -1.54 |
| TMEM255<br>B  | Transmembrane Protein 255B                                   | 0.016   | -1.54 |
| MCEMP1        | Mast Cell Expressed Membrane Protein 1                       | 0.006   | -1.54 |
| DDX11         | DEAD/H-Box Helicase 11                                       | 0.015   | -1.54 |
| TNS1          | Tensin 1                                                     | 0.017   | -1.54 |
| KRT73         | Keratin 73                                                   | 0.041   | -1.55 |
| CRYM          | Crystallin Mu                                                | 0.045   | -1.56 |
| S100A12       | S100 Calcium Binding Protein A12                             | 0.048   | -1.56 |
| BBOF1         | Basal Body Orientation Factor 1                              | 0.025   | -1.57 |
| МҮО7В         | Myosin VIIB                                                  | 0.013   | -1.57 |
| ITGA2B        | Integrin Subunit Alpha 2b                                    | 0.004   | -1.57 |
| MINDY4        | MINDY Lysine 48 Deubiquitinase 4                             | 0.011   | -1.58 |
| BPGM          | Bisphosphoglycerate Mutase                                   | < 0.001 | -1.58 |
| STRADB        | STE20 Related Adaptor Beta                                   | 0.012   | -1.58 |
| ITGB4         | Integrin Subunit Beta 4                                      | 0.024   | -1.59 |
| ALPK3         | Alpha Kinase 3                                               | 0.003   | -1.59 |
| GALNT14       | Polypeptide N-Acetylgalactosaminyltransferase 14             | 0.024   | -1.61 |
| TGM2          | Transglutaminase 2                                           | 0.002   | -1.61 |
| TMEM119       | Transmembrane Protein 119                                    | 0.043   | -1.62 |
| TMC4          | Transmembrane Channel Like 4                                 | 0.013   | -1.63 |
| SPATC1        | Spermatogenesis And Centriole Associated 1                   | 0.013   | -1.63 |
| MARCO         | Macrophage Receptor With Collagenous Structure               | 0.005   | -1.64 |
| ALDH1A2       | Aldehyde Dehydrogenase 1 Family Member A2                    | 0.009   | -1.64 |

| OR2W3         | Olfactory Receptor Family 2 Subfamily W Member 3 | 0.014   | -1.64 |
|---------------|--------------------------------------------------|---------|-------|
| SH2D4B        | SH2 Domain Containing 4B                         | 0.037   | -1.65 |
| SPOCD1        | SPOC Domain Containing 1                         | 0.005   | -1.65 |
| FAM210B       | Family With Sequence Similarity 210 Member B     | 0.002   | -1.65 |
| TDRD9         | Tudor Domain Containing 9                        | 0.002   | -1.65 |
| SLC6A8        | Solute Carrier Family 6 Member 8                 | 0.008   | -1.66 |
| LILRA5        | Leukocyte Immunoglobulin Like Receptor A5        | < 0.001 | -1.66 |
| SEM1          | SEM1 26S Proteasome Subunit                      | 0.015   | -1.67 |
| EPB42         | Erythrocyte Membrane Protein Band 4.2            | 0.016   | -1.68 |
| C4A           | Complement C4A (Rodgers Blood Group)             | 0.050   | -1.68 |
| EMID1         | EMI Domain Containing 1                          | 0.005   | -1.69 |
| IL27          | Interleukin 27                                   | 0.006   | -1.69 |
| CFD           | Complement Factor D                              | 0.012   | -1.70 |
| HBQ1          | Hemoglobin Subunit Theta 1                       | 0.004   | -1.70 |
| SLC6A9        | Solute Carrier Family 6 Member 9                 | 0.008   | -1.70 |
| SLC41A2       | Solute Carrier Family 41 Member 2                | 0.041   | -1.70 |
| PRELID2       | PRELI Domain Containing 2                        | 0.040   | -1.70 |
| MYL9          | Myosin Light Chain 9                             | 0.002   | -1.70 |
| ESPN          | Espin                                            | 0.013   | -1.70 |
| SNCA          | Synuclein Alpha                                  | 0.018   | -1.70 |
| HBD           | Hemoglobin Subunit Delta                         | 0.021   | -1.73 |
| NOTCH2NL<br>B | Notch 2 N-Terminal Like B                        | 0.024   | -1.73 |
| WASF3         | WASP Family Member 3                             | 0.007   | -1.75 |
| TMOD1         | Tropomodulin 1                                   | 0.006   | -1.76 |
| LGALS9B       | Galectin 9B                                      | 0.003   | -1.77 |
| PLEK2         | Pleckstrin 2                                     | 0.007   | -1.78 |
| HSD17B6       | Hydroxysteroid 17-Beta Dehydrogenase 6           | 0.031   | -1.78 |
| GMPR          | Guanosine Monophosphate Reductase                | 0.002   | -1.79 |
| YBX3          | Y-Box Binding Protein 3                          | < 0.001 | -1.81 |

| TSKS         | Testis Specific Serine Kinase Substrate                | 0.016 | -1.82 |
|--------------|--------------------------------------------------------|-------|-------|
| P4HA2        | Prolyl 4-Hydroxylase Subunit Alpha 2                   | 0.011 | -1.82 |
| KIF26A       | Kinesin Family Member 26A                              | 0.014 | -1.83 |
| SRGAP1       | SLIT-ROBO Rho Gtpase Activating Protein 1              | 0.043 | -1.83 |
| A3GALT2      | Alpha 1,3-Galactosyltransferase 2                      | 0.048 | -1.83 |
| AHSP         | Alpha Hemoglobin Stabilizing Protein                   | 0.005 | -1.84 |
| HEPACAM<br>2 | HEPACAM Family Member 2                                | 0.032 | -1.85 |
| SPTA1        | Spectrin Alpha, Erythrocytic 1                         | 0.025 | -1.87 |
| RAMP3        | Receptor Activity Modifying Protein 3                  | 0.019 | -1.90 |
| TRIM58       | Tripartite Motif Containing 58                         | 0.002 | -1.90 |
| CLEC2L       | C-Type Lectin Domain Family 2 Member L                 | 0.006 | -1.91 |
| SYCP3        | Synaptonemal Complex Protein 3                         | 0.034 | -1.91 |
| SHROOM4      | Shroom Family Member 4                                 | 0.015 | -1.91 |
| VIL1         | Villin 1                                               | 0.002 | -1.92 |
| CRACD        | Capping Protein Inhibiting Regulator Of Actin Dynamics | 0.027 | -1.93 |
| TSPO2        | Translocator Protein 2                                 | 0.012 | -1.94 |
| PPP1R14C     | Protein Phosphatase 1 Regulatory Inhibitor Subunit 14C | 0.044 | -1.97 |
| KRT1         | Keratin 1                                              | 0.003 | -1.97 |
| PF4V1        | Platelet Factor 4 Variant 1                            | 0.001 | -1.98 |
| LRRC49       | Leucine Rich Repeat Containing 49                      | 0.037 | -1.98 |
| FAM187A      | Family With Sequence Similarity 187 Member A           | 0.004 | -1.99 |
| SLC4A1       | Solute Carrier Family 4 Member 1 (Diego Blood Group)   | 0.004 | -2.00 |
| ACHE         | Acetylcholinesterase (Cartwright Blood Group)          | 0.015 | -2.01 |
| SIGLEC11     | Sialic Acid Binding Ig Like Lectin 11                  | 0.005 | -2.06 |
| CA1          | Carbonic Anhydrase 1                                   | 0.006 | -2.07 |
| CARD16       | Caspase Recruitment Domain Family Member 16            | 0.011 | -2.08 |
| ODAD4        | Outer Dynein Arm Docking Complex Subunit 4             | 0.005 | -2.08 |
| CERS3        | Ceramide Synthase 3                                    | 0.010 | -2.08 |
| SPTB         | Spectrin Beta, Erythrocytic                            | 0.001 | -2.09 |
|              |                                                        | I     |       |

| METTL7B       | Methyltransferase Like 7B                       | 0.020   | -2.10 |
|---------------|-------------------------------------------------|---------|-------|
| PRICKLE2      | Prickle Planar Cell Polarity Protein 2          | 0.008   | -2.10 |
| РКРЗ          | Plakophilin 3                                   | 0.021   | -2.10 |
| ADCY10        | Adenylate Cyclase 10                            | 0.029   | -2.10 |
| SLC6A4        | Solute Carrier Family 6 Member 4                | 0.015   | -2.12 |
|               |                                                 |         |       |
| NID2          | Nidogen 2                                       | 0.026   | -2.12 |
| MYO10         | Myosin X                                        | < 0.001 | -2.16 |
| TMC5          | Transmembrane Channel Like 5                    | 0.023   | -2.16 |
| GGN           | Gametogenetin                                   | 0.008   | -2.18 |
| IFI27         | Interferon Alpha Inducible Protein 27           | 0.027   | -2.20 |
| PTGES3L       | Prostaglandin E Synthase 3 Like                 | 0.023   | -2.22 |
| CYP24A1       | Cytochrome P450 Family 24 Subfamily A Member 1  | 0.037   | -2.23 |
| GOLGA8K       | Golgin A8 Family Member K                       | 0.011   | -2.26 |
| SELENBP1      | Selenium Binding Protein 1                      | < 0.001 | -2.32 |
| SMIM6         | Small Integral Membrane Protein 6               | 0.041   | -2.35 |
| ALAS2         | 5'-Aminolevulinate Synthase 2                   | < 0.001 | -2.40 |
| UTS2          | Urotensin 2                                     | 0.046   | -2.40 |
| TMEM132<br>C  | Transmembrane Protein 132C                      | 0.009   | -2.41 |
| RPH3A         | Rabphilin 3A                                    | < 0.001 | -2.43 |
| GYPB          | Glycophorin B (MNS Blood Group)                 | 0.003   | -2.47 |
| SRPX          | Sushi Repeat Containing Protein X-Linked        | 0.011   | -2.47 |
| SLC6A19       | Solute Carrier Family 6 Member 19               | 0.050   | -2.48 |
| RAP1GAP       | RAP1 Gtpase Activating Protein                  | 0.002   | -2.51 |
| CD177         | CD177 Molecule                                  | 0.021   | -2.57 |
| TRMT9B        | Trna Methyltransferase 9B (Putative)            | 0.020   | -2.58 |
| HMGN5         | High Mobility Group Nucleosome Binding Domain 5 | 0.002   | -2.61 |
| SERPINC1      | Serpin Family C Member 1                        | 0.006   | -2.67 |
| NME1-<br>NME2 | NME1-NME2 Readthrough                           | 0.017   | -2.72 |

| AIF1L    | Allograft Inflammatory Factor 1 Like          | 0.017   | -2.74   |
|----------|-----------------------------------------------|---------|---------|
| SCGB3A1  | Secretoglobin Family 3A Member 1              | 0.014   | -2.76   |
| SOX5     | SRY-Box Transcription Factor 5                | < 0.001 | -2.87   |
| ESRRB    | Estrogen Related Receptor Beta                | 0.047   | -2.98   |
| GYPA     | Glycophorin A (MNS Blood Group)               | 0.004   | -3.00   |
| CSDC2    | Cold Shock Domain Containing C2               | 0.026   | -3.12   |
| FAM83A   | Family With Sequence Similarity 83 Member A   | 0.025   | -3.34   |
| DET1     | DET1 Partner Of COP1 E3 Ubiquitin Ligase      | < 0.001 | -3.58   |
| EPB41L4B | Erythrocyte Membrane Protein Band 4.1 Like 4B | 0.021   | -3.62   |
| HBG1     | Hemoglobin Subunit Gamma 1                    | 0.022   | -4.18   |
| MYOM2    | Myomesin 2                                    | < 0.001 | -4.36   |
| COX6B2   | Cytochrome C Oxidase Subunit 6B2              | 0.001   | -4.74   |
| SUSD5    | Sushi Domain Containing 5                     | < 0.001 | -5.02   |
| SMIM34   | Small Integral Membrane Protein 34            | 0.016   | -5.60   |
| TBC1D3   | TBC1 Domain Family Member 3                   | < 0.001 | -209.06 |
| TBC1D3G  | TBC1 Domain Family Member 3G                  | 0.002   | -1324.6 |

## APPENDIX F

| Ingenuity Canonical Pathways                                  | p-value | Ratio | z-score | Molecules                    |
|---------------------------------------------------------------|---------|-------|---------|------------------------------|
| Caveolar-mediated Endocytosis                                 | 10.001  | 0.07  |         | COPE,FLNA,FLOT2,ITGA2B,ITGA  |
| Signaling                                                     | < 0.001 | 0.07  |         | M                            |
| Role of                                                       |         |       |         |                              |
| Hypercytokinemia/hyperchemokin                                | < 0.001 | 0.06  | 2.236   | IFIT2,MX1,OAS2,OAS3,STAT2    |
| emia in the Pathogenesis of                                   | < 0.001 | 0.00  | 2.250   |                              |
| Influenza                                                     |         |       |         |                              |
| LPS/IL-1 Mediated Inhibition of RXR                           | < 0.001 | 0.03  | 0       | ACSL1,CPT1A,IL18RAP,NR1H2,S  |
| Function                                                      |         | 0.00  | •       | MOX,TNFRSF1B                 |
| Mitochondrial L-carnitine Shuttle                             | 0.001   | 0.13  |         | ACSL1,CPT1A                  |
| Pathway                                                       |         |       |         | ,                            |
| Production of Nitric Oxide and                                | 0.000   | 0.00  | 2       | CYBA, JAK3, MAP3K11, TNFRSF1 |
| Reactive Oxygen Species in                                    | 0.003   | 0.02  | 2       | В                            |
| Macrophages                                                   |         |       |         |                              |
| PD-1, PD-L1 cancer immunotherapy                              | 0.004   | 0.03  |         | CSK,JAK3,TNFRSF1B            |
| pathway<br>Paxillin Signaling                                 | 0.005   | 0.02  |         |                              |
|                                                               | 0.005   | 0.03  |         | CSK,ITGA2B,ITGAM             |
| Interferon Signaling                                          | 0.007   | 0.06  |         | MX1,STAT2                    |
| Complement System                                             | 0.007   | 0.06  |         | C4BPA,ITGAM                  |
| LXR/RXR Activation                                            | 0.007   | 0.03  |         | IL18RAP,NR1H2,TNFRSF1B       |
| IL-15 Production                                              | 0.007   | 0.03  |         | CSK,JAK3,MAP3K11             |
| Coronavirus Replication Pathway                               | 0.009   | 0.05  |         | COPE,TUBB1                   |
| Melatonin Degradation II                                      | 0.010   | 0.33  |         | SMOX                         |
| STAT3 Pathway                                                 | 0.011   | 0.02  |         | CSF2RB,IL18RAP,MAP3K11       |
| Spermine and Spermidine<br>Degradation I                      | 0.013   | 0.25  |         | SMOX                         |
| Acetate Conversion to Acetyl-CoA                              | 0.013   | 0.25  |         | ACSL1                        |
| Granulocyte Adhesion and                                      | 0.015   | 0.02  |         | IL18RAP,ITGAM,TNFRSF1B       |
| Diapedesis                                                    | 0.015   | 0.02  |         |                              |
| MSP-RON Signaling Pathway                                     | 0.016   | 0.04  |         | CSF2RB,ITGAM                 |
| α-tocopherol Degradation                                      | 0.017   | 0.20  |         | CYP4F3                       |
| Activation of IRF by Cytosolic                                | 0.018   | 0.03  |         | IFIT2,STAT2                  |
| Pattern Recognition Receptors                                 | 0.010   | 0.05  |         | 1112,31712                   |
| Acute Phase Response Signaling                                | 0.022   | 0.02  |         | C4BPA,HP,TNFRSF1B            |
| PI3K/AKT Signaling                                            | 0.023   | 0.02  |         | CSF2RB,IL18RAP,JAK3          |
| Inositol Pyrophosphates                                       | 0.023   | 0.14  |         | IP6K1                        |
| Biosynthesis                                                  |         |       |         |                              |
| Natural Killer Cell Signaling                                 | 0.026   | 0.02  |         | IL18RAP,JAK3,MAP3K11         |
| JAK/Stat Signaling                                            | 0.030   | 0.03  |         | JAK3,STAT2                   |
| Integrin Signaling                                            | 0.031   | 0.01  |         | ITGA2B,ITGAM,MAP3K11         |
| Osteoarthritis Pathway                                        | 0.034   | 0.01  |         | IL18RAP,NOTCH1,TNFRSF1B      |
| Crosstalk between Dendritic Cells<br>and Natural Killer Cells | 0.034   | 0.02  |         | CSF2RB,TNFRSF1B              |
| Sperm Motility                                                | 0.035   | 0.01  |         | CSK,JAK3,MAP3K11             |
| Fatty Acid Activation                                         | 0.043   | 0.08  |         | ACSL1                        |
| Phenylalanine Degradation IV<br>(Mammalian, via Side Chain)   | 0.043   | 0.08  |         | SMOX                         |
| PPAR Signaling                                                | 0.046   | 0.02  |         | IL18RAP,TNFRSF1B             |
|                                                               | 0.040   | 0.02  |         |                              |

