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Optimal Execution: A ReviewI

Ryan Donnellya

aDepartment of Mathematics, King’s College London
Strand, London, WC2R 2LS, UK

Abstract

This review article is intended to collect and summarize many of the results in the field of

optimal execution over the last twenty years. In doing so, we describe the general workings

of the limit order book so that the sources of costs and risks which need to be optimized

are understood. The initial models considered propose simple dynamics for prices which

allow easily computable strategies which maximize risk-adjusted profits. Subsequently, the

review is divided into two major parts. The first explores several works which investigate how

optimal liquidation strategies are modified to account for more complex dynamics, namely

other stochastic or non-linear factors. The second presents optimal trading strategies when

the agent utilizes benchmarks in addition to risk-adjusted wealth, or when she has objectives

beyond optimal liquidation.

Keywords: algorithmic trading, price impact, stochastic optimization

1. Introduction

In the last few decades, the actions taken by participants in financial markets have become

increasingly based on quantitative analysis and algorithms rather than any human decision

making process. The motivation for this shift comes from attempting to minimize costs

associated with trading, or to minimize risks involved in holding financial assets, or both.

Establishing a mathematical framework that models the setting of trading in a financial

market allows one to quantify the trade-off between minimizing costs and minimizing risks,

thereby tailoring a trading strategy to one’s preferences optimally. In this review article, we

provide an overview of many developments and results related to optimal execution of trades.

IThe author would like to thank Fayçal Drissi, Matthew Lorig, and Álvaro Cartea for their comments and
suggestions which have improved this manuscript.

Email address: ryan.f.donnelly@kcl.ac.uk (Ryan Donnelly)
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We begin with a description of the limit order book (LOB), and then proceed with a summary

of some preliminary models in discrete time, in particular those of Bertsimas and Lo (1998) and

Almgren and Chriss (2001). These pieces will provide a groundwork for the type of problems

considered in this review, but most of the focus will be on analogous models and results

in continuous time. After this groundwork is established, we review developments which

take more realistic or generalized underlying dynamics, different or more general performance

criteria, and other aspects of financial trading and optimization.

The primary mathematical tools that are used to solve many of the problems contained

herein are the Dynamic Programming Principle (DPP) and the Hamilton–Jacobi–Bellman

(HJB) equation, although sometimes other approaches such as variational techniques are

necessary. The full solutions to optimizations are omitted, but the original sources of the

results or standard references on stochastic optimal control should provide any details which

are skipped (see for example Yong and Zhou (1999), Fleming and Soner (2006).

We focus on modeling and optimization results of a theoretical nature, but many of the

primary sources that are cited contain empirical analysis to motivate modeling choices. Some

of these motivational empirical results will be provided when warranted, but the discussion

about these results and their interpretation will be limited.

2. The Limit Order Book

This section describes the general mechanisms of the LOB. An understanding of how trans-

actions take place within LOBs motivates some of the modeling choices in the next section.

Many of these modeling choices may still be appropriate in other market settings that do not

employ a LOB, nevertheless a specific context may help with interpretation of results that we

present later.

Most electronic exchanges allow participants to submit several different types of orders, but

these can be categorized broadly as either passive limit orders (LOs) or aggressive market

orders (MOs), so for clarity we describe a simplified form of LOB mechanisms containing

only the most basic of these two types of orders.

LOs consist of a price, a volume, and an indicator to either buy or sell the asset. After an LO

is submitted, it sits in the LOB until it is either canceled or filled against an MO at a later

time. The cancellation or filling of an LO can be either full or partial, meaning either the

entire volume of the order is removed from the LOB or some amount of the original volume

remains in the LOB. If a subsequent LO is placed with the same price, then both of these
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Figure 1: Blue bars represent buy LOs, red bars represent sell LOs. Left panel: the highest price of all buy

LOs and the lowest price of all sell LOs are the best bid and ask, respectively. Middle panel: a new LO is

placed at a price where orders already exist at the back of the queue. Right panel: the volume at this price

is increased. Analogous changes would result from an order cancellation, and thus the state of the LOB may

change through time, even if no trades are taking place.

orders will exist simultaneously in the LOB at this price, and the order of execution of the

orders depends on the matching rules of the exchange. The matching rules we describe below

correspond to a price-time priority of orders, meaning the LOs form a queue at each price

and the LOs to be filled are determined according to their position in this queue, known as

the First In First Out (FIFO) rule.1 When several LOs of different types (buys and sells) are

sitting in the LOB, there are two price levels which correspond to the highest price across all

buy LOs and the lowest price across all sell LOs, referred to as the best bid and best ask,

respectively. The average of the best bid and best ask is referred to as the midprice of the

asset. Figure 1 shows a graphical representation of the state of the LOB at a single point in

time, followed by the state of the LOB after a single LO is placed.

An MO consists of a volume and indicator to either buy or sell the asset. When an MO is

submitted it is matched against resting LOs of the opposite buy/sell type, and the price of

the transaction is determined by the price level of all filled LOs up to the volume specified

by the MO. In Figure 2 we show a graphical representation of an MO filling several LOs to

illustrate how the volume of the MO and the volumes and prices of the LOs determine the

overall transaction price of this trade.

With this structure of the LOB in mind, it is clear that the midprice of the asset may change

through time as LOs are placed and canceled near the best bid and ask. Additionally, the

effect that MOs have on prices can be interpreted in multiple ways. We generally divide

the impact of MOs into temporary and permanent, although they are not fully distinct and

1Other matching rules such as Pro Rata are also used, but the intricate details of how they differ from

FIFO will not be necessary for the types of models considered here.
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Figure 2: Left panel: the LOB immediately before an MO is submitted. Middle panel: a sell MO is submitted

with volume greater than that of the best bid, so it must ‘walk the book’ into the next best price. Right

panel: the MO has filled LOs in the book, so there is now less volume available at the two relevant prices.

there may be other impact phenomena which don’t fall into either category. Temporary price

impact refers to the relationship between the volume of the MO and the average execution

price of the trade. For larger MOs, multiple LOs at different levels are executed, thus the

average price of the trade is a function of volume. Permanent price impact refers to the

relationship between the volume of the MO and the midprice process at future times after

the execution. For larger MOs, more LOs are removed from the LOB resulting in a greater

change of the midprice which will persist into the future, affecting the price of subsequent

trades.

The LOB structure discussed above is an idealization of real markets where there are sev-

eral types of orders that can be submitted. Usually, order types can be loosely grouped by

whether they add or remove liquidity from the market, and we think of them as LOs or MOs,

respectively, in our idealized framework. These other order types include stop-loss, stop-limit,

immediate-or-cancel, fill-or-kill, and all-or-none.

For extensive analysis on LOB dynamics, including and beyond price-impact effects, see Biais

et al. (1995), Ranaldo (2004), Almgren et al. (2005), Cont (2011), Cont et al. (2014), Cartea

et al. (2015), Lehalle and Mounjid (2017), Bechler and Ludkovski (2017), Cartea et al. (2018a),

and Sirignano (2019). For more in depth outline of the operation of LOBs in financial markets

and of advanced order types, see Cartea et al. (2015) and Guéant (2016).
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Figure 3: Left panel: the LOB as volume density. Middle panel: a sell MO is submitted with volume equal

to the area of the yellow region. Right panel: the MO has filled LOs in the book, and both buy and sell LOs

are shortly thereafter placed to establish a new impacted midprice.

3. Modeling Trades, Price Impact, and Objectives

3.1. Discrete-time Model

The discrete time model that we present here is adapted from the models first established in

Bertsimas and Lo (1998) and Almgren and Chriss (2001), and which have consistently formed

the basis for most models in discrete time optimal execution since then. While Bertsimas

and Lo (1998) takes into account additional considerations such as informed price changes

and more realistic dynamics, the initial model they propose to get intuition about optimal

execution is equivalent to what we give below.

We make a conceptual change to the description of the LOB in the previous section to motivate

many of the assumptions made in this model. The main change we make is that we consider

the LOB to be based on a continuum of prices rather than a discrete set, and the LOs form

a volume density, rather than a collection of individual queues at each price. Thus, our

graphical representation including the arrival of an MO changes to that of Figure 3.

