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Abstract 10 

Background. Radiofrequency catheter ablation (RFCA) therapy is the first-line treatment for atrial 11 

fibrillation (AF), the most common type of cardiac arrhythmia globally. However, the procedure 12 

currently has low success rates in dealing with persistent AF, with a reoccurrence rate of ~50% post-13 

ablation. Therefore, deep learning (DL) has increasingly been applied to improve RFCA treatment for 14 

AF. However, for a clinician to trust the prediction of a DL model, its decision process needs to be 15 

interpretable and have biomedical relevance. Aim. This study explores interpretability in DL prediction 16 

of successful RFCA therapy for AF and evaluates if pro-arrhythmogenic regions in the left atrium (LA) 17 

were used in its decision process. Methods. AF and its termination by RFCA have been simulated in 18 

MRI-derived 2D LA tissue models with segmented fibrotic regions (n = 187). Three ablation strategies 19 

were applied for each LA model: pulmonary vein isolation (PVI), fibrosis-based ablation (FIBRO) and 20 

a rotor-based ablation (ROTOR). The DL model was trained to predict the success of each RFCA 21 

strategy for each LA model. Three feature attribution (FA) map methods were then used to investigate 22 

interpretability of the DL model: GradCAM, Occlusions and LIME. Results. The developed DL model 23 

had an AUC (area under the receiver operating characteristic curve) of 0.78 ± 0.04 for predicting the 24 

success of the PVI strategy, 0.92 ± 0.02 for FIBRO and 0.77 ± 0.02 for ROTOR. GradCAM had the 25 

highest percentage of informative regions in the FA maps (62% for FIBRO and 71% for ROTOR) that 26 

coincided with the successful RFCA lesions known from the 2D LA simulations, but unseen by the 27 

DL model. Moreover, GradCAM had the smallest coincidence of informative regions of the FA maps 28 

with non-arrhythmogenic regions (25% for FIBRO and 27% for ROTOR). Conclusions. The most 29 

informative regions of the FA maps coincided with pro-arrhythmogenic regions, suggesting that the 30 

DL model leveraged structural features of MRI images to identify such regions and make its prediction. 31 

In the future, this technique could provide a clinician with a trustworthy decision support tool. 32 

 33 

1 Introduction 34 

Atrial fibrillation (AF), the rapid, uncoordinated contraction of the atria, is a heart condition that affects 35 

33 million people worldwide - making it the most common type of cardiac arrhythmia globally (Hart 36 
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and Halperin, 2001; Chugh et al., 2014). Currently, the precise mechanisms of AF are unclear. 37 

However, there is evidence that ectopic electrical beats originating from the pulmonary veins (PVs) 38 

can trigger AF (Chen et al., 1999). The triggers can then generate re-entrant drivers (rotors) that sustain 39 

AF, and spatial fibrosis distributions in the left atria (LA) have been demonstrated to facilitate such 40 

drivers (Morgan et al., 2016; Roy et al., 2020). A common treatment for AF is radiofrequency catheter 41 

ablation (RFCA) therapy. RFCA involves using induced heat from a rapidly alternating current in a 42 

catheter to ablate (isolate or destroy) the arrhythmogenic area of atrial tissue that harbours triggers or 43 

rotors, thus restoring sinus rhythm and the mechanical function of the heart (Townsend and Sabiston, 44 

2001). Presently, the success rate of RFCA is ~70% for paroxysmal AF - which is relatively high 45 

(Oketani et al., 2012). However, the procedure is much less successful when dealing with persistent 46 

AF, which has a reoccurrence rate of ~75% post-intervention. Therefore, with the high reoccurrence 47 

rate of AF, there is a need for improvements within (Wang et al., 2017; Yubing et al., 2018).  48 

Image-based computational modelling has been used to understand the structure-function relationship 49 

that determines re-entrant atrial drivers for AF with the aim of improving RFCA outcomes. As a result, 50 

computational methods have been introduced to improve RFCA outcomes, ultimately leading to the 51 

FIRM (Focal Impulse and Rotor Modulation) mapping, which locates rotational activity around a 52 

centre (rotor) from electroanatomical maps (Narayan et al., 2012a). The CONFIRM trial showed 53 

patients that underwent FIRM-guided ablation maintained a higher freedom of AF (AF termination in 54 

86% of patients) when compared to patients with conventional ablation strategy (AF termination in 55 

20% of patients) (Narayan et al., 2012b). However, the multicentre REAFFIRM trial did not show 56 

evidence that FIRM-guided ablation strategy is superior to pulmonary vein isolation (PVI) (Zhao et 57 

al., 2019).  58 

With the recent rise of artificial intelligence (AI), machine and deep learning (DL) have been applied 59 

to patient medical imaging data and computational cardiac modelling with the aim to develop more 60 

effective RFCA treatments. The applications of AI include predicting AF reoccurrence post-RFCA and 61 

the origins of AF triggers and ablation (Kim et al., 2020; Liu et al., 2020; Firouznia et al., 2021; Roney 62 

et al., 2022). Furthermore, Luongo et al. have applied machine learning to predict AF ablation targets, 63 

but used 12-lead ECG data instead of medical imaging (Luongo et al., 2021). Other studies have also 64 

leveraged the power of AI in AF by using DL with ECG data to estimate atrial fibrosis and to classify 65 

AF from atrial flutter or tachycardia (Nagel et al., 2021; Rodrigo et al., 2022). Zololotarev et al. applied 66 

AI to identify AF drivers from multi-electrode mapping, with the AI model then validated using optical 67 

mapping; the results were comparable to the state-of-the-art with higher computational efficiency 68 

(Zolotarev et al., 2020). Popescu et al. applied DL for arrhythmic sudden death prediction from clinical 69 

and imaging data, which proved successful and achieved a concordance index of 0.83 and 0.74, and 70 