## Table 1F. 33 pathways MDD vs HR from microarray analysis (p-value < 0.05)

| Oxidative Ethanol Degradation III | 0.049 | 0.07 | ACSL1 |
|-----------------------------------|-------|------|-------|

| Ingenuity Canonical Pathways              | p-value | Ratio | z-score | Molecules     |
|-------------------------------------------|---------|-------|---------|---------------|
| Role of<br>Hypercytokinemia/hyperchemokin |         |       |         |               |
| emia in the Pathogenesis of               | 0.002   | 0.03  |         | IFIT2,MX1     |
| Influenza                                 |         |       |         |               |
| Acute Phase Response Signaling            | 0.010   | 0.01  |         | С4ВРА,НР      |
| Osteoarthritis Pathway                    | 0.014   | 0.01  |         | CASP5,IL18RAP |
| Inflammasome pathway                      | 0.017   | 0.05  |         | CASP5         |
| Pyrimidine Deoxyribonucleotides           | 0.018   | 0.05  |         | СМРК2         |
| De Novo Biosynthesis I                    | 0.010   | 0.05  |         |               |
| Pyrimidine Ribonucleotides                | 0.027   | 0.03  |         | СМРК2         |
| Interconversion                           | 0.027   | 0.00  |         |               |
| Pyrimidine Ribonucleotides De             | 0.029   | 0.03  |         | СМРК2         |
| Novo Biosynthesis                         | 0.029   | 0.05  |         |               |
| Interferon Signaling                      | 0.032   | 0.03  |         | MX1           |
| Complement System                         | 0.032   | 0.03  |         | C4BPA         |

Table 2F. 9 pathways MDD vs LR from microarray analysis (p-value < 0.05)

| Ingenuity Canonical Pathways                                | p.value | Ratio | z-score | Molecules |
|-------------------------------------------------------------|---------|-------|---------|-----------|
| Melatonin Degradation II                                    | 0.001   | 0.33  |         | SMOX      |
| Spermine and Spermidine<br>Degradation I                    | 0.002   | 0.25  |         | SMOX      |
| Phenylalanine Degradation IV<br>(Mammalian, via Side Chain) | 0.005   | 0.08  |         | SMOX      |
| Putrescine Degradation III                                  | 0.007   | 0.06  |         | SMOX      |
| Tryptophan Degradation X<br>(Mammalian, via Tryptamine)     | 0.007   | 0.06  |         | SMOX      |
| Dopamine Degradation                                        | 0.009   | 0.05  |         | SMOX      |
| Noradrenaline and Adrenaline<br>Degradation                 | 0.012   | 0.03  |         | SMOX      |
| Serotonin Receptor Signaling                                | 0.017   | 0.02  |         | SMOX      |
| Serotonin Degradation                                       | 0.019   | 0.02  |         | SMOX      |
| Superpathway of Melatonin<br>Degradation                    | 0.020   | 0.02  |         | SMOX      |
| Dopamine Receptor Signaling                                 | 0.031   | 0.01  |         | SMOX      |

Table 3F. 11 pathways HR vs LR from microarray analysis (p-value < 0.05)

| Ingenuity Canonical Pathways                                          | p-value | Ratio | z-score | Molecules                                                                                                                                  |
|-----------------------------------------------------------------------|---------|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Integrin Signaling                                                    | < 0.001 | 0.10  | 3.638   | ARPC1B,ARPC4,CAPN1,GIT1,IT<br>GA2B,ITGA5,ITGAL,ITGAM,ITG<br>AX,ITGB2,MAP3K11,NEDD9,PIK<br>3CD,PLCG2,PXN,RAPGEF1,RHO<br>T2,TLN1,TSPAN3,VASP |
| Leukocyte Extravasation Signaling                                     | < 0.001 | 0.10  | 2.357   | ARHGAP1,ARHGAP4,CYBA,ICA<br>M3,ITGAL,ITGAM,ITGB2,MMP2<br>5,MSN,NCF2,PIK3CD,PLCG2,PR<br>KCD,PTK2B,PXN,SIPA1,VASP,VA<br>V1                   |
| Caveolar-mediated Endocytosis<br>Signaling                            | < 0.001 | 0.15  |         | COPE,DNM2,FLNA,FLOT2,HLA-<br>E,ITGA2B,ITGA5,ITGAL,ITGAM,I<br>TGAX,ITGB2                                                                    |
| Tec Kinase Signaling                                                  | < 0.001 | 0.09  | 3.606   | GNB2,ITGA5,ITGAL,ITGB2,JAK3,<br>PIK3CD,PLCG2,PRKCD,PTK2B,R<br>HOT2,STAT2,STAT3,STAT5B,ST<br>AT6,TYK2,VAV1                                  |
| HGF Signaling                                                         | < 0.001 | 0.10  | 3       | ELF4,ITGA5,ITGAL,ITGB2,MAP3<br>K11,MAP3K3,PIK3CD,PLCG2,PR<br>KCD,PXN,RAPGEF1,STAT3                                                         |
| TREM1 Signaling                                                       | < 0.001 | 0.13  | 3       | CIITA,ITGA5,ITGAX,LAT2,NLRC3<br>,NLRC5,PLCG2,STAT3,STAT5B                                                                                  |
| Phagosome Formation                                                   | < 0.001 | 0.10  |         | FCAR,IGHG1,IGHG4,ITGA5,ITGA<br>L,ITGAM,ITGAX,ITGB2,PIK3CD,<br>PLCG2,PRKCD,RHOT2                                                            |
| Th1 and Th2 Activation Pathway                                        | < 0.001 | 0.08  |         | IL4R,IL6R,ITGB2,JAK3,NOTCH1,<br>NOTCH2,PIK3CD,PSENEN,STAT<br>3,STAT5B,STAT6,TGFB1,TYK2,V<br>AV1                                            |
| Fcγ Receptor-mediated<br>Phagocytosis in Macrophages and<br>Monocytes | < 0.001 | 0.11  | 3.162   | ARPC1B,ARPC4,INPP5D,PLD3,P<br>RKCD,PTK2B,PXN,TLN1,VASP,V<br>AV1                                                                            |
| Th2 Pathway                                                           | < 0.001 | 0.09  | 2.714   | IL4R,ITGB2,JAK3,NOTCH1,NOT<br>CH2,PIK3CD,PSENEN,STAT5B,S<br>TAT6,TGFB1,TYK2,VAV1                                                           |
| IL-8 Signaling                                                        | < 0.001 | 0.08  | 3.606   | CXCR1,GNB2,IKBKE,ITGAM,ITG<br>AX,ITGB2,LASP1,LIMK1,NCF2,PI<br>K3CD,PLD3,PRKCD,PTK2B,RHO<br>T2,VASP                                         |
| Systemic Lupus Erythematosus<br>Signaling                             | < 0.001 | 0.07  |         | CD22,EFTUD2,HLA-<br>E,IGHG1,IGHG4,IL6R,INPP5D,PI<br>K3CD,PIM2,PLCG2,PRPF6,PRPF<br>8,RNU4ATAC,SNRNP200,SNRP<br>A,ZMAT5                      |
| Systemic Lupus Erythematosus In B<br>Cell Signaling Pathway           | < 0.001 | 0.07  | 2.828   | CARD11,CD22,IGHA1,IGHG1,IL<br>6R,INPP5D,LILRA6,LTB,MAVS,PI<br>K3CD,PIM2,PLCG2,PRKCD,STAT<br>2,STAT3,TGFB1,TYK2,VAV1                        |
| Actin Cytoskeleton Signaling                                          | < 0.001 | 0.07  | 3.464   | ARPC1B,ARPC4,FGD3,FLNA,GIT<br>1,ITGA5,ITGAL,ITGB2,LIMK1,M<br>SN,MYH9,NCKAP1L,PIK3CD,PX<br>N,TLN1,VAV1                                      |

| - I able 4F. 112 pathways males IVIDD vs males HK from microarray analysis (p-value < 0.05) | nales MDD vs males HR from microarray analysis (p-value < 0.0 | ).05) |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------|
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------|

| <b></b>                                                                     | 1       | 1    |        |                                                                                                                 |
|-----------------------------------------------------------------------------|---------|------|--------|-----------------------------------------------------------------------------------------------------------------|
| HIF1α Signaling                                                             | < 0.001 | 0.07 | 2.84   | BMP6,GPI,HIF1AN,HK3,HSPA1A<br>/HSPA1B,IL6R,MKNK2,MMP25,<br>NCF2,PIK3CD,PKM,PLCG2,PRKC<br>D,STAT3,TGFB1          |
| Notch Signaling                                                             | < 0.001 | 0.16 | 0.816  | FURIN,MFNG,NOTCH1,NOTCH2<br>,PSENEN,RFNG                                                                        |
| Role of JAK1 and JAK3 in γc<br>Cytokine Signaling                           | < 0.001 | 0.12 |        | FES,IL4R,JAK3,PIK3CD,PTK2B,ST<br>AT3,STAT5B,STAT6                                                               |
| Virus Entry via Endocytic Pathways                                          | < 0.001 | 0.10 |        | AP1M1,AP2A1,DNM2,FLNA,HL<br>A-<br>E,ITGA5,ITGB2,PIK3CD,PLCG2,P<br>RKCD                                          |
| Paxillin Signaling                                                          | 0.001   | 0.09 | 2.236  | ITGA2B,ITGA5,ITGAL,ITGAM,IT<br>GAX,ITGB2,PIK3CD,PTK2B,PXN,<br>TLN1                                              |
| Natural Killer Cell Signaling                                               | 0.001   | 0.07 | 3.742  | HLA-<br>E,HSPA1A/HSPA1B,ITGAL,JAK3,<br>LIMK1,MAP3K11,MAP3K3,NCR<br>1,PIK3CD,PLCG2,PTK2B,PXN,TY<br>K2,VAV1       |
| Iron homeostasis signaling pathway                                          | 0.001   | 0.08 |        | ATP6AP1,ATP6V0D1,BMP6,HB<br>D,HBZ,IL6R,JAK3,LRP1,STAT3,S<br>TAT5B,TYK2                                          |
| STAT3 Pathway                                                               | 0.001   | 0.08 | 2.828  | BMP6,CSF2RB,CXCR1,IGF2R,IL4<br>R,IL6R,MAP3K11,PIM1,STAT3,T<br>GFB1,TYK2                                         |
| Th1 Pathway                                                                 | 0.001   | 0.09 | 3      | IL6R,ITGB2,JAK3,NOTCH1,NOT<br>CH2,PIK3CD,PSENEN,STAT3,TY<br>K2,VAV1                                             |
| IL-3 Signaling                                                              | 0.001   | 0.10 | 2.121  | CSF2RB,INPP5D,PIK3CD,PRKCD,<br>RAPGEF1,STAT3,STAT5B,STAT6                                                       |
| Signaling by Rho Family GTPases                                             | 0.001   | 0.06 | 3.606  | ARHGEF18,ARHGEF2,ARPC1B,A<br>RPC4,GNB2,ITGA5,ITGAL,ITGB2<br>,LIMK1,MAP3K11,MSN,NCF2,PI<br>K3CD,PKN1,PTK2B,RHOT2 |
| B Cell Receptor Signaling                                                   | 0.001   | 0.07 | 2.53   | BCL6,CD22,IGHA1,IGHG1,IGHG<br>4,IKBKE,INPP5D,MAP3K11,MA<br>P3K3,PIK3CD,PLCG2,PTK2B,VA<br>V1                     |
| Rac Signaling                                                               | 0.002   | 0.08 | 2.828  | ARPC1B,ARPC4,ITGA5,ITGAL,IT<br>GB2,LIMK1,MAP3K11,NCF2,PIK<br>3CD,PTK2B                                          |
| Production of Nitric Oxide and<br>Reactive Oxygen Species in<br>Macrophages | 0.002   | 0.07 | 3.606  | CLU,CYBA,IKBKE,JAK3,MAP3K1<br>1,MAP3K3,NCF2,PIK3CD,PLCG2<br>,PRKCD,RHOT2,TNFRSF1B,TYK2                          |
| RhoGDI Signaling                                                            | 0.002   | 0.07 | -3.162 | ARHGAP1,ARHGAP4,ARHGEF18<br>,ARHGEF2,ARPC1B,ARPC4,GNB<br>2,ITGA5,ITGAL,ITGB2,LIMK1,M<br>SN,RHOT2                |
| Ephrin Receptor Signaling                                                   | 0.002   | 0.07 | 2.53   | ARPC1B,ARPC4,DOK1,EPHB1,G<br>NB2,ITGA5,ITGAL,ITGB2,LIMK1,<br>PXN,RAPGEF1,SH2D3C,STAT3                           |
| T Helper Cell Differentiation                                               | 0.003   | 0.10 |        | BCL6,IL4R,IL6R,STAT3,STAT6,T<br>GFB1,TNFRSF1B                                                                   |
| Acute Myeloid Leukemia Signaling                                            | 0.003   | 0.09 | 0      | CSF1R,CSF2RB,CSF3R,PIK3CD,PI<br>M1,PIM2,STAT3,STAT5B                                                            |

