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Integral Equations
and Operator Theory

The Coburn Lemma and the
Hartman–Wintner–Simonenko Theorem
for Toeplitz Operators on Abstract Hardy
Spaces

Oleksiy Karlovych and Eugene Shargorodsky

Abstract. Let X be a Banach function space on the unit circle T, let
X ′ be its associate space, and let H[X] and H[X ′] be the abstract
Hardy spaces built upon X and X ′, respectively. Suppose that the Riesz
projection P is bounded on X and a ∈ L∞\{0}. We show that P is
bounded on X ′. So, we can consider the Toeplitz operators T (a)f =
P (af) and T (a)g = P (ag) on H[X] and H[X ′], respectively. In our
previous paper, we have shown that if X is not separable, then one
cannot rephrase Coburn’s lemma as in the case of classical Hardy spaces
Hp, 1 < p < ∞, and guarantee that T (a) has a trivial kernel or a dense
range on H[X]. The first main result of the present paper is the following
extension of Coburn’s lemma: the kernel of T (a) or the kernel of T (a)
is trivial. The second main result is a generalisation of the Hartman–
Wintner–Simonenko theorem saying that if T (a) is normally solvable on
the space H[X], then 1/a ∈ L∞.

Mathematics Subject Classification. Primary 47B35, 46E30.

Keywords. Banach function space, Toeplitz operator, Coburn’s lemma,
Normal solvability, Fredholmness, Invertibility.

1. Introduction

Let E be a Banach space and B(E) be the Banach algebra of all bounded
linear operators on E. For A ∈ B(E), let

Ker A:={x ∈ E : Ax = 0}, RanA:={Ax : x ∈ E}.

Following [8, Section 4.1], an operator A ∈ B(E) is said to be normally
solvable if Ran A is closed in E.
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For a function f ∈ L1 on the unit circle T := {z ∈ C : |z| = 1}, let

̂f(n) =
1
2π

∫ π

−π

f
(

eiθ
)

e−inθ dθ, n ∈ Z

be the Fourier coefficients of f . Let X be a Banach space of measurable
complex-valued functions on T continuously embedded into L1. Let

H[X] := {g ∈ X : ĝ(n) = 0 for all n < 0}
denote the abstract Hardy space built upon the X. In the case X = Lp,
where 1 ≤ p ≤ ∞, we will use the standard notation Hp := H[Lp]. We will
also use the following notation:

em(z) := zm, z ∈ C, m ∈ Z.

Consider the operators C and P , defined for a function f ∈ L1 and an a.e.
point t ∈ T by

(Cf)(t) :=
1
πi

p.v.
∫

T

f(τ)
τ − t

dτ, (Pf)(t) :=
1
2
(f(t) + (Cf)(t)),

respectively, where the integral is understood in the Cauchy principal value
sense. The operator C is called the Cauchy singular integral operator and the
operator P is called the Riesz projection. Assume that the Riesz projection
is bounded on X. For a ∈ L∞, the Toeplitz operator with symbol a is defined
by

T (a)f = P (af), f ∈ H[X].

It is clear that T (a) ∈ B(H[X]) and ‖T (a)‖H[X]→H[X] ≤ ‖P‖X→X‖a‖L∞ .
This paper deals with extensions of two classical results on Toeplitz

operators acting on the classical Hardy spaces Hp with 1 < p < ∞. A fairly
complete account on Toeplitz operators in this setting can be found in [2,3]
(see also references given there). Lewis Coburn observed the following in the
proof of [4, Theorem 4.1] (see also [5, Proposition 7.24]).

Lemma 1.1. (Coburn) If T (a) is a non-zero Toeplitz operator on H2, then

Ker T (a) = {0} or Ker T (a) = {0}.

This result remains true for Hp with 1 < p < ∞, and it can be rephrased
as follows (see, e.g., [3, Theorem 2.38] or [2, Theorem 6.17]).

Theorem 1.2. If a ∈ L∞\{0}, then the Toeplitz operator T (a) has a trivial
kernel or a dense range on each Hardy space Hp with 1 < p < ∞.

Another basic result in the theory of Toeplitz operators on Hardy spaces
Hp with 1 < p < ∞ is usually attributed to Hartman-Wintner [11] and
Simonenko [26]. It says the following (see [2, Theorem 6.20] and also [3,
Theorem 2.30]).

