
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Tandon, S., Abdul-Rahman, A., & Borgo, R. (2023). Visual Task Performance and Spatial Abilities: An
Investigation of Artists and Mathematicians. In ACM CHI 2023 ACM Digital Library.

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 29. Dec. 2024

https://kclpure.kcl.ac.uk/portal/en/publications/cb236488-7452-4f32-8177-21492b5341bf


Visual Task Performance and Spatial Abilities: An Investigation of
Artists and Mathematicians

Sara Tandon∗
Alfie Abdul-Rahman∗

Rita Borgo∗
King’s College London

London, United Kingdom

ABSTRACT
This study builds on past research to present a domain-specific
empirical investigation of artists and math & computer scientists
on their respective relationships to, perceptions of, and interactions
with data visualization. We conducted a three-phase study utiliz-
ing mixed-methods to investigate performance on visual and text
representations of data between domains. Our findings evidenced
how math & computer scientists are proficient utilizing text rep-
resentations of data while artists benefit more from visual chart
representations. Finally, we present perspectives from artists to
gain an understanding of their approach to visual and mathemat-
ical tasks. Our findings indicate that artists are especially adept
at statistical visual tasks and that development of cognitive skills
could be fostered by individuals to potentially benefit visualization
task performance.

CCS CONCEPTS
• Human-centered computing→ Visualization theory, con-
cepts and paradigms; Empirical studies in visualization; Visu-
alization design and evaluation methods.

KEYWORDS
Human-subjects quantitative studies, mixed-methods, perception,
bar charts, text representation, education, domain-specific, visual
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1 INTRODUCTION
Information visualization marries data properties and visual form;
visualization research often aims to empower audiences to under-
stand and reason with data through accessible and engaging com-
munication [60]. However, complex cognitive activities are at work
decoding visual structure to interact with underlying data [86]. Vi-
sualization research has recently demonstrated that interpretation
and interaction with data visualization is affected by the interplay
of domain background/experiences with cognitive abilities, specifi-
cally spatial visualization [32, 74] (i.e., abilities involving retention,
manipulation, and rotation of visual images [51]).

We build on this past research to dive into two domains with com-
parable, rather than disparate, levels of spatial visualization that are
representative of the marriage of information visualization: math
& computer science and the visual arts. Science and art have a long
history of interwoven development, with both applying mathemat-
ical intuition and creative interpretation in numerous ways [26]. In
the early 20th century, enthusiasm for visualization was supplanted
by the rise of formal quantification and statistical reporting [26] –
data visualization became closely tied to statistics and technological
communication with a decreasing focus on aesthetics that has been
re-introduced to the field in the last few decades [45, 64]. Lack of
interdisciplinary cooperation between mathematics and the arts
contributed to domain silos despite congruent content [5, 9, 76]. We
aim to capitalize on the cognitive similarities and domain expertise
of visual artists and mathematicians and their combined application
to statistical data visualization.

In this paper, we present past research related to spatial visual-
ization in psychology and visualization that motivated us to study
the relationship between these domains and data visualization. We
conducted a three-phase study to meet our aims (see Fig. 1). Phase
1 included established methods of evaluating spatial visualization,
domain motivations, and their combined effect on performance
of common data visualization tasks. In Phase 2, we provide per-
spectives of expert visual artists on their relationship with, and
approach to, visual and mathematical tasks, and an assessment
of data visualization familiarity and preferences. Finally, in Phase
3 we test performance between math & computer scientists and
visual artists in text representations of data to examine how do-
main differences and spatial abilities affect interaction with data in
various forms. The results we collected demonstrate how commu-
nities, with similar spatial visualization ability, perform visual and
text-based tasks given their expertise.

https://doi.org/10.1145/3544548.3580765
https://doi.org/10.1145/3544548.3580765
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2 BACKGROUND
Our investigation builds on research in spatial visualization, psy-
chology, and information visualization. We move beyond exploring
domains with differing capabilities to capitalize on the cognitive
similarities of two domains often held at odds [11, 29, 85]; we aim
to understand if, and how, visual task performance differs between
them.

2.1 Spatial Visualization
Spatial visualization relates directly to the internal process of ma-
nipulation or transformation of a visual stimulus – it allows an indi-
vidual to remain unconfused by varying orientations or rotational
positions in which a spatial object or pattern may be presented and
has measurable outcomes when interacting with external visualiza-
tions [15, 34, 51].

Spatial abilities are considered a key cognitive factor in interpre-
tation of visual information; elevated spatial visualization specifi-
cally can correlate with higher recall, understanding, and increased
task performance around data visualization [32, 40, 74, 77]. High
spatial abilities have been tied to increased performance and recall
of values on line up tests, parallel coordinate plots, tables, and writ-
ten descriptions of data [40, 77, 81]. Speed can also be a dominant
indicator of lower spatial abilities and understanding compared
to accuracy [17, 71, 78, 81]. However, Wenhong [81] noted that
individuals are often unaware of their own cognitive style, but still
prefer visual representations of data.

Additionally, the differing experiences of disciplines around data
visualization will bias and affect performance on visual tasks in
a measurable way [20, 41, 67]. Dasgupta et al. [20] suggest that
domain expert’s performance on visual tasks is similar between
charts regardless of familiarity – this may be because cognitive
abilities influence interactions as much as experience. Hall et al. [32]
and Tandon et al. [74] explore how spatial visualization and domain
experiences come together to explain performance on information
visualization tasks. Hall et al. confirmed spatial visualization and
correlated performance differences amongst Education, Chemistry
and Computer Science disciplines. Tandon et al. further confirmed
spatial visualization, motivations, and visual task performance are
correlated on rotated bar charts between Business, Law & Political
Science, and Math & Computer Science domains.

There are established ties between spatial visualization, domain,
and visualization performance. However, these previously studied
domains have varying levels of spatial visualization – we aim to use
established methods to study a community with increased levels of
spatial visualization and visual task expertise.

2.2 Why Might Artists be Different?
Spatial abilities have often been tested in educational settings as
an indicator of increased performance in STEM subjects [4, 24, 37,
54, 65, 68, 84]. Some have suggested testing and development of
spatial abilities to directly affect student performance on numeracy
and mathematical subjects – noting interpretation of graphics is
fundamental to numeracy skills [46, 59]. However, research also
indicates visual artists display elevated levels of spatial abilities that
are equally imperative to their work [29, 68, 79]. Further, Angelone

et al. [2] demonstrate superiority of quick and accurate visual en-
coding by visual artists over novices – a direct skill involved in
spatial visualization [51]. These studies confirm the development
of visual-spatial skills in visual artists over time but have not ex-
trapolated to studying performance on information visualization
tasks, often involving numeracy.