| <b></b>                             | Т     | 1    |        |                                                            |
|-------------------------------------|-------|------|--------|------------------------------------------------------------|
| ERK/MAPK Signaling                  | 0.003 | 0.06 | 3.317  | ELF4,ITGA5,ITGAL,ITGB2,MKNK<br>2,PIK3CD,PLCG2,PRKCD,PTK2B, |
|                                     | -     |      |        | PXN,RAPGEF1,STAT3,TLN1                                     |
|                                     |       |      |        | CSF2RB,CXCR1,IKBKE,IL4R,IL6R,                              |
| PI3K/AKT Signaling                  | 0.004 | 0.07 | 1.633  | INPP5D,ITGA5,ITGAL,ITGB2,JAK                               |
|                                     |       |      |        | 3,PIK3CD,TYK2                                              |
|                                     |       |      |        | ADCY7,ARHGEF18,ARHGEF2,G                                   |
| Phoenholinoso C Signaling           | 0.004 | 0.06 | 3      | NB2,HDAC1,IGHG1,IGHG4,ITGA                                 |
| Phospholipase C Signaling           | 0.004 | 0.06 | 5      | 5,ITGAL,ITGB2,ITPR3,PLCG2,PL                               |
|                                     |       |      |        | D3,PRKCD,RHOT2                                             |
| Acetate Conversion to Acetyl-CoA    | 0.004 | 0.50 |        | ACSL1,ACSS1                                                |
| Role of JAK family kinases in IL-6- |       |      |        |                                                            |
| type Cytokine Signaling             | 0.004 | 0.16 |        | IL6R,STAT3,STAT5B,TYK2                                     |
|                                     |       |      |        | ARPC1B,ARPC4,FGD3,HLA-                                     |
| Cdc42 Signaling                     | 0.004 | 0.07 | 2.646  | E,ITGA5,ITGAL,ITGB2,LIMK1,M                                |
| 5 5                                 |       |      |        | AP3K11,VAV1                                                |
|                                     |       |      |        | ANKFY1,CSF1R,ITGA5,ITGB2,PI                                |
| Macropinocytosis Signaling          | 0.004 | 0.09 | 2.449  | K3CD,PLCG2,PRKCD                                           |
|                                     |       |      |        | ATP6AP1,ATP6V0D1,CTSD,DYN                                  |
| Phagosome Maturation                | 0.005 | 0.07 |        | C1H1,GPAA1,HLA-                                            |
|                                     | 0.000 | 0.07 |        | E,NCF2,TUBB1,VPS18,VPS39                                   |
| Actin Nucleation by ARP-WASP        |       |      |        | ARPC1B,ARPC4,ITGA5,ITGAL,IT                                |
| Complex                             | 0.005 | 0.09 | 2.236  | GB2,RHOT2,VASP                                             |
| complex                             |       |      |        | ARHGEF2,ARPC1B,ARPC4,ITGA                                  |
| Reelin Signaling in Neurons         | 0.005 | 0.07 |        | 5,LIMK1,MAP3K11,MAPK8IP3,                                  |
| Reelin Signaling in Neurons         | 0.005 | 0.07 |        | PIK3CD,RAPGEF1                                             |
|                                     |       |      |        |                                                            |
| JAK/Stat Signaling                  | 0.006 | 0.09 | 2.646  | JAK3,PIK3CD,STAT2,STAT3,STA                                |
|                                     |       |      |        | T5B,STAT6,TYK2                                             |
| SPINK1 General Cancer Pathway       | 0.006 | 0.10 | 2.449  | IL6R,JAK3,MT1F,PIK3CD,STAT3,                               |
| Primary Immunadaticianay            |       |      |        |                                                            |
| Primary Immunodeficiency            | 0.006 | 0.11 |        | CIITA,IGHA1,IGHG1,IGHG4,JAK                                |
| Signaling                           |       |      |        | S<br>CAPN1,ITGA5,ITGAL,ITGB2,PIK                           |
| FAK Signaling                       | 0.007 | 0.08 |        |                                                            |
|                                     |       |      |        | 3CD,PLCG2,PXN,TLN1                                         |
|                                     |       |      |        | ADCY7,ATP2A3,CSF2RB,CXCR1,                                 |
| Condice Usus entremby Cignaling     |       |      |        | HDAC1, IKBKE, IL4R, IL6R, ITGA5, I                         |
| Cardiac Hypertrophy Signaling       | 0.007 | 0.05 | 4.025  | TGAL, ITGB2, ITPR3, LTB, MAP3K1                            |
| (Enhanced)                          |       |      |        | 1,MAP3K3,MKNK2,PIK3CD,PKN                                  |
|                                     |       |      |        | 1,PLCG2,PRKCD,STAT3,TGFB1,T                                |
|                                     |       |      |        | NFRSF1B                                                    |
| PAK Signaling                       | 0.008 | 0.08 | 1.633  | GIT1,ITGA5,ITGAL,ITGB2,LIMK1                               |
|                                     |       |      |        | ,PIK3CD,PTK2B,PXN                                          |
|                                     | 0.000 | 0.0- | 2 222  | GNB2,GRK2,IKBKE,ITPR3,PIK3C                                |
| Gαq Signaling                       | 0.008 | 0.07 | 2.333  | D,PLCG2,PLD3,PRKCD,PTK2B,R                                 |
| Mitaghanduight genetit Church       |       |      |        | HOT2                                                       |
| Mitochondrial L-carnitine Shuttle   | 0.010 | 0.18 |        | ACSL1,CPT1A,SLC27A3                                        |
| Pathway                             |       |      |        |                                                            |
| Semaphorin Neuronal Repulsive       | 0.010 | 0.07 | -0.333 | FES,ITGA5,ITGAL,ITGB2,LIMK1,                               |
| Signaling Pathway                   |       |      |        | PIK3CD,PLCG2,SEMA4D,STK11                                  |
| Crosstalk between Dendritic Cells   |       | 0.00 | 4      | CSF2RB,HLA-                                                |
| and Natural Killer Cells            | 0.010 | 0.08 | 1.633  | E,ICAM3,ITGAL,LTB,TLN1,TNFR                                |
|                                     |       |      |        | SF1B                                                       |
|                                     |       |      |        | ADCY7,ARHGEF18,ARHGEF2,BA                                  |
| Molecular Mechanisms of Cancer      | 0.011 | 0.05 |        | K1,BMP6,CDK9,ITGA5,ITGAL,IT                                |
|                                     |       |      |        | GB2, JAK3, LRP1, NOTCH1, PIK3C                             |

|                                                                 |       |      |        | D,PRKCD,PSENEN,RAPGEF1,RH<br>OT2,TGFB1,TYK2                                                                 |
|-----------------------------------------------------------------|-------|------|--------|-------------------------------------------------------------------------------------------------------------|
| IL-9 Signaling                                                  | 0.011 | 0.12 | 2      | JAK3,PIK3CD,STAT3,STAT5B                                                                                    |
| Huntington's Disease Signaling                                  | 0.012 | 0.06 |        | CAPN1,CTSD,DCTN1,DNM2,GN<br>B2,GPAA1,HDAC1,HSPA1A/HSP<br>A1B,PIK3CD,POLR2E,POLR2J,P<br>OLR2J2/POLR2J3,PRKCD |
| Insulin Secretion Signaling Pathway                             | 0.013 | 0.05 | 3.606  | ADCY7,FURIN,GPAA1,ITPR3,JAK<br>3,PIK3CD,PLCG2,PRKCD,STAT2,<br>STAT3,STAT5B,STAT6,TYK2                       |
| Purine Nucleotides Degradation II<br>(Aerobic)                  | 0.014 | 0.16 |        | ADA2,ADAT3,IMPDH1                                                                                           |
| Inositol Pyrophosphates<br>Biosynthesis                         | 0.014 | 0.29 |        | ІР6К1,РРІР5К1                                                                                               |
| Adenine and Adenosine Salvage III                               | 0.014 | 0.29 |        | ADA2,ADAT3                                                                                                  |
| Purine Ribonucleosides<br>Degradation to Ribose-1-<br>phosphate | 0.014 | 0.29 |        | ADA2,ADAT3                                                                                                  |
| Regulation of Cellular Mechanics by<br>Calpain Protease         | 0.014 | 0.08 |        | CAPN1,ITGA5,ITGAL,ITGB2,PXN<br>,TLN1                                                                        |
| IL-7 Signaling Pathway                                          | 0.014 | 0.08 | 2      | BAK1,BCL6,IGHG1,JAK3,PIK3CD<br>,STAT5B                                                                      |
| Mitochondrial Dysfunction                                       | 0.014 | 0.06 |        | ATP5PD,COX6A1,CPT1A,FURIN,<br>NDUFA2,NDUFB1,NDUFB6,OG<br>DH,PSENEN,RHOT2                                    |
| Clathrin-mediated Endocytosis<br>Signaling                      | 0.015 | 0.06 |        | AP1M1,AP2A1,ARPC1B,ARPC4,<br>CLU,DNM2,GAK,HGS,ITGA5,ITG<br>B2,PIK3CD                                        |
| IL-15 Signaling                                                 | 0.016 | 0.08 | 2.449  | JAK3,PIK3CD,STAT3,STAT5B,ST<br>AT6,TYK2                                                                     |
| Regulation of Actin-based Motility by Rho                       | 0.016 | 0.07 | 2.236  | ARPC1B,ARPC4,ITGA5,ITGAL,IT<br>GB2,LIMK1,RHOT2                                                              |
| Unfolded protein response                                       | 0.016 | 0.09 |        | CD82,ERN1,HSPA1A/HSPA1B,O<br>S9,VCP                                                                         |
| Colorectal Cancer Metastasis<br>Signaling                       | 0.017 | 0.05 | 3      | ADCY7,GNB2,GRK2,IL6R,JAK3,L<br>RP1,MMP25,PIK3CD,PTGER4,R<br>HOT2,STAT3,TGFB1,TYK2                           |
| T Cell Exhaustion Signaling Pathway                             | 0.017 | 0.06 | 1      | BCL6,HLA-<br>E,IL6R,JAK3,PIK3CD,PLCG2,STA<br>T2,STAT3,TGFB1,TYK2                                            |
| RhoA Signaling                                                  | 0.017 | 0.07 | 1.414  | ARHGAP1,ARHGAP4,ARPC1B,A<br>RPC4,LIMK1,MSN,PKN1,PTK2B                                                       |
| Semaphorin Signaling in Neurons                                 | 0.019 | 0.09 |        | ARHGAP1,FES,LIMK1,RHOT2,SE<br>MA4D                                                                          |
| FLT3 Signaling in Hematopoietic<br>Progenitor Cells             | 0.020 | 0.08 | 1.633  | INPP5D,PIK3CD,STAT2,STAT3,S<br>TAT5B,STAT6                                                                  |
| Neuregulin Signaling                                            | 0.021 | 0.07 | 1      | ITGA5,ITGAL,ITGB2,PLCG2,PRK<br>CD,RNF41,STAT5B                                                              |
| PD-1, PD-L1 cancer immunotherapy<br>pathway                     | 0.021 | 0.07 | -0.816 | HLA-<br>E,JAK3,PIK3CD,STAT5B,TGFB1,T<br>NFRSF1B,TYK2                                                        |
| IL-4 Signaling                                                  | 0.023 | 0.07 |        | IL4R,INPP5D,JAK3,PIK3CD,STAT<br>6,TYK2                                                                      |
| Triacylglycerol Degradation                                     | 0.024 | 0.10 |        | ABHD2,CES2,PLB1,PNPLA2                                                                                      |
| IL-22 Signaling                                                 | 0.026 | 0.13 |        | STAT3,STAT5B,TYK2                                                                                           |

| Role of JAK1, JAK2 and TYK2 in                  |       |      |       |                                                                                                                                    |
|-------------------------------------------------|-------|------|-------|------------------------------------------------------------------------------------------------------------------------------------|
| Interferon Signaling                            | 0.026 | 0.13 |       | STAT2,STAT3,TYK2                                                                                                                   |
| Glycolysis I                                    | 0.026 | 0.13 |       | ENO1,GPI,PKM                                                                                                                       |
| Pancreatic Adenocarcinoma<br>Signaling          | 0.027 | 0.06 | 2.449 | JAK3,NOTCH1,PIK3CD,PLD3,ST<br>AT3,TGFB1,TYK2                                                                                       |
| Acetyl-CoA Biosynthesis III (from<br>Citrate)   | 0.027 | 1.00 |       | ACLY                                                                                                                               |
| Thrombopoietin Signaling                        | 0.028 | 0.08 | 2.236 | PIK3CD,PLCG2,PRKCD,STAT3,ST<br>AT5B                                                                                                |
| Oncostatin M Signaling                          | 0.028 | 0.09 | 2     | JAK3,STAT3,STAT5B,TYK2                                                                                                             |
| Calcium Transport I                             | 0.028 | 0.20 |       | ANXA5,ATP2A3                                                                                                                       |
| PDGF Signaling                                  | 0.029 | 0.07 | 2.449 | INPP5D,JAK3,PIK3CD,PLCG2,ST<br>AT3,TYK2                                                                                            |
| PI3K Signaling in B Lymphocytes                 | 0.029 | 0.06 | 2.121 | ATF6B,IKBKE,IL4R,INPP5D,ITPR<br>3,PIK3CD,PLCG2,VAV1                                                                                |
| ErbB2-ErbB3 Signaling                           | 0.029 | 0.08 | 2.236 | JAK3,PIK3CD,STAT3,STAT5B,TY<br>K2                                                                                                  |
| MSP-RON Signaling In<br>Macrophages Pathway     | 0.030 | 0.06 | 1.134 | CIITA,IKBKE,ITGAM,ITGB2,PIK3<br>CD,SBNO2,STAT3                                                                                     |
| Sperm Motility                                  | 0.030 | 0.05 | 2.449 | CSF1R,EPHB1,FES,ITPR3,JAK3,<br>MAP3K11,PLB1,PLCG2,PRKCD,<br>PTK2B,TYK2                                                             |
| IL-17A Signaling in Airway Cells                | 0.031 | 0.08 | 2.236 | IKBKE,JAK3,PIK3CD,STAT3,TYK2                                                                                                       |
| Pyridoxal 5'-phosphate Salvage<br>Pathway       | 0.031 | 0.08 | 2     | GRK6,LIMK1,PIM1,PKN1,PRKCD                                                                                                         |
| Remodeling of Epithelial Adherens<br>Junctions  | 0.032 | 0.08 |       | ARPC1B,ARPC4,DNM2,HGS,TU<br>BB1                                                                                                    |
| Erythropoietin Signaling Pathway                | 0.034 | 0.05 | 0.333 | CSF2RB,HBD,HBZ,ITPR3,LTB,PIK<br>3CD,PRKCD,STAT5B,TGFB1                                                                             |
| Axonal Guidance Signaling                       | 0.035 | 0.04 |       | ARPC1B,ARPC4,BMP6,EPHB1,F<br>ES,GIT1,GNB2,ITGA5,ITGAL,ITG<br>B2,LIMK1,MMP25,NTNG2,PIK3<br>CD,PLCG2,PRKCD,PXN,SEMA4D<br>,TUBB1,VASP |
| FAT10 Cancer Signaling Pathway                  | 0.035 | 0.09 | 2     | IKBKE,STAT3,TGFB1,TNFRSF1B                                                                                                         |
| PFKFB4 Signaling Pathway                        | 0.035 | 0.09 | 1     | GPI,HK3,TGFB1,TKT                                                                                                                  |
| fMLP Signaling in Neutrophils                   | 0.036 | 0.06 | 2.449 | ARPC1B,ARPC4,GNB2,ITPR3,NC<br>F2,PIK3CD,PRKCD                                                                                      |
| Tight Junction Signaling                        | 0.037 | 0.05 |       | ARHGEF2,CPSF1,F2RL2,GPAA1,<br>MYH9,SYMPK,TGFB1,TNFRSF1B<br>,VASP                                                                   |
| CD28 Signaling in T Helper Cells                | 0.038 | 0.06 | 2.646 | ARPC1B,ARPC4,CARD11,IKBKE,I<br>TPR3,PIK3CD,VAV1                                                                                    |
| Renin-Angiotensin Signaling                     | 0.039 | 0.06 | 2.236 | ADCY7,ITPR3,PIK3CD,PLCG2,PR<br>KCD,PTK2B,STAT3                                                                                     |
| Synaptogenesis Signaling Pathway                | 0.040 | 0.05 | 3.606 | ADCY7,AP2A1,ARPC1B,ARPC4,E<br>PHB1,GPAA1,LIMK1,LRP1,PIK3<br>CD,PLCG2,PRKCD,RAPGEF1,SGT<br>A,TLN1                                   |
| Spliceosomal Cycle                              | 0.040 | 0.08 | 2     | EFTUD2,SNRNP200,U2AF2,XAB<br>2                                                                                                     |
| Stearate Biosynthesis I (Animals)               | 0.040 | 0.08 | 2     | ACOT8, ACSL1, ELOVL1, SLC27A3                                                                                                      |
| UDP-N-acetyl-D-galactosamine<br>Biosynthesis II | 0.040 | 0.17 |       | GPI,HK3                                                                                                                            |

