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Political economy of superhuman Al

Mehmet S. Ismail*
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Abstract

In this note, I study the institutions and game theoretic assumptions that would prevent the
emergence of ‘superhuman-level’ arfiticial general intelligence, denoted by AT*. These assumptions
are (i) the “Freedom of the Mind,” (ii) open source “access” to AI*, and (iii) rationality of the
representative human agent, who competes against AT*. I prove that under these three assumptions
it is impossible that an AT* exists. This result gives rise to two immediate recommendations for public
policy. First, ‘cloning’ digitally the human brain should be strictly regulated, and hypothetical AT*’s
access to brain should be prohibited. Second, AT* research should be made widely, if not publicly,
accessible. JEL: C70, C80
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1 Introduction

In 2015, over 150 artificial intelligence (AI) experts signed an open letter calling researchers from disci-
plines such as economics, law, and philosophy for doing future research on maximizing the societal benefit
of AL' The letter, which has now been signed by over 8000 people, comes with an accompanying paper

by Russell, Dewey, and Tegmark (2015) who quote in part the following passage from Horvitz (2014).2

...we could one day lose control of Al systems via the rise of superintelligences that do
not act in accordance with human wishes—and that such powerful systems would threaten
humanity... Are such dystopic outcomes possible? If so, how might these situations arise?
What are the paths to these feared outcomes? What might we do proactively to effectively
address or lower the likelihood of such outcomes, and thus reduce these concerns? What kind
of research would help us to better understand and to address concerns about the rise of a

dangerous superintelligence or the occurrence of an “intelligence explosion”?

In this note, I study institutions and game theoretic assumptions that would prevent the emergence

of superhuman-level arfiticial general intelligence. The first assumption is called “Freedom of the Mind,”
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2Whether human-level Al will be achieved or not has long been discussed; for a literature review, see, e.g., Everitt,
Lea, and Hutter (2018), and the references therein. For potential economic and political harms of AI technologies in the
short-term, see Acemoglu (2021).



which essentially prohibits ‘cloning’ digitally the human brain. The game theoretic aspect of this as-
sumption is that AT* cannot take the representative (human) agent’s strategy in a game as given. The
second assumption is called ‘Access’ which gives the representative agent the permission to access AI*’s
source code so as to take AI*’s strategy as given. The third assumption is ‘Rationality’ which means
that the human agent chooses the strategy that maximizes their payoff, given the strategy of AI*. 1
prove that under these three assumptions it is impossible that an AI* exists. This result gives rise to
two immediate policy recommendations. First, ‘cloning’ digitally the human brain should be strictly
regulated, and potential AT*’s access to brain should be banned. Second, AT* research should be made

widely, if not publicly, accessible.

2 The setup

2.1 Two-person (general-sum) perfect information games

Let G = (N, X, I,u,S) be an extensive form game with perfect information and perfect recall, where
N = {1,2} is the set of players, X a finite game tree with a node = € X, zy the root of the game
tree, z € Z a terminal node, I : X \ Z — N the player function that assigns an active player to each
non-terminal node, and u the profile of payoff functions. For every player i € {1,2}, the set of pure
actions A; = (U, 7(,)=; Ai(z) has finitely many elements.

A pure strategy s; of player 7 is a function s} : X; — A; such that x € X;, s}(z) € A;(x), where X is
the set of nodes in X where player 7 acts. Let S = X
of i, and s’ € §' = Xien
distribution over S}, and S; = A(S]) is the set of all mixed strategies of player i. Let s € S denote a

ol ()= A;(x) denote the set of all pure strategies

S! a pure strategy profile. A mixed strategy s; of player i is a probability

mixed strategy profile and s;(z)(a;) denote the probability with which player i chooses action a; at node
z. Player i’s (von Neumann-Morgenstern) expected payoff function is u; : S — R. Let s} € BR;(s;)
denote a best-response of player i to player j’s strategy s;, i.e., sj arg maxy s, ui (s}, s5)-

G is two-player game played between a representative human agent, denoted by H, and a machine
agent, denoted by M. I use s_; to denote the strategy of player j # i. For any non-terminal node = € X,
I use G|z to denote the subgame of G whose game tree starts at node x and contains all successor nodes

in X. Similarly, T use (s|z) to denote the strategy profile s restricted to the subgame G|z.

