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ABSTRACT

A polyhedral manifold is a manifold with a metric induced by a constant curvature

triangulation. Polyhedral manifolds naturally inherit a Riemannian structure, which is

well-defined outside of a subset of codimension at least 2 called the singular locus. The

fundamental group of the complement to this singular locus has a natural representation

called the holonomy map, whose image we term the holonomy group. The main aim

of this thesis is to investigate how restrictions on the holonomy group of a polyhedral

3-manifold relate to properties of its singular locus.

In Chapter 2, we give most of the essential definitions and elementary results used

throughout the thesis. These include the precise definitions of a polyhedral manifold, the

singular locus, and holonomy.

In Chapter 3, we consider how restrictions on the holonomy group of a polyhedral

3-manifold affect the local and global properties of its singular locus. We study Euclidean

polyhedral 3-manifolds that are nonnegatively curved and integral, two conditions moti-

vated by Thurston’s work in [Thu98]. In Theorem 1, we classify the 32 isometry types

of codimension 3 singularities in such manifolds. We also show, in Theorem 2, that the

number of these singularities is bounded.

Lastly, in Chapter 4, we consider the reverse problem: how restrictions on the topology

of the singular locus result in constraints on the holonomy group. We study spherical

polyhedral manifolds homeomorphic to the 3-sphere, and we require that the singular

locus form a Seifert link—this is a slight generalisation of a torus link. Motivated by

Panov’s work in [Pan09], we investigate when such polyhedral 3-spheres can be shown to

have unitary holonomy. In the case of the Hopf link, the investigation is comprehensive,

allowing us in Theorem 3 to show that a polyhedral 3-sphere singular along the Hopf

link has a very simple geometric structure in almost all cases. For a more general Seifert

link, we impose only a very mild condition on the length of a singular component to

show in Theorem 4 that the holonomy is unitary. This allows us to produce useful

geometric formulae that apply to almost all polyhedral 3-spheres singular along Seifert

links, generalising work of Kolpakov and Mednykh in [KM09], among others.
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Chapter 1

INTRODUCTION

The overarching theme of this thesis is the relationship between the geometry of a

polyhedral 3-manifold and the topology of its singular locus. A polyhedral n-manifold is a

topological n-manifold endowed with a complete metric induced by a triangulation by

simplices of constant curvature—such a metric is called a polyhedral metric. The precise

definition can be found in Definition 2.1.1.† The singular locus of a polyhedral manifold

is the set of points having no neighbourhood that embeds isometrically into the relevant

model space of constant curvature (see Definition 2.2.1).

The simplest nontrivial example of a polyhedral manifold is the surface of a convex

polyhedron endowed with its intrinsic metric. The singular locus of such a polyhedral

surface is the set of vertices of the polyhedron—these isolated singularities are known

as conical points. Polyhedra have of course been studied since antiquity, but one of

the earliest rigorous results concerning convex polyhedra is Cauchy’s rigidity theorem

(for which, see [AZ18, Ch. 14]), first formulated by Cauchy in 1813. It states that if

two convex polyhedra are combinatorially equivalent and have congruent faces, then

they are congruent in R3. An important fact about convex polyhedra is that the total

angle around any vertex—the conical angle—is less than 2π. In 1942, Alexandrov vastly

strengthened Cauchy’s result by showing that any metric space glued from Euclidean

triangles, homeomorphic to the 2-sphere, and with conical angles less than 2π can be

realised as the surface of a unique convex polyhedron (see [BI08]). The two parts of this

result became known as Alexandrov’s existence and uniqueness theorems.

Thurston continued the trend of studying Euclidean polyhedral metrics on the 2-sphere

with conical angles less than 2π, discovering a complex hyperbolic structure on the moduli

space of such metrics in [Thu98]. Spherical polyhedral metrics on the 2-sphere have

been studied, in increasing generality, by Troyanov in [Tro89], Eremenko in [Ere04], and

Mondello and Panov in [MP16]. More recently, Eremenko, Mondello, and Panov have

studied the moduli space of spherical polyhedral tori with one singular point in [EMP20].

In three dimensions, polyhedral manifolds have largely been studied because of their

relationship to orbifolds. Hyperbolic polyhedral manifolds provide a crucial step in the

†Precise definitions of many of the terms used in this introduction can be found in Chapter 2 and will

be referenced when relevant.
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1. Introduction

proof of Thurston’s orbifold theorem, as demonstrated by Cooper, Hodgson, and Kerckhoff

in [CHK00] and Boileau, Leeb, and Porti in [BLP05]—in these works, they are referred to

as cone-manifolds. Indeed, much of the 3-dimensional work seems to be hyperbolic, and

this is one of the reasons why we focus on Euclidean and spherical polyhedral 3-manifolds

in this thesis.

Returning to the opening sentence of this introduction, we must explain what is meant

by the ‘geometry’ of a polyhedral manifold. The way in which we quantify geometry

in this context is by means of the holonomy group. This is the image of the holonomy

map, a representation of the fundamental group of the complement to the singular

locus that encapsulates how the metric changes as one moves around the manifold (see

Definition 2.3.4). The question at the heart of this thesis is then,

How do restrictions on the holonomy group of a polyhedral 3-manifold relate

to properties of its singular locus?

This question is considered in two different ways and in two similar but distinct contexts

in Chapters 3 and 4, the two research chapters of this thesis.

∗ ∗ ∗

In Chapter 3, we consider one direction of the research question posed above: we

impose restrictions on the holonomy group and then deduce resulting properties of the

singular locus. We focus our attention on Euclidean polyhedral 3-manifolds—in this

context, the holonomy group is a subgroup of the Euclidean group E(3). Motivated

by Thurston’s work in [Thu98], we impose two conditions on the Euclidean polyhedral

3-manifolds we consider: nonnegative curvature and integrality. We call a Euclidean

polyhedral manifold nonnegatively curved if the conical angle of any edge of its singular

locus is less than 2π (see Definition 2.2.5). A Euclidean polyhedral n-manifold is called

integral if the orthogonal part of its holonomy group (known as the monodromy group)

preserves a lattice in Rn (see Definition 2.3.9).

As will be shown in Proposition 2.2.16, the singular locus of a polyhedral 3-manifold is

essentially a union of circles, lines, and graphs embedded in the manifold. The vertices of

the graph components are called singular vertices, and the two main results of Chapter 3

concern singular vertices in nonnegatively curved integral polyhedral 3-manifolds. The

first main result is a complete description of what the metric looks like close to any such

singular vertex.

Theorem 1 (Classification of singular vertices). There are 32 possibilities for the local

isometry type of a singular vertex in a nonnegatively curved integral polyhedral 3-manifold.

This result is fleshed out and proven in Section 3.2, and the 32 local isometry types

are given in the appendix. The central idea is that the local isometry type of a point in a

polyhedral manifold can be encapsulated in the link of that point. The link of a point in

a polyhedral manifold is essentially a small metric sphere about that point, scaled up so

8



1. Introduction

as to have curvature 1 (see Definition 2.1.7). In Section 3.2, we show that the link of any

point in an integral polyhedral 3-manifold is a ramified cover (see Definition 3.2.1) of one

of two spherical orbifolds. The nonnegative curvature requirement implies bounds on the

order of ramification, which allow us to list all the relevant links algorithmically.

An important outworking of Theorem 1 is Corollary 3.2.13. This tells us that there is

a maximal angle ε0 in (0, π) that can be subtended by two paths meeting at any singular

vertex. This key property allows us to show that there is a universal bound on the number

of singular vertices that can appear in any nonnegatively curved integral polyhedral

3-manifold. This global result about the topology of the singular locus is the apex of

Chapter 3 and perhaps the most involved to prove of any result in the thesis.

Theorem 2 (Singular vertex bound). There is a constant Bver in N such that any

nonnegatively curved integral polyhedral 3-manifold has fewer than Bver singular vertices.

Any point with the maximal angle property mentioned above is called ε0-narrow (see

Definition 2.2.14). The majority of Section 3.3 is dedicated to proving Proposition 3.3.7,

a result that gives a bound on the number of ε-narrow points in any nonnegatively curved

Alexandrov space (see Subsection 2.2.2) depending only on ε and the dimension of the space.

Theorem 2 then follows from Proposition 3.3.7, since, as we note in Proposition 2.2.9, any

nonnegatively curved polyhedral manifold is a nonnegatively curved Alexandrov space. To

prove Proposition 3.3.7—and therefore Theorem 2—we show that, in any nonnegatively

curved Alexandrov space, any sufficiently large subset of points contains three distinct

points forming a triangle with one angle close to π. The proof requires several results from

Alexandrov geometry, including the Gromov–Bishop inequality ([BBI01, Thm. 10.6.6])

and Toponogov’s theorem ([BBI01, Thm. 10.3.1]).

It should be mentioned at this point that Proposition 3.3.7 actually follows from a

recent and very general result of Li and Naber, [LN20, Cor. 1.4]. However, the author

did not learn of this until well after the content of Chapter 3 was written. Moreover, the

proof of Proposition 3.3.7 presented in Section 3.3 is independent of their work and, due

to the more specialised setting of our problem, is shorter than the proof of their result.

The relationship to Li and Naber’s work is briefly explored in Subsection 3.3.3.

The primary motivation for studying nonnegatively curved integral polyhedral 3-

manifolds is Thurston’s work in [Thu98]. There, he studies 2-spheres endowed with

metrics induced by equilateral triangulations in which the degree of a vertex is at most

6. The shape of the triangles ensures that the holonomy group preserves the Eisenstein

lattice—i.e., the lattice in R2 generated by (1, 0) and (1/2,
√
3/2)—and the degree condition

means that the conical angle of any vertex is at most 2π. Such a 2-sphere is therefore a

nonnegatively curved integral polyhedral surface. Classifying and bounding the number of

conical points on such a surface is almost trivial, as we demonstrate at the beginning of

Chapter 3. Solving the analogous problems in three dimensions—i.e., proving Theorems 1

and 2—is far more complicated, and this is what we do in Chapter 3.

9



1. Introduction

Another motivation comes from the notion of an integral affine manifold with singu-

larities, although we do not explore the connection to these objects in this thesis. These

are manifolds that, away from a subset of codimension at least 2, have an atlas with

transition functions in affine transformations whose linear parts have integer entries (for

more details, see [CBM09, Defs. 3.1 & 3.6]). Integral polyhedral manifolds are examples

of these. The regular locus of such a manifold is naturally the base of a torus bundle, and

compactifications of these bundles are often Calabi–Yau manifolds (see e.g., [KS01, GS03]).

It is a well-known open question, whether or not there are finitely many families of Calabi–

Yau threefolds (see [Wil21]). By analogy, this question motivates similar boundedness

questions for the singular loci of nonnegatively curved integral polyhedral 3-manifolds,

and Theorem 2 answers one such question.

Noncompact polyhedral 3-manifolds with conical angles at most π have been classified

by Boileau, Leeb, and Porti in [BLP05, Thm. 4.1]. In the noncompact case, when the

conical angles are bounded above by some constant c in (0, 2π) and the singular locus is a

submanifold, Cooper and Porti explain in [CP08] that they can give an explicit upper

bound on the number of singular components, depending only on c. Brief reference is

made to monodromy constraints by Porti and Weiss in [PW07, § 2]. But, to the author’s

knowledge, no classification (such as Theorem 1) or general singularity bound (such as

Theorem 2) has been produced when integral monodromy is imposed. These results

and their proofs bring together Alexandrov geometry, ramified covering theory, and the

classification of crystallographic groups.

∗ ∗ ∗

In Chapter 4, we investigate the other direction of the research question posed earlier:

we impose restrictions on the topology of the singular locus and then deduce constraints

on the holonomy group. Whereas in Chapter 3 we focussed on Euclidean polyhedral

metrics, in this chapter, we restrict our attention almost entirely to spherical polyhedral

metrics. A 3-sphere endowed with a spherical polyhedral metric is called a polyhedral

3-sphere—the holonomy group of such a space is a subgroup of SO(4). The restriction

we impose on the singular locus is that it must form a Seifert link inside the 3-sphere, a

slight generalisation of a torus link (see Definition 4.1.3). The central aim of this chapter

is to demonstrate that, in the vast majority of cases, a polyhedral 3-sphere singular along

a Seifert link is a PK-link and to consider the geometric implications of this fact. A

3-dimensional PK-link is, in a nutshell, a polyhedral 3-sphere whose holonomy group is

conjugate to a subgroup of the unitary group U(2), assuming it has no conical angles

divisible by 2π (see Definition 2.3.11 and Remark 4.1.15).

The simplest nontrivial example of a Seifert link is the Hopf link—any link in the

3-sphere that is equivalent to the union of two fibres of the Hopf map. The first main

result of Chapter 4 is an almost complete description of polyhedral 3-spheres singular

along the Hopf link.
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1. Introduction

Theorem 3 (Hopf link singularities). Let M be a polyhedral 3-sphere with no conical

angles in 2π(N \ {1}) whose singular locus is the Hopf link. Then M is the link of the

product of two Euclidean 2-cones.

This result may be viewed as a 3-dimensional analogue of a classical result of Troyanov,

[Tro89, Thm. I], in which he classifies spherical polyhedral metrics on the 2-sphere

with precisely two conical points. Theorem 3 follows from the fact, proven throughout

Section 4.3, that any polyhedral 3-sphere satisfying the conditions of the theorem is a

PK-link. Proving it from this point requires a careful but fairly short application of the

classification of 3-dimensional PK-links (Theorem 4.1.16), which is but a reformulation of

various results of Panov in [Pan09].

When no conical angles are divisible by 2π, showing that a polyhedral 3-sphere is a

PK-link means showing that its holonomy group may be conjugated into U(2). The result

that is most crucial to Chapter 4 is therefore Proposition 4.2.1, a purely linear-algebraic

result stating that a subset of SO(4) may be conjugated into U(2) if all of its elements

commute with something whose square is nontrivial. It is a classical result that the

fundamental group of the Hopf link complement is Z2. Additionally, recall from earlier

that the holonomy group of a polyhedral manifold is the image of the holonomy map,

a representation of the fundamental group of the complement to its singular locus. All

of this means that, to show that a polyhedral 3-sphere singular along the Hopf link is

a PK-link, it is sufficient to show that its holonomy group contains an element with

nontrivial square, which we do with very few exceptions in Lemma 4.3.2. The rest of

Section 4.3 is devoted to dealing with the exceptional cases.

Proposition 4.2.1 can be applied, not only to polyhedral 3-spheres singular along

the Hopf link, but to those singular along any Seifert link. This is because, as we

show in Proposition 4.1.14, the fundamental group of any Seifert link complement has a

distinguished central element. Our final main result therefore concerns a more general

class of links called generic Seifert links. A Seifert link is called generic if it is not the

unknot or the Hopf link. As was mentioned earlier, Seifert links are a slight generalisation

of torus links. In fact, the components of a Seifert link are either unknots or (p, q)-torus

knots, for some unique pair of coprime integers q ≥ p ≥ 1. Components of the latter

kind are called ordinary. The last theorem of the thesis states that, subject to a very

mild condition on the length of an ordinary component, almost all polyhedral 3-spheres

singular along Seifert links are PK-links.

Theorem 4 (Seifert link singularities). Let M be a polyhedral 3-sphere with no conical

angles in 2π(N \ {1}) whose singular locus is a generic Seifert link. Let K be an ordinary

component of the singular locus of M . If the length of K is not divisible by π, then M is

a PK-link.

To prove this result, we show that, with the hypotheses of the theorem, the square of

the holonomy of the distinguished central element mentioned above is nontrivial. This is

11



1. Introduction

possible because a loop representing this central element is, in some sense, ‘parallel’ to

any ordinary component of the singular locus. We show that the holonomy of the central

element is an isometry of the unit 3-sphere that displaces a certain point along a great

circle by a distance equal to the length of the ordinary component. Since this length is

not divisible by π (and great circles have length 2π), this means that the square of the

isometry is nontrivial. Thanks to Proposition 4.2.1, Theorem 4 follows.

The concept of a PK-link (short for polyhedral Kähler link) originates in Panov’s

work in [Pan09], where he introduces the notion of a polyhedral Kähler manifold and

proves several results about them. As the name suggests, a polyhedral Kähler manifold

is essentially a Euclidean polyhedral 2n-manifold whose monodromy group (which, we

recall, is the orthogonal part of its holonomy group) is conjugate to a subgroup of U(n).

(There is an extra condition when there are conical angles divisible by 2π, but we largely

exclude this case here—see Remark 4.1.15 for a brief discussion.)

One of Panov’s main results is a classification of 4-dimensional polyhedral Kähler

cones. These are polyhedral Kähler manifolds homeomorphic to R4 that provide local

models for the singularities of arbitrary polyhedral Kähler 4-manifolds (see [Pan09, § 1.1]).

All the geometry of such a polyhedral cone (see Definition 2.1.6) can be captured by the

unit sphere about its tip—this is called the link of the cone (see Definition 2.1.7). The

strict definition of a PK-link is therefore a polyhedral (2n − 1)-sphere that is the link

of a polyhedral Kähler 2n-cone. Assuming that no conical angles are divisible by 2π,

this is equivalent to the definition given earlier. One outworking of Panov’s classification

is that the singular locus of a 3-dimensional PK-link must be either empty or a Seifert

link. In accordance with the overarching theme of this thesis, the primary motivation for

Chapter 4 is the desire for a converse to this observation. Significant headway to such a

converse is made in Theorems 3 and 4.

It has already been mentioned that Troyanov’s result [Tro89, Thm. I] concerning

spheres with two conical points is a motivation for Theorem 3, which can be seen as a

3-dimensional generalisation thereof. Significant motivation for Theorem 4 can be found in

the work of Kolpakov and Mednykh in [KM09], of Kolpakov in [Kol13], and of Derevnin,

Mednykh, and Mulazzani in [DMM14]. These works all contain geometric formulae for

polyhedral 3-spheres singular along certain special torus links, which, for example, express

the length of the singular components in terms of the conical angles. Theorem 4 allows

us to generalise and unify these formulae (under the mild assumptions required in the

theorem). The author knows of no geometric description of polyhedral 3-spheres singular

along torus links more comprehensive than that which can be deduced from Theorems 3

and 4.
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Chapter 2

POLYHEDRAL MANIFOLDS IN GENERAL

This chapter contains the precise definitions of all the key objects of study in this

thesis, some examples to aid understanding, and a few important results that are used

in later chapters. In Section 2.1, we give the definition of a polyhedral manifold, and

in Subsection 2.1.1, we define spaces that model them locally. Section 2.2 contains

material relevant to the singular loci of polyhedral manifolds. Subsection 2.2.1 contains the

definitions of codimension and conical angle, and the Gauss–Bonnet formula for polyhedral

surfaces. In Subsection 2.2.2, we make a brief detour into Alexandrov geometry, noting in

particular that polyhedral manifolds with conical angles at most 2π are Alexandrov spaces

with curvature bounded below, a fact that is central to Chapter 3. And in Subsection 2.2.3,

we focus on the structure of singular loci in three dimensions, which is where most of

the thesis is spent. Finally, in Section 2.3, we define some important geometric and

algebraic objects, including the developing map, holonomy, and monodromy, and conclude

in Subsection 2.3.1 by defining the precise holonomy restrictions that we consider in

Chapters 3 and 4.

2.1. Polyhedral Manifolds and Local Models

The essential definition of a polyhedral manifold was given in Chapter 1—a manifold

with a metric induced by a triangulation of constant curvature. However, the precise

definition is not consistent throughout the literature. For example, in [AKP19, Def. 3.4.1],

Alexander, Kapovitch, and Petrunin require a finite triangulation; whereas in [BBI01,

Def. 3.2.4], Burago, Burago, and Ivanov do not even require the triangulation to be locally

finite. Many authors use the term cone-manifold, such as Cooper, Hodgson, and Kerckhoff

in [CHK00]. Our definition is most in line with de Borbon and Panov’s in [dBP21, § 6.1.2].

We refer the reader to any of the above works for a good introduction to the theory.

The basic building blocks of a polyhedral manifold are simplices, living inside a model

space of constant curvature. One can formulate a definition in full generality, allowing the

curvature to be any real number, as is done in [BLP05, § 3], for example. However, in

this thesis, we focus almost exclusively on the cases when the curvature is 0 or 1—i.e.,

when the polyhedral manifold is Euclidean or spherical. A Euclidean n-simplex is easy to
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2.1. Polyhedral Manifolds and Local Models

define—it is the convex hull of n+ 1 points in Rn in general position, endowed with its

intrinsic metric. Defining a spherical simplex takes a little more work.

Endow Sn with its intrinsic metric.† Any pair of points in Sn is joined by a shortest

path whose length equals the distance between them. The only situation in which this

path is not unique is when the points are antipodal, in which case there is an infinite

family of shortest paths joining the two points, one for each point on the equator Sn−1.

The convex hull of a subset S of Sn is the smallest subset of Sn that contains S and is

closed under taking shortest paths between points. This means that the convex hull of a

pair of antipodal points is all of Sn. In fact, the convex hull of S is not all of Sn if and

only S is contained in an open hemisphere of Sn. We say that a finite number of points in

Sn are in general position if their convex hull has nonempty interior and they lie within

an open hemisphere. It now makes sense to define a spherical n-simplex as the convex

hull of n+ 1 points in Sn in general position, endowed with its intrinsic metric.

We now give the definition of a polyhedral manifold. The definition, while fairly

technical, tries to abstract the notion of the surface metric of a polyhedron or polytope

without requiring it to be embedded in any ambient space. The definition follows

[dBP21, Def. 6.5], which is itself a variant of [AKP19, Def. 3.4.1] allowing locally finite

triangulations.

Definition 2.1.1 (Polyhedral manifold). Let M be a complete length space that is

homeomorphic to a topological n-manifold (see [BBI01, Ch. 2] or [AKP19, § 1.4] for an

introduction to length spaces). Suppose that M admits a locally finite triangulation in

which each n-simplex is isometric to a Euclidean (or spherical) n-simplex. We then call M

a Euclidean (or spherical, respectively) polyhedral n-manifold, and we refer to the metric

on M as a Euclidean (or spherical, respectively) polyhedral metric. The aforementioned

triangulation is called a geometric triangulation of M .

This definition implies that a polyhedral manifold is connected and locally compact,

but not necessarily compact. The Hopf–Rinow theorem ([AKP19, Thm. 1.4.6]) states

that a complete, locally compact length space is proper, and [AKP19, Prop. 1.4.5] states

that a proper length space is geodesic—i.e., that any two points can be joined by a path

whose length equals the distance between them (a shortest path). Therefore, a polyhedral

manifold is a geodesic metric space. Let us now elucidate this definition by considering

some examples.

Example 2.1.2. Let P be a Euclidean or spherical n-polytope—i.e., a subset of Rn

or Sn that is homeomorphic to the closed n-ball and whose boundary is made up of a

finite number of totally geodesic pieces. We can form the double DP of P by taking two

identical copies of P and gluing them along their boundaries. The result is a Euclidean

or spherical polyhedral metric on Sn (see Figure 2.1). When n is greater than 1, we can

†The unadorned symbol Sn will always be used to denote the unit n-sphere endowed with its intrinsic

metric, while Sn will simply denote the underlying topological space.
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2.1. Polyhedral Manifolds and Local Models

Figure 2.1. Two ways of presenting the double of a cube. Both figures represent solid polyhedra in R3.

On the left, grey arrows denote face identifications. On the right is a rhombic dodecahedron, with face

identifications performed by folding along the grey lines. Both give isometric polyhedral metrics on S3.

also consider the intrinsic metric on the boundary ∂P of P—this is a polyhedral metric

on Sn−1. In both of these examples, we are not concerned with how to subdivide the

polytopes into simplices, as this will not affect the resulting polyhedral metric.