Note that in the right-hand panel of Figure 3, the new midprice is located between (not

necessarily at the midpoint) the old midprice and the lowest executed price of the MO from

the middle panel. We assume that immediately after the MO, there is a flurry of activity

in the LOB which includes many new LO placements to establish this new midprice. This

activity could potentially also include LO cancellations resulting in a new midprice beyond

the lowest executed price. In addition, there is no gap left in the LOB and indeed the overall

shape is merely a translation of the original shape. This will be reflected in the model below

through the fact that our impact functions depend only on the size of the MO.

We work on a finite time horizon equal to N and index time by n ∈ {0, . . . , N}. Let Q =

5



{Qn}Nn=0 be the agent’s inventory process at each point in time. Denote by Vn the size of the

agent’s submitted MO at time n, so we have the relation

Qn+1 = Qn + Vn . (1)

Let S = {Sn}Nn=0 be the midprice observable in the LOB at each time. In specifying the

dynamics of this process, we wish to include a component contributed by the MOs submitted

by the agent, as well as a component which comprises the actions of all other agents partic-

ipating in the market. To this end, let ε = {εn}Nn=1 be a sequence of independent random

variables with mean zero, and let f be an increasing function with f(0) = 0. Then we set

Sn+1 = Sn + f(Vn) + εn+1 . (2)

Thus, if the agent does not trade (Vn = 0), the midprice changes randomly by εn+1 from

the perspective of the agent, where this change is due to the actions of other agents. If the

agent submits a buy order (Vn > 0) then the next midprice is still random, but will tend

to be greater than if there were no trade, and larger buy orders will have a larger effect on

increasing this future midprice. Similar effects hold as a result of the agent submitting a sell

order, and so the function f captures the permanent price impact effects of the agent’s trades.

Let X = {Xn}Nn=0 be the amount of cash held by the agent through time. In specifying

the dynamics of X we include a term which represents a temporary price impact effect as

discussed in Figure 2. Let g be an increasing function with g(0) = 0 and set

Xn+1 = Xn − Ŝn Vn , (3)

Ŝn = Sn + g(Vn) . (4)

The quantity Ŝn represents the average price per share of the agent’s executed MO, given

that the volume of the MO is Vn. A larger MO volume will result in executions farther from

the midprice with buy orders executing at higher prices and sell orders at lower prices, and so

the function g captures temporary price impact as desired. With an average execution price

of Ŝn and a total volume of Vn, the change in the agent’s cash account is −Ŝn Vn, hence the

relation in (3). It is straightforward to show that if the shape of the LOB is given by a curve

as in Figure 3, then the function g is uniquely determined by this shape.

3.2. Continuous-time Model

Although many of the problems we summarize in this survey can be formulated and solved in

discrete-time, most recent work is conducted in continuous-time. Here we replace equations

(1) to (4) with analogous continuous time dynamics. Equivalently, this could be done by
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considering the limiting behaviour of the discrete time model as the number of time steps

N → ∞ (the functions f and g, and the distributions of εn would also have to be scaled

appropriately, see Almgren and Chriss (2001)).

We work on a complete filtered probability space (Ω,F , {Ft}0≤t≤T ,P) over the finite time

interval [0, T ]. The inventory, midprice, and cash processes are now represented by their

continuous-time counterparts Qν = {Qν
t }0≤t≤T , Sν = {Sνt }0≤t≤T , and Xν = {Xν

t }0≤t≤T , and

we replace their discrete time dynamics with

dQν
t = νt dt , (5)

dSνt = f(νt) dt+ dMt , (6)

dXν
t = −Ŝνt νt dt , (7)

Ŝνt = Sνt + g(νt) , (8)

where M = {Mt}0≤t≤T is a martingale with respect to the filtration {Ft}0≤t≤T . With these

dynamics the trading strategy ν = {νt}0≤t≤T represents the speed of trading, not the volume

of a sequence of trades as in Section 3.1.

The form of equations (5) to (8) does not constrain the midprice to be necessarily positive.

While this is usually a desirable feature in a model, the time scales for which typical optimal

executions are implemented are short enough that the probability of observing large price

deviations into negative values is very small. If the time scale is long enough to warrant a

positive price restriction, then geometric dynamics may be more appropriate and realistic.

See Gatheral and Schied (2011), Becherer et al. (2018), and Colaneri et al. (2020) for analysis

of optimal execution problems with geometric dynamics for the price process. In addition,

neither the midprice nor inventory will be constrained to lie on a grid as they would be in

reality. This assumption will have little consequence if the typical inventory and midprice that

we consider are large. If the relevant inventory levels are typically close to zero for a particular

execution, a properly discretized model would be more appropriate over the continuous rate

of trading implied by (5).

3.3. Performance Criterion

Now that we have specified the dynamics of price changes and the agent’s inventory and

wealth, we must propose a goal for the agent so that she may seek an optimal trading strategy.

One of the most common types of goals we have in mind is an agent that holds a block of

shares and wishes to liquidate them before time T . In doing so, she will have to consider the

effect that her trades will have on the immediate transaction price due to temporary price
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impact, as well as future prices due to permanent price impact. Additionally, we may impose

a penalty on the agent if she does not fulfill her goal of full liquidation by time T . Thus, we

specify that the agent attempts to maximize her expected terminal wealth at time T subject to

a liquidation penalty. In Bertsimas and Lo (1998), the authors frame the liquidation problem

in terms of minimizing execution costs. While the objective function in (9) below is framed

in terms of maximizing wealth, it is equivalent to minimizing costs.

Let the initial cash holdings, inventory, and midprice be x0, q0, and S0 respectively. Given a

trading strategy ν = {νt}0≤t≤T which is sufficiently integrable and adapted to the filtration

{Ft}0≤t≤T , and an increasing function ` with `(0) = 0, we define the agent’s performance

criterion as

Hν(x0, q0, S0) = E
[
Xν
T +Qν

T (SνT − `(Qν
T ))

]
. (9)

The terminal wealth in (9) consists of the agent’s accumulated cash, Xν
T , as well as the value

of the remaining Qν
T shares of the asset which must be liquidated at the prevailing midprice

SνT with an associated penalty `(Qν
T ). This liquidation penalty is akin to the temporary price

impact effect which arises from walking the book as discussed previously.

Although we are taking the perspective of an agent liquidating her holdings, this framework

can also be applied to an agent wishing to acquire a block of shares. This can be done by

setting her initial inventory holdings equal to Q0 = −N , where N is the number of shares she

is trying to acquire by time T . This is based on the realization that liquidating a negative

position requires the agent to purchase the shares so that her terminal position is zero.

With this performance criterion in mind, define the agent’s value function

H(x0, q0, S0) = sup
ν∈A

Hν(x0, q0, S0) , (10)

where the supremum is taken over an admissible set A of sufficiently integrable {Ft}-adapted

processes. We would like to determine a specific control ν∗ such that the agent’s performance

function is maximized over all possible controls. That is, we desire a trading speed ν∗ such

that

H(x0, q0, S0) = Hν∗(x0, q0, S0) . (11)

One common method to solve such an optimization problem is to introduce the dynamic value

function (with a slight abuse of notation)

H(t,Xt, Qt, St) = sup
ν∈A

E
[
Xν
T +Qν

T (SνT − `(Qν
T ))

∣∣∣∣Ft] , (12)

8



and then resort to methods of dynamic programming to solve for both H and ν∗. For more

details on these methods, see Pham (2009), Björk (2009), Touzi and Tourin (2013), and Cartea

et al. (2015).

In order to make these methods more tractable and allow for easier analysis, we assume for

now that all of the relevant price impact functions are linear in the speed of trading. That is

f(ν) = b ν , g(ν) = k ν , `(ν) = α ν , (13)

with b > 0, k > 0, and α > 0. Regarding the visualization in Figure 3, this makes the implicit

assumption that the shape of the LOB is a flat line.

Proposition 1. The dynamic value function in (12) is given by

H(t, x, q, S) = x+ q S + h2(t) q
2 , (14)

h2(t) =
−k (2α− b)

2 k + (2α− b) (T − t)
− b

2
, (15)

and the optimal trading strategy in feedback form is

ν∗(t, q) =
−(2α− b)

2 k + (2α− b) (T − t)
q . (16)

We should assume 2α > b for otherwise there will be values of T and t which make the

expression in (16) undefined.2 Henceforth, we always assume parameter values are chosen so

that the resulting expressions are well defined.