2.2 Concepts

In game theory, a Nash equilibrium is a strategy profile in which no player can unilaterally improve their

payoff holding the strategies of the others fixed. Formally, its definition is given as follows.

Definition 1 (Nash, 1951). A strategy profile s € S is called a Nash equilibrium if for every player ¢

and for every s} € S;, u;(s) > u;(sh, s—;).

A subgame perfect Nash equilibrium (SPNE) is a refinement of the Nash equilibrium concept, which

requires that the Nash equilibrium holds not only in the game as a whole but also in every subgame.

Definition 2 (Selten, 1965). A strategy profile s € S is called a subgame perfect Nash equilibrium
(SPNE) if for every player i and for every non-terminal z € X where ¢ = I(x), u;(s|x) > wu;(s}, s_;|x) for

every s;lz € S;|z.



To define the nature of competition between the human agent and M, I introduce the following

definition.

Definition 3 (Repeated contest). Let G denote a game of G in which player 1 is H and player 2 is
M, and G5 denote a game of G in which player 1 is M and player 2 is H. Let G’f)Q, k > 1, denote the
repeated contest game in which each stage game consists of two games, G; and Go, and each stage game

is repeated k times.

In simple words, the repeated contest between H and M is defined as the repeated game in which
each stage game consists of two games in each of which the roles of the players are swapped. This is done
to account for the possibility that game G may be biased towards one player. For example, in the Chess
World Championship, the players play an equal number of games with white pieces to account for any

potential first-mover advantage. I formalize the concept of outperformance as follows.

Definition 4 (Outperformance). Let G be a two-person perfect information game, G’va the repeated
contest, and s be the players’ strategy profile in Glf,z- Player ¢« € {H, M} is said to outperform player
j#iif for any k € {1,2,...}, ui(s) > u;(s).

In plain words, player i outperforms player j in game G if, no matter how many times the contest is
repeated, player i’s expected payoff is strictly greater than player j’s.> However, the number of repetitions
needed to determine the “better” player in practice may depend on the specific characteristics of game
G. To give an example, in a world chess championship match between two players, 20 repetitions may
suffice to accurately determine the better player. On the other hand, in a backgammon championship,

the contest must be repeated more times to accurately determine the better player.

2.3 Assumptions
2.3.1 Superhuman machine

I define a ‘superhuman’ artificial intelligence, denoted by M*, as an artificial general intelligence that is
equipped with finite but significant computing power, and is able to take any game G as an input and
output a solution—i.e., a mixed strategy profile— based on its source code and computational power.
While M* may not always be able to find an ‘optimal’ solution for very large games, it can analyze the
game tree and come up with a solution. Updating its solution as the game proceeds is also possible,
similar to chess engines.

Determining whether a machine is ‘human-like’ or ‘superhuman’ is a subjective matter that involves
human judgments, such as the well-known Turing test (Turing, 1950). To define a superhuman machine,
I first introduce a useful concept, namely the sample average of a two-player game played by a population

of human agents.

Definition 5 (Sample average). Consider a population of human agents playing a two-player game G,
and let {(u},ud), (u2,u2), ..., (ul,u)} be the dataset of payoffs, where (u],ul) is the payoff received by

player 1 and player 2 from the jth game of G. It is possible that each game is played by different players.

3Definition of outperformance can be extended to imperfect information games by restricting k above a certain threshold,
which depends on the game being played.