| GM-CSF Signaling                                  | 0.041 | 0.07 | 2     | CSF2RB,PIK3CD,PIM1,STAT3,ST<br>AT5B                             |
|---------------------------------------------------|-------|------|-------|-----------------------------------------------------------------|
| IL-15 Production                                  | 0.041 | 0.06 | 2.646 | CSF1R,EPHB1,FES,JAK3,MAP3K<br>11,PTK2B,TYK2                     |
| Growth Hormone Signaling                          | 0.043 | 0.07 | 2.236 | PIK3CD,PLCG2,PRKCD,STAT3,ST<br>AT5B                             |
| Ephrin B Signaling                                | 0.045 | 0.07 | 2     | EPHB1,GNB2,LIMK1,PXN,VAV1                                       |
| Assembly of RNA Polymerase II<br>Complex          | 0.046 | 0.08 | 1     | POLR2E,POLR2J,POLR2J2/POLR<br>2J3,TAF6                          |
| Salvage Pathways of Pyrimidine<br>Ribonucleotides | 0.046 | 0.06 | 2.236 | APOBEC3A,GRK6,LIMK1,PIM1,P<br>KN1,PRKCD                         |
| Fatty Acid Activation                             | 0.047 | 0.15 |       | ACSL1,SLC27A3                                                   |
| Dendritic Cell Maturation                         | 0.047 | 0.05 | 2.828 | HLA-<br>E,IGHG1,IGHG4,IKBKE,LTB,PIK3<br>CD,PLCG2,STAT2,TNFRSF1B |

| Ingenuity Canonical Pathways                                | p-value | Ratio | z-score | Molecules                               |
|-------------------------------------------------------------|---------|-------|---------|-----------------------------------------|
| Primary Immunodeficiency                                    | < 0.001 | 0.09  |         | IGHA1,IGHG1,IGHG4,JAK3                  |
| Signaling                                                   | < 0.001 | 0.09  |         | IGHA1,IGHG1,IGHG4,JAKS                  |
| Phagosome Formation                                         | < 0.001 | 0.04  |         | FCAR,IGHG1,IGHG4,ITGAX,PLC<br>G2        |
| TREM1 Signaling                                             | < 0.001 | 0.06  | 2       | ITGAX,NLRC3,NLRC5,PLCG2                 |
| Hematopoiesis from Pluripotent<br>Stem Cells                | 0.001   | 0.07  |         | IGHA1,IGHG1,IGHG4                       |
| Systemic Lupus Erythematosus<br>Signaling                   | 0.005   | 0.02  |         | IGHG1,IGHG4,PLCG2,RNU4ATA<br>C,SNRPN    |
| Caveolar-mediated Endocytosis<br>Signaling                  | 0.006   | 0.04  |         | COPE,FLNA,ITGAX                         |
| IL-7 Signaling Pathway                                      | 0.006   | 0.04  |         | BAK1,IGHG1,JAK3                         |
| Communication between Innate<br>and Adaptive Immune Cells   | 0.010   | 0.03  |         | IGHA1,IGHG1,IGHG4                       |
| Dendritic Cell Maturation                                   | 0.011   | 0.02  | 2       | IGHG1,IGHG4,PLCG2,STAT2                 |
| B Cell Receptor Signaling                                   | 0.013   | 0.02  |         | IGHA1,IGHG1,IGHG4,PLCG2                 |
| Interferon Signaling                                        | 0.014   | 0.06  |         | BAK1,STAT2                              |
| Notch Signaling                                             | 0.015   | 0.05  |         | NOTCH1,RFNG                             |
| Natural Killer Cell Signaling                               | 0.015   | 0.02  | 1       | IL18RAP, JAK3, LILRB1, PLCG2            |
| Autoimmune Thyroid Disease<br>Signaling                     | 0.019   | 0.05  |         | IGHG1,IGHG4                             |
| Coronavirus Replication Pathway                             | 0.019   | 0.05  |         | COPE,TUBB2A                             |
| Estrogen Receptor Signaling                                 | 0.023   | 0.02  | 2       | HSP90B1,JAK3,MMP8,NOTCH1,<br>PLCG2      |
| Allograft Rejection Signaling                               | 0.024   | 0.04  |         | IGHG1,IGHG4                             |
| Glucocorticoid Receptor Signaling                           | 0.027   | 0.01  |         | HP,HSP90B1,IL18RAP,JAK3,MM<br>P8,POLR2J |
| Pentose Phosphate Pathway (Non-<br>oxidative Branch)        | 0.030   | 0.17  |         | ТКТ                                     |
| Insulin Secretion Signaling Pathway                         | 0.032   | 0.02  | 2       | ITPR3, JAK3, PLCG2, STAT2               |
| Inositol Pyrophosphates<br>Biosynthesis                     | 0.035   | 0.14  |         | IP6K1                                   |
| Phospholipase C Signaling                                   | 0.040   | 0.02  |         | IGHG1,IGHG4,ITPR3,PLCG2                 |
| Salvage Pathways of Pyrimidine<br>Deoxyribonucleotides      | 0.040   | 0.13  |         | APOBEC3A                                |
| eNOS Signaling                                              | 0.041   | 0.02  |         | HSP90B1,ITPR3,PLCG2                     |
| Gαq Signaling                                               | 0.041   | 0.02  |         | GRK2,ITPR3,PLCG2                        |
| Aldosterone Signaling in Epithelial<br>Cells                | 0.043   | 0.02  |         | HSP90B1,ITPR3,PLCG2                     |
| Systemic Lupus Erythematosus In B<br>Cell Signaling Pathway | 0.045   | 0.02  | 2       | IGHA1,IGHG1,PLCG2,STAT2                 |
| Pentose Phosphate Pathway                                   | 0.049   | 0.10  |         | ткт                                     |

Table 5F. 28 pathways males MDD vs males LR from microarray analysis (p-value < 0.05)

| Table 6F. 3 pathways males HR vs males LR from microarray analysis (p-value < 0.05) |
|-------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------|

| Ingenuity Canonical Pathways      | p-value | Ratio | z-score | Molecules |
|-----------------------------------|---------|-------|---------|-----------|
| CD27 Signaling in Lymphocytes     | 0.027   | 0.02  |         | MAP3K11   |
| Mitotic Roles of Polo-Like Kinase | 0.033   | 0.02  |         | ANAPC1    |
| RANK Signaling in Osteoclasts     | 0.045   | 0.01  |         | MAP3K11   |

| Ingenuity Canonical Pathways                                                          | p-value | Ratio | z-score | Molecules             |
|---------------------------------------------------------------------------------------|---------|-------|---------|-----------------------|
| Role of<br>Hypercytokinemia/hyperchemokin<br>emia in the Pathogenesis of<br>Influenza | < 0.001 | 0.05  | 2       | CXCL8,IFIT2,MX1,STAT2 |
| Activation of IRF by Cytosolic<br>Pattern Recognition Receptors                       | < 0.001 | 0.05  |         | DHX58,IFIT2,STAT2     |
| Interferon Signaling                                                                  | 0.001   | 0.06  |         | MX1,STAT2             |
| Role of MAPK Signaling in Inhibiting the Pathogenesis of Influenza                    | 0.005   | 0.03  |         | CXCL8,PLAAT5          |
| Systemic Lupus Erythematosus In B<br>Cell Signaling Pathway                           | 0.007   | 0.01  |         | CXCL8,IFIT2,STAT2     |
| Glycerol Degradation I                                                                | 0.007   | 0.20  |         | GK                    |
| Atherosclerosis Signaling                                                             | 0.014   | 0.02  |         | CXCL8,PLAAT5          |
| IL-6 Signaling                                                                        | 0.015   | 0.02  |         | CXCL8,TNFAIP6         |
| Coronavirus Pathogenesis Pathway                                                      | 0.020   | 0.01  |         | CXCL8,STAT2           |
| Role of IL-17A in Psoriasis                                                           | 0.021   | 0.07  |         | CXCL8                 |
| Acute Phase Response Signaling                                                        | 0.030   | 0.01  |         | С4ВРА,НР              |
| Role of JAK1, JAK2 and TYK2 in<br>Interferon Signaling                                | 0.035   | 0.04  |         | STAT2                 |
| IL-17A Signaling in Gastric Cells                                                     | 0.038   | 0.04  |         | CXCL8                 |
| Airway Inflammation in Asthma                                                         | 0.047   | 0.03  |         | CXCL8                 |

Table 7F. 14 pathways females MDD vs females HR from microarray analysis (p-value < 0.05)

| Ingenuity Canonical Pathways                                                          | p-value | Ratio | z-score | Molecules                         |
|---------------------------------------------------------------------------------------|---------|-------|---------|-----------------------------------|
| Role of<br>Hypercytokinemia/hyperchemokin<br>emia in the Pathogenesis of<br>Influenza | < 0.001 | 0.06  | 2.236   | DDX58,EIF2AK2,IFIT2,MX1,RSA<br>D2 |
| Interferon Signaling                                                                  | < 0.001 | 0.08  |         | IFIT1,IFITM3,MX1                  |
| Role of PKR in Interferon Induction<br>and Antiviral Response                         | < 0.001 | 0.03  |         | CASP5,DDX58,EIF2AK2,IFIH1         |
| Role of Pattern Recognition<br>Receptors in Recognition of<br>Bacteria and Viruses    | < 0.001 | 0.03  | 2       | DDX58,EIF2AK2,IFIH1,TLR2          |
| Activation of IRF by Cytosolic<br>Pattern Recognition Receptors                       | < 0.001 | 0.05  |         | DDX58,IFIH1,IFIT2                 |
| Inflammasome pathway                                                                  | 0.001   | 0.10  |         | AIM2,CASP5                        |
| Role of RIG1-like Receptors in<br>Antiviral Innate Immunity                           | 0.005   | 0.05  |         | DDX58,IFIH1                       |
| TREM1 Signaling                                                                       | 0.013   | 0.03  |         | CASP5,TLR2                        |
| Toll-like Receptor Signaling                                                          | 0.014   | 0.03  |         | EIF2AK2,TLR2                      |
| Salvage Pathways of Pyrimidine<br>Ribonucleotides                                     | 0.023   | 0.02  |         | CMPK2,EIF2AK2                     |
| Phagosome Maturation                                                                  | 0.047   | 0.01  |         | CTSW,NAPG                         |
| Role of Lipids/Lipid Rafts in the<br>Pathogenesis of Influenza                        | 0.048   | 0.05  |         | RSAD2                             |

Table 8F. 12 pathways females MDD vs females LR from microarray analysis (p-value < 0.05)</th>

| Ingenuity Canonical Pathways                                                    | p-value | Ratio | z-score | Molecules        |
|---------------------------------------------------------------------------------|---------|-------|---------|------------------|
| Pyridoxal 5'-phosphate Salvage<br>Pathway                                       | 0.004   | 0.03  |         | MAP2K3,PIM1      |
| Spermine and Spermidine<br>Degradation I                                        | 0.006   | 0.25  |         | SMOX             |
| Melatonin Degradation II                                                        | 0.006   | 0.25  |         | SMOX             |
| dTMP De Novo Biosynthesis                                                       | 0.008   | 0.20  |         | DHFR             |
| Xenobiotic Metabolism Signaling                                                 | 0.008   | 0.01  |         | FMO4,MAP2K3,SMOX |
| Acute Myeloid Leukemia Signaling                                                | 0.008   | 0.02  |         | MAP2K3,PIM1      |
| Salvage Pathways of Pyrimidine<br>Ribonucleotides                               | 0.010   | 0.02  |         | MAP2K3,PIM1      |
| Phenylalanine Degradation IV<br>(Mammalian, via Side Chain)                     | 0.021   | 0.07  |         | SMOX             |
| Putrescine Degradation III                                                      | 0.026   | 0.06  |         | SMOX             |
| Xenobiotic Metabolism CAR<br>Signaling Pathway                                  | 0.028   | 0.01  |         | FMO4,MAP2K3      |
| Tryptophan Degradation X<br>(Mammalian, via Tryptamine)                         | 0.029   | 0.05  |         | SMOX             |
| Natural Killer Cell Signaling                                                   | 0.035   | 0.01  |         | KIR3DL2,MAP2K3   |
| Dopamine Degradation                                                            | 0.035   | 0.04  |         | SMOX             |
| HIF1α Signaling                                                                 | 0.038   | 0.01  |         | MAP2K3,MMP8      |
| LPS/IL-1 Mediated Inhibition of RXR<br>Function                                 | 0.042   | 0.01  |         | FMO4,SMOX        |
| Role of Osteoblasts, Osteoclasts<br>and Chondrocytes in Rheumatoid<br>Arthritis | 0.043   | 0.01  |         | МАР2КЗ,ММР8      |
| Noradrenaline and Adrenaline<br>Degradation                                     | 0.046   | 0.03  |         | SMOX             |

 Table 9F. 17 pathways females HR vs females LR from microarray analysis (p-value < 0.05)</td>