If we substitute the liquidation strategy from Proposition 1 into equation (5), we arrive at an

ordinary differential equation (ODE) governing the dynamics of the agent’s inventory, which

can be solved to give

Qν∗

t =
2 k + (2α− b) (T − t)

2 k + (2α− b)T
q0 , (17)

and we see that the resulting inventory process is deterministic, decreasing linearly through

time towards a terminal value of

Qν∗

T =
2 k

2 k + (2α− b)T
q0 . (18)

2the opposite inequality means the original optimization problem in (12) may lack concavity, and the agent

could make infinite profits through price manipulations.
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We can ensure that the agent fully liquidates the initial position of shares by placing an

infinitely large penalty on remaining inventory represented by the limit α→∞. In this case

the optimal strategy in (16) and the resulting inventory path in (17) become

lim
α→∞

ν∗(t, q) = −q (19)

lim
α→∞

Qν∗

t =
T − t
T

q . (20)

The trading strategy and resulting inventory in (19) and (20) can be thought of as a benchmark

called time-weighted average price (TWAP). If the trades of this strategy, which occur at a

constant speed over the trading interval, are marked to the midprice, S, rather than the

execution price, Ŝ, then the average price of all trades by the agent is the average of the

midprice process given by 1
T

∫ T
0
Sνt dt. Many of the trading strategies which appear later can

be thought of as incorporating a correction to the TWAP strategy.

While the strategy in (16) is the strategy which minimizes expected costs, there is no consid-

eration of risk involved in the execution. In Almgren and Chriss (2001), the authors allow the

agent to also account for the variance of her performance in addition to the expectation. This

allows the agent to tailor her performance by managing the trade-off between maximizing

expected wealth and minimizing variance of wealth. This mean-variance approach is incom-

patible with dynamic programming methods, but the authors only consider deterministic

trading strategies allowing solutions to be found more easily.

We incorporate risk considerations with a different approach to the mean-variance analysis,

but with the additional assumption that price innovations are Gaussian. Under this assump-

tion the class of optimal trading strategies coincide with Almgren and Chriss (2001). To

this end, we assume M = σW in equation (6) where W is a Brownian motion. We also

suppose the agent adopts a constant absolute risk-aversion (CARA) utility function so that

her dynamic value function is

H(t,Xt, Qt, St) = sup
ν∈A

E
[
− exp

{
−γ
(
Xν
T +Qν

T (SνT − αQν
T )

)}∣∣∣∣Ft] , (21)

for some value of risk-aversion parameter γ > 0.

Proposition 2. The dynamic value function in (21) is given by

H(t, x, q, S) = − exp

{
−γ
(
x+ q S + h2(t) q

2

)}
, (22)

h2(t) =
β

2

ψ− e−ω (T−t) − ψ+ eω (T−t)

ψ− e−ω (T−t) + ψ+ eω (T−t) −
b

2
, (23)
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with

β =
√

2 k γ σ2 , ω =

√
γ σ2

2 k
, ψ± = β ± 2α∓ b ,

and the optimal trading strategy in feedback form is

ν∗(t, q) =
(2h2(t) + b)

2 k
q . (24)

The optimal trading strategy in Proposition 2 is equivalent to one which maximizes an alter-

native performance criteria given by

E
[
Xν
T +Qν

T (SνT − αQν
T )− γ

2

∫ T

0

σ2 (Qν
t )

2 dt

]
. (25)

The running quadratic inventory penalty in (25) is a popular choice to incorporate in optimal

execution problems rather than using a utility function as in (21) (see for example Guilbaud

and Pham (2013), Barger and Lorig (2019), and Cartea et al. (2019)). However, these two

approaches would not be equivalent if the random innovations in price were not given by a

Brownian motion or if there are other stochastic factors in the model. When there are more

factors, this running penalty term can be considered to contribute inventory risk, while the

agent remains risk-neutral towards other dynamics (see Cartea et al. (2017)).

Substituting the optimal strategy from Proposition 2 into equation (5) yields again an ODE

which can be solved, resulting in the agent’s inventory process through time

Qν∗

t =
ψ− e−ω (T−t) + ψ+ eω (T−t)

ψ− e−ω T + ψ+ eω T
q0 . (26)

If we wish to consider an agent who must finish the full liquidation by time T , we can enforce

this by taking the limit α→∞ which results in

lim
α→∞

ν∗(t, q) = −ω coth(ω (T − t)) q , (27)

lim
α→∞

Qν∗

t =
sinh(ω (T − t))

sinh(ω T )
q0 . (28)

In Figure 4 we show the optimal inventory process for several values of the risk-aversion

parameter γ. We note that for larger values of γ, the agent uses a trading strategy which

liquidates faster towards the beginning of the time interval. This is because the agent’s risk is

largest when her inventory is largest, and to lower that risk she desires to lower her inventory

quickly. This comes at an increased cost due to the temporary price impact. When the agent

is risk-neutral (and has a resulting inventory path from (17)), she trades at a constant rate

11
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Figure 4: Optimal inventory process for various values of risk-aversion parameter γ. The curve corresponding

to γ = 0 is from equation (17), the remaining curves are from equation (26). Left panel: α = 0.05. Right

panel: α = 1. Other parameter values are T = 1, σ = 1, k = 0.01, and b = 0.01.

through time which is determined only by the trade-offs between temporary price impact,

permanent price impact, and the liquidation penalty. The optimal strategies of Propositions

1 and 2 are the result of many simplifying assumptions regarding the dynamics of trading in

a market as well as the agent’s goals, but they still offer a benchmark to which many other

strategies may be compared. In the following sections, we explore work that expands upon

the previous results by considering more realistic market dynamics, alternate goals of market

participants, or the inclusion of other phenomena.

4. Alternative Dynamics

We begin our further exploration by considering works which make alternative assumptions

about the dynamics proposed in equations (5) to (8) in order to model more general or more

realistic market settings.

4.1. Stochastic Temporary and Permanent Price Impact

First we revisit one of our assumptions on the nature of price impact, both permanent and

temporary. In equations (6) and (8), the relation between the agent’s trading and price

dynamics are homogeneous in time – identical actions and different points in time will have

identical effects on the asset price. In terms of the graphical representation of the (idealized

continuous) LOB, this means that its general shape is always the same, albeit translated

horizontally as the midprice changes. In reality, market liquidity varies through time meaning

the shape of our graphical representation should also fluctuate. We consider in some detail

12



the work Barger and Lorig (2019) which allows price impact effects to be stochastic, replacing

price and wealth dynamics with

dSνt = f̂(bt) νt dt+ σ dWt , dbt = µb(bt) dt+ ηb(bt) dB
(1)
t , (29)

dXν
t = −Ŝνt νt dt , (30)

Ŝνt = Sνt + ĝ(kt) νt , dkt = µk(kt) dt+ ηk(kt) dB
(2)
t , (31)

where B(1) and B(2) are Brownian motions independent of W , but have instantaneous corre-

lation with each other equal to ρ ∈ [−1, 1]. Furthermore, the functions ĝ, µk, and ηk should

be chosen so that ĝ(kt) > 0 for all t (otherwise temporary price impact would work in the

agent’s favour and she could make unbounded profits). In this model, price impact depends

linearly on trading speed (as was assumed in Propositions 1 and 2), but the magnitude of

the effect is driven by the stochastic processes b and k. The graphical LOB representation is

therefore given by a flat line which fluctuates through time in the vertical direction. When

f̂(bt) and ĝ(kt) decrease, indicating a low impact state, the flat line level of the LOB moves

up and there is high liquidity in the market.

The agent’s performance criterion is taken as stated in (25) with a running penalty on inven-

tory, and so as discussed earlier this can be interpreted as the agent being sensitive to the risk

associated with midprice changes, but when considering the stochastic nature of price impact

she only accounts for the potential benefit and detriment in terms of expected wealth. These

changes to the assumed dynamics complicate the HJB analysis which was used to arrive at the

conclusions of our previous propositions, so the authors resort to asymptotic approximations

of the dynamic value function and optimal trading speed. The authors show that a zeroth

order approximation in this setting can be obtained by the same expression as in (24) by

making the substitutions b 7→ f̂(b) and k 7→ ĝ(k). This means the agent acts according to

the previously examined optimal strategy, but replaces the price impact parameters with the

corresponding value of what is observed at any particular time.

