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Abstract

The use of microwave imaging for medical applications has attracted growing interest in the past

decades, inspired by the presence of differences in the dielectric properties of healthy and diseased

tissues. The main goal of this research project is focused on incorporating computationally

efficient microwave tomography algorithms into medical diagnostic devices.

More specifically, microwave tomography methods for head imaging are challenged by the

non-linearity of the problem and the non-uniqueness of the solution. The main objective of this

thesis is to tackle these challenges and successfully incorporate a previously developed algorithm

combining the distorted Born iterative method with two-step iterative shrinkage thresholding

(DBIM-TwIST) into a microwave tomography prototype for the problem of brain stroke detec-

tion and differentiation.

To this end, we have constructed simplified and complex multi-layer phantoms that have

similar dielectric properties with head tissues by developing tissue-mimicking materials formed

by gelatine-oil concentrations. In the first set of experiments, the aim has been to show the

potential of two-dimensional (2-D) DBIM-TwIST in determining the type of stroke by estimating

its dielectric properties. Our results have demonstrated that the prototype can differentiate

between hemorrhagic and ischemic strokes based on the estimation of their dielectric properties.

The purpose of the second set of experiments has been to experimentally validate our 2-D and

three-dimensional (3-D) DBIM-TwIST algorithms for stroke detection and differentiation using

a complex head model, but also to further assess experimentally the performance of the 3-D

algorithm for the examined application. For some of the studied scenarios, the 2-D DBIM-

TwIST can lead to more accurate reconstructions. However, the 3-D inverse algorithm can

provide more accurate results for problems with significant variation along all three dimensions,

as can be the case of brain imaging. This has been the first validation study of a MWI algorithm

that detects and differentiates two types of strokes, using an anatomically accurate multi-layered

head phantom in a wide frequency range.
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Chapter 1

Introduction

1.1 Motivation, Aims, and Objectives

Nowadays, medical imaging technologies play a significant role in tackling the con-

tinually growing number of difficulties brought on by ageing populations, since they

are essential clinical tools for making an accurate initial diagnosis and monitoring the

course of disease over time. In order to supplement and assist existing modalities, a

wide range of new imaging techniques are constantly being developed. One of these

methods is electromagnetic (EM) imaging, which involves illuminating the area of the

body under investigation, with low-power non-ionizing EM waves and using the result-

ing back-scattered signals to produce images of the interior organs. The research of this

PhD involves validating microwave imaging (MWI) algorithms for medical diagnostic

devices. Specifically, the research focuses on testing and improving MWI algorithms

for detection and monitoring of brain stroke, with numerical simulations, and validat-

ing the results with experimental phantoms that simulate the tissues and the dielectric

properties of the human head.

The main goal of this research project is focused on incorporating computationally

efficient microwave tomography algorithms into medical diagnostic devices. This goal is

a critical objective for the European Union project ElectroMagnetic imaging for a novel
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genERation of medicAL Devices (EMERALD), which has motivated this research.

The algorithms have been primarily based on inverse scattering techniques with the

distorted Born iterative method (DBIM). They have been validated and tested first

with numerical and experimental prototypes developed by King’s College London, and

then they have been tailored to specific diagnostic applications developed by other

EMERALD groups. The project aimed to achieve the following objectives:

• Incorporate the computationally efficient 2-D and 3-D imaging algorithms into

medical diagnostic devices for brain stroke detection and differentiation (Chapter

3 and Chapter 4).

• Refine the imaging algorithm to optimize performance for experimental data

(Chapter 3 and Chapter 4).

• Validate the imaging algorithm with the experimental phantoms (Chapter 3 and

Chapter 4).

• Incorporate hardware improvements developed within EMERALD (Chapter 3).

• Adapt the in-house MWI algorithm to the hardware systems developed within

EMERALD group (Chapter 4).

The major accomplishments expected from this project are first, incorporating

state-of-the-art MWT algorithms optimized for specific prototypes and second, the

validation of these algorithms with experimental data for specific prototypes and test-

beds (phantoms).
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1.2 Introduction to Electromagnetic Imaging for a

Novel Generation of Medical Devices (EMER-

ALD)

EMERALD is the coherent action of leading European engineering groups involved

in EM technology for medical imaging, to create a cohort which aims expediting the

transfer of this technology “from research bench to patient bedside.”

EMERALD’s main objective has been to accelerate the development of clinical pro-

totypes from EM medical imaging research, by offering related PhD’s and training to

a team of 13 early-stage researchers (ESR’s). The EMERALD consortium has been

formed by academic institutions, business partners, hospitals, and university medical

centers. Secondments in beneficiaries of the EMERALD network have been an im-

portant part of the project. Their aim was to enhance the collaboration among the

different stakeholders as well as, exchange ideas and improve the knowledge about

MWI hardware and software through additional tasks.

Overall, four secondments were scheduled that intended to first define the clinical

needs in diagnostic systems and then investigate the optimisation of MWI systems, as

well as, assess the performance of robust algorithms in various MWI prototypes. The

first secondment took place in Bern’s University Hospital in Switzerland from January

2019 to March 2019. The aim of the first secondment was the interaction with medical

experts in the diagnosis of cerebrovascular diseases in order to understand the anatomy

of the head, brain, and stroke which should then be translated into requirements for

the microwave imaging algorithms. Through this secondment it became clear that

any MWI prototype, in order to be clinically significant, needs to differentiate the

type of the stroke, as soon as possible, even from the ambulance stage. The literature

studied through the secondment is presented in Chapter 2. The second secondment

took place in Keysight, Austria from November 2019 to December 2019 and is presented

in Chapter 3. The third secondment was planned to take place in the University of
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Lisbon but due to Covid-19 travel restrictions, it was conducted virtually. As the

objectives of the secondment were altered, it is presented in the Appendix C. The

last secondment, in the Polytechnic University of Turin (POLITO) was also conducted

virtually and is presented in Chapter 4.

1.3 Introduction to Medical Diagnostics

Medical imaging is a principal tool for visualizing the tissues and the structures of

the body to detect any abnormality or malignancy [1]. The main imaging techniques

which are widely used in acute-care settings include X-rays, computed tomography

(CT), magnetic resonance imaging (MRI), ultrasound (US), and positron emission

tomography(PET) [2]. Although these methods provide accurate clinical data with a

high resolution, they suffer from high operating costs and long examination times. For

example, MRI offers the optimal resolution of images, but it is an expensive procedure.

X-rays and CT can produce images of high resolution, yet they cannot image soft

tissues [3]. Also, they have been accused for side effects like nausea, hair loss, skin and

breathing complications on top of increased cancer risk due to the ionizing radiation

that is used in this type of imaging [4]. PET scans can produce good images of the

soft tissues, but they could lead to the wrong diagnosis of a tumor as sometimes they

show areas of high activity like rheumatoid arthritis or tuberculosis. Furthermore,

they cannot be used to pregnant women as they require the injection of radioactive

tracers [5]. Moreover, the above-mentioned imaging methods and devices are usually

not portable, creating delays in the diagnosis window as they require the patient to

be admitted to the hospital [2]. Therefore, the use of the above imaging methods

is unsuitable for critical conditions when a fast and continuous diagnosis is vital [6].

Furthermore, the increased associated costs can prevent their operation in underserved

communities, maintaining and increasing the imbalance of health care access worldwide

[7]. These challenges motivate the development of alternative approaches, which aim

to be fast, safe, portable, and cost-effective.
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1.4 MWI Systems for Medical Diagnostics

Microwave imaging represents an attractive alternative, due to its low-cost, safe (non-

ionizing and low-power nature of the employed radiations), non-invasive and portable

modalities. Efforts to develop MWI systems for medical diagnostics go back almost

fifty years [5],[8],[9],[10],[11]-[26]. Larsen and Jacobi were among the first ones who

used microwave radiation to identify different kidney tissues [27],[28]. Consequently,

microwaves attracted a lot of attention and since the 1970s, extended research has

been conducted on the development of MWI systems for various medical conditions.

Initially, research was focused on breast imaging, with Dartmouth College contributing

significant work in this area [8],[29]-[31]. Moreover, early detection of breast cancer was

studied in [32], [33] and [34], with some advanced set-ups and techniques proposed in

[10],[13],[23],[35],[36]. After 50 years of intensive study, the biggest challenge of MWI

area is that the technology is a potential imaging modality that is still at the clinical-

acceptance stage. However, the situation is quickly shifting, and in June 2019, Micrima

Ltd.’s MARIA imaging system was deployed in hospitals in Germany for the purpose

of detecting breast tumours [5].

Other implementations of MWI include detection of pulmonary edema, skin cancer,

heel bone fracture, cervical myelopathy, leukemia, cerebral edema, lung cancer, heart

imaging, joint tissue imaging, thermo-acoustic imaging of subcutaneous vasculature

[5]. Within the last years, research has been targeted into diagnosing the brain oedema

and monitoring brain stroke as a result of the dielectric contrast between healthy and

malignant brain tissues. Specifically for the problem of brain stroke detection and

classification, the most advanced systems are the ones proposed by [3], [37], and [38].

Moreover, a recent study by [39] presented images from a novel, portable EM scanner

used in patients with either hemorrhagic or ischemic stroke. The presented images

are encouraging. However, while such clinical studies are the main target for MWI

stroke detection, they cannot be used to fully evaluate the accuracy in estimating

the dielectric properties of the stroke and hence the system’s ability to differentiate
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hemorrhagic from ischemic stroke. From the industrial side, three notable companies

have developed imaging prototypes with clinical representation. First, the Strokefinder

from Medfield Diagnostics, is an imaging prototype focused on the classification of the

type of the stroke. Recently, Strokefinder has placed in the intensive care units of

various hospitals in Athens [40]. Secondly, the BrainScanner, from EMTensor and

EMVT from EMVision which are in clinical testing, have developed portable devices

for continuous brain imaging and stroke detection [41],[42].

Overall, MWI is an auspicious modality that could significantly benefit and improve

the field of medical imaging. However, extensive research is required to overcome some

important challenges in order to develop effective MWI systems that could be used

widely for clinical applications and imaging. Some key challenges are: 1) A robust

and adaptive imaging algorithm that will be able to overcome the non-linearity of the

inverse problem, as well as, deal with the low dielectric contrast of some tissues 2) Need

for efficient and optimised hardware and 3) MWI systems with high dynamic range.

1.5 Contribution and Relevant Publications

The main contribution of the current study is in the area of 2-D and 3-D MWT al-

gorithms. More specifically this thesis focuses on the experimental validation and

optimization of MWT algorithms for brain stroke detection and classification, in a

wide frequency range. The thesis’ key contributions are listed below:

• An extended validation study of the 2-D DBIM-TwIST algorithm for brain stroke

detection and classification using simulation, as well as experimental data from

a MWT experimental prototype and fabricated gel-based phantoms has hereby

been presented (Chapter 3).

Related papers: O. Karadima, N. Ghavami, I. Sotiriou and P. Kosmas, “Per-

formance assessment of microwave tomography and radar imaging using an an-

thropomorphic brain phantom,” 2020 XXXIIIrd General Assembly and Scientific
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Symposium of the International Union of Radio Science, pp. 1-4, 2020.

O. Karadima, M. Rahman, I. Sotiriou, N. Ghavami, P. Lu, S. Ahsan, and P.

Kosmas, “Experimental validation of microwave tomography with the dbim-twist

algorithm for brain stroke detection and classification,” Sensors, vol. 20, no. 3,

p. 840, 2020.

• The implementation of the 3-D DBIM-TwIST algorithm has been applied to a

3-D MWI problem. The 3-D algorithm has shown promising results in realistic

simulated and experimental scenarios mimicking brain stroke (Chapter 4).

Related paper: O. Karadima, P. Lu and P. Kosmas, “Comparison of 2-D and

3-D DBIM-TwIST for Brain Stroke Detection and Differentiation,” 2021 15th

European Conference on Antennas and Propagation (EuCAP), pp. 1-4, 2021.

• Various approximate models as the initial guess have been investigated to assess

whether a more accurate forward model could achieve into stronger reconstructed

results, using 3-D DBIM-TwIST. (Chapter 4).

Related paper: O. Karadima, P. Lu, I. Sotiriou and P. Kosmas, “Evalua-

tion of the initial guess for brain stroke detection using microwave tomography,”

2021 IEEE International Conference on Antenna Measurements and Applications

(CAMA), pp. 1-5, 2021.

• A novel multi-layer anatomically accurate head phantom has been designed and

prepared using gelatine-based tissue mimicking materials. The performance of

the 2-D and 3-D implementations of the DBIM-TwIST algorithm has been com-

pared in a systematic manner using CST simulated and experimentally measured

data. This is the first validation study of a MWI algorithm that detects and dif-

ferentiates two types of strokes, using an anatomically accurate multi-layered

head phantom in a wide frequency range (Chapter 4).

Related paper: O. Karadima, I. Sotiriou, P. Lu and P. Kosmas, “Validation of

the DBIM-TwIST Algorithm for Brain Stroke Detection and Differentiation Us-
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ing a Novel Head Phantom,” IEEE Open Journal of Antennas and Propagation,

vol. 3, pp. 274– 286, 2022.

• The development of a new semi-flexible and rigid composite material as a match-

ing medium for medical microwave diagnostic systems has been presented and

discussed (Chapter 3).

Related paper: A. Moradpour, O. Karadima, I. Alic, M. Ragulskis, F. Kien-

berger, and P. Kosmas, “Development of a Solid and Flexible Matching Medium

for Microwave Medical Diagnostic Systems,” Diagnostics, vol. 11, no. 3, p. 550,

Mar. 2021.

• The 3-D DBIM-TwIST algorithm has been assessed for an alternative MWI pro-

totype for 3-D brain stroke imaging (Chapter 4).

• A cascade-classifier, in which the location of the stroke is classified ahead of its

type, is implemented. The rationale is that the classification of strokes that have

been identified in the same location, results in more accurate classification of the

type of the stroke (Appendix C).

Related paper: O. Karadima, R. C. Conceição and P. Kosmas, “Differentiation

of brain stroke type by using microwave-based machine learning classification,”

2021 International Conference on Electromagnetics in Advanced Applications

(ICEAA) (pp. 185-185) 2021.

Additional publications in which the author contributed, are stated as follows:

1. Z. Guo, S. Ahsan, O. Karadima, I. Sotiriou and P. Kosmas, “Resolution Capabil-

ities of the DBIM-TwIST Algorithm in Microwave Imaging,” in 13th European

Conference on Antennas and Propagation (EuCAP), pp. 1-4, 2019.

2. O. Karadima, E. Razzicchia and P. Kosmas, “Image Improvement Through Meta-

material Technology for Brain Stroke Detection,” 2020 14th European Conference

on Antennas and Propagation (EuCAP), pp. 1-4, 2020.
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3. N. Ghavami, E. Razzicchia, O. Karadima, P. Lu, W. Guo, I. Sotiriou and P. Kos-

mas, “The Use of Metasurfaces to Enhance Microwave Imaging: Experimental

Validation for Tomographic and Radar-Based Algorithms,” IEEE Open Journal

of Antennas and Propagation, vol. 3, pp. 89-100, 2021.

1.6 Thesis Structure

The remainder of the thesis is structured as follows. Chapter 2 discusses the background

theory that is necessary for the development, validation and optimisation of microwave

tomography algorithms. Chapter 3 presents the simulation and experimental procedure

toward the validation of the 2-D DBIM-TwIST algorithm for brain stroke detection

and classification using a brain phantom. Also, it presents the work that has been

conducted during the secondment at Keysight that has explored the fabrication of a

novel solid material that could enhance antenna performance. Chapter 4 validates the

3-D version of DBIM-TwIST first for simulated realistic scenarios. Then it presents

a novel multi-layer head phantom and validates both the 2-D and 3-D versions of

the DBIM-TwIST for different stroke scenarios. It also presents the results obtained

during the secondment at POLITO in relation to the validation of DBIM-TwIST in an

alternative imaging prototype. Conclusion of the thesis and future work are provided

in Chapter 5.
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Chapter 2

Literature Review and Background

Theory Work

2.1 Literature Review

2.1.1 Introduction to Microwave Medical Imaging

MWI technology incorporates the applications and the techniques that use non-ionized

EM radiation, within the range of 300 MHz to 300 GHz, with the aim of sensing and

imaging a dielectric difference located in an investigation domain of interest [43]. This

frequency range includes both microwave and millimeter wave bands, but they can both

be grouped under MWI, as they use electromagnetic radiation. MWI has been used

in a range of applications such as non-destructive testing and evaluation, concealed

weapon detection at security checkpoints, structural health monitoring, detection and

identification of objects in marine engineering, archaeology, and industrial design, as

well as, through-the-wall imaging. However, for the reasons that are mentioned in the

previous chapter, MWI for medical applications has attracted a lot of interest [44]-[46].

The interaction of EM radiation with human tissues has been widely studied in the

past and gained a lot of interest due to the prospective advantages it can offer [47].

Many studies investigated and measured the dielectric properties of biological tissues
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at microwave frequency range [48]. The outcomes of these studies showed that there is

a difference between the dielectric properties of healthy and malignant tissues, due to

changes in the water content [49]. For example, the dielectric properties (permittivity

and conductivity) of an area in the brain affected by a stroke, differs from the ones of

healthy brain tissue [3].

MWI relies on the dielectric contrast between the healthy and diseased tissues

[50]. In MWI, the region of interest (ROI) is surrounded by measurement probes that

radiate EM signals. The signals are received by the same or a different probe, and the

scattered or reflected signals are processed with various techniques to locate, shape and

reconstruct an existing dielectric contrast [44]. A two-dimensional (2-D) or a three-

dimensional (3-D) dielectric map is formed, which visualizes the permittivity and the

conductivity of different tissues or the location of a strong scatterer inside the ROI.

The use of non-ionizing radiation, the low cost of MWI systems and the portability,

are the main motivations that have established MWI as a promising and non-invasive

alternative to the current medical imaging techniques [2],[8],[9].

On the other hand, there are several challenges that MWI systems should address

[51]-[10]. The biggest challenge is the insufficient coupling of energy into the human

body. Any microwave radiation produced in the air will reflect significantly at the

tissue interface due to the considerable electrical differences between air and living

tissue. Furthermore, the multi-layer anatomy of the human tissues reflects back the

signals and attenuates them, limiting the penetration depth [52]. To overcome this

challenge, a coupling medium is used [10] to minimize the reflections and optimize the

transmission to the tissue-air interface. In addition, the coupling medium extends the

antenna bandwidth and reduces unwanted reflections from the apparatus [53].

Notwithstanding that the coupling medium can reduce the mismatch between the

air and different tissues, it can also generate power loss due to spillovers and dissipation

in the coupling liquid. Moreover, the use of coupling liquid is not always practical for

clinical implementations [52]. To this end, some studies have proposed the integration

of the antennas in novel solid and flexible materials with similar dielectric properties
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as the coupling liquids [9],[53]. Therefore, the acquisition system could be adjusted

according to the size, shape and anatomy of the examined tissues. However, most MWI

setups suffer from low dynamic range, as a consequence of the losses of the coupling

mediums, the efficiency of the sensors and the sensitive data acquisition process [52].

A high dynamic range is essential to achieve the optimal trade-off between the required

resolution and incident power which is needed for medical imaging applications [54].

In order to improve resolution and enable the use of compact antenna elements,

higher frequencies must be used. However, this results in less EM field penetration

inside the lossy biological tissue. Additionally, increased resolution leads to increased

computational time [55]. As a consequence, another problem that needs to be resolved

is the choice of the optimal frequency band. The theoretical approach in [56] suggested

that a working frequency up to 1.5 GHz can achieve the optimal trade-off between the

required resolution and incident power needed for head imaging applications.

The operational frequency range, which heavily depends on the dielectric charac-

teristics of the target and coupling medium, has a significant impact on the antenna

selection. An additional difficulty of MWI systems is the size of the antenna elements.

Furthermore, the antenna should be easily and accurately simulated in the forward

model. Enhancing matching between the array and the head tissues is the primary

goal of employing an appropriate immersion medium. However, it also makes it possi-

ble to reduce the size of the antenna elements, making its application in head imaging

a significant practical problem as smaller antennas do not have a wide frequency range.