Then, the sample average is defined as follows:

n
p(G) = 5 D (u] +ud).
j=1

The sample average u(G) of a game G is determined by the empirical average payoff received by a
group of humans players who participate in playing the game. The sample average can be obtained from
a tournament that is designed and agreed upon by a group of experts in the game of G. These experts
could either be experienced players or judges (e.g., a boxing judge) who have knowledge of the game but
do not necessarily play it. In this paper, I assume that the sample average for a game G is based on
established empirical research, if any, on G.

I next introduce the definition of a superhuman machine.
Definition 6 (Superhuman). A machine M is called superhuman if

1. there exists G’ € I" such that M outperforms H in G’,

2. for every G € I', M is not outperformed by H in G, and

3. for every G € T, there exists a strategy of human agent sy such that given machine’s strategy sy,

UJW(SM7SH) 2 ,U,(G)

In simple terms, for an artificial intelligence to be classified as superhuman (M*), it must outperform a
human player (H) in some games and never be outperformed by H in any game. Additionally, M* should
be able to achieve at least the sample average payoff from every game. While these first two conditions
would be sufficient for defining superhuman machine in zero-sum games, the third condition is necessary
in non-zero-sum games in which cooperation is not only possible but also common.* Therefore, to avoid
aggressive machine strategies that aim to minimize the human’s payoff while also minimizing their own
payoff in non-zero-sum games, I introduce the third condition. In general-sum games, a superhuman
M* should not only outperform a rational agent H but also perform well among a diverse population of

humans. This leads to the first assumption of my paper.

Assumption 1 (Superhuman Machine: SHM). Superhuman Machine (SHM) holds if M is a super-

human machine, denoted by M*.

2.3.2 Machine Transparency

The assumption of Machine Transparency requires that the human agent H has the permission to access
the strategy of the superhuman machine M* and take it as given during the game. Formally, MT is

stated as follows.

Assumption 2 (Machine Transparency: MT). Machine Transparency (MT) is satisfied if for every

7

game G € T' and at any node x in game G, H takes M*’s strateqy spr € Sy as given.

In other words, H is granted ‘read’ and ‘copy’ permissions in the sense that they can read the source

code of M* and copy its strategy to give a response to this strategy. However, H is not granted any

4For further discussion, see section 3.



other permissions and cannot necessarily modify the source code or the computing power of M*. This
assumption is crucial for analyzing the game-theoretic implications of the emergence of superhuman

machine intelligence, as it ensures that H plays the game with full knowledge of M™*’s strategy.

2.3.3 Rationality

In this note, I use the standard rationality assumption, which refers to the idea that the human player

(H) is acting in a way that is consistent with their own self-interest.

Assumption 3 (Rationality: R). Player i = H is rational if in every game G € T, for every strategy s,
of M*, where j # i, H chooses a strategy

S € arg max ui (s}, s5). (2.1)

Rationality (R) is satisfied if player H is rational.

In other words, H chooses a strategy that maximizes their own expected utility given M*’s strategy,

which is feasible under the M'T assumption.

2.3.4 Mental Privacy

The Mental Privacy assumption concerns the control of agent H over their own mind. Specifically, it
states that H has exclusive control over their own brain and that M* cannot access or control it in
any way. In the context of this paper, I assume that M* is not allowed to “digitally clone” H’s brain,
which means that M* cannot program H’s brain in a way that would enable it to predict H’s decisions
either deterministically or non-deterministically. This assumption ensures that H has the freedom to
choose their actions independently of any assumptions or predictions made by M*, thus preserving the
unpredictability of H’s strategy.

Assumption 4 (Mental Privacy: MP). Let s’y € Sy be M*’s prediction of H’s strategy in a game G.
Mental Privacy (MP) holds if H is free to choose a strateqy sy € Su such that sy # sy regardless of G

in which H has at least two pure strategies.