10-year integrated Brier score of 0.12 and 0.14, respectively (Popescu et al., 2022). 71 

However, DL is limited by its black-box nature. This is an issue when considering the European 72 

Union’s General Data Protection Regulation (GDPR), as any algorithmic decision used in patient care 73 

requires an explanation for transparency (Mourby et al., 2021). Moreover, clinicians have also argued 74 

that if AI can outperform human diagnosis, understanding the AI model’s decision process will be 75 

beneficial in discovering new biological processes and furthering medical knowledge (Watson et al., 76 

2019). Moreover, it will increase confidence in the AI-generated results, which means the clinicians 77 

are more likely to trust and leverage them. Hence, this has led to the growing field of deep learning 78 

interpretability for medical imaging analysis, where methods such as concept learning models, latent 79 

space interpretation and attribution maps have been applied to many medical fields (Salahuddin et al., 80 

2022). Organisations have also expressed an interest in AI interpretability, e.g., the Avicenna Alliance 81 

(AA) and the Virtual Physiological Human Institute (VPHI). The AA and VPHI aims are to promote 82 
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the synergy of AI and in-silico modelling into healthcare, while providing policy makers and regulators 83 

with directions towards applying these technologies safely in clinics, including AI interpretability 84 

(Liesbet Geris et al., n.d.).  85 

Muffoletto et al. were the first to apply DL to directly informing a clinician to treat AF using RFCA 86 

therapy and developed a convolutional neural network (CNN) to predict suitable in-silico ablation 87 

strategies for a given patient, using synthetic tissue-based atrial models with randomly distributed 88 

fibrotic patches. The approach proved effective (79% accuracy) and illustrated the proof-of-concept 89 

(Muffoletto et al., 2019). Ultimately, this led to the approach being applied to MRI-derived data to 90 

predict the patient-specific optimal RFCA strategy. As a result, the developed CNN had a 100% 91 

accuracy for classifying optimal fibrosis- (FIBRO) and rotor-based (ROTOR) strategies success and 92 

33% accuracy for the PVI strategy (Muffoletto et al., 2021). 93 

Currently, research into interpretability for DL-based AF management is very limited. For example, 94 

one study by Alhusseini et al. used gradient-weighted class activation mapping (GradCAM) to show 95 

that their feature attribution (FA) map closely replicated rules used by clinicians. However, only one 96 

method was validated within this study, and a comparison with other methods was not investigated. 97 

Furthermore, the study used spatial maps of the activation phase derived from electrocardiogram data 98 

from a basket catheter. Hence, there has been no investigation into DL interpretability for models which 99 

use medical imaging data to make explainable predictions for cardiac arrhythmias and anti-arrhythmic 100 

treatments (Alhusseini et al., 2020). 101 

In this study, we present a novel qualitative and quantitative comparison of established DL 102 

interpretability methods for medical imaging and image-based cardiac modelling of RFCA, as well as 103 

new quantitative metrics to assess interpretability of FA maps for the image-based cardiac models. 104 

 105 

2 Methods 106 

2.1 Overview 107 

We propose a DL approach to 1) accurately predict the outcomes of RFCA therapy based on image-108 

based modelling and simulations and 2) interpret the decision process of the DL model. To achieve 109 

this, standardised 2D LA models with patient-specific distributions of fibrosis were derived from late 110 

gadolinium-enhanced (LGE) MR imaging data. Simulations of AF and its termination with three RFCA 111 

strategies were performed, the DL model was applied to predict the success of each strategy, and the 112 

RFCA simulation results were compared with DL interpretability maps to identify proarrhythmogenic 113 

locations. Three established interpretability approaches were also compared qualitatively and 114 

quantitatively to interpret the DL model’s predictions.  115 

2.2 Data Acquisition and Pre-processing 116 

The datasets used in this study were derived from 122 LGE MRI patient scans: 86 datasets with spatial 117 

resolution of 0.625x0.625x0.625 𝑚𝑚3 were acquired from the Atrial Segmentation Challenge at the 118 

STACOM 2018 workshop (Xiong et al., 2021); additionally, 36 LGE MRI images were collected at 119 

St. Thomas’ Hospital London with resolution of 1.3x1.3x4  𝑚𝑚3 (specifically, 18 AF patients were 120 

scanned both pre-and post-intervention) (Chubb et al., 2018).  121 
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Generating 2D LA models with fibrosis first required manual segmentation of patient LGE MRI data 122 

to produce 3D patient-specific endocardial LA surface meshes. The LGE MRI image intensities were 123 

then mapped to these models and the image intensity ratio thresholding technique was applied to 124 

quantify and visualise LA fibrosis (Roy et al., 2020). Finally, the 3D LA fibrosis maps were unwrapped 125 

using the LA standardised unfold mapping technique to produce models in the 2D LA disk format for 126 

use as input to the DL network, as shown in Figure 1A (Williams et al., 2017; Qureshi et al., 2020).  127 

Furthermore, to increase the size of the dataset, synthetic 2D LA disks were generated by weighted-128 

averaging of the patient datasets to vary the fibrosis distribution and PVs. The creation of synthetic 129 

disks consisted of three steps. First, 65 MRI images were extracted from the STACOM 2018 dataset 130 

and were each weighted by assigning a random weight (between 0 to 1) to all voxels of a given image; 131 

the weighted-average of all images was thresholded (Case xA in Figure 1B). This number was chosen 132 

as less than 65 would result in low variability in the synthetic tissues and more than 65 would result in 133 

most of the synthetic tissues being covered in fibrosis. Supplementary Figure S1 illustrates that 134 

selecting the 65 LA tissues in generating the synthetic LA tissues would result in a mean fibrotic tissue 135 

percentage of approximately 50%. Thus, 65 corresponds to a folding point of this sigmoidal 136 

dependence, and any number above 65 would lead to a majority of tissue being fibrotic. Then the 137 

extracted fibrosis distribution was further augmented by applying one or multiple affine 138 

transformations (translation, rotation and flipping). The fibrosis threshold value and the types of 139 

transformation were randomly selected. Lastly, the PVs were varied by assigning one of 6 different 140 

variants, which included changing PV size and position (Case xB in Figure 1B) (Muffoletto et al., 141 