Realistically, a trade-off must be found between the antenna size, dielectric contrast,

penetration depth and spatial resolution requirements [11].

An additional challenge of MWI systems is the non-automated process between

the Vector Network Analyzer (VNA) and the computer employing the MWI software.

During the data acquisition process, it is critical to promptly gather the scattering

parameters (S-parameters) data and minimize any experimental errors, by replacing

the VNA with a specialized portable microwave module [57].
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2.1.2 Dielectric Spectroscopy

As MWI techniques for medical applications rely on the dielectric contrast between

healthy and diseased tissues, the dielectric properties of human tissues have been ex-

tensively studied. Dielectric spectroscopy in the past has been characterized by mea-

surement hardware limitations [58]. Nowadays, the experimental methods for dielectric

spectroscopy have developed significantly and automatic spectrometers can easily mea-

sure the entire spectral range from 10−6 to 1012 Hz [59],[60]. The most widely used

technique to measure the dielectric properties of a tissue or phantom is the open-ended

coaxial probe [61]. The coaxial probe method uses a truncated coaxial transmission

line that propagates the EM field along its axis. Where the EM field encounters an

impedance mismatch between the probe and the sample material, reflections take place.

Then, the VNA captures the reflections and calculates the material’s dielectric charac-

teristics [53]. In a study conducted by [62], the common swept frequency VNA from the

system was replaced by a compact microwave transceiver which uses a new broadband,

multi-tone source and broadband receivers to measure the direct S-parameters at mul-

tiple tones coincidentally. Before measuring sample materials, a complete calibration

of the dielectric characteristics is carried out to prevent systematic inaccuracies [63].

The Debye model is employed to capture the frequency-dependent behaviour of human

tissues. The theory of the Debye model will be elaborated in the next section.

Gabriel and Gabriel [64],[65] provided an extensive summary of different measured

dielectric properties both in vivo and ex vivo. This work is considered to be the

primary source of information on the characteristics of human tissues, and numerous

databases were built using this data. There are also many studies that focus on tissues

of specific body regions like breast, heart, liver and bone [61]. A large-scale dielectric

spectroscopy study was conducted by [66] for the dielectric properties of normal breast

tissues. Recent studies by [67] and [68] observed a large degree of heterogeneity between

healthy and cancerous breast tissues and across patients. However, [69] found that the

dielectric difference between healthy and cancerous breast tissue ranges from 1.1 to
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5 over the frequency range of 0.5 to 20 GHz. Amin et. al reviewed the dielectric

properties of bones for the monitoring of osteoporosis [70]. Other dielectric studies

measured the dielectric properties of liver [71]-[73]. A study by [74] measured the

dielectric properties of different parts of the heart, concluding that the properties vary

between the different heart parts and as a consequence, heart should not be considered

as a homogeneous tissue.

Specifically for head tissues, [75] measured in vivo and in vitro the dielectric prop-

erties of white and grey matter as well as the properties of cerebrospinal fluid (CSF)

in a frequency range of 50 MHz–20 GHz, finding similar properties with the literature.

Schmid et al. conducted an ex vivo study in 20 human brains, less than 10 hours after

death [76]. It was reported that grey matter permittivity had a similar value with the

reference properties at a frequency range of 800 to 2450 MHz, but the grey matter

conductivity at room temperature was found to be slightly higher than the conduc-

tivity reported by Gabriel. A more recent study by Semenov examined the dielectric

properties of the brain during ischemia. Measurements were conducted in vivo in seven

3-month-old female Yorkshire domestic cross/farm pigs under anaesthesia. Following

a craniotomy, occlusion and reperfusion measurements were conducted, when the ani-

mal was in stable condition, with a hand-held probe in contact with the surface of the

cerebral cortex. The results showed that ischemia properties can vary from -10% up

to -25% compared to the dielectric properties of healthy brain tissue [77].

2.1.3 Microwave Imaging Techniques

The proposed techniques for MWI follow two main paths which include microwave

tomography (MWT) and microwave radar algorithms. MWT algorithms use the scat-

tered fields to reconstruct the dielectric properties of a region of interest from experi-

mental or numerical 3-D data and identify a target with unknown dielectric properties

by solving an inverse scattering EM problem, with representations of the set-ups simu-

lated by finite difference time domain (FDTD) or finite element method (FEM)-based
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solvers [78].

However, these methods suffer from the non-linearity and ill-posedness of the inverse

problem, which increases the complexity of the solution. Therefore, MWT methods

require robust, yet time consuming, algorithms that allow tuning the parameters for

each problem, as some form of apriori information is needed [79].

Several solutions have been proposed in the literature that include among others,

the contrast source inversion (CSI) approach [80] and the linear inversion with trun-

cated singular value decomposition (TSVD) [9],[81]. In [82], a multi-step learning-by-

examples strategy has been presented and validated for brain stroke detection, identifi-

cation, and localization, using a simplified head phantom made by an octagonal prism

filled with the dielectric properties of the average brain and with circular cylinders

which mimic the two types of the stroke. The study in [83] presented a novel non-

linear S-Parameters inversion method for stroke imaging based on Lebesgue spaces

with non-constant exponents. The experimental prototype included a liquid-filled 3-D

SAM phantom that mimics the dielectric properties of the average brain in the pres-

ence of a stroke-like target. The presented simulation and experimental results at 1

GHz are very promising, but a further assessment of the method using a multi-layered

phantom in a wider frequency range is needed.

The increased complexity of microwave brain imaging requires regularization of

the problem and often adjusting the algorithm parameters for each case. As a conse-

quence, a distorted Born iterative method with two-step iterative shrinkage threshold-

ing (DBIM-TwIST) has been proposed in [84] where an inverse scattering problem is

solved at each iteration.

Past research on DBIM-TwIST focused on the 2-D algorithms as they are eas-

ier to model and solve. 3-D algorithms are associated with very high computational

costs and are challenging to solve as the ill-posedness of the inverse problem increases

significantly with the increase in the number of unknowns. Some 3-D methods for

MWT applications in medical imaging have been presented in [12]-[87] but mainly for

breast imaging. For the problem of head imaging, [88] and [89] used scattering signals
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from 3-D head phantoms applying FDTD and FEM, respectively, while [9] suggested

incorporating FEM with TSVD. Recent work by [90] presented a 3-D version of the

DBIM, combined with the fast iterative shrinkage/thresholding algorithm (FISTA) for

microwave head imaging, with some promising results for realistic cases.

Regarding MWT systems for stroke detection, two different portable prototypes

were presented in [9] and [91] for stroke monitoring and detection. Furthermore, [92]

presented a container incorporating 10 antennas, that reconstructed targets in various

positions using a Gauss-Newton algorithm with Tikhonov regularization. Semenov

evaluated the optimal technical and performance characteristics of a MWT device.

The projected signal attenuation showed that the key point is to design a device that

has good sensitivity, as well as high resolution [93]. Higher resolution can be achieved

in higher frequencies, however higher frequencies result in higher attenuation and a

small signal-to-noise ratio (SNR). To attain the sensitivity, specificity and, resolution

required for medical imaging, it is particularly desirable to achieve a high SNR, ideally

between 40-60 dB. Therefore, a frequency range of 0.5-1 GHz could be the optimal in

order to achieve the required trade-off between successful detection and good resolution.

Moreover, it was found that the smallest target area that can be reconstructed with

an inversion method is about 2 cm [93]. However, a more recent study achieved the

successful reconstruction of a target mimicking hemorrhagic stroke, with a diameter of

1 cm [91]. In general, a typical stroke size is around 2 cm [94].

In addition, the design of a MWT scanner for brain imaging has been analysed in

[56] using a transmission line model to determine suitable frequencies and properties

of the coupling medium and using the singular value decomposition (SVD) of the

scattering operator in [54] to optimize the antenna array design. The aim of the

study presented in [3] was to differentiate the hemorrhagic from the ischemic stroke

and monitor the evaluation of the ischemic stroke. Simulations and two experimental

setups were used to produce the data. Image reconstructions were achieved both with

FEM and FDTD approach. Phantoms were prepared using the dielectric properties

reported in [64] and [65]. It was confirmed that the higher contrast of hemorrhagic
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stroke improves detection relative to ischemic stroke detection. This paper contributed

significantly to the literature as it presented reconstruction results of different phases

of the stroke, including penumbra, which is the ischemic layer that is created around

the core of the stroke, and the oedema that could be developed.

Alternatively, microwave radar-based techniques solve a less complex problem of

discovering a scattering map contingent on the contrast present between the dielectric

properties of healthy and malignant tissues. This technique was first designed for

military purposes but then applied for detecting malignancies in the human body. It

was developed in the late 1990s by Hagness at Wisconsin University, and Benjamin

at Bristol University [95]-[99]. Research teams at [100], [101] annd [102] have also

contributed into the development of radar-based methods for medical applications. The

radar-based Huygens algorithm, initially presented in [103], has shown its potential for

use in medical applications [104]. A new hybrid imaging method was proposed at

[105], using information from a radar-based algorithm to locate the target and then

apply MWT to reconstruct the dielectric properties of the head, gaining promising

preliminary results.

Recently, machine learning approaches have also been proposed for brain stroke clas-

sification. More specifically, [106] conducted animal experiments using a non-contact

microwave-based stroke detection system for classifying the type of the stroke, as well

as monitoring the severity and the progress of the stroke by using different metrics.

Chalmers university has developed and clinically tested a prototype [37] for detecting

the type of stroke. Other studies by [82] and [107]-[109] have shown that machine

learning methods for stroke classification are quick and robust and can provide accu-

rate results, howbeit, a large data set is needed to be trained. Moreover, the lack of

images could act as a disadvantage for clinical applications.
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2.2 Propagation of Electromagnetic Waves

This section discusses the basic EM and microwave theory, while it also introduces the

FDTD method, which is used to simulate the propagation of EM waves as a forward

solution.

2.2.1 Maxwell’s Equations

Maxwell’s equations form the foundation of electromagnetism. The entire EM spec-

trum, from X-rays to radio waves, is governed by this set of equations as described

below:

∂
#—

B

∂t
= −∇× #—

E Faraday’s law

∂
#—

D

∂t
= −∇× #—

H − #—

J Ampère’s law

∇ · #—

D = ρ Gauss’s Law

∇ · #—

B = 0 Gauss’s Law for Magnetism

(2.1)

In 2.1,
#—

D is the electric displacement field,
#—

B the magnetic displacement field,
#—

E

the electric field,
#—

H the magnetic field,
#—

J the current density, ρ is the electric charge

density and t denotes time. When a material is linear and isotropic, the following

conditions apply:

#—

D = ε
#—

E

#—

B = µ
#—

H

#—

J = σe
#—

E

# —

M = σm
#—

H

(2.2)

where ε is the permittivity, µ is the permeability, σe is the electrical conductivity, M ,

the equivalent magnetic current density and σm the magnetic conductivity [110].
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The substitution of 2.2 to 2.1 results in two partial differential equations that need

to be solved. This substitution eliminates the electric and magnetic displacement

field, the electric field density and the magnetic field density terms from the Maxwell

equations. These partial differential equations are as follows:

ε
∂

#—

E

∂t
= −∇× #—

H − σc
#—

E − #—

J

µ
∂

#—

H

∂t
= −∇× #—

E − σm
#—

H − # —

M

(2.3)

A differential form in rectangular coordinates is shown below:

µ
∂Hx

∂t
=
∂Ey

∂z
− ∂Ez

∂y
− σmHx −Mx

µ
∂Hy

∂t
=
∂Ez

∂x
− ∂Ez

∂y
− σmHy −My

µ
∂Hz

∂t
=
∂Ex

∂y
− ∂Ez

∂y
− σmHz −Mz

ε
∂Ex

∂t
=
∂Hz

∂y
− ∂Hy

∂z
− σeEx − Jx

ε
∂Ey

∂t
=
∂Hx

∂z
− ∂Hz

∂x
− σeEy − Jy

ε
∂Ez

∂t
=
∂Hy

∂x
− ∂Hx

∂y
− σeEz − Jz

(2.4)

A common way to deal with differential equations is to approximate them numerically,

by the FDTD method.

2.2.2 Finite-Difference Time-Domain Method

For complex EM problems, numerical techniques have been proposed to solve Maxwell’s

equations including the FEM, the Finite Volume Time Domain Method, the FDTD

Method and the Finite Difference Frequency Domain (FDFD) Method. FDTD treats
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a non-linear problem naturally, does not require a matrix inversion and can model an

inhomogeneous object of arbitrary shape. Moreover, FDTD is a time domain method

and as a result, it can obtain multiple frequency results by Fourier transform. For

increasing mesh, FDTD appears to be less computationally expensive and easy to im-

plement than FEM. Also, FDTD can be designed in parallel using graphics processing

unit (GPU) that can significantly reduce the computational time for 3-D problems.

As a result, the FDTD method is among the most popular, flexible, and conceptually

simple techniques for simulating non-linear scenarios, hence it is used in this study to

simulate the EM field scattered by the region of interest [111].

Figure 2.1: The Yee cell which denotes the electric and magnetic field vector compo-

nents. The components of the electric field (red circle) are computed in the middle of

the edges and the components of the magnetic field (blue circle) are centred on the

surfaces. (source: fdtd.wikispaces.com)

The FDTD method was first introduced by Kane S. Yee in 1966 [112]. The method

approximates the derivatives by finite differences. More specifically, both electric and

magnetic fields are discretized in both space and time with central difference approxi-

mations, using uniform grids with ∆x, ∆y and ∆z being the spatial dimensions of the

grid. Each electric field vector component is located midway between a pair of magnetic

field vector components, and conversely. A rectangular unit cell in this configuration is
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Figure 2.2: Leapfrog’ flow of calculations of electric and magnetic fields through both

space and time which results into the approximate solution to Maxwell’s equations

[111].

called Yee Cell and is shown in Fig. 2.1 for the electric field. In each Yee cell, the four

electric-field values surround each magnetic-field value and every electric-field value is

surrounded by four magnetic-field values.

Fig. 2.2 shows that the resulting finite-difference equations are solved in a leapfrog

manner: the electric vector components are solved every (n+1) ∆t while the magnetic

field vector components in the same spatial volume are solved at the next instant

in time (n+1
2
) ∆t . It is noted that

#—

E and
#—

H are shifted also in space by half of the

discretization ∆x. The fields are updated at every time step using the central difference

method and the process is repeated until the maximum time step ∆t is achieved [111].

To ensure stability, a field component cannot propagate more than one cell size in

the time step ∆t, according to Courant’s criterion which must be satisfied at every mesh

cell. This means that the maximum time step must satisfy the following inequality:

∆t ≤ 1

u
√

1
(∆x)2

+ 1
(∆y)2

+ 1
(∆z)2

(2.5)

In 2.5, u is the velocity of propagation and ∆x, ∆y and ∆z denote the spatial di-

mensions of the smallest element of the grid of the simulation. Since the fields are

computed at different points, it is feasible to calculate separately the electric and the

magnetic fields [113]. To implement Yee’s algorithm, Maxwell’s equations need to be
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discretized and the differential equations must be replaced by finite differences. The

basic theory to form the 2-D and 3-D FDTD which is used in this study to model the

propagation of the EM wave, is presented in the Appendix A.

2.2.3 FDTD Absorbing Boundary Conditions

Electromagnetic field problems are unbounded in space. Hence, boundary conditions

are needed to bring the infinite space to a finite computational domain. Without a

terminating absorbing boundary, the wave that is radiated from the source will be re-

flected by this boundary and will propagate towards the source. Consequently, Maxwell

equations cannot be applied in the boundary. Hence, absorbing boundary conditions

(ABC) are introduced at the outer lattice boundary to simulate open boundary elec-

tromagnetic problems so that a solution obtained is an accurate approximation of the

real solution that considers unlimited space surrounding it [114].

A different technique to achieve an ABC is to terminate the outer boundary of the

space lattice in an absorbing material medium, simulating the effect of an anechoic

chamber. Ideally, the absorbing medium should be a few units thick, able to produce

zero reflections, highly absorbing, and effective in the near field of a source or a scat-

terer. Holland in [115], used a conventional lossy dispersionless absorbing medium.

However, an absorbing layer like this can be applied only in the presence of normally

incident plane waves.

Some of the most common absorbing boundary conditions include Mur’s and Liao’s

implementations [116], [117]. In 1993, a new technique called Perfectly Matched Layer

(PML) was presented by Jean-Pierre Berenger [118]. PML is designed to absorb in-

cident waves with minimal reflections, irrespective of the frequency, polarisation and

incidence angle. PML boundaries are basically implemented as an absorbing lossy

and lossless material that is also impedance matched to the surrounding materials,

to minimize reflections. PML implementation can be applied to both 2-D and 3-D

FDTD problems. Furthermore, PML can be used as an absorbing boundary for simu-
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lation spaces consisting of inhomogeneous, dispersive, anisotropic and non-linear media,

which are not feasible analytically derived ABCs.

Fig. 2.3 illustrates PML implementation. The interior space forms the computa-

tional domain of a problem in which there is a source of incident waves. The compu-

tational domain is enclosed by an absorbing layer consisting of PML media. The outer

boundary is terminated on a perfectly conductive surface.

Figure 2.3: Simulation of the FDTD grid structure in free computational space using

PML technique [111].

In order to enable the absorption of evanescent waves, the convolutional perfectly

matched layer (CPML) was developed by Roden and Gedney in [119] based on a

recursive convolution technique. The CPML is based on the stretched-coordinate form

of Maxwell’s equations using an additional stretching parameter to control late time

low-frequency reflection and enhance absorption of grazing waves. When an incident

wave arrives at the media-CPML interface, the latter will absorb the incident wave

almost completely. To attain the expected effects, the parameters of the CPML are

updated iteratively.

In particular, the application of the CPML can be adapted to account for inhomoge-

neous, lossy, anisotropic, dispersive, or non-linear media. For highly evanescent modes

23



or low-frequency excitations, the use of the classical complex stretching variable in the

split-field PML can lead to large reflection errors. These issues can be overcome with

the use of complex frequency, shifted (CFS) PML parameters with the proper scaling.

In this thesis, the selection of the complex stretching variable will be as presented by

Kuzuoglu and Mittra [120]:

si = κi +
σi

ai + jωϵ
, i = x, y or z (2.6)

where κi the scaling factor, ai is the frequency-shifted factor and σi is the electric

conductivity. In this study, the magnetic loss is considered to be 0. Employing the

outcomes of [119], the CPML formulation is performed accordingly and is presented at

Appendix B.

2.3 Debye Models for Frequency-Dependent Mate-

rials

The most commonly used models to describe the dispersive behaviour of human tissues

include the Debye model and the Cole-Cole model. This is because a lossy dispersive

wave equation is conducted completely by the frequency-dependent conductivity. Al-

though the Cole-Cole model is considered to be the most accurate fitting tool for

describing tissue dielectric characteristics, it is insufficient for effective numerical com-

putation of electromagnetic fields. The Debye model is a vastly reliable fitting tool that

allows very fast computation in a specific frequency range, in contrary to the Cole-Cole

model which is more complex and is used in large classes of actual wideband sources

[121].

The Debye model is a method developed by Peter Debye [122] and was originally

used in thermodynamics and solid state physics [123]. Its use was extended in bio-

electromagnetics, to numerically model a frequency-dispersive biological medium in
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time domain [124]. As a lossy dispersive wave equation is conducted completely by the

frequency-dependent conductivity, the Debye model is often used to model human tis-

sues. More specifically, the Debye model is applied to capture the frequency-dependent

dielectric properties of human tissues [97]. The frequency-dependent relative permit-

tivity in the Debye model is defined as follows:

ϵr(ω) = ϵ∞ +

p∑
p=1

∆ϵp
1 + jωτp

(2.7)

where p is the number of Debye poles, ∆ϵp is the difference of the relative permittivity

under the corresponding Debye poles, τp is the relaxation time at the p-th Debye pole,

ω is the angular frequency [64] and ϵ∞ is the relative permittivity at the high-frequency

limit (ωτ >> 1), which is also known as optical relative permittivity [122].

If p = 1 the single-pole Debye model can be acquired which is written as follows:

ϵr(ω) = ϵ∞ +
ϵs − ϵ∞
1 + jωτ

(2.8)

ϵs is the relative permittivity at the low-frequency region (ωτ >> 1).