Example 2.1.3. More generally, any manifold obtained from a polytope by identifying

its sides isometrically in pairs is a polyhedral manifold. Taking a parallelopiped in Rn

and identifying opposite faces by translations yields a familiar polyhedral metric on T n.

Example 2.1.4. Perhaps bizarrely, a polytope itself is in fact not a polyhedral manifold,

as it has a boundary. However, many geometers have historically been interested in

polyhedra because of their surface metrics, as evidenced by Cauchy’s rigidity theorem

(see [AZ18, Ch. 14]), Alexandrov’s uniqueness and existence theorems in [Ale05], and

Thurston’s work in [Thu98]. If we view the geometry of a polytope as encapsulated in its

boundary, then we can think of it as a polyhedral manifold, as explained in Example 2.1.2.

Example 2.1.5. The model spaces Rn and Sn are themselves polyhedral manifolds. This

is because they can be decomposed into geodesic simplices. Circles of any length with their

intrinsic metrics, as well as the real line R, are both Euclidean and spherical polyhedral

1-manifolds. These are all the 1-dimensional examples. The Euclidean and spherical cases

only overlap in dimension 1.

One reason for allowing Definition 2.1.1 to include noncompact spaces, such as Rn, is

the interesting work in that setting by Boileau, Leeb, and Porti in [BLP05, § 4] and by

Cooper and Porti in [CP08]. Another key reason is that we wish to include an important

class of spaces called polyhedral cones, which we define next.
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2.1.1. Cones and Links

Polyhedral cones are defined in essentially the same way as polyhedral manifolds, except

that the building blocks are simplicial cones rather than simplices. A simplicial n-cone in

Rn (or Sn) is constructed by taking a Euclidean (or spherical, respectively) n-simplex σ,

choosing a vertex v of σ, and then taking the union of all shortest paths in Rn (or Sn,

respectively) that start at v and pass through another point of σ. The vertex v is called

the tip of the simplicial cone. In Rn, this results in an unbounded set, whereas in Sn, the

shortest paths all converge at the point antipodal to v, and we end up with a bounded set

(see Figure 2.2).

Definition 2.1.6 (Polyhedral cone). Let C be a complete length space that is home-

omorphic to Rn (or Sn). Suppose that C admits a finite decomposition into simplicial

n-cones in Rn (or Sn, respectively) glued along their totally geodesic boundary pieces by

isometries. We then call C a Euclidean (or spherical, respectively) polyhedral n-cone. The

tips of all the simplicial cones are identified into one point, which is also called the tip of

C.

Figure 2.2. Simplices and simplicial cones in R3 (on the left) and S3 (on the right). The Euclidean

cone is unbounded and thus only partially displayed, while the spherical cone is shown in full. The edges

of the spherical cone are shortest paths between antipodal points of S3 and thus have length π.

Polyhedral cones are important because they locally model polyhedral manifolds,

as we now show. Let M be a polyhedral n-manifold and x a point in M . Choose a

geometric triangulation of M for which x is a vertex (this can always be done by taking

any geometric triangulation and then subdividing the simplices to which x belongs, if x

is not already a vertex). By extending the n-simplices to which x belongs to simplicial

cones, we obtain a polyhedral n-cone of which x is the tip. This cone naturally has the

following property: there is a small ball about its tip that is isometric to a ball of the

same radius about x in M , the tip being sent to x. In other words, it locally models M at

x. We summarise this in the following definition (see [dBP21, § 6.2]):
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2.1. Polyhedral Manifolds and Local Models

Definition 2.1.7 (Tangent cone and link). Given a point x in a polyhedral manifold M ,

the polyhedral cone that locally models M at x, as described above, is called the tangent

cone of M at x, denoted by TxM . Since TxM is a cone, all of its geometry is captured by

a sphere about its tip. We choose the radius of this sphere to be 1 or π/2, depending on

whether M is Euclidean or spherical respectively, and equip it with its intrinsic metric.

This ensures it is a spherical polyhedral manifold. It is referred to as the link of M at

x, denoted by ΣxM . If M has dimension n, then ΣxM is homeomorphic to Sn−1. One

can recover TxM from ΣxM by taking a metric cone of curvature 0 or 1 over ΣxM—see

[BLP05, § 3.1] for an explanation of this.

Remark 2.1.8. It may seem that the definition of TxM depends on an arbitrary choice

of geometric triangulation for M . However, the fact that a small ball about its tip is

pointed isometric to a small ball about x in M shows this not to be the case—the tangent

cone is a local isometry invariant of M .

π

Figure 2.3. Taking iterated links. Grey arrows denote face or side identifications. On the left is the

double of a cube. Taking the link at the grey vertex gives the middle figure, the double of a spherical

triangle with three right angles. Taking the link at the white vertex gives the rightmost figure, a circle of

length π.

Example 2.1.9. If M is the double of a polyhedron of which x is a vertex, then ΣxM

is the double of a spherical polygon. If M is the double of a polygon of which x is a

vertex, then ΣxM is a circle whose length is twice the internal angle of the polygon at x.

A concrete example is shown in Figure 2.3.

Remark 2.1.10. In [BLP05, Def. 3.1], there is an alternative definition of polyhedral

manifold (or cone manifold, to use their terminology). In summary, Boileau, Leeb, and

Porti recursively define a cone manifold as a space that is locally modelled on metric

cones over spherical cone manifolds one dimension down. The construction of the tangent

cone in Definition 2.1.7 shows that our definition of polyhedral manifold satisfies their

definition of cone manifold (provided we require that no conical angle exceed 2π—this

will be explained in Definition 2.2.5). In fact, the reverse is also true: Boileau, Leeb, and
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Porti’s cone manifolds are polyhedral manifolds (provided we require that they have no

boundary), as shown by Lebedeva and Petrunin in [LP15].†

2.2. Singular Loci and Local Properties

In this section, we define the singular locus of a polyhedral manifold and consider some

basic properties of it. Fix a geometric triangulation of a polyhedral n-manifold M . For any

point x lying in the interior of an n-simplex, the link ΣxM is isometric to Sn−1. Because

M is a manifold, an (n− 1)-simplex belongs to precisely two n-simplices, and so ΣxM is

still isometric to Sn−1 when x lies in the interior of an (n− 1)-simplex. This may cease to

hold when x lies in a simplex of any codimension greater than 1. This gives rise to the

notion of singularity, which we now define.

Definition 2.2.1 (Singular locus). A point x in a polyhedral n-manifold M is called

singular if ΣxM is not isometric to Sn−1, and regular if it is. The singular locus of M is

the set of all singular points of M , denoted by Ms, while M \Ms is termed the regular

locus of M . The above discussion shows that Ms must live in codimension 2 or higher.

We will see in Lemma 2.2.8 that Ms is in fact a union of codimension 2 simplices.

Example 2.2.2. Continuing with the examples presented in Figure 2.3, the singular locus

of the double of a cube is the union of the (closed) edges of the cube—its ‘wireframe’.

The singular locus of the double of a polygon P is the union of the vertices of the polygon.

In general, if P is an n-polytope, then DPs is the union of the (closed) codimension 2

facets of P (recall that DP denotes the double of P , as defined in Example 2.1.2).

Example 2.2.3. If P is an n-polytope, then ∂Ps is the union of the (closed) codimension

3 facets of P . For example, the singular locus of the boundary of a cube is the union of

its vertices.

2.2.1. Local Invariants of Singularities

In Example 2.2.2, it becomes apparent that there are different levels of singularity. If x

lies on the interior of an edge of the cube, then the tangent cone at x is the product of R
with a 2-cone. On the other hand, if y is a vertex of the cube, then the tangent cone at y

admits no such decomposition. We say that x is a codimension 2 singularity, while y has

codimension 3. This motivates the following definition (see [dBP21, Def. 6.11]).

Definition 2.2.4 (Codimension). Let M be a polyhedral n-manifold and x a singular

point of M . Let Cx be the Euclidean cone over the link ΣxM (if M is Euclidean then

Cx is just TxM). Let k be the smallest integer between 2 and n for which there is an

†Their main result only characterises Euclidean polyhedral manifolds with finite triangulations, but

they comment in Section 5 that their proofs generalise with minimal change to the spherical and locally

finite cases.
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isometric decomposition Cx
∼= Rn−k ×Ck, where Ck is a Euclidean polyhedral k-cone. We

then say that x is a codimension k singularity.

The set of all singularities of codimension at least k in M is a union of closed simplices

of codimension at least k of any geometric triangulation of M (see [dBP21, Lem. 6.14 (1)]

and its proof). However, it is not the case that a point lying on some codimension k

simplex of M will be a codimension k singularity. This can be seen in Figure 2.1: none of

the black edges of the rhombic dodecahedron end up contributing any singular points.

This is because the sum of the dihedral angles—the conical angle—of any group of edges

that get glued together is 2π. We now define this notion more precisely. Denote by S1(α)

the circle of length α and by C2(α) the Euclidean cone over S1(α)—the 2-cone of angle α.

Definition 2.2.5 (Conical angle). Let σ be a codimension 2 simplex of a geometric

triangulation of a polyhedral n-manifold M and let x be any interior point of σ. The

Euclidean cone Cx defined in Definition 2.2.4 can be written as Rn−2 × C2(α), for some

α ∈ (0,∞) depending only on σ and not on the specific point x. This value α is called

the conical angle of σ. Of course, if x is regular then α is 2π and C2(α) is isometric to R2.

If M is Euclidean and none of its conical angles exceed 2π, we say M is nonnegatively

curved.

Example 2.2.6. The double or boundary of a convex Euclidean polytope is a nonnega-

tively curved polyhedral manifold.

A more concrete way of looking at the conical angle is as follows. Any codimension 2

simplex σ belongs to a finite number of top-dimensional simplices ∆1, . . . ,∆m, and it has

dihedral angles α1, . . . , αm associated to each of them. The conical angle of σ is then the

sum α1 + . . .+ αm. In the example shown in Figure 2.3, the conical angle of any edge of

the cube is π.

The conical angles of a polyhedral surface must satisfy the following well-known

formula (see [CHK00, Thm. 3.15]). This formula is used in Chapter 3 when studying local

properties of polyhedral metrics in three dimensions.

Theorem 2.2.7 (Gauss–Bonnet formula). Let α1, . . . , αk be the conical angles of a compact

polyhedral surface S that differ from 2π and let AS be its total area. Then

KAS +
k∑

i=1

(2π − αi) = 2πχ(S), (2.2.1)

where K is 0 or 1 if S is Euclidean or spherical respectively.

The notion of conical angle allows us to give the following alternative characterisation

of the singular locus:

Lemma 2.2.8. Let M be a polyhedral manifold of dimension at least 2. The singular

locus of M is the union of all the (closed) codimension 2 simplices of M whose conical

angles differ from 2π, in any geometric triangulation.
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Proof. Fix a geometric triangulation of M . We proceed by induction on the dimension n

of M . First, suppose that n = 2 and let x be a point in M . If x lies in the interior of a

2-simplex, then ΣxM is S1 by definition. If x lies in the interior of a 1-simplex, then a

small metric disc around x in M is glued from two half-discs of the same radius in R2 or

S2, and therefore ΣxM is still isometric to S1. Finally, if x is a vertex of the triangulation,

then ΣxM is S1(α), where α is the conical angle of the vertex. This is isometric to S1 if

and only if α is 2π. Thus, the result holds for n = 2.

Suppose now that the result holds for some n = m and let M have dimension m+ 1.

Firstly, let x be a singular point of M . Then ΣxM is a spherical polyhedral m-manifold

with nontrivial singular locus. By the induction hypothesis, therefore, (ΣxM)s contains a

spherical (m− 2)-simplex of conical angle α ̸= 2π. This contributes a simplicial (m− 1)-

cone of conical angle α to TxM , and thus x lies in an (m− 1)-simplex of conical angle

α ̸= 2π.

Conversely, suppose that x lies in some (m − 1)-simplex of conical angle α ̸= 2π.

By reversing the argument above, we see that ΣxM contains a corresponding spherical

(m−2)-simplex of conical angle α. Thus, by the induction hypothesis, (ΣxM)s is nonempty,

so ΣxM is not isometric to Sn, and so x is a singular point of M .

2.2.2. Relationship to Alexandrov Geometry

In Definition 2.2.5, we called a Euclidean polyhedral manifold nonnegatively curved if

all its conical angles are at most 2π. One reason for this is that Euclidean polyhedral

manifolds with conical angles at most 2π can be seen as discrete analogues of Riemannian

manifolds of nonnegative sectional curvature, as is fleshed out in [LMPS15] and [Pet03].

A related reason is that they turn out to be nonnegatively curved Alexandrov spaces.

A thorough introduction to the theory of Alexandrov spaces with lower curvature

bounds is given in [BBI01, Chs. 4 & 10]. Several definitions are given there—[BBI01,

Defs. 4.1.2, 4.1.9 & 4.1.15]—all of which are shown to be equivalent in [BBI01, Thm. 4.3.5].

We briefly recall the definition most useful for our purposes—the “angle condition” ([BBI01,

Def. 4.1.15]), modified to allow nonzero curvature bounds.

For any real number K, let M2
K be the model K-plane—i.e., R2 when K is 0, the sphere

of radius K−1/2 endowed with its intrinsic metric when K is positive, or the hyperbolic

plane scaled by (−K)−1/2 when K is negative. Let X be a complete length space and a,

b, and c points in X. A triangle △abc is the union of shortest paths [ab], [bc], and [ac],

and a comparison triangle in M2
K for △abc is a triangle △ãb̃c̃ with the same side lengths

as △abc—i.e., with |ãb̃| = |ab|, |b̃c̃| = |bc|, and |ãc̃| = |ac|. Comparison triangles always

exist (provided the original triangle is sufficiently small in the case when K is positive)

and are unique up to congruence.

A triangle △abc in X is said to be K-fat if its angles are at least as big as the

corresponding angles of the comparison triangle inM2
K—i.e., if ∡abc ≥ ∡ãb̃c̃, ∡bca ≥ ∡b̃c̃ã,
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a
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K

≥

Figure 2.4. Angle comparison.

and ∡bac ≥ ∡b̃ãc̃, where ∡abc is the angle

subtended at b by [ab] and [bc] etc. We say

that X is an Alexandrov space of curvature

at least K if every point of X has a neigh-

bourhood in which every triangle is K-fat,

and if additionally, for any points p, q, and

s in X and r an interior point of [pq], we

have ∡prs + ∡srq = π. (The second con-

dition is rather technical and will not be

brought into question for any of the spaces

we will consider.) We now state the result that relates Alexandrov spaces to our work

(see [BLP05, Prop. 3.3 f.] for a summary of the proof).

Proposition 2.2.9. A Euclidean or spherical polyhedral manifold of dimension at least

2 and with conical angles at most 2π is an Alexandrov space of curvature at least 0 or 1

respectively.

This means that nonnegatively curved polyhedral manifolds of dimension at least 2 are

nonnegatively curved Alexandrov spaces, a fact that is central to Chapter 3. There are two

classical results from Alexandrov geometry that we use in Chapter 3: Toponogov’s theorem

([BBI01, Thm. 10.3.1]) and the Gromov–Bishop inequality ([BBI01, Thm. 10.6.6]). The

first we may now state easily using the terminology we have already established. The

statement we give is more explicit than [BBI01, Thm. 10.3.1] but nonetheless equivalent

to it.

Theorem 2.2.10 (Toponogov). Every triangle in an Alexandrov space of curvature at

least K is K-fat.

The second result concerns ratios of volumes of metric balls in nonnegatively curved

Alexandrov spaces and so requires a little more set-up.

Definition 2.2.11 (Volume and area). LetX be a metric space whose Hausdorff dimension

is an integer n ≥ 3 and let S be a (Hausdorff measurable) subset of X. The volume of S,

denoted by VolS, is the n-dimensional Hausdorff measure of S, while the area of S is its

(n− 1)-dimensional Hausdorff measure. Regardless of the dimension of the ambient space,

we will always refer to the 1 and 2-dimensional Hausdorff measures of a subset as its length

and area respectively. If there may be any confusion, the dimension will be specified.

Finally, as a shorthand, for p ∈ X and r > 0, we use V (p, r) to denote Vol(B(p, r)).

We now give the Gromov–Bishop inequality in the form most useful for our purposes

in Chapter 3. It essentially states that the volume of a metric ball in a nonnegatively

curved Alexandrov space grows no faster than the volume of a Euclidean ball of the same

radius. The form we give here is weaker than [BBI01, Thm. 10.6.6], but it is sufficient for

our needs.
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Theorem 2.2.12 (Gromov–Bishop inequality). Let p be a point in an n-dimensional

nonnegatively curved Alexandrov space and let R ≥ r > 0. Then

V (p,R)

V (p, r)
≤ Rn

rn

Remark 2.2.13. In order to deduce the result just given from [BBI01, Thm. 10.6.6], the

Alexandrov space in question needs to be locally compact, and in order for the volume

to be well-defined, the Hausdorff dimension needs to be an integer. These problems are

resolved by [BBI01, Thms. 10.8.1 & 10.8.2], which state (respectively) that all finite-

dimensional Alexandrov spaces are locally compact and that the Hausdorff dimension of

any Alexandrov space is either an integer or infinity.

We end this subsection by defining the notion of ε-narrowness, a concept central to the

proof of Theorem 2. In preparation for this, we recall the following from [BBI01, § 9.1.8].

Given a point x in an Alexandrov space X of curvature bounded below, the space of

directions of X at x is the completion of the space of equivalence classes of shortest paths

emanating from x, where two paths are equivalent if their angle at x is 0. The metric is

defined by taking angles at x, which means that the diameter of the space of directions is

at most π. When X is a polyhedral manifold of dimension at least 2 and with conical

angles at most 2π, the space of directions is the same as the link. This is because the link

is simply the space of directions equipped with its intrinsic metric rather than its angular

metric, and these metrics coincide for complete, intrinsic, finite-dimensional Alexandrov

spaces with curvature bounded below (see [Hal00, Rem. 2.4 & Prop. 2.5 (a)]).

Definition 2.2.14 (ε-narrow). Given ε ∈ (0, π), we say that a point x in an Alexandrov

space of curvature bounded below is ε-narrow if the space of directions at x has diameter

at most ε. This is the same as saying that any angle subtended at x is at most ε.

2.2.3. Singular Loci in Three Dimensions

To finish this section, we focus on the singular loci of polyhedral 3-manifolds, as they are

the objects of interest in the remaining chapters of the thesis. Our aim is understand the

basic geometry and topology of the singular locus in three dimensions, in order to provide

a framework for the later chapters. For the sake of simplicity, we will assume that no

conical angles lie in 2π(N \ {1}).

Let M be a polyhedral 3-manifold, Euclidean or spherical. By Lemma 2.2.8, the

singular locus of M is the union of all 1-simplices whose conical angles differ from 2π.

The possible codimensions for a singular point x of M are 2 and 3, and the value may

be determined by looking at the link ΣxM . This is a spherical polyhedral manifold

homeomorphic to the 2-sphere—such a space will henceforth be known as a sphere with

conical points, the conical points being the singular points. Let us define a very simple

type of sphere with conical points.
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Definition 2.2.15. A closed region in S2 bounded by two great semicircles is called a

lune. A lune is determined up to congruence by the angle subtended at its two antipodal

vertices. If we take a finite collection of lunes of angles α1, . . . , αm and glue their sides

together in pairs, we end up with a sphere with two conical points of the same angle

α = α1 + . . .+ αm. This space is called a spherical football of angle α, denoted by S2(α).

If x lies on a singular edge of conical angle α, then ΣxM is isometric to S2(α). If x

lies at a vertex of the triangulation, then the conical points of ΣxM correspond to the

singular 1-simplices incident to x, the conical angle of the 1-simplex being the same as

the angle of the corresponding conical point of ΣxM . Let us consider how the singular

locus looks near x depending on the number of conical points of ΣxM .

• If ΣxM has no conical points, then x is regular.

• It is impossible for ΣxM to have precisely one conical point—this is proven in

Remark 2.3.8.

• If ΣxM has two conical points, then by [Tro89, Thm. I], it must be a spherical

football of some angle α. This means that x has codimension 2 and is therefore

metrically indistinguishable from an interior point of a 1-simplex of conical angle α.

• Finally, if ΣxM has three or more conical points, then x has codimension 3 and lies

at the intersection of three or more singular 1-simplices.

These observations allow us to give the following structural result concerning the

singular locus of a polyhedral 3-manifold. The result is classical but hard to find stated in

full anywhere. It is a generalisation of Boileau, Leeb, and Porti’s result [BLP05, Cor. 3.11].

Proposition 2.2.16. The connected components of the singular locus of a polyhedral

3-manifold with no conical angles in 2π(N \ {1}) are:

1. Locally finite graphs whose edges have constant conical angle and whose vertices have

degree at least 3, possibly with infinitely long edges only incident to a vertex at one

end;

2. Circles with constant conical angle; or

3. Lines of infinite length with constant conical angle.

The vertices of the graph components are referred to as singular vertices—these are

precisely the codimension 3 singularities. The finite edges of the graph components are

called singular segments, and the infinite edges singular rays. The components in cases

2 and 3 above are called singular circles and lines respectively. The singular segments,

rays, circles, and lines are collectively called the singular edges. Singular rays and lines

cannot occur in compact manifolds, because if they did, they would have to accumulate

somewhere, which would contradict the local finiteness condition in Definition 2.1.1.
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Remark 2.2.17. If we allow conical angles divisible by 2π, then all that changes in the

result above is that we must allow vertices of degree 2. To see this, let S be a sphere with

precisely two conical points of angles 2nπ and 2mπ, where n and m are integers greater

than 1. It follows from [Tro89, Thm. 1] that n = m and that S is a ramified cover of S2,

ramified at two points. If these two points are not antipodal, then S is not a spherical

football. This means that, if S is the link of a polyhedral 3-manifold M at a point x, then

x can be metrically distinguished from interior points of the two singular edges incident

to it and must therefore be viewed as a vertex of degree 2.

2.3. Holonomy

In this section, we define a crucial algebraic invariant of a polyhedral manifold called

the holonomy map. This is a certain representation of the fundamental group of the

regular locus that encodes information about how an observer’s view would change as

they moved around a polyhedral manifold without turning. Imposing conditions on the

holonomy can have significant implications for the geometry and topology of the singular

locus—this idea is explored in Chapter 3. Conversely, imposing conditions on the topology

of the singular locus can also have implications for the holonomy—this idea is explored in

Chapter 4. To define holonomy, we first need to define the ramification and developing

map of a polyhedral manifold.

Definition 2.3.1 (Ramification). Given a polyhedral manifold M , the ramification of

M , denoted by RamM , is the metric completion of the universal cover of M \Ms, where

the metric is defined by pulling back along the universal covering map (see [PP16]).

Completing the metric of the universal cover M̃ \Ms may be thought of as ‘adding

in’ preimages to the singularities of M . The universal covering map extends to a map

p : RamM → M . This map has ramification (of countably infinite degree) along the

preimages to the singular points.

Example 2.3.2. If M is the double of a triangle T , then RamM is, topologically, an

open disc plus countably many points on its boundary (see Figure 2.5). It is triangulated

by triangles isometric to T , and the points on the boundary are the vertices of these

triangles. There are infinitely many triangles incident to any vertex, and therefore RamM

is not a polyhedral manifold. However, to abuse the terminology of polyhedral manifolds,

we might say that any vertex of RamM has ‘link R’ and ‘conical angle ∞’.