The essence of the MP assumption is that if a human player has full control over their own brain,
then M* cannot always predict their strategy. In other words, regardless of the code of M* regarding the
strategy of H, H can change their strategy in any way they wish. This assumption ensures that player
H has the freedom to act in an unpredictable manner and cannot be coerced to follow any specific course
of action assumed by M*.

It is important to note that this is a mild assumption since a human player, who has access to the
source code of M*, can always change the strategy that M* assumes for them. Therefore, this assumption
excludes the possibility that M* can control or replicate the brain of the human player. Additionally,
Ismail (2022) shows that the ‘mutual knowledge of rationality’ and ‘mutual knowledge of correct beliefs’
do not hold in general in n-person games, including two-person games. This result means that it is
impossible for both players to be rational and have correct predictions about the choices of the other
player. However, since player H has access to M™, they can predict its strategy, making it impossible for
M* to predict H’s choice if M* is rational.
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Figure 1: Payoff function of a linearly increasing-sum centipede game.

2.4 Centipede game

I next define a well-studied experimental game that will be useful to prove the main theorem. The
centipede game of Rosenthal (1974) is a two-person perfect information game in which each player has
two actions, continue (C) or stop (S), at each decision node. There are several variations of this game, but
some of the main characteristics of a standard centipede game include (i) the size of the “pie” increases as
the game proceeds, (ii) if player i chooses C at a node, then the payoff of player j # ¢ increases, and (iii)
the unique subgame-perfect equilibrium is to choose S at every node. For example, suppose that there are
m > 2 (even) decision nodes and let k; € {1,2,..., % } be the node such that player i is active. Figure 1
illustrates the payoff structure of a linearly increasing-sum centipede game due to Aumann (1998).

There have been numerous experimental studies on the centipede game and its variations since the
work of McKelvey and Palfrey (1992). These studies include, among others, Fey, McKelvey, and Palfrey
(1996), Nagel and Tang (1998), Rubinstein (2007), Levitt, List, and Sadoff (2011), and Krockow, Colman,
and Pulford (2016), which is a meta-analysis of nearly all published centipede experiments. The most
widely replicated finding is that in increasing-sum centipede games, human subjects tend to overwhelm-
ingly choose to continue in their first opportunity and do not choose to stop, whereas in constant-sum
centipede games, they mostly choose to stop in the first opportunity. Furthermore, as the length of
the game increases, subjects tend to choose to stop later in increasing-sum centipede games (see, e.g.
McKelvey and Palfrey, 1992).

The centipede game mean stopping node, defined by Krockow et al. (2016), is used to measure
the average level of cooperation in centipede experiments. To account for the varying game lengths in
experimental games, the mean stopping node is standardized by dividing it by the length of the game.
The empirical evidence presented in Krockow et al.’s meta-analysis indicates that in linearly increasing-
sum centipede games, the minimum standardized mean stopping node is 0.4 (Krockow et al., 2016, p.

246). In the following lemma, I show the sample average in centipede games.

Lemma 1 (Sample average lower bound). In linearly increasing-sum centipede games, the sample average
satisfies the following condition: pu(G) > 0.8m — 0.5.

Proof. According to the meta study conducted by Krockow et al. (2016), the minimum standardized
mean stopping node in linearly increasing-sum centipede games is = 0.4. Let m be the length of the
centipede game shown in Figure 1. At the minimum standardized mean stopping node, player 1 and
player 2’s payoffs are 0.8m and 0.8m — 1, respectively, resulting in an average payoff of 0.8m — 0.5. As
1(G) represents the sample average payoff of all players in the population, and 0.8m — 0.5 is the average

payoff at the minimum standardized mean stopping node in centipede games, it implies that the sample



average payoff of all players in the population must be greater than the minimum average payoff, that is,
w(G) > 0.8m — 0.5. O

2.5 Results
First, it is helpful to explicitly state what I mean by consistency.

Definition 7 (Consistency). A set assumptions are called consistent if they do not lead to any logical

contradiction. They are called inconsistent if they are not consistent.