Research indicates artists pursue creative endeavors due to in-
trinsic (e.g., inner drive, therapeutic benefits, understanding of self)
and extrinsic (e.g., renown, contribution to society) factors [19, 35].
In education systems, arts are presented as an outlet for creative,
imaginative, and emotive expression, while mathematics is stereo-
typically presented as small skill pieces with strong memorization
ability as a prerequisite for learning [5, 19, 39]. These methods can
foster anxieties around both mathematics and creativity, limiting
engagement and full realization of both domains [5, 18]. However,
math and technology experts display increased performance in
data visualization literacy and tasks [47, 74], while visualization
processing requires cognitive skills visual artists use in daily prac-
tice [77, 79]. We set out to compare performance between these
domains as there is too much math in art and art in math to consider
one without the other [5].

3 PHASE 1: VISUAL TASK PERFORMANCE
Inspired by previous work, we chose to use established method-
ologies in information visualization that allowed us to test spatial
visualization, visual task performance, and domain motivations of
visual artists versus mathematicians and computer scientists (MCS).
Neither cognition nor domain motivations alone can fully explain
task performance as individuals approach visuals as whole persons
shaped by their background [32, 74]. We use methods in accordance
with [74] for Phase 1, enabling us to directly compare visual artists’
spatial visualization ability and domain motivations to MCS, while
expanding to implications of how visual artists might perform with
respect to previously studied domains.

3.1 Motivation & Hypothesis
We chose to compare visual artists to MCS as the latter are often
“standard participants” for many studies on task performance and
design choices in visualization research; the field of information
visualization is associated with, created by, and studied by those in
MCS related fields [13, 14, 45, 77]. Additionally, research shows that
MCS out-performs other domains in visual task performance [47,
74]. Meanwhile, research suggests that artists approach problem
solving differently to scientists [11, 35, 85] while exhibiting high
spatial abilities [68, 79]. The modern juxtaposition between the
visual arts and MCS makes artists an interesting group for the
focus of a data visualization study – as visual artists work with
similar, if not identical, mediums to data visualization designers, do
their increased spatial abilities mitigate differences in visual task
performance?

In line with visualization domain-needs research, we believe
these domains’ differing experience around data visualization will
bias and affect performance on visual tasks in a measurable way [20,
41, 67]. We utilized methods from psychology and information vi-
sualization to measure motivational differences around data visu-
alization that might affect visual interaction [28, 74]. As spatial
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Figure 1: Three phases of our research. In the spatial visualization assessment (under Phase 1), the paper is folded and punched
above the line. Participants are given five multiple-choice responses to choose between. Scores are the number answered
correctly out of 10 in 3 minutes.
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Figure 2: Stimuli examples across densities from Phase 1 and Phase 3. The same data was used in Phase 1 and 3 for direct
comparison of text vs chart performance; Phase 3 was conducted ∼5 months after Phase 1 to reduce confounding factors. See
sec 3.2.6, Fig. 3, and Fig. 8 for question examples and supplementary material for complete sets.

visualization is similarly high between MCS and visual artists [79],
differences that arise may be due to domain motivations around
data visualizations. To claim differences in performance correlate
with domain, we ensured a balanced sample from both domains
for statistical integrity. We aim to confirm if spatial visualization
ability is similar between MCS and visual artists and explore how
domain background interacts with spatial visualization to affect
performance in a quantitatively significant way. We explore these
questions by investigating the following hypotheses.

H1: Spatial visualization level will be comparable between
visual artists and MCS. Research has demonstrated sys-
tematic similarities in spatial abilities between visual artists
and MCS [68, 79]. Drawing from these findings, we antici-
pate MCS and visual artists will have similar levels of spatial
visualization.

H2: Artists’ motivations around data visualization will differ
fromMCS given domain differences.Art and information
visualization, though connected, are fundamentally differ-
ent [42]. We anticipate marked differences in motivations
around data visualization between MCS and visual artists
given the domains’ varying levels of interaction, creation,

and consumption of information visualization (i.e., domain
experience).

H3: Task performance (accuracy and time) will differ be-
tween visual artists and MCS according to domain dif-
ferences. High spatial individuals tend to have higher ac-
curacy and reduced response times [32, 77]. However, vi-
sualization research demonstrates that needs, knowledge,
bias, and experience differ by domain and that these fac-
tors can affect performance of tasks and visualization de-
sign [20, 31, 41, 67, 70, 83].We expect to see analogous results,
emphasizing the role of spatial visualization in performance
and use of visualizations. However, we expect domain dif-
ferences will affect performance of visual artists such that
questions involving mathematics will be negatively affected
while performance will be similar on Easy and Medium ques-
tions due to spatial visualization level.

3.2 Methodology
We conducted a two-part online study to address our hypotheses.
The methods described below are congruent to [74] to ensure con-
sonant results of visual artists to MCS and further domains; our
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work can corroborate and increase application of psychologically
grounded methods in information visualization, bringing together
cognition and individual background/experience. Part 1 of the study
consisted of a brief spatial visualization psychometric test, known
as a paper folding or punch test. Part 2 consisted of stimuli and ques-
tions asking individuals to draw conclusions from visualizations. A
short motivation and perception of difficulty assessment followed
Part 2. We intentionally chose methods with familiar data, chart
types, and tasks to increase relevancy and mimic common data visu-
alization interactions for individuals in both domains. We provide
the study structure and stimuli design below (see supplementary
material for complete stimuli set).

3.2.1 Recruitment. Participants were recruited through a research
focused crowdsourcing platform called Prolific [58]. Prolific was
chosen for this study due to its reputation of connecting a pool
of diverse and high-quality participants to researchers around the
world at fair wages. Participants were pre-screened to our meet
our educational and professional requirements, 18 years and older,
and fluent in English. We were able to recruit a balanced sample
of 30 participants in each domain with valid data, for a total of 60
participants (details below). Participants were paid £7.71/hour in
accordance with Prolific’s fair pay policy. The average response
time was 34 minutes and 8s.

3.2.2 Study Format. The online study was created using a Flask
Web App with D3.js for chart generation. A trigger warning was
presented to participants before agreeing to take part in the study
as the data related to case, hospitalization, death, and vaccination
statistics of the COVID-19 pandemic. The trigger warning acknowl-
edged that COVID-19 data might personally affect participants and
they should gauge for themselves if they could interact with the
data to the best of their ability. Additionally, participants were ex-
plicitly told they could leave the study at any time, ending their
participation. No identifiable data was collected, and all data was
stored and maintained on a private server at the author’s institution.

After consent and demographics collection, the study process
consisted of two parts with an additional page of 5-point Likert scale
questions, assessing perceived difficulty and personal motivations
regarding data visualization (see Section 3.2.8). Participants were
asked to confirm readiness to move to the next block between each
step to allow for breaks as needed. Part 1 began with training from
the Kit of Factor Referenced Cognitive Tests [22] on the spatial
visualization assessment – including a sample question participants
had to answer correctly to move forward. Active training for Part
2 consisted of 4 sample questions displaying the various charts
participants would see throughout the study. Additionally, a break
is integrated halfway through Part 2, consisting of a catch question
wherein users were encouraged to take a break, answer with a
specific response, and move on when they were ready. The catch
question was not analyzed (other than ensuring all respondents
answered correctly for quality assurance) and was not included in
response time data analysis.