Following the discussion just before Definition 2.2.1, any regular point of a Euclidean

or spherical polyhedral n-manifold M has a neighbourhood that is isometric to Rn or

Sn respectively. It follows that regular locus is a (G,X)–manifold, with G being the

Euclidean group E(n) and X being Rn if M is Euclidean, or with G being the orthogonal

group O(n+ 1) and X being Sn if M is spherical (see [CHK00, § 1.4] for a definition). In

fact, M itself is a (G,X)–cone-manifold in the sense of Thurston (see [Thu98, pp. 523–

524]—the notation (X,G)–cone-manifold is used there, and there does not seem to be
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M

p RamM

Figure 2.5. On the left is the double of a Euclidean equilateral triangle, with arrows marking side

identifications. The figure on the right represents the ramification, although we can only show a finite

number of triangles. The figure on the right is not to scale—every triangle drawn is isometric to the

equilateral triangles shown on the left. The universal covering map p maps triangles to triangles according

to their colour and edge labelling.

much consistency in the literature). This allows us to define a developing map for M (see

[Thu97, § 3.4] or [CHK00, §§ 1.4 & 4.1] for a detailed explanation of what follows).

Definition 2.3.3 (Developing map). Let M be a polyhedral n-manifold with some fixed

geometric triangulation and let X be Rn or Sn if M is Euclidean or spherical respectively.

Lift the triangulation to RamM and choose an isometric embedding of one of the simplices

into X. Analytically continue this map to all of RamM so that it restricts to an isometric

embedding on every simplex. This defines a map Dev : RamM → X—the developing

map of M—that restricts to a local isometry on M̃ \Ms.

The developing map can also be thought of as a multivalued map M → X. In this

way, one can think of it as ‘unfolding’ or ‘developing’ M into the model space X, having

chosen an initial embedding for one of the simplices ∆. If we develop along a closed path

γ in M \Ms based in ∆, we arrive at a possibly different embedding of ∆ in X. Using

this instead as our initial embedding, we get a different developing map, which is related

to the first by transformation in G (where, recall, G is E(n) or O(n+ 1) if X is Rn or Sn

respectively). This transformation is called the holonomy of γ. To make this precise, we

use the language of deck transformations. Recall that π1(M \Ms) acts on M̃ \Ms—and

thus on RamM by continuity—by deck transformations.

Definition 2.3.4 (Holonomy and monodromy). The holonomy map of a polyhedral

n-manifold M is the unique homomorphism Hol : π1(M \Ms) → G satisfying

Dev(γ · x̃) = Hol γ ·Dev x̃, for all γ ∈ π1(M \Ms) and x̃ ∈ RamM.
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RamM

M

R2

p
Dev

π1(M \Ms) E(2)
Hol

Figure 2.6. Developing map and holonomy of the double of a Euclidean equilateral triangle. The

ramification is shown in Figure 2.5. Triangles map into R2 as shown on the right. The blue and red

loops on the left are closed geodesics that generate π1(M \Ms). These paths are developed, three times

consecutively, to give the red and blue paths on the right. The holonomies of the blue and red loops are

rotations of order 3 about the centres of the red and blue dotted circles respectively.

The holonomy group HolM of M is the image the holonomy map. When M is Euclidean,

we define the monodromy map Mon: π1(M \Ms) → O(n) to be the composition of the

holonomy map with the natural projection E(n) → O(n). In this case, the monodromy

group MonM of M is the image of the monodromy map.

Remark 2.3.5. We must, at this point, briefly discuss the difficulty of the terminology

just introduced. In the majority of literature concerning (G,X)–structures, the term

holonomy is used as above, following Thurston’s example. But in Riemannian geometry,

the term holonomy is used quite differently, to describe isometries of the tangent space at a

point. The regular locus of a Euclidean polyhedral manifold is naturally a flat Riemannian

manifold, and holonomy of the Levi–Civita connection of this Riemannian manifold is

actually the same as the monodromy defined above. The key thing to remember is that

monodromy is defined only for Euclidean polyhedral manifolds, and it fixes the origin,

while holonomy does not (in general).

Example 2.3.6. The developing map of the double of an n-polytope P is defined by

gluing copies of that polytope face to face to fill the whole of X = Rn or Sn. The copies

will overlap, unless the polytope tesselates. Suppose we have chosen an embedding of P

into X, and that it has codimension 2 facets σ1, . . . , σm with dihedral angles ϑ1, . . . , ϑm

respectively. The holonomy group of DP is the group generated by rotations about the σi

by angle 2ϑi. In general, the image of a point under the action of this group is dense in X.

The above example demonstrates that holonomy groups of polyhedral manifolds can be

very complicated. However, if we choose the polyhedral metric carefully, as in Figure 2.5,
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the developing map ends up exhibiting a high degree of regularity, as we explore in the

following example. See Figure 2.6 for a visualisation of what follows.

Example 2.3.7. This example in inspired by Thurston’s work in [Thu98, § 2]. Let T be

the triangle in R2 with vertices (0, 0), u := (1, 0), and v := (1/2,
√
3/2). The developing

map of DT is defined by tiling the plane with copies of T . The vertices of this tiling form

the lattice L := Z⟨u, v⟩. The holonomy group is generated by rotations of order 3 about

the lattice points, and the monodromy group is the cyclic group C3. They both preserve

the lattice L. In fact, DT may be recovered as R2/HolDT , since it is an orbifold (see

[CHK00, Thm. 2.26]).

Remark 2.3.8. We can now prove something that was claimed back in Subsection 2.2.3:

that a spherical polyhedral 2-sphere cannot have precisely one conical point. Indeed,

suppose that we have such a sphere. Its regular locus is an open disc, which is simply

connected, and so its holonomy group is trivial. This means that the developing map is a

ramified cover, with ramification only at the conical point. But there is no map from the

2-sphere to itself ramified at only one point. Therefore, such a 2-sphere cannot exist.

2.3.1. Holonomy and Monodromy Restrictions

In this thesis, we impose two different restrictions on the holonomy of polyhedral manifolds.

The first is modelled on Example 2.3.7 and is considered in Chapter 3. Recall that a

lattice in Rn is Z⟨v1, . . . , vn⟩, where {v1, . . . , vn} is a basis for Rn.

Definition 2.3.9 (Integral). A Euclidean polyhedral n-manifold is called integral if the

action of its monodromy group (a subgroup of O(n)) on Rn preserves a lattice in Rn. This

is equivalent to the monodromy group being conjugate to a subgroup of GL(n,Z).

Nonnegatively curved integral polyhedral 3-manifolds are studied in detail in Chapter 3.

Specifically, their local properties are classified, and the existence of a bound on their

number of singular vertices is demonstrated.

The other restriction we consider was defined by Panov in [Pan09] and relates to the

unitary group. The standard definition of U(n) is as the subgroup of GLn(C) of matrices

whose inverses are their conjugate transposes. However, when considering holonomy

groups—and therefore throughout this thesis—we identify U(n) with the subgroup of

O(2n) of matrices commuting with the standard complex structure on R2n, which is defined

as follows:

Jn :=


0 −1
1 0 0

. . .

0 0 −1
1 0

 .
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2.3. Holonomy

This identification can be realised by the following embedding of Mn(C) into M2n(R),
under which Jn is the image of iI:a11 + ib11 · · · a1n + ib1n

...
. . .

...

an1 + ibn1 · · · ann + ibnn

 7−→


a11 −b11
b11 a11

· · · a1n −b1n
b1n a1n

...
. . .

...
an1 −bn1
bn1 an1

· · · ann −bnn
bnn ann

 .

Definition 2.3.10 (Polyhedral Kähler). A Euclidean polyhedral 2n-manifold (with no

conical angles in 2π(N \ {1})) is called polyhedral Kähler if its monodromy group is

conjugate to a subgroup of U(n). There is an extra condition for codimension 2 simplices

having conical angles in 2π(N \ {1}), but we do not consider this situation much here (see

[Pan09, Def. 1.1] for the full details).

In Chapter 4, we are particularly interested in spherical polyhedral metrics on S3 that

form local models for polyhedral Kähler 4-manifolds. With this in mind, we make the

following definition in the spherical setting.

Definition 2.3.11 (PK-link). Let M be a spherical polyhedral manifold, homeomorphic

to S2n−1. We say that M is a PK-link if the Euclidean cone over M is polyhedral Kähler.

When none of the conical angles of M lie in 2π(N\{1}), this is equivalent to the holonomy

group of M (a subgroup of SO(2n)) being conjugate to a subgroup of U(n).

Panov completely classified PK-link metrics on the 3-sphere in [Pan09, Thm. 1.7]. His

result implies in particular that the singular locus of such a metric must be a Seifert

link, a slight generalisation of a torus link. In Chapter 4, we work on a converse to this

fact, by asking whether requiring the singular locus of a spherical polyhedral metric on

the 3-sphere to be a Seifert link forces the metric to be a PK-link metric. We show that

evaluating the holonomy of a single loop is sufficient to show that a spherical metric

singular along a Seifert link is a PK-link metric. This result is then applied, first to the

Hopf link, and then to Seifert links in general.
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Chapter 3

NONNEGATIVELY CURVED INTEGRAL

POLYHEDRAL 3-MANIFOLDS

In [Thu98], Thurston studied the moduli space of triangulations of the 2-sphere in which

every vertex has degree at most 6. To do this, he endowed such a triangulated 2-sphere

with a metric in which every triangle is isometric to a Euclidean equilateral triangle

with unit sides. This is a Euclidean polyhedral metric. The degree condition ensures

that it is nonnegatively curved, and the shape of the triangles ensures that its holonomy

preserves the Eisenstein lattice—the lattice generated by (1, 0) and (1/2,
√
3/2) in R2. He

later embeds the space of these triangulations inside the space of metrics on the 2-sphere

that are locally Euclidean everywhere except at a finite number of conical points, whose

conical angles must lie in {kπ/3 | k ∈ {1, . . . , 5}}. This is a space of nonnegatively curved

integral polyhedral metrics on the 2-sphere. In this chapter, we consider nonnegatively

curved integral polyhedral metrics on the 3-sphere and other 3-manifolds. For the rest

of this chapter, the term polyhedral will stand for Euclidean polyhedral, unless stated

otherwise. The only spherical polyhedral manifolds we will consider here are links of

points in polyhedral 3-manifolds. Such spaces will be referred to as spheres with conical

points, as in Subsection 2.2.3.

Before summarising the layout of the chapter, let us briefly examine the 2-dimensional

setting, showing that we can easily classify singular points and bound their number when

the metric is nonnegatively curved and integral. Suppose we have a polyhedral surface S.

If S is integral, then, in particular, the monodromy of a simple loop around any singular

point must preserve a lattice in R2. The only lattice-preserving subgroups of SO(2) are the

subgroups of C6 (preserving the Eisenstein lattice) and of C4 (preserving the coordinate

lattice—see [Cox69, § 4.5]). The conical angles of S must therefore be integer multiples of

either π/3 or π/2, if S is to be integral. This allows us to list the possible conical angles

of a nonnegatively curved integral polyhedral surface: they are π/3, π/2, 2π/3, π, 4π/3,

3π/2, and 5π/3.

To classify singular points, simply note that the link—and thus the geometry of a small

neighbourhood—is entirely determined by the conical angle. There are therefore seven

possibilities for the link of a singular point in a nonnegatively curved integral polyhedral

surface: circles of length α, denoted by S1(α), where α belongs to the list above.
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3.1. Integral Monodromy Groups

To bound the number of singular points (at least in the compact case), recall from

Theorem 2.2.7 that the conical angles α1, . . . , αk of a compact Euclidean polyhedral surface

S must satisfy the Gauss–Bonnet formula:

k∑
i=1

(2π − αi) = 2πχ(S).

The minimum nonzero value of 2π − αi is π/3, and the maximum value of χ(S) is 2.

The maximum number of singular points in a compact nonnegatively curved integral

polyhedral surface is therefore 12, a bound that is achieved by the surface of a regular

icosahedron, for example.

In this chapter, we generalise the observations made above to three dimensions, where

far more involved techniques are required than in the 2-dimensional setting. It should be

noted that most of the content of this chapter appears in the author’s preprint, [Sha21].

The chapter layout is as follows.

• In Section 3.1, we classify the possible monodromy groups of orientable nonnegatively

curved integral polyhedral 3-manifolds, allowing us in Subsection 3.1.1 to understand

the monodromy in a neighbourhood of any point.

• In Section 3.2, we prove an expanded and more precise form of Theorem 1,

thereby classifying all singular vertices in nonnegatively curved integral polyhe-

dral 3-manifolds. We do this by showing that the link of any point is a ramified

cover of one of two spherical orbifolds. We also deduce Corollary 3.2.13, a result

needed for the proof of Theorem 2, which states that there is ε0 ∈ (0, π) such that

any singular vertex is ε0-narrow (recall Definition 2.2.14).

• Section 3.3 is dedicated to the proof of Theorem 2, which shows the existence of

a universal bound on the number of singular vertices in any nonnegatively curved

integral polyhedral 3-manifold. We actually prove a more general result, bounding

the number of ε-narrow points in a nonnegatively curved Alexandrov space, and

then deduce Theorem 2.

• Finally, in Section 3.4, we consider some possible extensions to the work done in

this chapter.

3.1. Integral Monodromy Groups

In this section, we consider what it means for a polyhedral 3-manifold to be integral, at

least in the orientable case. The reason we restrict to the orientable case is that much

of the rest of the chapter is concerned with local invariants of singular points, and every

polyhedral manifold is locally orientable. We start by giving a list of possible monodromy
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3.1. Integral Monodromy Groups

groups of orientable integral polyhedral 3-manifolds. These are, by definition, lattice-

preserving subgroups of SO(3). In what follows, D6 acts as the rotational symmetries of a

regular hexagonal bipyramid, and S4 as the rotational symmetries of a regular octahedron

(shown on the left and right of Figure 3.1 respectively).

Lemma 3.1.1. An orientable polyhedral 3-manifold is integral if and only if its monodromy

group is isomorphic a subgroup of D6 or S4—i.e., to 1, C2, C3, C4, C6, D2, D3, D4, D6,

A4, or S4. All of these groups arise as monodromy groups of closed polyhedral 3-manifolds.

Proof. The list given above agrees with the list of 3-dimensional lattice-preserving rotation

groups in, e.g., [Cox69, § 15.6]. It follows from the classification of finite subgroups of

SO(3) (for which, see [Arm88, Ch. 19]) that such subgroups are isomorphic if and only

if they are conjugate. Therefore, the monodromy group of a polyhedral 3-manifold is

conjugate to one of these standard groups, and therefore preserves a lattice, if and only if

it is isomorphic to one of them. We exhibit every group in the list as the monodromy

group of a closed polyhedral 3-manifold in Examples 3.1.3 to 3.1.9.

Remark 3.1.2. By definition, the monodromy groups listed above should preserve lattices

in R3. Which lattices do D6 and S4 (and their subgroups) actually preserve?

For D6, consider the hexagonal lattice Z⟨(1, 0, 0), (1/2,
√
3/2, 0), (0, 0, 1)⟩. The convex

hull of the eight points closest to the origin is a regular hexagonal bipyramid centred on

the origin. Any symmetry of this figure preserves the lattice.

For S4, consider the cubic lattice Z⟨(1, 0, 0), (0, 1, 0), (0, 0, 1)⟩. The convex hull of the

six points closest to the origin is a regular octahedron centred on the origin. Any symmetry

of this figure preserves the lattice. (These lattice polytopes are shown in Figure 3.1.)

Figure 3.1. Lattice polytopes of hexagonal (right) and cubic (left) lattices. Coordinate axes are shown

in dashed grey.

It was stated in Lemma 3.1.1 that every group listed actually arises as the monodromy

group of a closed polyhedral 3-manifold. To demonstrate this, we give the following

examples, showing that there is indeed no redundancy in Lemma 3.1.1.
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3.1. Integral Monodromy Groups

Example 3.1.3 (Cyclic Monodromy). The regular cubic 3-torus has trivial monodromy.

For n ∈ {2, 3, 4, 6}, we may construct a polyhedral metric on the 2-sphere by doubling

the regular 2n-gon. This induces a polyhedral metric on S2 × S1 with monodromy Cn.

The remaining, noncyclic examples are all homeomorphic to the 3-sphere.

Example 3.1.4 (Monodromy D2). Let C be a cube and DC its double. Then Mon(DC)

is D2 (which is isomorphic to C2 × C2). To see this, observe that C may be arranged so

that each edge is parallel to one of the coordinate axes. The dihedral angle of each edge

of C is π/2, and so the conical angle of each edge of DC is π. Thus, the monodromy of a

loop around each edge corresponds to a rotation of order 2 about one of the coordinate

axes, and so Mon(DC) is generated by rotations by π about the coordinate axes.

Example 3.1.5 (Monodromy D3). Let P1 be the (right) prism of an equilateral triangle.

Then Mon(DP1) is D3. To see this, arrange P1 so that the three lateral edges are parallel

to the z-axis and one pair of the other edges is parallel to the x-axis. Then the remaining

edges will be parallel to either the line {z = 0,
√
3x = y} or the line {z = 0,

√
3x = −y}.

The dihedral angle of the lateral edges is π/3, and the dihedral angle of the other edges is

π/2. Thus, Mon(DP1) is generated by a rotation of order 3 about the z-axis and rotations

of order 2 about the other lines mentioned.

Example 3.1.6 (Monodromy D4). Let P2 be the prism of a right-angled isosceles triangle.

Then Mon(DP2) is D4. To see this, arrange P2 so that the three lateral edges are parallel

to the z-axis, and so that one pair of the other edges is parallel to the x-axis, one pair to

the y-axis, and one pair to the line {z = 0, x = −y}. The dihedral angle of a lateral edge

is either π/2 or π/4, and the dihedral angle of the other edges is π/2. Thus, Mon(DP2) is

generated by a rotation of order 4 about the z-axis and rotations of order 2 about the

other lines mentioned.

Example 3.1.7 (Monodromy D6). Let P3 be the prism of a triangle with angles π/6, π/6,

and 2π/3. Then Mon(DP3) is D6. To see this, arrange P3 so that the three lateral edges

are parallel to the z-axis, and so that one pair of the other edges is parallel to the x-axis,

one pair to the line {z = 0,
√
3x = −y}, and one pair to the line {z = 0, x = −

√
3y}. The

dihedral angle of a lateral edge is either 2π/3 or π/6, and the dihedral angle of the other

edges is π/2. Thus, Mon(DP2) is generated by a rotation of order 6 about the z-axis and

rotations of order 2 about the other lines mentioned.

Example 3.1.8 (Monodromy A4). This and the following example are slightly more

complicated. Let Ω be the region in R3 defined by the inequalities −1 ≤ x + z ≤ 1,

−1 ≤ y + z ≤ 1, −1 ≤ x − z ≤ 1, and −1 ≤ y − z ≤ 1. Then Ω is a convex, irregular

octahedron. It has four edges lying in the (x, y)-plane, whose dihedral angles are π/2.

One pair is parallel to the x-axis and the other to the y-axis. The other eight edges

have dihedral angle π/3. One pair is parallel to the line {x = y = z}, another to the

line {x = −y = −z}, another to the line {x = y = −z}, and the last pair to the line

{x = −y = z}. Thus, Mon(DΩ) is generated by rotations of order 2 about the x and y-axes

and rotations of order 3 about the other lines mentioned. This gives Mon(DΩ) ∼= A4.

32



3.1. Integral Monodromy Groups

Example 3.1.9 (Monodromy S4). Let Σ be the region in R3 defined by the inequalities

0 ≤ y, 0 ≤ x+ z, 0 ≤ x− z, and x+ y ≤ 1. Then Σ is a Euclidean simplex. It has three

edges with dihedral angle π/2, all sharing a common vertex. One of these edges is parallel

to the y-axis, another to the line {y = 0, x = z}, and the last to the line {y = 0, x = −z}.
Of the remaining three edges, two have dihedral angle π/3—one of these is parallel to the

line {−x = y = z} and the other to the line {x = −y = z}. The final edge has dihedral

angle π/4 and is parallel to the z-axis. In a similar manner to before, generators for

Mon(DΣ) may be deduced, giving Mon(DΣ) ∼= S4.

A natural question that arises from the above examples is, can we find a polyhedral

metric on the 3-sphere with cyclic monodromy? The following result shows that, in almost

all cases, we cannot.

Proposition 3.1.10. Let M be a polyhedral 3-manifold with no conical angles in 2π(N\{1})
and whose monodromy group is cyclic. Then M is not homeomorphic to the 3-sphere.

Proof. If Ms is empty, then M is actually a flat Riemannian manifold and hence not

homeomorphic to the 3-sphere. If Ms is nonempty, then because of the angle condition,

MonM is nontrivial. In this case, MonM has a unique fixed axis in R3, which can be

pulled back to a unit vector field X on M \Ms, unique up to sign. All the singular edges

of M are parallel to X, and thus by Proposition 2.2.16, Ms is a union of circles and lines.

If M is noncompact, then of course M cannot be the 3-sphere. If M is compact, then as

noted just after Proposition 2.2.16, M contains no singular lines. Thus Ms is a union of

circles.

The strategy from here is to smoothen the metric on M so that M becomes a

Riemannian manifold. We will do this in such a way that X will be defined on all of M

and still be parallel to the singular circles. This will allow us to define a closed 1-form

ω on M for which ω(X) = 1. Suppose we have such a 1-form. Then, since X is parallel

to any singular circle C,
∫
C
ω equals the length of C, which is nonzero. Therefore, ω is

nonzero in H1(M). Since H1(S3) is trivial, this implies that M is not homeomorphic to

the 3-sphere. It is thus sufficient to smoothen M and produce the 1-form ω as described

above.

Let x be a point in M . If x lies on a singular circle C, then let α be the conical angle

of C; otherwise, let α be 2π. For R > 0, let C2
R(α) denote the open disc of radius R about

the tip of the 2-cone C2(α) (recall Definition 2.2.5). Then x has a neighbourhood U that

is isometric to C2
R(α)× (−T, T ), for some positive R and T , with x being sent to (0, 0).

Parametrise U with cylindrical coordinates (r, ϑ, t) in [0, R)× [0, 2π)× (−T, T ). Then X

is just ∂/∂t locally, and we define the 1-form ω to be dt locally. These two objects are,

for now, not defined for r = 0 when α differs from 2π.

Away from r = 0, the metric on U is induced by the following Riemannian metric (see

[CHK00, § 3.3]):

g = dr2 +
α

2π
rdϑ2 + dt2.
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When α is 2π, this metric is actually smooth everywhere. Otherwise, let f : [0, R) → R
be a smooth, monotonic function that equals 1 on [0, R/3] and equals α/2π on [2R/3, R).

Then the following formula defines a smooth Riemannian metric on all of U :

gsmooth := dr2 + f(r)rdϑ2 + dt2.

Given this smooth metric, X and ω can now be extended to r = 0, still being defined

locally as ∂/∂t and dt respectively.

Using the recipe given above, we can smoothen a neighbourhood of every singular circle,

choosing a single, sufficiently small value of R so as to avoid any overlap. This makes

M into a Riemannian manifold with a globally defined 1-form ω for which ω(X) = 1, as

required.

3.1.1. Local Monodromy and Conical Angles

It was mentioned at the start of this section that we restricted our attention to orientable

polyhedral manifolds with the purpose of studying local properties. We explain this now

by first defining the local monodromy, which is a useful tool in classifying singular vertices.

Definition 3.1.11 (Local monodromy). Let M be a Euclidean polyhedral n-manifold

and x a point in M . The local monodromy map of M at x is the monodromy map of the

tangent cone at x, denoted by Monx : π1((TxM)\(TxM)s) → SO(n). The local monodromy

group of M at x is the image of this map, denoted by Monx M . The local monodromy

map may also be viewed as the holonomy map of the link ΣxM .