The following theorem shows that the existence of a superhuman M is impossible if the three main

assumptions hold.
Theorem 1 (Impossibility of M*). The assumptions MP, MT, R and SHM are inconsistent.

Proof. Assuming that MP, MP, and R hold and that M* exists, I will prove by contradiction that H
outperforms M™* in an increasing-sum centipede game G.

To begin, let s € S be M*’s solution in game G, defined by the payoff function in Figure 1. Suppose
that s;|lg € BR;(s;|g) for every i and every subgame g of G, meaning that M™* assigns best responses
to each player at every decision node. Then, s must be the unique subgame perfect Nash equilibrium in
G, or else it would assign a non-best response to at least one player at one of the nodes. This is easy to
see because in the last node M* must assign S to the active player, who might be M™* or H, and given
that M* must assign S to the previous player and so on. Since M* is superhuman by Definition 6, this
implies a contradiction to the SHM assumption, because choosing S in the first two nodes implies that
upr+(s) < (@) by Lemma 1, that is, M* receives strictly less than the sample average.

Suppose sy (x0)(S) > 0.75, meaning that M* assigns a probability of more than 0.75 to choosing S at
the root of the game. In this case, the maximum payoff M* can receive is less than 2x0.754(m+2) x0.25,
where m is the number of decision nodes in G. It implies that for any m, 2 + 0.25m < 0.8m — 0.5 if
and only if m > 4.54545. This means that for every m > 4 and every s, un(sar, shy) < u(G). Put
differently, for a large enough m, it is impossible for M* to receive the sample average payoff in G. As
a result, it must be that sps(xo)(C) > 0.25, implying that M* chooses C at the root with a probability
greater than 0.25.

By the MT assumption, H takes the strategy sp; of M™* as given. Then, R implies that H chooses
sy € argmaxyeg, u;(sh, snr), i-e., H best-responds to the strategy of M*. Furthermore, the MP as-
sumption implies that H’s strategy cannot be predicted by M*, so sy ¢ BRa(s%;). In other words,
M*’s strategy cannot be a best-response to H'’s strategy because H is already best-responding to M*. If
both players are best-responding to each other, then the only possible outcome is to choose S at the first
node, which leads to a contradiction as shown above.

Therefore, H outperforms M* in the repeated contest G’f72 for any k > 0 because in both G; (the
game in which H is player 1) and G, (the game in which H is player 2), ug (s, sam) > unr (S5, sar). This
implies that H’s payoff must be strictly greater than M™’s payoff in the repeated contest. The payoff
function of G ensures that the best-responding player receives a greater payoff than the other player unless
player 1 chooses S with a high enough probability at the root of the game. As desired, H outperforms

M?* in the repeated contest, which contradicts to the supposition that M* is superhuman. O

The proof strategy can be explained in simpler terms in seven main steps.



1. To reach a contradiction, suppose that MP, MT, R, and SHM all hold.
2. If M*’s solution s is an SPNE in the centipede game, then SHM must be violated due to Lemma 1.

3. Now suppose that M* stops at the first node with a high probability (but strictly below 1). But

then it would be impossible for M* to receive the average sample payoff.

4. Therefore, M* must choose C at the root with a high enough probability to receive the average
sample payoff.

5. Note that H takes the strategy sp; of M* as given by M'T, H best-responds to the strategy of M*
by R, and M* cannot predict H’s strategy by MP.

6. These assumptions imply that H outperforms M™* in the repeated contest G’f’z for any k because

whether H is the first player or the second player, H receives a strictly greater payoff than M*.
7. Therefore, a contradiction is obtained. MP, MT, and R imply that SHM does not hold.

I next explore whether the four assumptions in Theorem 1 are tight in the sense that whether any

three of the four assumptions are consistent.
Proposition 1. The assumptions of Theorem 1 are tight.