The first order correction to this strategy does not have a simple expression in general. But

if the agent is forced to liquidate her position by time T (α→∞) and if she does not impose

the running inventory penalty (γ = 0), then a first order approximation is given by

ν̂∗1(t, q, b, k) = ν̂∗0(t, q, b, k)− 1

2

µk(k) ĝ′(k)

ĝ(k)
q − 1

6

µb(b) f̂
′(b)

ĝ(k)
(T − t) q , (32)

where the term ν̂∗0 is understood to be the strategy in (24) along with the substitutions

b 7→ f̂(b) and k 7→ ĝ(k). Note that at any fixed time t with given impact parameters f̂(bt)

and ĝ(kt), this first order strategy still liquidates the asset at a speed proportional to the

remaining inventory. The two correction terms stem from the two different types of impact
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and can be interpreted in terms of what the agent expects the impact to be in the future,

thereby acting accordingly. If we suppose µk(k) and ĝ′(k) are both positive, then in the short

term, the temporary price impact is expected to increase, so the agent is incentivized to trade

faster now to avoid higher transaction costs. Similarly, if we suppose µb(b) and f̂ ′(b) are both

positive, then permanent price impact is expected to increase, and the agent should trade

faster now so that her remaining pool of shares does not have their value negatively affected.

This term depends on the remaining trading time T − t because the effects of permanent price

impact as modeled here accumulate over time, and so become insignificant at the end of the

trading horizon. Similar arguments hold accordingly if there are changes in sign of µk(k) and

ĝ′(k). Both of these terms are scaled by the instantaneous temporary impact 1/ĝ(k) because

any expected benefits from trading faster must be weighed against the instantaneous costs of

acquiring those benefits.

Numerous other works have also investigated the effects of stochastic liquidity on optimal

execution. A similar model is proposed in Almgren (2012) where there is no permanent price

impact, but the midprice volatility is allowed to be stochastic rather than constant. This work

also recognizes that substituting appropriate parameters into a strategy such as (24) with the

observed stochastic counterparts at time t (k 7→ kt and σ 7→ σt) is a plausible strategy. In

general, it is found that the agent trades quickly when price impact is low, volatility is high,

or the end of the trading period approaches. Both Cheridito and Sepin (2014) and Ackermann

et al. (2021) take a fully discrete-time approach to this problem, each considering different

aspects of the dynamics to be stochastic and classifying the optimal trading strategies in terms

of recursion equations. Other works with elements of stochastic price impact are Ishitani and

Kato (2014), Becherer et al. (2018), Fruth et al. (2019), Fouque et al. (2022), and Cartea et al.

(2022), some of which will be discussed in a subsequent section on resilience and transient

price impact.

4.2. Stochastic Volatility of Midprice

In the models described in Section 3, the only exogenous source of randomness comes from the

midprice innovations which were assumed to have constant volatility. In reality, the volatility

will change through time due to a variety of factors in the LOB. There is generally increased

activity at the beginning and end of the trading day, both in terms of the number of LOs

being placed and canceled, and in the number of MOs submitted. Each of these events can

change the midprice, so we end up with seasonality of volatility in the LOB over the course of

the day. Additionally, many events in the LOB are self-exciting, in particular there is a large

spike in the intensity of events for a short time after MOs, and so spikes in volatility may also
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be observed around these times.3 The changing volatility results in different levels of risk for

any given inventory level, and accounting for this can help a risk-averse agent improve her

performance.

We have already made brief mention of Almgren (2012) and Cheridito and Sepin (2014) which

consider models with stochastic volatility of the midprice. Here we provide some discussion

of Chan and Sircar (2015) which gives approximations to the optimal trading strategy in

fast or slow variation volatility regimes, which correspond to the seasonality and spike effects

described previously. To this end, we replace the midprice dynamics in equation (6) with

dSt = σ(Zε
t ) dWt , (33)

where σ is a function of the stochastic process Zε, which determines the instantaneous volatil-

ity of the midprice. Permanent price impact is not considered in Chan and Sircar (2015), but

an additional drift term representing an observable signal is included which we have sup-

pressed in our present discussion. We return to the modeling of observable signals in Section

5.1.

When analyzing a slow volatility factor, the dynamics of Z are taken as

dZε
t = ε µZ(Zε

t ) dt+
√
ε ηZ(Zε

t ) dBt , (34)

where B is a standard Brownian motion independent of W , whereas the fast volatility factor

uses dynamics

dZε
t =

1

ε
µZ(Zε

t ) dt+
1√
ε
ηZ(Zε

t ) dBt . (35)

In each case ε will act as a parameter of asymptotic expansion which allows for approximations

of the optimal strategy when the value of the parameter is small. Chan and Sircar (2015)

consider multiscale stochastic volatility with slow and fast factors simultaneously, but we only

discuss the resulting effects individually. Additionally, they have assumed an infinitely long

trading horizon with a performance criterion of the form

E
[∫ ∞

0

−γ
2
σ2(Zε

t ) (Qν
t )

2 − k ν2t dt
]
, (36)

which results in a trading strategy that does not explicitly depend on time and brings more

focus to the effects of stochastic volatility. Otherwise, the general behaviour of the optimal

strategy is largely unchanged from what would arise in a finite horizon. As may be expected

3See Cartea et al. (2018a) for some empirical investigation of LOB event frequency seasonality and self-

excitation.
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after the discussion in Section 4.1, the approximations are largely based on the strategy which

maximizes (36) when volatility is assumed constant. This can be shown to be

ν∗0(q;σ2) = −
√
γ σ2

2 k
q ,

which is equivalent to (24) in the limit T →∞.

Under slow scale volatility, the approximation of the optimal strategy is found through per-

turbation analysis of the HJB equation. The resulting strategy in feedback form is

ν̂∗(q, z) = ν∗0(q;σ2(z)) = −
√
γ σ2(z)

2 k
q ,

which we note involves a similar substitution to previously discussed approximations, where

parameters are replaced with their currently observed values through time. We also see that

this approximation does not include an explicit dependence on the parameter ε. The smallest

order corrections considered in Chan and Sircar (2015) involves a stochastic drift correlated

to the slow scale volatility. In this case the appropriate correction is proportional to
√
ε as

well as the correlation between the drift and volatility.

The fast scale volatility is treated with singular perturbation analysis to arrive at an approx-

imate optimal control, with resulting approximation given by

ν̂∗(q, z) = ν∗0(q;<σ2>)− γ q

2 k

∫ ∞
t

E
[
σ2(Zε

u)−<σ2>

∣∣∣∣Zε
t = z

]
du , (37)

where <σ2> is the long-term expected variance. This expression has contributions from two

terms which represent a zeroth order approximation and first order correction. The zeroth

order approximation makes a familiar parameter substitution σ2 7→ <σ2>, but the first order

correction involves future expected deviations of the variance from its long-term expected

value. If future variance is expected to be larger than the long-term expected variance, then

the agent desires faster liquidation of her shares to avoid the associated inventory risk.

Other work of interest is Colaneri et al. (2020) where the authors assume that innovations in

asset price are driven by a regime switching pure jump process of the form

dSt = St− dRt , (38)

where R has compensating random measure η(t, Yt− , νt− ; dz) dt with Y a finite state Markov

chain. While this is not strictly a stochastic volatility model because it lacks a diffusive

term, the price innovations dRt being driven by a Markov chain means that the price process

will share some qualitative features of a stochastic volatility model. The dependence of

the compensating measure on the trading strategy ν also captures permanent price impact

effects. In this case, the more complicated nature of the model leads to numerical methods

for computing the optimal strategy.
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Figure 5: Ask side of the LOB showing resilience and transient price impact after a trade. The left panel

shows minimal spread (best ask price coincides with reference price). In the middle panel, an MO walks the

book and exhibits temporary price impact. Immediately after the MO in the right panel, the orders are filled,

a new reference price is established due to permanent impact, and the new best ask price will gradually decay

back to the new reference price. A subsequent order submitted immediately will be subjected to higher prices

than an order submitted after waiting some time.