Theorem 1.3. (Hartman–Wintner–Simonenko) If a ∈ L∞\{0} and the Toep
litz operator T (a) is normally solvable on a Hardy space Hp with 1 < p < ∞,
then 1

a ∈ L∞.
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Note that the normal solvability of paired operators aP + bQ, where
Q := I − P , is a more delicate matter (see [21, Theorem 2] for the case of L2

and [12] for the case of Lp).
Let X be a Banach function space and X ′ be its associate space (see [1,

Ch. 1] or Sect. 2.1 below). It follows from [1, Ch. 1, Corollaries 4.4 and 5.6]
that a Banach function space X is reflexive if and only if the space X and its
associate space X ′ are separable. Analogues of the above results for a reflexive
Banach function space X, on which the Riesz projection P is bounded, were
established in [13, Theorems 6.8–6.9] (under the additional assumption that
the space X is rearrangement-invariant) and in [14, Theorems 6.11–6.12] (see
also [15, Theorem 1.1]) (without this assumption) in the equivalent setting of
singular integral operators aP +Q, where a ∈ L∞. Note also that the normal
solvability of aP + bQ with a, b ∈ C on a separable rearrangement-invariant
Banach function space, on which the Riesz projection P is bounded, was
studied in [22].

In this paper, we do not assume that X is reflexive or separable. The
possible lack of separability significantly complicates the matter because the
Banach dual space X∗ does not coincide with the associate (Köthe dual) space
X ′ (see [1, Ch. 1, Corollaries 4.3 and 5.6]). In particular, a direct analogue of
Theorem 1.2 is not true for the whole space X if X is not separable (see [19]
and Sect. 6). It is only true when one replaces the space X by the subspace
Xb, which is the closure the set of all simple functions with respect to the
norm of X (see Theorem 6.1 below).

Below we only assume that the Riesz projection P is bounded on X.
Then it is also bounded on the associate space X ′ (see Theorem 3.4 be-
low). So, we can consider Toeplitz operators T (a) : H[X] → H[X] and
T (a) : H[X ′] → H[X ′] simultaneously. Our first main result is the following
extension of Lemma 1.1.

Theorem 1.4. Let X be a Banach function space with the associate space X ′.
If the Riesz projection P is bounded on the space X and a ∈ L∞\{0}, then
the kernel of the Toeplitz operator T (a) : H[X] → H[X] or the kernel of the
Toeplitz operator T (a) : H[X ′] → H[X ′] is trivial.

Our second main result is the following generalisation of Theorem 1.3.

Theorem 1.5. Let X be a Banach function space on which the Riesz projection
P is bounded. If a ∈ L∞\{0} and the Toeplitz operator T (a) : H[X] → H[X]
is normally solvable, then 1

a ∈ L∞.

The paper is organised as follows. In Sect. 2, we recall definitions of a
Banach function space and its associate space X ′, of the subspace Xa of all
functions of absolutely continuous norm and of the subspace Xb, which is
the closure of the set of all simple functions in X. Further, we note that if
Xa = Xb, then the set of trigonometric polynomials P is dense in Xb. We
also need a few notions from the theory of analytic functions on the open unit
disk D. In Sect. 3, we first prove that if P is bounded from Xb to X, then
Xa = Xb. Further, we show that if P is bounded from Xb to X, then it is also
bounded from X to X (with the same norm) and from X ′ to X ′. Sect. 4 is
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devoted to the proof of Theorem 1.4. In Sect. 5, we prove Theorem 1.5 and, as
a consequence of it, establish the spectral inclusion theorem saying that the
essential range of the symbol of a Toeplitz operator T (a) is contained in its
essential spectrum. Finally, in Sect. 6, we recall our recent results [19], which
imply that there is no analogue of Theorem 1.2 for non-separable Banach
function spaces X.

2. Preliminaries

2.1. Banach Function Spaces and Their Associate Spaces

Let M be the set of all measurable complex-valued functions on T equipped
with the normalised measure dm(t) = |dt|/(2π) and let M+ be the subset of
functions in M whose values lie in [0,∞].

Following [1, Ch. 1, Definition 1.1], a mapping ρ : M+ → [0,∞] is called
a Banach function norm if, for all functions f, g, fn ∈ M+ with n ∈ N, and
for all constants a ≥ 0, the following properties hold:

(A1) ρ(f) = 0 ⇔ f = 0 a.e., ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),
(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f) (the lattice property),
(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f) (the Fatou property),
(A4) ρ(1) < ∞,

(A5)
∫

T

f(t) dm(t) ≤ Cρ(f)

with a constant C ∈ (0,∞) that may depend on ρ, but is independent of f .
When functions differing only on a set of measure zero are identified, the set
X of all functions f ∈ M for which ρ(|f |) < ∞ is called a Banach function
space. For each f ∈ X, the norm of f is defined by ‖f‖X := ρ(|f |). The set X
equipped with the natural linear space operations and this norm becomes a
Banach space (see [1, Ch. 1, Theorems 1.4 and 1.6]). If ρ is a Banach function
norm, its associate norm ρ′ is defined on M+ by

ρ′(g) := sup
{∫

T

f(t)g(t) dm(t) : f ∈ M+, ρ(f) ≤ 1
}

, g ∈ M+.