2021). This resulted in a total of 199 synthetic 2D LA tissue models in addition to the 122 patient-142 

specific models, totalling 321 2D LA tissue models. 143 

2.3 Atrial Tissue Modelling and AF simulation 144 

Equation (1) represents the Fenton-Karma semi-physiological model, which consists of three ionic 145 

currents representing the overall ion current in the electrical dynamics of atria cells;  𝑰𝒇𝒊  represents the 146 

fast inward current 𝑵𝒂+, 𝑰𝒔𝒐 is the slow outward current 𝑲+and 𝑰𝒔𝒊 is the slow inward current 𝑪𝒂+ 147 

(Fenton and Karma, 1998): 148 

𝑰𝒊𝒐𝒏 =  𝑰𝒇𝒊 + 𝑰𝒔𝒐 +  𝑰𝒔𝒊 149 

Equation (2) is the standard monodomain equation to describe electrical wave propagation. 150 

𝝏𝑽𝒎

𝝏𝒕
= 𝛁. 𝑫𝛁𝑽𝒎 −  

𝑰𝒊𝒐𝒏

𝑪𝒎
 151 

 𝑽𝒎 is the membrane potential, 𝑪𝒎 is the membrane capacitance, 𝑫 is a tensor that represents the 152 

diffusion of the electrical coupling within tissue. Equation (2) with ion current determined in equation 153 

(1) was solved using the forward Euler method with a finite-difference approximation of the Laplacian. 154 

Therefore, equation (1) and equation (2) were solved using each 2D tissue disk as a spatial domain to 155 

simulate electrical waves sustaining AF. Such waves in the form of rotors were generated using the 156 

standard cross-field protocol at 28 ms into the simulation (Tobón et al., 2014). The numerical 157 

integration steps were 0.01 ms time step and 0.3 mm spatial step. Additionally, healthy tissue had a 𝑫 158 

value of 0.1 𝑚𝑚2𝑠−1 to match the physiological value of healthy myocardium tissue. Fibrotic tissue 159 

had 𝑫 value of 0.015 𝑚𝑚2𝑠−1.  160 

(1) 

(2) 



   Deep Learning Interpretability for Ablation 

 
5 

The three ablation strategies were simulated to terminate persistent AF: PVI, FIBRO and ROTOR 161 

strategies; details of the simulations have been published previously (Muffoletto et al., 2021). The 162 

FIBRO strategy involved ablating the perimeter of the fibrotic tissue, while PVI consisted of ablating 163 

the circumference of the PVs and ROTOR ablated the phase singularities of the electrical wave. The 164 

ablation strategy was deemed successful for a tissue if AF was terminated within 2000 ms and less than 165 

40% of the tissue was ablated (Muffoletto et al., 2021). Therefore, using the stated simulation pipeline, 166 

the success of the three RFCA strategies was determined for AF simulations in the 2D LA tissues 167 

(including patient MRI derived and synthetic data). Furthermore, since multiple strategies can be 168 

successful/unsuccessful for a given 2D LA tissue, the classification task was multi-label. 169 

2.4 Deep Learning 170 

We employed the CNN with hyperparameters (parameters and number of convolutional and fully 171 

connected layers) based on the study by Muffoletto et al. as the basis of our interpretability framework 172 

(Muffoletto et al., 2021). The hyperparameters were tuned by Muffoletto et al. by performing 24 173 

experiments which involved changing number of layers, filter size of convolutional layers and dropout 174 

rate. The optimal hyperparameters were chosen by selecting the DL model with the highest average 175 

accuracy across a 5-fold cross-validation. The CNN consisted of four convolutional layers of 32x32 176 

filters, each followed by Rectified Linear Unit (ReLU) activation and max pooling with a pool size of 177 

two. These are followed by three linear layers (2048, 128 and 3 units, respectively) and another ReLU 178 

activation. A Dropout layer followed this at a rate of 0.8 and a sigmoid function (Paszke et al., 2019). 179 

Since we address a multi-label classification problem (i.e., multiple ablation strategies), we modified 180 

the loss function to be a mean-squared error tailored to perform multi-label classification for the three 181 

ablation strategies (Figure 1).  182 

𝑴𝑺𝑬(𝒚𝒔𝒄𝒐𝒓𝒆, 𝒚) =  ∑
𝒚𝒔𝒄𝒐𝒓𝒆

𝒊 −  𝒚𝒊

𝑵

𝑵

𝒊=𝟎

 183 

Equation (3) is the mean-squared error function formulation, where 𝒚𝒔𝒄𝒐𝒓𝒆 is the predicted class score 184 

array and 𝒚 is the RFCA strategy success ground truth (where 1 = success and 0 = unsuccessful). Here, 185 

𝑵 represents the number of classes/strategies (three in this study) and 𝒊 is the index of a class in the 186 

class score array. To train and effectively test the CNN, a leave-one-out cross-validation was used 187 

where the total dataset was split into two sets: a hold-out test set and training set. The training set was 188 

then split into five folds, where four folds were used to train the CNN, and the last fold was used as a 189 

validation set to select the optimal CNN model state (i.e. the model with the lowest loss during training)  190 

(Raschka, 2018; Muffoletto et al., 2021). In total, there were 271 2D LA tissues in the leave-one-out 191 

cross-validation dataset (96 MRI derived and 175 synthetic). Within each fold the DL model was 192 

trained for 100 epochs using an ADAM optimiser with a learning rate of 1e-4 (Kingma and Ba, 2014). 193 