3.2.3 Screening. Following consent, participants completed 7 de-
mographic questions, collecting information about gender, age,
education history, profession, and countries of origin and influence.
Prolific offers a participant score that is based on the quality of an

individual’s past submissions on their site: our participants had
scores of 97% or higher.

We ensured alignment between profession and education back-
ground to account for any spatial abilities gained during educa-
tion [79]. We gathered data until we achieved balanced samples
with high quality data between visual artists and MCS.

3.2.4 Part 1 Spatial Visualization Assessment. Part 1 consisted of
the spatial visualization assessment from the Kit of Factor Refer-
enced Cognitive Tests [22], a well-established 2D psychometric
assessment [1, 51] largely utilized in previous data visualization
studies evaluating spatial visualization [40, 50, 56, 74]. In line with
evaluation of the assessment, we gathered both the response time
and selected answer for each of the 10 questions. Questions consist
of an image of a paper being folded and hole-punched; participants
must then choose from 5 options what the paper will look like
when unfolded (see Fig. 1 for a sample). The spatial visualization
score is calculated as the number of correct answers out of 10. See
supplementary material for complete set.

3.2.5 Part 2 Stimuli Design. Visual task performance was analyzed
over the three manipulated elements in the stimuli: data density,
chart type, and task difficulty.

Data. The data was inspired by the vast amount of COVID-
19 Pandemic visualizations and dashboards disseminated by or-
ganizations, universities, news outlets, and tech companies since
2020 [3, 33, 52, 73, 82]. We utilized COVID-19 Pandemic data (from
a comprehensive world statistics site [63]) for this study as the
scale of the ongoing global pandemic allowed an assumption of a
basic level of familiarity with the data, regardless of domain, and no
need for training or expert knowledge [7]. The data reflects actual
case, vaccination, hospitalization, and death statistics from March
2020–January 2022 across 95 countries.

The data is displayed across two levels of density to ensure differ-
ing cognitive load: 7 and 14 points. The limit of the span of absolute
judgement and immediate memory sits at about 7 points [53] – this
implies that moving sufficiently beyond 7 data points will increase
cognitive load; thus 14 is the second set size. Across stimuli, data
was ordered alphabetically by country, each displaying a unique
group of countries to reduce familiarity. Conventionally, visual
search studies vary the number of objects, visual targets, and/or
visual distractors present over sub-conditions [23] – we varied the
two set sizes amongst the four chart types and three questions
detailed below, while maintaining the same density for side-by-side
charts.

Chart Types. The stimuli were formed keeping in mind that spa-
tial visualization directly affects ability to compare visual encodings
and layouts quickly and accurately [51], and that the assessment
in Part 1 uses 2D rotated stimuli on a Euclidean plane [22]. Charts
were designed to systematically target spatial rotation over mul-
tiple coordinate systems, clearing out any confounding factors
such that spatial position is the major influence on performance.
These charts were additionally inspired by the common usage of
rotated bar charts of varying densities in COVID-19 pandemic data
dashboards and in health data presentation [3, 33, 44, 52, 73, 82].
Each question displays a vertical bar chart with a spatially rotated
chart side-by-side to assess performance as participants utilize both
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Figure 3: Density 14 charts with question examples: Easy, Medium, and Hard.

charts to respond to a given question. Using two spatially rotated
charts side-by-side simulates the cognitive processes involved in
spatial visualization assessments. Charts utilized in this assessment
are a vertical bar chart paired with a horizontal bar chart (rotated
along Cartesian coordinates), a radial bar chart, or a circular bar
plot (both rotated along polar coordinates - see Fig. 2). We varied
all four chart types amongst the two set sizes and three questions.

3.2.6 Part 2 Task Design. The basic task paradigm used in this
study was a simple conjunctive-visual search process across two
charts and densities. Visual search is a vital element to visualiza-
tion interpretation [6]; simple conjunctive-visual search involves
search over two channels (in this case, two spatially re-arranged
charts with no distinct differences from the target) and increases in
difficulty as object density increases [69, 75]. Conjunctive-search
of two chart types, across two levels of density, is paired with three
3-alternative forced-choice multiple-choice questions increasing
in difficulty to evaluate performance over: questions were cate-
gorized as Easy, Medium, and Hard. The three response options
were randomized across all questions. Fig. 3 shows three examples
of questions. Supplementary material provides a comprehensive
overview of all the combinations.

Easy Question: The easy question displays two charts with
case numbers from the same set of countries across two months.
Participants are asked to search for a given country in the first chart
and compare case numbers of that country to the second chart to
respond if cases were higher, lower, or the same as the previous
month. This question is classified as easy, as it consists of a search
for the same singular target variable across both displayed charts.
Easy question example: In Bulgaria, are cases higher, lower, or the
same in September compared to the previous month? Easy Responses:
Cases are higher, cases are lower, cases are the same.

Medium Question: The medium question displays two charts,
the left with death rates, the right with hospitalization rates of the
same set of countries on a given date. Participants are asked to
search for the three countries with the highest number of deaths in
the first chart and responded with which of the three countries had
the highest hospitalizations from the second chart. This question
is classified as medium as it increases the variables for search and
comparison to three targets across both charts.
Medium question example: Of the three countries with the highest
number of deaths, which has the highest hospitalizations? Medium re-
sponses consisted of the correct response, one of the countries with

the highest number of deaths, but not the highest hospitalizations,
and one random country (see Fig. 3).

Hard Question: The hard question displays two charts, the left
with the raw number (in millions) of vaccinated people, the right
with the raw population (in millions) of the same set of countries on
a given date. In this question, participants are required to estimate
the vaccinated portion of people in a target country. This question is
classified as hard as after search for one target variable across charts,
participants are asked to perform a mathematical computation to
estimate a derived variable.
Hard question example: Approximately what portion of people are
vaccinated in Brazil? Hard responses: less than 1

3 , between
1
3 − 2

3 ,
more than 2

3 .

3.2.7 Part 2 Measures. Part 2 had a total of 42 multiple-choice
questions: four possible chart pairings, two possible layouts (e.g.,
Vertical or Radial chart on either right or left), two levels of data
density, with three question types/difficulty levels. To assess perfor-
mance, we recorded the selected answer and the response time (RT)
of each question. Stimuli were shown randomly to participants to
minimize learning effects.

3.2.8 Data Visualization Motivations Assessment. To gain a com-
plete picture of how visual artists and MCS approach and think
about data visualization, we included an assessment from [74],
grounded in prominent theories of academic motivation, that en-
compasses many of the motivational factors found to influence per-
formance in STEM [4, 28]. We expect domain differences in motiva-
tion due to differing experiences and expectations around data visu-
alization and mathematics between visual artists and MCS [11, 26].
The assessment includes 5 questions targeting various motivations
and are rated by participants on a 5-point Likert scale (see Table 1
and supplementary material).