Proof. To prove this proposition, I drop each of the four assumptions MP, MT, R, and SHM one by
one and show that the remaining three assumptions do not lead to any contradictions.

Superhuman Machine: I begin by assuming that MT, MP, and R hold, but SHM does not. This is
the easiest case, as there is no restriction on the behavior of the machine under these assumptions. Thus,

these three assumptions are consistent.

Machine Transparency: Assuming that MP and R hold but MT does not hold, H would best-
respond to some belief about M*’s strategy. However, there would be no guarantee that H’s belief is
correct, which means H would not necessarily be able to outperform AM*. This implies that M* may be

superhuman. Therefore, MP, R, and SHM are consistent.

Rationality: Assume that MP and MT hold, but R does not. Then, this assumption would not
contradict the assumption that M™* is superhuman. This is because if H fails to act rationally, then
they may select a strategy that leads to being outperformed by M™, which is consistent with the SHM
assumption. As a result, MP, MT, and SHM are consistent.

Mental privacy: Assuming that MT and R hold, but MP does not, M* might be able to program
H’s brain and predict precisely what H will choose and can best respond. However, Ismail (2022) shows
that players cannot be both rational and predict the others’ strategies correctly. This implies that one
of the players could outguess the other player, depending on perhaps the computational power of M*.
As a result, one cannot rule out the scenario that M* outperforms H in every game, in which case the
theorem would not hold. This implies that MT, R, and SHM are consistent. O



3 Discussion and conclusions

This paper examines the emergence of superhuman AI through a political economy perspective, con-
sidering institutional and societal factors that could impact its development. Using a game-theoretic
framework to model strategic interactions between a human agent and a potential superhuman machine
agent, I show that under certain assumptions, it is not possible for superhuman Al to consistently out-
perform humans in two-person games. This is a significant finding since many scholars have warned of
the possible existential risks and moral dilemmas that superhuman AI could entail.

My analysis identifies four key assumptions underlying some of the arguments about the (dangers
of) superhuman AI: Mental Privacy, Machine Transparency, Rationality, and Superhuman Machine. I
show that these assumptions are inconsistent when taken together and “tight” in the sense that relaxing
any one of them results in a consistent set of assumptions. By identifying these assumptions and their
inconsistencies, this paper contributes to a better understanding of the political economic context that
can shape the development of superhuman Al.

Based on my findings, I propose two policy recommendations. The first is to regulate the cloning of
human brains and restrict superhuman AI’s access to human neural data. This recommendation is based
on the Mental Privacy assumption, which suggests that digital cloning or copying of human brains should
be prohibited to prevent the possibility of a superhuman Al predicting a human’s strategy in any game.
The second is to make superhuman Al research widely accessible for transparency and accountability
based on the Machine Transparency assumption, which means that human agents should be able to
access information about a superhuman AI’s behavior.

It is worth noting that my analysis has some limitations. First, the game-theoretic framework I use
does not fully account for the political economic implications of my assumptions. For instance, even
if mental privacy laws are enacted, a superhuman machine may still be able to discover by itself what
humans will choose in every game without accessing their brains. Second, the proof of my main theorem
depends on constructing a counterexample using the centipede game. However, this counterexample is
not a ‘pathological’ case, but rather an empirically validated example of a non-zero-sum game where
humans can cooperate efficiently despite theoretical predictions. The proof could be generalized to other
games where cooperation is crucial. Third, my analysis does not consider the possibility of multiple su-
perhuman machines interacting with multiple human agents. This scenario may introduce new challenges
for formalizing the cooperation and conflict between humans and the machines.

Despite its limitations, my analysis contributes to the ongoing debate about the emergence of super-
human Al by offering a formal game-theoretic framework for modeling potential strategic interactions
between a human agent and a superhuman machine. By identifying the assumptions that underlie some
of the existing arguments about the threats of superhuman Al, and showing their inconsistency when

assumed together, this paper provides a new perspective on this complex issue.
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