Remark 3.1.12. The developing map of the tangent cone TxM restricted to a small ball

about its tip is identical to the developing map of M restricted to a small ball about x.

Therefore, the local monodromy map of M at x factors through the global monodromy

map of M , and so Monx M is a subgroup of MonM . This implies, in particular, that

TxM is integral if M is. With this in mind, we can give the following immediate corollary

of Lemma 3.1.1.

Corollary 3.1.13. If x is a point in an integral polyhedral 3-manifold M , then Monx M

is a subgroup of D6 or S4—i.e., it is one of the groups listed in Lemma 3.1.1.

We finish this section by using the result above to list all the possible conical angles of

a nonnegatively curved integral polyhedral 3-manifold.

Corollary 3.1.14. Let x be a singular point in a nonnegatively curved integral polyhedral

3-manifold M . The possible conical angles of a singular edge containing x are

1. π/3, 2π/3, π, 4π/3, and 5π/3, when MonxM is a subgroup of D6; or

2. π/2, 2π/3, π, 4π/3, and 3π/2, when MonxM is a subgroup of S4.
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Proof. An edge of conical angle α containing x contributes a rotation by α to MonxM ,

which by Corollary 3.1.13 is a subgroup of D6 or S4. The result thus follows by looking

at possible orders of nontrivial elements of D6 and S4—i.e., 2, 3, and 6; and 2, 3, and 4

respectively—and then looking for rotations by less than 2π having such orders. All of

these conical angles can be found in integral polyhedral metrics on the 3-sphere by taking

doubles of prisms.

3.2. Classification of Singular Vertices

A crucial step towards understanding the singular locus of a polyhedral manifold is

examining how it looks locally—i.e., examining the local isometry type of an arbitrary

singular point. Since the geometry of a small neighbourhood of any point in a polyhedral

manifold is captured by the link at that point, we take the local isometry type of a point

to mean the isometry type of the link. The main aim of this section is to classify the local

isometry types of singular vertices in nonnegatively curved integral polyhedral 3-manifolds.

Our approach requires the following definition (see [LZ04, Def. 1.2.18]).

Definition 3.2.1 (Ramified cover). Let S1 and S2 be spheres with conical points, with a

surjection φ : S1 → S2. Suppose that φ is a locally isometric covering map, except at the

preimages of the conical points of S2, where it is locally the quotient by a finite group of

isometries. We then say that S1 is a ramified cover of S2 and refer to φ as the ramified

covering map. We will usually use a double-headed arrow, as in φ : S1 ↠ S2, to represent

a ramified cover. The degree of φ, denoted by degφ, is its degree as an unramified

covering map outside of the preimages of the conical points of S2. In a sufficiently small

neighbourhood of any point x1 in S1, φ is the quotient by a (possibly trivial) finite group

of isometries, the order of which is called the multiplicity of x1, denoted by multx1. This

means that the multiplicity of any preimage of a regular point of S2 is 1. For any point

x2 in S2, the following holds: ∑
x1∈φ−1(x2)

multx1 = degφ. (3.2.1)

To classify the local isometry types in question, we show that each link can be expressed

as a ramified cover of one of two spherical orbifolds, with nonnegative curvature implying

restraints on the multiplicities. These ramified covers are determined by combinatorial

data, which can be enumerated. The techniques for enumeration are explained in Sub-

sections 3.2.1 and 3.2.2, and the results are summarised in Theorem 3.2.10 and given in

full in the appendix. The two spherical orbifolds in question come from the possible local

monodromy groups, as we will now see.

Proposition 3.2.2. Let x be a point in an integral polyhedral 3-manifold M . Then ΣxM

is a ramified cover of S2/D6 or S2/S4.
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Ram(ΣxM)

S2

ΣxM S2/Monx M

S2/G

Dev

p

∃!

Figure 3.2

Proof. By Corollary 3.1.13, MonxM is a fi-

nite subgroup of SO(3), and so the quotient

S2/Monx M is an orbifold. Recall also from Defi-

nition 3.1.11 that MonxM is the holonomy group

of ΣxM . This allows us to construct a ramified

covering map ΣxM ↠ S2/Monx M as follows. Let

p : Ram(ΣxM) → ΣxM be the universal cover and

Dev : Ram(ΣxM) → S2 the developing map. Given

a point u in ΣxM , consider the set Dev(p−1(u)). If

v and v′ both lie in Dev(p−1(u)), then the definition

of holonomy implies that there is some isometry g in

MonxM such that v′ = g · v. The following assignment therefore gives a well-defined

ramified covering map:

ΣxM ↠ S2/Monx M,

u 7→ [v], where v ∈ Dev(p−1(u)).

This map may be seen as the unique map in Figure 3.2 making the diagram commute.

By Lemma 3.1.1, Monx M is a subgroup of G = D6 or S4, so we can compose this map

with the quotient map S2/Monx M ↠ S2/G to get a ramified covering map ΣxM ↠ S2/G.

Note that S2/D6
∼= S2(π/3, π, π) and S2/S4

∼= S2(π/2, 2π/3, π)—where S2(α, β, γ) is the

double of the spherical triangle with angles α/2, β/2, and γ/2—and that the areas of

these orbifolds are π/3 and π/6 respectively.

This result implies that classifying links of singular vertices is equivalent to classifying

spheres with at least three conical points and with conical angles at most 2π that are

ramified covers of S2/D6 or S2/S4. The rest of this section is devoted to classifying these

ramified covers. In order to aid in the classification, we make the following useful definition

(see [LZ04, § 2.1]).

Definition 3.2.3 (Dessin d’enfant). Let φ : S1 ↠ S2 be a ramified covering map, where

S2 is a sphere with precisely three conical points, p1, p2, and p3. The preimage φ−1([p1p2])

of the shortest path joining p1 and p2 is called the dessin d’enfant of φ. It is a finite graph

embedded in S1 that is 2-coloured by marking whether a vertex maps to p1 or p2. Because,

by definition, φ only ramifies at p1, p2, and p3, the restriction of φ to φ−1(S2 \ [p1p2]) is a
covering of the open disc ramified at only one point, p3. This means that φ−1(S2 \ [p1p2])
is a disjoint union of open discs, which implies that the dessin is connected.

3.2.1. Covers of S2/D6

We begin by classifying ramified covers of S2/D6. First, we give an upper bound on the

number of conical points.

Proposition 3.2.4. Let S be a sphere with conical points and with conical angles at most

2π that is a ramified cover of S2/D6. Then S has at most three conical points.
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3.2. Classification of Singular Vertices

Proof. Let φ : S ↠ S2/D6 be the ramified covering map and let z1, z2, and z3 be the

conical points of S2/D6 of angle π, π, and π/3 respectively. Consider the dessin d’enfant

φ−1([z1z2]); this is a graph embedded in S with the properties given in Definition 3.2.3.

Since the conical angles of S are at most 2π, every preimage of z1 or z2 has multiplicity

at most 2. This implies that every vertex of the graph has degree at most 2. The only

connected 2-coloured graphs with maximum degree 2 are circles of even length and line

segments. The preimages of z3 correspond to the faces of the graph, the multiplicity being

half the (graph-theoretic) degree of the face. When the graph is a circle, the only conical

points are the two preimages of z3, in which case S has two conical points—unless the

circle has length 12, in which case S is just S2. The circle cannot have length greater than

12, or else the preimages of z3 would have conical angle exceeding 2π. When the graph

is a segment, it cannot have length greater than 6, or else the one preimage of z3 would

have conical angle exceeding 2π. When the segment has length 6, the preimage of z3 is

regular and so S has two conical points. When the segment has length less than 6, the

conical points of S are the one preimage of z3 and the two endpoints of the segment.

The above proof gives us a way to construct the possible ramified covers: by finding

graphs embedded in the sphere that could be the dessin d’enfant. This technique is used

more thoroughly when considering S2/S4. Since we are only interested in spheres with

three or more conical points, we are restricted to the five cases where φ−1([z1z2]) is a

segment of length at most 5. We summarise this in the following result.

Proposition 3.2.5. Up to isometry, there are five spheres with at least three conical

points and with conical angles at most 2π that are ramified covers of S2/D6. They are

S2(nπ/3, π, π), for n ∈ {1, . . . , 5}.

3.2.2. Covers of S2/S4

We now move on to the classification of ramified covers of S2/S4. The same dessin d’enfant

technique as before is used, but this time it is combined with more involved considerations

of the ramification data. To elaborate on this, suppose that φ : S ↠ S2/S4 is a ramified

cover and that y1, y2, and y3 are the conical points of S2/S4 with angles π, 2π/3, and π/2

respectively. The conical angles of S allow us to calculate its area—and therefore the

degree of φ—using the spherical Gauss–Bonnet formula (i.e., Formula (2.2.1) with K = 1).

On the other hand, if the preimages x1
i , . . . , x

ki
i of yi have multiplicities m1

i , . . . ,m
ki
i

respectively, then they have conical angles m1
iαi, . . . ,m

ki
i αi respectively (where αi is the

conical angle of yi), and, by Formula (3.2.1), the degree of φ is m1
i + . . . + mki

i . The

list of multiplicities of the preimages of y1, y2, and y3 is called a multiplicity datum, and

calculations of the degree of φ these two different ways we refer to as area-multiplicity

calculations. These two calculations allow us to exclude certain multiplicity data from

appearing, thereby making it feasible to list all relevant ramified covers. This is explained

in more detail later, but first, as before, we begin with a bound on the number of conical

points.
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3.2. Classification of Singular Vertices

Proposition 3.2.6. Let S be a sphere with conical points and with conical angles at most

2π that is a ramified cover of S2/S4. Then S has at most five conical points.

Proof. Let x1, . . . , xn be the conical points of S, having conical angles α1, . . . , αn respec-

tively. We know that S has some positive area AS, and we know from Corollary 3.1.14

that αi ≤ 3π/2 for all i ∈ {1, . . . , n}. Furthermore, S satisfies the spherical Gauss–Bonnet

formula (from Theorem 2.2.7 with K = 1), which we recall here:

AS +
n∑

i=1

(2π − αi) = 4π.

This gives the following inequality:

nπ/2 ≤
n∑

i=1

(2π − αi) = 4π − AS,

< 4π,

n < 8.

Thus, n is at most 7. Suppose first that n is 7. Then by Gauss–Bonnet, the possible

values for the αi are as follows. Firstly, αi = 3π/2 for all i ∈ {1, . . . , 7}—label such a

sphere by S1. Secondly, αi = 3π/2 for all i ∈ {1, . . . , 6} and α7 = 4π/3—label this S2.

Lastly, αi = 3π/2 for all i ∈ {1, . . . , 5} and α6 = α7 = 4π/3—label this S3. We will show

that none of these spheres can in fact occur as ramified covers of S2/S4.

By Gauss–Bonnet, we have AS1 = π/2, which is thrice the area of S2/S4. Hence, the

ramified covering map φ : S ↠ S2/S4 has degree 3. But all the xi are preimages of y3, the

conical point of angle π/2, and so y3 has at least seven preimages. This is a contradiction.

Similarly, we have AS2 = π/3, so S2 is a degree 2 cover of S2/S4. But y3 has at least six

preimages: a contradication.

Finally, we have AS3 = π/6, which implies that S3
∼= S2/S4. But this is clearly false.

Thus, we cannot have n = 7.

Suppose now that n is 6. By Gauss–Bonnet, the possible values for the αi are as follows.

Firstly, αi = 3π/2 for all i ∈ {1, . . . , 6}—label such a sphere by S4. Secondly, αi = 3π/2

for i ∈ {1, . . . , 5} and α6 = 4π/3—label this S5. Lastly, αi = 3π/2 for i ∈ {1, . . . , 5} and

α6 = π—label this S6. In a similar way to before, we will show that none of these spheres

correspond to genuine ramified covers.

By Gauss–Bonnet, we have AS4 = π, so S4 is a degree 6 cover of S2/S4. But y3 has

six preimages of multiplicity 3, so the degree is at least 18: a contradiction.

Similarly, we have AS5 = 5π/6, so S5 is a degree 5 cover of S2/S4. But y3 has five

preimages of multiplicity 3, so the degree is at least 15: a contradiction.

Finally, we have AS6 = π/2, so S6 is a degree 3 cover of S2/S4. But y3 has at least five

preimages: a contradiction.
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3.2. Classification of Singular Vertices

Thus, n is at most 5. But there is indeed a ramified cover of S2/S4 with five conical

points, as shown in Figure 3.3. It has two conical points of angle 3π/2 and three of angle

4π/3.

Figure 3.3. On the left is the only nonnegatively curved integral link with five conical points. Grey

arrows denote edge identifications. It is not the double of a spherical polygon. It is constructed out of 12

copies of a spherical triangle, whose double is S2/S4, shown on the right. This demonstrates the ramified

covering map. The black, grey, and white vertices of the triangle have interior angles π/4, π/3, and π/2

respectively.

The above proof gives some useful examples of the area-multiplicity calculations that

allow us to exclude certain tuples of conical angles from appearing in ramified covers of

S2/S4. We now explain the procedure for finding all the ramified covers of S2/S4 that are

spheres with at least three conical points and with conical angles at most 2π.

Procedure 3.2.7.

1. For each n ∈ {3, 4, 5}, we use the Gauss–Bonnet formula and our knowledge of the

possible conical angles from Corollary 3.1.14 to give a finite list of possibilities for

the (unordered) tuple (α1, . . . , αn) of conical angles. Explicitly, we solve

n∑
i=1

(2π − αi) < 4π, (3.2.2)

for α1, . . . , αn ∈ {π/2, 2π/3, π, 4π/3, 3π/2}.

2. For any sphere S with conical points of angle less than 2π, we can consider the

Dirichlet domain (for which, see [CHK00, § 3.6]) based at the point with smallest

conical angle αmin. This has the same area as S and, by [CHK00, Prop. 3.14],

is strictly contained in the spherical football of angle αmin, which has area 2αmin.

Therefore, we exclude tuples of angles that do not satisfy the following inequality

(c.f. [Tro91, Thm. C] and [Ere04]):

Area = 4π −
n∑

i=1

(2π − αi) < 2αmin. (3.2.3)
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3.2. Classification of Singular Vertices

3. For each remaining tuple (α1, . . . , αn), we look for the possible multiplicity data

that could give rise to these angles. Several tuples can be ruled out at this point

by area-multiplicity calculations. Explicitly, for a multiplicity datum m1
j , . . . ,m

kj
j ,

j ∈ {1, 2, 3}, we check that

Degree =

kj∑
l=1

ml
j =

1

π/6

(
4π −

n∑
i=1

(2π − αi)

)
= Area/Area(S2/S4), (3.2.4)

for all j ∈ {1, 2, 3}.

4. For each remaining multiplicity datum, we look for the possible dessins d’enfants

φ−1([y1y2]) in the 2-sphere, where [y1y2] is the shortest path joining the conical

points of angles π and 2π/3 in S2/S4 and φ is the candidate ramified covering

map. Either we construct all possible dessins for this datum, in which case we can

construct all possible ramified covers with this datum; or we demonstrate that no

such dessin can exist, in which case this multiplicity datum does not correspond to

a genuine ramified cover.

5. Once all possible ramified covers are listed, we determine whether any of them are

isometric. This is only possible when the tuples of conical angles are the same.

Moreover, when n is 3, the isometry type is determined by the angles.

To better illustrate these steps, some examples of the above procedure are given in the

Example in the appendix. We summarise the results of this procedure in the following

result.

Proposition 3.2.8. Up to isometry, there are 30 spheres with at least three conical

points and with conical angles at most 2π that are ramified covers of S2/S4. There are 17

with three conical points, 12 with four conical points, and precisely one with five conical

points. With the exception of one pair of nonisometric spheres having conical angles

(π, π, 4π/3, 4π/3), these spheres may be distinguished purely by their conical angles.

Remark 3.2.9. It is important at this point to note that there are three spheres in

common between those listed in Propositions 3.2.5 and 3.2.8. They are the spheres

S2(2π/3, π, π), S2(π, π, π) and S2(4π/3, π, π).

3.2.3. Summary of the Classification

By combining the main results of this section, namely Propositions 3.2.2, 3.2.5, and 3.2.8,

we can now fully classify the singular vertices of nonnegatively curved integral polyhedral

3-manifolds. The following result is a summary of the classification. It is an expanded

form of Theorem 1. A complete geometric description of the links is given in Table A.1 in

the appendix.

40



3.2. Classification of Singular Vertices

Theorem 3.2.10. Let M be a nonnegatively curved integral polyhedral 3-manifold and x

a singular vertex of M . There are 32 possibilities for the isometry type of ΣxM . Of these,

five have (local) monodromy in D6, 30 in S4, and three in both. Those with monodromy

in D6 all have three conical points. Of those with monodromy in S4, 17 have three conical

points, 12 have four conical points, and one has five conical points.

Remark 3.2.11. Given that there are seven possible conical angles in a nonnegatively

curved integral polyhedral 3-manifold and that the link of a regular point is S2, Theo-

rem 3.2.10 implies that there are 40 possibilities in total for the local isometry type of a

point in a nonnegatively curved integral polyhedral 3-manifold.

We finish with two immediate outworkings of this classification, which are useful when

studying the global properties of the singular locus.

Corollary 3.2.12. A singular vertex in any nonnegatively curved integral polyhedral

3-manifold has (graph-theoretic) degree at most 5.

Corollary 3.2.13. There is ε0 ∈ (0, π) such that, for any singular vertex x in a nonnega-

tively curved integral polyhedral 3-manifold M , the diameter of ΣxM is at most ε0—i.e.,

x is ε0-narrow.

Proof. There are only finitely many possibilities for ΣxM , as just shown, and by [CHK00,

Lem. 3.10] any sphere with at least three conical points and with conical angles at most

2π has diameter strictly less than π.

3.2.4. An Interesting Example and Alexandrov’s Theorem

Consider the polyhedral manifold constructed as in Figure 3.4. It is homeomorphic to the

3-sphere, nonnegatively curved, and even integral. It has four singular vertices. Three of

them have link S2(4π/3, π/2, π/2)—this is the double of a spherical triangle and therefore

cannot appear as the link of a vertex of a 4-polytope. The other has the link with five

conical points shown in Figure 3.3. This link is not the double of a spherical polygon, and

therefore this vertex cannot appear in the double of a convex polyhedron. Therefore, this

polyhedral manifold is neither the boundary of a convex 4-polytope nor the double of

a convex polyhedron, and this can be determined purely by local considerations at the

vertices.

This example demonstrates the stark constrast with the 2-dimensional setting, where

we have the following result (see [BI08, Thm. 1.1]):

Theorem 3.2.14 (Alexandrov’s existence/uniqueness theorem). A nonnegatively curved

polyhedral surface, homeomorphic to the 2-sphere, is isometric to either the boundary of a

convex polyhedron or the double of a convex polygon, and that polyhedron or polygon is

unique up to rigid motions.
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Figure 3.4. The polyhedral manifold in question is shown on the left, with face identifications shown by

arrows and letters. It is built out of 12 copies (six with the same orientation and six mirror images) of

the simplex on the right.

Alexandrov’s theorem in fact generalises to polyhedral surfaces built out of triangles of

any constant curvature. In the following statement, paraphrased from [Fil10, Thms. 1 & 2],

a K-polyhedral surface is a polyhedral surface built out of triangles of curvature K, and

Mn
K denotes the n-dimensional model space of constant curvature K, for n ∈ N and

K ∈ R.

Theorem 3.2.15 (Generalised Alexandrov theorem). A K-polyhedral surface, homeo-

morphic to the 2-sphere and with conical angles at most 2π, is isometric to either the

boundary of a convex polyhedron in M3
K or the double of a convex polygon in M2

K, and

that polyhedron or polygon is unique up to rigid motions.

This result makes studying polyhedral surfaces significantly simpler than studying

polyhedral 3-manifolds.

3.3. Singular Vertex Bound

Section 3.2 dealt with the local geometry of singular vertices of nonnegatively curved

integral polyhedral 3-manifolds. In this section, we answer a global question about singular

vertices by proving Theorem 2—that there is a universal bound on the number of singular

vertices in any nonnegatively curved integral polyhedral 3-manifold.

We begin in Subsection 3.3.1 with the more concrete case of doubles of convex polyhedra

and boundaries of convex 4-polytopes. We will demonstrate that, in this setting, Theorem 2

may be proved using elementary techniques, which produce a fairly tight bound. We

then move onto the general case in Subsection 3.3.2, giving the full proof of Theorem 2.

The majority of the section is dedicated to the proof of Proposition 3.3.7, a more general

result about nonnegatively curved Alexandrov spaces of finite dimension, from which we

deduce Theorem 2. As was mentioned in Chapter 1, Proposition 3.3.7 can actually be

deduced from a recent result of Li and Naber in [LN20], although the work presented here
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is completely independent of theirs and was written before the author became aware of

the connection. We therefore finish in Subsection 3.3.3 by briefly exploring the connection

with Li and Naber’s work.

3.3.1. Convex Polytopes

We wish to bound the number of singular vertices in a nonnegatively curved integral

polyhedral 3-manifold M . As was demonstrated in Subsection 3.2.4, we cannot assume

that M is either the double of a convex polyhedron or the boundary of a convex 4-polytope.

However, it is valuable to prove the existence of the bound in this simpler case for several

reasons. Firstly, it motivates the more general bound. Secondly, it shows why it is

significant that Alexandrov’s theorem (Theorem 3.2.14) does not näıvely generalise to

three dimensions. And thirdly, it provides techniques that may be adapted in future work.

Therefore in this subsection, we show that Theorem 2 is true for doubles of polyhedra

and boundaries of 4-polytopes.

A natural approach to proving Theorem 2 is to replace the somewhat enigmatic

condition of integrality with a condition on a more tangible geometric quantity, satisfied

by all nonnegatively curved integral polyhedral 3-manifolds. This is the approach taken

throughout this chapter: in the introductory 2-dimensional setting, in this subsection,

and in Subsection 3.3.2. The question is, which geometric quantity should be used? As

highlighted in the opening paragraphs of this chapter, the quantity used in two dimensions

is the maximal conical angle. The relevant condition satisfied by all nonnegatively curved

integral polyhedral surfaces is that there is ε (equal to π/3) such that the maximal conical

angle is at most 2π−ε. We can use the Gauss–Bonnet formula to give a bound, depending

only on ε, on the number of singular points in a polyhedral surface satisfying this simpler

geometric condition.

As can be seen from Corollary 3.1.14, the aforementioned condition still holds in the

3-dimensional setting. However, it is no longer strong enough to produce a bound. More

precisely, given ε > 0, there is no bound, depending only on ε, on the number of singular

vertices in a polyhedral 3-manifold all of whose conical angles are at most 2π − ε. The

following example demonstrates this, indicating that a more subtle geometric quantity

than the maximal conical angle must be used to prove Theorem 2, even in the special

case of doubles or boundaries of convex polytopes.

Example 3.3.1. Given an integer n greater than 2, let Pn be the rectified n-gonal prism

(see Figure 3.5). This is a polyhedron constructed, as follows, to have a number of vertices

and edges that grows linearly with n, but whose maximal dihedral angle is always 3π/4.

It has two parallel n-gonal faces, n rhombic faces labelled Bk, and 2n isosceles-triangular

faces—those n adjacent to the top n-gonal face are labelled A+
k , while those n adjacent to

the bottom are labelled A−
k . When appropriately oriented, the outward facing normals of
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the top and bottom n-gonal faces are (0, 0,±1), those of A±
k are

a±k =
1√
2

(
cos

2kπ

n
, sin

2kπ

n
,±1

)
,

and that of Bk is

bk =

(
cos

(2k + 1)π

n
, sin

(2k + 1)π

n
, 0

)
.