4.3. Resilience and Transient Impact

Thus far we have only described two types of price impact effects (permanent and temporary)

which are included in the models of many algorithmic trading works. But when discussing

the nature of price changes after the occurrence of a transaction, there are other dynamical

effects at play. In particular, when multiple LOs are filled in the LOB due to a transaction,

the resulting gap in the LOB is not replenished instantaneously as Figure 3 suggests. Instead

it takes time for LOs to be submitted in place of those that were filled. The rate at which

these orders are replenished is called resilience, and thus Figure 3 suggests a market with

infinite resilience.

In Figure 5 we show (from the ask side of the book) how resilience might be interpreted in

an idealized continuous LOB. After a transaction takes place (filling sell orders in the book),

if no further transactions were to occur then these sell orders may gradually be replenished

until a new stable best ask price is established. However, if a subsequent transaction were

performed after only a short time, then it would be subjected to higher prices than if it had

occurred after a long time. This difference in transaction price which depends on the amount

of time between trades is called transient price impact.

We focus on describing Chen et al. (2019) in more detail, as the framework is most similar to

what has been presented here so far. A general formulation of transient price impact can be

incorporated into the dynamics by introducing an impact function and decay kernel, denoted

by a strictly increasing function h and a non-increasing function G, respectively, and defining
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the inventory, midprice, and cash processes by

Qν
t = Q0 +

∫ t

0

νu du , (39)

Sνt = S0 +

∫ t

0

b νu du+

∫ t

0

h(νu)G(|t− u|) du+ σWt , (40)

Xν
t = X0 −

∫ t

0

Ŝνu νu du , (41)

Ŝνt = Sνt + k νt . (42)

Here we have taken the permanent and temporary price impacts to be linear with proportion-

ality constants b and k. The function h determines the magnitude of transient price impact

and the decay kernel G controls how quickly the impact of trading decays through time. In

Chen et al. (2019) the transient impact is linear with h(ν) = λ ν and the decay is exponential

with G(|t − u|) = exp(−ρ |t − u|). Thus, the parameter λ determines the distance from the

new reference midprice to the best ask in the right panel of Figure 5, and the distance between

the best ask and the new reference midprice decays exponentially. See Gatheral (2010) for

some detailed discussion of other impact functions and decay kernels, and consequences of

different models with respect to statistical arbitrage opportunities.

The agent is risk-neutral, but with the additional constraint that the inventory process must

satisfy Qν
T = 0. Thus, the performance criterion reduces to

Hν(x0, q0, S0) = E[Xν
T ] , (43)

and the agent attempts to maximize this over trading speeds {νt}t∈[0,T ] which fully liquidate

the inventory by time T . Recall that this type of constraint can be applied formally to

the strategy given in Proposition 1 by taking α → ∞, and it is to the trading strategies

in this limit that we shall compare the optimal strategy with transient impact. Other works

mentioned at the end of this section allow for strategies that do not fully liquidate the position

by incorporating a liquidation penalty.

Proposition 3. The trading strategy which maximizes (43) is given by

ν∗t = −
φ

(
(φ2 k − λ ρ) (ρ cosh(φT

2
) + φ sinh(φT

2
)) + λ ρ2 cosh(φ (t− T

2
))

)
φ ρT cosh(φT

2
)(φ2 k − λ ρ) + sinh(φT

2
)(λ ρ (2 ρ− φ2 T ) + φ4 k T )

q0 , (44)

which results in the inventory process

Qν∗

t = q0 − q0
(
A+B t+ C sinh(φ (t− T

2
))

2A+B T

)
, (45)

18



0 0.2 0.4 0.6 0.8 1

-250

-200

-150

-100

-50

0

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

-250

-200

-150

-100

-50

0

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Figure 6: Optimal trading speed and inventory process with transient price impact for various values of

transient impact parameter λ and decay coefficient ρ. Top row panels: other parameter values are k = 0.01,

b = 0.01, ρ = 1. Bottom row panels: other parameter values are k = 0.01, b = 0.01, λ = 0.3.

where

φ =

√
ρ

(
ρ+

λ

k

)
, (46)

A =
λ

k
sinh

(
φT

2

)
, (47)

B = φ ρ cosh

(
φT

2

)
+ φ2 sinh

(
φT

2

)
, (48)

C =
λ

k
. (49)

In Figure 6 we show the optimal trading speed and resulting inventory for various values of

the transient impact parameter λ (top row) and decay rate ρ (bottom row). When λ = 0

the optimal rate of trading is constant at q0/T which is the TWAP strategy in (19). This

is expected because λ = 0 corresponds to the same dynamics given in equations (5) to (8).

When ρ = 0 we also obtain the TWAP strategy, which is consistent with intuition because if

there is no resilience, the transient price impact becomes a permanent price impact, so the

dynamics are equivalent to equations (5) to (8) with the substitution b 7→ b+λ. The last case

in which the optimal trading speed is constant is in the limit ρ→∞ which again corresponds

to the dynamics of (5) to (8).
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For parameter values which do not give rise to the TWAP strategy, the typical optimal

behaviour is to trade at faster speeds closer to the beginning and end of the trading period,

and at slower speeds closer to the middle of the trading period (compared to the constant

rate of q0/T ). The reason for this is because the agent wants to minimize the time when they

are trading under significant effect of transient price impact. A single large trade will suffer

from temporary price impact, but it is not until subsequent trades are submitted that the

effects of transient impact are encountered. By trading quickly early on, there will be more

time spent in a state where the exponential resilience has brought the price back towards its

unaffected level. Then, when the transient price impact has decayed significantly, the agent

can again place large trades to complete the liquidation.

For other descriptions and works which model resilience and transient price impact, see

Gatheral (2010), Alfonsi et al. (2010), Predoiu et al. (2011), Obizhaeva and Wang (2013),

Guo and Zervos (2015), Graewe and Horst (2017), Becherer et al. (2018), Bank and Voß

(2019), Fruth et al. (2019), Ekren and Muhle-Karbe (2019), Horst and Xia (2019), Forde

et al. (2021), and Neuman and Voß (2022).

4.4. Non-linear Price Impact

Most of the results in previous sections rely on assuming that price impact functions are linear

with respect to the rate of trading, even though the original models proposed in Section 3.1

and 3.2 have general impact functions. In this section we explore an optimization in which

impact functions may be non-linear with respect to the rate of trading, with a focus on

Almgren (2003).

This work begins with a model in discrete time which is based on that of Section 3.1, where

the nature of temporary price impact is modified so that equations (1) to (4) become

Qn+1 = Qn + Vn , (50)

Sn+1 = Sn + f(Vn) + εn+1 , (51)

Xn+1 = Xn − Ŝn Vn , (52)

Ŝn = Sn + g(Vn) + h(Vn) ξn+1 , (53)

where {ξ}Nn=1 is a sequence of independent random variables with mean zero, unit variance,

and which are also independent from {εn}Nn=1. Thus, the temporary price impact is composed

of the usual term, g(Vn), which depends only on the trade submitted at time n, but also has a

stochastic component given by h(Vn) ξn+1. This type of stochastic dependence of temporary

impact could be the result of several factors, for example the latency between the time that
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a trade decision is made and the time at which it is matched against passive orders during

which the depth of available orders may have changed. See Cartea and Sánchez-Betancourt

(2021a) which considers this stochastic delay directly.

The agent attempts to maximize a mean-variance style criterion with respect to her terminal

wealth subject to the constraints QN = 0 and that the sequence {Vn}N−1n=0 is deterministic.