It is a Banach function norm itself [1, Ch. 1, Theorem 2.2]. The Banach
function space X ′ determined by the Banach function norm ρ′ is called the
associate space (Köthe dual) of X. The associate space X ′ can be viewed as
a subspace of the Banach dual space X∗. For f ∈ X and g ∈ X ′, put

〈f, g〉 :=
∫

T

f(t)g(t) dm(t) =
1
2π

∫ π

−π

f(eiθ)g(eiθ) dθ.

Let S0 be the set of all simple functions on T. The following lemma can be
proved by a minor modification of the proof of [18, Lemma 2.10].

Lemma 2.1. Let X be a Banach function space and X ′ be its associate space.
For every f ∈ X,

‖f‖X = sup{|〈f, s〉| : s ∈ S0, ‖s‖X′ ≤ 1}.
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2.2. Density of Trigonometric Polynomials in the Subspace Xb

The characteristic (indicator) function of a measurable set E ⊂ T is denoted
by 1E . Following [1, Ch. 1, Definition 3.1], a function f in a Banach function
space X is said to have absolutely continuous norm in X if ‖f1γn

‖X → 0 for
every sequence {γn} of measurable sets such that 1γn

→ 0 almost everywhere
as n → ∞. The set of all functions of absolutely continuous norm in X is
denoted by Xa. If Xa = X, then one says that X has absolutely continuous
norm. Following [1, Ch. 1, Definition 3.9], let Xb denote the closure of S0 in
the norm of X. By [1, Ch. 1, Proposition 3.10 and Theorem 3.11], Xb is the
closure in X of the set of all bounded functions, and Xa ⊂ Xb ⊂ X.

For n ∈ Z+ := {0, 1, 2, . . . }, a function of the form
∑n

k=−n αkek, where
αk ∈ C for all k ∈ {−n, . . . , n}, is called a trigonometric polynomial of order
n. The set of all trigonometric polynomials is denoted by P.

Lemma 2.2. ([17, Lemma 2.1]) Let X be a Banach function space. If Xa =
Xb, then the set of trigonometric polynomials P is dense in Xb.

2.3. Classes of Analytic Functions on the Open Unit Disk

Let D denote the open unit disk in the complex plane C. Recall that a function
F analytic in D is said to belong to the Hardy space Hp(D), 0 < p ≤ ∞, if

‖F‖Hp(D) := sup
0≤r<1

(

1
2π

∫ π

−π

|F (reiθ)|p dθ

)1/p

< ∞, 0 < p < ∞,

‖F‖H∞(D) := sup
z∈D

|F (z)| < ∞.

Let g be a measurable function on T with log |g| ∈ L1. An outer function (of
absolute value |g|) is a function f = λG with |λ| = 1 and

G(z) := exp
(

1
2π

∫ π

−π

eiθ + z

e,θ − z
log |g(eiθ)| dθ

)

, z ∈ D

(see, e.g., [24, Definition 3.1.1]). The Smirnov class D(D) consists of all func-
tions f analytic in D, which can be represented in the form f = f1/f2, where
f2 is outer and f1, f2 ∈ ⋃

0<p≤∞ Hp(D) (see, e.g., [24, Definition 3.3.1]).

3. On the Boundendess of the Riesz Projection

3.1. Two Known Facts on the Riesz Projection

We start this section with two known results on the operator P which will
be needed later.

Lemma 3.1. ([17, formula (1.4)]) If f ∈ L1 is such that Pf ∈ L1, then

(Pf)̂(n) =
{

̂f(n), if n ≥ 0,
0, if n < 0.

Lemma 3.2. ([16, Lemma 3.1]) Let f ∈ L1. Suppose there exists g ∈ H1 such
that ̂f(n) = ĝ(n) for all n ≥ 0. Then Pf = g.
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3.2. Necessary Condition for the Boundedness of P from Xb to X

We will need the following refinement of [17, Theorem 3.7].

Theorem 3.3. Let X be a Banach function space. If the Riesz projection P is
bounded from Xb to X, then Xa = Xb.

Proof. The proof is similar to the proof of [17, Lemma 3.6]. For f ∈ L1

consider its periodic Hilbert transform defined by

(Hf)
(

eiϑ
)

:=
1
2π

p.v.
∫ π

−π

f
(

eiθ
)

cot
ϑ − θ

2
dθ, ϑ ∈ [−π, π].

Then

Pf :=
1
2
(f + iHf) +

1
2

̂f(0) (3.1)

(cf. [7, p. 104], [3, Section 1.43] and also [17, formula (1.3)]). Since Xb is a
Banach space isometrically embedded into X (see [1, Ch. 1, Theorem 3.1]) and
X is continuously embedded into L1, the functional f �→ ̂f(0) is continuous
on the space Xb. Then it follows from (3.1) that P : Xb → X is bounded
if and only if H : Xb → X is bounded. Taking into account that L∞ is
continuously embedded into Xb (see [1, Ch. 1, Proposition 3.10]), we conclude
that H : L∞ → X is bounded. It follows from this observation and [17,
Lemma 3.1 and Theorem 3.4] that Xa = Xb. �

3.3. Boundedness of the Riesz Projection on the Associate Space

We are in a position to prove the main result of this section.