The top and bottom n-gonal faces pass through (0, 0, sin2(π/n)) and (0, 0, 0) respectively,

and the three faces A±
k and Bk all have the following point as a vertex:(

cos
2kπ

n
, sin

2kπ

n
, sin2 π

n

)
.

The angle between the normals of adjacent triangular and n-gonal faces is π/4. For

k ∈ {1, . . . , n}, Bk is adjacent to A±
k and A±

k+1, with the convention that A±
n+1 = A±

1 . The

angle ϑ±
k between a±k and bk satisfies

cosϑ±
k = a±k · bk,

=
1√
2

(
cos

2kπ

n
cos

(2k + 1)π

n
+ sin

2kπ

n
sin

(2k + 1)π

n

)
,

=
1√
2
cos

(
(2k + 1)π

n
− 2kπ

n

)
,

=
1√
2
cos

π

n
.

By symmetry, the angle between a±k+1 and bk is also ϑ±
k .

So let ϑn be the dihedral angle between adjacent rhombic and triangular faces in Pn.

The discussion above shows that ϑn is strictly increasing and that ϑn −→ 3π/4 as n → ∞.

Thus, the maximum conical angle in DPn is 3π/2 for any n, but DPn has 3n singular

vertices.

Figure 3.5. Rectified hexagonal prism. Black edges have dihedral angle 3π/4; red edges, ϑ6.

In the case of doubles and boundaries of convex polytopes, the geometric quantity we

will use in place of the maximal conical angle is the curvature of a vertex. We define this

after introducing some terminology relating to cones embedded in Rn. What follows, up

to Remark 3.3.5, is largely adapted from [Pak10, §§ 25.2–4].
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Let C be a polyhedral convex cone in Rn—i.e., the convex hull of a finite number of

rays emanating from a common point v. We say that a hyperplane (of dimension n− 1) H

in Rn supports C at v if H contains v and C \H intersects at most one of the connected

components of Rn \H. We say that a ray r in Rn is normal to C at v if it emanates from

v, is orthogonal to a hyperplane H supporting C at v, and if r \H lies in a connected

component of Rn \H that C \H does not intersect. The normal cone N(C) of C is then

defined to be the union of all rays normal to C at v. Note that N(C) is naturally also a

polyhedral convex cone based at v. If P is a convex polytope in Rn—i.e., the convex hull

of a finite number of points—and v is a vertex of P , we define the tangent cone T (P, v) of

P at v to be the union of all rays emanating from v that intersect P at somewhere other

than v. This allows us to define the normal cone of P at v simply as the normal cone of

T (P, v), denoted by N(P, v). By convention, we define the normal cone of a single point

in Rn to be the whole of Rn.

Definition 3.3.2 (Vertex curvature). Let P be a convex polytope in Rn and v a vertex

of P . The curvature ω(P, v) of P at v is the solid angle of N(P, v)—i.e., the (n − 1)-

dimensional area of the intersection of N(P, v) with the unit sphere centred on v (see

Figure 3.6 for a visual example). We can similarly define the curvature of a cone: if C is

a polyhedral convex cone, then the curvature ω(C) of C is the solid angle of N(C).

Figure 3.6. On the left is a cube, at each vertex of which is shown the intersection of the normal cone

with S2. Each such intersection is a spherical triangle of area π/2. These triangles form a tiling of S2,
shown on the right.

Remark 3.3.3. The normal cone of a polyhedral convex cone C in Rn has Hausdorff

dimension less than n if and only if C contains a line. Therefore, ω(P, v) is strictly positive,

for any convex n-polytope P in Rn and any vertex v of P .
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3.3. Singular Vertex Bound

The main result that allows us to use vertex curvature to bound singular vertices is

the following generalised Gauss–Bonnet formula (see [Pak10, Thm. 25.4], or [Sch18, Eq. 1]

for a published but very brief reference):

Theorem 3.3.4 (Generalised Gauss–Bonnet formula). Let P be a convex polytope in Rn

with vertices v1, . . . , vk. Then

ω(P, v1) + . . .+ ω(P, vk) = An−1,

where An−1 is the (n− 1)-dimensional area of Sn−1.

Proof. For any i ∈ {1, . . . , k}, the intersection of N(P, vi) with the unit sphere Sn−1

centred on vi is a convex spherical (n − 1)-polytope Ri, whose area is, by definition,

ω(P, vi) and whose codimension 1 facets correspond bijectively to the edges of P incident

to vi. Sliding Sn−1 along an edge to an adjacent vertex vj , we get another convex spherical

(n− 1)-polytope Rj , which intersects Ri precisely along one common codimension 1 facet.

Doing this for every vertex of P , we see that the spherical polytopes R1, . . . , Rk form a

tiling of Sn−1 (see Figure 3.6). Since Ri has area ω(P, vi), the result follows.

Remark 3.3.5. It may be asked why the above result is referred to as a generalised

Gauss–Bonnet formula. To see this, let P be a convex polyhedron (in R3) with vertices

v1, . . . , vk. The intersection of the normal cone N(P, vi) with the unit sphere centred

on vi is a convex spherical polygon Ri. Each corner of Ri corresponds to a face of P

incident to vi, and if the interior angle of the face at vi is β, then the interior angle at

the corresponding corner of Ri is π − β. Thus, if the sum of the interior face angles at

vi is αi, it is a simple exercise in spherical geometry to check that ω(P, vi), the area of

Ri, is 2π − αi. Note that αi is the conical angle of vi, viewed as a singular point in the

polyhedral surface ∂P . So let α1, . . . , αk be the conical angles of v1, . . . , vk respectively.

Then Theorem 3.3.4 reduces to

n∑
i=1

(2π − αi) = 4π,

which is simply the statement of the usual Gauss–Bonnet formula (Theorem 2.2.7) for the

polyhedral surface ∂P .

Now, if P is a convex polyhedron or 4-polytope and v is a singular vertex of DP or ∂P

respectively, then v is also a vertex of P itself and so can be assigned the curvature ω(P, v).

Moreover, thanks to the spherical variant of Alexandrov’s theorem (i.e., Theorem 3.2.15

with K = 1), the link of any singular vertex in a polyhedral 3-manifold can be assigned a

unique curvature. We now have all the technology we need to prove the singular vertex

bound for doubles of polyhedra and boundaries of 4-polytopes.

Proposition 3.3.6. Theorem 2 holds for doubles of polyhedra and boundaries of 4-

polytopes.
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3.3. Singular Vertex Bound

Figure 3.7. Chamfered cube. Black edges have dihedral angle 3π/4; red edges, 2π/3.

Proof. Every one of the 32 singular vertices mentioned in Theorem 3.2.10 can be assigned

a positive curvature, depending on whether its link is the double of a spherical polygon

or the boundary of a spherical polyhedron. Let ωD be the minimal curvature among

the doubles and ω∂ the minimal curvature among the boundaries. Now let M be a

nonnegatively curved integral polyhedral 3-manifold with k singular vertices. Suppose

first that M is the double of some convex polyhedron P . Applying Theorem 3.3.4 to P ,

we see that kωD ≤ A2. Suppose on the other hand that M is the boundary of some convex

4-polytope P . Similarly, applying Theorem 3.3.4 to P , we see that kω∂ ≤ A3. Therefore,

letting B := max(A2/ωD, A3/ω∂), a positive constant, we have k ≤ B.

The proof above gives us an explicit way to calculate the vertex bound in the case of

doubles and boundaries: find the minimal vertex curvature. The author is not aware of

a general method to calculate the curvature of a vertex whose link is the boundary of a

spherical polyhedron. However, if the link is the double of a spherical polygon Q, then

the curvature of the vertex is 2π− p, where p is the perimeter of Q. This is because if the

vertex v belongs to the double of a polyhedron P , then the sides of Q correspond precisely

to the faces of P incident to v, the length of the side being equal to the interior angle of

the face at v. This allows us to calculate the minimal vertex curvature for doubles exactly

using spherical trigonometry:

ωD =
π

2
− 2 arcsin

(
1√
3

)
.

The minimal curvature is achieved by link #19 in Table A.1. This puts the value of

A2/ωD = 4π/ωD at approximately 36.978. Therefore, the number of singular vertices in

any integral polyhedral manifold that is the double of a convex polyhedron is at most

36. Combining this with the fact that the maximum degree of any such singular vertex is

4, this gives an upper bound of 72 on the number of singular edges in such polyhedral

manifolds. The largest convex polyhedron known to the author whose double is integral

is the chamfered cube, shown in Figure 3.7. It has 32 vertices and 48 egdes, which

demonstrates that at least this special case of the vertex bound is not too far off.
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3.3. Singular Vertex Bound

3.3.2. Proof of the Singular Vertex Bound

In this section, we prove, in full generality, our second main result.

Theorem 2 (Singular vertex bound). There is a constant Bver in N such that any

nonnegatively curved integral polyhedral 3-manifold has fewer than Bver singular vertices.

As was mentioned at the start of this chapter, the property of nonnegatively curved

integral polyhedral 3-manifolds that is used to prove this is the fact that there is ε0 ∈ (0, π)

such that all singular vertices are ε0-narrow. The proof relies on techniques from Alexan-

drov geometry—in fact, the majority of what follows applies to any finite-dimensional

nonnegatively curved Alexandrov space. What we actually prove is the following.

Proposition 3.3.7. For any integer n greater than 1 and ε ∈ (0, π), there is a bound

B(n, ε) in N such that, in any (complete, connected) n-dimensional Alexandrov space of

nonnegative curvature, the number of ε-narrow points is less than B(n, ε).

With this result established, we use Corollary 3.2.13 and Proposition 2.2.9, the latter

of which states that any nonnegatively curved polyhedral manifold is an Alexandrov space

of nonnegative curvature, to deduce Theorem 2. For the rest of this section, take n to be

an integer greater than 1.

The skeletal logic of the proof of Proposition 3.3.7 is as follows. Recall from Defi-

nition 2.2.14 that, for ε ∈ (0, π), a point x in an n-dimensional nonnegatively curved

Alexandrov space M is called ε-narrow if any angle subtended at x is at most ε. This is

equivalent to the space of directions at x having diameter at most ε. We will show that any

sufficiently large subset S of M always contains three distinct points forming a triangle

with one angle greater than ε, and so one of the points is not ε-narrow. ‘Sufficiently

large’ here depends only on n and ε. Therefore, if we take S to be the set of all ε-narrow

points in M , S cannot be ‘sufficiently large’—i.e., it must be smaller than a certain bound

depending only on n and ε.

In order to demonstrate that any sufficiently large set S contains such a triple, we first

show that S contains a sufficiently long sequence of points x1, . . . , xm whose consecutive

distances decay like a geometric progression. We then take m large enough to ensure that,

for some i < j < m, the angle ∡xixmxj is less than (π − ε)/2. We then use Toponogov’s

theorem (Theorem 2.2.10) to compare the triangle △xixjxm with a Euclidean triangle.

The geometric decay of the sequence ensures that the side ratio |xjxm|/|xixj| is small,

which allows us to deduce that ∡xixjxm > ε.

The aforementioned sequence of points x1, . . . , xm in S is constructed by an iterative

process that relies on a certain series of nets for subsets of S. To determine how large S

needs to be to continue this process, we begin by bounding the cardinality of these nets.

Lemma 3.3.8. Let M be an n-dimensional nonnegatively curved Alexandrov space,

α ∈ (0, 1), and X a finite subset of M with diameter at most d. There is a covering of X

by closed balls of radius αd/4 with at most (1 + 8/α)n elements.
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3.3. Singular Vertex Bound

Proof. This is adapted from a proof of Liu in [Liu92, § 3], although the argument is

generally attributed to Gromov. Let {p1, . . . , pk} be a maximal set of points in X

satisfying d(pi, pj) > αd/4 for all i ̸= j. Then we have a covering of X by k closed balls:

X ⊆
k⋃

i=1

B(pi, αd/4).

By the definition of the pi, we have

B(pi, αd/8) ∩B(pj, αd/8) = ∅, for all i ̸= j. (3.3.1)

Also, by applying the triangle inequality, we see that, for any j ∈ {1, . . . , k},

k⋃
i=1

B(pi, αd/8) ⊆ B(pj, (1 + α/8)d). (3.3.2)

Now let B(pj, αd/8) have minimal volume among the B(pi, αd/8). Then, recalling

from Definition 2.2.11 that V (p, r) denotes Vol(B(p, r)), we have

k =
k∑

i=1

V (pi, αd/8)

V (pi, αd/8)
,

≤ 1

V (pj, αd/8)

k∑
i=1

V (pi, αd/8),

≤ V (pj, (1 + α/8)d)

V (pj, αd/8)
, by Formulae (3.3.1) and (3.3.2) together,

≤ (1 + α/8)ndn

(αd/8)n
, by the Gromov–Bishop inequality (Theorem 2.2.12),

= (1 + 8/α)n.

We now describe one step of the iterative process.

Lemma 3.3.9. Let M be an n-dimensional nonnegatively curved Alexandrov space,

α ∈ (0, 1), and S a finite subset of M of cardinality at least 2 and diameter d. There

is a point x in S and a subset S ′ of S such that d(x, S ′) ≥ d/2, diamS ′ ≤ αd/2, and

|S ′| ≥ |S|/ (2⌊(1 + 8/α)n⌋).

Proof. Choose points p and q in S such that d(p, q) = d and define two subsets of S:

P := {s ∈ S | d(s, p) ≤ d(s, q)} and Q := S \ P.

If |P | ≥ |Q|, let x := q and X := P ; otherwise, let x := p and X := Q. We note

three facts about X. Firstly, the definition of X and the triangle inequality imply that

d(x,X) ≥ d/2; secondly, diamX ≤ d; and thirdly, since X is chosen to be the larger of P

and Q, we have

|X| ≥ (|P |+ |Q|)/2 = |S|/2. (3.3.3)

49



3.3. Singular Vertex Bound

Now let k := ⌊(1 + 8/α)n⌋. By Lemma 3.3.8, we can cover X by k balls B1, . . . , Bk

of radius αd/4 in M . Now let X ∩Bj have maximal cardinality among the X ∩Bi, and

let S ′ := X ∩Bj. Let us demonstrate that S ′ has the three required properties. Firstly,

d(x, S ′) ≥ d(x,X) ≥ d/2; secondly, diamS ′ ≤ diamBj ≤ αd/2; and finally, since S ′ is

chosen to maximise |X ∩Bi|, we have

|S ′| ≥ 1

k

k∑
i=1

|X ∩Bi| ≥
|X|
k

,

≥ |S|
2k

, by Formula (3.3.3),

=
|S|

2⌊(1 + 8/α)n⌋
.

This step is now applied recursively to produce a sequence of points whose consecutive

distances decay like a geometric progression.

Lemma 3.3.10. Let M be an n-dimensional nonnegatively curved Alexandrov space,

m an integer greater than 2, and α ∈ (0, 1). Any subset S of M of cardinality at least

2 (2⌊(1 + 8/α)n⌋)m−2 contains a sequence of distinct points x1, . . . , xm satisfying

d(xi+1, xi+2) ≤ αd(xi, xi+1), for i ∈ {1, . . . ,m− 2}. (3.3.4)

Proof. If S is infinite, we may replace S with any finite subset of cardinality at least

2 (2⌊(1 + 8/α)n⌋)m−2. So assume that S is finite. We make m − 2 applications of

Lemma 3.3.9 to S. Specifically, starting with S1 := S and defining Si+1 := S ′
i, we

get a point xi in Si for each i ∈ {1, . . . ,m− 2}. Then, letting k := ⌊(1 + 8/α)n⌋, we have

|Sm−1| ≥
|Sm−2|
2k

≥ . . . ≥ |S1|
(2k)m−2

≥ 2(2k)m−2

(2k)m−2
= 2.

Thus, we can arbitrarily choose two distinct points xm−1 and xm in Sm−1. We thus

have our sequence of distinct points x1, . . . , xm in S; we just need to check that it satisfies

Formula (3.3.4). Indeed, let i ∈ {1, . . . ,m− 2}. Then

d(xi+1, xi+2) ≤ diamSi+1, since xi+1 and xi+2 ∈ Si+1,

≤ α

2
diamSi, by Lemma 3.3.9,

≤ αd(xi, Si+1), by Lemma 3.3.9,

≤ αd(xi, xi+1), since xi+1 ∈ Si+1.

We must now depart from the linear flow of the argument to give two technical results,

Lemmas 3.3.11 and 3.3.12. These results do not follow from any of the earlier results in

this section, but they are needed for the proof of the final lemma, Lemma 3.3.13, from

which Proposition 3.3.7 follows. Thanks to Lemma 3.3.10, we now have our ‘geometrically

decaying’ sequence x1, . . . , xm. As was mentioned in the discussion at the start of this
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3.3. Singular Vertex Bound

subsection, we need to use this geometric decay to ensure that an arbitrary distance ratio

d(xj, xm)/d(xi, xj) is sufficiently small. This is what we show in the first technical result,

by careful applications of Formula (3.3.4) and the triangle inequality.

Lemma 3.3.11. Let x1, . . . , xm be a sequence of distinct points in a metric space (X, d)

satisfying Formula (3.3.4) for some α ∈ (0, 1/2). For any indices 1 ≤ i < j < m, we have

d(xj, xm)

d(xi, xj)
<

α

1− 2α
.

Proof. For convenience, let d := d(xi, xi+1). On the one hand, we have

d(xj, xm) ≤ d(xj, xj+1) + . . .+ d(xm−1, xm), by the triangle inequality,

≤ αj−i(d(xi, xi+1) + . . .+ d(xm+i−j−1, xm+i−j)), by Formula (3.3.4),

≤ dαj−i(1 + α + . . .+ αm−j−1), by Formula (3.3.4),

≤ dα(1 + α + . . .+ αm−j−1), since i < j and α < 1,

<
dα

1− α
.

On the other hand, we have

d(xi, xj) ≥ d(xi, xi+1)− d(xi+1, xj), by the triangle inequality,

≥ d− (d(xi+1, xi+2) + . . .+ d(xj−1, xj)), by the triangle inequality,

≥ d− d(α + α2 + . . .+ αj−i−1), by Formula (3.3.4),

> d

(
1− α

1− α

)
=

d(1− 2α)

1− α
.

The final expression above is positive, since α ∈ (0, 1/2). Therefore, we can combine the

two inequalities above to get the desired result.

The second technical result states that a sufficiently large collection of points in an

Alexandrov space of curvature at least 1 contains two points that are close to each other.

This is shown by using a packing result of Grove and Wilhelm ([GW95, Prop. 1.3]) to

reduce the problem to the sphere, where it can be solved using elementary spherical

geometry. The result is used in the proof of Lemma 3.3.13 to ensure that, when our

sequence x1, . . . , xm is long enough, we can find indices 1 ≤ i < j < m such that the angle

∡xixmxj is small.

Lemma 3.3.12. Let Σ be an (n− 1)-dimensional Alexandrov space of curvature at least

1 and let δ ∈ (0, π). Any collection of m − 1 points in Σ contains two at a distance at

most δ, provided that m ≥ mn(δ), where

mn(δ) :=

⌊
2

Isin2(δ/2)
(
n−1
2
, 1
2

)⌋+ 2, (3.3.5)

and It(a, b) is the regularised incomplete beta function.
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Proof. We first show that it suffices to prove the result when Σ = Sn−1. To do this, we

define the qth packing radius of a compact metric space X (see [GW95]). For a positive

integer q, this is the quantity

packq X :=
1

2
max

x1,...,xq∈X

(
min
i<j

(d(xi, xj))

)
.

Given this definition, observe that the following two statements are equivalent:

1. packm−1X ≤ δ/2,

2. For all v1, . . . , vm−1 ∈ X, there are indices i < j such that d(vi, vj) ≤ δ.

The content of the lemma is that m ≥ mn(δ) implies the second statement for X = Σ. But

[GW95, Prop. 1.3] states that packm−1 Σ ≤ packm−1 Sn−1, and so if the second statement

holds for X = Sn−1, then it holds for X = Σ. It therefore suffices to prove the lemma for

Σ = Sn−1, which we now do. Two points vi and vj in Sn−1 being at a distance at most δ

is the same as the two closed metric balls of radius δ/2 centred on vi and vj intersecting.

According to [Li11, Eq. 1], the ((n− 1)-dimensional) area of a metric ball in Sn−1 (there

called a hyperspherical cap) of radius δ/2 ∈ (0, π/2) is

1

2
Isin2(δ/2)

(
n− 1

2
,
1

2

)
An−1,

where An−1 is the area of Sn−1. By comparing these areas, it follows that any collection of

at least mn(δ)− 1 hyperspherical caps of radius δ/2 in Sn−1 must contain an intersecting

pair. The result follows.

We now give the last lemma in the series, after which Proposition 3.3.7 is immediately

deduced. It states that a sufficiently large subset of a nonnegatively curved Alexandrov

space contains three points forming a triangle with an angle close to π. The proof combines

Lemmas 3.3.10 to 3.3.12 and Toponogov’s theorem.

Lemma 3.3.13. Let M be an n-dimensional nonnegatively curved Alexandrov space and

let ε ∈ (0, π). Any subset S of M of cardinality at least 2 · (2 · 25n)mn((π−ε)/2)−2, where

mn(−) is defined as in Formula (3.3.5), contains three points x, y, and z such that

∡xyz > ε.

Proof. We apply Lemma 3.3.10 with m = mn((π − ε)/2) and with α = 1/3. We have

1+8 · 3 = 25, so to do this we need |S| ≥ 2 · (2 · 25n)mn((π−ε)/2)−2. Applying Lemma 3.3.10

to S gives a sequence of distinct points x1, . . . , xm in S satisfying Formula (3.3.4) with

α = 1/3. Now, the space of directions Σ at xm is, by [BBI01, Thm. 10.8.6], an (n− 1)-

dimensional Alexandrov space of curvature at least 1. Projecting x1, . . . , xm−1 onto Σ via

shortest paths, we get a collection of points v1, . . . , vm−1 in Σ. By the choice of m, we can

apply Lemma 3.3.12 to get indices 1 ≤ i < j < m such that the distance between vi and

vj in Σ is at most (π − ε)/2. By definition, this distance is equal to ∡xixmxj. So take
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x = xi, y = xj , and z = xm—then ∡xzy ≤ (π− ε)/2. By Lemma 3.3.11 with α = 1/3, we

have |yz| < |xy|. Finally, we apply Toponogov’s theorem (Theorem 2.2.10) to the triangle

T := △xyz (see Figure 3.8 for a visual explanation of this). Let T̃ = △x̃ỹz̃ ⊆ R2 be a

comparison triangle for T . We have ∡xyz ≥ ∡x̃ỹz̃ and ∡xzy ≥ ∡x̃z̃ỹ by Toponogov’s

theorem, and by the Euclidean maxim “The larger angle is opposite the larger side”, we

have ∡x̃z̃ỹ > ∡ỹx̃z̃. Therefore,

∡xyz ≥ ∡x̃ỹz̃ = π − ∡x̃z̃ỹ − ∡ỹx̃z̃ > π − 2∡x̃z̃ỹ ≥ π − 2∡xzy ≥ ε.

M

y

x

T
z

R2

ỹ

x̃

T̃
z̃

Figure 3.8. Grey arrows connect one point (or side) to another, signalling that the angle (or length,

respectively) of the first is at least as big as that of the second. White headed arrows denote strict

inequalities. Sides with the same number of notches (one, two, or three) have the same length.