The real and the imaginary part of the complex relative permittivity can be depicted

as follows:

ϵ′ = ϵ∞ +
ϵs − ϵ∞
1 + ω2τ 2

(2.9)

ϵ′′ =
(ϵs − ϵ∞)ωτ

1 + ω2τ 2
(2.10)

The total current density J can be expressed as a sum of the conduction current

density Jc and the displacement current density Jd as follows:

J = Jc + Jd (2.11)
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Also, according to Ohm’s Law and to the first Maxwell equation:

Jc = σsE

Jd =
∂D

∂t
= jωϵ0ϵE

(2.12)

Therefore, by substituting Equation 2.12 into Equation 2.11, the total current den-

sity can be expressed considering the electrical conductivity as a complex value:

D = ϵ0ϵE +
σs
jω
E = (ϵ0ϵ+

σs
jω

)E = ϵ∗ϵ0E

ϵ∗ = ϵ+
σs
jωϵ0

(2.13)

Consequently, the Debye first-order model can be applied to model the dispersive

behaviour of the complex relative permittivity as follows:

ϵr(ω) = ϵ′r(ω)− jϵ′′r(ω) = ϵ∞ +
∆ϵ

1 + jωτ
+

σs
jωϵ0

(2.14)

where the real part ϵ′r(ω) is the frequency-dependent dielectric constant and the imagi-

nary part jϵ′′r(ω) is the frequency-dependent dielectric loss which can be translated into

the effective conductivity σ(ω) = ωϵ0ϵ
′′(ω). ϵ∞ is the relative permittivity at infinite

frequency, ∆ϵ is the difference between the zero-frequency relative permittivity ϵs and

the relative permittivity at infinite frequency ϵ∞, τ is the relaxation time, ω is the

angular frequency, σs is the static conductivity and ϵ0 is the permittivity of free space.

In this study, the dielectric properties of human tissues are calculated using the

single-pole Debye model. The frequency range of interest for the examined scenarios

is from 0.5 to 2.5 GHz. The estimations of the Debye models for different head tissues

are derived by performing curve-fitting on the data that are acquired from dielectric

spectroscopy.
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2.4 Inverse Scattering Problems

Inverse scattering problems are problems of determining the characteristics of an un-

known object according to how it scatters the incoming radiation from field measure-

ments in the accessible region [125]. Fig. 2.4 illustrates the EM scattering problem

where the given incident field and EM properties of the background field, determine

the EM properties and morphology of the “scattering system” from the measured scat-

tered fields.

Figure 2.4: A current source radiating in the vicinity of a general inhomogeneity [111].

A popular approach to solve the scattering problem is by using volume integral

equations where the unknowns in the problem are expressed in terms of the flowing

current volume in the inhomogeneity [126]. The current volume is composed by the

conduction current and the displacement current induced by the total electric field.

Then, an integral equation is formed from which the total field can be solved [127].

Next, the mathematical formulation of EM scattering is analysed. Considering

Maxwell’s equations theory, it is assumed that the electric field satisfies the following

equation:

∇× µ( #—r )−1∇× #—

E( #—r )− ω2ϵ( #—r )
#—

E( #—r ) = ιω
#—

J ( #—r ) (2.15)

where µ( #—r ) and ϵ( #—r ) are functions of position inside the inhomogeneous region V . By

subtracting the term ∇ × µb(
#—r )−1∇ × #—

E( #—r ) − ω2ϵ( #—r )
#—

E( #—r ) from both sides of the
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equation, the resulted equation is obtained:

∇× (µ( #—r )−1 − µb(
#—r )−1)∇× #—

E( #—r )− ω2(ϵ( #—r )− ϵb(
#—r ))

#—

E( #—r )

= ιω
#—

J ( #—r )−∇× µb(
#—r )−1∇× #—

E( #—r )− ω2ϵ( #—r )
#—

E( #—r )
(2.16)

The dyadic Green’s function in the absence of the scatterer is formed as follows:

∇× µb(
#—r )−1∇× #—

G( #—r , #—r ′)− ωϵ( #—r )
#—

G( #—r , #—r ′) = µb(
#—r )−1 #—

I δ( #—r − #—r ′) (2.17)

By combining Equation 2.16 and Equation 2.17, the integral equation is formulated:

#—

E( #—r ) = ιω

∫
V

dr′
#—

G( #—r , #—r ′)·µb(
#—r )

#—

J ( #—r ′) + ω2

∫
V

dr′
#—

G( #—r , #—r ′)· (ϵ( #—r )− ϵb(
#—r ))

#—

E( #—r ′)

−
∫
V

dr′
#—

G( #—r , #—r ′)·µb(
#—r )∇′ + (

1

µ( #—r )
− 1

µb(
#—r )

)∇′ × #—

E( #—r ′)

(2.18)

The first term of the Equation 2.18 is considered to be the incident field, therefore

(2.18) becomes:

#—

E( #—r ) =
#—

E inc(
#—r ) + ω2

∫
V

dr′
#—

G( #—r , #—r ′)· (ϵ( #—r )− ϵb(
#—r ))

#—

E( #—r ′)

−
∫
V

dr′
#—

G( #—r , #—r ′)·µb(
#—r )∇′ + (

1

µ( #—r )
− 1

µb(
#—r )

)∇′ × #—

E( #—r ′)

(2.19)

By substituting the complex permittivity, the two integrals of the above equation

can be combined. Furthermore, by considering non-magnetic materials, µ = µb = 1.

Hence, Equation 2.19 is simplified:

#—

E( #—r ) =
#—

E inc(
#—r ) +

∫
V

dr′
#—

G( #—r , #—r ′)·O( #—r ′)
#—

E( #—r ′) (2.20)

where O( #—r ′) = ω2(ϵ − ϵb) over a finite domain V . In an inverse scattering problem,

the only available information includes the data that are outside the scatterer. As a
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result, the total field is connected to the object through the volume integral equation

2.20.

The integral in equation 2.20 includes information on the scatterer representing the

scattered field O( #—r ) = κ2( #—r ) − κ2b , where κ
2( #—r ) = ω2µ( #—r )ϵ( #—r ) is an inhomogeneous

medium over a finite domain V . The scattered field is non-linear in relation to O( #—r ),

as
#—

E( #—r ) is a function of O( #—r ).

Fig. 2.5 illustrates a representation of an inverse scattering experiment. Each an-

tenna r′′ transmits a microwave signal while the antennas r in the array measure the

scattered field. The solution of the volume integral equation can be solved numerically.

In this study we employ the Born approximation which is presented in the next section.

Figure 2.5: An inverse scattering experiment [111].

2.5 Distorted Born Iterative Method

When O( #—r ) = κ2( #—r ) − κ2b is small, or when the contrast of the scatterer is poor so

the second term on the right of the Equation 2.20 is very small in comparison with the

first term, the former is estimated as
#—

E( #—r ) ≈ #—

E inc(
#—r ). The total field in Equation

2.20 is approximated as follows:
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#—

E( #—r ) =
#—

E inc(
#—r ) +

∫
V

dr′
#—

G( #—r , #—r ′)·O( #—r ′)
#—

E inc(
#—r ′) (2.21)

This formulation is known as the first-order Born approximation. Born approxima-

tion considers a linear integral equation, however for inverse scattering EM problems

the integral equation is non-linear. This is due to the non-linear relationship be-

tween the scattered fields and the inhomogeneity as a result of the multiple scatterers.

Non-linearity increases as the body grows larger relative to the wavelength or as the

contrasts of the inhomogeneity become larger [126]. References [128] and [129] demon-

strate that the effect is less noticeable when operating at a lower frequency range.

Consequently, a higher contrast inverse problem can be addressed at lower frequencies.

A reliable method for resolving the inverse scattering problem includes an optimization

approach. However, when the operating frequency is high, the non-linearity increases

in the inverse problem and this could lead the algorithm to a local minima.

The frequency hopping method has been suggested by W.C. Chew and J.H. Lin

to handle data from multiple-frequency microwave measurements [128]. In this paper

it was suggested that the non-linear effect can be reduced by using the image recon-

structed from low frequency data as the initial guess to the higher frequency problem.

More studies showed that the reconstruction results obtained by using the frequency-

hopping method are significantly improved when compared to using high frequency

data directly [130],[131]. Furthermore, a frequency-hopping MWI algorithm does not

require apriori knowledge of the inhomogeneous body. Our work at [132],[133] also

revealed that frequency-hopping can significantly improve the reconstructed results

in more challenging scenarios. Since frequency-hopping is a well-established concept

in communication and network engineering, from now on we will refer to frequency-

hopping MWI technique as microwave imaging frequency hopping (MWIFH). Results

with MWIFH approach for the problem of brain stroke detection are presented in the

next chapter.

As a result of the non-linearity, consecutive linear approximations are applied to
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solve the non-linear equation [127]. Some popular inverse scattering methods include

the Gauss-Newton optimization algorithms [134], [135] and the conjugate gradient tech-

niques [136]. This study uses the Gauss-Newton solution of the inverse EM scattering

problem that is more commonly known as DBIM [137]. More specifically, the contrast

function O( #—r ′) is the difference between the complex relative permittivity of the back-

ground and object. The non-linear Born integral equation that relates the continuous

spatial distribution of dielectric properties within V to the scattered electric field is

given by:

#—

E( #—r ) =
#—

E inc(
#—r ) +

∫
V

dr′
#—

G( #—r , #—r ′, ϵb)· [κ2( #—r ′)− κ2b ]
#—

E inc(
#—r ′) (2.22)

As the measurement data are available only outside the scatterer in the inverse

scattering problem, the only item available is:

#—

Esca(
#—r ) =

#—

E( #—r )− #—

E inc(
#—r ), r ∈ S (2.23)

where #—r ∈ S and S is the surface outside V . As Esca holds information on the scatterer,

equation 2.22 can be composed as follows:

#—

Esca(
#—r ) =

∫
V

dr′
#—

G( #—r , #—r ′, ϵb)· [κ2( #—r ′)− κ2b ]
#—

E inc(
#—r ′) (2.24)

The resulting equation is linear in κ2( #—r ′)−κ2b . However, multiple data are required

to reconstruct κ2( #—r ′) efficiently. Hence, an iterative method is applied in which the

new κ2( #—r ) is used to estimate κ2b .

Next, an updated
#—

G( #—r , #—r ′, ϵb) is computed until a convergence is reached, as there

are no analytical Green’s functions available for the heterogeneous background profiles

estimated at each iteration of the DBIM. For a point source at a specific antenna feed

point r in V , the Green’s function estimates the field received at a given antenna at

rm [12].
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The inhomogeneous Green’s function
#—

G( #—r , #—r ′, ϵb) is related to the internal electric

field. As a result of the differential equations controlling the Green’s function and

electric field, Green’s function is acquired as follows:

#—

G( #—r , #—r ′, ϵb) ≈
i

ωµ

#—

Ea(
#—r , #—r ′, ϵb) (2.25)

where
#—

Ea(
#—r , #—r ′, ϵb) is the total electric field at the receivers, created by a 2-D point

source inside V filled by the background medium.

By employing the reciprocity theorem, equation 2.25 can by given as [12]:

#—

G( #—r , #—r ′, ϵb) ≈
i

ωµ

#—

Eb(
#—r ′, #—r , ϵb) (2.26)

The 2-D version of DBIM is a simplified version of the 3-D formulation. For the

3-D EM inverse scattering problem, an x− y horizontal plane is considered. Then, the

3-D inverse scattering problem is approximated, considering that only electric fields

at the z-polarized antennas are significant [12]. Therefore, Exi and Eyi are assumed

to be zero and Equations 2.24 and 2.26 are applied for the z-directed tensor elements

of the electric field and the dyadic Green’s function, respectively. In principal, 3-D

algorithms should include all three E-field components in the integral equation of the

scattered field, but previous work [138] has shown that the scalar approximation does

not affect the performance significantly. The validity of the scalar approximation has

been also recently demonstrated for the head imaging problem by our group in [90].

The integral equation can then be linearized by discretizing Equation 2.24 combined

with Equation 2.26 for all Tx-Rx pairs. The linearization of Equation 2.24 results in

the following equation:

A(ω)o = b(ω) (2.27)

where A is an M − by−K propagation matrix, with M being the number of transmit-

receive pairs in the antenna array and K the number of elements in the discretization
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inside the reconstruction domain, while b(ω) is the M − by − 1 vector of the scattered

fields recorded at the receivers. The K − by − 1 vector o is the unknown dielectric

properties contrast function.

Solving the above equation derives into a discrete approximation ô for the true value

of the contrast function o. The approximate contrast function ô is added iteratively to

the background profile. This is then used to calculate the new background electric field

and Green’s function by employing FDTD simulations. The iterative implementation

of this sequence of computations shapes the basis of the DBIM.

The DBIM algorithm starts with an initial guess ϵb0 of the background profile.

Hence, at the i-th iteration, the background electric field and the Green’s function are

calculated for the background profile ϵbi. The discretised equation is given by:

Ai(ω)oi+1 = bi(ω) (2.28)

The background profile is updated as:

ϵbi+1 = ϵbi + ôi+1 (2.29)

In this study, the FDTD simulations compute the fields in the entire region of

interest, including both the background fields at the antennas and the reconstruction

domain V . The complex permittivity values are replaced by the frequency-dependent

Debye model and are updated at each DBIM iteration, thus are used to update the

contrast function. In DBIM method first we need to linearise the problem by using

approximation techniques such as the Born approximation, which results into an ill-

posed problem.
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2.6 Solution of the Linear Inverse Problem

2.6.1 Description of the Linear Inverse Problem

We assume solving for the n-vector x in the system of linear equations also presented

as:

Ax = b (2.30)

where A is a large n×n real symmetric matrix. The system is considered as compatible

or consistent when the real vector b is in the range of A. When A is non-singular,

the system is always compatible and Equation 2.30 has a unique solution. When

A is singular and Equation 2.30 has at least one solution, then the singular system

becomes consistent or compatible. That means that there will be infinite solutions to

the problem. To acquire a unique solution, the minimum-length solution among all

solutions x is chosen. On the contrary, if the singular system has no solution, it is

considered as inconsistent or incompatible. In this instance, the singular symmetric

least-squares problem is solved, and the minimum-length solution is chosen.

x = arg min ||Ax− b||2 (2.31)

More specifically, the minimum-length least-squares problem can be described as:

min||x||2 s.t. x ∈ arg min ||Ax− b||2 (2.32)

In the above equation, when A is linear, a linear inverse problem (LIP) is created.

To approach a LIP, a solution x̂ is defined as a minimiser of a convex object function

f : X = IRm which is defined as follows:

f(x) =
1

2
||Ax− b||2 + λΦ(x) (2.33)
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In the above equation, Φ(x) is a regularization function and λ ∈ [0,+∞] is the

weighting parameter of the penalty term. Regularization methods are applied in MWI

problems, which are ill-posed. By minimising f in the regularization framework, the

ill-conditioness of the problem can be overcome and result into the inversion of A [81].

2.6.2 Direct vs Iterative Methods

Numerical methods for solving linear systems of equations can generally be divided

into two classes. Direct methods, such as the Gaussian elimination method, yield the

exact solution by carrying out a finite number of computations. These methods are

not suitable for very large systems of equations due to rounding errors. Furthermore,

forming and factoring a large matrix can be computationally expensive. However,

direct methods are generally robust and they help to identify some basic structural

properties such as sparsity or symmetry.

Iterative methods solve the system of linear equations by generating a sequence of

vectors that are approximate solutions to the system of equations. An initial guess is

used to approximate the solution and then the solution is used to enhance the approx-

imation of the problem until a termination criterion is met. The round off errors do

not accumulate, as each iteration creates a new approximation to the solution. There-

fore, these methods are useful for problems involving very large matrices. In general,

iterative methods try to estimate the actual solution as quickly and as accurately as

possible, hence the algorithm can be stopped when the sequence of vectors approaches

a solution that estimates the actual solution with minimum possible errors. This results

into less computational cost. In general, if the iterations of the initial guess converge,

iterative methods can be convergent.

There are two main types of iterative methods for linear systems: stationary iter-

ative and non-stationary iterative. Stationary iterative methods solve a linear system

by recasting the original system of equations in terms of its error or residual and can
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be expressed in the simple form:

xk+1 = Bxk + c (2.34)

where neither B nor c depend upon the iteration count k. The four main station-

ary methods are the Jacobi method, Gauss-Seidel method, successive overrelaxation

method (SOR), and symmetric successive overrelaxation method (SSOR).

Non-stationary methods include computations that their information change at

each iteration. A specific type of non-stationary method is the Krylov subspace method

(KSM):

ϕ(x) =
1

2
xTAx− xT b

∇ϕ(x) = Ax− b

(2.35)

The goal is to minimise ϕ(x) over Kκ(A, b) = span
{
b, Ab,A2b, ..., Ak−1b}, with A being

symmetric and positive definite. Most popular Krylov subspace methods include the

Lanczos, Conjugate gradient, GMRES (generalized minimum residual), CGLS (Con-

jugate Gradient method for Least Squares), and MINRES (minimal KSM residual)

[139].

2.6.3 Description of Iterative Shrinkage/Thresholding (IST)

and Two-Step IST (TwIST)

IST Method

Iterative shrinkage/thresholding (IST) algorithms have been studied by a number of

groups in different settings. The minimisation of functions given as sums of two convex

functions was studied by Combettes and Wajs [140]. Figueiredo and Nowak investi-

gated a function Ψ(·) as the log-likelihood function for a restoration problem with

Gaussian noise, applied on an algorithm for EM problems [141]. Bredies, Lorenz and

Maass considered the IST algorithm as a generalised conditional gradient algorithm

[142].
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The IST algorithm aims to find the minimiser in Equation 2.32, which is focused

on the finite-dimensional case, where X = IRm,Υ = IRn and is formed as follows.

xt+1 = (1− β)xt + βΨλ(xt +Kt(y −Kxt)) (2.36)

where β is one of the parameters in the algorithm and β > 0. When β = 1 Equation

2.36 denotes the original IST algorithm. When β ̸= 1, equation 2.36 indicates the

relaxed versions of the IST algorithm. Every iteration of the IST algorithm includes

sums, matrix-vector products by K and KT , and the application of the denoising

operation Ψλ [143].

TwIST Method

In this thesis, we use a method presented by Young in [144] and further analysed at

[84] and [145]. More specifically, Young introduced a method of splitting the matrix

into a structure of a two-step iterative equations, which is called the TwIST algorithm.

In MWI the goal is to approximate an unknown image vector x from the observation

vector y and is described by the linear equation Ax = y. An approach is to determine

a solution x̂ as a minimiser of a convex objective function convex object function

f : X → IR = [−∞,+∞] defined as:

f(x) =
1

2
||y − Ax||2 + λΦ(x) (2.37)

These ill-posed inverse scattering approaches suffer from non-uniqueness and need

regularisation to reach convergence to a significant solution [84]. In the above equation,

Φ(x) is a regularization function for the convex optimisation problem and λ ∈ [0,+∞]

is a weighting parameter.

In the linear system Ax = y with positive definite A, A can be split as A = C−B in

a way that C is positive definite and simple to invert. A stationary two-step iterative

method (TwIST) for solving b is described as
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x1 = x0 + β0C
−1(b− Ax0)

xt+1 = (1− a)xt−1 + axt + βC−1(b− Axt)
(2.38)

for t ≥ 1, x0 is the initial vector and a, β, β0 are the parameters of the algorithm.

For large sparse linear problems, the terms C and R of the splitting of vector A are

modified as follows:

C = I + λDt

R = I −KtK
(2.39)

By considering A = λDt +KtK, the two-step Ax = Kty can be obtained:

xt+1 = (1− a)xt−1 + (a− b)xt + βC−1(xt +Kt(y −Kxt)) (2.40)

If we consider a = 1 and replace the multiplication matrix C−1 with the denoising

function Ψλ, then the two iterative equations are developed as follows:

xt+1 = (1− a)xt−1 + (a− b)xt + βΓλ(xt)

Γλ(x) = Ψλ(x+ At(y − Ax))
(2.41)

where a and β are the TwIST parameters. The term “two-step” is used as the following

estimate xt+1 depends not only on the current solution xt but also on the preceding

solution xt−1. In this study, the weighting parameter λ is defined as zero.