The agent’s terminal wealth is given by

XN = X0 + S0Q0 +
N−1∑
n=0

Qn f(Vn) +
N−1∑
n=0

Qn εn+1 −
N−1∑
n=0

Vn g(Vn)−
N−1∑
n=0

Vn h(Vn) ξn+1 , (54)

which, under deterministic trading strategies, has expectation and variance

E[XN ] = X0 + S0Q0 +
N−1∑
n=0

Qn f(Vn)−
N−1∑
n=0

Vn g(Vn) , (55)

V[XN ] =
N−1∑
n=0

σ2Q2
n +

N−1∑
n=0

V 2
n h

2(Vn) , (56)

where σ2 = E[ε2n]. Before optimizing the trade-off between these two terms, they are both

replaced by their continuous-time analogues

E[XT ] = X0 + S0Q0 +

∫ T

0

(
Qt f(νt)− νt g(νt)

)
dt , (57)

V[XT ] =

∫ T

0

(
σ2Q2

t + ν2t h
2(νt)

)
dt . (58)

The objective of the agent is to maximize the mean-variance criterion

Hν
0 = E[XT ]− γ

2
V[XT ] . (59)

Recognizing that νt = Q′t frames this computation into a standard problem of the calculus

of variations. After classifying optimality in Almgren (2003), closed-form expressions for the

strategy are found by allowing the horizon T to approach infinity. First, we investigate the

effect of non-linear temporary impact with zero stochastic impact such that

f(ν) = b ν , g(ν) = k νm , h(ν) = 0 , (60)

with m > 0. In this case the optimal inventory path is given by

Qν∗

t =



q0

(
1 + 1−m

1+m
t
T ∗

)− 1+m
1−m

, if 0 < m < 1 ,

q0 exp

{
− t
T ∗

}
, if m = 1 ,

q0

(
1− m−1

m+1
t
T ∗

)m+1
m−1

, if m > 1 and t ≤ m+1
m−1T

∗ ,

(61)
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Figure 7: Optimal inventory paths from (61) for various values of parameter m in temporary impact function

g(ν) = k νm. Other parameter values are σ = 1, k = 0.01, b = 0.01, γ = 1.

where

T ∗ =

(
2mk qm−10

γ σ2

) 1
m+1

. (62)

A comparison with (26) in the limit T →∞ shows that it coincides with the optimal strategy

above when m = 1. This is expected because the price impact functions are the same and

the optimal strategy which results from (21) is deterministic. The effects of the non-linear

impact function g on the optimal strategy are shown in Figure 7. The other case which yields

a closed-form expression for the inventory path is

f(ν) = b ν , g(ν) = k ν , h(ν) = a , (63)

with a > 0. The corresponding optimal inventory path is given by

q0 exp

{
− t

T ∗

}
, (64)

where

T ∗ =

√
2 k + γ a2

γ σ2
. (65)

The effect of the stochastic component of price impact can be seen in Figure 8, which is to

slow the rate of trading compared to the benchmark of (26). This is because trading quickly

magnifies the risks associated with uncertainties in temporary price impact caused by the term

a Vn ξn+1 in (53). The agent is willing to accept more risk associated with the uncertainty in

future price in order to lower the certain costs and riskiness associated with temporary price

impact by trading slower.
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Figure 8: Optimal inventory paths from (64) for various values of parameter a in stochastic temporary impact

function h(ν) = a. Other parameter values are σ = 1, k = 0.01, b = 0.01, γ = 1.

Additional work related to optimal trading with non-linear impact functions can be found in

Bouchard et al. (2011) and Colaneri et al. (2020). Various discussions are given in Gatheral

and Schied (2013) related to the form of impact function and midprice dynamics.

5. Alternative Objectives

In each of the previous sections, the perspective of the optimization problem was that of an

agent wishing to liquidate a position subject to various effects related to market dynamics.

Within this section, we consider agents who are not necessarily attempting to liquidate some

initial holdings, but instead behave according to an alternative objective. Inspection of the

optimal trading strategies in previous sections shows that if the agent’s inventory begins at

zero, then she will do nothing over the course of the trading interval (as her position is already

liquidated, any further trading will only be subjected to costs without benefit). Due to the

alternative objectives we now consider, this result no longer holds.

5.1. Speculation, Trade Signals, and Statistical Arbitrage

From a modeling perspective, a straightforward method of introducing statistical arbitrage

and the ability of an agent to speculate is to assume that the unaffected midprice of the

asset is no longer a martingale. In each of the models considered in previous sections, if the

agent doesn’t trade then the midprice process is a martingale. If instead the unaffected price

has non-zero expected change in value over some time interval, then any non-zero inventory
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position will also be expected to change in value. The essence of a profitable strategy in this

situation is to hold inventory positions which take advantage of these non-zero expected price

changes, but to do so in an efficient manner so as to not suffer from price impact effects or a

future change in the asset’s expected drift.

We focus on Cartea and Jaimungal (2016b) which introduces a stochastic drift into the mid-

price process. The interpretation of the drift in this work is that it arises from the permanent

price impact of total order flow of all market participants, but it is statistically equivalent to

having a short term price predictor. Let µ = {µt}0≤t≤T be a stochastic process which satisfies

the Markov property, and assume it is adapted to the filtration {Ft}0≤t≤T we are working

with. We specify the dynamics of the relevant processes to be

dQν
t = νt dt , (66)

dSνt = (µt + b νt) dt+ σ dWt , (67)

dXν
t = −Ŝνt νt dt , (68)

Ŝνt = Sνt + k νt , (69)

where b > 0 and k > 0 are constants. Other than the inclusion of the drift µt in (67), these

equations are equivalent to (5) to (8) (with f and g replaced by linear functions). The value

function of our agent will correspond to the performance criterion given in (25), that is

H(t,Xt, Qt, St, µt) = sup
ν∈A

E
[
Xν
T +Qν

T (SνT − αQν
T )− γ

2

∫ T

t

σ2 (Qν
u)

2 du

∣∣∣∣Ft] , (70)

with α > 0 and γ > 0 constant. As discussed shortly after (25), this performance criterion

can be interpreted as the agent expressing risk-aversion with respect to the random midprice

changes, but risk-neutrality with respect to randomness associated with the stochastic drift

process µ.

At this point, no specific dynamics for the process µ have been specified. As long as this

stochastic drift term satisfies some technical integrability conditions, the value function and

optimal trading strategy can be expressed in terms of expected future drift, as shown in the

following Proposition.
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Proposition 4. The value function in (70) is given by

H(t, x, q, S, µ) = x+ q S + h0(t, µ) + h1(t, µ) q + h2(t) q
2 , (71)

h2(t) =
β

2

ψ− e−ω (T−t) − ψ+ eω (T−t)

ψ− e−ω (T−t) + ψ+ eω (T−t) −
b

2
, (72)

h1(t, µ) =

∫ T

t

ψ− e−ω (T−u) + ψ+ eω (T−u)

ψ− e−ω (T−t) + ψ+ eω (T−t) E[µu|Ft] du , (73)

h0(t, µ) =
1

4 k

∫ T

t

E[h21(t, µu)|Ft] du (74)

with

β =
√

2 k γ σ2 , ω =

√
γ σ2

2 k
, ψ± = β ± 2α∓ b ,

and the optimal strategy in feedback form is

ν∗(t, q, µ) =
h1(t, µ)

2 k
+

(2h2(t) + b)

2 k
q . (75)

A comparison of the optimal strategy (75) to the liquidation strategy without signals given in

(24) shows that the inventory component of the feedback form is identical, but the strategy

with signals has an additional component which comes from the agent’s forecast of the ex-

pected future asset price built into the term h1(t, µ). This term could naturally be compared

with the more straightforward quantity
∫ T
t
E[µu|Ft] du, which represents the expected change

in the unaffected midprice from time t to T . While this itself yields a forecast of how much

each unit of the agent’s inventory is expected to change in value, there are other considerations

that the agent must take into account (namely price impact effects, liquidation penalties, and

risk) when taking advantage of this signal. This gives rise to the complicated discount factor

within the integral which balances the trade-off between taking advantage of the signal while

acknowledging that this position will be partially liquidated close to time T and that any

inventory holdings have inherent risk of price changes. If we assume 2α > b,4 then inspection

of this discount factor shows that it is decreasing from 1 as u ranges from t to T and remains

positive. This indicates that the expected price changes in the immediate future as assigned

more weight towards the trading strategy compared to expected price changes in the distant

future. This arises because the agent would like to enter a position as early as possible to

take advantage price changes over as long a time horizon as possible, but also because there

is less risk associated with acting on immediate forecasts compared to distant ones.

4Refer to the discussion after Proposition 1.
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There are numerous other works in which some form of trade signal or price predictor are

incorporated. See for example Chan and Sircar (2015), Cartea et al. (2018a), Casgrain and

Jaimungal (2019), Lehalle and Neuman (2019), Donnelly and Lorig (2020), Forde et al. (2021),

Bergault et al. (2022), and Neuman and Voß (2022).

5.2. Hedging

The main focus of the previous section was not about optimally liquidating an asset position,

but rather attempting to maximize profits that could be extracted from knowledge about

expected price changes. Nevertheless, both optimal liquidation and speculative trading have

the common theme that they try to minimize costs, or equivalently maximize profits. Here

we consider an agent who has an additional objective which is not directly related to cost

minimization, although that will still be a consideration which will influence her trading

strategy.