Proof of Proposition 3.3.7. For n greater than 1 and ε ∈ (0, π), let M be an n-dimensional

nonnegatively curved Alexandrov space and let S be the set of ε-narrow points of M . We

apply the contrapositive of Lemma 3.3.13 to S. The angles of any triangle with vertices

in S are at most ε, so we must have |S| < B(n, ε) := 2 · (2 · 25n)mn((π−ε)/2)−2.

We can now specialise back to the case of polyhedral 3-manifolds, by deducing the

existence of a singular vertex bound—i.e., by proving Theorem 2.

Proof of Theorem 2. Let M be a nonnegatively curved integral polyhedral 3-manifold.

Denote by M0
s the set of singular vertices of M . Corollary 3.2.13 tells us that every point

of M0
s is ε0-narrow, for some fixed ε0. Therefore, since M is a 3-dimensional nonnegatively

curved Alexandrov space (by Proposition 2.2.9), we may apply Proposition 3.3.7 to deduce

that |M0
s | < Bver := B(3, ε0), which is constant.
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Remark 3.3.14. The vertex bound Bver is by no means effective from a numerical

standpoint. Looking at the definition of B(n, ε) from the proof of Proposition 3.3.7, we

calculate that Bver = 2 · 31250m3((π−ε0)/2)−2. When n = 3, Formula (3.3.5) reduces to

m3(δ) =

⌊
2

1− cos(δ/2)

⌋
+ 2,

and for integral vertices ε0 is at least 5π/6 (this can be seen by noting that link #1 in

Table A.1 is the double of a triangle having an edge of length 5π/6). This bound is

therefore at least in the region of 101051. As shown in Figure 3.7, the greatest number of

singular vertices in a nonnegatively curved integral polyhedral 3-manifold known to the

author is 32. Our aim has therefore been to demonstrate the existence of the bound. To

produce any useful numerical bound, a different approach must be taken.

3.3.3. Connection to Li and Naber

It was mentioned at the start of Section 3.3 that Proposition 3.3.7 follows from a recent

result of Li and Naber, [LN20, Cor. 1.4], although this was not known to the author until

after the work in this section had been written. Let us briefly examine their result—in

particular, why it implies ours. The central concept in [LN20] is quantitative splitting—a

measure of how close a neighbourhood of a point is to being a metric product. We give a

summary of the definitions relevant to our setting (see [LN20, Defs. 1.1–1.2]).

Definition 3.3.15 (Quantitative splitting). Let M be a metric space, x a point in M ,

r > 0, k a nonnegative integer, and δ > 0. We say that Br(x) is (k, δ)-splitting if there is

a metric space Z and a point p in Rk × Z such that dGH(Br(x), Br(p)) ≤ δr, where dGH

is the Gromov–Hausdorff distance. We then define the (k, δ)-singular set to be

Sk
δ = Sk

δ (M) := {x ∈ M | ∀r > 0, Br(x) is not (k + 1, δ)-splitting}.

These definitions build on the established concept of singular sets. The singular set

S(M) of an m-dimensional Alexandrov space M of curvature bounded below is defined as

the set of points whose tangent cones are not isometric to Rm. It is well known that this

singular set has a natural stratification S(M) = Sm−1 ⊇ . . . ⊇ S0, where Sk is the set of

points whose tangent cones are not isometric to Rk+1 × C, for any metric cone C. (If M

is a polyhedral manifold, then Sk is the set of singular points of codimension at least k.)

One can think of Sk as the set of points where M does not locally look like Rk+1 ×C, for

any metric cone C. The idea of quantitative splitting strengthens this notion, so that Sk
δ

is the set of points where M is, in a rigorous sense, δ far away from locally looking like

Rk+1 × C. As one would expect, Sk is equal to
⋃

δ>0 Sk
δ .

The k-singular set Sk has Hausdorff dimension at most k and the same is true for

Sk
δ . In particular, S0

δ is a discrete set of points. Li and Naber’s result [LN20, Cor. 1.4]

gives a bound on the k-dimensional Hausdorff measure of Sk
δ ∩B1(p) in any Alexandrov

space M of curvature at least −1 and for any point p in M , depending only on δ and
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the dimension of M . When k is 0, this implies a bound on the cardinality of S0
δ ∩B1(p).

Proposition 3.3.7 concerns ε-narrow points, which always belong to S0, in nonnegatively

curved Alexandrov spaces, so we now restrict to the case of k = 0 and curvature at least 0.

We first remove the dependence on B1(p) in the bounds given above, by rescaling the

metric. For any positive scale λ, if M has nonnegative curvature, then so does λM . Note

also that S0
δ (λM) is the same as λS0

δ (M). Any finite subset of S0
δ can thus be rescaled to

lie within B1(p) for some point p in M . This means that, when M is nonnegatively curved,

[LN20, Cor. 1.4] gives a bound on the cardinality of any finite subset of S0
δ , depending only

on δ and the dimension of M . This same bound then immediately applies to |S0
δ | itself.

Therefore, showing that [LN20, Cor. 1.4] implies Proposition 3.3.7 reduces to showing

that, for any ε ∈ (0, π), there is δ = δ(ε) > 0 such that any ε-narrow point x of M belongs

to S0
δ . This is fairly simple: one can use Toponogov’s theorem (Theorem 2.2.10) to show

that, for any r > 0, the diameter of Br(x) is at most φr, where φ depends only on ε;

then recall from [BBI01, Ex. 7.3.14] that dGH(Y, Y
′) ≥ 1

2
| diamY − diamY ′|, for bounded

metric spaces Y and Y ′.

Li and Naber’s result therefore does imply Proposition 3.3.7, but nowhere near the

full force of their result is needed in our specialised setting. Our proof is completely

independent of their work and is (naturally) considerably shorter than the proof of [LN20,

Thm. 1.3], from which [LN20, Cor. 1.4] follows.

3.4. Further Directions

Recall from Proposition 2.2.16 that the singular locus of a nonnegatively curved polyhedral

3-manifold is a union of graphs (of minimum degree 3 and possibly with some unbounded

edges), circles, and lines embedded in the manifold. The vertices of the graphs are called

singular vertices and the graph edges (bounded or unbounded), the circles, and the lines

are collectively called singular edges. In this chapter, we have classified the local isometry

types of singular vertices (and thus all points) when integrality is imposed and have shown

that number of singular vertices is bounded. A natural extension is to attempt to control

the size of the singular locus as a whole, rather than just its vertices.

Conjecture 3.4.1 (Singular edge bound). There is a constant B in N such that any

nonnegatively curved integral polyhedral 3-manifold has fewer than B singular edges.

This result, of course, implies Theorem 2, but Theorem 2 is probably needed to prove

it. We know from [LN20, Cor. 1.4] that the sum of the lengths of the singular edges is

less than some constant times the diameter of the space, but as yet we have no way to

bound the total number. Conjecture 3.4.1 can also be weakened in another way, this time

by neglecting the graph components of the singular locus.
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Conjecture 3.4.2 (Singular circle/line bound). There is a constant Blin in N such that the

total number of singular circles and lines in any nonnegatively curved integral polyhedral

3-manifold is less than Blin.

Since, as noted in Corollary 3.2.12, the maximum degree of a singular vertex is 5,

Theorem 2 implies a bound on the number of edges in the graph components of the

singular locus. Conjecture 3.4.2 would therefore imply Conjecture 3.4.1.

Another way to extend Theorem 2 is to generalise it to higher dimensions. The proof

did not actually require the full classification of singular vertices, but only that there

are finitely many local isometry types. If we can show that, for any fixed dimension,

there are only finitely many types of singular vertices (i.e., singularities of maximal

codimension), then we should be able to apply Proposition 3.3.7 to nonnegatively curved

integral polyhedral manifolds of any dimension.
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Chapter 4

POLYHEDRAL 3-SPHERES SINGULAR ALONG

SEIFERT LINKS

Much of the content of Chapter 3 may be viewed as a study of how algebraic constraints

on the holonomy of a polyhedral 3-manifold have topological implications for the singular

locus. We impose integrality (and nonnegative curvature), and we deduce, for example,

Theorem 2 and Corollary 3.2.12—two results controlling the topology of the singular locus.

In this chapter, we consider the reverse problem: we impose restrictions on the topology

of the singular locus of a polyhedral 3-manifold and see what we can deduce about the

holonomy. We also work in a different setting for this chapter; we restrict ourselves to

spherical polyhedral metrics on Seifert fibre spaces wherein the singular locus is a union

of fibres. As a concrete example, we study the holonomy of spherical polyhedral metrics

on the 3-sphere wherein the singular locus is the Hopf link. We show that, in almost all

cases, such a metric is a PK-link metric (recall Definition 2.3.11), and this allows us to

give a simple description of almost all such metrics. For the rest of this chapter, we will

refer to an n-sphere endowed with a spherical polyhedral metric as a polyhedral n-sphere.

The Hopf link is the simplest nontrivial 2-component link. An analogous setting in

two dimensions is that of a spherical polyhedral metric on the 2-sphere with precisely two

conical points. In [Tro89], Troyanov fully describes all such metrics, proving the following

result:

Theorem ([Tro89, Thm. I]). Let S be a polyhedral 2-sphere with with precisely two conical

points of angles α and β. Then α = β and

1. If α is not divisible by 2π, then S is S2(α); whereas

2. If α is divisible by 2π, then S is a ramified cover of the unit sphere S2 with ramification

at two distinct points.

The first main result of this chapter can be viewed as a partial generalisation of this

result to three dimensions.

Theorem 3 (Hopf link singularities). Let M be a polyhedral 3-sphere with no conical

angles in 2π(N \ {1}) whose singular locus is the Hopf link. Then M is the link of the

product of two Euclidean 2-cones.
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4. Polyhedral 3-Spheres Singular Along Seifert Links

The motivating idea behind this chapter comes from the fact that the Hopf link sits

within a larger class of links that we refer to as as Seifert links. These will be defined

precisely in Definition 4.1.3 but are essentially unions of fibres of a Seifert fibration of

the 3-sphere. As was mentioned at the end of Subsection 2.3.1, Panov’s work in [Pan09]

implies that the singular locus of a PK-link metric on the 3-sphere forms a Seifert link, and

in fact, any kind of Seifert link can appear in this way. This chapter arose as an attempt

to demonstrate a converse to this observation: “Given a polyhedral 3-sphere singular along

a Seifert link, when can we show that it is a PK-link?” We assume throughout that no

conical angle belongs to 2π(N \ {1}). In Section 4.2, we reduce the question to a single

sufficient criterion: the nontriviality of a certain holonomy element.

In the case of the Hopf link, we know exactly when this criterion holds. More than

this, in Section 4.3, we show that a polyhedral 3-sphere singular along the Hopf link is

always a PK-link, whether or not the criterion holds, provided that the conical angles do

not belong to 2π(N \ {1}). From this, we deduce Theorem 3.

The other main result of this chapter is Theorem 4. This makes good headway in

answering the question posed above in the case of generic Seifert links—i.e., those that are

neither the unknot nor the Hopf link. Other than the usual requirement that the conical

angles not be divisible by 2π, the only condition we impose is on the length of an ordinary

component, a certain singular circle that will be defined just after Definition 4.4.1.

Theorem 4 (Seifert link singularities). Let M be a polyhedral 3-sphere with no conical

angles in 2π(N \ {1}) whose singular locus is a generic Seifert link. Let K be an ordinary

component of the singular locus of M . If the length of K is not divisible by π, then M is

a PK-link.

This result allows us, under mild assumptions, to generalise and unify existing formulae

for the volume, singular circle lengths, and conical angle restraints of polyhedral 3-spheres

singular along torus links. Such formulae can be found in [DMM14] (for the trefoil knot),

[Kol13] (for 3 and 4 component Hopf links), and [KM09] (for torus links of types (2, 2n+1)

and (2, 2n)).

The rest of the chapter is laid out as follows:

• In Section 4.1, we carefully define Seifert links and give a classification of them

in Lemma 4.1.10. We note in Proposition 4.1.14 the existence of a special central

element in the fundamental group of the complement to any Seifert link—this is the

element whose holonomy will appear in the PK-link criterion mentioned above. We

also recall the definition of PK-links and their classification in three dimensions and

deduce that the singular locus of a PK-link is always a Seifert link.

• In Section 4.2, we derive the three closely related PK-link criteria, Corollaries 4.2.5

to 4.2.7, showing that the nontriviality of the holonomy of the square of the central

element mentioned above is sufficient to ensure that the metric is a PK-link metric.

The argument is entirely linear-algebraic.
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• In Section 4.3, we prove Theorem 3. After fixing some terminology and notation,

we make a quick application of Corollary 4.2.7 to metrics singular along the Hopf

link. The rest of the section is largely devoted to proving that such a metric is a

PK-link metric even when Corollary 4.2.7 does not apply—specifically, when the

conical angles are odd multiples of π. We do this by direct consideration of the

metric and developing map. With a little extra work, we then deduce Theorem 3.

• Finally, in Section 4.4, we make a brief investigation into when the criterion in

Corollary 4.2.6 is satisfied for a generic Seifert link, which culminates in the proof of

Theorem 4. Using results about polyhedral Kähler metrics from [Pan09] and about

spheres with conical points from [MP16], we derive some explicit geometric formulae

for polyhedral 3-spheres singular along generic Seifert links.

4.1. Preliminaries

In this section, we introduce the main objects required for this chapter—Seifert links,

(p, q)-maps, and PK-links—and make some basic observations about them. We begin by

recalling some key definitions from Chapter 2 in light of the spherical setting.

Let M be a spherical polyhedral n-manifold. Recall from Definition 2.3.3 that the

developing map is a map Dev : RamM → Sn that is a local isometry outside of the

singularities of RamM . It may be viewed as a multivalued map M → Sn that sends

geodesics to arcs of great circles. Recall from Definition 2.3.4 that the holonomy map

is the map Hol : π1(M \Ms) → O(n) defined by equivariance with the developing map.

In most of this chapter, we will be dealing with polyhedral 3-spheres, in which case the

developing map maps into S3 and the holonomy map into SO(4), because the 3-sphere is

orientable.

4.1.1. Seifert Links

Since this chapter concerns spherical polyhedral metrics on the 3-sphere whose singular

locus forms a Seifert link, we must give a precise definition of a Seifert link. The exact

definition is fairly simple but relies on the definition of a Seifert fibre space. We do not

reproduce this classical definition here but instead refer the reader to [Hem76, Ch. 12] or

[GL18, § 2] for a basic introduction. The one key piece of information we wish to recall is

the notion of ordinary and exceptional fibres.

Definition 4.1.1 (Ordinary and exceptional fibres). Let f : M → B be a Seifert fibration

and p a point in B, so that t := f−1(p) is a fibre of f . If there is a neighbourhood U

of t such that the restriction f |U looks like the projection D2 × S1 → D2, where D2 is

the open 2-disc, we say that t is ordinary. Otherwise, we say that t is exceptional. All

ordinary fibres are homotopic in the complement to the exceptional fibres, so by abuse of
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terminology we will often refer to the homotopy class of an ordinary fibre as the ordinary

fibre. We will also freely switch between the homotopy class and a specific ordinary fibre.

Remark 4.1.2. Ordinary fibres are sometimes called generic, and exceptional fibres are

sometimes called singular. We avoid using these terms in this way, as they are already

used in other contexts—e.g., singular locus and edges and generic Seifert links (see

Definition 4.4.1).

Definition 4.1.3 (Seifert link). A link L in the 3-sphere is called a Seifert link if there is

a Seifert fibration f of the 3-sphere such that L is equivalent to a union of fibres of f . By

equivalent, we mean that there is a self-homeomorphism of the 3-sphere sending one link

to the other. Links that are mirror images of each other are thus considered equivalent.

We now give some archetypal examples of Seifert links, which will form the basis of

their classification.

Example 4.1.4. A Seifert fibration can be viewed as a circle bundle with isolated

exceptional fibres. The only genuine circle bundle whose total space is the 3-sphere is the

Hopf bundle (up to possibly orientation-reversing equivalence—see [GL18]). Therefore,

any collection of Hopf circles—i.e., fibres of the Hopf bundle—inside the 3-sphere is a

Seifert link (see Figure 4.1). A link that is equivalent to a collection of n Hopf circles is

called a Hopf n-link. The Hopf 2-link is the usual Hopf link, and the Hopf 1-link is of

course just the unknot.

Figure 4.1. Hopf n-links, for n = 1, 2, and 4.

Example 4.1.5. Given coprime integers 1 ≤ p ≤ q, a (p, q)-torus knot is a Seifert link.

This is because it is equivalent to an orbit of the following circle action on the 3-sphere,

which defines a Seifert fibration. Viewing S3 as the unit sphere in C2 and S1 as the unit

circle in C, the action is defined by

λ · (z, w) := (λpz, λqw), (4.1.1)

for λ ∈ S1 and (z, w) ∈ S3. The orbits of this action are the fibres of a Seifert fibration of

the 3-sphere, and in fact, up to (possibly orientation-reversing) equivalence, every Seifert
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Figure 4.2. Left: (2, 3)-torus knot (trefoil knot). Middle: (4, 6)-torus link. Right: (4, 6)-torus link with

both axes, the 2-axis shown in blue and the 3-axis in red.

fibration of the 3-sphere arises this way (see [GL18, Prop. 5.2]). By taking n ordinary

orbits of this action, we see that an (np, nq)-torus link is also Seifert link (see Figure 4.2).

The circle action defined above is worthy of special note, as it is central to the rest of

the chapter.

Definition 4.1.6 ((p, q)-map). For coprime integers 1 ≤ p ≤ q, the action defined in

Formula (4.1.1) (or any action conjugate to it) is called the (p, q)-action. As noted in

Example 4.1.5, the orbits of this action are the fibres of a Seifert fibration of the 3-sphere.

The orbit space is topologically a 2-sphere—this may be seen by identifying it with the

weighted projective line P(p, q) (see [BFNR13, § 1]). The quotient map, denoted by

f(p,q) : S
3 → S2, is called the (p, q)-map.

Definition 4.1.7 (p and q-axes). The following subsets of the 3-sphere are fibres of

f(p,q)—equivalently, orbits of the (p, q)-action:

{(z, 0) ∈ C2 | |z| = 1} and {(0, w) ∈ C2 | |w| = 1}.

They are referred to as the p and q-axes and denoted by Op and Oq respectively (see

right of Figure 4.2). The images of Op and Oq under f(p,q) are cyclic orbifold points of the

2-sphere of orders p and q respectively, denoted by P and Q.

Remark 4.1.8. The orders (or multiplicities) of Op and Oq viewed as fibres of f(p,q) are p

and q respectively. In other words, if all the other, ordinary fibres have period 1 under

the (p, q)-action, then Op and Oq have periods 1/p and 1/q. This is reflected in the fact

that the images of Op and Oq in the base orbifold are cyclic of order p and q. Therefore,

f(1,1) has no exceptional fibres; there is nothing special about the axes. (This is because

f(1,1) is the Hopf fibration.) When 1 = p < q, the only exceptional fibre is Oq, and when

1 < p < q, the exceptional fibres are Op and Oq.

Example 4.1.9. By adding in exceptional fibres, we arrive at our last family of examples

of Seifert links. For integers n and q greater than 1, the union of Oq with n ordinary

fibres of f(1,q) is a Seifert link, called an (n, nq)-torus link with the q-axis. For n a positive
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integer and 1 < p < q, the union of n ordinary fibres of f(p,q) with one or both of Op and

Oq is a Seifert link, naturally referred to as an (np, nq)-torus link with the p-axis, the

q-axis, or with both axes.

It turns out that Examples 4.1.4, 4.1.5, and 4.1.9 cover every possible Seifert link, as

we show in the following result.

Lemma 4.1.10. Let L be a Seifert link in the 3-sphere. Then L is equivalent to one of

the following mutually exclusive possibilities:

1. The unknot;

2. The Hopf link;

3. A Hopf n-link, for n > 1;

4. An (n, nq)-torus link, with or without the q-axis, for n and q > 1; or

5. An (np, nq)-torus link, with none, one, or both of the p and q-axes, for n ≥ 1 and

1 < p < q coprime.

Proof. As noted in [GL18, Prop. 5.2], any Seifert fibration of S3 is equivalent to f(p,q), for

some coprime integers 1 ≤ p ≤ q. Therefore, any Seifert link L is equivalent to a union of

fibres of some f(p,q). We consider the different cases.

When 1 = p = q, f(1,1) is just the Hopf fibration. If n is the number of components of

L, then we fall into case 1, 2, or 3, according to whether n is 1, 2, or greater than 2.

When 1 = p < q, let n be the number of components of L that are ordinary fibres

of f(1,q). If n = 0, then L is Oq, and we are in case 1. Note that Oq forms a Hopf link

with any other fibre of f(1,q), and that all the fibres of f(1,q) are unknots, as can be seen in

Figure 4.3. Therefore, when n = 1, then if Oq is not a component of L, we are in case 1,

whereas if it is, we are in case 2. When n > 1, we are in case 4.

When 1 < p < q, again let n be the number of components of L that are ordinary

fibres of f(p,q). If n = 0, then either L is Op or Oq, in which case we are in case 1, or L is

Op ∪Oq, in which case we are in case 2. Finally, if n ≥ 1, we are in case 5.

Definition 4.1.11. If a Seifert link can be realised by a (p, q)-fibration, then we say it

has or is of type (p, q). From the proof above, we see that in cases 3, 4, and 5, the type is

unique. Case 3 always has type (1, 1), case 4 has type (1, q), and case 5 has type (p, q).

The unknot and the Hopf link have type (p, q), for any coprime integers 1 ≤ p ≤ q.

Let us now consider some nonexamples of Seifert links, which nonetheless in a sense

come close to being Seifert links.

Example 4.1.12. An unlink of multiple components is not a Seifert link—its complement

has free fundamental group of rank greater than 1, and therefore by [BM70, Thm. 1] is

not Seifert fibred. However, it is a torus link; indeed, the components may be arranged as

parallel meridians of a torus. Unlinks are the only torus links that are not Seifert links.
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Figure 4.3. Left: (1, 6)-torus knot with the 6-axis (equivalent to the Hopf link). Middle: (2, 12)-torus

link with the 6-axis. This is equivalent to the figure on the right: (1, 6)-torus knot with both axes, the

blue ordinary fibre becoming the ‘1-axis’.

Example 4.1.13. A keychain link with multiple keys is not a Seifert link. It is constructed

by taking at least two parallel meridians of a torus (the ‘keys’) and then adding in the

core of the torus (the ‘keyring’—see Figure 4.4). This is almost a Seifert link, in the sense

that its complement is Seifert fibred—the complement to the keyring is an open solid

torus, which admits a trivial fibration of which the keys are fibres. However, this fibration

does not extend to the whole 3-sphere, as is noted in [BM70]. In fact, by [BM70, Thm. 1],

keychain links are the only links with Seifert fibred complements that are not Seifert links.

Figure 4.4. On the left is an unlink of four components. These components become the keys of a

keychain link, shown on the right, with the keyring shown in grey.

We finish this subsection with a key result about Seifert links, which allows us to relate

them to PK-links later in the chapter.

Proposition 4.1.14. Let L be a Seifert link and let t be the ordinary fibre of a Seifert

fibration of the 3-sphere realising L. Then t ∈ Z(π1(S
3 \ L)).