3.2.9 Participants. We successfully gathered 30 participants with
reliable data in each target domain for 60 total participants. We
followed a strict rule of balanced samples across groups to sup-
port our between subject design. The demographic statistics as a
whole and across each domain were as follows. Gender participa-
tion overall: 53% male, 47% female. MCS: 77% male, 23% female.
Visual artists: 30% male, 60% female. These are consistent with
known educational domain gender differences across Europe [21].
Additionally, research demonstrates high spatial females are more
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Figure 4: H1: Spatial visualization per domain, with the CI of means (left) and of mean differences (right). Error bars represent
95% Bootstrap confidence intervals.

likely to pursue artistic domains while high spatial males are more
likely to pursue STEM education [57, 79]. The average age (± stan-
dard deviation) of all participants was 24 ± 5, 23 ± 4 for MCS, and
25 ± 6 for visual artists.

3.3 Results
We analyzed differences in performance and spatial visualization
using sample means, hypothesis (p-value) testing, and 95% con-
fidence intervals. Confidence intervals (CIs) were constructed in
Python using bias-corrected and accelerated bootstrapping (BCa)
with 5000 iterations. We utilized BCa to create confidence intervals
along with hypothesis testing using the Monte Carlo permutation
test, Welch’s t test, Student’s t test, and Mann-Whitney U test to
obtain multiple test statistics and p-values for further validation as
recommended in recent reviews [30, 38, 55, 61]. Below we report
on our high-level findings; detailed means, test statistics, p-values,
and stepwise analysis are reported in the supplementary material.

3.3.1 H1: Spatial Visualization. We hypothesized that spatial visu-
alization ability would be comparable between visual artists and
MCS. The spatial visualization score (out of 10) for MCS was 5.33
while visual artists had a mean score of 5.03 – there is no statistical
evidence of difference between them with 𝑝 > 0.5. See Fig. 4.

⇒ We confirmed H1, spatial visualization is analogous between
visual artists and MCS such that there is no statistical detection
of difference between them. This finding is consistent with previ-
ous research into spatial abilities of these domains [68, 79]. As our
psychometric tests align with [74], these scores demonstrate visual
artists and MCS have increased spatial visualization compared with
average abilities and to other domains. This furthers previous re-
search demonstrating spatial abilities are elevated and advanced by
involvement in both STEM and the visual arts [2].

3.3.2 H2: Motivations. The final tasks of the study were to rate
perceived difficulty of each section along with rating personal mo-
tivations regarding data visualization. We hypothesized that do-
main experience would result in motivational differences around
interaction with data visualization. Each motivation response cor-
responded to a score from 1-4, rating agreement with the statement.
The statement measuring anxiety (I become anxious when math is
involved in data visualization) was reverse-scored so that higher
scores correspond to lower anxiety – thus, we refer to this con-
struct as low math anxiety. See Table 1 for motivation ratings and
significant differences.

MCS has significantly higher overall motivation scores compared
to visual artists. Specifically, MCS outranked visual artists in ex-
trinsic motivation, self-efficacy, and had lower math anxiety than
artists. This indicates both data and information visualization are

Table 1: Motivation scores and significant differences be-
tween MCS and Artists.

Motivation Mean Score Significant Differences
Overall

(out of 20)
MCS - 12
Artists - 9.23 MCS>Artists: CI(1, 4), 𝑝 < 0.001

Intrinsic
(out of 4)

Spend my own time learning
about data visualization

MCS - 1.77
Artists - 1.60 None

Extrinsic
(out of 4)

My career or studies
involve data visualization

MCS - 2.57
Artists - 1.57 MCS>Artists: CI(0.6, 1), 𝑝 < 0.001)

Self-Determination
(out of 4)

I put effort into learning
about data visualization

MCS - 2.23
Artists - 1.97 None

Self-Efficacy
(out of 4)

I am confident I will perform
well on data visualization tasks

MCS - 2.80
Artists - 2.20 MCS>Artists: CI(0.2, 1), 𝑝 < 0.01

Low Math Anxiety
(out of 4)

Note: higher score
indicates lower anxiety

MCS - 2.63
Artists - 1.90 MCS>Artists: CI(0.2, 1), 𝑝 < 0.05

more prevalent in MCS than in the visual arts, thus there may be a
higher value placed on accuracy in visualization tasks. Further, the
increased confidence of MCS in visualization andmath performance
may also lead to increased performance [16, 27].

⇒Our results partially confirmH2 that domain differences affect
motivations around interacting with data visualization. As MCS
interacts with data visualization and mathematics more often than
visual artists and have increased confidence, we might expect to see
increased performance in statistical visualization tasks by MCS [8,
11, 47]. However, current research demonstrates that artists have
high levels of creativity, openness to new experiences, extroversion,
and problem solving skills compared to non-artists [11, 35], all of
which lead to increased performance in scientific tasks [2, 29, 87] –
not to mention artists’ elevated levels of spatial visualization.

3.3.3 H3: Performance by Domain. Cognition interacts with do-
main motivations and experiences such that performance between
domains is measurable [32, 74]. We hypothesized that performance
(accuracy and response time) would differ between disciplines, with
MCS performing better on Hard questions involving math compu-
tation due to domain differences.

Looking at overall mean differences (Fig. 5), we found that vi-
sual artists were faster than MCS by 4.1s (CI(2, 6), 𝑝 < 0.001). No
difference was detected in the overall mean accuracy between MCS
(89%) and visual artists (87%). We detail results of our analysis of
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Figure 5: H3: Overall performance means (left) and mean differences (right), for Accuracy and Response Time. Time in seconds.
Stars indicate evidence of significant differences.

(a) Vertical Bars Performance Differences (b) Horizontal Bars Performance Differences

(c) Radial Bars Performance Differences (d) Circular Bar Plot Performance Differences

Figure 6: H3: Performance means (left) and mean differences (right), for Accuracy and Response Time. Time in seconds.

accuracy and RT across three variables: density, chart type, and
question difficulty.

By Density:
Response Time: For charts of density 7, there is evidence that

mean times were faster for visual artists compared to MCS by 3.8s
(CI(0.9, 6), 𝑝 < 0.001). For charts of density 14, visual artists were
4.4s (CI(2, 7), 𝑝 < 0.001) faster than MCS.

Accuracy: There is no evidence of mean accuracy differences
across densities between visual artists and MCS.

By Chart Type (Fig. 6):
Response Time: There is evidence that mean times were 2.9s faster

(CI(0.2, 6),𝑝 < 0.05) for visual artists than MCS for Vertical charts.
Looking at Radial charts, visual artists were 5.9s faster (CI(3, 9),𝑝 <

0.001) than MCS. Last, for Circular Bar Plots, visual artists were
5.1s faster (CI(2, 9),𝑝 < 0.001) than MCS.

Further, within domains, there was an increase in time between
Cartesian and polar coordinate charts, with visual artists incre-
menting by a smaller amount than MCS: visual artists increased

by 2.8s (CI(0.3, 4), 𝑝 < 0.05) and MCS increased by 6.0s (CI(4, 8),
𝑝 < 0.001).