For each fold, the optimal model was tested on the hold-out test set of 50 2D LA tissues (26 MRI 194 

derived and 24 synthetic) from the total dataset to evaluate the DL model's performance. Pre- and post- 195 

ablation images were not split during cross-validation, as there was little similarity between the 196 

respective fibrosis distributions (see Supplementary Materials Section 2 and Supplementary Figure 197 

S2). 198 

2.5 Interpretability 199 

Three popular local post-hoc interpretability methods were used to interpret the CNN’s predictions - 200 

GradCAM, occlusions and local interpretable model-agnostic explanations (LIME) (Zeiler and Fergus, 201 

2014; Ribeiro et al., 2016; Selvaraju et al., 2017; Kokhlikyan et al., 2020). GradCAM and LIME were 202 

(3) 
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chosen as they are widely used saliency maps in DL medical image analysis (Magesh et al., 2020; 203 

Graziani et al., 2021; Patel et al., 2021; Mahapatra et al., 2022), while occlusions is one of the first 204 

saliency map methods used for DL computer vision. Each method evaluates feature attribution using 205 

different approaches: GradCAM uses gradient information, LIME uses an interpretable model within 206 

a local space and the occlusions method uses perturbations. 207 

The DL model state from the most accurate fold of the leave-one-out cross-validation was used to 208 

produce the FA maps for the three methods on the hold-out test set. The GradCAM method was applied 209 

to the last convolutional layer of the CNN. Each FA map was thresholded above the respective map's 210 

average FA to highlight the most informative features. Three metrics were evaluated to quantitatively 211 

analyse the informative regions of each FA map: Jacquard index (IoU), lesion percentage and non-212 

arrhythmogenic tissue (NAT) percentage. The IoU was evaluated by calculating IoU of the informative 213 

regions of a FA map and lesions of a given ablation strategy. Lesion percentage was evaluated by 214 

calculating the percentage of lesions of a given ablation strategy within the informative regions.  215 

The motivation for analysing the lesion percentage was to determine if the DL model focused on 216 

clinically relevant features. The number of the lesions (unseen by the DL model but known from 217 

simulations – and known to clinicians when ablating a patient) found in a FA map’s informative region 218 

is a relevant metric, as such lesions are associated with arrhythmogenic regions in atrial tissue. Thus, 219 

PVI lesions isolate the area of the initial arrhythmogenic triggers, FIBRO lesions aim to isolate the 220 

fibrotic tissue border where AF reentrant drivers commonly reside, and ROTOR lesions directly target 221 

such reentrant drivers. Therefore, the ability of DL model to predict lesion locations (again, without 222 

seeing such lesions during training) should help the clinician to understand and trust these predictions.  223 

Lastly, the NAT percentage was calculated by finding the percentage of healthy tissue (with no lesions 224 

or fibrosis) within the informative regions of a FA map. NAT percentage was evaluated to assess how 225 

much of the clinically irrelevant features were highlighted as informative by the DL model. 226 

  227 

2.5.1 GradCAM 228 

GradCAM uses the gradient from a given convolutional layer to measure FA for a particular decision 229 

of interest. GradCAM is an improvement of the class activation map (CAM) method. CAM produces 230 

a localisation map for an image classification model, utilising a specific architecture where globally 231 

averaged pooled convolutional feature maps are fed directly into a softmax layer. GradCAM improves 232 

on CAM by being architecture-independent, and it can be applied to any CNN. Furthermore, a study 233 

by Adebayo et al. implemented a sanity check of GradCAM through a model parameter and data 234 

randomisation test. It demonstrated that GradCAM’s saliency maps could support tasks that require 235 

explanations that are faithful to the model and the data generation process (Adebayo et al., 2018). 236 

𝜶 
𝒄 =  

𝟏

𝒛
∑ ∑

𝝏𝒚𝒄

𝝏𝑨𝒊𝒋
 

 

𝒋

 

𝒊

 237 

Feature attribution, 𝜶𝒊𝒋
𝒄  (i and j are the indices of the feature in a FA map), of a given class c is calculated 238 

in GradCAM by evaluating the partial derivative of the score of class c and a feature from activation 239 

map of a given convolutional layer 𝑨𝒊𝒋
 . The result of evaluating the partial differential for each feature 240 

is then pooled globally by dividing each element of the FA map by the total number of features to find 241 

the final FA map (Selvaraju et al., 2017).  242 

(4) 
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2.5.2 LIME 243 

The core idea of LIME is to explain predictions of any classifier faithfully by learning an interpretable 244 

model locally around the prediction. LIME achieves this by generating simulated data points around 245 

an instance through random perturbation and weighting them as a function of proximity to the original 246 

data points, fitting a sparse linear model to the predicted responses from the perturbed points and using 247 

the sparse linear model as an explanation model (i.e., weights of features in linear model). 248 

𝝃(𝒙) =  𝐚𝐫𝐠𝐦𝐢𝐧
𝒈∈𝑮

𝓛(𝒇, 𝒈, 𝝅𝒙) +  𝛀(𝒈) 249 

 𝓛(𝒇, 𝒈, 𝝅𝒙) =  ∑ 𝝅𝒙(𝒛)(𝒇(𝒛) − 𝒈(𝒛′))𝟐
𝒛,𝒛′ ∈ 𝒁  250 

FA 𝝃(𝒙) of given features 𝒙 is calculated in LIME by minimising the loss function 𝓛 and complexity, 251 

𝛀(𝒈), of the function 𝒈 (a model from a class of possibly interpretable models). In essence 𝓛 is a 252 

function that measures how unfaithful the function 𝒈 is at approximating 𝒇 (the model being explained) 253 

in the local space defined by 𝝅𝒙. Equation (6) shows how the loss function uses the L2 distance to 254 

measure how unfaithful function 𝒈 is at approximating 𝒇, where 𝒛 is sample from 𝒙, 𝒛 is the set 255 

perturbed samples of 𝒙 with associated labels and 𝒛′ is perturbed sample from set 𝒛 (Kokhlikyan et al., 256 