Proof. The Seifert fibration f of S3 realising L restricts to a Seifert fibration of S3 \ L
whose base Σ is a 2-sphere with n punctures, where n is the number of components of

L. Then [Hem76, Thm. 12.1] gives an explicit presentation of π1(S
3 \ L). Since Σ is

orientable and has genus 0 and n boundary components, we have

π1(S
3 \ L) ∼= ⟨t, c1, . . . , cm, d1, . . . , dn | citc−1

i = tηi , djtd
−1
j = tϑj , other relations⟩,
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where m ∈ {0, 1, 2} is the number of exceptional fibres of f not belonging to L, and

each ηi and ϑj is either 1 or −1. The ci represent meridians of the exceptional fibres

not belonging to L, and the dj represent meridians of the (removed) components of L.

The end of the proof of [Hem76, Thm. 12.1] tells us that, since Σ is orientable, S3 \ L is

orientable if and only if every ηi and ϑj is 1. Since S
3 \ L is orientable, every ηi and ϑj is

1, and thus t commutes with everything.

4.1.2. PK-links

As noted in the opening of this chapter, the concept of a PK-link is central to it. Therefore,

we now recall the definition of polyhedral Kähler manifolds and PK-links and state some

key facts about 3-dimensional PK-links. The section culminates by circling back round to

the question connecting Seifert links to PK-links that was stated at the beginning of this

chapter. Most of the material in this subsection can be deduced from [Pan09].

Recall from Definition 2.3.10 that a Euclidean polyhedral 2n-manifold M (with no

conical angles in 2π(N \ {1})) is called polyhedral Kähler if its monodromy group is

conjugate to a subgroup of U(n)—i.e., if there is a matrix P in GL2n(R) such that

P−1(MonM)P is a subgroup of U(n). Recall from Definition 2.3.11 that a (spherical)

polyhedral (2n−1)-sphere M is called a PK-link if the Euclidean cone over M is polyhedral

Kähler—i.e., if M is the link of a polyhedral Kähler (PK) cone. This is the same as saying

that HolM is conjugate to a subgroup of U(n).

Remark 4.1.15 (see [Pan09, Def. 1.1]). The above definitions assume that there are no

conical angles in 2π(N \ {1}). When the conical angle of a codimension 2 simplex does lie

in 2π(N \ {1}), an additional condition is required. The requirement that the monodromy

be conjugate to a subgroup of U(n) implies that there is a parallel complex structure

J on M \Ms. We say that a codimension 2 simplex σ has a holomorphic direction if it

is part of a holomorphic hyperplane with respect to J . This is the same as saying that

the developing image of σ lies on a union of complex hyperplanes in R2n (with respect

to the basis that makes MonM unitary). The full definition of a polyhedral Kähler

manifold has the additional condition that every codimension 2 simplex with conical angle

in 2π(N \ {1}) has a holomorphic direction (codimension 2 simplices with other conical

angles automatically have holomorphic directions). This added condition is the reason

why we must exclude the case of conical angles in 2π(N \ {1}) from many of the results of

this chapter, particularly Theorems 3 and 4.

The relationship between PK-links and Seifert links becomes clear in the following

classification of 3-dimensional PK-links, which, by means of (p, q)-maps, reduces the

problem of understanding PK-links to understanding spheres with conical points. The

classification is a synthesis of various results from [Pan09]—namely Theorems 1.7, 1.8,

and Lemma 3.10, and material surrounding them—modified to pertain to PK-links, rather

than the PK cones over them.
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Theorem 4.1.16. Let M be a 3-dimensional PK-link. Then either M is the link of

a product C2(α) × C2(β), which we will denote by Σ(α, β), or there is a 2-sphere S of

curvature 4 with conical points and a (p, q)-map f(p,q) : M → S. In this latter case, we say

that M has or is of type (p, q), and the following statements hold:

1. The fibres of f(p,q) are geodesics of M , and Ms is a union of fibres;

2. Any two fibres are parallel, and the distance between them is equal to the distance

between their images in S;

3. All ordinary fibres have the same length—say l—such that S has area l/2pq and M

has volume l2/2pq;

4. The exceptional fibres Op and Oq have lengths l/p and l/q respectively;

5. If an ordinary fibre has conical angle α, then its image in S is a point of conical

angle α; and

6. If Op and Oq have conical angles βp and βq respectively, then their images P and Q

have conical angles βp/p and βq/q respectively.

Furthermore, the set of PK-links (up to isometry) of type (p, q) with ordinary fibres of

length l is in bijective correspondence with the set of spheres (up to isometry) of curvature

4 with conical points and with area l/2pq, where one point is marked Q when 1 = p < q

and two points are marked P and Q when 1 < p < q.

Remark 4.1.17. This result might seem to suggest that the link of a product can never

admit a (p, q)-fibration, but it in fact can, and this will become important in the proof

of Theorem 3 in Section 4.3. As implied by [Pan09, Thm. 1.7], if α/β is irrational, then

Σ(α, β) admits no such fibration. But suppose that α/β = p/q, where 1 ≤ p ≤ q are

coprime integers, and let ω := α/p = β/q. Then Σ(α, β) admits a (p, q)-map the spherical

football of angle ω with curvature 4, rather than curvature 1, which we denote by S2
4(ω)

(recall Definition 2.2.15—we may define S2
4(ω) as S2(ω) with the metric scaled by 1/2).

The fibres over the two points of conical angle ω are the two singular circles, the one of

angle α having order p and length β, and the one of angle β having order q and length α.

The ordinary fibres therefore have length l := qα = pβ, and S2
4(ω) has area ω/2 = l/2pq.

Since the singular locus of Σ(α, β) is either empty (when both α and β are 2π), the

unknot (when only one of them is), or the Hopf link (when neither of them is), the

classification of PK-links in three dimensions has the following implication.

Corollary 4.1.18. The singular locus of a 3-dimensional PK-link is either empty or a

Seifert link, and if the PK-link has type (p, q), then so does its singular locus.

We finish this section by asking when this corollary can be reversed—i.e., by restating

the question we asked at the opening of the chapter.

Question. Given a polyhedral 3-sphere singular along a Seifert link, when can we show

that it is a PK-link?
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4.2. A Single Criterion for PK-links

In this section, we prove that, to show that a polyhedral 3-sphere singular along a Seifert

link is a PK-link, it is sufficient to evaluate the holonomy of the ordinary fibre. Most

of the argument is purely linear-algebraic, showing in Proposition 4.2.1 that a subset of

SO(2n) is conjugate to a subset of U(n) if its centraliser contains a sufficiently nontrivial

element. Only at the end of the section is this applied to the polyhedral setting: first to

arbitrary even-dimensional Euclidean polyhedral manifolds, then to polyhedral 3-spheres

singular along Seifert links, and finally to polyhedral 3-spheres singular along the Hopf

link.

Before proceeding with the argument, we give some notational conventions to shorten

and clarify proofs involving large matrices. We also recall how U(n) is defined as a

subgroup of SO(2n).

Notation. Given square matrices Mi in Mki(R), for i ∈ {1, . . . , s}, we adopt the following
block matrix shorthand:

M1 ⊕ . . .⊕Ms =
s⊕

i=1

Mi :=

M1 0
. . .

0 Ms

 ∈ Mn(R),

where n = k1 + . . . + ks. Let R(α) denote the 2 × 2 rotation matrix of angle α—i.e.,

R(α) := ( cosα − sinα
sinα cosα ). Generalising this, we define a 2k × 2k rotation matrix:

Rk(α) :=
k⊕

i=1

R(α). (4.2.1)

We now recall the definition of U(n) given in Subsection 2.3.1. The standard complex

structure on R2n is defined as follows:

Jn := Rn(π/2) =
n⊕

i=1

( 0 −1
1 0 ).

This allows us to define U(n) as the subgroup of those elements of O(2n) that commute

with Jn. Any matrix that commutes with Jn has nonnegative determinant, and therefore

U(n) is in fact a subgroup of SO(2n). When n = 1, U(1) and SO(2) are in fact identical.

We now precisely state the main result of this section, from which we will deduce the

desired criterion for PK-links.

Proposition 4.2.1. Let S be a subset of SO(2n) and suppose that there is an element Ω

of SO(2n) with at most two real eigenvalues (counted with multiplicity) that commutes

with every element of S. Then S is conjugate to a subset of U(n).

To prove this, we make an orthonormal change of basis with respect to which Ω is

block diagonal, each block having the form Rk(α) (as defined in Formula (4.2.1)). The
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fact that every element of S commutes with Ω implies that, with respect to this basis, S

is a subset of U(n). We give the proof after two lemmas that are used in it.

Lemma 4.2.2. If a matrix M in M2k(R) commutes with Rk(α), for some α ∈ (−π, π)\{0},
then M commutes with Jk.

Proof. Note that Rk(α) = (cosα)I + (sinα)Jk. Therefore, if M commutes with Rk(α), it

also commutes with (sinα)Jk, and thus with Jk when sinα is nonzero.

Lemma 4.2.3. Suppose that a matrix M in SO(2n) has the form A⊕B, for some matrix

A in U(n− 1). Then M ∈ U(n).

Proof. Since the columns of M are orthonormal, the columns of B are orthonormal, and

so B ∈ O(2). As noted earlier, U(n − 1) is a subgroup of SO(2(n − 1)), so detA = 1.

Then we have

1 = detM = detA detB = detB,

and so B ∈ SO(2) = U(1). Now, A commutes with Jn−1, and B commutes with J1, so M

commutes with Jn−1 ⊕ J1 = Jn. Therefore, M ∈ U(n).

Proof of Proposition 4.2.1. We begin by putting Ω into real Schur form (see [HJ13,

Thm. 2.3.4]). There is an orthogonal change-of-basis matrix P for which Ω′ := P TΩP has

one of the following two forms:

1.
⊕s

i=1Rki(αi), where ki ∈ N, k1 + . . .+ ks = n, ai ∈ (−π, π) \ {0}, and αi ̸= ±αj for

i ̸= j; or

2. (
⊕s

i=1Rki(αi))⊕ (±I), where k1 + . . .+ ks = n− 1, and the αi are as above.

Case 1 occurs when Ω has no real eigenvalues, and case 2 occurs when it does. We

will show that, in both of these cases, every element of P TSP belongs to U(n). Indeed,

let M be an arbitrary element of P TSP .

Case 1. The eigenvalues of any block Rki(αi) of Ω
′ are distinct from those of any other.

Since M commutes with Ω′, it preserves eigenspaces of Ω′. Therefore, M has the form⊕s
i=1Mi, where each Mi lies in O(2ki) and commutes with Rki(αi). By Lemma 4.2.2,

each Mi commutes with Jki . Thus, M commutes with
⊕s

i=1 Jki = Jn and thus lies in

U(n).

Case 2. By the same reasoning as above, M = A ⊕ B, where A ∈ U(n − 1). Since

M ∈ SO(2n), we can apply Lemma 4.2.3 to deduce that M ∈ U(n).

Remark 4.2.4. As can be seen in the proof above, the eigenvalue condition on Ω in

Proposition 4.2.1 essentially means that Ω does not act as ±I in any number of dimensions

greater than two. It is vacuous when n = 1, and when n = 2, it reduces to the nontriviality

of Ω2—i.e., to Ω2 ̸= I.
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Now that we have Proposition 4.2.1, we can immediately deduce the following simple

criterion for polyhedral Kähler manifolds, and thus for PK-links:

Corollary 4.2.5. Let N be an even-dimensional orientable Euclidean polyhedral manifold

with no conical angles in 2π(N \ {1}). Suppose that there is an element g of Z(π1(N \Ns))

such that Mon g has at most two real eigenvalues, counted with multiplicity. Then N is

polyhedral Kähler. Similarly, if M is a polyhedral sphere of odd-dimension satisfying the

same conditions as above (with Mon g replaced by Hol g), then M is a PK-link.

By combining this corollary with Proposition 4.1.14, we get the following, more explicit

result in three dimensions:

Corollary 4.2.6. Let M be a polyhedral 3-sphere singular along a Seifert link and with

no conical angles in 2π(N \ {1}) and let t be the ordinary fibre of a Seifert fibration of

M \Ms. If Hol t
2 is nontrivial, then M is a PK-link.

Finally, using the classical fact that the fundamental group of the Hopf link complement

is Z2, we get one more criterion:

Corollary 4.2.7. Let M be a polyhedral 3-sphere singular along the Hopf link and with

no conical angles in 2π(N \ {1}). If there is any element g of π1(M \Ms) for which Hol g2

is nontrivial, then M is a PK-link.

4.3. Hopf Link Singularities

Now that we have Corollary 4.2.7, we focus our attention on polyhedral 3-spheres singular

along the Hopf link, with the goal of proving the third main result of the thesis.

Theorem 3 (Hopf link singularities). Let M be a polyhedral 3-sphere with no conical

angles in 2π(N \ {1}) whose singular locus is the Hopf link. Then M is the link of the

product of two Euclidean 2-cones.

For the rest of this section, we will denote (the equivalence class of) the Hopf link

inside the 3-sphere by H and any polyhedral 3-sphere singular along H with conical

angles α and β by H(α, β). We begin by fixing some notation relating to H(α, β), which

we will use throughout the rest of the section. We then make a simple application of

Corollary 4.2.7, showing that H(α, β) is a PK-link for almost all values of α and β. The

remaining cases are when α and β are both odd multiples of π, and when one of them lies

in 2π(N \ {1}). By careful consideration of the metric and developing map, we show that,

in the former case, H(α, β) is again a PK-link. This allows us, with a little additional

work, to deduce Theorem 3. Finally, we give two examples to show that H(α, β) need not

be a PK-link when both α and β lie in 2π(N \ {1}), and that, even if it is, it need not be

Σ(α, β) (i.e., the link of the product C2(α)× C2(β)).
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Notation. As mentioned above, any polyhedral 3-sphere singular along the Hopf link

with conical angles α and β will be denoted by H(α, β). A priori, this means that H(α, β)

could refer to multiple nonisometric objects. However, it follows from Theorem 3 that, as

long as α and β do not lie in 2π(N \ {1}), H(α, β) is isometric to Σ(α, β), and therefore

its isometry type is determined by α and β. Of course, the notation H(α, β) presupposes

that neither α nor β is 2π, otherwise the singular locus would not be H. We will denote

the singular circles of angles α and β by L1 and L2 respectively. Finally, fix a path γ of

minimal length joining L1 to L2 and denote its midpoint by x. Note that γ is orthogonal

to both L1 and L2. We now define standard generators for π1(S
3 \H).

Definition 4.3.1 (Meridians). For i = 1 or 2, we define the meridian µi of Li as

follows. Starting at x, follow γ towards Li. When very close to Li, circle once around Li

anticlockwise, remaining at a constant distance from Li, and then travel back along γ to x.

(See Figure 4.5 for a visual explanation.) Note that π1(S
3 \H) is the free Abelian group

Z⟨µ1, µ2⟩. By considering a local model for L1, we see that Holµ1 is a simple rotation of

angle α—in other words, there is an orthonormal basis with respect to which it has the

form R(α)⊕ I. Similarly, Holµ2 is a simple rotation of angle β.

As promised, we now make a quick application of Corollary 4.2.7, covering H(α, β) for

almost all values of α and β.

Lemma 4.3.2. Let α and β be positive real numbers that are not divisible by 2π and

suppose that at least one of them is not divisible by π. Then H(α, β) is a PK-link.

Proof. Without loss of generality, assume that α is not divisible by π. Then there is an

orthonormal basis with respect to which Holµ2
1 = R(2α)⊕ I, which is nontrivial. We can

thus apply Corollary 4.2.7 with g = µ1 to deduce that H(α, β) is a PK-link.

L1 L2

µ1 µ2

x

Figure 4.5. Meridians in a poly-

hedral 3-sphere singular along the

Hopf link.

We now wish to show that H(α, β) is in fact still a

PK-link even when both α and β are odd multiples of π.

We do this in Proposition 4.3.6. The strategy is to prove

something stronger: that, with respect to an appropriate

basis, Holµ1 = I ⊕ (−I) and Holµ2 = (−I) ⊕ I. To do

this, we begin in Lemma 4.3.3 by showing that the path of

minimal length joining the two singular circles in H(α, β)

has length at most π/2. This allows us in Lemma 4.3.4

to use the developing map to show that the fixed circles

of Holµ1 and Holµ2 do not intersect. This, combined

with the fact that Holµ1 and Holµ2 commute, implies

that Holµ1 and Holµ2 have the desired form given above.

This implication is demonstrated in Lemma 4.3.5, before being applied in Proposition 4.3.6

to deduce that H(α, β) is a PK-link.

Lemma 4.3.3. Any path of minimal length joining the two singular circles in H(α, β)

has length at most π/2.
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H(α, β)

L1 L2

π/2

p+1

p1
T

γ

y
p2

S2

Figure 4.6. Isometrically embedding the geodesic surface T bounded by the triangle △p1yp
+
1 into a unit

hemisphere, in order to deduce that [p+1 y] is shorter than [p1y]. The red arrow denotes the embedding.

Proof. Suppose for a contradiction that such a path γ has length greater than π/2. Let

p1 and p2 be the endpoints of γ lying on L1 and L2 respectively. Let y be a point on

γ such that the subsegment [p1y] has length in (π/2, π). Let p+1 be a point on L1 some

small distance δ away from p1. We show that there is a totally geodesic surface T whose

boundary is the triangle △p1yp
+
1 (see the left of Figure 4.6). Indeed, a portion of this

surface exists inside a geometric simplex containing [p1p
+
1 ] and small segments of [p1y] and

[p+1 y]. We can extend this portion all the way along [p1y] by repeatedly taking adjacent

geometric simplices that intersect both [p1y] and [p+1 y]. Making δ sufficiently small ensures

that [p1y] and [p+1 y] are close enough that we can cover them by such simplices.

Now, T embeds isometrically into the unit hemisphere, with [p1p
+
1 ] being sent to

the boundary of the hemisphere and [p1y] being sent to an arc that passes through the

midpoint of the hemisphere (see the right of Figure 4.6). At this point, we see that, because

[p1y] is longer than π/2, [p+1 y] is shorter than [p1y]. Therefore, the path [p+1 y] ∪ [yp2] is a

path joining L1 to L2 that is shorter than γ, contradicting the minimality of the length of

γ.

Recall from just before Definition 4.3.1 that γ is a path of minimal length joining the

singular circles L1 and L2 of H(α, β). We now use the fact, just demonstrated, that γ

has length at most π/2 to show that the fixed circles of Holµ1 and Holµ2 in S3 do not

intersect. We do this by mapping γ isometrically to a geodesic in S3 that joins these two

circles and then arguing by contradiction.

Lemma 4.3.4. Let α and β be positive real numbers that are not divisible by 2π and let

µ1 and µ2 be the meridians of the two singular circles in H(α, β). The fixed circles of

Holµ1 and Holµ2 in S3 do not intersect.

Proof. Let p1 and p2 be the endpoints of γ on L1 and L2 respectively. In what follows,

take the midpoint x of γ as the basepoint of π1(S
3 \H). Pick a branch Dev : H(α, β) → S3
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L1

p+1

p1

p−1

N

L2

p+2

p2

p−2

γ

(A) Constructing a region containing γ and segments of L1

and L2 on which the developing map restricts to an isometric

embedding.

C1

C2

Dev(γ)

(B) Shrinking Dev(γ) by moving it towards an intersection

point of C1 and C2.

Figure 4.7

of the developing map, starting by embedding simplices containing x. We construct a

region N in H(α, β) containing γ and two small segments of L1 and L2 on which Dev

restricts to an isometric embedding (see Figure 4.7 (A) for a visualisation). For some

small ε > 0, let p+1 and p−1 be points on L1 on either side of p1 at a distance ε from

p1. Define p±2 similarly and denote the small segments [p−1 p
+
1 ] and [p−2 p

+
2 ] by l1 and l2

respectively. For any q1 ∈ l1 and q2 ∈ l2, there is a geodesic close to γ joining q1 to q2—let

N be union of all such geodesics. This region is a geodesic simplex containing γ and the

small segments l1 and l2 of L1 and L2 respectively. By taking ε sufficiently small, we can

make the angles that N forms at L1 and L2 arbitrarily small, and we can ensure that the

longest geodesic in N is arbitrarily close to γ. Since, by Lemma 4.3.3, γ has length at

most π/2, this means that Dev embeds N into a convex subset of S3 (in fact, we only

need that γ has length less than π). Therefore, Dev |N is an isometric embedding.

Now, Dev sends geodesics to geodesics, and so Dev(l1) and Dev(l2) are segments of

great circles C1 and C2 in S3 that, by the definition of holonomy, are the fixed circles of

Holµ1 and Holµ2 respectively. Suppose that C1 and C2 intersect. Then C1 and C2 lie on

a common S2, and since Dev(γ) is shorter than π, it must also lie on this same S2. Since

Dev(γ) is orthogonal to both C1 and C2, we can decrease its length by slightly moving its

endpoints along C1 and C2 towards their intersection point (see Figure 4.7 (B)). Pulling

back along Dev, we can decrease the length of γ by moving its endpoints along L1 and

L2, contradicting that γ is a path of minimal length joining L1 and L2. Thus, C1 and C2

cannot intersect.

What we have just shown is equivalent to saying that the fixed planes of the rotations

Holµ1 and Holµ2 in R4 intersect only at the origin. The following abstract result concerns
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such rotations, with the added assumptions that they commute and have order 2. This is

exactly the situation that arises in H(α, β) when both α and β are odd multiples of π.

Lemma 4.3.5. Let R1 and R2 be simple rotations of order 2 in R4 whose fixed planes P1

and P2 intersect only at the origin and suppose that R1 and R2 commute. Then P1 and

P2 are orthogonal, so there is an orthonormal basis with respect to which R1 = I ⊕ (−I)

and R2 = (−I)⊕ I.

Proof. Let v1 and v2 be vectors in P1 and P2, respectively, that minimise the angle ∡(v1, v2)

and let V be the plane spanned by v1 and v2. Then V intersects P1 orthogonally along a

line and P2 similarly. Thus, R1 and R2 both preserve V . In fact, R1|V is a reflection in

the line Rv1, and R2|V is a reflection in the line Rv2. Since R1 and R2 commute, these

two lines are either equal or orthogonal. They cannot be equal, as P1 and P2 intersect

only at the origin. Therefore, Rv1 and Rv2 are orthogonal. The smallest angle between

vectors in P1 and P2 is thus π/2, so they are orthogonal. The final part follows simply by

rotating P1 to be {(x, y, z, w) ∈ R4 | x = y = 0}.

Finally, we combine Lemmas 4.3.4 and 4.3.5 to deduce that Holµ1 and Holµ2 have

the desired form, and therefore that H((2n− 1)π, (2m− 1)π) is a PK-link.

Proposition 4.3.6. For natural numbers n and m, H((2n− 1)π, (2m− 1)π) is a PK-link.

Proof. By Lemma 4.3.4, the fixed circles of Holµ1 and Holµ2 in S3 do not intersect, and

therefore their fixed planes in R4 intersect only at the origin. Since Holµ1 and Holµ2 have

order 2 and commute, we can apply Lemma 4.3.5 with R1 := Holµ1 and R2 := Holµ2 to

deduce that there is an orthonormal basis with respect to which Holµ1 = I ⊕ (−I) and

Holµ2 = (−I)⊕ I. Both of these commute with J2, and therefore H((2n−1)π, (2m−1)π)

is a PK-link.

Now that we have shown H(α, β) is a PK-link whenever α and β are not divisible by

2π, we can deduce Theorem 3.

Proof of Theorem 3. Assume throughout this proof that the conical angles α and β are not

divisible by 2π. Our aim is to show that H(α, β) is isometric to Σ(α, β). By Lemma 4.3.2

and Proposition 4.3.6, H(α, β) is a PK-link. Therefore, by the classification of PK-links

(Theorem 4.1.16), the only situation in which H(α, β) might not be isometric to Σ(α, β) is

when it admits a (p, q)-map f(p,q) : H(α, β) → S, where S is a sphere of curvature 4 with

conical points. We will show that, in this situation, the fibration, fibre lengths, and base

sphere of H(α, β) are the same as those of Σ(α, β), and therefore H(α, β) is isometric to

Σ(α, β), by the uniqueness of fibration data (i.e., the end of Theorem 4.1.16).