Accuracy: There is no evidence of mean accuracy differences
across chart types between visual artists and MCS. Within do-
mains accuracy means were lower for polar coordinate plots when
compared to Cartesian coordinate charts: visual artists accuracy
dropped by 10.4% (CI(5, 16), 𝑝 < 0.001) and MCS accuracy dropped
by 7.5% (CI(3, 12), 𝑝 < 0.01).

By Question Difficulty:
Response Time: Interestingly, for Hard questions alone, there is

strong evidence that visual artists were faster than MCS by 6.6s
(CI(4, 10), 𝑝 < 0.001).

Accuracy: There is no evidence of mean accuracy differences
across question difficulty between visual artists and MCS.

⇒ Our results partially confirm H3. We did find differences in
task performance between visual artists and MCS, but not what
was hypothesized. We found that visual artists were faster than
MCS while remaining equally accurate. According to Tandon et
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al. [74], MCS is generally faster than business professionals and
more accurate than law professionals – from our results, it follows
that visual artists might also be faster and more accurate than those
domains as well. As spatial visualization is similar between MCS
and artists, similar performance is expected, however the decreased
response times for artists indicates cognitive abilities do interact
with domain experiences to affect performance.

4 PHASE 2: EXPERT ARTIST INTERVIEWS
The results from Phase 1 indicated visual artists may have increased
performance compared toMCS despite lower motivations surround-
ing data visualization. In this phase, we move beyond previous
methods analogous to [74] to explore how expert visual artists
might account for this difference and their perspectives on visual
artists’ relationship to data visualization.

4.1 Participants
To understand the dichotomy between motivations and perfor-
mance, we conducted expert interviews with 5 full-time visual
artists to gain perspective and feedback on our outcomes. The
artists came from the extended network of the first author – their
backgrounds included a range of art experience with education and
established careers in art and design.

4.2 Procedure
The relevant ethics approvals were obtained and all participants
signed consent forms prior to any data collection. The interview
protocol was developed by the first author and the interview guide
centred around perceptions and familiarity with data visualization,
comparison of visual versusmathematical tasks, and initial thoughts
on findings from Phase 1. The interviews had open-ended questions
followed by an online survey hosted on Qualtrics to understand
familiarity level and preference of common data visualization rep-
resentations. Interviews were conducted by the first author over
Microsoft Teams and in person. Interviews lasted 28 minutes on
average, including the online survey.

4.2.1 Online Survey. The online survey had three parts. The first
part asked experts to select the most familiar basic visualization
sketches from [62] (see Fig. 7). Experts were asked to select 2 out
of 4 sets of 10 randomized sketches then rank their selected 8 in or-
der of familiarity. The second part consisted of ranking preference,
perception of accuracy, and impact of three examples of data visual-
ization; the three visualizations showed different representations of
the same data from a (1) basic black-and-white representation, (2) a
design with additional colors and icons, and (3) a hand drawn visual
designed by [12]. The last part consisted of five 5-point Likert scale
questions about perspective on hand-drawn versus computer gen-
erated visualizations and math anxiety. See supplementary material
for complete interview material.

4.3 Data Analysis
All interview recordings were transcribed by Microsoft Teams. The
interview transcripts and recordings were analyzed using an in-
ductive approach. This process produced three defined themes
identified as the most relevant to gain expert perspective on the

outcomes of Phase 1: defining data visualization, artists’ perception
of mathematics, and preference for visual tasks.

4.4 Findings
In this section we discuss the key themes that emerged from our
analysis. To protect anonymity, participants are referred to by using
‘A’ for artist, followed by a participant number. Paraphrasing is
indicated by words surrounded by brackets and ellipses. For more
quotes by theme see the supplementary material.

4.4.1 Defining Data Visualization. Without prompting on inter-
view content, experts were asked to describe what data visualization
means to them. 4 out of 5 of them mentioned “pie chart” and “charts
and graphs.” When asked if anything different comes to mind for
information visualization, a dichotomy between quantitative data
and qualitative information began to arise.

“I think there are different ways to visualize informa-
tion and data. I think it’s different for qualitative and
quantitative data. Qualitative data can get more into
information visualization where you’re visualizing a
quote or something like that, that’s information. But
data to me is hard facts rooted in quantitative analysis.”
[A2]

Moving forward, experts were given, “the representation of in-
formation in the form of a chart, diagram, picture, etc.” as a working
definition of data visualization. Experts mentioned interacting with
data visualization daily to weekly in mediums such as newspapers,
social media, financial contexts, and online content. In the online
survey, bar charts, across all representations (stacked bar, multi-set
bar, histogram, etc.) were by far the most familiar followed by a pie
and donut chart.

Experts exhibited a preference for “intriciate” visuals and visu-
alizations with “color and movement” [A2, A3] rather than hand-
drawn or black-and-white data visualizations. In the online portion,
the majority indicated preference toward hand-drawn visualiza-
tions for impact, but traditional computer-generated visualizations
for drawing conclusions.

“I find the graphics so harsh, but I didn’t like the pic-
tograms either. It’s great art, but I’m not going to trust
the data...the softening of the visual in the circular for-
mat was much more appealing to me.” [A2]

This sentiment is reflected in research on human aesthetic pref-
erence for circular shapes [10]. Experts additionally affirmed that
they associate traditional data visualizations to “math,” “tech,” and
“complex data” [A1, A2, A4, A5].

“I don’t think you can get away from thinking about
math with data visualization – but I would much rather
see it with shapes and color than with written words.”
[A3]

4.4.2 Perception of Mathematics. When asked how they personally
feel about mathematical tasks, 4 out of 5 artists presented with a
negative physical reaction: leaning away, cringing, shrinking. All
experts indicated negative emotions associated with mathematical
tasks and their preference for visual tasks.
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(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

Figure 7: 4 sets of 10 common data visualization charts designed by [62] shown to experts. Kept black on a grey background to
reduce confounding variables.

“I would say I’m not good at math. I would choose a
visual task – definitely.” [A2]
“I would choose a visual task for sure, math I would stay
away from completely if I can.” [A3]
“If there weren’t a visual involved, I would create a vi-
sual. 100%. Every time.” [A4]

Experts pointed to the causes of math anxiety in themselves
and their community likely stem from childhood education, social
constructs, and preconceived societal notions regarding artists and
math. 3 out of the 5 experts mentioned they enjoyed geometry in
school as it was “rooted in visuals” or had a “visual element,” [A2,
A3, A4] while being highly averse to mathematics in general.

“I think when I was in school, it was you were ‘one or the
other’. You’re either really good at math or you’re the
weird art kid. An artist can’t be good at math – that’s
how it was for me.” [A2]
“I think we’ve always had this stigma that we’re not
good at school or we’re not good at math and there’s no
hope for us.” [A1]
“It probably goes back to school – doing math without
any charts or graphs or visualization attached to it. If
you take that piece away, it brings that anxiety back.
It’s a historical anxiety attached to math.” [A3]

However, when prompted that visual artists performed with
quicker response times and equal accuracy to MCS, including tasks
with mathematical computation, experts found it “surprising” and
“encouraging” [A1,A4,A5]. They additionally acknowledged math

and visualization play a role in their daily work. They noted that
due to the nature of their work, their instinct isn’t to approach tasks
thinking about math.