In Bank et al. (2017), the authors consider an agent who is tasked with optimally tracking a

hedge ratio which arises from attempting to minimize the risk associated with holding another

security. Mathematically, they assume that there is a stochastic process ξ = {ξt}0≤t≤T which

indicates an inventory level which the agent intends to track efficiently. The dynamics of

specified processes and the performance criterion used by the agent are given by

dQν
t = νt dt , (76)

dXν
t = −(St + k νt) νt dt , (77)

Hν(x0, q0, S0) = E
[
Xν
T +Qν

T ST −
1

2

∫ T

0

(Qν
t − ξt)2 dt

]
, (78)

where the midprice process S is a martingale which is not subject to the effects of permanent

price impact. Within the performance criterion, the first two terms reward the agent for

trading optimally subject to temporary price impact. The second term gives incentive for the

agent to closely track the indicated inventory level ξ.

With an optimization criterion in hand, the authors characterize the optimal trading strategy

and value function. For this it is convenient to introduce the notation

τ(t) =
T − t√

2 k
, (79)

ξ̂t =
1√
2 k

E
[∫ T

t

eτ(u) + e−τ(u)

eτ(t) − e−τ(t)
ξu du

∣∣∣∣Ft] . (80)

Note the similarity between equations (80) and (73). In equation (73), the relevant quantity at

any point in time is not the trade signal µt itself, but instead the optimal strategy depends on
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the expected value of the signal at all times in the future, modified according to an integration

kernel. A similar theme occurs in (80) where the relevant quantity to the optimal efficient

hedging strategy is not the intended hedging target ξt, but a weighted average of the expected

future value of the target. The precise way that the target hedge ratio enters the optimal

trading strategy is summarized by the following proposition.

Proposition 5. The value function corresponding to the performance criterion in (78) is

given by

H(x0, q0, S0) = x0 + q0 S0 −
√
k

2
tanh(τ(0)) (q − ξ̂0)2

− 1

2
E
[∫ T

0

(ξ − ξ̂t)2 dt
]
−
√
k

2
E
[∫ T

0

tanh(τ(t)) d〈ξ̂〉t
]
,

(81)

and the trading strategy which achieves this performance yields an inventory process that

satisfies

dQt =
tanh(τ(t))√

2 k
(ξ̂t −Qt) dt , Q0 = q0 . (82)

In equation (82) we see that at any time, the agent will trade such that her inventory moves

towards the weighted target ξ̂t with speed being proportional to the current hedging error, with

the coefficient being a function depending on the remaining time T−t and the temporary price

impact parameter k. This function increases with respect to the remaining time, indicating

that the agent puts more effort into tracking the hedge ratio when there is a long amount of

time remaining in the trading interval. Indeed, when close to the end of the trading horizon,

the performance criterion has relatively small penalty associated with the remaining tracking

error, so the agent deems it more efficient to minimize the losses due to trading rather than

holding an accurate hedge.

In Bank et al. (2017) the authors also solve this hedge tracking problem when a terminal

inventory constraint is imposed of the form Qν
T = ΞT , for a given ΞT ∈ L2(Ω,FT ,P). Other

works related to efficient hedging include Almgren and Li (2016), Guéant and Pu (2017), and

Ekren and Nadtochiy (2022) in which an agent holds a European option on the traded asset

and attempts to maximize the expected utility or mean-variance performance of her terminal

wealth. The work Cartea et al. (2020) is similar except the agent holds a contingent claim on

a non-traded risky quantity which is hedged by a correlated asset, and provide closed form

trading strategies which approximate the optimal hedge.
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5.3. Targeting VWAP

Each of the previous sections considers an agent that measures her performance using a

criterion which is internal. That is, there is no sense of measuring performance relative to

other market participants or market state. In this section, we consider an agent who wishes

to employ a trading strategy with performance measured by the average execution price of

her trades relative to the volume weighted average price (VWAP). The time weighted average

price (TWAP) can be captured by any trading strategy which trades at a constant speed over

the time interval of interest, and such a strategy has already been seen in equations (19) and

(20). Unlike TWAP, VWAP depends on the actions of all market participants and measures

the average transaction price of all trades over a time period, and the uncertainty in the

actions of all other market participants makes it a more difficult quantity to target.

Suppose that all trades over our time period of interest occur at a sequence of times denoted

τ = {τn}Nn=1, and that the trade at time τn has volume Vn which is executed when the midprice

is Sτn .5 Then the VWAP for this time period is∑N
n=1 Vn Sτn∑N
n=1 Vn

. (83)

Working in continuous time, if we denote total order-flow in the market by µ = {µt}0≤t≤T ,

then the appropriate expression for VWAP is∫ T
0
µt St dt∫ T

0
µt dt

. (84)

VWAP is a frequently used benchmark for a trading strategy because it represents the trade

performance across the entire market, and additionally is easy to compute. When an agent is

trying to optimally liquidate a block of shares with performance measured relative to VWAP,

she must time her trades throughout the trading interval so that her average trade price is close

to this target. The main difficulty is that VWAP is uncertain because there is randomness

in future market order-flow. This difficulty is present in addition to trying to maintaining

trade efficiency regarding price impact considerations. One method of attempting to target

VWAP is to instead target the percentage of volume (POV) at each point in time. This is

the approach taken in Cartea and Jaimungal (2016a) which we now focus on.

5We take all of these volumes to be positive whether they are buys or sells. One could alternatively consider

the VWAP of only buy or sell trades depending on whether the agent is buying or selling, but typically all

trades are considered in practice. Additionally, VWAP is typically measured with respect to the midprice

without taking transaction or price impact effects into account.
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Let µ± = {µ±t }0≤t≤T denote the order-flow of buy and sell orders in the market, both assumed

to be positive. Then the total order-flow at time t including the agent’s trading is given by

µ+ + µ− + |νt|. The midprice is assumed to be linearly impacted by all order-flow, and so its

dynamics are

dSνt = b (µ+
t − µ−t + νt) dt+ dMt , (85)

where M is a martingale independent of µ±. Similar to Section 5.1 we assume that µ±

have the Markov property with respect to our filtration. Instead of directly trying to target

VWAP, the agent will attempt to track POV through time. Let ρ ∈ (0, 1) be fixed and define

χνt = ρ (µ+ + µ− + |νt|), and specify the agent’s dynamic value function to be

H(t,Xt, Qt, St, µ
±
t ) = sup

ν∈A
E
[
Xν
T +Qν

T (SνT − αQν
T )− ϕ

∫ T

t

(|νu| − χνu)2 dt
∣∣∣∣Ft] , (86)

where ϕ > 0 is a penalty parameter for deviating from POV. To see why the inclusion of

the POV target assists in targeting VWAP, suppose that the agent is only selling, meaning

νt ≤ 0, and that her trading speed exactly matches the percentage of total order-flow, giving

νt = −ρ (µ+
t + µ−t + |νt|). Then the agent’s trades, marked to the midprice as in (84), are

executed at an average value of∫ T
0
νt S

ν
t dt∫ T

0
νt dt

=

∫ T
0

(µ+
t + µ−t + |νt|)Sνt dt∫ T

0
(µ+

t + µ−t + |νt|) dt
, (87)

and thus she has exactly targeted VWAP. Unfortunately, by following this strategy she will

likely fail to liquidate her initial inventory position, and so inclusion of the penalty term in

(86) initiates a trade-off between targeting VWAP and efficiently liquidating her inventory as

represented by the other terms in the performance criterion.