Indeed, suppose we have a (p, q)-fibration f(p,q) : H(α, β) → S. Without loss of

generality, assume that α ≤ β. Given that the singular locus of H(α, β) is the Hopf link,

by the proof of Lemma 4.1.10, we are in one of three cases. Either 1 = p = q, and S

has two conical points of angles α and β (see Theorem 4.1.16 (5)); or 1 = p < q, and
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L2 = Oq, so that S has two conical points, of angles α and β/q (see Theorem 4.1.16 (6));

or 1 < p < q, L1 = Op, and L2 = Oq, so that S has two conical points, of angles α/p

and β/q. In every case, S has precisely two conical points, with angles α/p and β/q, so

by [Tro89, Thm. I], we have α/p = β/q—denote this quantity by ω. Then since α and

β are not divisible by 2π, neither is ω, and so again by [Tro89, Thm. I], we have S is

isometric to S2
4(ω). This has area ω/2, and so by Theorem 4.1.16 (3), the ordinary fibres

of f(p,q) have length l = pqω = qα = pβ. This fibration data is precisely the same as that

of Σ(α, β) observed in Remark 4.1.17, and therefore H(α, β) is isometric to Σ(α, β).

Having now proven Theorem 3, we complete this section by demonstrating the necessity

of the requirement that the conical angles do not lie in 2πN. We do this by giving two

examples: one where H(2aπ, 2bπ) is not a PK-link and therefore not the link of a product

and one where H(2aπ, 2bπ) is a PK-link and yet still not the link of a product. In both

examples, a and b are integers greater than 1, and we assume that a ≤ b.

Example 4.3.7. Let C1 and C2 be two nonintersecting great circles in S3 that do not

lie at a constant distance from each other—this means that they cannot be fibres of a

common Hopf fibration of S3. Still, C1 and C2 form a Hopf link, and so N := S3 \ (C1∪C2)

is homeomorphic to T 2 × (−1, 1). The fundamental group of N has two canonical

generators, say λ and µ, corresponding to the meridians of C1 and C2 respectively. Let

f : M → N be the cover corresponding to the subgroup ⟨aλ, bµ⟩ of π1(N). Note that M

is still homeomorphic to N . The covering map naturally extends to a ramified covering

map f̄ : S3 → S3, which ramifies with orders a and b over C1 and C2 respectively. Let

H(2aπ, 2bπ) be S3 endowed with the pullback metric of f̄ . Then H(2aπ, 2bπ) is indeed

singular along the Hopf link, but there is no complex structure with respect to which

both singular circles have a holomorphic direction. This means that H(2aπ, 2bπ) is not a

PK-link and therefore not isometric to Σ(2aπ, 2bπ).

Example 4.3.8. Write a = np and b = nq, where 1 ≤ p ≤ q are coprime integers and n

is a positive integer. Let S be a 2-sphere of curvature 4 that is a ramified cover of degree

n over the 2-sphere of radius 1/2, with ramification at two nonantipodal points. Then S

is a sphere of curvature 4 with two conical points of angle 2nπ, but it is not S2
4(2nπ) (see

part 2 of Troyanov’s result at the start of this chapter). Let H(2aπ, 2bπ) be the PK-link

of type (p, q) with base sphere S, the two conical points being marked P and Q. This

space is not isometric to Σ(2aπ, 2bπ), because their fibrations have different base spheres.

It is unknown to the author whether there are cases when H(α, 2nπ) is not a PK-link,

where n is an integer greater than 1 and α is not divisible by 2π.
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4.4. Generic Seifert Link Singularities

The results of the previous section provide one step towards answering the question posed

at the beginning of this chapter, “Given a polyhedral 3-sphere singular along a Seifert link,

when can we show that it is a PK-link?” Theorem 3 answers, “For the Hopf link, when

the conical angles are not divisible by 2π.” In this final section of the thesis, we attempt

to answer it for more general Seifert links, by considering when we might be able to apply

Corollary 4.2.6 in a general setting. The primary end of this consideration is Theorem 4,

the fourth and final main result of this thesis. We also derive some geometric formulae for

3-dimensional PK-links, expressing volumes and singular edge lengths in terms of conical

angles and giving domains of existence for PK-links with prescribed conical angles. (The

derivations are very simple, thanks to the work of Panov in [Pan09] and Mondello and

Panov in [MP16].) Because of Theorem 4, these formulae apply to the vast majority of

polyhedral 3-spheres singular along Seifert links and therefore demonstrate the value of

showing that such spaces are PK-links.

Recall from Corollary 4.2.6 that if t is the ordinary fibre of a polyhedral 3-sphere

singular along a Seifert link, then the nontriviality of Hol t2 is a criterion ensuring that the

space is a PK-link. After some basic remarks about the Seifert links that concern us in

this final section, we begin by determining two purely metric properties that are sufficient

to ensure that Hol t2 is nontrivial in a polyhedral 3-sphere that we already assume is a

PK-link. One of them involves the length of a singular circle, and the other involves the

volume of the space. We then ask whether these metric properties are still sufficient to

ensure that Hol t2 is nontrivial in any polyhedral 3-sphere singular along a Seifert link. It

turns out that the length condition is still sufficient, as we demonstrate in Theorem 4,

while the sufficiency of the volume condition remains open.

Definition 4.4.1 (Generic Seifert link/PK-link). We say that a Seifert link is generic if

it is not the unknot or the Hopf link, and we call a PK-link generic if its singular locus is

a generic Seifert link.

As noted in Definition 4.1.11, a generic Seifert link has a unique type (p, q). Further-

more, it must have a component that is a (p, q)-torus knot—i.e., an ordinary fibre of the

(p, q)-fibration. We call such a component ordinary. This means that the type (p, q) of a

generic PK-link is determined purely by the topology of its singular locus, which must

have a (p, q)-torus knot as a component. Our first observation about the nontriviality

criterion in Corollary 4.2.6 relates to the length of this ordinary singular component.

Lemma 4.4.2. Let M be a generic 3-dimensional PK-link, let K be an ordinary component

of Ms, and let t ∈ π1(M \Ms) denote the ordinary fibre. If the length of K is not divisible

by π, then Hol t2 is nontrivial.

Proof. Let l denote the length of K. Since both K and t are ordinary fibres of the

(p, q)-fibration of M , t also has length l. The developing map on M takes geodesics to
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geodesics, so developing along t2 gives a curve of length 2l in S3 that travels along a great

circle. This curve cannot be closed, since 2l is not divisible by 2π. But if Hol t2 were

trivial, then this curve would be closed. Therefore, Hol t2 is nontrivial.

The second observation relates to the volume of a PK-link and, given Theorem 4.1.16 (3),

is essentially a restatement of the previous result.

Lemma 4.4.3. Let M be a generic 3-dimensional PK-link of type (p, q) and let t ∈ π1(M \Ms)

denote the ordinary fibre. If the volume of M cannot be written as π2k2/2pq for some

integer k, then Hol t2 is nontrivial.

Proof. Recall from Theorem 4.1.16 (3) that VolM = l2/2pq, where l is the length of

an ordinary fibre. This means that if VolM does not have the form π2k2/2pq for some

integer k, then l is not divisible by π. It thus follows from Lemma 4.4.2 that Hol t2 is

nontrivial.

It turns out that the proof of Lemma 4.4.2 generalises without too much difficulty to

any polyhedral 3-sphere singular along a generic Seifert link, provided that the conical

angles are not divisible by 2π. This means that, in some sense, the vast majority of

polyhedral 3-spheres singular along Seifert links are PK-links.

Theorem 4 (Seifert link singularities). Let M be a polyhedral 3-sphere with no conical

angles in 2π(N \ {1}) whose singular locus is a generic Seifert link. Let K be an ordinary

component of the singular locus of M . If the length of K is not divisible by π, then M is

a PK-link.

Proof. Let Nε(K) be the set of points in M at a distance less than ε from K. Choose ε

small enough so that Nε(K) does not intersect itself or any other component of Ms. By

definition, K is an ordinary fibre of the (topological) Seifert fibration of M . This means

we can pick another ordinary fibre t lying in Nε(K) \K and is homotopic to K inside

Nε(K). We will show that Hol t2 is nontrivial by demonstrating that developing along t2

gives a curve in S3 that is not closed.

Let l denote the length of K. Starting at a point on K and developing along it twice

gives a curve of length 2l in S3 that travels along a great circle C in S3. Since l is not

divisible by π, this curve is not closed—say it starts at some point x and ends at a different

point y. Now, developing along t2 gives another curve in the ε-tubular neighbourhood

of C. Choose the basepoint of t so that this second curve starts on the geodesic disc

normal to C at x. Then because t is homotopic to K inside Nε(K), the curve ends on the

geodesic disc normal to C at y. It is therefore not closed, and so Hol t2 is nontrivial. By

Corollary 4.2.6, this implies that M is a PK-link.

We now give a statement that generalises Lemma 4.4.3 to polyhedral 3-spheres singular

along generic Seifert links in the same way that Theorem 4 generalises Lemma 4.4.2.

Unfortunately, we do not yet know how to prove it, so we leave it as a conjecture. It
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may be that it is actually equivalent to Theorem 4, just as Lemma 4.4.3 is equivalent to

Lemma 4.4.2.

Conjecture 4.4.4. Let M be a polyhedral 3-sphere with no conical angle in 2π(N \ {1})
whose singular locus is a generic Seifert link of type (p, q). If the volume of M cannot be

written as π2k2/2pq for some integer k, then M is a PK-link of type (p, q).

Theorem 4 implies that almost all polyhedral 3-spheres singular along Seifert links are

PK-links. Therefore, any formulae—concerning lengths, volumes, angle constraints, and

domains of existence—that apply to PK-links also apply to such polyhedral 3-spheres in

the majority of cases. Motivated by special cases of such formulae, we now give two results

that apply to all generic PK-links and therefore to most polyhedral 3-spheres singular

along Seifert links. In the first, we use results of Panov in [Pan09] to express singular

circle lengths and volume in terms of conical angles.

Proposition 4.4.5. Let M be a generic 3-dimensional PK-link of type (p, q). Let

α1, . . . , αn be the conical angles of the ordinary components of Ms and let βp and βq

be the conical angles of the p and q-axes respectively (we allow one or both of βp and βq to

be 2π). Then the ordinary components of Ms all have the same length,

l =
pq

2

(
n∑

i=1

(αi − 2π) +
βp − 2π

p
+

βq − 2π

q

)
+ (p+ q)π,

while the p and q-axes have lengths l/p and l/q respectively. The volume of M is l2/2pq.

Proof. See [Pan09, Thm. 1.9]. The result follows from Theorem 4.1.16 (3) and an

application of the Gauss–Bonnet formula to the base sphere of the (p, q)-fibration of

M .

The second result combines results of Panov in [Pan09] with results of Mondello and

Panov in [MP16] to give linear constraints on the conical angles of a PK-link. It also

states that almost all tuples of angles satisfying these constraints exist as the conical

angles of a PK-link. In order to state it, we require some notation.

Notation (see [MP16, § 1.3]). Let ∥ · ∥1 denote the standard ℓ1-norm on Rn and d1 the

associated metric. We denote by Zn
o the set of points m = (m1, . . . ,mn) in Zn for which

∥m∥1 is odd.

Proposition 4.4.6. Let M be a generic 3-dimensional PK-link of type (p, q). Let

α1, . . . , αn be the conical angles of the ordinary components of Ms and let βp and βq

be the conical angles of the p and q-axes respectively (we allow one or both of βp and βq to

be 2π). Finally, let α := (α1, . . . , αn, βp/p, βq/q) and 2π := (2π, . . . , 2π) ∈ Rn+2. Then

the following inequalities hold:
n∑

i=1

(αi − 2π) + (βp/p− 2π) + (βq/q − 2π) > −4π,

d1
(
α− 2π, 2πZn+2

o

)
≥ 2π.
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Furthermore, for any tuple α1, . . . , αn, βp, βq of positive real numbers satisfying the above

inequalities strictly, there is a generic 3-dimensional PK-link of type (p, q) with these

conical angles.

Proof. By Theorem 4.1.16, M fibres over a 2-sphere of curvature 4 with conical angles

α1, . . . , αn, βp/p, βq/q. By scaling the metric on this sphere by a factor of 2, we get a

sphere of curvature 1 with the same conical angles. Applying [MP16, Thm. A] to this

sphere gives the required inequalities. For the existence part, [MP16, Thm. C] guarantees

the existence of a sphere of curvature 1 with conical angles α1, . . . , αn, βp/p, βq/q as long

as the inequalities are satisfied strictly. We then scale this sphere to have curvature 4 and

take the (p, q)-fibration over it, marking the conical points of angle βp/p and βq/q by P

and Q respectively. This gives the required PK-link.

To somewhat belabour the point, thanks to Theorem 4, the two propositions just given

apply to a polyhedral 3-sphere singular along a generic Seifert link, as long as the length

of one of its ordinary components is not divisible by π and none of its conical angles are

divisible by 2π. The author believes that these extra conditions can in fact be removed,

as we suggest in the following conjecture.

Conjecture 4.4.7. The statements of Propositions 4.4.5 and 4.4.6 still hold when the

phrase ‘generic 3-dimensional PK-link’ is replaced by ‘polyhedral 3-sphere singular along a

generic Seifert link’.

We finish the chapter by giving two remarks explaining how our work in this section

expands and clarifies existing literature about polyhedral 3-spheres singular along torus

links. To avoid the repetitious exclusion of potentially pathological cases, the remarks

assume the validity of Conjecture 4.4.7. They therefore, on the one hand, are certainly valid

in almost all cases and, on the other, function as a motivation to prove Conjecture 4.4.7.

Remark 4.4.8. As was mentioned at the beginning of this chapter, the length and volume

formulae given in Proposition 4.4.5 and the angle constraints and existence statement

given in Proposition 4.4.6 both generalise and unify existing results in the literature. In

what follows, we always assume that the exceptional fibres are nonsingular and that all

the αi lie in (0, 2π).

• Taking (p, q) = (2, 3) and n = 1, we recover Derevnin, Mednykh, and Mulazzani’s

results concerning a polyhedral 3-sphere singular along the trefoil knot, given in

[DMM14, Prop. 8 & Thm. 10].

• Taking (p, q) = (1, 1) and n = 3, we recover Kolpakov’s results for the Hopf 3-link

in [Kol13, Thm. 2].

• Taking (p, q) = (1, 1), n = 4, and α1 = . . . = α4, we recover Kolpakov’s results for

the Hopf 4-link in [Kol13, Thm. 3].
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• Taking (p, q) = (2, 2m + 1), for any positive integer m, and n = 1, we recover

Kolpakov and Mednykh’s results for the (2, 2m+ 1)-torus knot in [KM09, Thm. 1].

• Lastly, taking (p, q) = (1,m), for any positive integer m, and n = 2, we recover

Kolpakov and Mednykh’s results for the (2, 2m)-torus link in [KM09, Thm. 2].

The advantage of our PK-link approach is that it requires neither the explicit construction

of a fundamental polyhedron nor the use of techniques valid for only certain torus links.

Remark 4.4.9. It should be noted at this point that the length and volume formulae

given in Proposition 4.4.5 are equivalent to those for torus links given by Kolpakov in

[Kol16, Thm. 4]. Furthermore, the angle constraints in Proposition 4.4.6 are almost

identical to those he gives in [Kol16, Thm. 8], if one adds the assumption that the conical

angles lie in (0, 2π). However, it appears that Kolpakov makes three key assumptions that

we do not. Firstly, as already mentioned, he assumes that the conical angles lie in (0, 2π).

Secondly, he assumes that the base sphere of the (p, q)-fibration is the double of a convex

spherical polygon, which is not always the case. And thirdly, he seems to assume that

the topological Seifert fibration realising the torus link has geodesic fibres, and that the

holonomy preserves the Hopf fibration of S3. To make this last assumption is essentially

to assume that a polyhedral 3-sphere singular along a torus link is always a PK-link. The

validity of this jump is of course the central question of this chapter and cannot be taken

for granted.
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Appendix

INTEGRAL VERTICES

The aim of this appendix is to give examples of the steps in Procedure 3.2.7 and then to

list the links of every possible singular vertex in nonnegatively curved integral polyhedral

3-manifolds in Table A.1.

Example. Here we give step-by-step examples of Procedure 3.2.7 for finding ramified

covers. Theoretically speaking, nothing is added here, but the procedure is more clearly

illustrated.

1. Let us consider the case of n = 4—i.e., of spheres with 4 conical points. Steps 1 and 2

are straightforward. There are 32 (unordered) quadruples satisfying Formula (3.2.2).

2. Of the 32 quadruples from step 1, only one of them does not satisfy Formula (3.2.3):(
π
2
, 3π

2
, 3π

2
, 3π

2

)
.

3. One of the remaining quadruples is
(
4π
3
, 3π

2
, 3π

2
, 3π

2

)
. Using the Gauss–Bonnet formula,

we calculate that a sphere with these conical angles has area 11π/6 and so would

have to be a degree 11 ramified cover of S2/S4. The three conical points of angle

3π/2 must be multiplicity 3 preimages of the conical point of angle π/2. Since the

multiplicities must sum to 11, there must also be one multiplicity 2 preimage. But

this implies the existence a conical point of angle π: a contradiction. Thus, this

tuple cannot satisfy Formula (3.2.4).

4. One of the 15 remaining quadruples at this stage is
(
π, 3π

2
, 3π

2
, 3π

2

)
. We calculate

that the degree of the cover must be 9, and the only possible multiplicity datum

is: m1
1 = 1,m2

1 = . . . = m5
1 = 2; m1

2 = m2
2 = m3

2 = 3; m1
3 = m2

3 = m3
3 = 3. The

dessin d’enfant φ−1([y1y2]) would be a bipartite graph, with three faces of degree 6

(corresponding to preimages of y3), with four vertices marked y1 of degree 2 and one

of degree 1, and with three vertices marked y2 of degree 3. It can be shown that no

such graph exists in the 2-sphere (see Figure A.1).

5. At this stage, we have 12 different ramified covers, only two of which have the

same conical angles,
(
π, π, 4π

3
, 4π

3

)
. They are distinguished by whether or not the

points of angle π are preimages of y1 or y3. By expanding the two dessins to full
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triangulations, we can see that they are doubles of two noncongruent spherical

quadrilaterals and therefore cannot be isometric (see Figure A.2).

Figure A.1. White and grey vertices are marked y1 and y2 respectively. This figure demonstrates

the search for the dessin d’enfant corresponding to the tuple
(
π, 3π

2 , 3π
2 , 3π

2

)
. If the proposed graph

existed, deleting the sole vertex of degree 1 and then temporarily ignoring those of degree 2 would leave a

trivalent graph with two grey vertices. There are only two such graphs: the theta graph and the barbell

graph. There are four ways to add back in the degree 1 and 2 vertices that give distinct graphs in the

2-sphere—these are shown above. None of them has all three faces having degree 6.

Figure A.2. White, grey, and black vertices are marked

y1, y2, and y3 respectively. This figure demonstrates

the construction of the two nonisometric ramified cov-

ers of S2/S4 corresponding to the tuple
(
π, π, 4π

3 , 4π
3

)
.

The two constructions are shown in parallel on the left

and the right (corresponding to entries #23 and #24

in Table A.1 respectively). The first row gives the two

possible multiplicity data. The second row shows the

corresponding dessins d’enfants. The third row shows

the full triangulations of the 2-sphere given by pulling

back the triangulation of S2/S4 along the ramified cover-

ing maps. At this point, we notice that both are doubles

of spherical quadrilaterals, whose boundaries are marked

in grey. These two noncongruent spherical quadrilaterals

are shown more clearly in the final row.

We now give Table A.1, which lists the links of every possible singular vertex in a

nonnegatively curved integral polyhedral 3-manifold. Each row in the table corresponds

to the link of a unique vertex. The tuple ϑ is defined so that 2πϑ is the list of conical

angles of the link in increasing order. The third column says whether or not the link is the

double of a spherical polygon. The fourth column gives the local monodromy group. The

purpose of the final column is to give a complete geometric description of the link where

necessary. If ϑ = (α, β, γ), then this final column is left blank, as the link is completely

determined as the double of the unique spherical triangle with angles πα, πβ, and πγ.
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Otherwise, if the link is the double of a spherical quadrilateral, then that quadrilateral is

shown in the final column, built out of copies of the spherical triangle with angles π/4,

π/3, and π/2 (denoted by black, grey, and white vertices respectively). If the link is not a

double, then a full triangulation is given, with grey arrows denoting edge identifications.

The table is ordered increasingly, first by the number of conical points, then by the size of

first conical angle (then second, third, etc.). The only two links with the same conical

angles are links #23 and #24, which are ordered by the size of their monodromy groups.

Table A.1. Links of nonnegatively curved integral vertices

#: ϑ Double? Monodromy Description

1:
(
1
6
, 1
2
, 1
2

)
Yes D6

2:
(
1
4
, 1
4
, 2
3

)
Yes S4

3:
(
1
4
, 1
3
, 1
2

)
Yes S4

4:
(
1
4
, 1
3
, 3
4

)
Yes S4

5:
(
1
4
, 1
2
, 1
2

)
Yes D4

6:
(
1
4
, 1
2
, 2
3

)
Yes S4

7:
(
1
3
, 1
3
, 1
2

)
Yes A4

8:
(
1
3
, 1
3
, 2
3

)
Yes A4

9:
(
1
3
, 1
2
, 1
2

)
Yes D3

10:
(
1
3
, 1
2
, 2
3

)
Yes A4

11:
(
1
3
, 1
2
, 3
4

)
Yes S4

12:
(
1
2
, 1
2
, 1
2

)
Yes D2

13:
(
1
2
, 1
2
, 2
3

)
Yes D3

14:
(
1
2
, 1
2
, 3
4

)
Yes D4

15:
(
1
2
, 1
2
, 5
6

)
Yes D6

16:
(
1
2
, 2
3
, 2
3

)
Yes A4

17:
(
1
2
, 2
3
, 3
4

)
Yes S4

18:
(
2
3
, 2
3
, 2
3

)
Yes A4

19:
(
2
3
, 3
4
, 3
4

)
Yes S4

20:
(
1
3
, 1
2
, 2
3
, 3
4

)
Yes S4

21:
(
1
2
, 1
2
, 1
2
, 2
3

)
Yes S4
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Table A.1. (Continued)

#: ϑ Double? Monodromy Description

22:
(
1
2
, 1
2
, 1
2
, 3
4

)
No S4

23:
(
1
2
, 1
2
, 2
3
, 2
3

)
Yes A4

24:
(
1
2
, 1
2
, 2
3
, 2
3

)
Yes S4

25:
(
1
2
, 1
2
, 2
3
, 3
4

)
Yes S4

26:
(
1
2
, 1
2
, 3
4
, 3
4

)
Yes S4

27:
(
1
2
, 2
3
, 2
3
, 3
4

)
No S4

28:
(
1
2
, 2
3
, 3
4
, 3
4

)
Yes S4

29:
(
2
3
, 2
3
, 2
3
, 2
3

)
Yes A4

30:
(
2
3
, 2
3
, 3
4
, 3
4

)
Yes S4

31:
(
3
4
, 3
4
, 3
4
, 3
4

)
No S4

32:
(
2
3
, 2
3
, 2
3
, 3
4
, 3
4

)
No S4
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