Theorem 3.4. Let X be a Banach function space and X ′ be its associate space.
If P : Xb → X is bounded, then P : X → X is bounded, P maps Xb into
itself,

‖P‖X→X = ‖P‖Xb→Xb
, (3.2)

and the adjoint of the bounded operator P : Xb → Xb is the operator P :
X ′ → X ′, which implies that the latter is also bounded.

Proof. Since P : Xb → X is bounded, by Theorem 3.3, we have Xa = Xb.
Take any f ∈ Xb. In view of Lemma 2.2, there exist trigonometric polynomials
pn, n ∈ N, such that ‖f − pn‖X → 0 as n → ∞. Then

‖Pf − Ppn‖X ≤ ‖P‖Xb→X‖f − pn‖X → 0 as n → ∞.

Since the trigonometric polynomials Ppn are bounded, we conclude that Pf ∈
Xb (see [1, Ch. 1, Proposition 3.10]). So, P maps Xb into itself, and the
operator P : Xb → Xb is bounded.

On the other hand, it follows from Xa = Xb and [1, Ch. 1, Corollary 4.2]
that (Xb)∗ = X ′, so the adjoint operator P ∗ : X ′ → X ′ is bounded. We have

〈Pf, h〉 = 〈f, P ∗h〉 for all f ∈ Xb and h ∈ X ′.

Taking f = en, we get for n ≥ 0,

̂h(n) = 〈h, en〉 = 〈en, h〉 = 〈Pen, h〉 = 〈en, P ∗h〉 = 〈P ∗h, en〉 = (P ∗h)̂(n),
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while for n < 0, we have

0 = 〈0, h〉 = 〈Pen, h〉 = 〈en, P ∗h〉 = 〈P ∗h, en〉 = (P ∗h)̂(n).

So,

(P ∗h)̂(n) = ̂h(n) for n ≥ 0, (P ∗h)̂(n) = 0 for n < 0.

Since P ∗h ∈ X ′ ↪→ L1, it follows from the above that P ∗h ∈ H1. Then
Lemma 3.2 implies that Ph = P ∗h for all h ∈ X ′. Therefore P : X ′ → X ′ is
bounded and

‖P‖X′→X′ = ‖P ∗‖(Xb)∗→(Xb)∗ = ‖P‖Xb→Xb
= ‖P‖Xb→X . (3.3)

The operator P : (X ′)b → X ′ is bounded as the restriction of the bounded
operator P : X ′ → X ′ to the subspace (X ′)b and

‖P‖X′→X′ ≥ ‖P‖(X′)b→X′ . (3.4)

Applying the above argument to the space X ′ in place of X, by analogy with
(3.3), we get that P : (X ′)′ → (X ′)′ is bounded and

‖P‖(X′)′→(X′)′ = ‖P‖(X′)b→(X′)b = ‖P‖(X′)b→X′ . (3.5)

Taking into account that (X ′)′ = X with equal norms (see [1, Ch. 1, Theo-
rem 2.7]), we conclude that P : X → X is bounded and

‖P‖X→X = ‖P‖(X′)′→(X′)′ . (3.6)

Since P : Xb → Xb is the restriction of P : X → X to Xb, we have

‖P‖X→X ≥ ‖P‖Xb→Xb
. (3.7)

Combining (3.3)–(3.7), we get

‖P‖Xb→Xb
= ‖P‖X′→X′ ≥ ‖P‖(X′)b→X′ = ‖P‖(X′)′→(X′)′

= ‖P‖X→X ≥ ‖P‖Xb→X = ‖P‖Xb→Xb
,

which implies (3.2). �

4. Coburn’s Lemma

4.1. Duality Relations for the Riesz Projection P

We start this section with the duality relations for the Riesz projection P .

Lemma 4.1. Let X be a Banach function space with the associate space X ′.
If the Riesz projection P is bounded on the space X and Q := I − P , then
for all f ∈ X and h ∈ X ′,

〈Pf, h〉 = 〈Pf, Ph〉 = 〈f, Ph〉, (4.1)
〈Pf,Qh〉 = 0 = 〈Qf, Ph〉. (4.2)

Proof. It follows from Theorem 3.4 that P is bounded on X ′. Hence Ph
and Qh belong to X ′, whence all expressions in (4.1) and (4.2) are well
defined. It is easy to see that (4.2) implies (4.1), so it is sufficient to prove
the former. It follows from Lemma 3.1 that (Qh)̂(n) = 0 for n ≥ 0. Hence
(

Qh
)