As mentioned in [145], convergence is possible when 0 < a < 2 0 < b < 2a
λm

where

λm stands for the largest eigenvalues of the matrix ATA. The optimised values of the

parameters a and β can be acquired by the factor of optimal asymptotic convergence

below:

a = p2 + 1

β =
2a

λ1 + λm

ρ =
1−

√
k

1 +
√
k

(2.42)
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where λ1 and λm are the smallest and largest eigenvalues of the matrix ATA respec-

tively, and k = λ1

λl
is the inverse condition number [145].

In MWI inverse scattering problems, the matrix Am×n is an ill-posed matrix with

m << n, where m is the number of measurements and n is the number of unknown

dielectric values. The eigenvalues of the matrix ATA range from near to zero to larger

than one, creating an unstable iterative process. As a result, the matrix is normalized

in order to apply TwIST by appropriately selecting the smallest eigen value. Another

crucial component of the TwIST algorithm is the so-called tolerance which controls

how many TwIST iterations are performed at each DBIM step.

2.7 Summary

In this chapter we presented the literature review and state of the art of microwave

medical imaging, as well as, the basic theory of electromagnetic wave propagation

beginning from Maxwell’s equations. Then, we introduced the FDTD method based on

the Yee Cell theory and the absorbing boundary conditions of the method. Moreover,

the Debye model, which is used to express the frequency dependence of the dispersive

human tissues, was analysed. Furthermore, the basic theory of the inverse problems

was presented and the distorted Born iterative method was analysed as a method that

overcomes the non-linearity of an inverse scattering problem by converting the non-

linear problem to a linear problem that then can be resolved by iterative methods.

Finally, the IST/TwIST iterative methods were introduced and analyzed to overcome

the ill-posedness of a linear system.
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Chapter 3

Experimental Validation of MWT

with a Simplified Phantom

In this chapter, we present an initial simulation and experimental validation of a MWT

prototype for brain stroke detection and classification using the DBIM-TwIST al-

gorithm. The experimental validation consists of first preparing and characterizing

gel phantoms which mimic the structure and the dielectric properties of a simplified

brain model with a hemorrhagic or ischemic stroke target. Then, we measure the S-

parameters of the phantoms in our experimental prototype and process the scattered

signals from 0.5 to 2.5 GHz using the DBIM-TwIST algorithm to estimate the dielec-

tric properties of the reconstruction domain. We have also validated the algorithm by

replicating the experimental scenario on CST. The results show that we are able to

detect the stroke target in scenarios where the initial guess of the inverse problem is

only an approximation of the true experimental phantom. Moreover, the prototype

can differentiate between hemorrhagic and ischemic strokes based on the estimation of

their dielectric properties. We also present the reconstruction results from measure-

ments on a 3-D-printed anthropomorphic head model, containing a cylindrical target

simulating the bleeding during a hemorrhagic stroke. In the last section, we present the

work that has been conducted during the secondment at Keysight and has examined
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the preparation of a novel solid material that could improve antenna performance.

3.1 Introduction

As mentioned in the previous chapters, MWT methods are challenged by the high

heterogeneity of the human body [55] as well as the increased computational cost that

arises from the non-linearity of the problem and the non-uniqueness of the solution

[146]. Therefore, DBIM-TwIST solver which has presented in the previous chapter

has been developed in [84] and [147] for microwave breast imaging. The algorithm

was then incorporated successfully in a prototype tested in experiments with simple

cylindrical targets [148]-[150] and showed advantages in comparison with other DBIM

linear solvers like CGLS or IST [84],[147],[150].

Taking into account the challenges of MWT systems and the medical requirements

for brain stroke detection and differentiation, this chapter validates experimentally

DBIM-TwIST and the prototype for stroke imaging, using brain tissue and stroke

mimicking phantoms. To this end, we present reconstruction results across a wide fre-

quency range, which demonstrate the potential of differentiating between stroke types

based on a quantitative estimation of their dielectric properties. Moreover, we show

the method’s robustness to differences in the dielectric properties of the background

medium in our inverse phantoms relative to the phantom used in the experiment. We,

therefore, believe that these experimental results provide further evidence of MWT’s

potential to detect strokes based on microwave images produced by a carefully designed

system and algorithm.

This chapter mainly demonstrates reconstruction results for hemorrhagic and is-

chaemic mimicking targets, and for phantoms with different dielectric properties than

the initial guess used in the inversion.
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3.2 Methodology

3.2.1 Phantoms Preparation and Characterization

Experimental testing of MWT systems is critical in order to assess their potential for

clinical applications. To this end, phantoms that mimic the dielectric and structural

properties of the human head and brain provide efficient, easy to fabricate, and low-cost

testbeds for experimental validation prior to clinical trials. Gelatine emulsions made

of oil, water and gelatine are popular recipes for preparing such phantoms, as they

are cheap and easy to alter, but can suffer from dehydration. McDermott et al. have

proposed an alternative method of constructing solid phantoms made of ceramic and

carbon powder, in which solid phantoms were fabricated with polyurethane, graphite,

carbon black and isopropanol, to mimic the dielectric properties of the brain and the

average properties of the layers surrounding the brain [151]. Solid phantoms are elec-

trically and mechanically stable as well as reusable, but are more difficult to fabricate,

time consuming, more expensive than the liquid phantoms, and not easy to modify for

additional adjustments in properties or geometry. In [152], an alternative method of

3-D printed moulds filled with fluid TX100 salted water mixtures that can mimic the

dielectric properties of head tissues was proposed. Those phantoms are cheap, easy to

alter, reusable and stable. They require, however, plastic mould materials which can

cause disturbances in the scattered signals [153].

Figure 3.1: Schematic representation of the phantoms’ preparation process.

As the aim of this chapter is to validate DBIM-TwIST in more realistic, yet sim-
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plified cases for brain stroke detection and classification, we have constructed simple

phantoms based on the materials and processes proposed in [154] for breast phantoms.

Using different gelatine-oil concentrations compared to those for breast tissues, we have

fabricated tissue-mimicking materials with specific dielectric properties that mimic av-

erage brain tissue, CSF, blood and ischaemia. The process is illustrated in Fig. 3.1.

First, a water-gelatine mixture was prepared and mixed at 70◦C, until the gelatine

particles were fully dissolved into water and the mixture is transparent. Propanol was

added to deal with the creation of air bubbles on the surface. Once heated to 70◦C,

we added a 50% kerosene-safflower oil solution into the water-gelatine mixture and

stirred at the same temperature, until the emulsion had an opaque white colour and

the oil particles were fully dissolved. We kept stirring the mixture until the temper-

ature dropped to 50◦C, when we added the surfactant. Finally, when the prepared

mixture reached 35◦C, we poured it into the mould (170 × 130 mm), and let it set

overnight before we conducted any measurements.

Table 3.1 presents the concentrations of the materials used for the phantoms mim-

icking different brain tissues used in our experiments. We fabricated four tissue-

mimicking phantoms, using as reference the properties reported in [64]. The in-vivo

measurements in [77] reported that properties of an ischaemic vessel in the brain can

vary from -10% up to -25% relative to the dielectric properties of healthy brain tissue

at 1 GHz. As this was the first study that validated experimentally a MWT algorithm

for ischemic stroke in a wide frequency range, we chose to prepare ischaemic phantoms

with the maximum reported difference of -25% relative to the properties of the brain

phantom. We point out that a smaller contrast between the ischemic target and the

brain is challenging and would require a robust algorithm. Further validation to assess

which is the smaller difference that a MWT algorithm can detect successfully is needed,

however this was outside of the scope of this study.
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(a) Measured permittivity of the prepared tissue mimicking phantoms relative to

their reference values.

(b) Measured conductivity of the prepared tissue mimicking phantoms relative to

their reference values.

Figure 3.2: Dielectric properties of the fabricated tissue mimicking phantoms relative

to reference values taken from [65] (to the authors’ knowledge, there is no literature

regarding the dielectric properties of ischaemia in a wide frequency range). Same type

of tissues are presented with the same colour.

For the experimental testbeds it is assumed that, due to similar dielectric properties

of CSF and blood, the same gelatine mixture can be used to mimic the two different

tissues. Fig. 3.2 presents the measured dielectric properties of the prepared phantoms

44



for brain, CSF, blood and ischaemia, respectively. The measurements were conducted

using Keysight’s dielectric spectroscopy kit, over a 0.5–2.5 GHz frequency range at

different points of the phantoms. The plots in Fig. 3.2 show very good agreement with

reference data for the dielectric constant, but quite lower conductivity values for our

phantoms. Specifically for the average brain and CSF phantom, the measurements

values differ from the reference data at a scale of 10-15%, but for the purpose of this

experiment this is acceptable as the dielectric difference between the average brain and

the two types of the stroke is within limits. Furthermore, as MWT relies mostly on

contrast in dielectric constant, the discrepancies in conductivity are not critical for this

initial investigation.

Table 3.1: Concentrations of materials used for 100 ml of tissue mimicking phantoms.

Phantom type Water Powder Kerosene Oil Propanol Surfactant

Average brain 60 ml 11 gr 13 gr 13 gr 2.5 ml 1.5 ml

CSF/Blood 80 ml 16 gr - - 4 ml -

Ischemia 50 ml 8.5 gr 20 gr 20 gr 1.5 ml 1.5 ml

After preparation, phantoms were placed in elliptical plastic acrylonitrile butadiene

styrene (ABS) moulds which aim to mimic the brain’s shape and multi-layer structure,

as shown in Fig. 3.3. We first poured the CSF phantom in the outer layer of 5 mm

thickness. After this was solidified, we extracted the inner mould and filled the re-

maining cavity with the brain phantom. For a one-layer model without the CSF, we

simply extracted the inner mould and poured the phantom in the outer mould directly.

We used an additional cylindrical mould to create a hole (diameter = 30 mm) in the

phantom, which can be filled with the phantom mimicking either blood or ischaemia,

emulating the two cases of brain stroke termed as h-stroke for hemorrhagic and i-stroke

for ischaemic, respectively.
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(a) (b)

(c) (d) (e)

Figure 3.3: Summary of the head model construction: (a) Elliptical 3-D printed mould

to form the CSF and average brain layers; (b) The two-layer model after CSF and av-

erage brain phantoms are poured into the moulds (the CSF is a thin, transparent layer

just inside the blue mould); (c) Creating a hole in the phantom to insert the cylindrical

blood-mimicking target; (d) Final two-layer phantom with a target of blood-mimicking

phantom; (e) Setup with Keysight’s slim form probe to measure the dielectric proper-

ties of the phantoms.

To further investigate the changes in the dielectric properties over time, we pre-

pared two additional brain phantoms and measured their real and imaginary part of
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permittivity on day 1 and day 6 after their preparation. Table 3.2 shows that, over a

period of 6 days, the dielectric properties increased 10–15% compared to their initial

values. This was expected as the water particles have dispersed over time resulting

in higher dielectric properties. Consequently, the phantoms are not reusable, as they

maintain their dielectric properties for a short period of time and can be used for ex-

periments that will take place on day 1. However, the variation of phantoms’ dielectric

properties over time is beneficial for cases in which a small variation is needed for

further evaluation of the algorithm, for example, the cases examined in Section 3.3.3.

Table 3.2: Dielectric properties of brain phantoms over time at 1 GHz.

Measured property Day 1 Day 6

ϵ′ sample 1 44.5 51.2

ϵ′ sample 2 46.2 51.6

ϵ′′ sample 1 0.43 0.51

ϵ′′ sample 2 0.42 0.48

3.2.2 Setup and Data Acquisition Process

Figure 3.5b presents the experimental setup, which was used for conducting the mea-

surements. It consists of a 300 mm diameter cylindrical tank surrounded by an absorber

(ECCOSORBMCS) and enclosed with a metallic shield to decrease surface waves prop-

agating into the perimeter of the tank. The tank was filled with a 90% glycerol-water

mixture to improve impedance matching with the phantom and widen the antenna

operating frequency range [148]. An eight-antenna elliptical array was immersed inside

the tank, and the length of the ellipsoid’s axes was 153 mm and 112 mm. From a

theoretical point of view, in the 2-D scalar case, the choice of the number of antennas

is defined as:

M = 2βα (3.1)
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where α is the radius of the reconstruction domain and β is the wave-number [155].

Taking into account our first working frequency of 0.5 GHz, M is approximately equal

to 15. However, due to the increase of antenna coupling and space constraints as well

as, our previous experimental work which has shown good results using eight antennas

in our MWT prototype, we chose eight antennas to simplify the experiment and the

data acquisition process [148]. However, the feasibility study [56], recommended that

the optimal number of antennas in a MWI prototype is 24. Nevertheless, the work at

[156] presented promising results using a MWT prototype with 24 dipole antennas.

The experiments presented in this study use spear-shaped patch monopole antennas

which operate efficiently in the range of 0.5–2.0 GHz [157] and their design is shown

in Fig. 3.4. This range satisfies the recommendation by the theoretical approach in

[56], which suggests that a working frequency up to 1.5 GHz can achieve the optimal

trade-off between the required resolution and incident power needed for head imaging

applications. The spear-shaped antennas were installed through vertical and horizontal

rulers that enabled us to adjust their height and the array dimensions.

Figure 3.4: The spear-shaped antenna used in our experiments and its dimensions

[131],[156].
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Figure 3.5: (a) Schematic of the simplified “initial guess” model for the inversion (the

ellipsoid’s axes are 153 mm and 112 mm long); (b) The hardware system prototype.

Phantoms were placed at the bottom of the tank, and measurements of the S-

parameters of the scattered signals were conducted in a frequency range of 0.5–2.5

GHz using an eight-port vector VNA from Keysight. The eight spear-shaped antennas

acted both as transmitters and receivers, creating an 8×8 scattering matrix which was

fed into DBIM-TwIST. The linear integral equation was discretized iteratively for the

entire 8x8 transmit-receive pairs. Overall, two sets of measurements were performed for

every imaging scenario. The first set of measurements was performed for the phantom

without a target (NT scenario), and then the process was repeated for the phantom

which included the 30 mm diameter h-stroke or i-stroke target (WT scenario). The

target was placed either in the upper-right or the upper-left section of the phantom

between antennas 1 and 8 or between antennas 1 and 2. These locations were selected

to ensure the algorithm’s efficiency and to validate successfully that it can reconstruct

targets in multiple locations, as well as it does not reconstruct a ghost target in the

middle of the area of interest. Following this process, the S-parameters for NT and

WT scenarios were processed by the DBIM-TwIST algorithm [84].
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3.2.3 Simulation model

The presented system and model were first simulated using CST Microwave Studio

to assess the performance of DBIM-TwIST prior the experiments. Fig 3.6 presents

the simulated prototype that is composed of a tank with a diameter of 300 mm and

filled with 90% glycerol-water mixture. Within the tank we placed an ellipsoid with the

shape of our experimental phantom, filled with the dielectric properties of average brain

tissue assigned from the CST’s library. The list of the dispersive dielectric properties

is shown at Table 3.3. The phantom was surrounded by 8 spear-shaped antennas [157]

in an elliptical arrangement with the same dimensions as the experimental setup. A

cylindrical target (diameter d = 30 mm and height h = 30 mm), which simulates

either the hemorrhagic or the ischemic stroke, was placed at the same position as the

experiment for each scenario. For this examined scenario we conducted four simulations

to acquire the scattered field data: one without the target (NT), one with hemorrhagic

(h-stroke), one with ischemic (25% i-stroke) stroke and one where the target had 50%

lower dielectric constant than the average brain phantom (50% i-stroke).

Table 3.3: Debye parameters of the examined tissues. The Debye parameters of the

average brain and of the h-stroke have been assigned by curve fitting from CST data.

Debye parameters of the 90% glycerol water and of the i-stroke have been obtained

from the experimental dielectric measurements.

Material type ϵ∞ ∆ϵ σs

90% glycerol water 6.56 16.86 0.3232

Average brain 45.8 0.1244 0.7595

H-stroke 59.23 6.142 1.374

I-stroke 25 10 0.01
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Figure 3.6: The simulation system prototype in CST, which uses an ellipsoid head

phantom. The ellipsoid’s dimensions are approximately 170 × 130.

3.2.4 Implementation of the DBIM-TwIST Algorithm

To reconstruct the dielectric properties of the phantoms, we have applied our formerly

developed DBIM-TwIST algorithm which has been presented in detail in our Back-

ground chapter. The background properties of the forward model are updated at each

DBIM iteration with the current solution until the residual error is minimised. The

algorithm solves the linear problem with the TwIST method [145], which splits the

matrix into a two-step iterative equation. The background properties are calculated

and updated at each DBIM iteration with the TwIST solution until the residual error is

minimised, and this yields the reconstruction of the dielectric properties of the imaging

domain.

In a realistic scenario we will not know the exact dielectric properties of the head,

but its dimensions can be available with ad hoc measurements. As it was shown in

[84], it is possible to successfully reconstruct an image by knowing only the shape of

the model. Therefore, the initial model (“starting guess”) for the algorithm which is

shown in Figure 3.5a, consists of a simplified 2-D representation of the experimental

setup, which includes the tank filled with 90% glycerol-water mixture and an ellipsoid
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(153 × 112 mm) that mimics the average brain tissue, whose Debye parameters are

shown at Table 3.3. The dimensions of the ellipsoid represent the actual size of the

phantom’s axial slice at the height where the antennas were located. The algorithm

simplifies the system’s spear-shaped antennas with line sources, which are placed at the

same locations as the experiment. The reconstruction domain contains only the brain

ellipsoid inside the antenna array. The evaluation of the impact of prior information

that is needed for the forward model is explored further in the next chapter.

To calibrate the simulated initial model, we used a NT reference measurement [149].

The experimental data will include some noise from the coupling from cable movement,

environmental noise, and machine noise. To lessen the impact of the measurement

error, a denoising technique must be applied to the experimental data. Furthermore,

we should calibrate the measured and simulated data due to the disparity between the

simulations in the MWT algorithm and the realistic experimental measurements. Also,

we should apply a calibration method to minimise the difference between the FDTD

forward data and the data from the experimental measurement or the realistic CST

model, as our forward model uses point sources as antennas. This calibration method

relies on the signal difference between the experimental and the forward NT scenarios,

to calibrate the signals received from the WT experiment. The difference between the

data obtained by running FDTD forward solver for an empty tank and the no-target

experiment or simulated scenario is calculated and then we can calculate the calibrated

data by adding this difference to the simulation or experimental WT measurement.

We note that an exact NT reference measurement will not be available in a realistic

clinical scenario such as stroke detection. Aside from an “empty tank” measurement

which could always be used as a reference, one could also use a reference signal mea-

sured from an “average homogeneous head phantom” taken from a set of phantoms

with different properties, following the approach used for imaging numerical breast

phantoms in [84], for example. This approach, however, would still provide the algo-

rithm with very different signals from the true NT signals in stroke detection, as the

brain structure is much more complex than any “homogeneous average brain” phan-
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tom, and a more complex, inhomogeneous reference phantom may be better suited for

data calibration. We also note that our DBIM-TwIST approach has been shown to be

capable of reconstructing accurately complex inhomogeneities using simulation data

from complex numerical breast phantoms [84], but the problem of detecting the stroke

inside the complex yet unknown brain structure may be more challenging. We partially

examine this issue in Section 3.3, by using a NT scenario from a “day 1 phantom” and

a target scenario from a “day 6 phantom” with almost 20% higher dielectric properties.