2020). 257 

2.5.3 Occlusions 258 

Occlusions is a perturbation-based approach to calculate FA, which involves perturbing the feature 259 

space with a rectangular region and evaluating the difference of class score from a given class 260 

prediction by the perturbation. FA is then assigned by looking at the feature in the multiple rectangular 261 

regions it is in and averaging the multiple class score differences (Ancona et al., 2017). The occlusion 262 

FA method was based on an occlusion sensitivity analysis used to validate a DL interpretability method 263 

by Zeiler et al. (Zeiler and Fergus, 2014). 264 

 265 

3 Results 266 

3.1.1 Dataset Analysis 267 

In the dataset comprising of 122 LA tissues derived from MRI data, the PVI strategy led to successful 268 

AF termination in only 11.6% of cases, while 88.4% resulted in failed terminations. Meanwhile, the 269 

FIBRO and ROTOR strategies resulted in 42.6% and 74.4% successful terminations, respectively. 270 

Notably, FIBRO demonstrated the most balanced AF termination outcomes, whereas ROTOR and PVI 271 

exhibited a similar level of misbalance in the outcomes. In the larger dataset consisting of 321 LA 272 

tissues, including both MRI-derived and synthetic data, the PVI strategy achieved successful AF 273 

termination in 27.1% of cases, demonstration a positive impact of augmentation. The FIBRO and 274 

ROTOR strategies also resulted in 58.3% and 75.7% successful terminations, respectively.  275 

3.1.2 Convolutional Neural Network Performance 276 

The success of the FIBRO ablation strategy was predicted most accurately by the CNN, as shown in 277 

Table 4, where the FIBRO class has the highest AUC score and the most balanced recall and precision 278 

scores. Furthermore, the FIBRO strategy also had the highest AUC score when predicting ablation 279 

success exclusively on the real data (Table 2). PVI had the second-highest AUC score on mixed real 280 

and synthetic data, as well as exclusively on real data. Meanwhile, ROTOR had a comparable AUC 281 

(5) 

(6) 



   Deep Learning Interpretability for Ablation 

 
8 

score to PVI on the real and synthetic data but performed worse exclusively on the MRI-derived data 282 

(Table 2).  283 

However, the CNN struggled to predict successful AF termination cases by PVI, which is reflected in 284 

the low recall and F1 score in Table 1. Even though there was a similar class imbalance in ROTOR 285 

compared to PVI, the CNN was able to predict the successful and failed AF termination cases to a 286 

reasonable degree (see recall and F1 score in Table 1). Lastly, the CNN had a significantly higher AUC 287 

score (p < 0.05) when trained and predicted on a dataset comprised of synthetic and MRI derived data 288 

compared to training exclusively on MRI derived data (Table 3). This was confirmed using a one-sided 289 

t-test (PVI: p = 0.030; FIBRO: p = 3.5e-05; ROTOR: p = 6.15e-06). This was due to the increased 290 

dataset size when combining the real and synthetic data as the CNN has more training examples – 291 

effectively improving the task's generalisation. Notably, incorporating synthetic data has improved 292 

accuracy in predicting the outcomes of PVI. When trained exclusively on MRI-derived data, the model 293 

showed a zero F1-score for PVI, attributed to significant class imbalance. This resulted in the model 294 

predicting unsuccessful AF termination for all PVI cases, explaining the precision score of 1.0. 295 

However, integrating synthetic data into the dataset improved the model's ability to classify successful 296 

ablation for PVI (F1 score of 0.42 ± 0.06), due to the 15.5% increase in successful PVI cases in the 297 

dataset. This allowed the model to improve its classification of successful AF termination by PVI. 298 

3.1.3 Qualitative Interpretability Analysis 299 

As shown in Table 4, GradCAM was characterised by the highest lesion percentage and IoU metrics 300 

for the FIBRO and ROTOR strategies. Additionally, Figure 3 shows that in FA maps obtained with 301 

GradCAM for ROTOR and FIBRO, the informative regions coincided with most ablation lesions. 302 

Figure 3 also illustrates that GradCAM had the lowest NAT percentage for the FIBRO and ROTOR 303 

strategies, as the FA maps did not highlight large, but clinically irrelevant regions of healthy tissue – 304 

whereas LIME and occlusions did. For the PVI strategy, the occlusions method provided FA maps 305 

with the greatest lesion percentage, and LIME provided FA maps with the highest IoU score.  306 

 307 

3.1.4 Quantitative Interpretability Analysis 308 

Using the Wilcoxon signed-rank test, the ROTOR strategy lesion percentage for GradCAM was 309 

significantly greater (p < 0.017 using Bonferroni correction) than that for occlusions, but not for LIME 310 

(p = 3.1e-8 and p = 0.0253, respectively). Moreover, for the FIBRO strategy, the lesion percentage for 311 

GradCAM was significantly higher than that for the occlusions method, but again not for LIME (p = 312 

4.0 e-6, p = 0.06, respectively). However, the IoU scores for GradCAM were significantly greater (p < 313 

0.017) than those for occlusions and LIME for ROTOR (p = 3.3e-6 and p = 2.1e-9, respectively) and 314 

FIBRO (p = 4.2e-6 and p = 1.6e-9, respectively). GradCAM also had a significantly less NAT 315 

percentage (p < 0.017) than occlusions and LIME for ROTOR (p = 5.5e-05 and p = 2.3e-09, 316 

respectively) and FIBRO (p = 1.2 e-5 and 2.3e-6, respectively).  317 

Therefore, GradCAM produced more interpretable FA maps than LIME (for FIBRO and ROTOR) as 318 

the informative regions were more focused on areas with a high number of ablation lesions – reflected 319 

in GradCAM having a significantly greater IoU score than LIME (Figures 5 and 4). Furthermore, 320 