# APPENDIX G

| Ingenuity Canonical Pathways                                                          | p-value | Ratio | z-score | Molecules                                                                   |
|---------------------------------------------------------------------------------------|---------|-------|---------|-----------------------------------------------------------------------------|
| Role of<br>Hypercytokinemia/hyperchemokin<br>emia in the Pathogenesis of<br>Influenza | < 0.001 | 0.18  | 3.464   | CCL2,CXCL10,EIF2AK2,IFIT2,IFIT<br>3,ISG15,MX1,OAS1,OAS2,OAS3<br>,RSAD2,TLR3 |
| Interferon Signaling                                                                  | < 0.001 | 0.20  | 2.646   | IFI6,IFIT1,IFIT3,IFITM3,ISG15,M<br>X1,OAS1                                  |
| Role of Pattern Recognition<br>Receptors in Recognition of<br>Bacteria and Viruses    | < 0.001 | 0.08  | 2.449   | C1QA,C1QB,C1QC,EDA,EIF2AK2<br>,IFIH1,OAS1,OAS2,OAS3,TLR3,T<br>NFSF10        |
| Complement System                                                                     | 0.001   | 0.13  | 2       | C1QA,C1QB,C1QC,C4BPA                                                        |
| Agranulocyte Adhesion and<br>Diapedesis                                               | 0.001   | 0.05  |         | CCL2,CCL25,CCL8,CLDN12,CXCL<br>10,GNAI1,MMP23B,MMP8,MY<br>H11               |
| Granulocyte Adhesion and<br>Diapedesis                                                | 0.004   | 0.05  |         | CCL2,CCL25,CCL8,CLDN12,CXCL<br>10,GNAI1,MMP23B,MMP8                         |
| Role of MAPK Signaling in Inhibiting the Pathogenesis of Influenza                    | 0.005   | 0.07  | 0.447   | CCL2,CXCL10,EIF2AK2,PLA2G2<br>D,PLA2G4C                                     |
| Estrogen-mediated S-phase Entry                                                       | 0.007   | 0.12  |         | CCNA1,CCNE2,CDC25A                                                          |
| Atherosclerosis Signaling                                                             | 0.010   | 0.05  |         | CCL2,COL1A2,LPL,MSR1,PLA2G<br>2D,PLA2G4C                                    |
| Calcium Transport I                                                                   | 0.010   | 0.20  |         | ATP2A1,ATP2B3                                                               |
| Activation of IRF by Cytosolic<br>Pattern Recognition Receptors                       | 0.011   | 0.07  | 0       | DHX58,IFIH1,IFIT2,ISG15                                                     |
| Role of PKR in Interferon Induction<br>and Antiviral Response                         | 0.013   | 0.05  |         | COLEC12,EIF2AK2,IFIH1,MARC<br>O,MSR1,TLR3                                   |
| Threonine Degradation II                                                              | 0.015   | 1.00  |         | GCAT                                                                        |
| Hepatic Fibrosis / Hepatic Stellate<br>Cell Activation                                | 0.018   | 0.04  |         | BAMBI,CCL2,COL15A1,COL1A2,<br>COL4A4,MYH11,SERPINE1                         |
| Coronavirus Pathogenesis Pathway                                                      | 0.024   | 0.04  | -1.134  | CCL2,CCNE2,OAS1,OAS2,OAS3,<br>SERPINE1,TLR3                                 |
| Role of MAPK Signaling in the<br>Pathogenesis of Influenza                            | 0.030   | 0.05  |         | CCL2,CXCL10,PLA2G2D,PLA2G4<br>C                                             |
| Oxytocin Signaling Pathway                                                            | 0.032   | 0.03  | 0.378   | ATP2B3,GNAI1,KCNJ8,LPL,MYH<br>11,PLA2G2D,PLA2G4C,PPARG                      |
| Glutathione-mediated<br>Detoxification                                                | 0.041   | 0.10  |         | GSTA4,GSTM5                                                                 |
| Acute Phase Response Signaling                                                        | 0.048   | 0.04  |         | C1QA,C1QB,C1QC,C4BPA,HP,SE<br>RPINE1                                        |

## Table 1G. 19 pathways MDD vs HR from RNA-Seq analysis(p-value < 0.05)

| Ingenuity Canonical Pathways                                                          | p-value | Ratio | z-score | Molecules                                                                                                                                            |
|---------------------------------------------------------------------------------------|---------|-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Role of<br>Hypercytokinemia/hyperchemokin<br>emia in the Pathogenesis of<br>Influenza | < 0.001 | 0.18  | 3.464   | CCL2,DDX58,EIF2AK2,IFIT2,IFIT<br>3,IL1RN,IRF7,ISG15,MX1,OAS2,<br>OAS3,RSAD2                                                                          |
| Calcium Signaling                                                                     | < 0.001 | 0.08  | -2.333  | ACTC1,ATP2B2,CAMK2A,CASQ<br>1,CHRNB2,GRIA1,GRIA2,GRIA3,<br>GRIN1,MYH10,MYH11,RYR1,TP<br>63                                                           |
| Glutamate Receptor Signaling                                                          | < 0.001 | 0.13  | -2      | GRIA1,GRIA2,GRIA3,GRIN1,GR<br>M6,HOMER1,SLC1A2                                                                                                       |
| Neurovascular Coupling Signaling<br>Pathway                                           | < 0.001 | 0.07  | -1.941  | GABRD,GABRR2,GAD1,GRIA1,G<br>RIA2,GRIA3,GRIN1,KCNJ10,KCN<br>J2,KCNMA1,NPR1,RYR1,SLC1A2                                                               |
| Role of Pattern Recognition<br>Receptors in Recognition of<br>Bacteria and Viruses    | < 0.001 | 0.08  | 2.646   | C1QB,C1QC,DDX58,EDA,EIF2AK<br>2,IFIH1,IRF7,OAS2,OAS3,TLR5,T<br>NFSF10                                                                                |
| Synaptogenesis Signaling Pathway                                                      | < 0.001 | 0.06  | -1.807  | ADCY2,AFDN,CAMK2A,EFNB2,E<br>PHA5,EPHA7,GRIA1,GRIA2,GRI<br>A3,GRIN1,GRM6,RASD2,STXBP<br>1,STXBP4,STXBP6,WASF1                                        |
| Gap Junction Signaling                                                                | 0.001   | 0.07  |         | ACTC1,ACTG2,ADCY2,GAD1,GR<br>IA1,GRIA2,GRIA3,HTR2B,NPR1,<br>RASD2,TJP1,TUBB3                                                                         |
| Interferon Signaling                                                                  | 0.001   | 0.14  | 2.236   | IFI6,IFIT1,IFIT3,ISG15,MX1                                                                                                                           |
| Activation of IRF by Cytosolic<br>Pattern Recognition Receptors                       | 0.002   | 0.11  | 1.633   | DDX58,IFIH1,IFIT2,IRF7,ISG15,Z<br>BP1                                                                                                                |
| Agrin Interactions at<br>Neuromuscular Junction                                       | 0.002   | 0.10  | -1      | ACTC1,ACTG2,AGRN,ERBB4,LA<br>MA2,RASD2                                                                                                               |
| Synaptic Long Term Depression                                                         | 0.003   | 0.06  | -2.121  | CRHR1,GAD1,GRIA1,GRIA2,GRI<br>A3,GRM6,NPR1,PPP2R2C,RASD<br>2,RYR1                                                                                    |
| Neuropathic Pain Signaling In<br>Dorsal Horn Neurons                                  | 0.005   | 0.08  | -2.646  | CAMK2A,GRIA1,GRIA2,GRIA3,G<br>RIN1,GRM6,KCNQ2                                                                                                        |
| CREB Signaling in Neurons                                                             | 0.006   | 0.04  | -1.964  | ADCY2,ADGRA3,ADGRG6,ADGR<br>L3,BMP6,CAMK2A,CRHR1,FFAR<br>3,FGFR4,GPR176,GRIA1,GRIA2,<br>GRIA3,GRIN1,GRM6,HCAR2,HC<br>AR3,HTR2B,NTRK3,RASD2,TAC<br>R3 |
| Tight Junction Signaling                                                              | 0.008   | 0.06  |         | ACTC1,ACTG2,AFDN,MAGI2,M<br>YH10,MYH11,NECTIN2,PPP2R2<br>C,TJP1                                                                                      |
| SNARE Signaling Pathway                                                               | 0.009   | 0.07  | -1.890  | ADCY2,CAMK2A,MYH10,MYH1<br>1,STXBP1,STXBP4,STXBP6                                                                                                    |
| Sertoli Cell-Sertoli Cell Junction<br>Signaling                                       | 0.010   | 0.05  |         | ACTC1,ACTG2,AFDN,ITGA8,ITG<br>A9,MAGI2,NECTIN2,RASD2,TJP<br>1,TUBB3                                                                                  |
| Ephrin Receptor Signaling                                                             | 0.011   | 0.05  |         | EFNB2,EPHA5,EPHA7,GRIN1,IT<br>GA8,ITGA9,PTPN13,RASD2,SDC<br>2,VEGFC                                                                                  |
| Glutathione-mediated<br>Detoxification                                                | 0.011   | 0.14  |         | GGH,GSTA1,GSTA4                                                                                                                                      |

## Table 2G. 44 pathways MDD vs LR from RNA-Seq analysis (p-value < 0.05)

| Crosstalk between Dendritic Cells<br>and Natural Killer Cells | 0.013 | 0.07 | 1      | ACTC1,ACTG2,CAMK2A,CD80,N<br>ECTIN2,TNFSF10                                                                                     |
|---------------------------------------------------------------|-------|------|--------|---------------------------------------------------------------------------------------------------------------------------------|
| Cellular Effects of Sildenafil (Viagra)                       | 0.014 | 0.06 |        | ACTC1,ACTG2,ADCY2,KCNQ2,<br>MYH10,MYH11,NPR1                                                                                    |
| Salvage Pathways of Pyrimidine<br>Deoxyribonucleotides        | 0.017 | 0.22 |        | АРОВЕСЗА, АРОВЕСЗВ                                                                                                              |
| Glycine Betaine Degradation                                   | 0.017 | 0.22 |        | SARDH,SDS                                                                                                                       |
| Synaptic Long Term Potentiation                               | 0.017 | 0.06 | -2.449 | CAMK2A,GRIA1,GRIA2,GRIA3,G<br>RIN1,GRM6,RASD2                                                                                   |
| Epithelial Adherens Junction<br>Signaling                     | 0.018 | 0.06 | 0      | AFDN,MAGI1,MAGI2,MYH10,N<br>ECTIN2,PPP2R2C,RASD2,WASF<br>1                                                                      |
| Adrenomedullin signaling pathway                              | 0.021 | 0.05 | -0.378 | ADCY2,ADM,GAD1,IL1RN,KCN<br>Q2,NPR1,PPARG,RASD2,TFAP2<br>A                                                                      |
| Regulation of Actin-based Motility by Rho                     | 0.023 | 0.06 | -2     | ACTC1,ACTG2,ITGA8,ITGA9,PF<br>N2,WASF1                                                                                          |
| Glutamate Removal from Folates                                | 0.023 | 1.00 |        | GGH                                                                                                                             |
| Threonine Degradation II                                      | 0.023 | 1.00 |        | GCAT                                                                                                                            |
| Airway Pathology in Chronic<br>Obstructive Pulmonary Disease  | 0.024 | 0.06 |        | CCL2,EDA,ELANE,LCN2,MMP8,<br>TNFSF10                                                                                            |
| Amyotrophic Lateral Sclerosis<br>Signaling                    | 0.025 | 0.06 | -0.816 | GRIA1,GRIA2,GRIA3,GRIN1,SLC<br>1A2,VEGFC                                                                                        |
| Gustation Pathway                                             | 0.026 | 0.05 | 0      | ABCC8,ADCY2,ASIC2,GABRD,G<br>ABRR2,KCNQ2,LPL,SCN4B                                                                              |
| cAMP-mediated signaling                                       | 0.026 | 0.05 | 0      | ADCY2,CAMK2A,CRHR1,FFAR3,<br>GRM6,HCAR2,HCAR3,PDE8B,R<br>GS4,TULP2                                                              |
| Osteoarthritis Pathway                                        | 0.029 | 0.05 | 0.378  | CASP5,CASQ1,DCN,IL18RAP,IT<br>GA8,ITGA9,PPARG,PRG4,SMAD<br>1,VEGFC                                                              |
| Oxytocin In Spinal Neurons<br>Signaling Pathway               | 0.031 | 0.10 |        | ABCC8,GAD1,NPR1                                                                                                                 |
| Complement System                                             | 0.031 | 0.10 |        | C1QB,C1QC,C4BPA                                                                                                                 |
| Breast Cancer Regulation by<br>Stathmin1                      | 0.035 | 0.04 | 0      | ADGRA3,ADGRG6,ADGRL3,BM<br>P6,CAMK2A,CRHR1,E2F7,FFAR<br>3,GPR176,GRM6,HCAR2,HCAR<br>3,HTR2B,PPP2R2C,RASD2,TACR<br>3,TUBB3,VEGFC |
| Airway Inflammation in Asthma                                 | 0.039 | 0.09 |        | CCL2,ELANE,RNASE2                                                                                                               |
| Circadian Rhythm Signaling                                    | 0.041 | 0.04 |        | ADCY2,CAMK2A,GAD1,GRIA1,G<br>RIA2,GRIA3,GRIN1,NPR1,RASD<br>2,RYR1                                                               |
| Axonal Guidance Signaling                                     | 0.043 | 0.04 |        | ADAMDEC1,BMP6,BMP8A,EFN<br>B2,EPHA5,EPHA7,ITGA8,ITGA9,<br>MMP8,NTNG2,NTRK3,PFN2,RA<br>SD2,SDC2,TUBB3,VEGFC                      |
| Agranulocyte Adhesion and<br>Diapedesis                       | 0.044 | 0.05 |        | ACTC1,ACTG2,CCL2,IL1RN,MM<br>P8,MYH10,MYH11,XCL1                                                                                |
| Choline Degradation I                                         | 0.046 | 0.50 |        | СНДН                                                                                                                            |
| Glutamate Dependent Acid<br>Resistance                        | 0.046 | 0.50 |        | GAD1                                                                                                                            |
| Dilated Cardiomyopathy Signaling<br>Pathway                   | 0.046 | 0.05 | -0.447 | ACTC1,ACTG2,ADCY2,CAMK2A,<br>MYH10,MYH11                                                                                        |

| PTEN Signaling | 0.049 | 0.05 | 2 | FGFR4,ITGA8,ITGA9,MAGI1,MA<br>GI2,NTRK3,RASD2 |
|----------------|-------|------|---|-----------------------------------------------|
|----------------|-------|------|---|-----------------------------------------------|