As mentioned in the Background chapter, to take into account the materials’ disper-

sive dielectric properties, we have employed a first-order Debye model for the average

brain phantom and the 90% glycerol-water mixture:

ϵs(ω) = ϵ∞ +
∆ϵ

1 + jωτ
+ j

σs
ωϵ0

(3.2)

where ϵ∞, ∆ϵ and σs are the parameters of the single pole Debye model provided in

Table 3.4. We have used the parameters of Table 3.4 together with a forward solver

based on the FDTD method to calculate the scattered and background fields, and

then applied DBIM-TwIST to reconstruct the dielectric properties inside the imaging

domain with a grid voxel size of 2 mm. The complex permittivity values are replaced

by the frequency-dependent Debye model of Equation (3.2) and are updated at each

DBIM iteration, thus are used to update the contrast function. The reconstructed

results present estimated real and imaginary parts of permittivity which are calculated

from the updated Debye models at each frequency [12]. Moreover, we have performed

the same number of 15 DBIM-TwIST iterations at each frequency for both single and

multiple frequency reconstructions attempted in this study. The running time for each

DBIM iteration was approximately 8 seconds using Matlab R2019b run on an Intel i7

processor with 16 GB RAM memory, leading to an execution time of 2.5 minutes for

15 iterations of DBIM at each frequency. By means of an example, the total execution

time for the case of the h-stroke with one layer and MWIFH between 0.5 and 1.5 GHz

and while using Matlab, was 24 minutes. We note that this is the worst-case scenario

as in a realistic prototype the execution time will be significantly less with the use of
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micro-controllers and field-programmable gate arrays (FPGAs).

Table 3.4: Debye parameters of materials after curve fitting to measured dielectric

properties.

Material type ϵ∞ ∆ϵ σs

90% glycerol-water 6.56 16.86 0.3232

Average brain 30 10 0.147

3.3 Reconstructed Results

First, we have assessed numerically the performance of DBIM-TwIST by replicating the

experimental scenario on CST. Then, in the first set of experiments, our aim is to show

our method’s potential to determine the type of stroke from estimating its dielectric

properties. To this end, we have examined two phantoms of average brain tissue in

which we inserted a target emulating h- and i-stroke, respectively. In the second set

of experiments, our aim is to test detection performance in cases where the inverse

experimental model is slightly different compared to our forward model. To this end,

we have examined two additional phantoms with h-stroke targets. The first one is a

two-layer phantom including a thin CSF-mimicking layer, and the second one is a brain

phantom which we let set for 6 days before conducting the WT measurements so that

its properties are different in comparison with the first day when the NT measurements

were taken.

3.3.1 Initial Numerical Results

Figs. 3.7 - 3.9 present the reconstructed real and imaginary parts of the complex per-

mittivity for the phantom inside the prototype of Fig. 3.6 containing h-stroke and

i-stroke targets as well as a target which has 50% lower dielectric constant than the

average brain phantom as an extreme case (50% i-stroke). Single-frequency reconstruc-

54



tions in the range 0.7–1.5 GHz are presented in Figs. 3.7 and 3.8, while results from

the MWIFH approach are shown in Fig. 3.9.

These results reveal that we can successfully detect the target within the area of

interest for the real part of permittivity of the examined cases by using DBIM-TwIST,

but we cannot detect the targets for the imaginary part of permittivity. However, there

is a direct distinction in the estimation of the dielectric properties for all the three

targets when reconstructing the real part of permittivity. Moreover, the reconstruction

results show further improvement when using the MWIFH approach which supports

the initial results presented at [131] and [132]. Namely, for the single frequency results

of Fig. 3.7 the estimated value of real permittivity ϵ′ at 1.2 GHz is 44.87, 21.04 and

18.914 for for h-stroke, 25% i-stroke and 50% i-stroke, respectively. MWIFH results

of Fig. 3.9 estimate the value of real permittivity ϵ′ at 1.5 GHz as ϵ′=44.38, ϵ′=32.44

and ϵ′=28.12 for for h-stroke, 25% i-stroke and 50% i-stroke, respectively. The real

permittivity of h-stroke, 25% i-stroke and 50% i-stroke in the simulation model within

the frequency range of 0.7-1.5 GHz, is roughly 65, 33 and 22 respectively, which shows

that the reconstructed permittivity of the targets is acceptable estimation of the real

target values.

3.3.2 Detection and Classification of Stroke Targets

Figs. 3.10 - 3.12 present the reconstructed real and imaginary parts of the complex

permittivity for the phantom inside the prototype of Fig. 3.5b containing h-stroke and

i-stroke targets as well as a target which has 50% lower dielectric constant than the

average brain phantom as an extreme case. Images illustrate the whole tank, however,

the reconstruction domain contains only the brain ellipsoid inside the antenna array.

Representative single-frequency reconstructions in the range 0.7–1.5 GHz are shown in

Figs. 3.10 and 3.11, while results fromMWIFH approach in the same range are shown in

Fig. 3.12. These images suggest that the dielectric constant (real part) of 25% i-stroke

is detectable at low frequencies albeit with more artifacts in the images, whilst the h-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7: Simulation results from single frequency reconstructions of the real part

of the complex permittivity for: (a–c) h-stroke, (d–f) 25% i-stroke and (g–i) 50%

i-stroke.

stroke and the 50% i-stroke, is clearly visible in frequencies above 1.1 GHz for both real

and imaginary parts. As the dielectric contrast between the constructed 25% i-stroke

and brain phantoms is lower than that of h-stroke and 50% i-stroke, detecting the 25%

i-stroke target is more challenging than the other cases, with unsuccessful results for

the imaginary part of the complex permittivity. The most encouraging observation

from these figures, however, is that there is a clear distinction in the estimation of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8: Simulation results from single frequency reconstructions of the imaginary

part of the complex permittivity for: (a–c) h-stroke, (d–f) 25% i-stroke and (g–i)

50% i-stroke.

the dielectric properties for all the three targets as well as, clear improvement when

using MWIFH: the MWIFH results of Fig. 3.12 estimate the value of real permittivity

ϵ′ at 1.5 GHz as ϵ′=33.8, ϵ′=20.9 and ϵ′=56.25 for 25% i-stroke, 50% i-stroke and h-

stroke, respectively. The real permittivity of h-stroke, 25% i-stroke and 50% i-stroke

in the experimental model within the frequency range of 0.7-1.5 GHz, is roughly 67,

33 and 22 respectively, which shows that the reconstructed permittivity of the targets

57



(a) (b) (c)

(d) (e) (f)

Figure 3.9: Reconstructed: (a–c) real and, (d–f) imaginary part of the complex

permittivity for simulation h-stroke (left), simulation 25% i-stroke (middle) and simu-

lation 50% i-stroke (right). The complex permittivity was calculated at 1.5 GHz using

MWIFH approach in a frequency range of 0.7–1.5 GHz.

is acceptable estimation of the real target values.

3.3.3 Stroke Target Detection for Brain Phantoms with Un-

known Properties

To move towards more realistic imaging scenarios where the brain’s distribution of tis-

sues will be more complex and their dielectric properties unknown, we have evaluated

experimentally the robustness of DBIM-TwIST when the structure and dielectric prop-

erties of the brain phantom are slightly different from the “initial guess” of Fig. 3.5a.

To examine the effect of differences in the dielectric properties of the average brain

phantom where the target is inserted, we prepared a phantom and conducted NT mea-

58



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.10: Results from single frequency reconstructions of the real part of the com-

plex permittivity for: (a–c) h-stroke, (d–f) 25% i-stroke and (g–i) 50% i-stroke.

surements after the phantom had set, and then kept it for a week, in which we recorded

the change of its dielectric properties over time. We then acquired WT measurements

for h-stroke on day 6, to ensure a change in the phantom’s dielectric properties from

the NT measurements on day 1. In addition to this test, we also performed experi-

ments with a two-layer phantom (CSF and average brain). To this end, we added a

CSF layer of 5 mm thickness using the process described in Fig. 3.3, and with dielectric

properties plotted in Fig. 3.2.

Fig. 3.13 presents the reconstructed images of the real and imaginary parts of com-

plex permittivity using the data obtained by the measurements at days 1 and 6 after the

preparation of the brain phantom, as well as the reconstructed images of the two-layer
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.11: Results from single frequency reconstructions of the imaginary part of the

complex permittivity for: (a–c) h-stroke, (d–f) 25% i-stroke and (g–i) 50% i-stroke.

phantom including the CSF layer. These reconstructions were produced by MWIFH in

the range of 1.1–2.0 GHz. The values of the reconstructed real and imaginary parts for

the h-stroke target at 2 GHz are ϵ′ = 49.28, ϵ′′ = 12.19 for the one-layer phantom, and

ϵ′ = 62.38, ϵ′′ = 8.48 for the two-layer phantom, respectively. As in the previous cases,

the real permittivity of h-stroke, in the experimental model, is roughly 67 at 2 GHz.

With the exception of the imaginary part for the two-layer phantom, these images

provide a clear indication of where the h-stroke is located and estimate its dielectric

constant with satisfactory accuracy. These reconstructions confirm that the algorithm

is sufficiently robust to detect and localize the target successfully in cases with “mild”

uncertainties in the true background medium in the experiment and its “initial guess”
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(a) (b) (c)

(d) (e) (f)

Figure 3.12: Reconstructed: (a–c) real and, (d–f) imaginary part of the complex

permittivity for h-stroke (left), 25% i-stroke (middle) and 50% i-stroke (right). The

complex permittivity was calculated at 1.5 GHz using MWIFH approach in a frequency

range of 0.7–1.5 GHz.

in the imaging algorithm.

3.4 Reconstructed Results Using an Anthropomor-

phic Brain Phantom

This section presents the reconstruction results using a 3-D-printed anthropomorphic

head model. To perform the measurements, the head model was immersed inside

our imaging tank and the image reconstructions have been obtained through the 2-D

DBIM-TwIST algorithm.
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(a) (b)

(c) (d)

Figure 3.13: (a) Reconstructed real and (b) imaginary part of the complex permit-

tivity for the phantom inside the tank of Figure 3.5b, when NT and “h-stroke target”

measurements were conducted at day 1 and day 6 after the preparation of phantom, re-

spectively. (c) Reconstructed real and (d) imaginary part of the complex permittivity

for a two-layer phantom with an “h-stroke target” and a CSF layer which is unknown

to the imaging algorithm. The complex permittivity was calculated at 2 GHz using

MWIFH approach in 1.1–2 GHz.

3.4.1 Experimental Configuration

The setup included the same cylindrical tank that was presented in Subsection 3.2.2.

The transmitter and receiver spear-shaped antennas were placed in an elliptical ring

inside the acrylic tank and were connected to the multiport Keysight M9019A Vec-

tor Network Analyzer (Fig. 3.14). We prepared gelatin-oil mixtures derived from the

phantom preparation technique which has been fully analyzed in Section 3.2. Overall,

62



we prepared mixtures for average brain and blood. Tables 3.5 and 3.6 show the con-

centrations of materials used for each solution and their measured dielectric properties

(at 1 GHz), respectively.

Figure 3.14: Measurement hardware and setup.

Table 3.5: Quantities of materials used for 100 ml of human tissue mimicking phantoms.

Average brain Blood

Water 60 ml 80 ml

Gelatin powder 11 gr 16 gr

Kerosene 13 ml -

Safflower oil 13 ml -

Propanol 2.5 ml 1.5 ml

Surfactant 4 ml -

After preparation, the average brain solution was poured into a 3-D printed anthro-

pomorphic head mould of Fig. 3.15 (a), by slowly pouring it inside, through the hole

on the top of the mould. We conducted two sets of measurements, one with one layer

of average brain (NT case) and one with an additional target with blood’s dielectric

properties (WT case). To place the target, after performing the NT measurements we

created a slice in the upper part of the mould, by using a thin string and detaching

63



Table 3.6: Dielectric properties of tissue mimicking phantoms at 1 GHz.

ϵ′ ϵ′′

Average brain 41.1 0.35

Blood 62.3 0.56

(a) (b) (c)

Figure 3.15: Anthropomorphic head model and the preparation stages of the phantom

layers.

this part (Fig. 3.15 (b)). Then we used a cylindrical mould to extract a part of the

brain and create a cylindrical cavity (diameter = 30 mm) which was filled with the

blood target mixture. The target was eccentrically placed 40 mm horizontally and 25

mm vertically from the center of the phantom (Fig. 3.15 (c)). Lastly, the upper head

section was re-attached, and WT measurements were performed.

3.4.2 Reconstructed Results

Figs. 3.16 (a), (b) and (c) depict the reconstructed real permittivity for the head

model, for three different single frequencies of 0.7, 0.9 and 1.2 GHz, respectively. The

dimensions of the reconstruction domain is 202 × 158 mm for the plastic layer and

170 × 127 mm for the average brain layer. This corresponds to the dimensions of
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the phantom’s axial slice at the height where the spear-shaped antennas are placed.

These results show that DBIM-TwIST is capable of detecting the blood mimicking

target in its approximate position when we use a more realistic phantom, through the

subtraction between the head with and without the target.

(a) (b) (c)

Figure 3.16: Single frequency reconstructions of the real permittivity for (a) 0.7, (b)

0.9, and (c) 1.2 GHz.

3.5 Fabrication and Dielectric Measurements of a

Solid Matching Medium for Microwave Imag-

ing Systems

As mentioned in the Introduction, secondments in beneficiaries of the EMERALD

network have been a major part of the project. The second secondment took place in

Keysight, Austria from November 2019 to December 2019. The initial objective of this

secondment was to understand how the measurement setup affects the data acquisition

process and quality. Therefore, at the beginning, work was focused on understanding

how the VNA calibration works, data structures and how errors are calculated using

Ecal and Keysight’s calibration algorithms.
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(a) (b) (c)

Figure 3.17: Dielectric probe measurements: (a) Performance probe, (b) Slim probe,

(c) High-temperature probe.

An additional task of this secondment was the fabrication and dielectric measure-

ments of high-permittivity materials that could be used to reduce the signal loss due to

mismatches of the head’s different layers. To this end, mixtures of polydimethylsilox-

ane (PDMS) with ceramic powders (ZnO or BaTiO3) were prepared. First PDMS was

mixed with the ceramic powder using a driller until the mixture was homogeneous, and

then the mixture was placed in a vacuum chamber for the degassing step. The samples

were placed into a heating plate for the setting phase and the dielectric measurements

were conducted with three different probes: performance, slim and high-temperature,

respectively (Fig. 3.17) on the next day. Fig. 3.18 shows the permittivity measure-

ments for different concentrations and types of PDMS - ceramic powder mixtures. It

is noticed that the addition of ceramic powder increases the permittivity of the PDMS

but not to the level that would be useful for MWI applications. Moreover, it was ob-

served that a higher percentage of ceramic powder increases the elasticity of the PDMS

samples. The work that was initiated in this secondment was further examined by the

group in Keysight and experimental results were presented in the joint paper published
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in the special issue of Diagnostics [53].

(a)

(b)

(c)

Figure 3.18: Permittivity measurements for 7 samples.
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3.6 Conclusion

In this chapter, we have presented an initial experimental assessment of a microwave

tomography prototype based on the DBIM-TwIST algorithm for brain stroke detection

and classification. This MWT system was able to differentiate the real permittivity

between targets that mimic hemorrhagic and ischaemic stroke, based on the difference

in their estimated dielectric properties. However, it wasn’t able to successfully detect

and differentiate the imaginary part of permittivity between targets, for the examined

cases. This is expected, as the dielectric difference between the head tissues is larger

for permittivity than conductivity. As MWT is dependent mainly on the difference

in permittivity, these differences are not crucial for this examination. These results

also have benefited from reconstructions in multiple frequencies based on the use of

our in-house developed spear-shaped antennas which operate in a wide range from 0.5

GHz to 2.5 GHz. Additionally, the system was able to reconstruct the target inside

a brain phantom even when its structure or dielectric properties are different from

the “initial guess” used in the inversion, as well as in the presence of a more realistic

phantom structure. Moreover, the flexible tuning of the DBIM-TwIST parameters

allows an easy adaptation of the algorithm to the inverse problem at hand. We note

that, as with most non-linear inverse methods, the DBIM-TwIST parameters must

be tuned based on considerations that relate to both the imaging problem and the

experimental prototype. Furthermore, experimental measurement errors may result in

certain frequencies providing more accurate reconstructions than others. As a result,

the maximum frequency is not the same in every examined case. In this thesis, we

chose to present the maximum frequency in which each scenario converges successfully.

We note that at every case, the minimum and the maximum frequency are within the

antenna operational bandwidth [157]. We note that the experimental phantoms in this

chapter are oversimplified in relation to the true head and brain anatomy. However,

this simplification was necessary to show that our system and algorithm have the

potential to detect and differentiate between the two different stroke types based on
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a quantitative estimation of their dielectric properties. The imaging performance of

the algorithm and prototype depends strongly on the complexity of the brain, and

hence, the experimental phantom that represents it. The skin and skull, for example,

introduce strong scattering layers, and the distribution of the CSF can be complex and

can obscure the signal from the target. Therefore, in the next chapter, we present an

anatomically complex head model and evaluate the performance of DBIM-TwIST for

the problem of brain stroke detection. Finally, in this chapter, we have presented the

work that has been done during the secondment at Keysight that has examined the

preparation of a novel solid material that could improve antenna performance.
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Chapter 4

Experimental Validation of 3-D

MWT for a Complex Head

Phantom

4.1 Introduction

In this section we aim to validate the 3-D DBIM-TwIST algorithm for the problem of

brain stroke detection and differentiation, using an anatomically accurate, multi-layer

head phantom. To this end, we have developed an anatomically complex head phantom

which mimics various brain tissues and also includes a target mimicking hemorrhagic

or ischemic stroke. We simulated the model and setup using CST Microwave Studio

and then used our experimental imaging setup to collect numerical and measured data,

respectively. We then used our DBIM-TwIST algorithm to reconstruct the dielectric

properties of the imaging domain for both simulated and measured data. Results from

our CST simulations showed that we are able to locate and reconstruct the permittivity

of different stroke targets using an approximate initial guess. Our experimental results

demonstrated the potential and challenges for successful detection and differentiation

of the stroke targets.
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4.2 Evaluation of the Impact of Prior Information

(Initial Guess)

In MWT, the arisen EM problem is non-linear and ill-posed, therefore a robust algo-

rithm is essential. As some apriori information is needed, MWT algorithms should

allow the tuning of the parameters depending on each examined scenario [79]. Specif-

ically for brain imaging, the high dielectric contrast between the different head layers

adds an additional challenge to the successful detection and differentiation of brain

stroke, using MWT [55]. Therefore, before we validate DBIM-TwIST for more chal-

lenging scenarios, there is a need to explore what apriori knowledge is required to

achieve a successful differentiation of the types of stroke for a complex scenario. In

this section, we investigate whether an improved approximate model as the initial

guess could result in stronger reconstructed results, using 3-D DBIM-TwIST and an

anatomically accurate head phantom.

4.2.1 Zubal model and Numerical Configuration

The proposed system and model were simulated using CST Microwave Studio. Fig. 4.1

shows the simulated prototype that is composed of a tank with a diameter of 300 mm

and filled with 90% glycerol water mixture. Within the tank we placed a six-layer

brain model with the shape of the axial slice of the original MRI-derived Zubal head

phantom that emulated our experimental phantom [158]. In each layer we allocated

the dielectric properties of the equivalent head tissues that were assigned from CST’s

library. The dispersive dielectric properties of the Zubal head phantom as well as the

matching medium’s are shown in Table 4.1. The phantom was surrounded by 16 spear-

shaped antennas [159] in two arrays and in an elliptical arrangement with major and

minor axes equal to 205 mm and 148 mm respectively. A cylindrical target (diameter

d = 20.3 mm and height h = 100 mm), which mimics either the hemorrhagic or the

ischemic stroke, was placed at the left of the phantom, inside the white matter area.
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For each scenario we conducted three simulations to acquire the scattered field data:

one without the target (NT), one with hemorrhagic (h-stroke) and one with ischemic

(i-stroke) stroke, respectively. We increased the complexity of the Zubal phantom by

adding one layer at each time and allocating the dielectric properties of the average

brain to the rest of the tissues. Our final six-layer phantom which includes skin,

fat, bone, CSF, grey matter, white matter and the stroke-like target are presented at

Fig. 4.1. Overall, we examined five scenarios of different complexities, resulting in a

total of 15 CST simulations.

(a) (b)

Figure 4.1: The simulation system prototype in CST, which uses a numerical head

model based on the Zubal head phantom. The head model’s dimensions are approxi-

mately 170 × 130 × 100 mm. Left: X-Y slice, Right: X-Z slice.