GradCAM was also more interpretable in a sense that its FA maps highlighted less regions that were 321 

non-arrhythmogenic, and hence it had a significantly less NAT percentage than LIME and occlusions 322 

(Figure 6). 323 

For the PVI strategy, the occlusions method provided FA maps with the greatest lesion percentage and 324 

LIME FA maps had the highest IoU score. The difference in best FA map methods in terms of lesion 325 
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percentage and IoU score can be seen in Table 4, as informative regions in the occlusions' FA maps 326 

cover a vast area highlighting the ablation lesions but are not local to the PVs. Meanwhile, the LIME 327 

FA map highlights areas around the PVs, but does not cover many ablation lesions. 328 

 329 

Supplementary Figures S3, S4 and S5 show the difference in the mean score of each interpretability 330 

metric for correct and incorrect classifications of AF termination for each ablation strategy and FA 331 

method on the hold-out test set. This analysis shows no clear or consistent relationship between 332 

interpretability and model accuracy. The mean interpretability scores reflect this, as they were similar 333 

across the correct and incorrect classification groups. Additionally, the mean interpretability score 334 

variability is inconsistent across each ablation strategy FA method and interpretability metric - further 335 

illustrating no relationship between interpretability and accuracy. 336 

 337 

3.1.5 Feature Attribution Thresholding Sensitivity Analysis  338 

The findings presented above show little dependence on the threshold between informative and 339 

uninformative regions. As shown in Figure 9, when the threshold value is set to 25% above and below 340 

the average feature attribution, Grad-CAM still has the highest lesion percentage and IoU compared to 341 

LIME and Occlusions for the ROTOR and FIBRO strategies. GradCAM still had a lower NAT 342 

percentage for FIBRO and ROTOR when the threshold value was 25% below the average FA. 343 

However, occlusions had a lower NAT percentage for FIBRO and ROTOR when the threshold value 344 

was above 25% of the average FA. Occlusions had a lower lesion percentage and IoU, which shows 345 

that GradCAM was more interpretable when the threshold was 25% above the average FA. 346 

 347 

3.1.6 Population-level Interpretability Analysis 348 

Figure 10 compares the average GradCAM FA maps for ROTOR, FIBRO and PVI with the average 349 

fibrosis density across the 2D LA tissue disks. It shows that the high FA regions in the average FA 350 

map for ROTOR (Figure 10B) and FIBRO (Figure 10C) correspond with dense fibrotic areas (Figure 351 

10A). Furthermore, there was a similar good correspondence between the average GradCAM FA maps 352 

for ROTOR and FIBRO (Figure 11B and 11D) and the respective average lesions across the 2D LA 353 

tissue disks (Figures 11A and 11C). Unsurprisingly, the average GradCAM FA map for PVI (Figure 354 

10D) showed relatively small correspondence to areas with high fibrosis density areas. 355 

 356 

4 Discussion and Conclusion  357 

Predicting RFCA outcomes from imaging data is a challenging task, as shown by Kim et al., who 358 

predicted AF recurrence post-RFCA with a 0.61 accuracy from a CNN which used a combination of 359 

MRI data and patient demographics (Kim et al., 2020). Moreover, Roney et al. applied machine 360 

learning to predict in-silico AF recurrence after multiple ablation strategies (Roney et al., 2018, 2020).  361 

Therefore, developing a successful DL model to predict RFCA outcomes in AF simulations is the 362 

natural first step to predict real RFCA outcomes in AF patients. Hence, this study (i) demonstrates a 363 

multi-label classification CNN for the success of ablation strategies in patient-specific simulations of 364 

AF, with AUC scores of 0.92 ± 0.02 for FIBRO, 0.78 ± 0.04 for PVI and 0.77 ± 0.02 for ROTOR, and 365 

(iii) explores different methods of DL interpretability in the classification, with GradCAM shown to 366 
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provide the most interpretable FA maps for the ROTOR and FIBRO strategy, suggesting that the DL 367 

model utilises pro-arrhythmogenic regions to make its prediction. This is further supported by the 368 

population-level interpretability analysis, as average FA maps for ROTOR and FIBRO are focused on 369 

areas with high fibrotic density. This can be explained by the fact that the respective ablation lesions 370 

are primarily located within these areas. Hence, the DL model can learn to predict AF termination 371 

outcomes by implicitly leveraging pro-arrhythmogenic regions related to a given strategy. Importantly, 372 

locations of the ablation lesions have not been explicitly used in the CNN’s learning process.  373 

It is worth noting that classification of the PVI strategy was difficult to interpret. A possible reason for 374 

this difficulty is that the PVI strategy in the clinic is based on ablating PV triggers that typically initiate 375 

AF. However, these initial PV triggers were not present in the 2D LA tissue models. Therefore, the 376 

three FA methods could not produce interpretable maps in this case.  377 

A possible explanation for why GradCAM performed better than the other methods is that LIME is 378 

susceptible to unstable generated interpretations due to random perturbations and feature selection. 379 

Moreover, LIME and occlusions are not class discriminative – meaning that they cannot localise the 380 

class (RFCA strategy) within the feature space. GradCAM is gradient-based (does not randomise 381 

parameters to obtain FA maps) and is class discriminative, allowing it to localise pro-arrhythmogenic 382 

regions more faithfully than LIME and occlusions (Selvaraju et al., 2017; Zafar and Khan, 2021).  383 

The RFCA strategy that has the highest magnitude of lesion percentage and lowest magnitude of NAT 384 

percentage (ROTOR) also had the lowest AUC score in testing (Table 1), showing that the 385 

interpretability of a FA map does not increase with the accuracy of the strategy’s prediction. This 386 

observation demonstrates that the need for interpretability in RFCA strategy prediction likely goes 387 

beyond FA, and in future work, we will investigate the incorporation of confidence in prediction 388 

outputs to enable our method to be used as a decision support tool to help clinicians select the 389 

appropriate therapy. Since Varela et al. showed that LA anatomy is a significant factor in prediction of 390 