For the remainder of this analysis we assume that the agent’s optimal trading strategy will

consist only of selling, meaning we may replace occurrences of |νt| with −νt, resulting in

simplified computations. This assumption will likely be the case when the agent’s initial

inventory is large and positive and when the need for liquidation outweighs the potential

benefits from buying shares of the asset due to price forecasts similar to the treatment in

Section 5.1. Under this assumption, the value function and optimal strategy are given by the

following Proposition.
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Proposition 6. The value function in (86) is given by

H(t, x,Q, S, µ±) = h0(t, µ
±) + h1(t, µ

±) q + h2(t) q
2 , (88)

h2(t) = −(ϕ̂+ k)

(
(T − t) + ζ

)−1
− b

2
(89)

h1(t, µ
±) = b

∫ T

t

(T − s) + ζ

(T − t) + ζ
E[µ+

s − µ−s |Ft] ds

+
2 ϕ̂ ρ̂

(T − t) + ζ

∫ T

t

E[µ+
s + µ−s |Ft] ds (90)

h0(t, µ
±) =

∫ T

t

E
[

(h1(s, µ
±
s )− 2 ϕ̂ ρ̂ (µ+

s + µ−s ))2

4 (ϕ̂+ k)
− ϕ̂ ρ̂2 (µ+

s + µ−s )2
∣∣∣∣Ft] (91)

with

ζ =
2 (ϕ̂+ k)

2α− b
, ϕ̂ = ϕ (1− ρ)2 , ρ̂ = ρ/(1− ρ) ,

and the optimal trading strategy in feedback form is

ν∗(t, q, µ±) = −
(

(T − t) + ζ

)−1
q +

h1(t, µ
±)− 2 ϕ̂ ρ̂ (µ+ + µ−)

2 (ϕ̂+ k)
. (92)

In (92) the first term which depends on inventory resembles a strategy that targets TWAP,

and the remaining term is an adjustment that attempts to profit from expected future price

forecasts (as seen from the term which includes E[µ+
s −µ−s |Ft]) and the desire to closely target

POV (as seen in all terms including µ+ + µ−). Further intuition about the optimal strategy

can be gathered when considering first the limit α → ∞, then the limit ϕ → ∞. The first

of these limits ensures that the agent fully liquidates her position by time T , and the second

limit drives her to match POV as closely as possible under the full liquidation constraint.

Evaluating these limits gives

lim
ϕ→∞

lim
α→∞

ν∗(t, q, µ±) = − 1

T − t
q − ρ̂

(
(µ+ + µ−)− 1

T − t

∫ T

t

E[µ+
s + µ−s |Ft] ds

)
. (93)

The dependence on expected future price has disappeared because of the infinite weight

associated with full liquidation and volume tracking. The form of makes it clear that the

agent’s trading strategy has a component which directly depends on the current total order

flow µ+ + µ−, but the influence is adjusted downward due to the influence of future trades.

In Cartea and Jaimungal (2016a) it is also shown how an agent may target VWAP by tracking

percentage of cumulative volume (POCV) rather than POV. Other works which consider

an agent attempting to match her trade executions to market VWAP are Konishi (2002)
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and Frei and Westray (2015). Both derive expressions for strategies which minimize the

VWAP targeting error, but rely on future knowledge of the total market volume. A study

of guaranteed VWAP contracts is conducted in Guéant and Royer (2014), in which an agent

guarantees to provide an execution service at VWAP prices, but then mitigates the risk of

having entered this contract. See Bia lkowski et al. (2008) and Mitchell et al. (2020) for

empirical studies of strategies which target VWAP.

5.4. Other Objectives

There are numerous other criteria that an agent could consider for the purposes of evaluating

the performance of her trading strategy. Here we briefly mention some lines of research that

do not explicitly fall into any of the categories of the previous few sections.

In Neuman et al. (2020) the agent is considered to be a central bank, and she is tasked with

maintaining a currency peg or currency target zone, the goal of which is to make sure that a

particular foreign exchange rate remains within a specified domain. This is done by trading in

the underlying currencies and utilizing the permanent price impact from the trades in such a

way as to move the exchange rate to its desired value. This task has significant inventory risk

associated with it which the central bank wishes to manage. In Neuman and Schied (2022), a

similar currency peg context is considered, but in addition to a central bank maintaining the

peg there is a strategic investor attempting to disrupt the bank’s objective. This is modeled

as a stochastic differential game and a Stackelberg equilibrium is established.

The operation of modern markets is strongly dependent on technology, and the frequency at

which events occur mean that latency can have an affect on the performance of an execution

strategy. From the time that an agent submits her intention to trade until that signal arrives

at the matching engine of the exchange, the state of the limit order book may have changed in

such a way that the agent’s order cannot be filled. In Cartea and Sánchez-Betancourt (2021b)

the agent acknowledges that latency can affect whether her submitted orders are executed as

expected, and adjusts her performance criterion to account for the fraction of her trades that

are filled. See also Moallemi and Sağlam (2013) for some empirical analysis of the effects of

latency on optimal execution strategies.

6. Other Phenomena

Below is a small number of other styles of model which do not explicitly fall into any of the

previous categories. Many of the ideas explored in the following sections could be adapted
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in conjunction with the topics explored already. The referenced material should be consulted

for the mathematical details used to approach these phenomena.

6.1. Multiple Agents

Each setting considered so far has incorporated the strategic actions of only one agent. Some

of the previous models have incorporated total order flow of the market within the dynamics,

but any such model does not arise as a result of an optimization procedure carried out by

other agents. In reality, no single agent acts in isolation, and their actions will have an effect

on the state of the market, thereby altering the actions of other agents. When modeling

several agents simultaneously, we move from a stochastic optimization into a stochastic game

setting.

In Schied and Zhang (2019) a competitive game is considered between a finite number of

agents where they are restricted to trading at discrete times. Continuous-time counterparts

ares studied in Strehle (2017) and Neuman and Voß (2021), and in Voß (2022) a two agent

setting is considered in which they must both efficiently track an inventory target.

Finite player stochastic differential games generally result in a set of coupled differential

equations which can prove to be intractable. Modeling the problem as a mean-field game,

appropriate for a large number of agents, often reduces the complexity of the computations.

The optimal liquidation problem in a mean field setting is detailed in Huang et al. (2019)

and Fu et al. (2021). In Casgrain and Jaimungal (2020) and Donnelly and Lorig (2020) a

mean-field game is used to consider agents who have different methods of speculation about

the future price of the asset.

6.2. Robustness

Each of the optimal trading strategies from previous sections depend on a specification of

a dynamic model for the price process and other relevant quantities. But the performance

of any trading strategy is subject to risks arising from using a misspecified model, thus it

is desirable to account for these risks and attempt to formulate a trading strategy which is

robust to model error.

In Schied (2013) the optimality of a trading strategy with respect to the underlying model is

studied. In Nyström et al. (2014), Cartea et al. (2018b), and Horst et al. (2022), the agent’s

performance criterion accounts for the possibility that the dynamics evolve according to a

different model, and she thereby adjusts her trading strategy to compensate.
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6.3. Market Making and Liquidation with Limit Orders

The results which have been outlined in previous sections frame a trading strategy in terms

of the speed or volume of trades. Keeping in mind the discussion about the LOB structure,

an agent can only guarantee that a particular volume of trades be executed if she employs

MOs. Here we give references which study the strategic placement of LOs instead of or in

conjunction with MOs.

An agent who simultaneously places buy and sell LOs and attempts to maximize profits is

considered in Avellaneda and Stoikov (2008). Further work on optimal market making is

considered in Guilbaud and Pham (2013), Guéant et al. (2013), Cartea et al. (2014), Cartea

and Jaimungal (2015b), and Cartea et al. (2018a).

The incorporation of LOs on only one side of the LOB for use in optimal liquidation is

considered in Guéant et al. (2012), Bayraktar and Ludkovski (2014), Guéant and Lehalle

(2015), and Cartea and Jaimungal (2015a).
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Fruth, A., T. Schöneborn, and M. Urusov (2019). Optimal trade execution in order books

with stochastic liquidity. Mathematical Finance 29 (2), 507–541.

Fu, G., P. Graewe, U. Horst, and A. Popier (2021). A mean field game of optimal portfolio

liquidation. Mathematics of Operations Research 46 (4), 1250–1281.

36



Gatheral, J. (2010). No-dynamic-arbitrage and market impact. Quantitative Finance 10 (7),

749–759.

Gatheral, J. and A. Schied (2011). Optimal trade execution under geometric Brownian motion

in the Almgren and Chriss framework. International Journal of Theoretical and Applied

Finance 14 (03), 353–368.

Gatheral, J. and A. Schied (2013). Dynamical models of market impact and algorithms for

order execution. Handbook on Systemic Risk, Jean-Pierre Fouque, Joseph A. Langsam, eds ,

579–599.

Graewe, P. and U. Horst (2017). Optimal trade execution with instantaneous price impact

and stochastic resilience. SIAM Journal on Control and Optimization 55 (6), 3707–3725.
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