4.2.2 Implementation of the 3-D DBIM-TwIST algorithm

The DBIM method which solves the non-linear EM inverse scattering problem by

forming iteratively, a system of scattering equations under the Born approximation

for every transmit-receive pair, was presented in the previous chapters. For the 3-

D DBIM, the electric field and the dyadic Green’s function have been calculated by

taking into account an x − y horizontal plane, considering that only electric fields at
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Table 4.1: Debye parameters of the forward model. The Debye parameters for the

head tissues have been assigned by curve fitting from CST data. Debye parameters

of the 90% glycerol water and of the i-stroke have been obtained from experimental

dielectric measurements that have been presented in [158].

Material type ϵ∞ ∆ϵ σs

90% glycerol water 6.56 16.86 0.3232

Average brain 45.8 0.1244 0.7595

Skin 41.17 11.15 0.6672

Fat 5.331 0.6564 0.037

Bone 11.59 1.932 0.0788

CSF 67.71 5.46 0.21

Grey matter 49.63 11.66 0.7

White matter 36.67 8.6 0.39

H-stroke 59.23 6.142 1.374

I-stroke 25 10 0.01

the z-polarized antennas are important [12], [90]. To capture the frequency-dependent

behaviour of the human tissues, we implemented the single-pole Debye model for the

complex permittivity which was also presented in Chapter 2 and 3.

For each case, we examined two forward models. The first one consisted of a

simplified representation of the simulation setup, which includes the tank filled with

the matching medium and an ellipsoid that mimics the average brain tissue. The

latter included a multi-layer ellipsoid that represents a simplified version of the multi-

layer phantom. By means of an example, Fig. 4.2 presents the forward models for the
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three and six-layer Zubal phantom, as well as the forward model filled only with the

average brain dielectric properties. In each layer of the forward model we assigned the

Debye parameters of the equivalent head tissue which are presented in Table 4.1. The

algorithm considered the system’s spear-shaped antennas as line sources, which were

placed at the same locations as the simulation. To calibrate the simulated model, we

used the NT reference measurement.

Figure 4.2: Top left: Top view of the forward model for the three-layer Zubal head

phantom (skin, fat, bone); Top right: Top view of the forward model for the six-layer

Zubal head phantom (skin, fat, bone, CSF, grey matter and white matter); Bottom:

Top view of the forward model filled with the average brain. The dimensions of the

outer layer of the forward model are 170 × 130 × 100 mm.

For the examined scenarios, we measured the S-parameters from 0.5 to 1.5 GHz

and we fed the scattered signals into the algorithm. The computation time for the
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forward solver for each antenna was approximately 17 seconds. The execution time

for each antenna was 80 seconds resulting in a total execution time of 7.1 hours for 20

iterations at each frequency. In this study, we employed the Nvidia GPU Tesla K20c

to accelerate the 3-D FDTD implementation with CUDA which was developed by our

group [90], and Matlab MEX functions to integrate the GPU code with our DBIM

code in Matlab. The implementation was based on Matlab R2020b, CUDA 8.0 and

VS 2015.

4.2.3 Results

We present the reconstruction results using the 3-D version of DBIM-TwIST algorithm,

for the region surrounded by the antenna array shown in Fig. 4.1. In addition, we define

the relative error of ϵ∞ in the target area, between the inverse and the forward model

as:

er =
||ϵ∞original− ϵ∞reconstructed||2

||ϵ∞original||2
(4.1)

ϵ∞ is the concatenated vector representing the spatial variation of ϵ∞ inside the

reconstruction domain. The error metrics are calculated at each DBIM iteration and

can be used to compare the quality of the reconstructed images as well as choose the

optimal number of iterations. For the examined cases, we chose 20 iterations as our

previous experiments has shown that it is a good trade-off between the quality of the

images and the total computational time.

Figs. 4.3-4.7 demonstrate the reconstructed results at the horizontal cross-section

at the level Z=60 mm achieved with 3-D DBIM-TwIST for 1 GHz, for the case of h-

and i-stroke respectively, for both types of forward models. The size of the 3-D domain

is 100 mm × 100 mm × 100 mm with a resolution of 2 mm. Figs. 4.3-4.6 reveal that we

achieve similar reconstructed images while using the multi-layer initial model for both

stroke targets. We also note that the reconstructed values of the targets, are closer

to their real values when using the homogeneous forward model. However, in Fig. 4.7
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(a) (b)

(c) (d)

Figure 4.3: Reconstructed results of the real part of the complex permittivity for the

Zubal model including the skin and average brain layers, for the cases of hemorrhagic

and ischemic stroke respectively. Top: Homogeneous forward model; Bottom: Forward

model that includes the skin and average brain layers.

we observe that the quality of the reconstructed h-stroke is better when we apply a

homogeneous initial model, while for the case of i-stroke, we achieve fewer artifacts

when using a multi-layer forward model.

Fig. 4.8 plots the er of ϵ∞ in the target area, as a function of DBIM iterations. We

observe that in most cases the values between the homogeneous and the multi-layer

forward model are similar both for hemorrhagic and ischemic stroke. However, we also

note that for the six-layer Zubal model, h-stroke’s er for the multi-layer forward model

is higher than the equivalent value for the homogeneous forward model, while we notice

the opposite for the i-stroke. The plots of Fig. 4.8 further validate what we observed

from the reconstructed images.

Overall, the results indicate that for most scenarios, the use of a homogeneous for-

ward model produces slightly better reconstructed images than the multi-layer forward
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(c) (d)

Figure 4.4: Reconstructed results of the real part of the complex permittivity for the

Zubal model including the skin, fat and average brain layers, for the cases of hemor-

rhagic and ischemic stroke respectively. Top: Homogeneous forward model; Bottom:

Forward model that includes the skin, fat and average brain layers.

model. However, for the case of Zubal head phantom in the presence of all head tissues,

we observe that we achieve better results while applying an improved forward model,

for the case of ischemic stroke where the dielectric contrast between the target and

the background tissue is less than the equivalent dielectric difference in the presence of

hemorrhagic stroke. We note that for the DBIM-TwIST there is no “best parameter”

that improves the quality of the reconstructed images. One of the advantages of this

method lies on its adaptive parameters that can be adjusted according to each scenario.
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(c) (d)

Figure 4.5: Reconstructed results of the real part of the complex permittivity for

the Zubal model including the skin, fat, bone and average brain layers, for the cases

of hemorrhagic and ischemic stroke respectively. Top: Homogeneous forward model;

Bottom: Forward model that includes the skin, fat, bone and average brain layers.

4.3 Comparison of 2-D and 3-D DBIM-TwIST for

a 3-D Head Imaging Problem

In this section we present an initial validation and assessment of the 3-D algorithm for

the case of a simplified homogeneous elliptical brain phantom in the presence of a small

stroke-like target, surrounded by a 3-D antenna array arranged in two cylindrical rings.

We also compare the capabilities of the 2-D and 3-D versions of the algorithm to confirm

the hypothesis that 3-D DBIM-TwIST can result in more accurate reconstructions for

3-D inverse problems.

Fig. 4.9 illustrates the brain phantom immersed in our imaging setup presented

at [159]. The phantom is surrounded by 16 spear-shaped antennas in two different

arrays, which form two offset rings of 8 elements each. To mimic the h-stroke or
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(c) (d)

Figure 4.6: Reconstructed results of the real part of the complex permittivity for the

Zubal model including the skin, fat, bone, CSF and average brain layers, for the cases

of hemorrhagic and ischemic stroke respectively. Top: Homogeneous forward model;

Bottom: Forward model that includes the skin, fat, bone, CSF and average brain

layers.

the i-stroke, we have examined the same configuration in the presence of a 20 mm

diameter and 20 mm height target, located between the two heights of the antennas.

The Debye parameters of the target and of the average brain have been assigned by

curve fitting from CST data [159]. As explained before, the inverse model used in our

imaging algorithm considers a 2-D (112 × 153 mm), or a 3-D (112 × 153 × 100 mm)

ellipsoid, for the two versions of the algorithm respectively. The algorithm considers

point sources which form an elliptical array and are located at the same height in 3-D

case as the antennas in the CST simulation.

Figs. 4.10- 4.13 present the reconstructed permittivity and conductivity at 1 Ghz

for the phantom of Fig. 4.9 for h- and i-stroke respectively, using both 2-D and 3-D

versions of the DBIM-TwIST. More specifically, Fig. 4.10 shows the 2-D reconstructed
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(c) (d)

Figure 4.7: Reconstructed results of the real part of the complex permittivity for the

Zubal model including all the head layers, for the cases of hemorrhagic and ischemic

stroke respectively. Top: Homogeneous forward model; Bottom: Forward model that

includes all the head layers.

permittivity and conductivity using either the top or the bottom array of antennas in

our forward model. The results vary between the two rows due to the different gap size

between each array of antennas and the matching medium-air interface. Figs. 4.11-

4.13 demonstrate the sagittal, axial and coronal planes at Y-Z, X-Z and X-Y slices

from the 3-D reconstructions, respectively.

We observe that both versions of the algorithm can successfully locate and detect the

dielectric permittivity of the target. However, the 3-D algorithm achieves more accurate

results for both cases of stroke, as it combines information from the S-parameters

collected from both rings of antennas. Importantly, the 3-D DBIM-TwIST leads to a

clear improvement in estimating the target’s conductivity relative to 2-D reconstruction

based on either ring. Having established the benefits of 3-D imaging, our subsequent

results focus on validating the 3-D DBIM-TwIST experimentally, as well as comparing
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(b)

Figure 4.8: Top: Relative error of the ϵ∞ in the target area for h-stroke at 1 GHz;

Bottom: Relative error of the ϵ∞ in the target area for i-stroke at 1 GHz.

its performance with the 2-D version of the algorithm. The experimental setup and

respective CST model, however, do not include two antenna rings due to the smaller

size of the experimental phantom. In this respect, the setup in these results resembles

a 2-D configuration, but the 3-D results are still relevant as they are derived from the

3-D algorithm which reconstructs a fully 3-D region.
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Figure 4.9: CST model of a simplified brain phantom surrounded by 16 antennas in 2

elliptical arrays; Top left: X-Z slice; Top right: Y-Z slice; Bottom: X-Y slice.

4.4 Experimental Methodology

4.4.1 Head Phantom Construction

We derived our Zubal phantom from a 2-D axial x−y slice taken from the original MRI-

derived Zubal head phantom [158], which was then extended by a few cm along the z

axis. We imported this 3-D model in CAD software to simplify its structure so that it is

easy to fabricate and work with, without sacrificing much of its complexity (Fig. 4.14(a)

and Fig. 4.14(b)). The CAD model was designed by Ioannis Sotiriou, a member of our

research group at King’s College London. For our simulation, we imported the CAD

model on CST which from now on we will refer to as the “Zubal model”. The simulated

phantom and setup are shown in Fig. 4.14(c) and Fig. 4.14(d). We filled each layer of

the phantom with the dielectric properties of different head tissues having created an
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(e) (f) (g) (h)

Figure 4.10: First row (a) and (b): Reconstructed permittivity for the phantom of

Fig. 4.9, for h- and i-stroke using 2-D DBIM-TwIST and the bottom array of antennas;

First row (c) and (d): Reconstructed conductivity for the phantom of Fig. 4.9, for h-

and i-stroke using 2-D DBIM-TwIST and the bottom array of antennas; Second row

(e) and (f): Reconstructed permittivity for the phantom of Fig. 4.9, for h- and i-

stroke using 2-D DBIM-TwIST and the top array of antennas; Second row (g) and (h):

Reconstructed conductivity for the phantom of Fig. 4.9 for h- and i-stroke using 2-D

DBIM-TwIS and the top array of antennas.

anatomically accurate 5-material head model. We placed a cylindrical target at the top

right, inside the white matter area, with radius ρ = 12.5 mm and height h = 100 mm.

The phantom was immersed in our imaging setup presented in [159], which includes

eight spear-shaped antennas placed in an elliptical array configuration with major and

minor axes equal to 205 mm and 148 mm, respectively.

To validate the algorithm experimentally, we prepared a novel gelatine-based head

phantom in accordance with the anatomy and dimensions of the Zubal model. The

mould form was designed and 3-D printed by Ioannis Sotiriou and consists of six

compartments which create the sequence of the tissue-mimicking materials needed for
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(a) (b)

(c) (d)

Figure 4.11: First row: Y-Z slice of 3-D reconstructed permittivity for the phantom of

Fig. 4.9 for h- and i-stroke; Second row: Y-Z slice of 3-D reconstructed conductivity

for the phantom of Fig. 4.9 for h- and i-stroke.

our assembly. The moulds were fabricated using a Zortrax M200 FDM 3-D printer in a

complementary manner using two moulds shown in Fig. 4.15(a) and Fig. 4.15(b). This

methodology for the creation of the phantom allows a more accurate validation as it

avoids the presence of 3-D printed infill patterns that irregularly encapsulate fluids.

The adverse effect of the presence of plastic in phantoms which use it as support was

demonstrated in [160].

Having prepared the tissue-mimicking gels, we poured them into the desired com-

partments in Fig. 4.15(a) and Fig. 4.15(b), and we allowed them to dry for at least 8

hours depending on their concentration. To extract the gels from the moulds we ini-

tially submerged the moulds in warm water so the outer layers could slide out easier,

whilst we were applying small amount of air pressure at the lower part of the mould

(Fig. 4.16). Once the gels were extracted, we stacked the materials within each other

and wrapped the assembly using a thin plastic film to prevent it from drying. The final
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(c) (d)

Figure 4.12: First row: X-Z slice of 3-D reconstructed permittivity for the phantom of

Fig. 4.9 for h- and i-stroke; Second row: X-Z slice of 3-D reconstructed conductivity

for the phantom of Fig. 4.9 for h- and i-stroke.

Zubal model is presented in Fig. 4.15(c).

We prepared the tissue-mimicking materials for skin, bone, CSF, grey matter, white

matter, blood and ischemia by following the process presented in the previous chapter

and the equivalent paper [159]. Table 4.2 shows the concentrations of the materials

used for preparing each layer of the phantom.

Fig. 4.17 displays the measured dielectric properties of the prepared phantoms for

skin, bone, grey matter, white matter and ischemia, respectively. We note that the

figure does not report the measured properties of CSF/h-stroke, as the material was not

set at the time of the dielectric measurements. The preparation of CSF/h-stroke does

not require the addition of oil, which is the most challenging step in the preparation

process and can lead to variations in the final dielectric properties of the phantoms.

Preparing phantoms that mimic the dielectric properties of CSF or h-stroke requires

only dissolving the gelatine within the water. Therefore, we can safely assume that we
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(a) (b)

(c) (d)

Figure 4.13: First row: X-Y slice of 3-D reconstructed permittivity for the phantom of

Fig. 4.9 for h- and i-stroke; Second row: X-Y slice of 3-D reconstructed conductivity

for the phantom of Fig. 4.9 for h- and i-stroke.

Table 4.2: Concentrations of materials used for 100 ml of tissue-mimicking phantoms.

For each tissue-mimicking phantom we also use 1 ml of propanol and 1 ml of surfactant.

Water Gelatine powder Kerosene + Safflower oil

Skin 73 ml 13 gr 15 ml

Bone 45 ml 5 gr 50 ml

CSF/h-stroke 80 ml 17 gr -

Grey matter 75 ml 12 gr 13 ml

White matter 70 ml 10 gr 20 ml

i-stroke 55 ml 10 gr 35 ml

can achieve the properties reported at [159]. For the CSF/h-stroke fabricated phantom

of [159] the permittivity at 1 GHz is 68, while the conductivity is 0.3 S/m and 1.2 S/m

for h-stroke and CSF respectively. The measurements were performed using Keysight’s
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(a) (b)

(c) (d)

Figure 4.14: (a) The Zubal head model section; (b) Simplified CAD model for fabri-

cation; (c) Top view of the Zubal model on CST; (d) Side view of the Zubal model on

CST. The phantom includes the following head layers: Skin, bone, CSF, grey matter,

white matter and the target.

dielectric spectroscopy kit, over a 0.5-1.5 GHz frequency range at different points.

The plots reveal a very good agreement with the reference permittivity taken from

CST (Fig. 4.17(a)), but lower conductivity values for skin and grey matter phantoms

(Fig. 4.17(b)). As there is no literature regarding the dielectric properties of ischemia

in a wide frequency range, we made the assumption that the ischemic properties are

25% less than the dielectric properties of healthy brain tissue [77].
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(a) (b)

(c)

Figure 4.15: Top view of the moulds constructing the Zubal head phantom from

gelatine-based tissue-mimicking materials: (a) First mould (bone, grey matter, and

target); (b) Second mould (skin, CSF and white matter); (c) Final phantom with five

tissues and target.

4.4.2 Imaging methodology

The Zubal model was positioned in the middle of the 300 mm diameter cylinder tank,

as shown in Fig. 4.18(a). It was surrounded by eight spear-shaped antennas [148]

in an elliptical array, and the imaging tank was filled with 90% glycerol water. The
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Figure 4.16: Demoulding process.

experimental system, the choice of a number of antennas, as well as the choice of the

matching medium have been extensively reported in our previous chapter. The setup

was surrounded by vacuum and the measurements were performed in the frequency

range of 0.5 to 1.5 GHz. For every studied case, two scenarios were examined. First,

we considered a scenario without a target (NT), where the target area was filled with the

dielectric properties of the white matter. For the WT scenario we filled the equivalent

target territory (radius ρ = 12.5 mm and height h = 100 mm) with the dielectric

properties either of blood or of ischemia. For each scenario and for M frequency

points, the eight antenna-array captured the MWT data, resulting in an 8× 8 × M

scattering matrix, which was then fed and processed by our algorithm. A flowchart of

the method is presented at Fig. 4.18(b).

Our forward model consisted of both a 2-D and 3-D depiction of the set-up for

the two versions of the DBIM-TwIST respectively. It included the tank filled with the

dielectric properties of 90% glycerol water and an ellipsoid that represented the Zubal

model filled with the dielectric properties of the average brain. The axes of the 2-D

ellipsoid were 153 mm and 112 mm long and they represented the actual size of the
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(b)

Figure 4.17: Measured dielectric properties of the produced tissue-mimicking materials

against reference values taken from CST: (a) permittivity, and (b) conductivity. Note

that there appears to be a measurement error for the bone phantom above 1.2 GHz.

phantom’s axial slice at the height where the antennas were located. The dimensions

of the 3-D ellipsoid were 170 × 130 × 100 mm long.

As the forward models are simplified versions of the experiment, they are not identi-

cal and hence there are differences between the real and the FDTD simulated models.

The algorithm simulated the setup’s antennas with line sources placed at the same

location as their feeding point. To minimize the mismatch between the simulation or
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(a) (b)

Figure 4.18: (a): The imaging tank with the immersed Zubal model. (b): Flowchart

of the DBIM method.

the experiment and the forward model, we calibrated our forward model by employing

a NT scenario, as presented in the previous chapter and the equivalent publication

([159]). We calculated the signal difference between the inverse and the forward NT

cases and we used this difference to calibrate the scattered data taken from the WT

scenario.

Table 4.3: Debye parameters of the forward model.

Material type ϵ∞ ∆ϵ σs

90% glycerol water 6.56 16.86 0.3232

Average brain 45.8 0.1244 0.7595

To model the frequency-dependent behaviour of the human tissues, we applied

the single-pole Debye model for the complex permittivity ϵb [159]. Table 4.3 presents

the Debye parameters of the “initial guess” model that were used with the FDTD
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forward solver to calculate the 2-D (transverse magnetic wave) and 3-D (full wave)

fields. The calculation of full wave fields is the main difference between the 2-D and

the 3-D version of the algorithm. The Debye parameters are calculated and updated

at each iteration until we reach a fixed number of iterations or the difference between

the “measured” and calculated electric fields is minimised. We employ DBIM-TwIST

to reconstruct the Debye parameters with a 2 mm resolution grid. We have observed

that the reconstructed results do not improve significantly when we apply more than

20 iterations, and hence we chose to perform 20 DBIM iterations for both 2-D and 3-D

versions of DBIM-TwIST. This number is a trade-off between the accuracy and the

total execution time.