̂(n) = (Qh)̂(−n) = 0 for n ≤ 0. This implies that Qh ∈ H[X ′] ⊂ H1.
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For functions Pf ∈ H[X] ⊂ H1 and Qh ∈ H1, let F and G denote their
analytic extensions to the unit disk D by means of their Poisson integrals.
Then F,G ∈ H1(D) and G(0) = (Qh)̂(0) = 0 (see, e.g., [6, Theorem 3.4]).
Since F,G ∈ H1(D), by Hölder’s inequality, FG ∈ H1/2(D). On the other
hand, since Pf ∈ X and Qh ∈ X ′, it follows from Hölder’s inequality for
Banach function spaces (see [1, Ch. 1, Theorem 2.4]) that PfQh ∈ L1. By
the Smirnov theorem, Hp(D) = D ∩ Lp for 0 < p ≤ ∞ (see, e.g., [6, Theorem
2.11] or [24, Section 3.3.1 (a), (g)]). Therefore FG ∈ H1(D). Since (FG)(0) =
F (0)G(0) = 0, we get

0 = (FG)(0) = (PfQh)̂(0)

=
1
2π

∫ π

−π

Pf
(

eiθ
)

Qh
(

eiθ
)

dθ = 〈Pf,Qh〉, (4.3)

which proves the first equality in (4.2). By the Lorentz-Luxemburg theorem
(see [1, Ch. 1, Theorem 2.7]), one has X ′′ = X. Using (4.3) with h ∈ X ′ and
f ∈ X ′′ = X in place of f ∈ X and h ∈ X ′, respectively, we get

〈Qf, Ph〉 = 〈Ph,Qf〉 = 0,

which completes the proof. �

4.2. Duality Relations for Toeplitz Operators

The following duality relations for Toeplitz operators will play a crucial role
in the proof of our version of Coburn’s lemma.

Lemma 4.2. Let X be a Banach function space with the associate space X ′.
If the Riesz projection P is bounded on the space X and a ∈ L∞, then for all
u ∈ H[X] and v ∈ H[X ′],

〈T (a)u, v〉 = 〈u, T (a) v〉 . (4.4)

Proof. By Theorem 3.4, the operator P is bounded on the space X ′. Hence
all expressions in (4.4) are well defined. If u ∈ H[X] and v ∈ H[X ′], then in
view of Lemma 3.2,

Pu = u, Pv = v. (4.5)

Using (4.1) and (4.5), one gets

〈T (a)u, v〉 = 〈P (au), v〉 = 〈au, Pv〉 = 〈au, v〉 = 〈u, av〉
= 〈Pu, av〉 = 〈u, P (av)〉 = 〈u, T (a) v〉 ,

which completes the proof. �

4.3. Proof of Theorem 1.4

Let u ∈ H[X] ⊂ H1 and v ∈ H[X ′] ⊂ H1 be such that T (a)u = 0 and
T (a) v = 0. Since a ∈ L∞(T), u ∈ X, v ∈ X ′, it follows from Hölder’s
inequality that g := auv ∈ L1.

Let n ≥ 0. It is easy to check that ven ∈ H[X ′]. Then Lemma 3.2
implies that P (ven) = ven. Using this observation and (4.1), we get

ĝ(n) = 〈g, en〉 = 〈auv, en〉 = 〈au, ven〉 = 〈au, P (ven)〉 = 〈P (au), ven〉
= 〈T (a)u, ven〉 = 0 for all n ≥ 0.
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Similarly, if n ≤ 0, then e−nu ∈ H[X] and P (e−nu) = e−nu. Using this
observation and applying (4.1) once again, we obtain

ĝ(n) = 〈auv, en〉 = 〈e−nu, av〉 = 〈P (e−nu), av〉 = 〈e−nu, P (av)〉
= 〈e−nu, T (a) v〉 = 0 for all n ≤ 0.

So, all Fourier coefficients of g are equal to 0, i.e. g = 0 a.e. (see, e.g.,
[20, Ch. 1, Theorem 2.7]). Since a �= 0, the product uv is equal to 0 on
a set of positive measure. Then at least one of the functions u ∈ H1 and
v ∈ H1 is equal to 0 on a set of positive measure and hence a.e. (see, e.g., [6,
Theorem 2.2]). �

5. Normal Solvability of Toeplitz Operators

5.1. Relations Between the Range of T (a) on H[Xb] and the Kernel of
T (a) on H[X′]

If P is bounded on X, then it maps Xb into itself according to Theorem
3.4. For any a ∈ L∞, the operator aI also maps Xb into itself. Hence T (a) :
H[Xb] → H[Xb] is a bounded operator.

If S is a subset of of a Banach space E, then closE(S) denotes the closure
of S in E.

Lemma 5.1. Let X be a Banach function space with the associate space X ′.
If the Riesz projection P is bounded on the space X and a ∈ L∞, then g ∈
H[Xb] belongs to the closure closH[Xb]

(

Ran T (a)
)

of the range of the Toeplitz
operator T (a) : H[Xb] → H[Xb] if and only if 〈g, v〉 = 0 for every v in the
kernel of the Toeplitz operator T (a) : H[X ′] → H[X ′].

