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ABSTRACT  

High-speed photoacoustic (PA) endomicroscopy imaging is desired for real-time guidance of minimally invasive surgery. 
However, the imaging speed of wavefront shaping-based endomicroscopy has been limited by the speed of spatial light 
modulators. In this work, a deep convolutional neural network was used to improve the imaging speed of a newly 
developed PA endomicroscopy system by enhancing sparsely sampled PA images. With a carbon fibre phantom, this 
method increased the imaging speed by 16 times without significantly affecting the image quality. With further validation 
on more complex datasets, this approach is promising to achieve real-time PA endomicroscopy imaging via wavefront 
shaping. 
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1. INTRODUCTION  
Forward-viewing photoacoustic (PA) endoscopy attracted intensive interest due to its ability to provide 3D molecular and 
structural information of internal tissues with minimal tissue damage, which promises to be useful for guiding minimally 
invasive procedures such as tumour biopsy and fetal surgery1,2. Early studies involved a raster-scanned focused laser beam 
through a fibre bundle for exciting ultrasound from tissue in front its distal end3. Recently, the development of wavefront 
shaping technique enabled photoacoustic endomicroscopy imaging through multimode fibres (MMF) with higher lateral 
resolution and lower costs. However, the use of multimode fibres requires a spatial light modulator for modulating the 
incident optical wavefront, as such, the raster-scan-based imaging speed was limited by the rate of the modulator. The 
highest speed achieved in literature was ~3 frame per second (FPS) with the modulator operating at 22.7 kHz4. Each frame 
consisted of 7850 pixels, covering a 100 𝜇𝑚-in-diameter area. Higher imaging speed was desired for real-time imaging 
for clinical applications. 
 
In the recent years, deep learning (DL) has been studied for improving the imaging speed of PA microscopy by enhancing 
the quality of a sparse scanned image. It could be implemented with an unsupervised DL model on a single image5 or in a 
supervised way by training deep Convolutional Neural Networks (CNNs) on image pairs6,7. The former was proven 
efficient on reconstructing under sampled PA microscopy images of mouse vasculature acquired from a benchtop system. 
However, its performance was limited on PA endomicroscopy images that featured fewer scanning points and a smaller 
size for a faster imaging speed8. In this work, we developed a deep CNN model named PAE-EDSR (PA endomicroscopy 
enhanced-deep-super-resolution) via supervised learning for further enhancing the quality of the sparse PA 
endomicroscopy images dedicated to a high-speed MMF based PA endomicroscopy system. The proposed model was 
based on a state-of-art image super resolution model EDSR. A spatial attention (SA) residual block was employed within 
ResBlock modules for retaining high-frequency features9. The trained model demonstrated the superiority on sparse carbon 
fibre images, compared to the original EDSR and classical interpolation method bicubic, with the peak-to-noise-ratio 
(PSNR) of 28.68 dB using 6.25% effective pixels for recovery. 

 



 
 

 
 

 
 

2. MATERALS AND METHODS 
2.1 Photoacoustic endomicroscopy system 

The all-optical photoacoustic endomicroscopy probe was described in our previous study4. Briefly, it comprised two 
adjacent optical fibres that were placed in the cannula of a 20-guage needle. A high-speed wavefront shaping algorithm 
developed by the authors’ group, namely real-valued intensity transmission matrix10, was used to characterise a multimode 
fibre for raster-scanning a focused laser beam across the distal fibre tip. Whilst the ultrasound excited from imaging targets 
was detected by a fibre-optic ultrasound sensor based on a plane-concave microresonator at the tip of a single mode fibre11. 
The peak-to-peak intensity of the ultrasound signal at each scanning position was used to represent maximum intensity 
projections of photoacoustic microscopy images.  

 

2.2 Network architecture and implementation   

The proposed supervised model PAE-EDSR was tailored from the original EDSR12. As shown in Fig.1, the number of 
ResBlock units and size of convolutional filters at each layer were reduced to fit the dataset. SA was integrated into the 
residual block to module the residual features. This was achieved via spatial attention masks that generated by the 
operations of convolutions and activations. A total of 360 full-sampled PAE images (180 carbon fibres images of a size 
200 ×  200 and 180 mouse red blood cells images of a size 100 ×  100) was prepared for model training. Three 
representative subsampling ratios ([x, y]) namely [1/2, 1/2], [1/3, 1/3], [1/4, 1/4] were considered for generating the 
corresponding under-sampled PAE images. For each sampling rate, the dataset was split into training, validating, and test 
sets with a ratio of 0.8:0.1:0.1. The original EDSR was re-trained with the same dataset as baseline for comparison. The 
models were trained for 300 epochs using a Mean Square Error (MSE) loss and the Stochastic Gradient Descent (SGD) 
optimizer with an initial learning rate of 0.0005 and a batch size of 16. PyTorch 1.13.1 was used for model implementation 
and trainings were performed on a NVIDIA DGX-1 system. 

 

 
 

Figure 1. The proposed PAE-EDSR model for improving the imaging speed of a photoacoustic endomicroscopy system. The 
input is an undersampled Photoacoustic endomicroscopy (PAE) image, and the output is an enhanced PAE image. Here, as an 
example, the undersampled PAE image has a size of 50 × 50 with a subsampling ratio of [1/2, 1/2] in x and y axes, 
respectively. Spatial attentional (SA) residual block is used in the ResBlock module for retraining high-frequency features.  