| Ingenuity Canonical Pathways                                                        | p-value | Ratio | z-score | Molecules                                                            |
|-------------------------------------------------------------------------------------|---------|-------|---------|----------------------------------------------------------------------|
| Pulmonary Fibrosis Idiopathic<br>Signaling Pathway                                  | < 0.001 | 0.04  | -1.265  | ACTG2,AREG,CAV1,COL16A1,F<br>GF9,FGFR4,ITGAV,MMP1,MRA<br>S,PDGFC,PLG |
| Nitric Oxide Signaling in the<br>Cardiovascular System                              | 0.001   | 0.06  | -1.342  | CAV1,GUCY1A1,PDE1A,PDGFC,<br>PRKG2,RYR2                              |
| Sertoli Cell-Sertoli Cell Junction<br>Signaling                                     | 0.002   | 0.04  |         | ACTG2,GUCY1A1,ITGAV,MRAS,<br>NECTIN2,PRKG2,TUBB3                     |
| Neurovascular Coupling Signaling<br>Pathway                                         | 0.002   | 0.04  | -1.134  | ENTPD3,GRIN3B,GRM5,GUCY1<br>A1,KCNJ10,PRKG2,RYR2                     |
| Paxillin Signaling                                                                  | 0.003   | 0.05  | -2      | ACTG2,DOCK1,ITGAV,MRAS,TL<br>N2                                      |
| Actin Cytoskeleton Signaling                                                        | 0.003   | 0.03  | -2      | ACTG2,DOCK1,FGF9,ITGAV,MR<br>AS,PDGFC,TLN2                           |
| Gas Signaling                                                                       | 0.005   | 0.04  | -1      | GLP1R,GUCY1A1,MRAS,PTH1R,<br>RYR2                                    |
| Cellular Effects of Sildenafil (Viagra)                                             | 0.005   | 0.04  |         | ACTG2,GUCY1A1,KCNQ2,PDE1<br>A,PRKG2                                  |
| Gap Junction Signaling                                                              | 0.006   | 0.03  |         | ACTG2,CAV1,GUCY1A1,MRAS,P<br>RKG2,TUBB3                              |
| Axonal Guidance Signaling                                                           | 0.008   | 0.02  |         | DOCK1,GLI3,ITGAV,MMP1,MR<br>AS,NFATC4,NTRK2,PDGFC,SRG<br>AP1,TUBB3   |
| Integrin Signaling                                                                  | 0.009   | 0.03  | -2.449  | ACTG2,CAV1,DOCK1,ITGAV,MR<br>AS,TLN2                                 |
| ID1 Signaling Pathway                                                               | 0.009   | 0.03  | -1.633  | CAV1,CHRFAM7A,FGFR4,MRAS<br>,PDGFC,TFAP2A                            |
| Neuropathic Pain Signaling In<br>Dorsal Horn Neurons                                | 0.012   | 0.04  | -1      | GRIN3B,GRM5,KCNQ2,NTRK2                                              |
| Cardiac β-adrenergic Signaling                                                      | 0.015   | 0.03  |         | GUCY1A1,MRAS,PDE1A,RYR2,S<br>LC8A2                                   |
| Cysteine Biosynthesis III<br>(mammalia)                                             | 0.015   | 0.10  |         | CBS/CBSL,SUV39H2                                                     |
| Osteoarthritis Pathway                                                              | 0.015   | 0.03  | -1      | GLI3,ITGAV,ITLN1,MMP1,PDGF<br>C,PTH1R                                |
| Bladder Cancer Signaling                                                            | 0.016   | 0.04  |         | FGF9,MMP1,MRAS,PDGFC                                                 |
| Sperm Motility                                                                      | 0.018   | 0.03  | -2      | FGFR4,GUCY1A1,MRAS,NTRK2,<br>PDE1A,PRKG2                             |
| Choline Degradation I                                                               | 0.018   | 0.50  |         | СНDН                                                                 |
| Cysteine<br>Biosynthesis/Homocysteine<br>Degradation                                | 0.018   | 0.50  |         | CBS/CBSL                                                             |
| Synaptic Long Term Depression                                                       | 0.020   | 0.03  | -1.342  | GRM5,GUCY1A1,MRAS,PRKG2,<br>RYR2                                     |
| Gustation Pathway                                                                   | 0.020   | 0.03  | 0       | GLP1R,GUCY1A1,KCNQ2,SCN2<br>A,SCN4B                                  |
| Regulation Of The Epithelial<br>Mesenchymal Transition By Growth<br>Factors Pathway | 0.023   | 0.03  | -2      | FGF9,FGFR4,MMP1,MRAS,PDG<br>FC                                       |
| Circadian Rhythm Signaling                                                          | 0.025   | 0.02  |         | GRIN3B,GUCY1A1,MRAS,NTRK<br>2,PRKG2,RYR2                             |
| Glioma Invasiveness Signaling                                                       | 0.026   | 0.04  |         | ITGAV,MRAS,PLG                                                       |

|                                                               |       |      | 1      | r                                                        |
|---------------------------------------------------------------|-------|------|--------|----------------------------------------------------------|
| Adrenomedullin signaling pathway                              | 0.026 | 0.03 | -2.236 | GUCY1A1,KCNQ2,MRAS,PRKG2<br>,TFAP2A                      |
| Calcium Signaling                                             | 0.027 | 0.03 | 0.447  | CHRFAM7A,GRIN3B,NFATC4,RY<br>R2,SLC8A2                   |
| White Adipose Tissue Browning<br>Pathway                      | 0.028 | 0.03 | -2     | FGFR4,GUCY1A1,PLIN1,PRKG2                                |
| Caveolar-mediated Endocytosis<br>Signaling                    | 0.028 | 0.04 |        | ACTG2,CAV1,ITGAV                                         |
| Oxytocin In Spinal Neurons<br>Signaling Pathway               | 0.032 | 0.06 |        | GUCY1A1,PRKG2                                            |
| Opioid Signaling Pathway                                      | 0.034 | 0.02 | -0.447 | GRIN3B,GUCY1A1,MRAS,PDE1<br>A,POMC,RYR2                  |
| Superpathway of Methionine<br>Degradation                     | 0.035 | 0.06 |        | CBS/CBSL,SUV39H2                                         |
| STAT3 Pathway                                                 | 0.035 | 0.03 |        | FGFR4,IL9R,MRAS,NTRK2                                    |
| Semaphorin Neuronal Repulsive<br>Signaling Pathway            | 0.035 | 0.03 | 0      | DPYSL4,GUCY1A1,ITGAV,PRKG<br>2                           |
| Cardiac Hypertrophy Signaling<br>(Enhanced)                   | 0.040 | 0.02 | -0.378 | FGF9,FGFR4,GUCY1A1,IL9R,ITG<br>AV,MRAS,NFATC4,PDE1A,RYR2 |
| PDGF Signaling                                                | 0.040 | 0.04 |        | CAV1,MRAS,PDGFC                                          |
| Regulation of Cellular Mechanics by Calpain Protease          | 0.044 | 0.04 |        | ITGAV,MRAS,TLN2                                          |
| PTEN Signaling                                                | 0.045 | 0.03 |        | FGFR4,ITGAV,MRAS,NTRK2                                   |
| Crosstalk between Dendritic Cells<br>and Natural Killer Cells | 0.045 | 0.03 |        | ACTG2,NECTIN2,TLN2                                       |
| Synaptogenesis Signaling Pathway                              | 0.046 | 0.02 | -0.447 | GRIN3B,GRM5,GUCY1A1,MRAS<br>,NTRK2,STXBP4                |
| Human Embryonic Stem Cell<br>Pluripotency                     | 0.050 | 0.03 |        | FGFR4,MRAS,NTRK2,PDGFC                                   |

| Ingenuity Canonical Pathways                             | p-value | Ratio | z-score | Molecules                                      |
|----------------------------------------------------------|---------|-------|---------|------------------------------------------------|
| Mitotic Roles of Polo-Like Kinase                        | < 0.001 | 0.12  | 1.342   | CDC20,CDC25A,ESPL1,KIF11,PK<br>MYT1,PLK1,PPM1J |
| Kinetochore Metaphase Signaling<br>Pathway               | 0.001   | 0.07  | 0.378   | AURKB,BUB1,CDC20,ESPL1,KNL<br>1,PLK1,SKA3      |
| Role of CHK Proteins in Cell Cycle<br>Checkpoint Control | 0.009   | 0.08  |         | CDC25A,CLSPN,PLK1,PPM1J                        |
| Asparagine Biosynthesis I                                | 0.015   | 1.00  |         | ASNS                                           |
| Intrinsic Prothrombin Activation<br>Pathway              | 0.017   | 0.09  |         | COL1A2,COL5A3,KLK1                             |
| Choline Degradation I                                    | 0.031   | 0.50  |         | ALDH7A1                                        |
| Atherosclerosis Signaling                                | 0.035   | 0.04  |         | COL1A2,COL5A3,LPL,PDGFB,PL<br>A2G2D            |
| Glutathione-mediated<br>Detoxification                   | 0.038   | 0.10  |         | GSTM5,GSTT2/GSTT2B                             |
| Anandamide Degradation                                   | 0.046   | 0.33  |         | NAAA                                           |
| Ethanol Degradation II                                   | 0.049   | 0.09  |         | ADHFE1,ALDH7A1                                 |

Table 4G. 10 pathways males MDD vs males HR from RNA-Seq analysis (p-value < 0.05)

| Ingenuity Canonical Pathways                             | p-value | Ratio | z-score | Molecules                                                               |
|----------------------------------------------------------|---------|-------|---------|-------------------------------------------------------------------------|
| Mitotic Roles of Polo-Like Kinase                        | < 0.001 | 0.17  | 1.890   | CCNB1,CDC20,CDC25A,CDK1,E<br>SPL1,HSP90B1,KIF11,PKMYT1,P<br>LK1,PPP2R3A |
| Role of CHK Proteins in Cell Cycle<br>Checkpoint Control | < 0.001 | 0.17  | -1.890  | BRCA1,CDC25A,CDK1,CLSPN,E2<br>F2,E2F7,E2F8,PLK1,PPP2R3A                 |
| Kinetochore Metaphase Signaling<br>Pathway               | < 0.001 | 0.12  | 1.508   | AURKB,BUB1B,CCNB1,CDC20,C<br>DK1,CENPE,ESPL1,KNL1,MAD1L<br>1,PLK1,ZWINT |
| Estrogen-mediated S-phase Entry                          | < 0.001 | 0.23  | 2.449   | CCNA2,CDC25A,CDK1,E2F2,E2F<br>7,E2F8                                    |
| Cyclins and Cell Cycle Regulation                        | < 0.001 | 0.10  | 2.828   | CCNA2,CCNB1,CDC25A,CDK1,E<br>2F2,E2F7,E2F8,PPP2R3A                      |
| Epithelial Adherens Junction<br>Signaling                | 0.001   | 0.07  | -1.265  | AFDN,CTNNA2,MAGI1,MAGI2,<br>MET,MYH10,NECTIN2,NOTCH3<br>,PPP2R3A,WASF1  |
| Cell Cycle: G2/M DNA Damage<br>Checkpoint Regulation     | 0.003   | 0.10  | -0.447  | BRCA1,CCNB1,CDK1,PKMYT1,P<br>LK1                                        |
| Cell Cycle Regulation by BTG Family<br>Proteins          | 0.005   | 0.12  |         | E2F2,E2F7,E2F8,PPP2R3A                                                  |
| DNA damage-induced 14-3-3σ<br>Signaling                  | 0.005   | 0.17  |         | BRCA1,CCNB1,CDK1                                                        |
| Glutathione-mediated<br>Detoxification                   | 0.008   | 0.15  |         | GGH,GSTA1,PTGES                                                         |
| ATM Signaling                                            | 0.011   | 0.07  | 0       | BRCA1,CCNB1,CDC25A,CDK1,P<br>PP2R3A,TP73                                |
| Cell Cycle: G1/S Checkpoint<br>Regulation                | 0.012   | 0.07  | -2.236  | CDC25A,E2F2,E2F7,E2F8,NRG1                                              |
| Osteoarthritis Pathway                                   | 0.015   | 0.05  | 0.378   | CTNNA2,DCN,ELF3,FZD7,IL18R<br>AP,ITGA8,JAG1,PPARG,PPARGC<br>1A,VEGFC    |
| Pulmonary Healing Signaling<br>Pathway                   | 0.016   | 0.05  | 1       | CCNB1,CTRC,ELANE,FZD7,JAG1<br>,MMP8,NOTCH3,PRKD1,VEGFC                  |
| Role of BRCA1 in DNA Damage<br>Response                  | 0.019   | 0.07  | -0.447  | BRCA1,E2F2,E2F7,E2F8,PLK1                                               |
| Melatonin Degradation III                                | 0.020   | 1.00  |         | MPO                                                                     |
| Glutamate Removal from Folates                           | 0.020   | 1.00  |         | GGH                                                                     |
| Threonine Degradation II                                 | 0.020   | 1.00  |         | GCAT                                                                    |
| Phospholipases                                           | 0.028   | 0.07  |         | GPLD1,LPL,PLA2G12A,PLAAT2                                               |
| Triacylglycerol Degradation                              | 0.040   | 0.08  |         | FAAH,LPL,PNPLA4                                                         |
| Inhibition of Matrix<br>Metalloproteases                 | 0.040   | 0.08  |         | MMP8,SDC1,SDC2                                                          |
| Taurine Biosynthesis                                     | 0.041   | 0.50  |         | CD01                                                                    |
| Glycerol-3-phosphate Shuttle                             | 0.041   | 0.50  |         | GPD1                                                                    |
| Iron homeostasis signaling pathway                       | 0.041   | 0.05  |         | BMP6,BMP8A,BMP8B,HBA1/H<br>BA2,HP,TFR2                                  |
| Ubiquinol-10 Biosynthesis<br>(Eukaryotic)                | 0.042   | 0.13  |         | COQ3,CYP26B1                                                            |
| p53 Signaling                                            | 0.044   | 0.05  | 2.236   | BRCA1,PERP,PLAGL1,TP63,TP7<br>3                                         |

Table 5G. 27 pathways males MDD vs males LR from RNA-Seq analysis (p-value < 0.05)

| Basal Cell Carcinoma Signaling | 0.047 | 0.06 | BMP6,BMP8A,BMP8B,FZD7 |
|--------------------------------|-------|------|-----------------------|

| Ingenuity Canonical Pathways                                            | p-value | Ratio | z-score | Molecules                                                     |
|-------------------------------------------------------------------------|---------|-------|---------|---------------------------------------------------------------|
| Oxidative Phosphorylation                                               | 0.002   | 0.07  | -2.646  | ATP5PB,ATP5PF,ATP5PO,COX17,<br>NDUFA1,NDUFS5,UQCRB            |
| Mitochondrial Dysfunction                                               | 0.007   | 0.05  |         | ATP5PB,ATP5PF,ATP5PO,COX17,<br>MT-<br>ND6,NDUFA1,NDUFS5,UQCRB |
| Methylglyoxal Degradation III                                           | 0.019   | 0.17  |         | PTGR1,PTGR2                                                   |
| Dermatan Sulfate Biosynthesis<br>(Late Stages)                          | 0.030   | 0.08  |         | HS3ST1,SULT1A3/SULT1A4,UST                                    |
| Choline Degradation I                                                   | 0.036   | 0.50  |         | СНДН                                                          |
| Chondroitin Sulfate Biosynthesis<br>(Late Stages)                       | 0.036   | 0.08  |         | HS3ST1,SULT1A3/SULT1A4,UST                                    |
| Role of Cytokines in Mediating<br>Communication between Immune<br>Cells | 0.044   | 0.07  |         | CXCL8,IL12A,IL15                                              |
| Leukocyte Extravasation Signaling                                       | 0.048   | 0.04  | 0.816   | ARHGAP5,CDH5,CLDN12,MMP2<br>4,PRKCI,PTK2,RAPGEF3              |