“I think we have to use maths a lot, but it’s presented
to us not as a ‘maths test,’ which is very anxiety in-
ducing. It’s presented in a visual way – so you’ve got
measurements that go with your drawings that respond
to scale and things like that. The way we’re presented
with maths is that we need it to achieve a design.” [A1]
“Our medium is hands on, or even with graphics let’s
say, you’re still incredibly hands on even if your tool is a
mouse or computer or whatever. And you’re integrating
so many different variables, color, scale, proportion, all
those principles and elements of design, so you’re in
your comfort zone of what you’re doing and we’re not
thinking about it like math.” [A4]

4.4.3 Preference for Visual Tasks. Experts noted that in order to
complete a mathematical task, their first instinct would be to manip-
ulate an image or material rather than perform the calculations and
that their "confidence would increase" if there were a visual involved
in a mathematical task [A1,A3].

“I’m just used to visualizing everything in my head
and thinking of it in different ways, and going through
things quite quickly...I would estimate the line lengths
rather than the math computation.” [A5]
“I think that there’s a lot of problem solving that goes into
our daily work that’s different from a business person
or someone in finance that might be constrained by
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numbers or words. I think as a designer or artist, there’s
a multitude of ways in which something can be done. To
be able to compare and contrast [two elements] quickly
is something we do on a daily basis – which one explains
or does the job better? Visually, it’s easier for me to be
able to compare two things and the mass that it takes
up. I might not be able to tell you the mathematical
equation or how that came up, but I think it’s a little
more intuitive to artists and designers – being able to
spatially layout things. We do it on a daily basis.” [A2]

Additionally, they spoke to approachability and preference of
visuals over text in data and math representations.

“if we include visual and physicalization instead of just
text that can make math education more approachable
for many people” [A4]
“If you have too much copy or text, it’s probably not
going to get absorbed.” [A3]

Artists problem-solve in unique ways and practice spatial ma-
nipulation as part of their daily work – this practice appears to
increase their effectiveness in data visualization tasks regardless of
their perception of mathematics and data visualization. Our expert’s
perspectives are substantiated by psychology research demonstrat-
ing visual artists have higher levels of creative problem-solving
skills (even in scientific fields) and display quick and accurate visual
encoding [2, 35].

“We just approach things so differently. We see the
world differently. What we’re comfortable with is taking
things and rearranging things in our mind to get to an
answer...we can take shapes and change them and move
things around in our head. We do it everyday and kind
of all the time” [A4]
“In our work, and even if you’ve gone to art school, you’re
being asked to think about things upside down or see
things differently and physically do it. Your brain is be-
ing trained with your eyes and your hand to constantly
flex elements.” [A3]

5 PHASE 3: TEXT REPRESENTATION
PERFORMANCE

Inspired by findings from interviews with expert artists, we set out
to empirically test whether artists perform better using a visual
chart versus text representations of data and how they compare to
MCS.

5.1 Motivation & Hypothesis
Increased spatial visualization has been connected to increased per-
formance in mathematics [4, 24, 37, 54, 65, 68, 84], however artists
present elevated levels of spatial visualization with a preference
for visual tasks where mathematics is involved. How then is visual
artists’ performance affected by text representations of data versus
MCS?

Text-representations of data are often studied in information
visualization research [40, 48, 49, 72] and are often found helpful for
low-level tasks; however, charts and graphs increase understanding,
accuracy, and retention while often reducing response times for

complex tasks [40, 48, 49]. However, these studies do not focus on
performance between educational and professional domains. We
aim to evaluate how domain background and spatial visualization
level affect performance on text vs graphical representations of
data.

To claim differences in performance on text versus visuals, we
tested 10 visual artists and 10 MCS out of the original 30 from each
domain to facilitate within- and between-subjects analysis. We aim
to evaluate if visual artists are more adept to visual representations
of data versus text representations and how performance compares
to MCS, given similar levels of spatial visualization, by investigating
the following hypotheses.
H1: Between groups, performance (accuracy and time) on

text representations of data will differ, with MCS out-
performing visual artists. Given MCS domain expertise,
we expect MCS to have increased performance on text con-
ditions.

H2 (a): Within-groups, visual artists and MCS performance
(accuracy and time) will differ on chart versus text con-
ditions. Research has demonstrated that for high task diffi-
culty and data complexity, graphic visualization increases
performance, while tables are often faster for ’look up’ tasks [49,
80]. Thus, we expect differing performance within domains
on charts versus text, especially depending on task difficulty.

H2 (b): Visual artists will have higher levels of increased per-
formance (accuracy and time) utilizing charts when
compared to MCS. Following H2 (a), we anticipate visual
artists will have higher levels of increased performance
on visuals versus text compared to MCS given artists’ self-
reported preference for visual tasks. Further, MCS may be
more adept at text representations than visual artists leading
their performance differences to be smaller.

5.2 Methodology
To address the hypotheses, and for direct comparison from text to
chart conditions, we extrapolated methods from Phase 1 to create
a text version of the original study for Phase 3.

To maintain consistency in fatigue and experience, Part 1 of this
study consisted of the same spatial visualization psychometric test
from Phase 1. Part 2 consisted of text conditions of a subset of the
same data and questions from Phase 1. We discuss study structure
and stimuli below.

5.2.1 Recruitment. To ensure balanced, timely, and high-quality
data, we opened the text study to 10 visual artists and 10 MCS of
the original 30 from each discipline on Prolific. We followed a strict
rule of balanced samples across groups to support our between and
within subject design. The average response time was 20 minutes
and 28s, resulting in an average pay of £2.70 per participant. We
collected data 4-6 months after Phase 1 to ensure details of data
would not be a confounding factor.

5.2.2 Study Format. The two-part online study was created using
the same FlaskWeb App to ensure consistent environment between
Phase 1 and Phase 3. This included consent, training, and the same
trigger warning from Phase 1. No identifiable data was collected,
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(a) Easy

(b) Medium

(c) Hard

Figure 8: (a) Easy question with a paragraph representation
on the left and list on the right of density 14, (b) Medium
question with two paragraphs of density 7, and (c) Hard ques-
tion with two lists of density 14.

and all data was stored and maintained on a private server at the
authors’ institution.

Part 1 of this study was replicated from Phase 1. Active training
for Part 2 consisted of 4 sample questions displaying the various

text conditions participants would see throughout the study. Ad-
ditionally, we decided to integrate a break halfway through Part
2 to remain consistent with Phase 1. The catch question used in
the break was not analyzed (other than ensuring all respondents
answered correctly for quality assurance) and was not included in
response time data analysis.

5.2.3 Screening. As stated, participants consisted of a subset of
participants from Phase 1. Thus, their education and professions
aligned and had already passed our data standards in Phase 1.