 

The fully sampled PAE images were acquired by imaging carbon fibre phantoms and smear mouse red blood cells. The 
corresponding under sampled PAE images were generated by pixel-wisely multiplying binary under sampling masks with 
the fully sampled images. Noted that good consistency was observed between the generated under sampled images and 
images by sparse scanning. For quantitative evaluation, structural similarity index measure (SSIM) and PSNR were 
measured between the enhanced under sampled PAE images by classical interpolation method bicubic, the baseline model, 
PAE-EDSR and the corresponding fully sampled images, respectively. 



 
 

 
 

 
 

 

3. RESULTS 
Figs. 2 and 3 show representative results of recovering under-sampled PAE images of carbon fibres and mouse red blood 
cells using bicubic interpolation, the baseline model, and PAE-EDSR. Compared to bicubic interpolation and the original 
EDSR, the proposed model achieved the best or comparable performance for three sampling rates. For the largest sampling 
rate, as shown in the zoom-in images, the under-sampled images of carbon fibres contained the distorted line structures 
such as ragged edges. Bicubic interpolation restored smooth edges but introduced severe blurring that degraded the image 
quality. In comparison, DL-based methods can generate realistic boundaries with less blurring that close to the fully 
sampling results, which are also indicated by the improved SSIM and PSNR values (0.86 and 28.68, respectively).  

 
 

Figure 2. Representative results of PAE-EDSR enhancement of carbon fibre photoacoustic endomicroscopy images. Classical 
interpolation method Bicubic is used for comparison. SSIM and PSNR are used for metrics evaluation. Scale bar: 10 µm.   

The proposed method also demonstrated reasonable enhancement on under-sampled PAE images of mouse red blood cells. 
The fully sampled images were centre cropped to remove the streak artefacts at the edges. Therefore, only a 2× sampling 
rate was applied. Visually speaking, the DL-based method can resolve the biconcave structure of the red blood cells with 
natural boundaries, as displayed in the zoom-in images and individual cells (denoted by green and white boxes). However, 
when compared with bicubic interpolation, less improvements or even slightly degradation was observed from the 
evaluation results using SSIM and PSNR. The best recovery was achieved by the baseline model with the SSIM and PSNR 
of 0.59 and 13.33 dB, respectively. It is worth noting that the signal-to-noise ratio of the fully sampled image is still sub-
optimal after denoising. High-frequency components, e.g., random noise in the background was barely recovered by both 
bicubic interpolation and DL-based methods, which could account for the suboptimal reconstruction accuracy.  



 
 

 
 

 
 

 
Figure 3. Representative results of PAE-EDSR enhancement of mouse red blood cells photoacoustic endomicroscopy images. 
Classical interpolation method Bicubic is used for comparison. SSIM and PSNR are used for metrics evaluation. Scale bar: 
10 µm.   

 

4. DISCUSSION 
 

A deep convolutional neural network named PAE-EDSR was proposed for enhancing sparse PA endomicroscopy images 
acquired with a newly developed PA endomicroscopy system. The proposed supervised model can recover the line 
structure of carbon fibre phantoms, and biconcave structure of mouse red blood cells at high fidelity using only 6.25% 
effective pixels, lead to 16 times increase in the imaging speed.  

PAE-EDSR was trained on the exclusive PA endomicroscopy data of carbon fibres and mouse blood cells, respectively. 
Validation results on the carbon fibre patterns indicated that DL based models can better recover low-frequency features 
with less blurring and discontinuity compared to classical interpolation method like bicubic. Furthermore, with the spatial 
attention module, PAE-EDSR was capable of retraining most of high-frequency features associated with the tissue 
vibrations from the highly sparse data, which was proven challenging for unsupervised DL models8. In terms of time 
efficiency, PAE-EDSR took around 0.8s to reconstruct a 200×200 image when tested on a Tesla t10 with a RAM of 32GB, 
which was promising for real-time applications. However, PAE-EDSR demonstrated a suboptimal performance on 
recovering the sparse mouse red blood cells images. This could be explained by the degraded quality of fully sampled 
images after denoising. In the future, different denoisers can be implemented followed by regular data augmentation 
methods to further increase the data diversity. Real under-sampled PA endomicroscopy images acquired with different 
scanning steps will also be incorporated in the training set for improving the robustness of the DL based methods.   

 

5. CONCLUSION 
 
In this work, a DL based supervised model PAE-EDSR was introduced to enhance under-sampled PA endomicroscopy 
images for further improving the imaging speed. Spatial attention module was incorporated in the residual block with the 
help of capturing informative features. PAE-EDSR demonstrated the superiority to classical interpolation method bicubic 
with better visual quality and a higher reconstruction accuracy. Experimental results indicated that PAE-EDSR can 
reconstruct the sparse PA endomicroscopy images of carbon fibres and mouse red blood cells with as few as 6.25% 
effective pixels. Therefore, fewer scanning points are required for acquiring high fidelity images, resulting in the 
improvement on the frame rate from 1 FPS to around 25 FPS, which could be helpful for the clinical operations of the PA 
endomicroscopy system. 
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