AF recurrence post ablation (Varela et al., 2017a), the DL approach of the study should be extended to 391 

3D LA images and simulations. Future work should also focus on using exclusively real patient LA 392 

data and investigating intrinsically interpretable DL models such as ICAM (Bass et al., 2022).  393 

Note that 2D LA disks were used in this study due to the efficiency in providing the needed proof of 394 

concept and had clear advantages over extremely computationally-intensive 3D atrial simulations. 395 

Moreover, the standardised 2D unfolded LA images allowed for generation of a large number of 396 

additional synthetic images, which is crucial for training CNNs. Hence, image-based 2D LA models 397 

provided a sensible balance between realistic details (such as fibrosis distributions) and computational 398 

efficiency (i.e., the ability to run a large number of simulations and train the CNN). Previous work has 399 

shown that atrial wall thickness is distributed more or less evenly in the LA outside of PVs and that 400 

slow conduction in fibrotic areas is the main determinant of the rotor dynamics (Varela et al., 2017b; 401 

Roy et al., 2018). 402 

Another worthwhile direction is applying an approach based on counterfactual explanations, which 403 

alters the input's feature space to change the classifier's prediction. Mertes et al. has applied this 404 

approach to a generative adversarial network and showed its superiority to LIME in an X-ray imaging 405 

study of pneumonia (Mertes et al., 2022). This research utilised over 100 non-medical experts for the 406 

evaluation, which ultimately should become a standard for any interpretability study.  407 

Our original approach to the evaluation is based on using a large number of 2D LA tissue models with 408 

tractable features (rather than a large number of experts) to understand the predictions of the DL model. 409 
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Simulations of the test set of 50 2D LA tissue models reveal the important features determining the 410 

success of each given RFCA strategy, such as the precise locations of ablation lesions and underlying 411 

structural features. This evaluation shows that GradCAM best characterises if a DL model leverages 412 

relevant features in its predictions. The fact that GradCAM highlights relevant features and does not 413 

highlight healthy tissue devoid of such features is illustrated in Figures 3, 7 and 8 – and supported by 414 

numerical metrics calculated using all 50 LA tissue models and summarised in Table 4.  415 

The EU’s GDPR requires an explanation for any algorithmic decision used in patient care; we believe 416 

our work represents a significant step to meet this requirement. Most of the ablation lesions in our 417 

study coincided with informative regions of the GradCAM FA maps (specifically, for ROTOR and 418 

FIBRO, see Figures  8 and 7), whereas healthy, non-arrhythmogenic tissue (NAT) was outside of these 419 

informative regions. This suggests that the DL model can learn from structural features of patient MR 420 

images even without knowledge of the LA function. The explanation is that the structural features 421 

constitute pro-arrhythmogenic LA regions (e.g., fibrotic regions are well-known for their ability to 422 

harbour rotors sustaining AF) that need to be targeted by ablation. Such mechanistic explanations 423 

should increase clinician’s confidence in using the DL predictions in future.  424 

This study’s analysis also suggests that there is no clear relationship between a model’s interpretability 425 

and accuracy, which opens future directions of research into the relationship and interaction between 426 

a model’s performance and explainability. Another interesting investigation would be into how FA 427 

maps can be used as model feedback to improve its performance. To our knowledge, no study has 428 

investigated the application of interpretability feedback for DL model design and development for 429 

biomedical applications. Bell et al. investigated the trade-off between accuracy and explainability for 430 

black box and interpretable models. They showed that the trade-off is inconsistent, and in some cases 431 

models with high explainability can also have high accuracy - but in others higher explainability comes 432 

at the expense of low accuracy (Bell et al., 2022). 433 

Importantly, the purpose of FA maps is not to be directly applied in the clinic to predict ablation lesions 434 

in a patient – but to explain why the DL approach is making a certain prediction, and to increase clinical 435 

confidence in this approach (Lipton, 2017). The lesion percentage is a relevant metric as each RFCA 436 

lesion is associated with an arrhythmogenic location of the atrial tissue. The lesions are well defined 437 

from simulation of 2D LA models in the current study (and known by a clinician when treating a 438 

patient) – but the DL model does not learn the locations of the ablation lesions during training. Hence, 439 

the ability of the DL model to utilise these (unseen) lesion locations in its predictions of the RFCA 440 

strategy from patient MRI provides foundation for the development of interpretable AI. In the future, 441 

such AI approaches can provide a clinician with decision support tools that they understand and trust.  442 
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7 Figures and Tables 637 

 638 

 639 

Figure 1. Diagram of MRI-derived 2D LA tissue disk. A. Workflow of 2D LA tissue generation 640 

pipeline. The figure illustrates the process of how the 2D LA tissue models are obtained from LGE 641 

MRI by LA segmentation, thresholding fibrosis from healthy tissue and mapping onto 2D LA tissues. 642 

B. Workflow for generating synthetic tissues. 65 tissues were randomly selected from the total dataset 643 

of 122 real tissues. These 65 tissues were used to generate the synthetic images by iterating overstages 644 

1 to 4 (199 times) to create a virtual cohort of 199 tissues. ‘Case xA’ denotes the combination of data 645 

augmentation techniques used to create the synthetic fibrosis distributions. ‘Case xB’ determines how 646 

the PV sizes and locations were varied from those in the standardised discs. 647 

 648 

 649 

 650 
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 651 

Figure 2. Diagram of CNN with parameters to predict RFCA simulation strategy success from 2D LA 652 

tissue. 653 

 654 

Ablation 

Strategy 

AUC Recall Precision F1-Score 

PVI 0.78 ± 0.03 0.35 ± 0.07 0.68 ± 0.28 0.42 ± 0.06 

FIBRO 0.92 ± 0.02 0.89 ± 0.03 0.82 ± 0.02 0.85 ± 0.01 

ROTOR 0.77 ± 0.02 0.93 ± 0.04 0.76 ± 0.02 0.84 ± 0.01 

Table 1. Mean area under the receiver operating characteristic curve (AUC) score, recall, precision 655 

and F1-score on independent hold-out test set (with standard deviation) for each RFCA strategy. 656 