Proof. Since (Xb)∗ = X ′ and P : Xb → Xb (see the proof of Theorem 3.4),
one can show in exactly the same way as for the classical Hardy spaces (see
[6, Theorem 7.3]) that the dual of H[Xb] is (non-isometrically) isomorphic to
H[X ′] and that the adjoint of T (a) : H[Xb] → H[Xb] can be identified with
T (a) : H[X ′] → H[X ′] (see Lemma 4.2). Then the lemma follows from a
standard fact about bounded linear operators (see, e.g. [25, formula (3.13)]).

One can rephrase this proof in such a way that it avoids explicitly using
the isomorphism (H[Xb])∗ � H[X ′].

Necessity. Suppose g ∈ closH[Xb]

(

Ran T (a)
)

. Then there exist ϕn ∈
H[Xb], n ∈ N such that ‖g−T (a)ϕn‖X → 0 as n → ∞. By Hölder’s inequality
for Banach function spaces (see [1, Ch. 1, Theorem 2.4]), for every v ∈ H[X ′]
and every n ∈ N,

|〈g, v〉 − 〈T (a)ϕn, v〉| ≤ ‖g − T (a)ϕn‖X‖v‖X′ .

Hence

〈g, v〉 = lim
n→∞〈T (a)ϕn, v〉.

Using Lemma 4.2, one gets 〈T (a)ϕn, v〉 = 〈ϕn, T (a)v〉 for all n ∈ N. Thus,
for all v ∈ Ker T (a),

〈g, v〉 = lim
n→∞〈T (a)ϕn, v〉 = lim

n→∞ 〈ϕn, T (a) v〉 = 0,



    6 Page 10 of 17 O. Karlovych and E. Shargorodsky IEOT

which completes the proof of the necessity portion.
Sufficiency. Suppose that g ∈ H[Xb]\ closH[Xb]

(

Ran T (a)
)

and

〈g, u〉 = 0 for all u ∈ Ker T (a). (5.1)

Then, by the Hahn-Banach theorem, there exists h ∈ (Xb)∗ = X ′ such that
〈g, h〉 = 1 and 〈T (a)ϕ, h〉 = 0 for all ϕ ∈ H[Xb]. Lemma 3.2 implies that
T (a)ϕ = PT (a)ϕ and T (a)v = PT (a)v for every v ∈ H[X ′]. Let v := Ph ∈
H[X ′]. Note that ϕ := Pψ ∈ H[Xb] for every ψ ∈ Xb (see Lemma 3.1).
Combining this observations with (4.1) and Lemma 4.2, we see that

〈ψ, T (a) v〉 = 〈ψ,PT (a) v〉 = 〈Pψ, T (a) v〉 = 〈ϕ, T (a) v〉 = 〈T (a)ϕ, v〉
= 〈T (a)ϕ,Ph〉 = 〈PT (a)ϕ, h〉 = 〈T (a)ϕ, h〉 = 0.

Hence for n ∈ Z,

(T (a)v)̂(n) = 〈T (a)v, en〉 = 〈en, T (a)v〉 = 0. (5.2)

Thus, by the uniqueness theorem for Fourier series (see, e.g., [20, Ch. 1,
Theorem 2.7]), T (a) v = 0, i.e. v ∈ Ker T (a). On the other hand, since
g ∈ H[Xb], Lemma 3.2 implies that Pg = g. Then, in view of (4.1), we see
that

〈g, v〉 = 〈g, Ph〉 = 〈Pg, h〉 = 〈g, h〉 = 1,

which contradicts (5.1). Thus g ∈ closH[Xb]

(

Ran T (a)
)

. �

5.2. Proof of Theorem 1.5

Suppose 1
a �∈ L∞. Let

γn := {ζ ∈ T : |a(ζ)| ≤ 1/n} , n ∈ N.

Then m(γn) > 0 for all n ∈ N. Let

gn := 1γn
+ εn1T\γn

, n ∈ N,

where εn are chosen so that

0 < εn ≤ ‖1γn
‖Y

n‖1‖Y
, Y = X, X ′.

Let ϕn ∈ H∞ ⊂ H[X] be an outer function such that |ϕn| = gn a.e. Then

‖T (a)ϕn‖X = ‖P (aϕn)‖X ≤ ‖P‖X→X‖aϕn‖X = ‖P‖X→X‖agn‖X

≤ ‖P‖X→X

(

1
n

‖1γn
‖X + ‖a‖L∞εn‖1T\γn

‖X

)

≤ ‖P‖X→X

(

1
n

‖1γn
‖X + ‖a‖L∞

‖1γn
‖X

n‖1‖X
‖1T\γn

‖X

)

≤ 1
n

‖P‖X→X (1 + ‖a‖L∞) ‖gn‖X

=
1
n

‖P‖X→X (1 + ‖a‖L∞) ‖ϕn‖X .(5.3)
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By [9, Theorem IV.1.6], the operator T (a) ∈ B(H[X]) is normally solvable if
and only if its minimum modulus γ(T (a)) defined by

γ(T (a)) := inf
u∈H[X]

‖T (a)u‖H[X]

dist(u,Ker T (a))
,

where

dist(u,Ker T (a)) := inf
v∈KerT (a)

‖u − v‖H[X],

is positive.
If KerT (a) = {0}, then ‖ϕn‖X = d(ϕn,Ker T (a)) and (5.3) implies

that

0 ≤ γ(T (a)) ≤ lim
n→∞

‖T (a)ϕn‖X

‖ϕn‖X
= 0.