For the 3-D code, we employed the Nvidia GPU Tesla K20c to accelerate the 3-D

FDTD execution with CUDA, and Matlab MEX functions to incorporate the GPU

code with the DBIM code in Matlab. The environment was based on Matlab R2020b,

CUDA 8.0 and VS 2015. The implementation of DBIM-TwIST with a GPU-based

FDTD forward solver was extensively described in [90]. By the means of an example,

using the 3-D DBIM-TwIST, for the case of the Zubal model with h-stroke, the elapsed

time for each antenna was 81 seconds, meaning that the running time for each iteration

was roughly 11 minutes when using 8 spear-shaped antennas. For the 2-D code we do

not need GPU acceleration for the forward solver. The running time for each iteration,

when using 8 spear-shaped antennas, was 12 seconds using Matlab R2020b on an Intel

i7 processor with 16 GB RAM memory. We note that the purpose of this thesis was to

validate and compare the imaging performance of DBIM-TwIST and not the efficiency

of the two versions of the algorithm in terms of time, space and system settings.

Therefore, when we compare the 2-D and 3-D results we focus on the validity and

accuracy of the reconstruction images in comparison to our simulation or experimental

model.
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4.5 Results With the Zubal Phantom

This section presents reconstruction results from our Zubal model in the presence of

a hemorrhagic and an ischemic stroke. Our aim was to assess our imaging system’s

ability to determine the type of stroke by estimating its dielectric properties using

the 2-D and 3-D DBIM-TwIST algorithm. We have examined both CST-calculated

and experimental data, and we have compared our 2-D and 3-D results. As previous

work in MWT has shown that thermal noise does not affect reconstruction quality as

much as the mismatch between the true experiment and the inverse model, we did not

include thermal noise in the CST data, to focus on the effect of the model mismatch

errors [84], [161]. The measured data that were used for these reconstructions, were

not obtained from the FDTD solver and they were different from the background data

which were calculated with FDTD. As a result, there was no “inverse crime”. We

note that thermal noise can affect the equipment noise floor and as a result the SNR.

However, in experimental MWI systems the low SNR levels associates more to errors

because of coupling due to cable movement, environmental factors and machine noise

[84]. To compare the quality of the reconstructed images we calculated the relative

errors of the permittivity and conductivity in the target area at each iteration, as in

4.1.

4.5.1 Reconstructions with CST Data

Two CST simulations were conducted to acquire the scattered field data, with and

without the target. The dielectric properties of each tissue were imported from the

CST library. Specifically for the ischemic target, as there are no frequency-dependent

reported values in the literature, we used our measured dielectric properties reported

in [159].

Fig. 4.19 and Fig. 4.20 present the reconstructed permittivity and conductivity at

four frequencies for the Zubal model of Fig. 4.14 inside our prototype, in the presence

of h-stroke and i-stroke targets. More specifically, Fig. 4.19 shows the reconstructed
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permittivity and conductivity for the 2-D version of DBIM-TwIST, while Fig. 4.20

shows the equivalent reconstructed dielectric properties for the 3-D version. Overall,

more accurate results are produced for the lower frequencies of 0.9 and 1 GHz, and

artifacts increase significantly for frequencies above 1 GHz. This can be attributed to

the increased non-linearity of the EM inverse scattering problem in higher frequencies,

where multiple scattering effects become stronger.

We also observe that there is a clear distinction in the estimation of the permittivity

for the two targets for both versions of the code. For 2-D DBIM-TwIST, the results of

Fig. 4.19 estimate the value of permittivity ϵ′ at 1 GHz as ϵ′=50.31 and ϵ′=43.15 for

hemorrhagic and ischemic stroke, respectively. For the 3-D DBIM-TwIST, Fig. 4.20

shows that the equivalent values of permittivity are ϵ′=61.58 and ϵ′=28.52, respectively.

The permittivity of hemorrhagic and ischemic stroke in the experiments is roughly 60

and 25, respectively. Therefore, we observe that 3-D DBIM-TwIST estimates more

accurately the reconstructed values for the target area. The equivalent reconstructions

of Fig. 4.19 reveal that we are not able to successfully detect the target from the

conductivity reconstructions. The quality of conductivity reconstructions improves

using the 3-D DBIM-TwIST algorithm, for which the reconstructed conductivity values

are significantly different for the two stroke-type targets.
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(m) (n) (o) (p)

Figure 4.19: First row: CST reconstructed results of the permittivity for h-stroke

using 2-D DBIM-TwIST; Second row: CST reconstructed results of the conductivity

for h-stroke using 2-D DBIM-TwIST; Third row: CST reconstructed results of the

permittivity for i-stroke using 2-D DBIM-TwIST; Fourth row: CST reconstructed

results of the conductivity for i-stroke using 2-D DBIM-TwIST.

95



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.20: First row: CST reconstructed results of the permittivity for h-stroke

using 3-D DBIM-TwIST; Second row: CST reconstructed results of the conductivity

for h-stroke using 3-D DBIM-TwIST; Third row: CST reconstructed results of the

permittivity for i-stroke using 3-D DBIM-TwIST; Fourth row: CST reconstructed

results of the conductivity for i-stroke using 3-D DBIM-TwIST.
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4.5.2 Reconstructions with Experimental Data

Fig. 4.21 and Fig. 4.22 present complex permittivity reconstructions in the presence

of the hemorrhagic or ischemic stroke target, using measured data and the 2-D and

3-D DBIM-TwIST, respectively. These images suggest that we are able to detect

and estimate the dielectric properties of h-stroke for both versions of the algorithm.

The 3-D DBIM-TwIST reconstructions of the permittivity have more artifacts that

could be misleading regarding the target location in the absence of apriori information.

Interestingly, the 3-D version of the algorithm leads to conductivity reconstructions

with less artifacts than the equivalent permittivity results for the h-stroke case at

lower frequencies. Permittivity values at 1 GHz are ϵ′=51.6 and ϵ′=61.57, for the 2-D

and 3-D DBIM-TwIST respectively while The permittivity of hemorrhagic target in

the experiments is roughly 68. That reveals an agreement between the real and the

reconstructed values of the hemorrhagic stroke. However, we observe artifacts in the

reconstruction images for reconstructions with the ischemic stroke. More specifically

and as shown in Figs. 4.21(i)- 4.21(l) and Figs. 4.22(i)- 4.22(l), we are able to detect

an area with values lower than the average brain, which is close to the target area.

There is an offset, however, between the location of the real and the detected target.

The results in Figs. 4.21(m)- 4.21(p) and Figs. 4.22(m)- 4.21(p) for the conductivity

reconstructions reveal similar tendencies.

The dielectric difference observed between the i-stroke and the white matter is less

than the dielectric difference between the h-stroke and the white matter, resulting in a

more complex brain structure. In addition, differences between our experimental model

and the FDTD forward model, in combination with different software environments,

result in a significant model mismatch. Overall, both 2-D and 3-D algorithms have

detected accurately the h-stroke, although we observe more artifacts for the 3-D ver-

sion. Overall, experimental measurement errors lead to less accurate reconstructions

than their CST equivalent. In general, the results are frequency dependent, and more

artifacts are observed in higher frequencies.
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Figure 4.21: First row: Experimental reconstructed results of the permittivity for

h-stroke using 2-D DBIM-TwIST; Second row: Experimental reconstructed results

of the conductivity for h-stroke using 2-D DBIM-TwIST; Third row: Experimental

reconstructed results of the permittivity for i-stroke using 2-D DBIM-TwIST; Fourth

row: Experimental reconstructed results of the conductivity for i-stroke using 2-D

DBIM-TwIST.
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Figure 4.22: First row: Experimental reconstructed results of the permittivity for

h-stroke using 3-D DBIM-TwIST; Second row: Experimental reconstructed results

of the conductivity for h-stroke using 3-D DBIM-TwIST; Third row: Experimental

reconstructed results of the permittivity for i-stroke using 3-D DBIM-TwIST; Fourth

row: Experimental reconstructed results of the conductivity for i-stroke using 3-D

DBIM-TwIST.

The error metrics calculated by Equation (4.1) can be used to evaluate the accuracy
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of the reconstruction. These errors are summarized in Tables 4.4- 4.7. We observe

that relative errors fall below 1 for all cases except for the conductivity errors of the

2-D i-stroke cases, as well as the 3-D i-stroke scenarios, where image artifacts are

dominant. The high conductivity errors for the 2-D experimental i-stroke suggest that

the estimation of the target is not accurate. This is due to an offset between the real

and the reconstructed target area for the experimental i-stroke reconstructions. The

lowest values are observed for the cases of 2-D and 3-D h-stroke with CST data, at 1

and 0.9 GHz, respectively. Comparing all the images, these are the scenarios with the

best estimated reconstructed target and the weakest artifacts.

Table 4.4: Relative errors of the permittivity in the target area for the 2-D examined

scenarios.

0.9 GHz 1 GHz 1.1 GHz 1.2 GHz

CST h-stroke 0.2051 0.1877 0.2259 0.2121

CST i-stroke 0.7853 0.7595 0.7843 0.8303

Exp h-stroke 0.1951 0.1929 0.1944 0.1460

Exp i-stroke 0.8613 0.8524 0.8465 0.8414

Table 4.5: Relative errors of the conductivity in the target area for the 2-D examined

scenarios.

0.9 GHz 1 GHz 1.1 GHz 1.2 GHz

CST h-stroke 0.4717 0.4586 0.4195 0.477

CST i-stroke 1.68 1.66 1.33 1.601

Exp h-stroke 0.4644 0.4687 0.4750 0.4595

Exp i-stroke 1.4939 1.4937 1.5228 1.624
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Table 4.6: Relative errors of the permittivity in the target area for the 3-D examined

scenarios.

0.9 GHz 1 GHz 1.1 GHz 1.2 GHz

CST h-stroke 0.1236 0.1271 0.244 0.1906

CST i-stroke 0.9714 1.0099 1.3393 1.2201

Exp h-stroke 0.096 0.1081 0.1241 0.1277

Exp i-stroke 1.4114 1.3885 1.3826 1.29

Table 4.7: Relative errors of the conductivity in the target area for the 3-D examined

scenarios.

0.9 GHz 1 GHz 1.1 GHz 1.2 GHz

CST h-stroke 0.4524 0.438 0.373 0.4482

CST i-stroke 2.2492 1.7673 1.7737 3.09

Exp h-stroke 0.6892 0.6587 0.6166 0.4834

Exp i-stroke 2.7054 2.7975 3.1453 3.1617

4.6 Initial Validation of 3-D DBIM-TwIST to an

Alternative Microwave Medical Diagnostic Sys-

tem

The fourth secondment in the Polytechnic University of Turin (POLITO) was con-

ducted virtually due to the travel restrictions imposed as a response to the pandemic.

The objective of the secondment was to adapt DBIM-TwIST to the EM device of

POLITO for cerebrovascular disease imaging.

Consequently, we performed simulations using the POLITO phantom and system

presented in [162],[156] and shown in Fig. 4.23. The phantom consisted of a realistic

geometrical model extracted from MRI data with the dielectric properties of average
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Figure 4.23: The POLITO phantom surrounded by 24 antennas immersed in G35

bricks.

brain at 1 GHz (Er= 45.4, σ = 0.77 S/m). The stroke was modeled by inserting into

the phantom, a cylinder with a diameter of 30 mm which was filled with the dielectric

properties of the hemorrhagic stroke (Er= 63.41, σ = 1.576 S/m). The phantom was

surrounded by a 3-D configuration of 24 monopole antennas embedded into a semi-solid

dielectric brick made by a mixture of urethane rubber and graphite powder [163]. The

scattering matrices (WT and NT scenario) were calculated by POLITO’s in-house full-

wave software, based on the FEM, resulting into two 24×24 matrices of S-parameters.

To evaluate the performance of DBIM-TwIST for a different imaging prototype,

we reconstructed the data acquired by the NT and WT simulations for hemorrhagic

stroke. We used the FDTD method as the forward solver to obtain the 3-D fields. The

background model which is shown in Fig. 4.24, contained a 3-D Matlab mask extracted

by the CAD file of the phantom, with the dielectric properties of average brain (Er=

45.3, σ = 0.7 S/m) and was surrounded by point sources located at the same position as

in the simulation. We applied DBIM-TwIST algorithm for single frequency at 1 GHz.
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The number of the voxels in the reconstruction domain was 67300 for 3-D version of

the algorithm and the computation time for the 3-D forward solver for each antenna

was approximately 17 seconds.

(a) (b) (c)

Figure 4.24: The sagittal, axial and coronal planes at Y-Z, X-Z and X-Y slices of the

forward model.

As the main objective of the secondment was to adapt DBIM-TwIST to the MWI

device of POLITO for brain stroke detection, we built the model by adding more

information in every simulation. Initially, we conducted some preliminary numerical

simulations using our FDTD solver. As the measured data that were used for these

reconstructions, were obtained from the FDTD solver, they were not different from the

background data which were also calculated with FDTD, therefore an “inverse crime”

occurred. We examined two scenarios: First, we surrounded the POLITO model with

the average dispersive dielectric properties of 90% glycerol-water (Er= 16.86, σ = 0.32

S/m), and then we conducted the same simulation by using G35’s dielectric properties

at 1 GHz (Er= 18.5, σ = 0.2 S/m). Fig. 4.25 presents the sagittal, axial and coronal

planes at y-z, x-z and x-y slices, as reconstructed by the 3-D DBIM-TwIST at 1 GHz,

for the case of h-stroke with inverse crime surrounded by the dielectric properties of

90% glycerol-water and G35, respectively. As it was expected and since there was

no mismatch between the measured and the forward data, the reconstruction results

were very good and no errors were observed. Namely, the estimated values of the real

permittivity ϵ′ at 1 GHz were ϵ′ = 48.35 and ϵ′ = 47.36 for the two different immersion
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liquids.

(a) (b) (c)

(d) (e) (f)

Figure 4.25: Top line: Simulation reconstructed results of the permittivity for h-stroke

using 3-D DBIM-TwIST when the POLITO phantom is immersed in 90% glycerol-

water mixture; Bottom line: Simulation results of the permittivity for h-stroke using

3-D DBIM-TwIST when the POLITO phantom is immersed in G35 mixture.

Then, we used POLITO’s FEM solver to acquire measured data for three scenarios:

When the head model and the antennas are immersed in a) 90% glycerol-water mixture;

b) G35 immersion liquid and c) when the antennas are placed inside the G35 blocks

of Fig. 4.23. Fig. 4.26 shows the sagittal, axial and coronal planes at Y-Z, X-Z and

X-Y slices, as reconstructed by the 3-D DBIM-TwIST at 1 GHz, for the examined

cases. We observed that h-stroke was successfully located and reconstructed in every

scenario but some artifacts and a small offset from the target location were observed

for the scenario when antennas were immersed in the G35 blocks. This was expected

as the algorithm did not take into account the air between the G35 bricks. The results

of Fig. 4.26 estimate the values of permittivity ϵ′ at 1 GHz as ϵ′ = 47.94, ϵ′ = 46.73
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and ϵ′ = 45.95 for glycerol-water matching medium, G35 mixture without bricks and

G35 antenna bricks, respectively. Overall, the obtained results have revealed the good

performance of DBIM-TwIST with a different imaging prototype and future research

will be focused on further assessing DBIM-TwIST for both h- and i-stroke and different

imaging systems.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.26: Simulation reconstructed results of the permittivity for h-stroke using 3-D

DBIM-TwIST when the POLITO phantom is immersed in 90% glycerol-water mixture

(top line); when the POLITO phantom is immersed in G35 mixture (middle line);

when the POLITO phantom is immersed in G35 mixture (bottom line).
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4.7 Conclusion

In this chapter, we have examined the performance of a MWI setup for the problem

of brain stroke detection and differentiation, using the 2-D and 3-D DBIM-TwIST

algorithm and a novel, anatomically accurate, multi-layer head phantom. We called

this a Zubal model, as it extends a slice from the Zubal numerical phantom to create

3-D moulds that can be combined to construct the final phantom. We note that the

phantom is an extended 2-D cut of the head surrounded by a 2-D configuration of

antennas, which was confined to a ring by our experimental setup. This phantom

and antenna configuration allows a 2-D inversion to produce results of comparable

accuracy. However, it is still critical to validate the 3-D algorithm for such scenarios

by comparing it with 2-D images, and this has been the main objective of this study.

Preliminary simplified simulations in which the antenna array contains more than one

ring, in Section 4.3, have shown the superior performance of the 3-D algorithm.

The phantom mimics the high dielectric difference in the brain tissues by comprising

gelatine-based phantoms that mimic the dielectric permittivity of various head tissues.

Importantly, we used a construction process that eliminates the presence of plastic in

the phantom, which would distort the signals processed by our algorithm.

We placed the phantom in our experimental prototype as well as in a CST model

that simulates the experiment. CST simulation results indicated that we are able to

successfully localize and differentiate stroke targets by estimating their dielectric prop-

erties. Our measured data reconstructions confirmed that stroke detection and differen-

tiation are more challenging with experimental data. Results for the hemorrhagic-like

target were more accurate than for the ischemic-like target as the latter has a lower

dielectric contrast with the surrounding brain matter. In accordance with previous

work [159], we observed that permittivity estimation is more accurate than conduc-

tivity estimation. Importantly, we also observed that the differences in the dielectric

estimation of i-stoke and h-stroke targets is higher if reconstructions are performed

with the 3-D DBIM-TwIST algorithm.
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We also note that our calibration method relies on the signal difference between the

experimental and the simulated NT scenarios. Section 4.2 has examined what prior

knowledge is needed to successfully differentiate the two types of stroke when using a

complex model, and whether an improved forward model could produce better image

quality. Our preliminary results indicated that the addition of thin head layers in the

forward model is not critical for the successful reconstruction of the target’s dielectric

properties.

The purpose of this study was to experimentally validate our 2-D and 3-D DBIM-

TwIST algorithms for stroke detection and differentiation, but also to further assess

experimentally the performance of the 3-D algorithm for the examined application.

For some of the studied scenarios, the 2-D DBIM-TwIST can lead to more accurate

reconstructions. This is because the 2-D inverse problem approximates well the 3-D

problem in these cases, and it is less ill-posed than the 3-D inverse problem as it contains

a much smaller number of unknowns. However, as shown by our numerical results with

2 rings of antennas and a smaller target placed between the two rings, the 3-D inverse

algorithm can provide more accurate results for problems with significant variation

along all three dimensions, as with the case of brain imaging. We also present the

initial results acquired during the secondment at POLITO related to the validation

of DBIM-TwIST in an alternative imaging prototype. For the alternative imaging

prototype, the results showed that DBIM-TwIST performed well with a new imaging

prototype, and future work will be concentrated on further evaluating DBIM-TwIST

for both h- and i-stroke and other imaging prototypes.
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Chapter 5

Conclusions and Future Work

5.1 Summary of Contributions

The main aim of this thesis was to incorporate computationally efficient MWI algo-

rithms into medical diagnostic devices, by incorporating and validating both 2-D and

3-D DBIM-TwIST into the microwave imaging prototype for brain stroke detection

developed by King’s College London. This goal was a critical objective for the EU

project EMERALD, which has motivated this work. In addition, secondary objec-

tives, included the incorporation of DBIM-TwIST into specific diagnostic applications

developed by other EMERALD groups.

We constructed two sets of head phantoms, one simplified and one anatomically

accurate multi-layered head phantom with the aim to experimentally validate the mi-

crowave tomography prototype for brain stroke detection and classification. The main

contributions in this thesis are as follows.

• A comprehensive validation study of the 2-D DBIM-TwIST algorithm for brain

stroke detection and classification using simulation and experimental data from

a MWT prototype and developed gel-based phantoms has been presented. To

the best of our knowledge, this was the first study that experimentally differenti-

ated between hemorrhagic and ischemic strokes based on the estimation of their
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dielectric properties, in a wide frequency range.

• The performance assessment of DBIM-TwIST, using an anthropomorphic brain

phantom has been presented and discussed. We assessed the reconstruction re-

sults from measurements on a 3-D-printed anthropomorphic head model, con-

taining a cylindrical target simulating the bleeding during a hemorrhagic stroke.

The imaging results showed that the target was detected and localized accurately

using a realistic head phantom.

• Our results demonstrated that we are able to detect the stroke target in scenarios

where the initial guess of the inverse problem is only an approximation of the

true experimental phantom.

• The implementation of the 3-D DBIM-TwIST algorithm has been assessed suc-

cessfully for a 3-D MWI problem using realistic simulation scenarios mimicking

brain stroke.