 657 

Ablation Strategy MRI Derived Data MRI Derived + 

Synthetic Data 

PVI 0.67 ± 0.03 0.78 ± 0.04 

FIBRO 0.85 ± 0.02 0.92 ± 0.02 

ROTOR 0.62 ± 0.05 0.77 ± 0.02 

Table 2. Mean AUC score on independent hold-out test set (with standard deviation) for each RFCA 658 

strategy and type of data 659 
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 660 

Ablation 

Strategy 

MRI Derived Data 

 

MRI Derived + Synthetic Data 

 

AUC Recall Precision F1 

Score 

AUC Recall Precision F1 

Score 

PVI 0.67 ± 

0.03 

0 1.0 0 0.78 ± 

0.03 

0.35 ± 

0.07 

0.68 ± 

0.28 

0.42 ± 

0.06 

FIBRO 0.85 ± 

0.02 

0.75 ± 

0.08 

0.70 ± 

0.03 

0.72 ± 

0.04 

0.92 ± 

0.02 

0.89 ± 

0.03 

0.82 ± 

0.02 

0.85 ± 

0.01 

ROTOR 0.62 ± 

0.05 

0.99 ± 

0.02 

0.64 ± 

0.01 

0.78 ± 

0.02 

0.77 ± 

0.02 

0.93 ± 

0.04 

0.76 ± 

0.02 

0.84 ± 

0.01 

Table 3. Mean AUC, recall, precision and F1 score (with standard deviation) of DL model trained with 661 

real data only and with synthetic and real data from a leave-one-out cross-validation on a hold-out test 662 

(~20% of the respective dataset). 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 

 675 
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Ablation 

Strategy 

Method Lesion 

Percentage 

IoU NAT Percentage 

PVI LIME 0.44 ± 0.24 0.077 ± 0.023 0.32 ± 0.24 

Occlusions 0.55 ± 0.15 0.065 ± 0.17 0.57 ± 0.15 

GradCAM 0.47 ± 0.17 0.063 ± 0.029 0.60 ± 0.12 

FIBRO LIME 0.57 ± 0.19 0.18 ± 0.09 0.47 ± 0.27 

Occlusions 0.45 ± 0.14 0.19 ± 0.11 0.38 ± 0.20 

GradCAM 0.62 ± 0.25 0.26 ± 0.11 0.27 ± 0.16 

ROTOR LIME 0.62 ± 0.16 0.12 ± 0.07 0.63 ± 0.25 

Occlusions 0.53 ± 0.16 0.14 ± 0.06 0.36 ± 0.16 

GradCAM 0.71 ± 0.13 0.20 ± 0.08 0.25 ± 0.06 

Table 4. Mean lesion percentage, NAT percentage, IoU of the informative region and ablation lesions 676 

with errors (standard deviation) for each FA map method and RFCA strategy. 677 

 678 

 679 

 680 
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 681 

Figure 3. Diagram of 2D LA tissues with highlighted feature attribution maps. White areas in the 2D 682 

tissues are healthy tissue and red areas are fibrosis.  Ablation lesion locations known from simulations 683 

are shown (yellow) for all three RFCA strategies, along with respective FA maps for LIME, GradCAM 684 

and occlusions and highlighted thresholded informative regions (translucent green). Same colour 685 

scheme in used in Figures 7 and 8 below.  686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 
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 698 

Figure 4. Boxplot of Jacquard index (IoU) for each FA method (GradCAM, LIME and Occlusions) 699 

and RFCA strategy (PVI, FIBRO and ROTOR) on the hold-out test set.  700 

 701 

 702 

 703 

Figure 5. Boxplot of lesion percentage for each FA method (GradCAM, LIME and Occlusions) and 704 

RFCA strategy (PVI, FIBRO and ROTOR) on the hold-out test set.  705 

 706 

 707 
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 708 

 709 

Figure 6. Boxplot of NAT percentage for each FA method (GradCAM, LIME and Occlusions) and 710 

RFCA strategy (PVI, FIBRO and ROTOR) on the hold-out test set.  711 

 712 
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 713 

Figure 7. Correct and incorrect classification examples of FA maps (LIME, GradCAM and 714 

occlusions) for FIBRO. 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 
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 726 

Figure 8. Correct and incorrect classification examples of FA maps (LIME, GradCAM and 727 

occlusions) for ROTOR. 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 
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 739 

Figure 9. IoU, lesion and NAT percentage values for each interpretability method and ablation strategy 740 

with altered informative region threshold value. A. Informative region threshold value 25% above the 741 

average FA. B. Informative region threshold value 25% below the average FA. 742 

 743 

 744 

 745 

 746 
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 747 

Figure 10. Averaged LGE MRI intensities and FA maps on the hold-out test set. A. Averaged and 748 

normalised LGE MRI intensity in the LA tissue disks. B. Averaged and normalised GradCAM FA map 749 

for the ROTOR ablation strategy. C. Averaged and normalised GradCAM FA map for the FIBRO 750 

ablation strategy. D. Averaged and normalised GradCAM FA map for the PVI ablation strategy. 751 
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 752 

Figure 11. Averaged and normalised ablation lesions and GradCAM FA maps for FIBRO and ROTOR 753 

on the hold-out test set. A. Ablation lesions for ROTOR. B. FA map for ROTOR. C. Ablation lesions 754 

for FIBRO. D. FA map for FIBRO.  755 

 756 