Table 6G. 8 pathways males HR vs males LR from RNA-Seq analysis (p-value < 0.05)

| Ingenuity Canonical Pathways                                                          | p-value | Ratio | z-score | Molecules                                                                                                          |
|---------------------------------------------------------------------------------------|---------|-------|---------|--------------------------------------------------------------------------------------------------------------------|
| Role of<br>Hypercytokinemia/hyperchemokin<br>emia in the Pathogenesis of<br>Influenza | < 0.001 | 0.27  | 4.243   | CCL2,CCL3,CXCL10,CXCL8,DDX5<br>8,EIF2AK2,IFIT2,IFIT3,IL1RN,IRF<br>7,ISG15,MX1,OAS1,OAS2,OAS3<br>,RSAD2,STAT2,TLR3  |
| Interferon Signaling                                                                  | < 0.001 | 0.26  | 3       | IFI6,IFIT1,IFIT3,IFITM3,ISG15,JA<br>K2,MX1,OAS1,STAT2                                                              |
| Role of Pattern Recognition<br>Receptors in Recognition of<br>Bacteria and Viruses    | < 0.001 | 0.10  | 2.646   | C1QB,CXCL8,DDX58,EIF2AK2,IFI<br>H1,IRF7,OAS1,OAS2,OAS3,OSM<br>,PIK3C2A,TLR3,TNFSF10,TNFSF<br>13B                   |
| Systemic Lupus Erythematosus In B<br>Cell Signaling Pathway                           | < 0.001 | 0.07  | 2.668   | CD19,CD72,CD79A,CXCL8,FCGR<br>2B,IFIH1,IFIT2,IFIT3,IRF7,ISG15,<br>JAK2,OSM,PIK3C2A,STAT2,TLR3<br>,TNFSF10,TNFSF13B |
| Agranulocyte Adhesion and<br>Diapedesis                                               | < 0.001 | 0.08  |         | CCL2,CCL3,CCL8,CCR9,CLDN23,<br>CXCL10,CXCL8,GNAI1,IL1RN,M<br>MP24,MMP8,MYH11,XCL1                                  |
| Granulocyte Adhesion and<br>Diapedesis                                                | < 0.001 | 0.07  |         | CCL2,CCL3,CCL8,CCR9,CLDN23,<br>CXCL10,CXCL8,GNAI1,IL1RN,M<br>MP24,MMP8,XCL1                                        |
| Activation of IRF by Cytosolic<br>Pattern Recognition Receptors                       | < 0.001 | 0.13  | 1.134   | DDX58,DHX58,IFIH1,IFIT2,IRF7,<br>ISG15,STAT2                                                                       |
| TREM1 Signaling                                                                       | 0.001   | 0.10  | 2.646   | CASP5,CCL2,CCL3,CXCL8,FCGR2<br>B,JAK2,TLR3                                                                         |
| Salvage Pathways of Pyrimidine<br>Deoxyribonucleotides                                | 0.001   | 0.33  |         | АРОВЕСЗА, АРОВЕСЗВ, ТҮМР                                                                                           |
| Role of MAPK Signaling in Inhibiting the Pathogenesis of Influenza                    | 0.001   | 0.10  | 1.89    | CCL2,CXCL10,CXCL8,EIF2AK2,PL<br>A2G4A,PLA2G4C,PLA2G7                                                               |
| Airway Pathology in Chronic<br>Obstructive Pulmonary Disease                          | 0.001   | 0.08  |         | CCL2,CXCL8,LCN12,LCN2,MMP<br>8,OSM,TNFSF10,TNFSF13B                                                                |
| Role of PKR in Interferon Induction<br>and Antiviral Response                         | 0.001   | 0.07  | 1.633   | CASP5,DDX58,EIF2AK2,IFIH1,IL<br>24,MARCO,MSR1,STAT2,TLR3                                                           |
| Coronavirus Pathogenesis Pathway                                                      | 0.001   | 0.06  | -1.508  | BST2,CCL2,CXCL8,DDX58,IRF7,<br>OAS1,OAS2,OAS3,SERPINE1,ST<br>AT2,TLR3                                              |
| Atherosclerosis Signaling                                                             | 0.003   | 0.07  |         | CCL2,CXCL8,IL1RN,MSR1,PLA2<br>G4A,PLA2G4C,PLA2G7,TPSAB1/<br>TPSB2                                                  |
| Role of Macrophages, Fibroblasts<br>and Endothelial Cells in<br>Rheumatoid Arthritis  | 0.004   | 0.05  |         | APC2,CCL2,CXCL8,FZD5,IL17RC,<br>IL1RN,JAK2,LRP6,OSM,PIK3C2A<br>,TLR3,TNFSF13B,WNT10A,WNT<br>5B                     |
| Communication between Innate and Adaptive Immune Cells                                | 0.004   | 0.07  |         | CCL3,CD79A,CXCL10,CXCL8,IL1<br>RN,TLR3,TNFSF13B                                                                    |
| IL-17 Signaling                                                                       | 0.005   | 0.06  | 3       | CCL2,CXCL8,IL17RC,JAK2,LCN2,<br>OSM,PIK3C2A,TNFSF10,TNFSF1<br>3B                                                   |
| TR/RXR Activation                                                                     | 0.006   | 0.07  |         | ATP2A1,HP,PIK3C2A,PPARGC1<br>A,STRBP,THRB                                                                          |
| Role of RIG1-like Receptors in<br>Antiviral Innate Immunity                           | 0.007   | 0.11  | 1       | DDX58,DHX58,IFIH1,IRF7                                                                                             |

Table 7G. 49 pathways females MDD vs females HR from RNA-Seq analysis (p-value < 0.05)

| Crosstalk between Dendritic Cells                                                                        | 0.008 | 0.07 | 2     | IL15RA,IL3RA,KIR3DL1,TLN2,TL                                                                                         |
|----------------------------------------------------------------------------------------------------------|-------|------|-------|----------------------------------------------------------------------------------------------------------------------|
| and Natural Killer Cells                                                                                 | 0.008 | 0.07 | 2     | R3,TNFSF10                                                                                                           |
| Role of NANOG in Mammalian<br>Embryonic Stem Cell Pluripotency                                           | 0.009 | 0.06 |       | APC2,FZD5,JAK2,PIK3C2A,TCL1<br>A,WNT10A,WNT5B                                                                        |
| Differential Regulation of Cytokine<br>Production in Intestinal Epithelial<br>Cells by IL-17A and IL-17F | 0.011 | 0.13 |       | CCL2,CCL3,LCN2                                                                                                       |
| Role of Cytokines in Mediating<br>Communication between Immune<br>Cells                                  | 0.011 | 0.09 |       | CXCL8,IL1RN,IL24,IL27                                                                                                |
| Pathogenesis of Multiple Sclerosis                                                                       | 0.014 | 0.22 |       | CCL3,CXCL10                                                                                                          |
| Role of IL-17F in Allergic<br>Inflammatory Airway Diseases                                               | 0.014 | 0.09 |       | CCL2,CXCL10,CXCL8,IL17RC                                                                                             |
| Neuroinflammation Signaling<br>Pathway                                                                   | 0.015 | 0.04 | 2.714 | CCL2,CCL3,CXCL10,CXCL8,GABR<br>D,IRF7,JAK2,P2RX7,PIK3C2A,PL<br>A2G4A,PLA2G4C,TLR3                                    |
| IL-17A Signaling in Gastric Cells                                                                        | 0.016 | 0.12 |       | CXCL10,CXCL8,IL17RC                                                                                                  |
| Retinoate Biosynthesis I                                                                                 | 0.017 | 0.11 |       | ALDH1A1,ALDH8A1,RDH10                                                                                                |
| Role of MAPK Signaling in the<br>Pathogenesis of Influenza                                               | 0.020 | 0.07 |       | CCL2,CXCL10,PLA2G4A,PLA2G4<br>C,PLA2G7                                                                               |
| Acute Phase Response Signaling                                                                           | 0.023 | 0.05 | 2.236 | C1QB,C1R,C4BPA,HP,IL1RN,JAK<br>2,OSM,SERPINE1                                                                        |
| Complement System                                                                                        | 0.023 | 0.10 |       | C1QB,C1R,C4BPA                                                                                                       |
| MSP-RON Signaling Pathway                                                                                | 0.023 | 0.08 |       | CCL2,IL3RA,JAK2,PIK3C2A                                                                                              |
| Glucocorticoid Receptor Signaling                                                                        | 0.026 | 0.03 |       | CCL2,CCL3,CXCL8,ESR1,HP,IL15<br>RA,IL17RC,IL1RN,IL31RA,IL3RA,<br>JAK2,MMP8,PIK3C2A,PLA2G4A,<br>PLA2G4C,POMC,SERPINE1 |
| PCP (Planar Cell Polarity) Pathway                                                                       | 0.028 | 0.07 | 1     | FZD5,PRICKLE1,WNT10A,WNT5<br>B                                                                                       |
| Role of IL-17A in Arthritis                                                                              | 0.030 | 0.07 |       | CCL2,CXCL8,IL17RC,PIK3C2A                                                                                            |
| Airway Inflammation in Asthma                                                                            | 0.030 | 0.09 |       | CCL2,CXCL8,OSM                                                                                                       |
| Hepatic Fibrosis Signaling Pathway                                                                       | 0.030 | 0.04 | 2.714 | APC2,CCL2,CCL3,CXCL8,FZD5,G<br>NAI1,IL1RN,JAK2,LRP6,PIK3C2A<br>,SERPINE1,SUCNR1,WNT10A,W<br>NT5B                     |
| Role of IL-17A in Psoriasis                                                                              | 0.032 | 0.14 |       | CXCL8,IL17RC                                                                                                         |
| Salvage Pathways of Pyrimidine<br>Ribonucleotides                                                        | 0.034 | 0.06 | 1.342 | APOBEC3A,APOBEC3B,CMPK2,<br>EIF2AK2,NME4                                                                             |
| B Cell Development                                                                                       | 0.035 | 0.09 |       | CD19,CD79A,RAG1                                                                                                      |
| Colorectal Cancer Metastasis<br>Signaling                                                                | 0.036 | 0.04 | 1.414 | FZD5,GNAI1,JAK2,LRP6,MMP24<br>,MMP8,PIK3C2A,TLR3,WNT10A<br>,WNT5B                                                    |
| Human Embryonic Stem Cell<br>Pluripotency                                                                | 0.036 | 0.05 |       | APC2,FZD5,GNAI1,PIK3C2A,S1P<br>R3,WNT10A,WNT5B                                                                       |
| HMGB1 Signaling                                                                                          | 0.040 | 0.05 | 2     | CCL2,CXCL8,OSM,PIK3C2A,SER<br>PINE1,TNFSF10,TNFSF13B                                                                 |
| Glycerol-3-phosphate Shuttle                                                                             | 0.041 | 0.50 |       | GPD2                                                                                                                 |
| Role of WNT/GSK-3β Signaling in the Pathogenesis of Influenza                                            | 0.043 | 0.06 | 1     | APC2,FZD5,WNT10A,WNT5B                                                                                               |
| IL-17A Signaling in Fibroblasts                                                                          | 0.043 | 0.08 |       | CCL2,IL17RC,LCN2                                                                                                     |

| Wound Healing Signaling Pathway             | 0.044 | 0.04 | 2.333 | COL15A1,CXCL8,IL1RN,JAK2,M<br>MP8,OSM,TNFSF10,TNFSF13B,<br>TPSAB1/TPSB2                                             |
|---------------------------------------------|-------|------|-------|---------------------------------------------------------------------------------------------------------------------|
| Cardiac Hypertrophy Signaling<br>(Enhanced) | 0.046 | 0.03 | 2.138 | ATP2A1,CXCL8,FZD5,GNAI1,IL1<br>5RA,IL17RC,IL31RA,IL3RA,JAK2,<br>OSM,PDE7B,PIK3C2A,TNFSF10,<br>TNFSF13B,WNT10A,WNT5B |
| Basal Cell Carcinoma Signaling              | 0.047 | 0.06 |       | APC2,FZD5,WNT10A,WNT5B                                                                                              |

| Ingenuity Canonical Pathways                            | p-value | Ratio | z-score | Molecules                                                                                                                                                                                                            |
|---------------------------------------------------------|---------|-------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FAK Signaling                                           | < 0.001 | 0.05  | 0       | ADGRA3,ADGRF3,ADGRL3,ADR<br>A1B,BCAR3,CCR9,COL18A1,CSF<br>2RB,CXCR1,CXCR2,ERBB2,FFAR<br>2,FZD5,GPR153,GPR27,GPRC5C<br>,HCAR2,HCAR3,HTR2B,IL3RA,IT<br>GA7,ITGA9,ITGAV,LPAR2,MRAS<br>,OXTR,PAK6,PDGFRB,S1PR3,TG<br>FB2 |
| Phagosome Formation                                     | < 0.001 | 0.05  | 0.365   | ADGRA3,ADGRF3,ADGRL3,ADR<br>A1B,APBB1IP,CCR9,CXCR1,FCG<br>R2A,FFAR2,FZD5,GPR153,GPR2<br>7,GPRC5C,HCAR2,HCAR3,HTR2<br>B,ITGA7,ITGA9,ITGAV,LIMK2,LP<br>AR2,MARCKS,MRAS,MYD88,M<br>YH10,OXTR,PAK6,S1PR3,TLR2,T<br>TN    |
| CREB Signaling in Neurons                               | < 0.001 | 0.05  | -0.2    | ADCY10,ADCY2,ADGRA3,ADGR<br>F3,ADGRL3,ADRA1B,BMP6,CCR<br>9,CXCR1,FFAR2,FGFR4,FZD5,G<br>NAQ,GNG5,GPR153,GPR27,GP<br>RC5C,HCAR2,HCAR3,HTR2B,LP<br>AR2,MRAS,NTRK2,OXTR,PDGFR<br>B,S1PR3,TGFB2                           |
| Human Embryonic Stem Cell<br>Pluripotency               | 0.001   | 0.08  |         | BMP6,FGFR4,FZD5,GNAQ,GNG<br>5,INHBA,MRAS,NTRK2,PDGFRB<br>,S1PR3,SMAD1,TGFB2                                                                                                                                          |
| STAT3 Pathway                                           | 0.001   | 0.08  | -0.707  | BMP6,CSF2RB,CXCR1,CXCR2,F<br>GFR4,IL1B,IL3RA,MRAS,NTRK2,<br>PDGFRB,TGFB2                                                                                                                                             |
| Breast Cancer Regulation by<br>Stathmin1                | 0.001   | 0.05  | 1       | ADGRA3,ADGRF3,ADGRL3,ADR<br>A1B,BMP6,CCR9,CXCR1,FFAR2,<br>FZD5,GNAQ,GNG5,GPR153,GP<br>R27,GPRC5C,HCAR2,HCAR3,HT<br>R2B,LPAR2,MRAS,OXTR,PPP2R<br>2C,PPP2R5A,S1PR3,TGFB2,TUB<br>B3                                     |
| G-Protein Coupled Receptor<br>Signaling                 | 0.001   | 0.05  | 1.134   | ADCY10,ADCY2,ADGRA3,ADGR<br>F3,ADGRL3,ADRA1B,BORCS8-<br>MEF2B,CCR9,CXCR1,CXCR2,FFA<br>R2,FZD5,GNAQ,GNG5,GPR153,<br>GPR27,GPRC5C,HCAR2,HCAR3,<br>HTR2B,LPAR2,MRAS,OXTR,PAK<br>6,PDE7B,S1PR3,TTN,WWTR1                 |
| RHOGDI Signaling                                        | 0.003   | 0.07  | 0.816   | CDH4,ESR1,GNAQ,GNG5,ITGA7<br>,ITGA9,ITGAV,LIMK2,MRAS,MY<br>H10,PAK6,RHOB                                                                                                                                             |
| GABA Receptor Signaling                                 | 0.006   | 0.08  |         | ADCY10,ADCY2,GABRA5,GABR<br>D,GABRR2,GNAQ,GNG5,MRAS                                                                                                                                                                  |
| Mitochondrial L-carnitine Shuttle<br>Pathway            | 0.009   | 0.18  |         | ACSL1,ACSL6,CPT1B                                                                                                                                                                                                    |
| Glycoaminoglycan-protein Linkage<br>Region Biosynthesis | 0.009   | 0.33  |         | B3GAT1,B4GALT7                                                                                                                                                                                                       |