5.2.4 Part 2 Text-Stimuli Design. We mirrored Phase 1 and manip-
ulated the same three elements to analyze performance over: data
density, text condition, and task difficulty. The data consisted of
the same COVID-19 Pandemic data with the same data points as
the graphic charts from Phase 1. Additionally, we varied density
between 7 and 14 points as in Phase 1. Across stimuli, the data
was ordered alphabetically by country. We varied the two set sizes
amongst the two text conditions and three questions detailed in
Phase 1 (sec. 3.2.6).

Text Conditions. To mirror conditions from Phase 1, we created
two text conditions that draw on representations of data and math-
ematical word problems. We chose to display data in a list/tabular
representation and a written paragraph. We varied the two text
conditions amongst the two set sizes and three questions (see Fig.
8) and ensured each appeared on the left and right when presented
in conjunction. See supplementary material for complete stimuli
set.

5.2.5 Part 2 Tasks. We used the same 3-alternative forced-choice
multiple-choice questions that required use of two text conditions
across the three levels of difficulty. See Phase 1 methodology (sec.
3.2.6 and Fig. 8 for question examples).

5.2.6 Part 2 Measures. Two possible text conditions, four possi-
ble layouts (e.g., list or paragraph together or in combination on
either right or left), two levels of data density, with three question
types/difficulty levels made for a total of 24 multiple-choice ques-
tions. We recorded the same measures as Phase 1 – the selected
answer and the response time (RT) of each question. Stimuli were
shown randomly to participants to minimize learning effects.

5.3 Results
We analyzed differences in performance using the same methods
as in Phase 1, sec 3.3: confidence intervals and hypothesis testing
with BCa. We ran analysis between visual artists and MCS on the
20 participants who saw the text conditions. To maintain statistical
integrity of balanced samples and direct comparison of performance
on charts versus text, we ran analysis of the 20 participants versus
themselves over conditions. Below we report on our high-level
findings; detailed statistics are reported in supplementary material.

5.3.1 H1: Text Performance Between Groups. We hypothesized that
performance (accuracy and time) would differ between disciplines
with MCS outperforming visual artists due to domain differences.

We found almost no statistically significant differences in per-
formance between MCS and visual artists. In fact, the only minor
difference we detected was that visual artists were faster than MCS
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Figure 9: H2(b): Visual artists’ performance means (left) and mean differences (right) for text and chart conditions. Time in
seconds. Stars indicate evidence of significant differences.

Figure 10: H2(b): MCS performance means (left) and mean differences (right) for text and chart conditions. Time in seconds.
Stars indicate evidence of significant differences.

by 5.2s (CI(0, 12), 𝑝 < 0.1) where two lists were displayed side-by-
side. We did find that MCS had the longest response time on the
Medium task question of density 14 with a paragraph and a list
text combination, while visual artists took the longest on the Hard
question of density 14 with a paragraph and a list text combination.
This is in contrast with the longest response time for the chart rep-
resentations being the same for both domains: the Medium question
with a Radial chart of density 14. Together, this indicates that vi-
sual artists might spend more time on tasks involving mathematics
compared to MCS in text conditions at some level.

⇒ We did not find sufficient evidence to support H1 that MCS
would outperform visual artists on text conditions. The text ver-
sions of Phase 1 did not elicit differences in performance between
domains; the tasks in this study may not be to the level of complex-
ity such that MCS would outperform visual artists due to domain
expertise. However, we detected a very small difference (𝑝 < 0.1) in
perception of difficulty of Part 2 between visual artists and MCS. Vi-
sual artists rated Part 2 (out of 4) 2.2/4 on average, while MCS rated
it 1.4/4 (CI(0, 1.1)). This indicates that though visual artists perform

just as well as MCS, they function with a higher level of perceived
difficulty in text representations of data. Additionally, there may
be a time/error trade for MCS as higher domain motivations may
lead to a higher value placed on accuracy [32, 74].

5.3.2 H2 (a) and (b): Text vs Chart Performance. We hypothesized
that both domains would display different levels of performance
(accuracy and time) on chart conditions versus text conditions,
especially between question difficulty. Additionally, we expected
visual artists to have increased performance differences on chart
versus text conditions.

Looking at overall mean differences, we found that MCS was
faster in text conditions than charts by 3.7s (CI(1, 7), 𝑝 < 0.05) while
visual artists had no difference in response times. We detected no
significant differences in overall accuracy between text and chart
conditions within each group.

By Density:
Response Time: Within MCS, for stimuli of density 7, there is

evidence that mean times were faster for text conditions compared
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to charts by 4.3s (CI(1, 8), 𝑝 < 0.05). There were no RT differences
detected within visual artists.

Accuracy: There is only slight evidence that for stimuli of density
7, visual artists’ accuracy dropped in the text conditions by 7.6%
(CI(0, 15), 𝑝 < 0.1) compared to charts. There was no evidence of
accuracy differences within MCS.

By Chart Type & Text Condition: We tested Cartesian (Verti-
cal and Horizontal) and polar (Radial and Circular Bar Plot) chart
conditions versus list and paragraph text conditions. See Figs. 9
and 10 for visual artists and MCS performance on chart versus text
conditions.

Response Time: Within MCS, there is evidence that mean times
were 7.3s faster (CI(0, 12), 𝑝 < 0.05) for list text versus polar charts.
Similarly, within visual artists, mean times were 5.8s faster (CI(2, 9),
𝑝 < 0.001) for list text versus polar charts. However, for visual
artists mean times were 5.2s faster (CI(1, 10), 𝑝 < 0.05) using Carte-
sian charts versus paragraph text.

Accuracy: Within visual artists, there is evidence that accuracy
means were higher for Cartesian charts versus paragraph text by
10.6% (CI(1, 23), 𝑝 < 0.05). There is no evidence of accuracy differ-
ences within MCS.

By Question Difficulty:
Response Time: Within MCS, for Easy questions, there is strong

evidence that text conditionswere faster than charts by 8.3s (CI(6, 12),
𝑝 < 0.001). However, there is evidence that chart conditions were
faster than text conditions for Medium questions by 4.3s (CI(0, 10),
𝑝 < 0.01) and for Hard questions by 7.0s (CI(2, 12), 𝑝 < 0.01).

Within visual artists there is also strong evidence that text con-
ditions were faster than charts by 4.5s for Easy questions (CI(3, 6),
𝑝 < 0.001). However, there is also strong evidence that chart con-
ditions were faster than text conditions for Medium questions by
7.4s (CI(4, 10), 𝑝 < 0.001).

Accuracy: There is limited evidence that within both MCS and
visual artists, accuracy may increase for Medium questions alone
using chart conditions versus text; MCS accuracy increased by
10.3% (CI(0, 24), 𝑝 < 0.1) and visual artists accuracy increased by
7.5% (CI(0, 17), 𝑝 < 0.1) using chart conditions.