Therefore the Toeplitz operator T (a) cannot be normally solvable if

Ker T (a) = {0}.

Suppose now that KerT (a) �= {0}. Then, in view of Theorem 1.4, the kernel
of T (a) : H[X ′] → H[X ′] is trivial. Hence, by Lemma 5.1, the range of the
operator T (a) : H[Xb] → H[Xb] is dense in H[Xb]. Hence the Hardy space
H[Xb] is contained in the closure of the range of the operator T (a) : H(X] →
H[X]. Since the latter operator is normally solvable, H[Xb] is contained in
its range and 0 < γ(T (a)). Therefore, for every v ∈ H[X] there exists s ∈
Ker T (a) ⊂ H[X] such that

‖v − s‖ ≤ 2
γ(T (a))

‖T (a)v‖H[X].

Since H[Xb] ⊂ RanT (a), the above inequality implies that for every function
f ∈ H[Xb] there exist functions v ∈ H[X] and s ∈ Ker T (a) ⊂ H[X] such
that u := v − s ∈ H[X],

T (a)u = f and ‖u‖X ≤ M‖f‖X ,

where M := 2/γ(T (a)).
We can show by analogy with (5.3) that

‖T (a) ϕn‖X′ ≤ 1
n

‖P‖X′→X′ (1 + ‖a‖L∞) ‖ϕn‖X′ . (5.4)

It follows from Lemma 2.1 and the Lorentz-Luxemburg theorem (see [1, Ch. 1,
Theorem 2.7]) that for every n ∈ N there exists sn ∈ S0 such that ‖sn‖X ≤ 1
and

|〈ϕn, sn〉| ≥ ‖ϕn‖X′

2
, n ∈ N. (5.5)

Since sn ∈ Xb, it follows from Theorem 3.4 that hn := Psn ∈ H[Xb]. Then
there exist un ∈ H[X], n ∈ N, such that T (a)un = hn and

‖un‖X ≤ M‖hn‖X ≤ M‖P‖X→X‖sn‖X ≤ M‖P‖X→X . (5.6)
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Since ϕn ∈ H∞, it follows from Lemma 3.2 that ϕn = Pϕn for n ∈ N. Then
using (5.4)–(5.6), (4.1), Lemma 4.2, and Hölder’s inequality (see [1, Ch. 1,
Theorem 2.4]), we get

‖ϕn‖X′

2
≤ |〈ϕn, sn〉| = |〈Pϕn, sn〉| = |〈ϕn, P sn〉| = |〈ϕn, hn〉|
= |〈ϕn, T (a)un〉| = |〈T (a)ϕn, un〉| ≤ ‖T (a)ϕn‖X′‖un‖X

≤ 1
n

‖P‖X′→X′ (1 + ‖a‖L∞) ‖ϕn‖X′M‖P‖X→X ,

and hence

1
2

≤ M

n
‖P‖X→X‖P‖X′→X′ (‖a‖L∞ + 1) for all n ∈ N.

This contradiction shows that T (a) cannot be normally solvable and com-
pletes the proof. �

5.3. The Spectral Inclusion Theorem

Let E be a Banach space. An operator A ∈ B(E) is called Fredholm if

α(A) := dim KerA < +∞, β(A) := dim(X/ Ran A) < +∞.

The integer number IndA := α(A) − β(A) is called the Fredholm index or,
simply, the index of the operator A. The essential spectrum of A ∈ B(E) is
the set

Spece(A;E) := {λ ∈ C : A − λI is not Fredholm on E},

the essential spectral radius is defined by

re(A;E) := sup {|λ| : λ ∈ Spece(A;E)} .

The following theorem is an extension of [3, Theorem 2.30].

Theorem 5.2. Let X be a Banach function space on which the Riesz projection
P is bounded. If a ∈ L∞, then

a(T)e :=
{

λ ∈ C :
1

a − λ
�∈ L∞

}

⊆ Spece(T (a);H[X]) (5.7)

and

‖a‖L∞ ≤ re(T (a);H[X]). (5.8)

Proof. Let λ /∈ Spece(T (a);H[X]). Then T (a) − λI = T (a − λ) is Fredholm
on H[X]. In this case it is normally solvable (see, e.g., [9, Remark IV.2.5 and
Corollary IV.1.13]). By Theorem 1.5, 1/(a−λ) ∈ L∞. Thus λ /∈ a(T)e, which
completes the proof of (5.7). Inequality (5.8) is an immediate consequence of
inclusion (5.7). �
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6. Concluding Remarks

Theorems 3.4, 1.4 and Lemma 5.1 imply the following.