Table 8G. 37 pathways females MDD vs females LR from RNA-Seq analysis (p-value < 0.05)</th>

| Care Circulation                        | 0.040 | 0.07 | 4.424  | ADCY10,ADCY2,ADD2,GNAQ,G                                |
|-----------------------------------------|-------|------|--------|---------------------------------------------------------|
| Gas Signaling                           | 0.010 | 0.07 | 1.134  | NG5,HCAR2,HCAR3,MRAS                                    |
| Cysteine Biosynthesis III<br>(mammalia) | 0.016 | 0.14 |        | CBS/CBSL,EEF1AKMT3,SUV39H<br>2                          |
|                                         |       |      |        | ADCY10, ADCY2, ADRA1B, BORCS                            |
| Condia o Una antro a bas Ciona dia a    |       |      |        |                                                         |
| Cardiac Hypertrophy Signaling           | 0.016 | 0.04 | 0.728  | MEF2B,CSF2RB,CXCR1,CXCR2,E<br>DA,FGF9,FGFR4,FZD5,GNAQ,G |
| (Enhanced)                              |       |      |        | NG5,IL1B,IL3RA,ITGA7,ITGA9,IT                           |
|                                         |       |      |        | GAV,MRAS,PDE7B,TGFB2                                    |
|                                         |       |      |        | ADCY10,ADCY2,ADM,GNAQ,IL1                               |
| Adrenomedullin signaling pathway        | 0.017 | 0.06 | 0.333  | B,IL1RN,MRAS,SHF,TFAP2E,TTN                             |
| Gαi Signaling                           | 0.017 | 0.06 | 1.134  | ADCY10,ADCY2,CXCR2,GNAQ,G                               |
|                                         | 0.017 | 0.00 | 1.134  | NG5,HCAR2,MRAS,S1PR3                                    |
| CDK5 Signaling                          | 0.018 | 0.07 | -1.134 | ADCY10,ADCY2,LAMC1,MRAS,                                |
|                                         |       |      |        | NTRK2,PPP2R2C,PPP2R5A                                   |
| PAK Signaling                           | 0.019 | 0.07 | -1     | ITGA7,ITGA9,ITGAV,LIMK2,MR<br>AS,PAK6,PDGFRB            |
|                                         |       |      |        | AS,PAR6,PDGFRB<br>ABCB1,ADCY10,ADCY2,EDA,ES             |
| Hepatic Cholestasis                     | 0.019 | 0.06 |        | R1,FGFR4,IL1B,IL1RN,MYD88,T                             |
|                                         |       |      |        | GFB2                                                    |
|                                         |       |      |        | COL18A1,FCGR2A,HSPA1A/HSP                               |
| Natural Killer Cell Signaling           | 0.021 | 0.05 | 1      | A1B,HSPA6,KIR3DL2,KLRC2,LIM                             |
|                                         |       |      |        | K2,MRAS,MYD88,PAK6                                      |
| Sphingosine-1-phosphate Signaling       | 0.022 | 0.06 | 1.134  | ADCY10,ADCY2,CASQ1,GNAQ,P                               |
|                                         |       |      |        | DGFRB,RHOB,S1PR3<br>CSF2RB,CXCR1,CXCR2,IL3RA,IT         |
| PI3K/AKT Signaling                      | 0.025 | 0.05 |        | GA7,ITGA9,ITGAV,MRAS,PPP2R                              |
|                                         | 0.025 | 0.05 |        | 2C,PPP2R5A                                              |
|                                         |       |      |        | CASQ1,CXCR2,FZD5,IL1B,ITGA7                             |
| Osteoarthritis Pathway                  | 0.026 | 0.05 | 1.134  | ,ITGA9,ITGAV,PTCH1,S1PR3,SM                             |
|                                         |       |      |        | AD1,TLR2                                                |
|                                         |       |      |        | ADCY10,ADCY2,CCNA1,ESR1,G                               |
| eNOS Signaling                          | 0.030 | 0.06 | -0.378 | NAQ,HSPA1A/HSPA1B,HSPA6,L                               |
| _                                       |       |      |        | PAR2<br>ADCY10,ADCY2,GNAQ,GNG5,M                        |
| IL-1 Signaling                          | 0.030 | 0.07 |        | RAS,MYD88                                               |
| Stearate Biosynthesis I (Animals)       | 0.032 | 0.09 | -1     | ACSL1,ACSL6,BDH2,DHCR24                                 |
| Agranulocyte Adhesion and               |       |      | -      | CCL22,CCR9,CLDN9,CXCL16,CX                              |
| Diapedesis                              | 0.032 | 0.05 |        | CR1,CXCR2,IL1B,IL1RN,MYH10                              |
|                                         |       |      |        | ADAMTS6,BMP6,ERBB2,FZD5,G                               |
|                                         |       |      |        | NAQ,GNG5,ITGA7,ITGA9,ITGAV                              |
| Axonal Guidance Signaling               | 0.034 | 0.04 |        | ,LIMK2,MRAS,NTRK2,PAK6,PTC                              |
|                                         |       |      |        | H1,SEMA4G,SHANK2,TUBB3,U                                |
|                                         |       |      |        | NC5B                                                    |
| PPARα/RXRα Activation                   | 0.036 | 0.05 | 0.707  | ACOX1,ADCY10,ADCY2,CPT1B,<br>GK,GNAQ,IL1B,MRAS,TGFB2    |
|                                         |       |      |        | ADCY10,ADCY2,NCS1,PPP2R2C,                              |
| Dopamine Receptor Signaling             | 0.036 | 0.07 |        | PPP2R5A                                                 |
|                                         |       |      |        | ADCY10,ADCY2,BORCS8-                                    |
| Phospholipase C Signaling               | 0.041 | 0.05 | 1.89   | MEF2B,FCGR2A,GNAQ,GNG5,IT                               |
|                                         | 0.041 | 0.05 | 1.03   | GA7,ITGA9,ITGAV,MARCKS,MR                               |
|                                         |       |      |        | AS,RHOB                                                 |
| Cardiac β-adrenergic Signaling          | 0.041 | 0.05 | -0.816 | ADCY10, ADCY2, GNAQ, GNG5, M                            |
|                                         |       |      |        | RAS,PDE7B,PPP2R2C,PPP2R5A                               |

| Fatty Acid Activation                           | 0.043 | 0.15 |       | ACSL1,ACSL6                                                                                            |
|-------------------------------------------------|-------|------|-------|--------------------------------------------------------------------------------------------------------|
| Hepatic Fibrosis Signaling Pathway              | 0.046 | 0.04 | 0.905 | COL18A1,FTH1,FZD5,IL1B,IL1R<br>N,ITGA7,ITGA9,ITGAV,LRP5,MR<br>AS,MYD88,PDGFRB,PTCH1,RH<br>OB,TGFB2,TTN |
| Sertoli Cell-Sertoli Cell Junction<br>Signaling | 0.047 | 0.05 |       | ADCY10,CLDN9,ITGA7,ITGA9,IT<br>GAV,MRAS,PALS2,TJP1,TUBB3                                               |
| Superpathway of Methionine<br>Degradation       | 0.049 | 0.09 |       | CBS/CBSL,EEF1AKMT3,SUV39H<br>2                                                                         |
| RAC Signaling                                   | 0.050 | 0.05 | -1    | ITGA7,ITGA9,ITGAV,LIMK2,MC<br>F2L,MRAS,PAK6                                                            |

| Ingenuity Canonical Pathways                | p-value | Ratio | z-score | Molecules                                                                                                                                                                   |
|---------------------------------------------|---------|-------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STAT3 Pathway                               | < 0.001 | 0.10  | 1.134   | BMPR1A,CDKN1A,CISH,FGFR2,I<br>GF1,IL11RA,IL12RB2,IL18RAP,IL<br>1RL1,IL4R,IL5RA,MAP3K20,SOC<br>S3                                                                            |
| Inflammasome pathway                        | < 0.001 | 0.25  | -2.236  | AIM2,CASP1,CASP5,NLRC4,NLR<br>P3                                                                                                                                            |
| Osteoarthritis Pathway                      | < 0.001 | 0.07  | -0.577  | ALPL,ANKH,BMPR1A,CASP1,CA<br>SP4,CASP5,CEBPB,DDIT4,FZD7,I<br>L18RAP,IL1RL1,ITGA2B,ITGA3,I<br>TGA8,ITGB4,ITGB8                                                               |
| PI3K/AKT Signaling                          | 0.001   | 0.07  | 1       | BCL2L1,CCND1,CDKN1A,IL11RA<br>,IL12RB2,IL18RAP,IL1RL1,IL4R,I<br>L5RA,ITGA2B,ITGA3,ITGA8,ITG<br>B4,ITGB8                                                                     |
| Caveolar-mediated Endocytosis<br>Signaling  | 0.003   | 0.10  |         | CAV1,CD55,ITGA2B,ITGA3,ITGA<br>8,ITGB4,ITGB8                                                                                                                                |
| Granulocyte Adhesion and<br>Diapedesis      | 0.005   | 0.07  |         | CCL23,CCL3L1,CCR9,CXCL16,CX<br>CL6,HRH4,IL18RAP,IL1RL1,IL36<br>A,SDC1,SDC2                                                                                                  |
| PTEN Signaling                              | 0.006   | 0.07  | -1.633  | BCL2L1,BMPR1A,CCND1,CDKN<br>1A,FGFR2,ITGA2B,ITGA3,ITGA8<br>,ITGB4,ITGB8                                                                                                     |
| Eicosanoid Signaling                        | 0.007   | 0.10  |         | AKR1C3,ALOX15,ALOX15B,CYSL<br>TR2,PLAAT5,PRDX6                                                                                                                              |
| Cardiac Hypertrophy Signaling<br>(Enhanced) | 0.008   | 0.05  | 1.213   | ACE,ADCY10,ATP2A1,CACNB4,F<br>GFR2,FZD7,IGF1,IL11RA,IL12RB<br>2,IL18RAP,IL1RL1,IL36A,IL4R,IL<br>5RA,ITGA2B,ITGA3,ITGA8,ITGB<br>4,ITGB8,MAP3K20,OSM,PDK1,<br>PIK3R6          |
| Complement System                           | 0.009   | 0.13  | 1       | C3,CD55,CFD,CR1                                                                                                                                                             |
| TREM1 Signaling                             | 0.011   | 0.09  | -1.633  | CASP1,CASP5,IL1RL1,NLRC4,NL<br>RP3,TREM1                                                                                                                                    |
| IL-10 Signaling                             | 0.012   | 0.09  |         | BLVRA,IL18RAP,IL1RL1,IL36A,IL<br>4R,SOCS3                                                                                                                                   |
| IL-13 Signaling Pathway                     | 0.014   | 0.07  | 0.378   | ALOX15,ALOX15B,BCL2L1,CXCL<br>6,IL4R,PIK3R6,SOCS3                                                                                                                           |
| ID1 Signaling Pathway                       | 0.016   | 0.06  | 0.905   | BCL2L1,BHLHA15,BMPR1A,CAV<br>1,CCND1,CDKN1A,FGFR2,GSPT<br>1,PIK3R6,RAP1GAP,TGM2                                                                                             |
| Iron homeostasis signaling pathway          | 0.019   | 0.07  |         | ABCB10,ATP6V0C,BMPR1A,CD<br>C34,FECH,FTH1,HFE,SLC25A37                                                                                                                      |
| Phagosome Formation                         | 0.022   | 0.04  | 0.816   | ADORA3,C3,CCR9,CLEC4D,CR1,<br>CYSLTR2,FCER1G,FCGR3A/FCG<br>R3B,FZD7,GPR146,HRH4,ITGA2<br>B,ITGA3,ITGA8,ITGB4,ITGB8,M<br>ARCO,MYO10,P2RY2,PIK3R6,PL<br>AAT5,PRDX6,PTGDR2,VTN |
| JAK/STAT Signaling                          | 0.023   | 0.07  | 0.816   | BCL2L1,CDKN1A,CEBPB,CISH,PI<br>K3R6,SOCS3                                                                                                                                   |
| Glycine Betaine Degradation                 | 0.023   | 0.22  |         | PIPOX,SDSL                                                                                                                                                                  |

Table 9G. 34 pathways females HR vs females LR from RNA-Seq analysis (p-value < 0.05)</th>

| HGF Signaling                                        | 0.025 | 0.06 | 2      | CCND1,CDKN1A,ITGA2B,ITGA3,<br>ITGA8,ITGB4,ITGB8,PIK3R6                                                                                                                  |
|------------------------------------------------------|-------|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pyroptosis Signaling Pathway                         | 0.026 | 0.07 | -2.449 | AIM2,CASP1,CASP4,CASP5,NLR<br>C4,NLRP3                                                                                                                                  |
| Regulation of Cellular Mechanics by Calpain Protease | 0.027 | 0.07 |        | CCND1,ITGA2B,ITGA3,ITGA8,IT<br>GB4,ITGB8                                                                                                                                |
| GDP-L-fucose Biosynthesis I (from GDP-D-mannose)     | 0.027 | 1.00 |        | GFUS                                                                                                                                                                    |
| Histamine Biosynthesis                               | 0.027 | 1.00 |        | HDC                                                                                                                                                                     |
| Sertoli Cell-Sertoli Cell Junction<br>Signaling      | 0.028 | 0.05 |        | ADCY10,ITGA2B,ITGA3,ITGA8,I<br>TGB4,ITGB8,MAP3K20,SPTA1,T<br>UBB6,YBX3                                                                                                  |
| Th2 Pathway                                          | 0.028 | 0.06 | 0      | HLA-<br>DRB5,IL12RB2,IL1RL1,IL4R,NOT<br>CH4,PIK3R6,PTGDR2,SOCS3                                                                                                         |
| Androgen Biosynthesis                                | 0.029 | 0.20 |        | AKR1C3,HSD17B6                                                                                                                                                          |
| Type II Diabetes Mellitus Signaling                  | 0.032 | 0.06 |        | ACSF2,ACSM1,ADIPOR1,CACNB<br>4,CEBPB,PIK3R6,SMPD3,SOCS3                                                                                                                 |
| Retinoate Biosynthesis I                             | 0.036 | 0.11 |        | AKR1C3,ALDH1A2,HSD17B6                                                                                                                                                  |
| FAK Signaling                                        | 0.037 | 0.04 | 1.877  | ADORA3,CCND1,CCR9,CYSLTR2<br>,FCER1G,FZD7,GPR146,HRH4,IL<br>11RA,IL12RB2,IL18RAP,IL1RL1,I<br>L4R,IL5RA,ITGA2B,ITGA3,ITGA8<br>,ITGB4,ITGB8,P2RY2,PIK3R6,PT<br>GDR2,SOCS3 |
| Th1 and Th2 Activation Pathway                       | 0.038 | 0.05 |        | HLA-<br>DRB5,IL12RB2,IL1RL1,IL27,IL4R,<br>NOTCH4,PIK3R6,PTGDR2,SOCS<br>3                                                                                                |
| Endocannabinoid Cancer Inhibition<br>Pathway         | 0.044 | 0.06 | -1.414 | ADCY10,CASP1,CASP4,CASP5,C<br>CND1,CDKN1A,PIK3R6,SMPD3                                                                                                                  |
| Fatty Acid Activation                                | 0.048 | 0.15 |        | ACSF2,ACSM1                                                                                                                                                             |
| Colanic Acid Building Blocks<br>Biosynthesis         | 0.048 | 0.15 |        | GALK1,GFUS                                                                                                                                                              |
| LPS/IL-1 Mediated Inhibition of RXR<br>Function      | 0.048 | 0.05 |        | ABCB9,ACSF2,ACSM1,ALDH1A2<br>,CHST10,CRAT,GSTM2,IL18RAP,<br>IL1RL1,IL36A                                                                                                |