• We examined the impact of prior information (or “initial guess”) for calibrating

a microwave tomography system for brain stroke detection and differentiation,

using a multi-layered, anatomically complex head phantom. Our results demon-

strated that the addition of thin head tissue layers in the forward model is not

critical for the successful reconstruction of the target’s dielectric properties.

• A novel multi-layer anatomically accurate head phantom has been designed and

prepared using gelatine-based tissue mimicking materials. The performance of

the 2-D and 3-D implementations of the DBIM-TwIST algorithm has been com-

pared in a systematic manner using CST simulated and experimentally measured

data. This is the first validation study of a MWI algorithm that detects and dif-

ferentiates two types of strokes, using an anatomically accurate multi-layered

head phantom in a wide frequency range.
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• We developed, presented and discussed a novel semi-flexible and rigid composite

material as a matching medium for medical microwave diagnostic systems.

• Finally, we validated the 3-D DBIM-TwIST algorithm for an alternative MWI

prototype for 3-D brain stroke imaging during the secondment in POLITO.

5.2 Future Work

5.2.1 Further validation of 3-D DBIM-TwIST

We have assessed the performance of a MWI setup for the problem of brain stroke

detection and differentiation using the 2-D and 3-D DBIM-TwIST algorithm and a

novel, anatomically accurate, multi-layer head phantom. This configuration led to

reconstruction results of a comparable accuracy. As in a clinical scenario we will not

be able to know the exact location of the stroke, future work should further validate 3-D

DBIM-TwIST, as well as compare its performance to the 2-D version of the algorithm

for more realistic scenarios including a 3-D array of antennas and a target which is not

aligned with the antennas’ heights. Specifically for the 3-D version of the algorithm,

various optimisation techniques like optimised initial guess and MWIFH approach,

which has demonstrated a distinct improvement of the reconstructed images, can be

additionally applied and assessed. Pre-processing methods to discard data which are

associated with measurement errors can also improve performance.

5.2.2 Calibration method

Our calibration method relied on the signal difference between the experimental and

the simulated NT scenarios. In our work, we have examined the impact of prior infor-

mation on calibrating a microwave tomography system for brain stroke detection and

differentiation. Our preliminary results showed that the addition of head tissue layers

such as CSF in the forward model was not vital for the successful reconstruction of
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the target’s dielectric properties. As expected, however, we achieved more accurate

results with the multi-layer initial guess in challenging cases such as detecting an is-

chemic stroke-like target in the presence of a six-layers Zubal head phantom. This is

counter-intuitive, but it may be attributed to the fact that there is a mismatch in the

dielectric values between the CST multi-layer model and the Debye models used by

our FDTD solver. These results suggest that calibrating with a head phantom that

models as many brain tissues as possible may not be preferable for detecting stroke,

due to possible mismatches between the true and modeled properties of these tissues.

We note, however, that this was only a preliminary study that must also be confirmed

experimentally, which is one of our future work objectives.

As an exact NT model is not realistic for clinical scenarios, there is a need to further

examine if calibrating with an accurate approximate NT scenario compared to a full

NT scenario is feasible. This could be feasible by applying a reference signal measured

from a complex, inhomogeneous reference phantom and should be further explored in

the future.

5.2.3 Solid and Flexible Matching Medium for MWI Systems

As we noted in the previous chapters, an efficient matching medium minimizes reflection

signals and boosts transmitted power to human tissue in a microwave-based medical

imaging system, improving the quality of the reconstructed image and, consequently,

the diagnostic system’s accuracy. A solid and flexible lossless matching medium, like

the one presented in Chapter 3, improves the transmission of EM signals, which can

increase the precision of diagnostic systems. If we need the medium to be lossy, as in

some MWT systems, salt can offer a simple way to achieve this and will be explored into

in further research. Additionally, whereas the majority of matching media suggested

in the literature are liquid, a matching medium which is semi-solid in its final stages of

manufacture can be fabricated to support conformal arrays in applications for MWI.

Future work should also be focused on investigating more in-depth the materials used
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to prepare the semi-solid mediums. Initially, the performance of the antenna immersed

in this material must be assessed, followed by comparing imaging results with those of

a system which includes antennas immersed in glycerol-water mixtures.
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Duarte, N. Joachimowicz, B. Duchêne, E. Tedeschi, M. R. Casu, L. Crocco, et al.,

“A prototype microwave system for 3d brain stroke imaging,” Sensors, vol. 20,

no. 9, p. 2607, 2020.

[10] P. M. Meaney, M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P.

Poplack, and K. D. Paulsen, “Initial clinical experience with microwave breast

imaging in women with normal mammography,” Academic radiology, vol. 14,

no. 2, pp. 207–218, 2007.

[11] J.-C. Bolomey and L. Jofre, “Three decades of active microwave imaging achieve-

ments, difficulties and future challenges,” in 2010 IEEE International Conference

on Wireless Information Technology and Systems, pp. 1–4, IEEE, 2010.

[12] J. D. Shea, P. Kosmas, S. C. Hagness, and B. D. Van Veen, “Three-dimensional

microwave imaging of realistic numerical breast phantoms via a multiple-

frequency inverse scattering technique,” Medical physics, vol. 37, no. 8, pp. 4210–

4226, 2010.

[13] P. Meaney, M. Fanning, T. Zhou, A. Golnabi, S. Geimer, and K. Paulsen, “Clini-

cal microwave breast imaging—2d results and the evolution to 3d,” in 2009 Inter-

national Conference on Electromagnetics in Advanced Applications, pp. 881–884,

IEEE, 2009.

114



[14] D. O. Rodriguez-Duarte, C. Origlia, J. A. T. Vasquez, R. Scapaticci, L. Crocco,

and F. Vipiana, “Experimental assessment of real-time brain stroke monitoring

via a microwave imaging scanner,” IEEE Open Journal of Antennas and Propa-

gation, 2022.

[15] N. AlSawaftah, S. El-Abed, S. Dhou, and A. Zakaria, “Microwave imaging for

early breast cancer detection: Current state, challenges, and future directions,”

Journal of Imaging, vol. 8, no. 5, p. 123, 2022.

[16] B. M. Moloney, P. F. McAnena, S. M. Abd Elwahab, A. Fasoula, L. Duchesne,

J. D. G. Cano, C. Glynn, A. O’Connell, R. Ennis, A. J. Lowery, et al., “Microwave

imaging in breast cancer–results from the first-in-human clinical investigation of

the wavelia system,” Academic Radiology, vol. 29, pp. S211–S222, 2022.

[17] J. T. Vasquez, D. Rodriguez-Duarte, C. Origlia, G. Turvani, R. Scapaticci,

M. Casu, L. Crocco, and F. Vipiana, “Microwave imaging device prototype for

brain stroke 3d monitoring,” in 2022 International Workshop on Antenna Tech-

nology (iWAT), pp. 200–202, IEEE, 2022.

[18] T. Singh, B. Ninkovic, M. Tasic, M. N. Stevanovic, and B. Kolundzija, “Tools

and strategies for 3d em modeling and design of microwave imaging systems for

medical applications,” in Computational Intelligence and Image Processing in

Medical Applications, pp. 297–314, World Scientific, 2022.

[19] W.-K. Park, “Real-time detection of small anomaly from limited-aperture mea-

surements in real-world microwave imaging,”Mechanical Systems and Signal Pro-

cessing, vol. 171, p. 108937, 2022.

[20] C. Dachena, A. Fedeli, A. Fanti, M. B. Lodi, G. Fumera, M. Pastorino, and

A. Randazzo, “A microwave imaging technique based on artificial neural networks

for neck tumors detection,” in 2022 16th European Conference on Antennas and

Propagation (EuCAP), pp. 1–5, IEEE, 2022.

115



[21] F. M. Saraskanroud and I. Jeffrey, “Hybrid approaches in microwave imaging

using quantitative time-and frequency-domain algorithms,” IEEE Transactions

on Computational Imaging, vol. 8, pp. 121–132, 2022.

[22] B. M. Moloney, D. O’Loughlin, S. Abd Elwahab, and M. J. Kerin, “Breast can-

cer detection—a synopsis of conventional modalities and the potential role of

microwave imaging,” Diagnostics, vol. 10, no. 2, p. 103, 2020.

[23] B. M. Moloney, P. F. McAnena, S. M. Abd Elwahab, A. Fasoula, L. Duchesne,

J. D. G. Cano, C. Glynn, A. O’Connell, R. Ennis, A. J. Lowery, et al., “Microwave

imaging in breast cancer–results from the first-in-human clinical investigation of

the wavelia system,” Academic Radiology, vol. 29, pp. S211–S222, 2022.

[24] C. Estatico, A. Fedeli, M. Pastorino, and A. Randazzo, “Microwave imaging

by means of lebesgue-space inversion: An overview,” Electronics, vol. 8, no. 9,

p. 945, 2019.

[25] W. Shao and T. McCollough, “Advances in microwave near-field imaging: Pro-

totypes, systems, and applications,” IEEE microwave magazine, vol. 21, no. 5,

pp. 94–119, 2020.

[26] A. T. Mobashsher and A. Abbosh, “On-site rapid diagnosis of intracranial

hematoma using portable multi-slice microwave imaging system,” Scientific re-

ports, vol. 6, no. 1, pp. 1–17, 2016.

[27] L. E. Larsen and J. H. Jacobi, “Medical applications of microwave imaging,” tech.

rep., INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS INC

NEW YORK, 1985.

[28] J. H. Jacobi and L. E. Larsen, “Microwave interrogation of dielectric targets.

part ii: By microwave time delay spectroscopy,” Medical physics, vol. 5, no. 6,

pp. 509–513, 1978.

116



[29] P. M. Meaney, K. D. Paulsen, A. Hartov, and R. K. Crane, “An active microwave

imaging system for reconstruction of 2-d electrical property distributions,” IEEE

Transactions on Biomedical Engineering, vol. 42, no. 10, pp. 1017–1026, 1995.

[30] P. M. Meaney, K. D. Paulsen, and T. P. Ryan, “Two-dimensional hybrid element

image reconstruction for tm illumination,” IEEE transactions on antennas and

propagation, vol. 43, no. 3, pp. 239–247, 1995.

[31] P. M. Meaney, K. D. Paulsen, A. Hartov, and R. Crane, “Microwave imaging for

tissue assessment: Initial evaluation in multitarget tissue-equivalent phantoms,”

IEEE Transactions on Biomedical Engineering, vol. 43, no. 9, pp. 878–890, 1996.

[32] R. C. Conceição, J. J. Mohr, M. O’Halloran, et al., An introduction to microwave

imaging for breast cancer detection. Springer, 2016.

[33] D. O’Loughlin, M. O’Halloran, B. M. Moloney, M. Glavin, E. Jones, and M. A.

Elahi, “Microwave breast imaging: Clinical advances and remaining challenges,”

IEEE Transactions on Biomedical Engineering, vol. 65, no. 11, pp. 2580–2590,

2018.

[34] S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Har-

tov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic

breast imaging: results of a pilot study in women with abnormal mammograms,”

Radiology, vol. 243, no. 2, pp. 350–359, 2007.

[35] C. Yu, M. Yuan, J. Stang, E. Bresslour, R. T. George, G. A. Ybarra, W. T.

Joines, and Q. H. Liu, “Active microwave imaging ii: 3-d system prototype and

image reconstruction from experimental data,” IEEE Transactions on Microwave

Theory and Techniques, vol. 56, no. 4, pp. 991–1000, 2008.

[36] E. Porter, M. Coates, and M. Popović, “An early clinical study of time-domain
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ulskis, A. Moradpour, and M. Kasper, “Fast measurements of dielectric proper-

ties with small size microwave transceiver,” in 2020 14th European Conference

on Antennas and Propagation (EuCAP), pp. 1–5, 2020.

[63] V. Teppati, A. Ferrero, and M. Sayed, Modern RF and microwave measurement

techniques. Cambridge University Press, 2013.

120



[64] C. Gabriel, “Compilation of the dielectric properties of body tissues at rf and

microwave frequencies.,” 1996.

[65] S. Gabriel, R. Lau, and C. Gabriel, “The dielectric properties of biological tissues:

Iii. parametric models for the dielectric spectrum of tissues,” Physics in medicine

& biology, vol. 41, no. 11, p. 2271, 1996.

[66] M. Lazebnik, L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Har-

ter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, et al., “A large-scale

study of the ultrawideband microwave dielectric properties of normal breast tis-

sue obtained from reduction surgeries,” Physics in medicine & biology, vol. 52,

no. 10, p. 2637, 2007.

[67] T. Sugitani, S.-i. Kubota, S.-i. Kuroki, K. Sogo, K. Arihiro, M. Okada,

T. Kadoya, M. Hide, M. Oda, and T. Kikkawa, “Complex permittivities of breast

tumor tissues obtained from cancer surgeries,” Applied Physics Letters, vol. 104,

no. 25, p. 253702, 2014.

[68] S. Di Meo, P. Espin-Lopez, A. Martellosio, M. Pasian, M. Bozzi, L. Peregrini,

A. Mazzanti, F. Svelto, P. Summers, G. Renne, et al., “Experimental validation

of the dielectric permittivity of breast cancer tissues up to 50 ghz,” in 2017

IEEE MTT-S International Microwave Workshop Series on Advanced Materials

and Processes for RF and THz Applications (IMWS-AMP), pp. 1–3, IEEE, 2017.

[69] A. Martellosio, M. Pasian, M. Bozzi, L. Perregrini, A. Mazzanti, F. Svelto, P. E.

Summers, G. Renne, L. Preda, and M. Bellomi, “Dielectric properties charac-

terization from 0.5 to 50 ghz of breast cancer tissues,” IEEE Transactions on

Microwave Theory and Techniques, vol. 65, no. 3, pp. 998–1011, 2016.

[70] B. Amin, M. A. Elahi, A. Shahzad, E. Porter, B. McDermott, and M. O’Halloran,

“Dielectric properties of bones for the monitoring of osteoporosis,” Medical &

biological engineering & computing, vol. 57, no. 1, pp. 1–13, 2019.

121



[71] A. P. O’rourke, M. Lazebnik, J. M. Bertram, M. C. Converse, S. C. Hagness, J. G.

Webster, and D. M. Mahvi, “Dielectric properties of human normal, malignant

and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20

ghz using a precision open-ended coaxial probe,” Physics in medicine & biology,

vol. 52, no. 15, p. 4707, 2007.

[72] L. Abdilla, C. Sammut, and L. Z. Mangion, “Dielectric properties of muscle and

liver from 500 mhz–40 ghz,” Electromagnetic Biology and Medicine, vol. 32, no. 2,

pp. 244–252, 2013.

[73] L. Farrugia, P. S. Wismayer, L. Z. Mangion, and C. V. Sammut, “Accurate in

vivo dielectric properties of liver from 500 mhz to 40 ghz and their correlation

to ex vivo measurements,” Electromagnetic biology and medicine, vol. 35, no. 4,

pp. 365–373, 2016.
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Appendix A

Theory of Finite-Difference

Time-Domain Method

A.1 2-D Finite-Difference Time-Domain Method

For a two-dimensional transverse electric (TE) wave, the electric field is constant in

the z-direction, therefore the derivative of the electric field in the z-direction is zero.
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Equations A.1 can be discretized by applying Yee’s scheme:
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Equivalently for the 2-D transverse magnetic wave, the derivative of the magnetic

field in the z-direction is considered as zero. Therefore, the discretized equations in

the x- and y- directions can be calculated in a similar way. Following the leapfrog

technique, the electric and magnetic fields are calculated at half timesteps. At every

computation step the magnetic field components are updated from the electric field

components from the previous step and then the electric field components are updated

from the magnetic field components [111], [114].

A.2 3-D Finite-Difference Time-Domain Method

This section overviews the derivations for the equations for the 3-D finite difference

time domain method, for timestep n and for the points (i, j, k) of the grid. In a similar

way with 2-D FDTD, the system of the differential equations is dicretized as follows:
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Following the same approach with 2-D FDTD, at every time step the discretized

equations of the magnetic field are updated from electric field components from the

previous step and then the discretized equations of the electric field are updated from

the magnetic field equations [114]. The process is displayed in Fig. A.1.

139



Figure A.1: Schematic of the 3-D FDTD algorithm.
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Appendix B

Convolutional Perfectly Matched

Layer Formulation

Employing the outcomes of [119], the CPML formulation is performed accordingly:
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Z0i(m) can be generated recursively using the recursive convolution method [164], [165].

The set of auxiliary expressions ψi is launched, therefore Equation B.1 can be rewritten

as:
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bi = e−((σi)/κi)+ai)(∆t/ϵ0), i = x, y or z (B.5)

and
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Appendix C

Differentiation of Brain Stroke

Type by Using Microwave-Based

Machine Learning Classification

The third secondment was planned to take place in the University of Lisbon but due

to Covid-19 travel restrictions, it was conducted virtually. The initial objective of the

secondment was to study the problem of lymph nodes detection and adapt DBIM-

TwIST to their in-house experimental prototype for lymph nodes detection. As it

was impossible to travel to Portugal and perform any experimental measurements, the

objectives of the secondment were altered and focused on the differentiation of brain

stroke type by using microwave-based machine learning classification.

To this end, we investigated the potential of classifying the type of the stroke

by using microwave-based signals, building upon work of other researchers, such as

[37]. To evaluate the potential of this classification, we collected data produced by

simulation models of our in-house prototype for brain stroke detection [159], using

CST Microwave Studio. Fig. C.1 shows the simulated prototype that is composed by

a tank filled with 90% glycerol-water mixture. Within the tank, we placed an ellipsoid

brain phantom to which we assigned the dielectric properties of the average brain. The
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Figure C.1: CST imaging prototype of the tank, the head phantom and the target for

h-stroke at location 1.

phantom is surrounded by eight monopole antennas in an elliptical arrangement [148].

Then, we inserted a cylindrical target inside the brain phantom which mimics either

the hemorrhagic or the ischemic stroke. The target was located in 3 different positions

within the brain, one at the top right, one at the bottom left and one in the center

of the brain phantom, respectively. Moreover, we varied the size of the stroke with a

diameter ranging from 10 to 40 mm, with a step of 5 mm. Consequently, our database

included a total of 42 simulations. For each case, we measured the S-parameters for

all antennas, totaling 2688 scattering recordings which were used in our classification

endeavors.

We implemented a cascade-classifier, in which we first classified the location of

the stroke ahead of its type: ischemic or hemorrhagic. Our rationale was that if we

classified strokes that had been identified in the same location, we could better classify

their type. We compared two machine learning algorithms by using Matlab Machine

Learning toolbox – decision trees and the K-Nearest Neighbors (KNNs) – with a k-fold

cross validation methodology.
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(a) (b)

Figure C.2: True positive rate for stroke type classifier when considering the magnitude

of the signals in all locations: Left: Fine Tree classifier; Right: K-Nearest Neighbours

classifier.

Fig. C.2 presents the classification accuracy obtained when classifying the accuracy

type of stroke, when all locations are considered. Figs. C.3-C.5 show classification

accuracies for the three different positions of the stroke. With the proposed cascade-

classifier we achieve slightly better classification accuracies for the first and the second

position than 89% (KNN) and 90% (Decision Tree), which are the metrics obtained

when classifying the accuracy type of stroke, when all locations are considered. How-

ever, we note that in all the examined cases the differences were minimum and no

significant variations were observed.

Although the achieved results from the cascade-classifier did not significantly vary

from the results obtained when all the stroke locations were considered, they are still

valid as this initial classification is the first step to build, test and validate a cascade

of location-then-type of stroke classifier. The classifier could be further improved by

incorporating the information provided by the machine learning algorithms into DBIM-

TwIST algorithm and will be further examined in future work.
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(a) (b)

Figure C.3: True positive rate for stroke type classifier when considering the magnitude

of the signals in the top right position: Left: Fine Tree classifier; Right: K-Nearest

Neighbours classifier.

(a) (b)

Figure C.4: True positive rate for stroke type classifier when considering the magnitude

of the signals in the bottom left position: Left: Fine Tree classifier; Right: K-Nearest

Neighbours classifier.
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(a) (b)

Figure C.5: True positive rate for stroke type classifier when considering the magnitude

of the signals in the middle position: Left: Fine Tree classifier; Right: K-Nearest

Neighbours classifier.
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