Theorem 6.1. Let X be a Banach function space and a ∈ L∞\{0}. If the
operator P : Xb → X is bounded, then T (a) : H[Xb] → H[Xb] has a trivial
kernel or a dense range.

In general, an analogue of the above result is not true for T (a) : H[X] →
H[X] if X is not separable. In order to illustrate this fact, we need the
definition of the Hardy-Marcinkiewicz spaces H[Lp,∞] built upon the weak
Lp-space Lp,∞ (also called the Marcinkiewicz space).

The distribution function mf of a measurable a.e. finite function f :
T → C is given by

mf (λ) := m({t ∈ T : |f(t)| > λ}), λ ≥ 0.

The non-increasing rearrangement of f is defined by

f∗(x) := inf{λ : mf (λ) ≤ x}, x ≥ 0.

We refer to [1, Ch. 2, Section 1] for properties of distribution functions and
non-increasing rearrangements. For 1 < p < ∞, the Marcinkiewicz space
(or the weak-Lp space) Lp,∞ consists of all measurable a.e. finite functions
f : T → C such that

‖f‖p,∞ := sup
x>0

(

x1/pf∗(x)
)

is finite. Note that

‖f‖p,∞ = sup
λ>0

(

λmf (λ)1/p
)

(6.1)

(see [10, Proposition 1.4.5(16)]). Although ‖ · ‖p,∞ is not a norm, it is equiva-
lent to a norm. More precisely, by [1, Ch. 4, Lemma 4.5], for every measurable
a.e. finite function f : T → C, one has

‖f‖p,∞ ≤ ‖f‖(p,∞) ≤ p

p − 1
‖f‖p,∞,

where

‖f‖(p,∞) := sup
x>0

(

x1/pf∗∗(x)
)

and

f∗∗(x) =
1
x

∫ x

0

f∗(y) dy, x > 0.

In view of [1, Ch. 4, Theorem 4.6], Lp,∞ is a Banach function space with
respect to the norm ‖ · ‖(p,∞). Marcinkiewicz spaces form a very interesting
class of non-separable rearrangement-invariant Banach function spaces (see,
e.g., [1, Ch. 4, Section 4]).

As usual, let C be the Banach space of all continuous functions f : T →
C with the supremum norm.
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Theorem 6.2. ([19, Theorem 2]) Let 1 < p < ∞. Then there exists a function
a ∈ C\{0} depending on p such that a(−1) = 0 and the following equalities
hold for the kernel and the closure of the range of the Toeplitz operator T (a)
acting on the Hardy-Marcinkiewicz space H[Lp,∞]:

dim (KerT (a)) = ∞, dim
(

H[Lp,∞]/ closH[Lp,∞]

(

Ran T (a)
))

= ∞.

The Toeplitz operator constructed in the proof of Theorem 6.2 is not
normally solvable, since a(−1) = 0 (see Theorem 1.5). It would be interesting
to find out whether there exists a normally solvable T (a) : H[X] → H[X]
such that

dim (KerT (a)) > 0, dim
(

H[X]/Ran T (a)
)

> 0.

A normally solvable operator A ∈ B(E) is called semi-Fredholm if

dim KerA < +∞ or dim(X/ Ran A) < +∞.

It follows from Coburn’s lemma that every normally solvable Toeplitz oper-
ator T (a) : Hp → Hp, 1 < p < ∞ is semi-Fredholm. Unfortunately, we do
not know whether the same is true for Toeplitz operators on (non-separable)
abstract Hardy spaces H[X]. The proof of a version of Theorem 1.5 with
“semi-Fredholm” in place of “normally solvable” is somewhat simpler than
that given in Sect. 5.2. Indeed, if a ∈ L∞\{0} is equal to 0 on a set of pos-
itive measure, then using the F. and M. Riesz theorem (see, e.g., [7, Ch. II,
Corollary 4.2]) one can easily prove that KerT (a) = 0. Then it follows from
(a slightly simpler version of) (5.3) that T (a) : H[X] → H[X] is not normally
solvable and hence not semi-Fredholm. If a ∈ L∞\{0} is such that 1

a �∈ L∞,
then it can be approximated in the L∞ norm by functions equal to 0 on
sets of positive measure. So, T (a) : H[X] → H[X] can be approximated in
the operator norm by Toeplitz operators that are not semi-Fredholm, and
hence it cannot be semi-Fredholm (see [23, Ch. I, Theorem 3.9]). Therefore,
if a ∈ L∞\{0}, and T (a) : H[X] → H[X] is semi-Fredholm, then 1

a ∈ L∞.
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Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de
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