⇒ Our results partially support H2 (a) and (b) that performance
(accuracy and time) will differ within groups between chart and
text conditions under certain conditions. MCS were generally faster
on text conditions overall when compared to chart conditions while
maintaining similar levels of accuracy across both (Fig. 10) – specif-
ically in low density and low difficulty questions (H2(a)). Both
visual artists and MCS were faster using list text representations of
data compared to polar charts. However, visual artists had lower
accuracy using text conditions across density 7 charts and when
comparing paragraph text to Cartesian charts (Fig. 9). Additionally,
visual artists took the longest on a Hard question involving math
computation under text conditions, while they took the longest on
a Medium question under chart conditions. These findings are in
line with visualization and perception research [49, 80] demonstrat-
ing that tables are often fastest for data look up, but performance
increases on chart representations as task difficulty increases. They
also demonstrate that under certain conditions, visual artists per-
form better on charts compared to text than MCS who have slightly

reduced speed using text (H2(b)). These findings and implications
are further discussed below.

6 DISCUSSION
Our results confirm and build upon research in information visu-
alization that both spatial visualization abilities and domain expe-
rience influence use of data visualization [32, 74]. Due to similar
levels of spatial visualization in visual artists and MCS but disparate
levels of mathematics and data interaction, we extended research
to run a thorough comparative investigation on statistical data vi-
sualization task performance of visual artists versus MCS. We built
upon established methodology in Information Visualization, aimed
at gender and global diversity, gained perspective from experts on
our findings, and directly compared performance of chart versus
text representations of data between domains. We found that vi-
sual artists perform uniquely well on data visualization tasks using
charts versus text, regardless of lower domain motivations, due to
expertise and increased cognition around the visual medium.

Visual Artists, MCS, and Data Visualization. We began by com-
paring visual artists’ performance on common data visualization
and tasks to MCS using established methods from [74] for increased
applications, comparability, and extrapolation to further domains.
Our Phase 1 findings demonstrate that even with similar levels of
spatial visualization, visual artists are faster at visualization tasks
than MCS across data density, chart type, and in Hard tasks while
maintaining similar levels of accuracy. While we hypothesized
there would be performance differences, we expected MCS to have
higher performance on tasks involving mathematical computation
given domain expertise and creation/consumption of data visual-
ization [13, 26, 32, 47]. However, our findings demonstrate visual
artists are highly proficient at data visualization tasks regardless of
low reported experiences with data visualization.

This prompted us to seek perspectives and understanding from
expert visual artists on elevated performance of artists on data visu-
alization tasks (Phase 2). These interviews demonstrated that visual
artists are uniquely skilled at spatial manipulation and find visual
tasks comfortable. Visual manipulation is part of the daily practice
of visual artists, proving them deft at data visualization tasks in-
volving spatial visualization abilities regardless of any numeracy
or mathematical computation involved. Experts noted this may be
due to visual artists’ skill and preference of spatial manipulation
over rote math computation.

Conversations with experts provoked us to empirically test if
visual graphics increase performance of artists compared to text
conditions (Phase 3). We tested our same respondents on text ver-
sions of the data and questions from Phase 1 for direct comparison.
We did not find performance differences between visual artists and
MCS on text conditions (likely due to the nature of our tasks) but
did detect some variationswithin domains on performance between
text and chart conditions. We detected that MCS has slightly higher
performance on text conditions compared to chart conditions –
this finding comes as no surprise given MCS domain expertise in
mathematics. However, we found that chart conditions are helpful
as task difficulty increases for both domains. Additionally, visual
artists have increased performance utilizing Cartesian charts ver-
sus paragraph text representations. These findings shed light on
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the cognitive similarities and skills utilized by visual artists and
MCS [5]; they indicate visual artists are more adept at using visual
chart representations of data compared to text and compared to
MCS professionals.

Our results imply elevated spatial visualization abilities might
mitigate performance differences on visual tasks where domain
experiences are low around data visualization. Further, this work
demonstrates that exposure and daily practice of spatial manipula-
tion increases abilities and performance on statistical visual tasks, in
line with cognitive abilities research [36, 46, 59]. Tandon et al. [74]
indicate increased domain motivations around data visualization
task performance could make up for spatial visualization deficits.
By studying disciplines with similar levels of spatial visualization
and varying domain expertise, we found the reciprocal to also be
true – increased spatial visualization levels could make up for low
motivations: domain experience and cognitive abilities should not
be taken separately, but they interact to affect performance of indi-
viduals [32, 74].

Implications on Visual Artists and STEM. Our work illustrates
where word problems or paragraphs are offered as numerical rep-
resentations, visual artists, those with high spatial abilities, and/or
visual task preferences might benefit in timing and accuracy when
basic visual mediums (i.e., graphical charts) are implemented. The
fact that visual artists exhibit elevated performance on data visual-
ization tasks with low domain experience and motivations should
be compelling to the visualization and education communities. It
might be important for visualization to play a significant role in
math education as increased graphic visualization andmanipulation
has potential to decrease anxieties around mathematics and creativ-
ity – both having impacts on student participation and performance
in visual arts and STEM subjects [5, 18]. Art-science collaborations
prove beneficial, empowering, and developmental to both commu-
nities [11]; the reach and impact of data and visualization could be
expanded as communities and individuals with visual manipulation
skills are empowered and included in creating and consuming data
visualization [45]. Our research highlights how data visualization
can empower not only an entire community but could encourage
students toward participation in both STEM and visual arts without
preconceived notions of performance in either domain.

6.1 Outlook and Future Work
Though we attempted to mitigate such factors, it is important to
note that other variables can influence visualization task perfor-
mance such as domain knowledge, representational fluency, visual
familiarity, emotional bias, or demographic differences [25, 32, 41,
43, 79]; the factors that create whole persons are complex and none
alone can explain differences in visual task performance. Addition-
ally, emotional response to COVID-19 data could have an influence
task performance, though we attempted to forestall this [43, 66].
Further domains can be empirically tested to gain a robust picture
of how domain experience and spatial visualization level come
together to affect visualization task performance for design im-
plications. Interventions that increase performance of low spatial
individuals might be studied to increase inclusive design practices
in Information Visualization. Though outside of our domain, our

work could also influence education research in how visualizations
affect performance of arts and STEM students.

Our study advances initial work in the visualization commu-
nity toward cataloguing cognitive differences of domains [32, 74]
and furthers understanding of cognitive abilities in visualization
performance.

7 CONCLUSION
The aim of our research was to build on work in visualization, tying
spatial visualization and domain differences, to empirically inves-
tigate data visualization performance between visual artists and
MCS. These domains were historically intertwined, one influencing
the other for decades. We aimed to evaluate how the cognitive
similarities but different domain expertise affected performance on
statistical data visualization tasks. Our study exposed the utility
of visual artists’ expertise and high levels of spatial visualization
in performance on statistical visualization tasks despite perceived
inexperience around data visualization. Additionally, we corrobo-
rated research showing visual charts increase performance versus
text representations as task difficulty increases. Our findings have
ramifications in visualization and education research – information
visualization can empower entire communities toward increased
performance on data visualization tasks.
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